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Abstract 
When considering individuals with dietary limitations, automatic food 

recognition, and assessment are paramount. Smartphone-oriented 

applications are convenient and handy when dish recognition and the 

elements inside are required. Machine learning (deep learning) applied to 

image recognition, alongside other classification techniques (for example, 
bag-of-words), are possible approaches to tackle this problem. The current 

most promising approach to the classification problem is deep leaning, which 

requires high computation for training, but it is an extremely fast and 

computationally light classifier. Since the requirement for the classifiers to be 
as accurate as possible, the humans must also be considered as the classifier. 

This work tests and compares deep-learning methods bag-of-words applied 

to computer vision, and the human visual system. Results show that deep 
learning is better when considering a low number of food categories. 

However, with more food categories, the human overcomes the machine 

algorithms. 

Keywords – Machine learning, Food recognition, Human visual system, Image 

classification. 

1 INTRODUCTION 
Mobile devices with relatively good computational characteristics play an essential role in 

computer vision and assisting in better and healthy lifestyle dietary assessment. In food 

recognition, the first step is to automatically identify the plate containing the food and 

ignore all surroundings. Then, isolate food elements in the dish, consider the semantics 

(e.g., rice with beans, egg yolk, and white), and finally classify the food. Based on extracted 

data, eating habits can improve with any application to track the consumed food calories, 
recommending better lifestyle decisions. 

Since Convolution Neural Networks (CNNs) were improved, image classification and 

object recognition became possible with reasonable accuracy. By matching CNNs with the 
current mobile computing capacity, manual identification of food can be replaced by an 

automatic classification, merely pointing the camera of a smartphone to the food plate. In 

this context, the challenge is to have a CNN that can at least match the humans. Otherwise, 

no point/trust is using an automated process to identify food elements on a plate. 
Therefore, it is critical to study if CNNs can outperform humans, and also if they are more 

efficient than other traditional approaches to the problem. 
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The selected traditional approach to test was the bag-of-words. The bag-of-words 

model can be applied to the representation of images in computer vision by treating image 

features as terms. A bag of words is a sparse vector of the frequency counts of terms in text 
classification; that is, a sparse histogram of the vocabulary (Sarwar et al., 2019). As a more 

state-of-the-art deep-learning approach, the same setup is tested with CNNs, namely with 

GoogLeNet (Al-Qizwini et al., 2017), Inception-v3 (Szegedy et al., 2016) and Resnet101 

(Varga et al., 2018). Additionally, the human visual system is also testes and used as a 

baseline to compare with the other methods. It also includes training, learning new dishes 

of food e.g., for European food (Asiatic foods are unknown), and then identifying them. This 

paper describes the architectures of the bag-of-words pipeline and CNNs, as well as the 
created survey for training and testing the food recognition capacity of a selected group of 

humans. 

The organization of this paper is in the following four sections. Section 2 resumes the 

vast related-work in the field. Section 3, describes the implementation of the approaches 
to test the bag-of-words, deep-learning, and human. Additionally, there is an explanation 

for the tests, training set, and the experimental setup. Finally, Section 4 discuss the 

experimental results, and Section 5 concludes the study with a review of the 

accomplishments and discuss future work guidelines. 

2 RESUMED RELATED WORK 
Food recognition is a challenging problem because of deformable objects and high intra-

class variation. Different shapes, textures, and colors that food can assume, create 

demanding obstacles for machine-learning to identify dishes and their content. 

Authors in (Baxter, 2012) and (Yang et al., 2010) use machine learning combined with 
statistics and spatial relationships between ingredient labels to detect food, whereas 

ingredients are statistically related to each other to increase classification accuracy. 

In (Joutou and Yanai, 2009), authors propose an automatic food image recognition 
system for recording people’s eating habits. They apply the Multiple Kernel Learning 

method to integrate several kinds of image features such as color, texture, and SIFT 

adaptively, reaching in their experimental results a 61.34% classification rate for 50 types 

of foods. Also, in (Matsuda et al., 2012), candidate regions are detected and using bag-of-
words combined with SIFT, spatial pyramid, histograms, and Gabor texture, experimental 

results show 56% accuracy when using ten classes of food types. 

In the last decade, deep learning raised with Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, presenting AlexNet, a CNN oriented to recognize objects in images. Results 

with AlexNet outcome the, at the time state-of-the-art, and they have become frequent in 

all kinds of tasks, such as gender recognition from facial images (Arora and Bhatia, 2018). 

CNNs stand out from other traditional methods when processing images by including 
convolution layers to extract and filter images’ features automatically. The concept of back-

propagation is also introduced in CNNS and extended to all convolution layers, which allow 

extracting information from images automatically (Shen et al., 2016). New CNNs are 

developed along with research to improve the accuracy of Alexnet. Resnet is an evolution 
of Alexnet, by adding residual blocks to manage gradients that vanish in the first layers on 

back-propagation execution, increasing depth, Resnet can improve its accuracy (Cheng et 

al., 2017) (He et al., 2016). 

By introducing sparse connections between layers and using different filter sizes, 
the CNN Inception can capture more features with a more varied degree of detail to push 

performance, both in terms of speed and accuracy (Szegedy et al., 2015) (Baldassarre et al., 
2017). 
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One of the motivations for this work is the fact that authors using CNNs applied to food 

recognition were able to achieve better results than other approaches in general. Authors 

in (Kawano and Yanai, 2014a) present a technique using Deep Convolutional Neural 
Network to boost food recognition accuracy significantly by integrating it with 

conventional hand-crafted image features, Fisher Vectors with HoG and Color patches. 

Results show they have achieved 72.26% as the top-1 accuracy and 92.00% as the top-5 

accuracy for the 100-class food dataset, UEC-FOOD100, which outperforms the best 

classification accuracy of this dataset reported so far, 59.6%. 

Authors in (Pouladzadeh and Shirmohammadi, 2017) and (Kawano and Yanai, 2013) 

propose similar mobile apps for food recognition, both using deep-learning. Their solution 
requires the user to build a bounding box around the elements of food manually — 

performed experiments with 7000 food images, from 30 different classes (FooD dataset). 

Results show an average recall of 90.98%, the precision of 93.05%, and accuracy of 94.11% 

compared to 50.8% to 88% accuracy of other food recognition systems. In general, the 
results are striking good. However, they rely too much on user action: 

• The user needs to interact with the app and manually set the bounding box. Thus, 
this makes the approach incomparable with others that require no interaction from 

the user (except taking the photo). 

• The dataset is not comprehensive. It includes easily recognizable items, such as 

everyday fruits. 

• It also has only 30 different classes of foods, which is too less, and it influences the 

accuracy. 

Other authors, (Yanai and Kawano, 2015), examined the efficacy of the deep 

convolutional neural network, applied to food recognition. In their work, they search for 
the best combination between pre-training with the large-scale ImageNet data, fine-tuning, 

and activation features extracted from the pre-trained deep convolutional neural network. 

Results show that using a pre-trained network, including 1000 food-related categories, was 

the best method, achieving 78.77% as accuracy for UEC-FOOD100 and 67.57% for 
UECFOOD256 (Kawano and Yanai, 2014b). 

When analyzing results from (Yanai and Kawano, 2015; Hassannejad et al., 2016; 

Ciocca et al., 2017) and others, it was evident that accuracy is far from the optimal 100%. 
Based on our previous works over this topic (Caldeira et al., 2019), CNNs outperform 

humans with a low number of classes of foods. However, if we increase the number of food 

classes, humans are better. Hence, in this work, we question whether using an approach 

based on bag-of-words will optimize the efficiency of the CNN. 

3 METHODOLOGY 
Food classification using deep-learning techniques is the most used approach when 

classifying food dishes. Another way of getting the work done is by using humanbased 

identification, where a human interacts to identify each food. The human-based approach 
is essential to use as a comparison baseline. Succeeding sections describe how the problem 

(identify and classify food) approached to compare and withdraw conclusions. 

Our implementation of the algorithm bag-of-words is in Matlab, using the bag-

offeatures object, which allows implementing specific image feature extractors. The 
hardware setup for all computational, experimental work consisted of an Intel i7 4.7GHz 

processor, 32GB RAM, Asus Nvidia GeForce Gtx 1070 8GB, Windows 10 64 bits, MatLab 

R2018a. 
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Figure 1: Bag-of-words architecture sketch 

3.1 Bag-of-Words architecture 
Bag-of-words is a machine learning classification technique. The process rep rents images 
as words, generating a histogram of the visual representation that occurs in the image 

(Csurka et al., 2004). Such histograms are used for the preparation of an image recognition 

classifier. In general, the bag-of-words extract features to represent the image (using a 

training dataset), then creates a visual vocabulary (bag of features), then classifies the 
image. 

Figure 1 depicts the bag-of-words architectural steps to extract features and classify an 

image. In (1) is represented the feature extraction, for both training and testing pipelines. 
These features are described in the bag-of-words approach, by vectors of features. In this 

step, oriented to the proposed research, were extracted features such as texture (GLCM 

binary patterns), color histograms, geometry features of regions (6 layers the start of step 

(2)), and also SURF. Using k-means algorithm images features from the training dataset are 
extracted and clustered, and this allows obtaining k feature vectors. The k feature vectors 

represent the centroid of each class feature from the training dataset (2) visual words are 

grouped and separated by similar characteristics and defined as a vocabulary histogram. 

In the classification step (3), a trained artificial neural network combines all weighted 

vectors and saliencies that are analyzed based on a ReLU function. Feature visualization is 

the same as the forward pass of the deep convolutional network, which only leaves the 

input’s positive components. After step (3), the already trained neural network feeds the 
testing images in step (4) and label pictures. Once the BOW trained, the method identifies 

and removes features from the training images provided every new picture for 

classification and generates the histogram for the picture occurring in codewords. 

Afterwards, the qualified classifier is used to label the picture as one of the groups (step 
(4)). 

3.2 Deep learning architecture(s) 
With the objective of comparing the accuracy of CNNs a set of networks were selected for 

testing: GoogleNet (Tang et al., 2017), Inception-v3 (Nivrito et al., 2016), and 

Resnet101 (Doersch and Zisserman, 2017). 

Before Resnet, neural networks struggled with problems in gradients ignored and then 

removed during the back-propagation learning process, affecting the number of layers. 

Thus, Resnet architecture came to improve how deep-learning-networks training uses 
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Stochastic Gradient Descent through the residual modules (Wang et al., 2017). The residual 

modules are sub-architectural-blocks, which feed both the next layer and layers that are 

two or three hops distance. Passing forward the residual modules, instead of discarding 
them, enables deep-learning-networks to minimize vanishing gradients problems, and to 

classification more appropriately. 

 

Figure 2: Resnet block architecture 

Figure 2 shows a small illustration of Resnet architecture. Several layers compose 
Resnet, and at each layer, the output of the previews is added. 

Resnet follows VGG’s full 3 × 3 convolutional layer design. The residual block has two 

3 × 3 convolutional layers with the same number of output channels. Each convolutional 
layer is followed by a batch normalization layer and a ReLU activation function. 

Then, these two convolution operations add the input directly before the final ReLU 

activation function. This kind of design requires that the output of the two convolutional 

layers be of the same shape as the input so that they can be added together. Let us focus on 
a local neural network, as depicted. Denote the input by x. The ideal mapping by learning 

is f(x), to be used as the input to the activation function. The portion within the dotted-line 

box must directly fit the mapping f(x). 

GoogleNet first introduces the inception architecture concept, and later the CNN 

inception improves it. Inceptionv3 CNN introduces a special inception module is adopted 

to improve model performance, which is a multi-level feature extraction that computes 

1x1, 3x3 and 5x5 convolutions, all in the same network module. In the inception module, 
convolutional layers with different filter sizes are computed in parallel. Resulting features 

are concatenated before passed to the next layer. The increase in features significantly 

increases the learning power of the model (Szegedy et al., 2016). Also, pooling operations 

are essential for the Inception convolutional network; hence, a parallel pooling path is 
added to reduce the amount of data and the computation time (grid size reduction). 

Softmax activation outputs the probabilities of each class. The architecture for the 

inceptionv3 model is described in Figure 3. Note that the outputs of the inception filters 
are all stacked and used as input to the next layer. 

In the experimental testing setup, the number of layers for the architectures, Resnet, 

Inception, and Googlenet, were 101, 48 and 22, followed by training for a larger number of 

epochs (300) to ensure the convergence of the network. All the three CNNs were pre-
trained (with a selected set of images) to classify images (from another distinct collection 

of images) from the food dataset UECFOOD256 (Kawano and Yanai, 2014b). The training 



6 

and classification were either all 256 categories or 16 randomly selected categories. The 

training rate was initially configured to 0.05, val- 

 

Figure 3: Simplified inception architecture, ConvNets model 

idating every four interaction, preliminary conclusion indicates accuracy convergence in 
every run. 

Procedures to classify new food images consisted of loading the food image to be 

categorized, extract features automatically (using the CNN convolutions layers) and giving 

learned weights to each feature. As a result, food is classified as one of those types, ending 

with a group of probabilities that the submitted food is one of the before learned ones. Note 

that, an independent dataset is used to evaluate accuracy. 

3.3 Baseline survey 
A survey in Asian foods was mounted and delivered to humans without previews 

knowledge in these food classes. A test group of 20 subjects was accepted (the ones not 

knowing at least 80% of the dishes) all in the age rank between 25 and 40 years old, all 
with European nationality. As control questions, two items in the survey were universal 

foods, such as Pizza. 

Training is necessary before testing humans. The challenge then is to train the subject 

to be able to pick the correct name of food dishes presented to him, and the accuracy is 

measured as the percentage of the right choices. For this reason, the survey was divided 

into two stages. 

A training stage was given to the human subjects, consisting of showing a set of total 

98 screens for the 16 food categories (a number that was deemed sufficiently small to allow 

humans to keep the attention and simultaneously not too small to be too easy). Each screen 

shows seven images for the chosen food category and one image from other food 

categories, in random order. Then the test subject had to indicate the one that did not 
belong to the respective food category. This allows the test subjects to learn the names and 

key characteristics of each food category. Figure 4 shows a set of dishes from the same 

category (identified by the title), and one image that does not belong (i.e., the user needs to 

identify the dish image that does not fit) marked with an ”x”. 

In the second stage, image classification, a set of images, based on 32 screens, is shown 

in random order, from the 16 trained food dish classes, each with 16 class label options, 

where only one is correct. The test subjects need to select the right label for the image. 
Figure 6 shows one of the screens used to test the human classification accuracy. In the 

figure, on the left side, is given the dish image belonging to an unknown class, and on the 
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right, the dish class options for the respondent to fill with the correct option on the and 

then follows to the next screen. 

 

Figure 4: Human, training image example food class “Pizza” 

4 RESULTS 
The training time for Resnet101 was 8018 minutes for 256 food categories and almost 226 

minutes for 16 classes. Figure 5 compares the accuracy of the methods: Human, Resnet101, 

GoogleNet, Inception v3, Bag-of-words (500 words vocabulary), and Bagof-words (1000 

words vocabulary), all with two approaches, 16 food categories and 256 food categories 

(except for the human survey). In the bag-of-words, results show that increasing the 

number of codewords does not bring a significant accuracy performance, and still, the bag-
of-words was worse than CNNs and humans. Results also show that for 16 food categories, 

CNNs were better than humans. A more realistic test, using 256 food categories, indicates 

that CNNs performance decreases significantly. The best performing CNN was Resnet with 

95% and 75% accuracy for 16 and 256 food categories, respectively. 

Figure 7 shows some class precision values from classification of: Humans (16 food 

classes); Resnet (256 categories); Inceptionv3 (256 categories); GoogleNet (256 

categories); and Bag-of-words (1000 code-words). The analysis of the values in chat, 

Figure 7 allow concluding that the hardest classification categories for humans and neural 
networks are different, which lead to humans and CNNs to have distinct behaviors when 

classifying types of food types. 

A global analysis of results (Figure 5 and 7) shows that CNNs are more accurate than 
bag-of-words, simultaneously show that, as the number of categories to learn increase (16 

to 256 food categories) the accuracy decreases. Consequently, humans knowledge 

continues to outperform the accuracy of CNNs when identifying different food types. 

5 CONCLUSIONS 
In this work, bag-of-words is compared with CNNs and with humans. The experimental 

comparison process allows us to conclude that CNNs are more accurate than the bag-of-

words, while at the same time showing CNNs accuracy decreases when the number of food 
categories increases (considering 16 to 256 food groups). As a result, the efficiency of CNNs 

tends to be exceeded by human intelligence when considering various food types. Although 

different classifications of people and deep learning are robust, human and CNNs attitudes 

are distinct when classifying various food types. 

Future work includes better research on how humans learn and classify food dishes, so 

that, those learning details can also be reinforced on CNNs. Additionally, other image 
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variation factors of impact, such as illumination, camera angles, and shadows, need to be 

perfected in CNNs. Finally, we propose the integration into mobile apps 

 

Figure 6: Human, classification screen. 

 

Figure 7: Some food classification accuracy’s 

of these learning capabilities applied not only to photos but also video, for instance, using 

approaches such as YOLO (You Only Look Once) (Du, 2018). 
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