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Abstract  

Dropout predicting is challenging analysis process which requires appropriate approaches to 

address the dropout. Existing approaches are applied in different areas such as education, 

telecommunications, retail, social networks, and banking services. The goal is to identify 

customers in the risk of dropout to support retention strategies. This research developed a 

systematic literature review to evaluate the development of existing studies to predict dropout 

using machine learning, following the guidelines recommended by Kitchenham and Peterson. 

The systematic review followed three phases planning, conducting, and reporting. The selection 

of the most relevant articles was based on the use of Active Systematic Review tool using 

artificial intelligence algorithms. The criteria identified 28 articles and several research lines 

where identified. Dropout is a transversal problem for several sectors of economic activity, 

where it can be taken countermeasures before it happens if detected early.  

Keywords: dropout prediction; customers; machine learning  

 

1. INTRODUCTION  

Customer analysis is fundamental to develop business and marketing intelligence (Sheth, Mittal, & 

Newman, 1998), supporting the understanding of historical data identifying trends and patterns 

(Berry & Linoff, 2004). This process is also known as data mining, the extraction of knowledge from 

data (Han & Kamber, 2006). Data mining encompasses techniques from other domains such as 

statistics, machine learning, pattern recognition, database and data warehouse systems, information 

retrieval, visualization, algorithms, and high-performance computing (Han, Kamber, & Pei, 2012). 

Data mining explores and analyses data to discover relevant patterns using task such as classification; 

regressions; clusters analysis (Han & Kamber, 2006). According to Han, Kamber, and Pei (Han et 

al., 2012), these tasks present many similarities between data mining and machine learning. Machine 

learning is understood as an automated process to extract patterns from the data (Kelleher, Namee, 

& D’Arcy, 2015), generalizing from the examples in the training set (Domingos, 2012). Machine 

learning could be used to extract knowledge to understand dropout with the development of effective 

retention strategies (Verbeke, Martens, Mues, & Baesens, 2011). The use of machine learning allows 

the discovery of patterns supporting the identification of hypothesis addressing existing problems.  



  

Sobreiro et al. / Dropout prediction: A Systematic Literature Review 

 

21.ª Conferência da Associação Portuguesa de Sistemas de Informação (CAPSI’2021) 

13 a 16 de outubro de 2021, Vila Real e Viseu, Portugal 

2 

 

The dropout is a problem that needs to be addressed. The costs of retaining customers are lower 

when compared to the costs of attracting new ones (Edward & Sahadev, 2011). Reichheld 

(Reichheld, 1996) evidenced that reducing dropout rates by 5% (e.g., from 15% to 10% per year) 

could represent an increase in profits up to the double. A customer that dropout represents a loss of 

money, if an organization can predict the dropout is possible to develop counter measures to avoid 

the desertion. Machine learning algorithms have been used to predict customer dropout (Bandara, 

Perera, & Alahakoon, 2013), without however to consider the timings of the dropout. Survival 

analysis, or more generally, time-to-event analysis, refers to a set of methods to describe the 

probability of surviving past a specified time point, or more generally, the probability that the event 

of interest has not yet occurred by this time point (Schober & Vetter, 2018). To our knowledge there 

is a lack of systematic literature review addressing the dropout using machine learning techniques.  

This research analyses state of the art and identifies Machine Learning studies to predict customer 

dropout.  It is developed under a methodology of systematic literature review applied by Kitchman 

& Charters (Kitchenham & Charters, 2007) to perform a systematic literature review.  

2. RESEARCH METHODOLOGY  

According to Fink (Fink, 2010), systematic literature review (SLR) is a systematic, explicit, and 

reproducible method for identifying, evaluating, and synthesizing the existing body of completed 

and recorded work produced by researchers, scholars, and practitioners. 

The importance to understand customer dropout and the diversity of employed algorithms requires 

an understanding of trends and existing problems to create a ground base of knowledge. For the 

development of the systematic literature review was adopted, the methodology applied by 

Kitchenham & Charters (Kitchenham & Charters, 2007) developed in three stages: Planning, 

Implementation and Results.  

There were identified four research questions to determine the main aspects related to the customer 

dropout with contractual settings.  

RQ1.What are the trends in machine learning algorithms to predict dropout? RQ1 aims at identifying 

the ML techniques that have been used to predict the customer’s dropout.  

RQ2. When the dropout occurs? RQ2 intends to understand if the timing related to the customer 

dropout is considered.  

RQ3. What are the more relevant features related to predicting customer dropout?  

RQ4. What is the accuracy of the machine learning algorithms to predict dropout?   

This phase requires the identification of the search strategy. The authors adopted the Population,  
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Intervention, Comparison, Outcomes and Context (PICOC) as suggested Kitchenham and Charters 

(Kitchenham & Charters, 2007) and proposed by Petticrew and Roberts (Petticrew & Roberts, 2006).  

The adopted search criteria were ((“customer dropout”) OR (“customer churn”) AND “machine 

learning” AND (“contractual” OR “membership”)), which was applied to the title, abstract, and 

keywords in the search period between January 2000 and December 2019 using the IEEE Digital 

Library database.  

The exclusion criteria were Books, Non-English articles, patents, and thesis.  

A total of 218 studies were found in the first step. The selection process of the identified articles was 

developed using ASReview (ASReview Core Development Team, 2019) creating a dataset of the 

identified articles, providing five relevant papers and five irrelevant papers to train Machine 

Learning model Naïve Bayes. After we started the reviewing process labelling the subsequent papers 

as irrelevant or relevant until start suggesting only irrelevant papers. The results were exported and 

analyzed only 28 relevant papers. During the data extraction one paper was excluded, remaining 27 

relevant papers; this process is represented in Figure 1.  

 

  

Figure 1 – Filtering process to identify the final studies for review  

The quality assessment criteria was developed for the four research questions based on the score 

schema on Kitchenham et al. (2010). Was adopted three-level scale Yes = 1.0, Undefined = 0.5 and 

No = 0. The selected papers were reviewed to answer the quality questions.  

The data extraction process was developed while the papers were reviewed identifying the dropout 

domain, the type of organization (e.g., airline company, insurance company or telecommunication) 

and the dropout prediction techniques (e.g., Decision trees, logistic regression, or support vector 

machine).   

218  studies  
after search 

24  duplicates  
removed 

166  removed  
after ASReview 

28  papers  
selected 

1  paper  
rejected during  
data extraction 



  

Sobreiro et al. / Dropout prediction: A Systematic Literature Review 

 

21.ª Conferência da Associação Portuguesa de Sistemas de Informação (CAPSI’2021) 

13 a 16 de outubro de 2021, Vila Real e Viseu, Portugal 

4 

 

 

Figure 2 – Articles per year after quality assessment  

3. RESULTS  

During the development of the systematic literature review, the authors considered the following to 

be the most important research organized according to the research questions.  

RQ1.What are the trends in machine learning algorithms to predict dropout? RQ1 aims at identifying 

the ML algorithms that have been used to predict the customer’s dropout.  

Figure 3 presents the most common algorithms used to address the dropout problem in different 

business contexts. The algorithms based in decision trees are present in almost 17 articles, followed 

by logistic regression and neural networks.  

  

 

Figure 3 – Main algorithms used in the analyzed papers.  

Focusing further on the citations, the five most cited studies, are the one of Runge, Gao, Garcin, & 

Faltings (2014) with 119 citations in total, Bi, Cai, Liu, & Li (2016) with 73 citations, Phadke, 

Uzunalioglu, Mendiratta, Kushnir, & Doran (2013) with 62, Perianez, Saas, Guitart, & Magne 

(2016) with 42 and Jinbo, Xiu, & Wenhuang (2007) with 25, as per May of 2020 according to Google 

Scholar.   
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The most cited article, by Runge et al. (2014) predict churn for high value players of casual social 

games and attempts to assess the business impact that can be derived from a predictive churn 

model—indicating that contacting players shortly before the predicted churn event improves the 

effectiveness of communication with players.  

Bi et al. (2016) propose a new clustering algorithm exploring a case study of China Telecom. The 

study address also management suggestions to develop marketing strategies to ensure profit 

maximization.  

Phadke et al. (2013) employ churn prediction algorithms based on service usage metrics, network 

performance indicators, and traditional demographic information. However, they develop the churn 

prediction based also on a social analysis of the call graph to quantify the strength of social ties 

between users. The Study was developed in the telecom sector.  

Perianez et al. (2016) for the first time in the social games’ domain, develop a survival ensemble 

model which provides a comprehensive analysis together with an accurate prediction of churn. Their 

approach predicts the probability of churning as function of time providing more accurate and more 

stable prediction results than traditional approaches.  

Jinbo et al. (2007) employ the use of AdaBoost which is a main branch of boosting algorithms to 

predict the customer churn in a bank using a credit debt customer database.  

The most cited articles are manly in the business sector games (two), telecommunications (two) and 

credit (one). Only study address the use of the survival   

Weiyun Ying et al. (2008) investigate the effectiveness of the random forests approach in predicting 

customer churn in the banking industry.   

Motahari et al. (2014) investigate various churn models profiling the customers and assigning churn 

probabilities to them and showing that churn prediction methods do not adequately model subscriber 

churn. Their research suggests that other subscribers’ churn in their social network can influence the 

dropout. Their approach considers the influencers and their level of importance to increase the 

performance of churn prediction models.  

Sundarkumar, Ravi, & Siddeshwar (2015) adopted the models’ Decision Tree, Support Vector 

Machine, Logistic Regression, Probabilistic Neural Network (PNN) and Group Method of Data 

Handling (GMDH) in an Automobile Insurance fraud dataset and Credit card customer churn dataset 

is taken from literature. Creating rules using the obtained decision trees to identify groups to develop 

pre-emptive actions.   

Halibas et al. (2019) implemented exploratory data analysis and feature engineering in a public 

domain Telecoms dataset. They applied seven classification techniques, namely, Naïve Bayes, 
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Generalized Linear Model, Logistic Regression, Deep Learning, Decision Tree, Random Forest, and 

Gradient Boosted Trees. The best classifier identified was the Gradient Boosted Trees.  

RQ2. When the dropout occurs? RQ2 intends to understand if the timing related to the customer 

dropout is considered.  

To address this research question in the selected studies we analyzed the articles identifying which 

ones address the timings.    

Only three studies addressed the timings related to the dropout (Figure 4). Liu et al. (Liu et al., 2018) 

determine the dropout and the average mobile game retention as a function of time, showing that 

95% if the users end the relationship after 40 days. Employing the algorithms logistic regression, 

decision tree-based and support vector machines.  

Runge et al. (2014) compare the prediction performance of four different classification algorithms 

and attempt to explore the temporal dynamics of time series data using a hidden markov model. 

Comparing its prediction performance against neural networks, logistic regression, decision tree and 

support vector machine. The test results indicated that contacting players shortly before the predicted 

churn event substantially improves the effectiveness of communication with players.  

Perianez et al. (2016) model based on survival ensembles outputs accurate predictions of when 

players churn and provides information about the risk factors that affect the exit of players as well. 

This approach allowed to extract the median survival time and use as a life expectancy threshold. 

Using this allowed to label players as being at risk of churning, to act beforehand to retain valuable 

players, and ultimately improve game development to enhance player satisfaction. 

 

 

Figure 4 – The number of studies addressing the dropout timings. RQ3. 

Regarding to RQ3, what are the more relevant features related to predicting customer 

dropout?  
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To answer this research, question the selected papers where reviewed looking if the articles identified 

relevant features to predict dropout. The number of studies that identified the relevant features is 

approximately 71% (Figure 5). This represents a large proportion of the studies suggesting important 

features that should be considering predicting dropout, using manly demographic (e.g., age or gender 

and behavioral data (e.g., type of service, usage, payments) related to the use of the service being 

purchased manly telecommunications and financial sector. 

 

Figure 5 – Percentage of studies identifying the relevant features.  

RQ4. What is the accuracy of the machine learning algorithms to predict dropout?  

In order to answer this research question, the selected papers where reviewed looking if the articles 

identified the accuracy in the prediction of the dropout, 25 studies (Table 1). Two studies didn’t 

address the dropout accuracy, Franciska & Swaminathan (2017) identify several clustering 

algorithms to predict dropout, Bandara et al. (Bandara et al., 2013) described the efforts to build 

successful churn prediction models highlighting their characteristics developing a survey in the 

telecommunication sector. The other 25 studies identify de accuracy in the prediction of the dropout 

representing a large majority of the studies using manly the confusion matrix. 

 

Identify accuracy? Articles 

Yes (Bi, Cai, Liu, & Li, 2016; Columelli, Nunez-del-Prado, & Zarate-

Gamarra, 2016; Gök, Özyer, & Jida, 2015; Halibas et al., 2019; Jinbo, Li 

Xiu, & Wenhuang, 2007; Kayes & Chakareski, 2015; Liu et al., 2018; 

Manongdo & Xu, 2016; Mohanty & Rani, 2015; Motahari et al., 2014; 

Perianez, Saas, Guitart, & Magne, 2016; Phadke, Uzunalioglu, 

Mendiratta, Kushnir, & Doran, 2013; Qaisi, Rodan, Qaddoum, & Al-

Sayyed, 2018; Runge, Gao, Garcin, & Faltings, 2014; Semrl & Matei, 

2017; Shankar, Rajanikanth, Sivaramaraju, & Murthy, 2018; 

Sundarkumar, Ravi, & Siddeshwar, 2015; Wu & Li, 2018, p.; Xiao, Jiang, 

He, & Teng, 2016; Xie & Li, 2008; Ye & Chen, 2008; Ying, Li, Xie, & 

Johnson, 2008; Zhang, Qi, Shu, & Cao, 2007) 

No (Bandara, Perera, & Alahakoon, 2013; Franciska & Swaminathan, 2017) 

Table 1 – Studies identifying the prediction accuracy.  

  

74 % 

26 % 

Yes 

No 
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The sector of telecommunications is the main researched area, followed by financial institutions 

(Figure 7)  

 

Figure 7 – The number of studies per business context.  

4. CONCLUSION  

The development in the adoption of machine learning techniques to predict customer dropout is using 

more ensemble methods integrating different approaches. The telecommunications sector is the area 

were being developing most of the studies, which identifies some business areas that need to be 

addressed.   

The implementation of algorithms to predict dropout using survival analysis approaches is under-

researched, only three research papers, but if we considering the number of citations for those 

articles this could stand for an interest using survival analysis to predict dropout (Perianez et al., 

2016).  

The use of algorithms to explore the timings when the dropout will occur is an approach that allow 

to complement the dropout prediction, giving more information to support the development of 

actions considering both the probability and when should be developed countermeasures to avoid 

the customer dropout.  
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