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Abstract 

Forecasts of age-specific mortality rates are a critical input in multiple research and policy areas such as 

assessing the overall health, well-being, and human development of a population and the pricing and risk 

management of life insurance contracts and longevity-linked securities. Model selection and model 

combination are currently the two competing approaches when modelling and forecasting mortality, often 

using statistical learning methods. This paper empirically investigates the predictive performance of 

Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM) architecture in jointly 

modelling and multivariate time series forecasting of age-specific mortality rates across the entire lifespan. 

We empirically investigate different hyperparameter choices in three hidden layers LSTM models and 

compare the model’s forecasting accuracy with that produced by classical age-period and age-period-cohort 

stochastic mortality models. The empirical results obtained using data for Portugal suggest that the RNN 

with LSTM architecture can outperform traditional benchmarking methods. The LSTM architecture 

generates smooth and consistent forecasts of mortality rates at all ages and across years. The predictive 

accuracy of the LSTM network is higher for both sexes, significantly outperforming the benchmarks in the 

male population, an interesting result given the added difficulties posed by the mortality hump and higher 

variability in male survival functions. Further investigation considering other RNN architectures, 

calibration procedures, and sample datasets is necessary to confirm the robustness of deep learning methods 

in modelling human survival. 

Keywords: Mortality forecasting; RNN; LSTM; deep learning; pensions; insurance. 

 

1. INTRODUCTION 

Forecasts of age-specific mortality rates are a critical input in the computation of period and cohort life tables, 

in estimating life expectancy and other longevity markers, in producing annual and infra-annual forecasts of 

the resident population, in pricing life insurance and retirement income contracts, in the pricing and risk 

management of longevity-linked securities and their derivatives (Hyndman & Booth, 2008; Bravo & El 

Mekkaoui, 2018; Bravo & Coelho, 2019; Bravo, 2016, 2019, 2020; Simões et al., 2021; Bravo & Silva, 2006). 

Period life expectancy computed from age-specific survival probabilities is one of the most used markers to 

assess the overall health, well-being, and human development of a population. Its level and trends are used 

broadly by national and supra-national health organizations and researchers to assess the impact of health 

policies or health shocks (e.g., epidemics), to identify the lost years due to the leading causes of death, to 

estimate and forecast lifespan inequality, to compare countries and regions (Luy et al., 2019; UN, 2020). 

More recently, life expectancy was used to automatically link earnings-related pension benefits to longevity 

developments observed at retirement ages, as part of broader pension reforms aiming to minimize the impact 

of population aging and economic shocks on the financing of pension schemes. The link has been established 

in multiple ways (Ayuso et al., 2021a,b; Bravo & Herce, 2020; Bravo & Ayuso, 2021a,b): (i) by indexing the 
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normal and the early retirement ages to life expectancy (e.g., Portugal, UK, Slovakia, Finland, Denmark, The 

Netherlands, Italy, Estonia, Greece, Cyprus); (ii) by linking the entry pension benefits to the so-called 

sustainability factors (e.g., Finland, Portugal, Spain), to old-age dependency ratios (e.g., Germany, Japan) or 

life annuity factors (e.g., Sweden); (iii) by indexing the eligibility requirements to the contribution length (e.g., 

France, Italy); (iv) by conditioning the annual pension indexation (e.g., Luxembourg); (v) by indexing the 

pension penalties (bonuses) for early (late) retirement to the contribution length (e.g., Portugal); (vi) by 

introducing longevity-linked life annuities in public and private pension schemes (e.g., USA); (vii) by 

conditioning the uprating of pension entitlements (e.g., The Netherlands). 

In the actuarial and demographic literature, the traditional approach to age-specific mortality rate forecasting 

is to select a single or a multi-population discrete-time or continuous-time stochastic mortality model from a 

set of candidate statistical learning approaches using some method or criteria (e.g., in-sample BIC, cross-

validation, forecasting accuracy metric), often neglecting model uncertainty for statistical inference purposes 

(see, e.g., Lee & Carter (1992); Currie (2006); Pascariu et al. (2020), Bravo & Nunes (2021); Li & Shi (2021); 

Carbonneau (2021), Bravo (2021); Li et al. (2021) and references therein). Empirical studies suggest that there 

is no single forecasting method that performs consistently well across all data sets and time horizons. Recently, 

model combinations of heterogeneous generalized age-period-cohort (GAPC) stochastic mortality models, 

principal component methods, and smoothing approaches were proposed to address model uncertainty and to 

improve the forecasting accuracy (Kontis et al., 2017; Bravo et al., 2021; Ayuso et al., 2021b; Ashofteh & 

Bravo, 2021a,b; Bravo & Ayuso, 2020; 2021a,b; Ashofteh et al., 2021). Projections often assume independence 

between subpopulations (e.g., men and women) (Hyndman et al., 2013). The use of machine learning and deep 

learning techniques in mortality forecasting is recent. Deprez et al. (2017) use machine learning techniques to 

investigate the fitting accuracy of mortality models. Hainaut (2018) proposes a neural network to predict and 

simulate mortality rates. Nigri et al. (2019) integrate a Recurrent Neural Network (RNN) within the Lee-Carter 

model to improve its predictive capacity. Richman and Wüthrich (2019a,b) propose a multiple-population 

extension of the Lee-Carter model where parameters are estimated using neural networks. Perla et al. (2021) 

propose a convolutional network model to forecast mortality rates. Bravo (2021c) and Bravo & Santos (2021) 

investigate the forecasting accuracy of RNN with LSTM and/or GRU networks using Italian and Chilean data. 

Against this background, this paper empirically investigates the forecasting accuracy of RNN with an LSTM 

architecture to jointly model and predict age-specific mortality rates for male and female populations in a 

coherent way over a medium-term (10-year) forecasting horizon. We empirically investigate different choices 

of the hyperparameters of the three hidden layers LSTM model (units for each layer, epochs, optimizer, 

learning rate, activation function) considering alternative graduation intervals across ages and different 

combinations of the number of hidden neurons. Next, the forecast results are used to compute the period life 

expectancy at all ages from birth to a pre-set highest attainable age, defined using a life table closing method. 

We compare the empirical performance of the RNN-LSTM architecture with that obtained using two 

traditional GAPC stochastic mortality models, namely the Lee and Carter (1992) model and the age-period-
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cohort model developed by Currie (2006). The empirical strategy uses mortality data for Portugal from 1950 

to 2018 (the latest available year) disaggregated by sex. The data is from the Human Mortality Database. 

The empirical results obtained in this sample dataset show that the RNN with LSTM architecture designed for 

jointly processing the multivariate time series data of male and female mortality rates disaggregated by age 

can outperform traditional generalized age-period-cohort stochastic mortality models. The forecasting 

accuracy of the LSTM network in the male and female Portuguese populations is higher than that of both the 

LC and APC models, by a significant margin in the male population, an interesting result since the behaviour 

of male mortality across the entire lifespan is generally harder to model and forecast because of both the 

mortality hump at teenage and younger ages and of the higher variability of mortality at all ages. However, 

further investigation considering other RNN networks, different training sets, forecasting horizons, and 

alternative small and big populations is required to confirm the consistency of these results. 

The rest of the paper is structured as follows. In Section 2, we describe the materials and methods used in this 

study, namely the RNN with LSTM architecture, the GAPC models used as the benchmark, the methods used 

to compute life expectancy, and the datasets. Section 3 presents and briefly discusses the empirical results. 

Section 4 concludes and sets up the agenda for further research. 

2. MATERIALS AND METHODS 

2.1. Recurrent Neural Networks with Long Short-Term Memory architecture 

This paper empirically investigates the predictive performance of RNN with LSTM architecture in multivariate 

time series forecasting. RNN is an extension of Feedforward Neural Network (FNN) incorporating an internal 

state (memory) to process time sequences of data (inputs), where the output from the previous iteration is used 

as an input to the current step. Plain vanilla RNN faces problems when they must deal with time series with 

long-term dependency in the input sequence because of the vanishing effect of gradients when training the 

network using back-propagation. This reduces the ability of the network to learn from the long-term trends in 

the data and make accurate forecasts. To overcome the short-term memory problem of vanilla RNN, Hochreiter 

and Schmidhuber (1997) developed RNN with an LSTM network or architecture considering the short and 

long-term dependencies in the data sequences. The network blocks incorporate internal mechanisms (gates) 

which regulate the flow of information, learning which data in a time series is worthy of keeping or of 

discarding at the time of producing forecasts. 

Assume we have as input (explanatory) variables (features) a time series of data (𝑥1, … , 𝑥𝑇) with components 

𝑥𝑡 ∈ ℝ𝜏0 observed at times 𝑡 = 1, … , 𝑇. Our goal is to use this data to describe (e.g., forecast) a given output 

data 𝑦 ∈ 𝒴 ⊂ ℝ, specifically age-specific mortality rates by sex. To provide some intuition on RNN, we follow 

Nigri et al. (2019) and plot in Figure 1 a schematic representation of an LSTM unit or block structure. A typical 

LSTM block comprises three gates (an input gate, an output gate, and a forget gate) that control the flow of 

information into and out of the cell, their interactions, and the subsequent memory cell. The unit receives as 
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initial information flow the current input 𝑥𝑡 ∈ ℝ𝜏0 , the output from the previous (short-term memory) LSTM 

unit ℎ𝑡−1 ∈ ℝℎ, with ℎ ∈ ℕ denoting the number of LSTM blocks in a hidden layer, and the (long-term) 

memory of the previous unit 𝑐𝑡−1 ∈ ℝℎ. The data is processed by three gates (red circle) named, respectively, 

forget gate 𝑓𝑡, input gate 𝑖𝑡 and output gate 𝑜𝑡, and auxiliary neural networks (blue circle), which assist in the 

normalization of the information flow. The forget gate (loss of memory rate) combines the previous unit state 

ℎ𝑡−1 and the current input 𝑥𝑡 in a nonlinear way using the sigmoid activation function 𝜎(∙) to determine how 

much information from the past 𝑐𝑡−1 is carried forward to the following units. The input gate (memory update 

rate) uses the sigmoid function to decide how much input data should be used to update the memory of the 

network, with the hyperbolic tangent activation function 𝜙(∙) controlling for the importance of the values 

passed. Finally, in the output gate (release of memory information rate) the data input 𝑥𝑡, the new (updated) 

memory 𝑐𝑡, the previous output ℎ𝑡−1 and a bias vector is used to determine the output to the next LSTM unit.  

 

Figure 1 – Schematic representation of a Long Short-Term Memory (LSTM) block structure. 

Source: Nigri et al. (2019). 

Let 𝑊 ∈ ℝ𝜏0×ℎ and 𝑈 ∈ ℝℎ×ℎ denote the weight matrices for the input and the previous short-term result 

gates, respectively. The RNN with LSTM architecture can be formally described by the following set of 

equations: 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓), (1) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖), (2) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜), (3) 

𝑧𝑡 = 𝜙(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧), (4) 
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𝑐𝑡 = 𝑐𝑡−1 ∘ 𝑓𝑡 ∘ 𝑖𝑡 ∘ 𝑧𝑡, (5) 

ℎ𝑡 = 𝜙(𝑐𝑡) ∘ 𝑜𝑡, (6) 

𝜎(𝑥) =
1

1 + 𝑒−𝑥 ∈ (0,1) 
(7) 

𝜙(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 ∈ (−1,1) 
(8) 

with initial values 𝑐0 = 0 and ℎ0 = 0, and where 𝑓𝑡 ∈ ℝℎ, 𝑖𝑡 ∈ ℝℎ, 𝑜𝑡 ∈ ℝℎ and 𝑧𝑡 ∈ ℝℎ represent the outputs 

of the forget gate, input gate, output gate, and the auxiliary-output gate, respectively. The symbol ∘ denotes the 

Hadamard product (element-wise product). The output ℎ𝑡 ∈ ℝℎ of the LSTM block is passed to the next layer 

and became the short memory input for the next instance. We empirically investigate different choices of the 

hyperparameters of the three hidden layers LSTM model (units for each layer) considering for 10-year 

forecasting horizons, 500 epochs, the Adaptive Moment Estimation (Adam) optimizer, and the mean squared 

error as loss function. 

2.2. Generalized Age-Period-Cohort stochastic mortality models  

This paper considers two widely adopted and performing GAPC models as benchmarks for assessing the 

forecasting accuracy of the RNN with an LSTM architecture: the standard age-period (LC) Lee and Carter 

(1992) model under a Poisson setting and the age-period-cohort (APC) model proposed by Currie (2006). 

Following Ayuso et al. (2021b) and Bravo (2020, 2021a,b,c), let 𝐷𝑥,𝑡,𝑔 denote the number of deaths recorded 

at age 𝑥 during calendar year 𝑡 from the population 𝑔 initially (𝐸𝑥,𝑡,𝑔
0 ) or centrally (𝐸𝑥,𝑡,𝑔

𝑐 ) exposed-to-risk. 

GAPC models link a response variable (𝑞𝑥,𝑡 in APC; 𝜇𝑥,𝑡 in LC) to an appropriate linear predictor 𝜂𝑥,𝑡, 

capturing the systematic effects of age 𝑥, time 𝑡 and year-of-birth (cohort) 𝑐 = 𝑡 − 𝑥, defined as 

𝜂𝑥,𝑡 = 𝛼𝑥 + ∑ 𝛽𝑥
(𝑖)

𝜅𝑡
(𝑖)

𝑁

𝑖=1

+ 𝛽𝑥
(0)

𝛾𝑡−𝑥 , (9) 

where 𝑒𝑥𝑝(𝛼𝑥) denotes the general shape of the mortality schedule across age, 𝛽𝑥
(𝑖)

𝜅𝑡
(𝑖)

 is a set of 𝑁 age-period 

terms describing the mortality trends, with each time index 𝜅𝑡
(𝑖)

 specifying the general mortality trend and 𝛽𝑥
(𝑖)

 

capturing its specific effect across ages, the term 𝛾𝑡−𝑥 models cohort effects, with 𝛽𝑥
(0)

 capturing its effect 

across ages. The substructure corresponding to the LC model is given from (9) by: 

𝜂𝑥,𝑡 = 𝛼𝑥 + 𝛽𝑥
(1)

𝜅𝑡
(1)

, (10) 

with identifiability parameter constraints 
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∑ 𝛽𝑥
(1)

= 1

𝑥𝑚𝑎𝑥

𝑥=𝑥𝑚𝑖𝑛

, and ∑ 𝜅𝑡
(1)

= 0

𝑡𝑚𝑎𝑥

𝑡=𝑡𝑚𝑖𝑛

. (11) 

The substructure corresponding to the LC model is given from (9) by 

𝜂𝑥,𝑡 = 𝛼𝑥 + 𝜅𝑡
(1)

+ 𝛾𝑡−𝑥 , (12) 

with identifiability parameter constraints 

∑ 𝜅𝑡
(1)

= 0

𝑡𝑚𝑎𝑥

𝑡=𝑡𝑚𝑖𝑛

, ∑ 𝛾𝑐 = 0

𝑡𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝑐=𝑡𝑚𝑖𝑛−𝑥𝑚𝑎𝑥

, and ∑ 𝑐𝛾𝑐 = 0

𝑡𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝑐=𝑡𝑚𝑖𝑛−𝑥𝑚𝑎𝑥

. (13) 

The model specification is complemented with assumptions regarding the statistical distribution of the number 

of deaths: Poisson distribution in the LC model, i.e., 𝐷𝑥,𝑡~𝒫(𝜇𝑥,𝑡𝐸𝑥,𝑡
𝑐 ) with 𝔼(𝐷𝑥,𝑡/𝐸𝑥,𝑡

𝑐 ) = 𝜇𝑥,𝑡; Binomial 

distribution in the APC model, i.e., 𝐷𝑥,𝑡~ℬ(𝑞𝑥,𝑡𝐸𝑥,𝑡
0 ) with 𝔼(𝐷𝑥,𝑡/𝐸𝑥,𝑡

0 ) = 𝑞𝑥,𝑡. The parameter estimates in 

(10) and (12) are obtained through maximum-likelihood estimation methods. To calibrate the models, we use 

the same training and test sets as the previous section. To forecast mortality rates, we follow the standard 

approach and assume that vectors 𝛼̂𝑥 and 𝛽̂𝑥
(1)

 remains constant over time and model 𝜅̂𝑡
(1)

 and 𝛾̂𝑡−𝑥 with 

univariate ARIMA(p,d,q) time series methods. We make multi-step 10-year out-of-sample forecasts. For each 

population and model, we evaluate the out-of-sample forecasting accuracy using the mean squared error metric, 

defined as: 

𝑀𝑆𝐸𝑔 =
1

𝑁
∑ ∑ (𝜇𝑥,𝑡,𝑔 − 𝜇̂𝑥,𝑡,𝑔)

2

𝑥𝑚𝑎𝑥

𝑥=𝑥𝑚𝑖𝑛

𝑡𝑚𝑎𝑥

𝑡=𝑡𝑚𝑖𝑛

. (14) 

2.3. Period and cohort life expectancy 

Given the stochastic force of mortality process, the period life expectancy at age 𝑥 in year 𝑡 for population 𝑔 

is computed as follows: 

𝑒̇𝑥,𝑔
𝑃 (𝑡): = ∫ 𝑝𝑥,𝑔(𝑡)𝑠 𝑑𝑠

𝜔−𝑥

0

, (15) 

where 𝜔 denotes the highest attainable age in the life table and 𝑝𝑥,𝑔(𝑡)𝜏  is the 𝜏-year survival probability for 

an individual aged 𝑥, computed as 

𝑝𝑥,𝑔(𝑡)𝜏 : = 𝔼 [𝑒𝑥𝑝 (− ∫ 𝜇𝑥+𝑠,𝑔(𝑠)𝑑𝑠
𝜏

0

)], (16) 

where 𝜇𝑥(𝑡) is assumed constant within each square in a Lexis diagram. This latter assumption allows us to 

proxy 𝜇𝑥(𝑡) by the central death rate, computed as 𝑚𝑥,𝑡,𝑔 = 𝐷𝑥,𝑡,𝑔/𝐸𝑥,𝑡,𝑔. For both sexes and all years, we 
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close life tables at the age of 115 years old (i.e., 𝜔 = 115), according to the current methodology adopted by 

Statistics Portugal (INE) for national and subnational life table estimation. 

2.4. Data 

The mortality data used in this study is from the Human Mortality Database (2021). The datasets comprise the 

number of observed deaths 𝐷𝑥,𝑡,𝑔 and the exposure-to-risk (population counts) 𝐸𝑥,𝑡,𝑔 by individual age 𝑥 (𝒳 =

{𝑥 ∈ ℕ, 0 ≤ 𝑥 ≤ 110 +}, calendar year  𝒯 = {𝑡 ∈ ℕ, 1950 ≤ 𝑡 ≤ 2018}, year of birth and sex. Figure 1 plots 

the raw age-specific mortality rates 𝑚̂𝑥,𝑡,𝑔 (in log scale) for the Portuguese population by age in the range 0 to 

90 years old and sex.  

 

Figure 1 – Raw log-mortality rates by age and sex, Portugal, 1950-2018 

A clear downward trend in the mortality rates at all ages and years is observed for both sexes, with longevity 

improvements more significant at younger ages and in the female population. Women have, on average, higher 

survival prospects than men at all ages. This is also evident in Figure 2, where we plot a heatmap and a contour 

plot of the raw log-mortality rates by sex.  
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Figure 2 – Heatmap and contour plots of the raw log-mortality rates by sex, Portugal, 1950-2018 

Notes: for both sexes, the orange (blue) colour represents a small (high) mortality rate. 

 

The so-called mortality (accident) hump, which roughly affects ages in the interval [15-30], is evident in the 

male population but tends to smooth out in the female population. The marginally upward sloping and diagonal 

structure of the contour lines and colours in both heatmaps, highlight that longevity improvements have been 

progressively shifting from younger ages to adult and old ages. 

3. RESULTS AND DISCUSSION 

3.1. Hyperparameter calibration 

First, we pre-process the explanatory variables to map them in the [-1;1] domain using the Min-Max Scaler 

and add an indicator variable for the genders (female and male) considered. To guarantee coherence and equal 

distribution between the estimations made for the male and female populations, the genders are alternated in 

the training dataset. For model learning, we follow Richman and Wüthrich (2019a,b) and partition the training 

data at random into a learning dataset encompassing 80% of the data and a test dataset comprising the 

remaining 20% of the training data. We experimented with different values but finally opted to run 500 epochs 

(in batches of 100) of the gradient descent algorithm on the learning dataset using the Adaptive Moment 

Estimation (Adam) optimizer and selecting the calibration with the lowest MSE loss in the test set using a 

callback procedure. 

We considered 72 different three hidden layers LSTM architectures by exploring all possible combinations in 

𝜏0 = {1,3,5}, 𝜏1 = {3,5,10,20}, 𝜏2 = {5,10,15} and 𝜏3 = {5,10}. In a first step, all LSTM architectures are 

trained on the training set years 𝒯1
𝑡𝑟𝑎𝑖𝑛 = {𝑡 ∈ 𝒯 , 1950 ≤ 𝑡 ≤ 2008} and predictive performance was 
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assessed on 𝒯1
𝑡𝑒𝑠𝑡 = {𝑡 ∈ 𝒯 , 2009 ≤ 𝑡 ≤ 2018}. The MSE error on 𝒯1

𝑡𝑒𝑠𝑡 measures the out-of-sample 

accuracy and is used as a criterion to select the best network architecture. In a second step, the best LSTM 

network (the model producing the lowest MSE error) was re-trained on 𝒯1
𝑡𝑟𝑎𝑖𝑛, from which future mortality 

rates for years in 𝒯1
𝑡𝑒𝑠𝑡 were predicted. Table 1 summarizes the average fitting and forecasting losses of all the 

LSTM hyperparameter combinations for the joint calibration of the male and female populations. The 

𝐿𝑆𝑇𝑀3(𝜏0 = 3;  𝜏1 = 20; 𝜏2 = 10; 𝜏3 = 5) produced the best results, followed closely by 𝐿𝑆𝑇𝑀3(𝜏0 =

1;  𝜏1 = 3; 𝜏2 = 10;  𝜏3 = 10). 

Figure 2 illustrates the learning strategy on the best LSTM architecture, plotting the (early stopping) in-sample 

loss on the learning dataset (cyan colour line), and the out-of-sample loss on the test dataset (coral colour dots) 

of the 𝐿𝑆𝑇𝑀3(𝑇 = 10; 𝜏0 = 3;  𝜏1 = 20; 𝜏2 = 10; 𝜏3 = 5) architecture. 

Table 2 summarizes the average fitting (Fit) and forecasting (Men, Women) losses of the best LSTM 

architecture for the joint calibration of the male and female populations, together with the corresponding results 

obtained using the Lee-Carter model and the Age-Period-Cohort model calibrated on the same training and 

test data sets. The results obtained for this sample and forecasting horizon show that the RNN with LSTM 

architecture designed for jointly processing the multivariate time series data of male and female mortality rates 

disaggregated by age can outperform the widely used GAPC stochastic mortality models. The results of the 

LSTM model calibrated to the male and female populations shows that the network outperforms both the LC 

and APC models by a significant margin in the male population, which is typically much harder to model and 

forecast due to the mortality hump and to the higher variability of mortality rates at all ages. 

 

LSTM MSE (in 10−5) CPU  LSTM MSE (in 10−5) CPU 

𝜏0  𝜏1 𝜏2 𝜏3 Fit Men Wom time  𝜏0  𝜏1 𝜏2 𝜏3 Fit Men Wom time 

1 3 5 5 2.91 3.35 1.49 224  1 3 5 10 1.20 1.01 0.46 364 

3 3 5 5 1.58 1.40 0.80 234  3 3 5 10 2.00 2.01 0.94 307 

5 3 5 5 1.95 2.38 1.37 251  5 3 5 10 1.98 2.34 1.27 314 

1 5 5 5 1.15 1.05 0.43 242  1 5 5 10 1.69 1.87 0.66 541 

3 5 5 5 1.34 1.31 0.85 236  3 5 5 10 2.67 2.59 1.49 635 

5 5 5 5 1.38 1.56 0.68 251  5 5 5 10 1.44 1.11 0.48 668 

1 10 5 5 2.30 2.25 1.27 249  1 10 5 10 1.28 1.43 0.62 666 

3 10 5 5 1.28 1.04 0.44 263  3 10 5 10 1.81 1.78 0.97 332 

5 10 5 5 1.26 1.22 0.69 285  5 10 5 10 1.65 2.25 1.46 321 

1 20 5 5 1.30 0.93 0.43 301  1 20 5 10 2.49 3.64 1.79 537 

3 20 5 5 3.22 4.34 2.38 339  3 20 5 10 2.24 2.07 1.06 277 

5 20 5 5 1.83 2.70 1.25 303  5 20 5 10 2.30 2.58 1.37 283 

1 3 10 5 1.32 1.12 0.54 258  1 3 10 10 1.38 1.03 0.43 264 

3 3 10 5 1.45 1.40 0.85 259  3 3 10 10 3.42 3.45 1.60 841 

5 3 10 5 1.96 2.22 1.18 283  5 3 10 10 1.51 1.18 0.61 892 

1 5 10 5 1.21 1.14 0.45 265  1 5 10 10 1.42 1.30 0.54 256 

3 5 10 5 3.54 4.15 1.75 234  3 5 10 10 2.34 3.34 1.97 261 

5 5 10 5 1.53 2.02 1.32 237  5 5 10 10 6.60 6.92 3.46 257 

1 10 10 5 2.91 3.35 1.49 224  1 10 10 10 1.76 1.31 0.81 261 

3 10 10 5 1.58 1.40 0.80 234  3 10 10 10 1.41 1.06 0.62 260 

5 10 10 5 1.27 1.15 0.50 235  5 10 10 10 2.27 2.20 1.03 265 
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1 20 10 5 1.27 1.75 0.90 295  1 20 10 10 1.26 1.26 0.58 306 

3 20 10 5 1.26 0.80 0.66 368  3 20 10 10 1.26 1.04 0.51 319 

5 20 10 5 1.09 1.65 1.26 400  5 20 10 10 1.36 1.11 0.43 322 

1 3 15 5 1.20 1.01 0.46 312  1 3 15 10 3.12 3.63 1.63 276 

3 3 15 5 1.47 1.47 0.77 254  3 3 15 10 1.77 1.48 0.81 270 

5 3 15 5 1.78 2.01 0.91 259  5 3 15 10 2.14 2.68 1.74 265 

1 5 15 5 1.47 1.60 0.69 255  1 5 15 10 2.23 2.47 0.84 263 

3 5 15 5 2.12 3.11 1.87 254  3 5 15 10 1.63 1.51 0.78 266 

5 5 15 5 1.22 1.31 0.61 256  5 5 15 10 1.67 1.21 0.69 273 

1 10 15 5 1.36 1.27 0.77 331  1 10 15 10 4.52 6.74 2.62 300 

3 10 15 5 1.44 1.25 0.64 340  3 10 15 10 1.41 1.13 0.53 302 

5 10 15 5 2.10 2.71 1.34 366  5 10 15 10 2.77 3.00 1.17 300 

1 20 15 5 1.66 1.90 1.00 344  1 20 15 10 1.33 0.90 0.63 386 

3 20 15 5 2.03 1.88 1.23 349  3 20 15 10 2.31 4.12 2.67 410 

5 20 15 5 3.97 3.46 1.74 345  5 20 15 10 1.50 1.62 0.52 384 

Table 1 − LSTM3: Average fitting and forecasting loss metrics with alternative hyperparameter combinations 

for the joint calibration of the male and female populations 

Notes: 𝜏0, 𝜏1, 𝜏2 and 𝜏3 denote the number of hidden neurons in the hidden LSTM layers; Run times measured in seconds 

on a personal laptop with Intel(R) Core(TM) i7-10510U CPU@2.30GHz with 16GB RAM; MSE = Mean Squared Error; 

Results obtained considering for 10-year fitting (lookback) and forecasting horizons, 500 epochs (for batch sizes 100), 

and the Adaptive Moment Estimation (Adam) optimizer.  

 

 

Figure 2 – Early stopping in-sample MSE loss (cyan colour) and out-of-sample loss (coral colour) of the 

𝐿𝑆𝑇𝑀3(𝑇 = 10; 𝜏0 = 3;  𝜏1 = 20; 𝜏2 = 10; 𝜏3 = 5) architecture 
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 MSE (in 10−5) CPU 

Model Fit Men Women time 

𝐿𝑆𝑇𝑀3(𝜏0 = 3;  𝜏1 = 20; 𝜏2 = 10; 𝜏3 = 5) 1.26 0.80 0.66 368 

Lee-Carter (LC) Model 1.31 1.44 0.70 15 

Age-Period-Cohort (APC) model 2.04 1.24 1.18 17 

Table 2 − Average fitting and forecasting accuracy metrics of the alternative models tested 

Notes: Run times measured in seconds; MSE = Mean Squared Error; Results obtained considering for 10-

year fitting (lookback) and forecasting horizons 

3.2. Mortality rate and life expectancy forecasts  

Figure 3 plots the age-specific forecasts of the mortality rates (in log scale) by age, year, and sex (Men, left 

panel; Women, right panel) produced by the best LSTM network in the test period 2009-2018. In Figure 4, a 

similar exercise is done for the LC and APC models by plotting the forecasts of 𝑚̇𝑥,𝑡,𝑚𝑎𝑙𝑒 for the male 

population. Figures 7 and 8 (see Appendix), representing the raw and fitted mortality rates by individual year 

and sex, complement the results. 

The results show that the three models produce mortality schedules that capture relatively well the dynamics 

of mortality rates across age and time. They also suggest that the RNN with LSTM architecture can generate 

smoother and consistent projections across all ages and both sexes, including at younger all where the fitting 

and forecasting exercises are typically more challenging. Mortality forecasting is a demanding exercise since 

models must capture the dynamics of individual (often one hundred) ages while preserving the relationship 

between mortality rates of adjacent ages and the biological impact of aging on death rates. 

 

Figure 3 – Forecasts of the mortality rates by age and sex generated by the 𝐿𝑆𝑇𝑀3(𝑇 = 10;  𝜏0 = 3;  𝜏1 =

20; 𝜏2 = 10; 𝜏3 = 5) network, Portugal 



Bravo, J. M. / Forecasting mortality rates with Recurrent Neural Networks

 

 

21.ª Conferência da Associação Portuguesa de Sistemas de Informação (CAPSI’2021) 

13 a 16 de outubro de 2021, Vila Real e Viseu, Portugal 

12 

 

 

Figure 4 – Forecasts of the male population mortality rates by age generated by the LC and the APC models, 

Portugal 

 

Figure 5 represents the estimates of the period life expectancy at birth (𝑥 = 0) and at the benchmark retirement 

age of 65 (𝑥 = 65), by sex, from 1960 to 2018, computed from the mortality rates estimated with the RNN 

with an LSTM architecture. The vertical dotted line marks the split between the training and test datasets. The 

results highlight the long-term positive trends in period life expectancy at birth and retirement ages. As of 

1960, the male (female) life expectancy at birth is estimated to be 61.17 (66.79) years old, whereas the male 

(female) life expectancy at the age of 65 is estimated to be 12.36 (14.61) years old. The forecast results suggest 

that the increase in longevity at all ages will continue in an almost linear way, with period life expectancy at 

birth estimated to be 78.37 (83.96) years old in 2018, and the life expectancy at the age of 65 estimated to be 

18.02 (21.44) years old in the same year.  
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Figure 5 – 𝐿𝑆𝑇𝑀3: Estimates of the period life expectancy at birth and the age of 65, by sex, Portugal (values 

in years) 

Figure 6 represents the estimates of the period life expectancy at all ages computed in 2018 (by sex) from the 

forecasted mortality rates generated using the LSTM network. The results highlight the well-known sex 

gradient in period (and cohort) life expectancy, and the higher survival prospects of women compared to that 

of men of all ages. The sex gradient in period life expectancy peaks at birth, with women estimated to outlive 

men by 5.59 years. As expected, the gradient declines steadily with age to 5.20 years at the age of 40, 3.42 

years at the age of 65, 1.68 years at the age of 80, and 0.14 years for centenarians. The sex gradient in life 

expectancy is essential because of intragenerational fairness considerations in pension schemes. 
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Figure 6 – 𝐿𝑆𝑇𝑀3: Estimates of the period life expectancy at all ages in 2018, by sex 

4. CONCLUSION 

RNN with an LSTM architecture is one the most popular designs of neural networks for modelling times series 

data. Forecasting individual age-specific mortality rates across the entire lifespan and sex or socioeconomic 

groups is a very demanding multivariate exercise bounded by the biological nature of the phenomena. The 

topic has captured and continues to capture the attention of multiple researchers and practitioners because of 

its importance in multiple areas, including health policy, life insurance, and capital markets instruments pricing 

and risk management, to retirement age estimation. In this paper, we conducted a preliminary investigation on 

the predictive performance of RNN with an LSTM in jointly modelling male and female mortality using the 

most recent Portuguese data. The empirical results show that the RNN with an LSTM architecture is suitable 

to model this type of dataset and provides good fitting and forecasting results compared to classical statistical 

learning methods. Further research investigating other RNN designs such as the Gated Recurrent Unit (GRU) 

or Convolution Neural Networks (CNN), other populations, alternative calibration procedures, is however 

needed to confirm the robustness of these methods in modelling human survival against standard approaches. 

Extensions to modelling mortality by socioeconomic group are critical because of the increasing interest in 

measuring the life expectancy gradient by income, education, or health status. This is a fundamental step in the 

process of correcting for the welfare redistributive impact of longevity heterogeneity in social policy, for 

instance, in pension design and reform (see, e.g., Bravo et al., 2021; Ayuso et al., 2021a; El Mekkaoui & Bravo, 

2021). 
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APPENDIX 

 

 

Figure 7 – 𝐿𝑆𝑇𝑀3: Raw and fitted log-mortality rates by individual year, Portugal, male population 
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Figure 8 – 𝐿𝑆𝑇𝑀3: Raw and fitted log-mortality rates by individual year, Portugal, female population 
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