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Abstract 

Process mining techniques can provide insights into the healthcare domain with the rapid growth of 
electrical health records. Process mining is about understanding the sequence of activities in event logs, 
where directly-follows relations identify pairs of activities that follow each other directly. Existing 
research explores frequent relations, while infrequent relations are often seen as noises and filtered out 
during discovery. However, important insights may be revealed through these infrequent relations, 
especially in healthcare processes. This paper aims to use process mining techniques to discover and 
preserve value-based conditional infrequent relations. We adopt the L* life-cycle methodology and 
Data-aware Heuristic Miner (DHM) as tools to provide a worded example based on extracted data from 
the MIMIC-III dataset, which is a publicly available database containing a large amount of electrical 
health records (EHR), to show how process mining can be used to analyse infrequent relations in a 
laboratory test’s ordering process. 

Keywords Process Mining, Healthcare Process, Conditional Infrequent Relation, MIMIC-III 
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1 Introduction 

Process mining is a technology useful for understanding business processes by utilising event logs 
captured in information systems (Van Der Aalst 2016). The input for process discovery is the event log, 
which contains a collection of events, each associated with a timestamp and resources, that records 
necessary information such as the person responsible and the output when performing the event. This 
is exemplified in Figure 1. An event represents a unique execution of an activity, which is a well-defined 
task in a process, such as the different blood tests ordered in hospital (Mans et al. 2015). Cases group 
events, also called process instances or traces. Figure 1 illustrates a trace containing four events for a 
patient. Relations are specified as directly-follows relations in this paper, where they identify pair of 
activities that follow each other directly. Sodium⟶Glucose is an example of a relation in Figure 1. These 
relations are identified as frequent or infrequent based on their occurrence times in event logs.  

 

Figure 1. An example laboratory test ordering event log 

Process mining has shown significant usage in many fields, especially in the healthcare domain (Rojas 
et al. 2016). Process mining is adopted to discover common treatment pathway for stroke care (Mans et 
al. 2008), and for oncology treatment (Kurniati et al. 2018). The healthcare process was improved by 
identifying the bottleneck in the current patient admission process with the aim to shorten the MRI 
waiting time (Ganesha et al. 2017). A process mining framework was proposed to detect changes in 
cancer treatment pathways (Kurniati et al. 2019). 

However, research in the healthcare domain mainly pays attention to the frequent pathway since many 
process discovery algorithms rely on frequency of occurrence as a measure of importance. Hence, lots 
of infrequent relations are treated as noise and discarded when the number of occurrences is below a 
pre-set threshold (Mannhardt et al. 2017). Nevertheless, numerous infrequent relations are critical in 
providing us with useful insights into the process.  

In many process discovery algorithms, a threshold is pre-defined. If the number of occurrences does not 
reach the threshold, the relation would likely to be discarded. Hence, it misses critical insights in the 
process. Certain infrequent relations are also dependent on outcomes of activities that have happened 
previously. With the wide availability of electrical health records (EHR), we are able to derive some 
practical value-based conditions that trigger infrequent relations—taking the process in the emergency 
room transfer in Figure 2 as an example; the primary pathway is Emergency Department (ED) 
registration, admission, transfer to relevant care unit and, discharge. Though, albeit few, there are also 
infrequent traces such as after performing some laboratory tests, some patients are directly discharged. 
In a common process mining algorithm such as Heuristics Miner (Weijters and Ribeiro 2011), the lab 

test→discharge relation will be ignored. However, this relation is due to the patient’s laboratory test 
results being normal, meaning this patient is no longer classified as an emergency, so can be discharged 
from the ED. That is to say, the condition “lab test results normal” triggers the infrequent relation. This 
infrequent relation should not be discarded, as it provides us with useful information about the process. 

 

Figure 2. A simplified emergency room transfer process 

In this paper, we aim to discover value-based conditions and preserve legitimate infrequent relations in 
the healthcare process. Specifically, the laboratory testing process is utilised, since laboratory testing is 
critical in a patient’s treatment journey and consists of a large number of different tests. The ordering of 
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these tests can be complex, as they are usually ordered in sets. It would be helpful if we could identify 
tests infrequently triggered by other laboratory tests based on their valued-based results. We adopt both 
the L* life- cycle and Data-aware Heuristic Miner (DHM) as tools. We also extract our own laboratory 
test ordering event logs using the publicly available MIMIC-III dataset. 

This paper is organised as follows. Section 2 introduces the essential background and related work; 
Section 3 introduces concepts used throughout the paper; Section 4 proposes the methodologies and the 
dataset; Section 5 presents the results; and Section 6 discusses the outcomes. Section 7 concludes the 
paper.  

2 Background 

2.1 Process Mining 

Process mining is a newly developed technology that connects computation intelligence, data mining, 
process modelling, and analysis approaches. The basic scope of process mining is to discover, monitor, 
and improve processes by extracting knowledge from collected event logs that are currently in the 
business information system (Van Der Aalst 2016). With process mining, a model is produced by 
analysing the event logs from a database such as EHRs. This model makes it possible to compare 
different processes, improve performance, and predict potential outcomes.  

There are three different stages—process discovery, conformance checking, and process enhancement 
(Ferreira 2017). The most crucial stage is process discovery, which involves generating accurate 
representative models from the event log. Conformance checking evaluates whether the discovered 
process model conforms with the event log based on the criteria of fitness, generalisation, precision, and 
simplicity (Carmona et al. 2018). Enhancement refers to improving the real-life process based on the 
discovered process model, for example, identifying process bottlenecks and simulating potential 
changes in the process.  

As a result, most process mining techniques aim to discover the main pathway of the process to avoid 
overfitting (Augusto et al. 2018). Common discovery algorithms such as the α-miner and the Heuristics 
Miner (Weijters and Ribeiro 2011) filter out infrequent relations when mining process models. However, 
behaviours exist that are infrequent but important under specific contexts. Researchers developed a tool 
to consider the resources of activities during the process discovery stage to discover such behaviours 
(Mannhardt et al. 2017). Unfortunately, it has hardly been applied to the healthcare domain.  

2.2 Process Mining in Healthcare  

In recent years, there has been an increasing number of applications of process mining in the field of 
healthcare. A large group of applications are based on Fuzzy Miner algorithm (Pelekis et al. 2005) and 
its commercial application named  Disco (Günther and Rozinat 2012), as they are easy to use. These 
tools are also ideal for discovering casual relations between activities. For example, researchers use 
Disco to identify the process of the ED and verify whether certain clinical guidelines are satisfied 
(Alvarez et al. 2018). Since Disco and Fuzzy Miner use unified noise thresholds for all the behaviours, 
such infrequent but important relations will be ignored. Researchers combined the Disco tool with data 
mining techniques to estimate waiting time in the ED (Benevento et al. 2019). 

Another group of researchers aimed to extract a model with semantics (i.e., BPMN, Petri-nets, casual-
nets) from healthcare data. For example, patient transport data was extracted from the MIMIC-III 
dataset to analyse how patients are transferred in and out of ICU by discovering process models using 
the inductive miner (Kurniati et al. 2018). Studies consider both the order and resource of activities 
when discovering process models to study the allocation of resources of health services and medical 
facilities (Prokofyeva et al. 2020; Stefanini et al. 2020). Although some studies have applied process 
mining in the healthcare (Rojas et al. 2016), few of them focus on the critical infrequent relations among 
activities in healthcare. 

3 Preliminaries 

Before proposing our novel ideas, this section introduces some concepts needed in Section 4. 

3.1 Event log 

An event log is defined as L = (E,A,V,N,#,T). E is the set of unique event identifiers; A is the sets of 
activities; V is the sets of data resources; N is the sets of numerical resource names; #: E→( N→V ) is a 
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function that obtains data resources recorded for an event e ∈ E—for example,#ac(e) gets the activity 

name for an event, #n(e) gets the numerical data resources for an event; and T⊆E* is the set of traces 
over E. A trace t∈T records the sequence of events of a process instance. Each event only occurs once in 
a single trace. 

3.2 Directly-follows Relation 

a >Wb holds if there is a trace t∈T  where t(i) =e1 and t(i+1) =e2 and#ac(e1)=a and #ac(e2)=b. 

3.3 Data-driven Heuristic Miner 

Heuristic Miner (HM) is a well-known process discovery algorithm (Weijters et al. 2006). It takes the 
event log as input and generates a Petri net that represents the process's main behaviours. HM relies on 
occurrence frequencies to determine which relation to include in the process model. For instance, if the 
frequency is below the threshold, the relation between two activities will be discarded. HM reduces the 
negative impact of noise and incorrect data, while some important but rare relations would also be 
dropped. The Data-driven Heuristic Miner (DHM) algorithm improves the HM by revealing and 
preserving conditional infrequent behaviours from the event log (Mannhardt et al. 2017). DHM is 
perfectly suitable in this study, as we would like to discover infrequent relations between laboratory tests 
along with conditions that may trigger them. Figure 3 illustrates the overall steps for DHM. There are 
three main parameters in the algorithm, these are: 

▪ θ_obs, which controls the relative frequency of relations. 

▪ θ_dep, which controls the frequency of relations. 

▪ θ_con, which controls the quality of conditions. 

First, the DHM tries to calculate the frequency of every relation by adopting the ideas from the 
traditional HM. Then, it identifies infrequent relations through θ_dep and θ_obs; if the dependency of 
the relations is smaller than θ_dep, or the relative frequency is smaller than θ_obs. Such relations would 
be considered as infrequent relations. The next step is to discover conditions which may trigger 
infrequent relations. DHM builds training instances for every infrequent relation and deploys a decision 
tree to train the instances using the resources of these events. Then the DHM provides two ways to 
evaluate conditions. One adopts Cohen’s kappa (Cohen 1960) to assess conditions. Those conditions 
that score lower than θ_con will be discarded. The other method to evaluate conditions relies on a 
relations’ frequency under specific conditions—whether they exceed θ_dep in event logs. DHM returns 
a C-net graph as the final output, where infrequent relations will be marked in different colors.  

 

Figure 3. Steps of the DHM algorithm 

4 Methodology 

This exploratory study aims to discover value-based conditions and preserve useful infrequent relations 
for standard lab tests in the MIMIC-III dataset. We modify and apply the L* life-cycle methodology (Van 
Der Aalst 2016), the Data-driven Heuristic Miner (DHM) (Mannhardt et al. 2017) , and propose a novel 
data preprocessing approach to achieve the goal.  

4.1 L* Life-cycle Methodology 

The modified L* life-cycle methodology (shown in Figure 4) contains four stages. Stage 0 is to plan and 
justify, which is the same as the first stage in the original L* methodology. This stage involves planning 
the research and proposing meaningful research tasks. Stage 1 is extracting and preprocessing, which 
consists of extracting the data needed from the MIMIC-III database and essential preprocessing steps 
being applied to the data, as the extracted data is not naturally designed for process mining tasks. Stage 
2 is to identify value-based conditional infrequent relations by adopting the DHM algorithm. Stage 3 is 
evaluation, which preserves useful and meaningful value-based conditions and infrequent relations 
through specific criteria. 
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Figure 4. Overview of L * life-cycle methodology 

4.2 MIMIC-III Dataset 

The dataset used for the application in this paper is Medical Information Mart for Intensive Care 
(MIMIC-III), which comprises EHR information relating to de-identified patients admitted to the 
critical care unit at a large tertiary care hospital (Johnson et al. 2016). Currently, the latest version is 
MIMIC-III v1.4, which was released in September 2016 and applied in the present. Meanwhile, besides 
activity names, MIMIC-III also contains other attributes for these activities, such as the results of the 
laboratory tests (Johnson et al. 2016), which makes it possible to apply it in the tool to discover those 
infrequent but important conditional relations between activities (Mannhardt et al. 2017). Lots of 
studies have utilised the MIMIC-III dataset as the primary data source, such as those predicting ICU 
readmission (Lin et al. 2019) and mortality rate (Mandalapu et al. 2019). 

There are over 25 tables in the MIMIC-III dataset, where 16 are suitable for process mining as they have 
timestamp information. In this study, we used five tables in data extraction. The d_lab_items table 
describes the laboratory tests in the dataset, which also serves as a dictionary, as all laboratory tests 
patient go through in treatment process are recorded as numerical IDs instead of specific names. The 
labevents table contains the laboratory test measurements for each patient. It is worth noting that two 
timestamps are available for each test record. One is “charttime” and the other is “storetime”. In this 
paper, we utilise “charttime” as the timestamp for each test in the event log as this is the best match to 
the actual time of measurement (Johnson et al. 2016). The d_icd_diagnoses table is also a dictionary, 
with all diseases and their ICD-9 codes (Cassel and Vladeck 1996). The diagnoses_icd table has the 
diagnoses from each patient’s each admission to the hospital, and is coded using the ICD system. The 
patients table contains information about each patient, such as sex and date of birth.  

4.3 Other Tools  

The tools used in this study include Postgres SQL, Python and ProM. Postgres SQL is used to access and 
extract data from the MIMIC-III dataset. Python is used for data preprocessing and evaluation. ProM is 
a software that collects different process mining algorithms, ranging from process discovery to 
conformance checking (Van Dongen et al. 2005). We adopt the DHM algorithm which is implemented 
in the ProM in this study,  

5 Results  

This section presents our results according to stages described in the L*life-cycle methodology in Section 
4. 

5.1 Stage 0: Plan and Justify  

In this study, we present the following three research tasks to guide our research. 

▪ Identify infrequent relations between laboratory tests in different diseases.  

▪ Identify the value-based conditions that can trigger these infrequent relations.  

▪ Preserve useful and precise value-based conditions.  

5.2 Stage 1: Extract and Preprocessing 

We selected 12 common laboratory tests mentioned in (Houben et al. 2010), along with their numerical 
IDs in the MIMIC-III dataset, which are summarised in Table 1. Then, we extracted the patients’ 
laboratory test records, which contain one or more of those common tests. This operation returned a 
considerable dataset, which has more than 53,132 traces and 1,781,458 events. We also selected five 
diseases using the ICD-9 code (Cassel and Vladeck 1996), which are summarised in Table 2. 
Additionally, the dataset of each disease is divided into two separate datasets, one contains female 
patients, and the other one contains male patients for the purpose of evaluation. 

 Item ID Description 
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1 50861 Alanine Aminotransferase (ALT) 
2 50907 Total Cholesterol 
3 51080 Creatinine Clearance 
4 50889 C-Reactive Protein 
5 51288 Sedimentation Rate 
6 50924 Ferritin 
7 50927 Gamma Glutamyl transferase 
8 50809 Glucose 
9 50811 Haemoglobin 
10 50983 Sodium 
11 50971 Potassium 
12 50993 Thyroid Stimulating Hormone 

Table 1. Summary of laboratory tests 

Three different preprocessing steps were applied to the extracted data, including changing the data 
format, cleaning, and aggregation. Since those conditions were likely to be discovered based on the 
resource values (e.g., laboratory test results) from previous events, we must consider all of the laboratory 
test results and find a way to add these results to the event log as resources. To do so, we manually added 
a column to store results for each test. Each column is named in the form of ‘test nameresult’. For example, 
if the event is ALT test, then the result is stored at the ALTresult column and all other columns for this 
event are left blank. In total, 12 columns were added, including ALTresult,  Sodiumresult, for example. 
Thus, each test has its attribute, and we can distinguish which test results can trigger infrequent 
relations. An example event log is shown in Figure 1.  

We also identified some traces may not be appropriate to use in this study. We conclude the common 
issues below. These traces were removed to avoid producing unwanted and unrealistic relations. 

▪ Traces containing only a single event, 

▪ Traces containing only a single kind of test, 

▪ Traces containing laboratory test results which have non-numerical or ambiguous value, such 
as ‘greater than 2000’, ‘error’, ‘smaller than 10’ etc.  

During our experiment, we observed an interesting phenomenon in the labevents table, where many test 
events have the same timestamp, meaning these tests are all happening simultaneously. This is 
exemplified in Figure 1. So, we were unable to identify the actual order these tests were done in. Given 
tests are usually ordered in sets by doctors, we propose grouping the same timestamp tests together 
within order sets, as seen in Figure 1.  

This approach is described in Algorithm 1 and implemented as a Python program. The method takes the 
original log, user-defined pattern length, and frequency as inputs. A pattern is a set of tests that occur at 
the same time within a trace. The length of the pattern calculates how many tests in the pattern. 
Frequency represents the times of occurrence for a specific pattern. First, we identified patterns within 
each trace using pattern length. Each time a new pattern is found, it is added to the set S (Lines 1–2). 
For example, I is set to two, which means if two or more tests happened simultaneously, we consider it 
a pattern. Next, we went through the pattern set and counted how many times each pattern appeared in 
the set. A dictionary is created with the pattern as the key and its frequency as the value. This can avoid 
duplicate patterns as the dictionary in Python does not allow for key duplications (Lines 3–5). If the 
frequency of a pattern is smaller than the given threshold, which is the pattern frequency, the pattern 
will be removed from the dictionary (Lines 6–8). Lastly, we went through each trace, and merged each 
occurrence of the pattern into a test set by combining tests using “+” symbol, while maintaining all test 
results as resources (Lines 9–11). For instance, a test set can be “Ferritin+Potassium+Sodium”. We 
grouped tests that typically occur simultaneously with high occurrence frequency into test sets and 
returned the preprocessed event log. An example of a preprocessed event log is shown in Figure 5. 

ALGORITHM 1: Merge the same timestamp tests into test sets 

 Input: original log L= (E,A,V,N,#,T), pattern length I, and pattern frequency f 

 Output: Merged event logs Lnew 

1 foreach ti∈T do 

2  Pattern Set S←S+IdentifyPattern(ti, I)  
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3 foreach s∈S do 

4  i←counttimes(s) 

5  Pattern Dictionary D ←(s,i) 

6 foreach (d,i)∈D do 

7  if i <f then 

8   D ←D-(d,i) 

9 foreach ti∈T do 

10  ti←AggregatePattern(D,ti) 

11  Lnew←Lnew+ti 

12 return Lnew 

  

Figure 5. An example merged laboratory tests ordering event log 

 ICD_9 Code Long Title 
1 4019 Unspecified essential hypertension 
2 4280 Congestive heart failure, unspecified 
3 5849 Acute kidney failure, unspecified 
4 41401 Coronary atherosclerosis of native coronary artery 
5 42731 Atrial fibrillation 

Table 2. Summary of Diseases 

 Name #Traces #Events #Activities 
Average 
Length 

Maximum 
Length 

1 Icd_42731_female 5381 111939 23 21 225 
2 Icd_42731_male 7279 169773 25 23 348 
3 Icd_4019_female 9170 147558 27 16 290 
4 Icd_4019_male 11161 193266 26 17 571 
5 Icd_41401_female 4250 80792 21 19 244 
6 Icd_41401_male 7951 153178 23 19 305 
7 Icd_5849_female 3894 83708 22 21 236 
8 Icd_5849_male 5142 118856 24 23 571 
9 Icd_4280_female 6007 120775 25 20 280 
10 Icd_4280_male 6935 158164 26 23 478 

Table 3. Summary of datasets 

5.3 Stage 2: Identify Infrequent relations 

In Stage 2, we applied the ‘Interactive Data-aware Heuristic Miner (iDHM)’ in the ProM, which 
implements the DHM algorithm (Mannhardt et al. 2017). In this study, we adopted the default value for 
θ_obs which is 0.1. The default value 0.9 for θ_dep is too limited for the lab tests, as patient’s journeys 
are of high variance. θ_dep is adjusted to 0.8 in our study. Figure 6 provides an example on how the 
DHM utilises test results to discover value-based conditions for infrequent relations. Suppose the 

infrequent relation we find is Test set A→Test B. Test set A consists of three different tests and their 

results. We also have a frequent relation: Test set C→Test A. Test set C contains two tests and their 

results. When DHM tries to discover the conditions of infrequent relations, it will take all tests’ results 
before Test B (i.e., result A, B, C, and D) into consideration instead of only the one from its direct 
predecessor. However, it is notable that there are two ‘Results C’ in Figure 6, the DHM will only consider 
the latest one, which is the one from Test set A. Then the DHM evaluates conditions based on θ_con, 
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where the default value 0.5 is retained. In the study, iDHM was set to consider all the laboratory test 
results when mining value-based conditions. 

 

Figure 6. An example of how DHM discover conditions based on attributes 

5.4 Stage 3: Evaluation and Preservation 

We evaluated the results in Stage 2 from several perspectives. First, we excluded relations which contain 
the ‘artificial start’ or ‘artificial end’, because the DHM adds these two activities to construct a completed 
C-net. It is unclear why this occurs. For example, the Sodium⟶Artificial_end relation will be discarded, 
which is represented as ‘Discard (1)’ in Table 4. Since we are interested in conditions derived from the 
previous test results, which may trigger another test, all relations with no such conditions will be 
excluded, written as ‘Discard (2)’. For example, the Sodium⟶Glucose  relation with the condition 
Potassiumresult>12 mEq/L is ignored because the condition is irrelevant to the sodium test. Besides, we 
also measured the accuracy of each condition using a separate dataset. We separated each disease 
dataset into two, according to gender and randomly picked one as the training dataset, which became 
the input for the DHM; the other serves as the evaluation dataset. The concept of the confusion matrix 
is implemented in this stage for evaluation (Stehman 1997). The ALT → Potassium relation with the 
condition ALTresult<21 IU/L serves as an example to illustrate the confusion matrix. True-positive (TP) 
is the number of relations that happen under the condition we find; i.e., a patient has the Potassium test 
directly after the ALT test with the ALT

result
<21 IU/L. True-negative (TN) is the number of relations that 

do not occur if the condition is not met; i.e., a patient with ALT
result

≥21 IU/L and the potassium test does 
not happen. False-positive (FP) is the number of relations that do not happen despite the condition 
being met, i.e., a patient with ALT

result
<21 IU/L, but no potassium test directly after the ALT test. False-

negative (FN) is the number of relations that happen despite the condition not being met; i.e., a patient 
takes the potassium test directly after the ALT test, but their ALTresult≥21 IU/L . The equation for 
calculating accuracy is provided in Equation 1. The infrequent relations, along with their value-based 
conditions, can be preserved if the user defined accuracy threshold is satisfied.  

Accuracy  =(TP+TN)/(TP+TN+FP+FN   )     Equation 1 

Those conditions with the accuracy below the accuracy threshold are excluded, represented as ‘Discard 
(3)’ in Table 4. The threshold is set to 0.7 in the study. 

 Reason 

Discard (1) Relations contain artificial start or end.  

Discard (2) Conditions are not fully derived from previous test results. 

Discard (3) Condition’s accuracy below certain threshold. 

Table 4. Summary of discard reasons 

6 Discussion  

In total, out of five diseases, we successfully identified 24 infrequent relations. Among them, 12 relations 
were discarded in Stage 3. Most of the infrequent relations we found occurred less than 10 times in event 
logs. We regard the remaining 12 as useful relations with value-based conditions. Among the 12 removed 
relations, five were removed due to an accuracy below 0.7 and four were removed because their relations 
included an artificial start or end. On average, the preserved relations achieved 87% accuracy, while the 
highest accuracy was 97%, and the lowest was 70%.  

By applying the methodology described in Section 3, the tasks proposed in Stage 0 can easily be 
achieved. Regarding the first task, we randomly picked a female or male dataset from each disease to 
mine the infrequent relations; the results are summarised Table 5. We picked the female dataset using 
atrial fibrillation (ICD-9: 42731) as an example and found six infrequent relations. One infrequent 
relation can occur after patients go through a set of tests, which include ALT, ferritin, potassium and 
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sodium; under some circumstances, they may directly have a haemoglobin test. For the second task, 
conditions for each infrequent relation are also presented in Table 5. For example, the condition triggers 
the first relation in atrial fibrillation is Ferritinresult>335 ng/ml . We can interpret the condition in this 
way: the relation will not frequently happen and is considered as noise. However, suppose the ferritin 
result for a patient is greater than 355 ng/ml during the sets of tests, which include ALT, ferritin, 
potassium and sodium—then the patient is very likely to be asked to perform another haemoglobin test 
afterwards.  For task 3, we evaluated conditions according to the criteria in Stage 3. We removed 
conditions that did not satisfy requirements and preserved the rest. For the preserved relation, the 
accuracy is also displayed in Table 5. These provided us with an insight into infrequent laboratory test 
relations and their value-based conditions in different diseases. 

However, we also noticed that some conditions have low accuracy. Several reasons may explain this. 
First, infrequent conditional relations may not be the same in various datasets because we separated 
datasets of each disease according to gender. So the difference may exist between them naturally. Of 
note too, various admission types exist in the MIMIC-III dataset, such as elective and emergency. 
Understandably, the ordering of laboratory tests for different admission types are varied, which may be 
a future research area.  

Infrequent Relation Value-based Condition Keep/Discard 

Training dataset: Icd_4280_female                                                     Evaluation dataset: Icd_4280_male 

ALT+Cholesterol+Potassium+Sodium⟶ 
Hemoglobin 

ALTresult<=21  IU/L Discard (3) 

ALT+Cholesterol+Patassium+Sodium⟶ 
Hemoglobin+Glucose   

ALTresult<=62 IU/L Discard (3) 

Hemoglobin⟶Ferritin+Potassium+Sodium+ 

Thyroid Stimulating Hormone 

Hemoglobin
result

>12.2  g/dL Keep (0.85) 

Potassium+Sodium+ThyroidStimulating 
Hormone ⟶Sodium 

Sodiumresult<=129 mEq/L Keep (0.97) 

Training dataset: Icd_5849_male                                                               Evaluation dataset: Icd_5849_female 

Cholesterol+Potassium+Sodium⟶Ferritin+Po
tassium+Sodium 

(Sodiumresult>145mEq/L)&(choles
teroresult<169 mg/dL) 

Keep (0.94) 

Cholesterol+Potassium+Sodium⟶Cholesterol
+Potassium+Sodium 

cholesterol result>169 mg/dL Keep (0.70) 

ALT+Potassium+Sodium+Thyroid Stimulating 
Hormone⟶ALT+Ferritin+Potassium+Sodium 

Sodiumresult<=134 mEq/L Keep (0.81) 

Ferritin+Potassium+Sodium⟶ARTIFICIAL_
END 

 Discard (1) 

Training dataset: Icd_41401_male                                                             Evaluation dataset: Icd_41401_female 

ALT+Cholesterol+Potassium+Sodium 
⟶ALT+Cholesterol+Potassium+Sodium 

(Potassiumresult<=3.4 
mEq/L)&(cholesterolresult)<190mg
/dL) 

Keep (0.91) 

ALT+Ferritin+Potassium+Sodium⟶ALT+Fer
ritin+Potassium+Sodium 

 Sodiumresult<=131 mEq/L Keep (0.93) 

Sodium⟶Potassium+Sodium+Thyroid 
Stimulating Hormone 

(Potassiumresult>4.6 
mEq/L)&(Sodiumresult<=129 
mEq/L) 

Discard (2) 

Training dataset: Icd_4019_female                                                               Evaluation dataset: Icd_4019_male 

Potassium+SedimentationRate+Sodium⟶C-
Reactive Protein 

ESRresult>61.0 mm/hr Discard (3) 

Potassium+SedimentationRate+Sodium⟶Pot
assium 

(Sodiumresult>140mEq/L)&(ESRres

ult<=36)mm/hr 
Keep (0.90) 
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ThyroidStimulatingHormone⟶ALT+Potassiu
m+Sodium+Thyroid Stimulating Hormone 

Sodiumresult<=135 mEq/L Discard (2) 

ALT+Cholesterol+Potassium+Sodium⟶Gluco
se+Hemoglobin 

Sodiumresult>142 mEq/L Keep (0.82) 

Potassium+SedimentationRate+Sodium⟶Pot
assium+SedimentationRate+Sodium 

ESRresult>65 mm/hr Discard (3) 

Hemoglobin⟶Hemoglobin Potassiumresult<=4.4 mEq/L Discard (2) 

ALT+Potassium⟶ARTIFICIAL_END  Discard (1) 

Training dataset: Icd_42731_female                                                            Evaluation dataset: Icd_42731_male 

ALT+Ferritin+Potassium+Sodium⟶Hemoglo
bin 

Ferritinresult>335 ng/ml Discard (3) 

ALT+Ferritin+Potassium+Sodium⟶ARTIFICI
AL_END 

 Discard (1) 

Ferritin+Potassium+Sodium⟶Sodium Sodiumresult<=128 mEq/L Keep (0.98) 

ALT+Ferritin+Potassium+Sodium⟶Cholester
ol+Potassium+Sodium 

(Ferritinresult>149ng/ml)&(Ferriti
nresult<311 ng/ml) 

Keep (0.79) 

ThyroidStimulatingHormone⟶ARTIFICIAL_
END 

 Discard (1) 

ALT+Ferritin+Potassium+Sodium⟶Glucose+
Hemoglobin 

Ferritinresult<=114 ng/ml Keep (0.85) 

Table 5. Summary of results 

7 Conclusion 

Process mining applications in healthcare rely on frequency as the important criterion to preserve 
relations. Hence, some rare but important relations would be discarded, leading to the loss of 
information. This paper successfully implemented a value-based condition discovery pipeline on a 
publicly available hospital EHR dataset. We preserved legitimate infrequent relations by successfully 
modifying and applying the L* life-cycle methodology and Data-aware Heuristic Miner (DHM) to the 
laboratory test ordering process. The results and evaluations show that we can successfully preserve 
useful value-based conditions for infrequent relations discovered through the pipeline. Future work 
includes investigating the differences between each disease and utilising domain knowledge to evaluate 
infrequent relations along with their conditions. 
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