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Abstract  

During a health crisis, prosocial sharing of health-related information (HRI) on social media can help 
to deliver early warnings about new diseases, raise social awareness, exchange support, and spread 
health policies. Current literature has mainly focused on the factors of general sharing of HRI under 
normal conditions but neglected those motivations under the health crisis context. This research aims 
to investigate factors that influence online users’ prosocial sharing of HRI during a health crisis. To 
obtain the objective, this study developed a dual helping-protecting motivation model from the fear 
appeal model and social exchange theory. The partial least squares analysis, carried out on the surveyed 
data of 326 participants, revealed that Prosocial sharing is affected by protecting factors (i.e., sharing 
efficacy, response efficacy) and helping factors (i.e., reciprocity expectation). Additionally, both 
perceived health risk and perceived information quality risk were found to influence the sharing 
intention via motivational factors. 

Keywords Prosocial sharing, health-related information, health problems, information quality 
problems, health crisis. 
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1 Introduction 

A health crisis has normally been accompanied by two types of problems, including health-related 
problems (e.g., physical illness and mental health issues) and information-related problems (e.g., 
information overload, information uncertainty, and misinformation), in correspondence with the 
statement of the Director-General of the World Health Organisation, Tedros Adhanom Ghebreyesus: 
“We’re not just fighting an epidemic; we’re fighting an infodemic” (World Health Organization 2020). 
Sharing health-related information (HRI) on social media can either reduce or inflame the problems.  
Sharing messages about a health promotion campaign on social media can help to enhance people's 
awareness about the disease, address the problems of low health literacy, and connect people with 
similar health concerns (Berry et al. 2017; Kye et al. 2019). Besides the direct effects on users’ health 
treatment and health literacy, sharing HRI on social media can provide further merits, for example, 
creating discussion and maintaining social relationships (Kaufmann and Buckner 2014). Especially, 
during the recent health crisis (i.e., Covid-19) when forced social isolation policy was implemented in 
many countries, social media become the popular way to keep communication and address 
psychological issues.  

However, given the above undeniable advantages, sharing HRI on social media can cause several 
problems. Specifically, sharing misinformation about health might cause negative effects on both 
individuals and society. For example, the transmission of health treatment misinformation could lead 
to the wrong decision of parents and even children's deaths, and a financial loss for society (Chen et al. 
2018). During a health crisis, when demand for information increases significantly, sharing HRI on 
social media also soars. Social media and Internet usage can translate a health crisis into a hot social 
crisis, which is spread publicly and rapidly across communities (Kilgo et al. 2018). In a worsening 
situation, social media and other interactive online can fuel the information problems by transmitting 
misinformation and negative emotion (e.g., Chen et al. 2018). Sharing misinformation, or even sharing 
information “without much thought” (Marin 2021) might cause problems of a health crisis to be more 
serious. Meanwhile, only prosocial sharing HRI, or sharing with information verification and for 
community benefits, can help to reduce the problems. 

Several knowledge gaps can be identified from the current literature on the online sharing of HRI. First, 
current literature did not differentiate the domains of sharing behavior, for example, “sharing without 
much thought” (Marin 2021) with “prosocial sharing” behavior. This non-differentiation leads to a 
consequence of little research attempt on prosocial sharing behavior. Second, during a health crisis, both 
disease problems (or health-related problems) and information problems emerged dramatically, which 
typically cause fear among the community (Usher et al. 2020). With the belief that prosocial sharing can 
help to reduce these issues, online users are likely to share extensive information on social media. 
Nevertheless, current literature did not consider fear-aroused motivational factors when examining the 
motivations for sharing HRI. Finally, there is a lack of a coherent theoretical framework that helps to 
justify this behavior during a health crisis. Specifically, the majority of past studies focused on the HRI 
sharing under the lens of social exchange theory, which can be appropriate to justify the sharing behavior 
in the normal routines but less effective in explaining the sharing behavior during a health crisis.  

This research dedicates to fulfill the above knowledge gaps by identifying the relationships between 
health- and information-related risks, motivational factors, and Prosocial sharing of HRI on social 
media in the health crisis context. Specifically, this study addresses two research questions as follows: 
(1) What factors motivate online users’ Prosocial sharing of HRI on social media during a health crisis?, 
and (2) How are the relationships between health- and information-related risks, motivational factors, 
and prosocial sharing? 

2 Literature review 

2.1 Prosocial sharing of health-related information on social media 

Sharing health information refers to “a voluntary action whereby individuals exchange unvarnished 
health-related news or their own experiences with others who have information needs” (Kye et al. 2019, 
p. 183). Information sharing can be considered as one of several main activities in information behavior, 
which includes information seeking, information use, information exchange, and information transfer 
(Wilson 1999). Since the establishment of Web 2.0 technology, HRI exchange on social media (i.e., 
seeking and sharing activities) has evolved rapidly and attracted considerable interest among 
researchers (Lin and Chang 2018). Sharing of HRI can be a prosocial sharing behavior, which relates to 
a sharing action with information verifying effort from senders. In other words, online users will add 
their value and judgment, and be responsible for the information provided during the sharing process. 
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Online users might prosocially share HRI via social media for community benefits, which included 
raising awareness about health issues (Berry et al. 2017; Chung 2017), starting communication, and 
providing support (Berry et al. 2017; Kaufmann and Buckner 2014). While sharing of health-related 
misinformation and/or rumors has been investigated in the literature, responsible sharing, which can 
provide merits to the online community and reduce the likelihood of misinformation, has not been 
understood comprehensively yet.  

This study focuses on responsible sharing of HRI, as an activity of online social behavior – which covered 
three main domains as online donation, online sharing, and online comfort (Leng et al. 2020; Sproull 
2011). Online prosocial behavior, extended from face-to-face prosocial behavior (Wright and Li 2011), 
refers to voluntary activities which aim to help others online than oneself and without reward 
anticipation (Leng et al. 2020). Leng et al. (2020) also pointed out that online prosocial behavior differs 
from prosocial behavior in terms of lower cost, anonymity, and less social pressure. Prosocial HRI 
sharing also requires further efforts of information verification before sharing. Information verification, 
or validating information quality before sharing (Flanagin and Metzger 2000) becomes crucial during a 
crisis because it can help to reduce the likelihood of sharing misinformation, which normally emerged 
significantly during health crises (Laato et al. 2020). Information verification was referred to as 
information accuracy validation (Flanagin and Metzger 2000). Specifically, in the modern media 
decade, information verification relates to the actions that “separate reliable content from wrong 
information” (Khan and Idris 2019, p. 1199).  

2.2 Health- and information-related problems during a health crisis  

In general, a crisis is defined as “an unusual event of overwhelmingly negative significance, that carries 
a high level of risk, harm, and opportunity for further loss” (Seeger et al. 2003, p. 4). Gaspar et al. (2016, 
p. 180) provided a more specific definition of a crisis, which is the situation when “potentially stressful 
events associated with the emergence of health threats (e.g., epidemics, biological and chemical 
contamination of food), terrorist attacks, natural disasters (e.g., hurricanes, floods), industrial accidents 
(e.g., nuclear) or even events related with macroeconomic changes”. Generally, different types of crises 
share several similar characteristics, including the low probability of occurrence, severe negative 
damages and loss, informational uncertainty, and community negative emotions. 

In a health crisis, health risk perceptions become the dominant factor that influences human behavior 
strongly. The past studies indicated that the majority of health crises were typically accompanied by 
serious harms for both physical and mental health (Bonanno et al. 2010). Besides the health risk, 
information problems also soar during a health crisis. In the early stage of the crisis, the lack of 
information might cause information uncertainty, whereas, in the later stage of the crisis, people 
typically deal with information overload and problems of information quality. The information during a 
health crisis might be overloaded when the amount of information is large and surpasses the cognitive 
capacity of individuals (Bawden and Robinson 2009). Information quality refers to “the degree to which 
individuals believe that the health information obtained from the online environment is high quality” 
(Liang et al. 2017). The characteristics of information quality include accuracy, completeness, currency, 
and transparency (Liang et al. 2017). In general, the quality of HRI receiving from Internet sources was 
of mixed negative quality, i.e., inadequate, incomplete, and source ambiguity (Sudau et al. 2014). 

3 Research framework and hypothesis development 

3.1 Social exchange theory 

Social exchange theory (SET) has been used widely to understand the behavior of information and 
knowledge exchange on virtual platforms. Originally, SET states that human behavior can be considered 
as the outcome of a cost/benefit calculation, or maximizing the benefits and minimizing the costs 
(Emerson 1976). Under the assumption of rationality, SET can be applied in various contexts, from the 
market base to the social base (Blau 1964). In the context of the online environment, an online user 
typically calculates the benefits and costs of the information-sharing activities before carrying out the 
sharing action (Yan et al. 2016). Literature on online HRI sharing highlighted the benefits of sharing, 
i.e. reciprocity, and sharing cost, i.e. information verification cost. 

Reciprocity, grounded from SET, refers to “actions that are contingent on rewarding reactions from 
others and that cease when these expected reactions are not forthcoming” (Blau 1964, p. 6). Sproull 
(2011) indicated that “volunteers reported wanting to help others because ‘it is the right thing to do’ 
because they had been helped in the past or anticipated they might need help in the future.” The SET 
indicated that people sharing information online with the expectation of mutual reciprocity (Chiu et al. 
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2006). Abundant prior empirical studies also pointed out that reciprocity was one of the drivers of 
sharing information and knowledge online (Singh et al. 2018; Yan and Tan 2014). During a health crisis, 
people share HRI over social media with the goals of informing and helping others, and also expect to 
receive reciprocal information from the recipients. Therefore, it is hypothesized that the expected 
reciprocity will have a positive effect on sharing behavior.  

Hypothesis 1: Reciprocity positively influences the intention to share HRI responsibly on social media 
during a health crisis. 

Online users typically compare the sharing benefits and costs before carrying out sharing activities. 
Derived from face-to-face prosocial behavior, online prosocial behavior might be popular on the small 
scale with a lower cost (Leng et al. 2020). Indeed, the cost of sharing HRI over social media is certainly 
low since social media platforms have been designed optimally for sharing goals. However, prosocial 
sharing of HRI might require a cost of information verification, which is higher than the cost of sharing 
itself. SET indicates that online users will analyze the benefits and costs before taking the action, or if 
the verification cost becomes higher, or even impossible in some situations, the intention to share 
information for the community will decrease accordingly. Hypothesis 2 is posited. 

Hypothesis 2: Online users who perceive higher information verification costs will have lower 
intention to share HRI responsibly on social media during a health crisis. 

3.2 Fear appeal model 

The fear appeal model describes the mechanism and changes in people’s behavior under the fear 
stimulus. Johnston and Warkentin (2010) recently developed a fear appeal model (FAM) in the 
information management context. Mainly based on protection motivation theory, FAM suggested more 
sophisticated relationships among the cognitive process of the users. Specifically, while protection 
motivation theory did not specify how threat appraisal and coping appraisal jointly influence the change 
in human behavior (Witte 1992). FAM suggested a sequential impact among this process: “Only if a 
threat is perceived to be relevant and potentially harmful will an appraisal of efficacy occur.” (Johnston 
and Warkentin 2010, p. 552).  Specifically, the change in users’ behavior is influenced by two sequential 
processes, threat appraisal and then, coping appraisal. Threat appraisal includes perceived threat 
severity and perceived threat vulnerability (Johnston and Warkentin 2010; Rogers 1983). Witte (1992, 
p. 332) defined perceived severity as “an individual’s beliefs about the seriousness of the threat”, whereas 
perceived vulnerability, or perceived susceptibility, is “an individual’s beliefs about his or her chances of 
experiencing the threat”. FAM indicated that both threat severity and threat vulnerability might 
influence behavioral change but in distant relationships rather than direct relationships (Johnston and 
Warkentin 2010). Coping appraisal, or evaluation of the ability of adaptive response (i.e., sharing 
behavior), includes the cognitive calculus between response efficacy and self-efficacy (Floyd et al. 2000; 
Rogers 1983). Response efficacy refers to “the belief that the adaptive response will work, that taking 
the protective action will be effective in protecting the self or others” (Floyd et al. 2000, p. 411). Self-
efficacy refers to the belief of an individual to be capable or not to perform the response (Bandura 1977; 
Rogers 1983). FAM suggests that response efficacy and self-efficacy have positive effects on adaptive 
behavior, whereas response costs (i.e., information verification cost) negatively affect adaptive behavior 
(Rogers 1983). Bandura (1977) emphasized that adaptive behavior can be enabled once people perceive 
its coping effectiveness and their ability to implement it. Therefore, sharing efficacy and self-efficacy 
possibly have direct impacts on sharing intention.  

In this study, online users might perceive threats from two main sources: from the disease (i.e., health 
risk) and the information risk. As mentioned above, a health crisis typically has a low probability of 
occurrence but can cause severe negative damages and loss in the healthcare system, people's lives, and 
psychological stress. Within the fear aroused from a health crisis, people can perceive the health risk 
(i.e., the disease severity and vulnerability) and information quality risk (i.e., misinformation, lack of 
current information, information incompleteness, information irrelevance, and information 
unreliability). This study, therefore, conceptualizes two main perceived threats including perceived 
health risk and perceived information quality risk, both of which can cause problems to the community. 
Whatever types of problems they have, the much more severity people perceive, they tend to carry out 
responses (i.e., sharing of information that they perceived being of good quality) to protect themselves 
and other people from the damages and losses. When online users perceive higher risks from health and 
information, they will perceive higher capability to sharing more HRI in their responsibility and higher 
expectation that the sharing will help to reduce the risks. These hypotheses are stated as follows: 

Hypothesis 3a,b: Online users who perceive higher health risks to others will perceive (a) higher 
response efficacy, (b) higher sharing self-efficacy. 
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Hypothesis 4a: Online users who perceive higher information quality risk to others will perceive 
higher response efficacy. 

Information quality risk might have a different impact on self-efficacy. The model of information 
behavior by Wilson (1999) suggested that the information quality risk can influence online users’ self-
efficacy, or their conviction to successfully sharing information to help others. Hypothesis 4b, 
accordingly, was postulated as: 

Hypothesis 4b: Online users who perceive higher information quality risk to others will perceive lower 
sharing self-efficacy. 

Another worthy argument is that when online users perceive high health risks and information quality 
risks to other people, the motivations of helping others and reciprocity will improve. Specifically, the 
past study indicated that under high-risk conditions such as a health crisis, systematic processing 
becomes more salient compared to the heuristic system (Yang 2016). Consequently, when people 
perceive higher risks, they are willing to provide prosocial activities to help other people (Yang 2016). 
The risks under a health crisis are significantly greater than those during the normal routine, which 
means, online users might perceive a higher threat from health risk and information quality risk to both 
them and others. When they consider online sharing of HRI over social media as a coping method to 
reduce the risks, they are likely to interact more frequently on social media to exchange information. In 
other words, online users share quality information with the higher expectation of receiving quality 
information in the future as the reciprocity. These arguments can be hypothesized as follows: 

Hypothesis 3c, 4c: Online users who perceive (3c) higher health risks to others, and (4c) higher 
information quality risk to others will perceive higher reciprocity expectations. 

Information verification requires online users to invest their time and effort. Since there are extensive 
ways to verify online information (Flanagin and Metzger 2000), this cost highly depends on the verifying 
skill of online users. Literature on information verification behavior indicated that information 
verification behavior was highly associated with personal information literacy (Jones-Jang et al. 2021), 
and perceived self-efficacy (Khan and Idris 2019). In line with these past studies, this research argues 
that online users who perceive higher sharing self-efficacy are likely to have higher skills in checking 
information quality, and therefore, take less time and effort in the verification process. The hypothesis 
relates the relationship between self-efficacy and verification cost is presented as follows:   

Hypothesis 5: Online users who perceive higher sharing self-efficacy will have a lower cost of 
information verification. 

In the moral behavior manner, Marin (2021, p. 7) mentioned three conditions of moral responsibility, 
including “a causal connection between the agent’s actions and an outcome, the agent’s knowledge of 
the consequences, and the agent’s freedom to act”. In this study, prosocial sharing of HRI over social 
media is considered as the adaptive response to the fear aroused from a health crisis. Online users tend 
to share HRI as their moral responsibility when they perceive the effectiveness of sharing, their 
knowledge and value via the information-verifying process and consider the cost of sharing. Before 
sharing HRI over social media, people evaluate the efficacy of the sharing, their capability of sharing, 
compare with the costs of sharing. As argued above, sharing “accuracy” information over social media 
can be one of the good measures to reduce information uncertainty and alleviate health illiteracy; 
therefore, if people are confident about the effectiveness of sharing information and their ability to 
perform sharing, the intention will increase. Therefore, the related hypotheses are presented as follows: 

Hypothesis 6,7: Online users who perceive (6) higher response efficacy, and (7) higher sharing self-
efficacy will have a higher intention to share HRI responsibly on social media during a health crisis. 

Figure 1 presents the research framework. 
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Figure 1: Dual-motivation model of sharing HRI on social media during a health crisis 

4 Method 

This study followed the positivism position and the deductive reasoning. Specifically, the conceptual 
framework and hypotheses were deducted from two theoretical bases (SET and FAM). The hypothesis 
testing was carried out via an online survey instrument and quantitative data analysis. 

4.1 Measures 

The question items were adapted from previous studies, i.e., prosocial sharing from Wright and Li (2011) 
(e.g., “share good information related to health”, “share HRI to help”, “share HRI to cheer someone up”, 
“share HRI to let someone know I care about them”), perceived severity, perceived vulnerability, 
response efficacy, sharing self-efficacy, and response costs from Johnston and Warkentin (2010), 
perceived information quality risk from Nicolaou and McKnight (2006). Perceived health risk was 
formative measured with two components of perceived severity (i.e., magnitude) and perceived 
vulnerability (i.e., likelihood). All items were measured on the Likert scale. Specifically, for the intention 
items, the likelihood scale was adopted (1 = “extremely unlikely” to 7 = “extremely likely”), whereas for 
the motivation items, the agreement scale was adopted (1 = “strongly disagree” to 5 = “strongly agree”).  

4.2 Sample selection 

The online questionnaire was composed by Qualtrics and delivered to respondents via Amazon 
Mechanical Turk (M-Turk), which has been previously validated as a platform where academics can 
employ respondents for their rigorous research (Steelman et al. 2014). Several criteria were settled: (i) 
the survey was carried out in English native countries (i.e., U.S., U.K., Australia, Singapore, and Hong 
Kong), (ii) respondents must hold social media accounts, (iii) respondents must perceive the Covid-19 
occurrence in their place during the survey time. The sample size was at least 300 respondents to 
warrant the “good quality” for both factor analysis and structural equation modelling (Hair et al. 2016). 

4.3 Data analysis 

For the measurement model, confirmatory factor analysis was adopted to assess the construct reliability 
and validity. For the path analysis, partial least squares analysis (PLS-SEM) was favorable for three 
reasons: (i) the goal of this study was to develop a conceptual model to explain/predict the intention 
behavior, which is appropriate to the use of PLS-SEM, (ii) PLS-SEM can help to incorporate reflective 
and formative between construct measurement model, and (iii) PLS-SEM can relax the normality 
assumption, which was not reasonable in a health crisis (Hair et al. 2016). 

5 Research findings 

5.1 Measurement model 

The data descriptions were presented in Table 1. 

Demographic Variables    Frequency (n = 326)  Percentage (%) 

Gender  1-male 175 53.7 

  2-female 151 46.3 

Age 18-25 40 12.3 

  26-33 103 31.6 

  33-40 59 18.1 

  Over 40 124 38.0 

Education Not graduated yet 48 14.7 

  Bachelor’s degree 202 62.0 

  Post-graduate 76 23.3 

Frequency of social media 
usage (hours/day) 

Less than 2 hours 100 30.7 

2 - less than 4 hours 136 41.7 
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4 - less than 6 hours 71 21.8 

6 hours or more 19 5.8 

Table 1. Data descriptions 

The measurement model was evaluated via reliability and validity assessments (Table 1). The findings 
from Table 2 showed that all the Cronbach’s Alpha (Cron. Alpha) and Composite Reliability (C.R.) were 
larger than 0.7, and factor loadings were larger than 0.708, indicating good reliability and convergent 
validity (Hair et al. 2016). Table 3 and Table 4 indicated that the squared roots of the Average Variance 
Extracted (AVE) were larger than construct correlations, and factor loadings for each construct were 
larger than cross-loadings for other constructs. The discriminant validity, therefore, was acceptable.   

Items Cron. Alpha C. R. AVE 

Prosocial sharing 4 0.932 0.952 0.831 

Reciprocity expectation 4 0.839 0.892 0.674 

Info. verification cost 4 0.874 0.900 0.646 

Response efficacy 4 0.849 0.899 0.689 

Sharing self-efficacy 3 0.731 0.848 0.650 

Disease severity 3 0.772 0.868 0.687 

Disease vulnerability 3 0.699 0.833 0.624 

Perceived info. qual. risk 3 0.775 0.863 0.678 

Table 2. Construct reliability 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Disease severity (1) 0.829               

Disease vulnerability (2) 0.484 0.790             

Info. verification cost (3) 0.031 0.248 0.804           

Perceived info. qual. risk (4) -0.017 0.146 0.566 0.823         

Prosocial sharing (5) 0.282 0.297 0.276 0.198 0.911       

Reciprocity expectation (6) 0.241 0.301 0.462 0.363 0.639 0.821     

Response efficacy (7) 0.231 0.305 0.279 0.124 0.674 0.647 0.830   

Sharing self-efficacy (8) 0.311 0.269 -0.154 -0.131 0.269 0.170 0.310 0.806 

Note: Bold numbers on the diagonal are the square root of the AVE 

Table 3. Construct correlation  

 

Prosocial 
sharing 

Reciproc
ity  

Info. 
ver. cost 

Sharing 
self-
efficacy 

Response 
efficacy 

Perceived 
info. qual. 
risk 

Severity Vulnerab
ility 

PSI1 0.908 0.523 0.177 0.310 0.613 0.098 0.282 0.289 

PSI2 0.928 0.582 0.229 0.287 0.621 0.135 0.285 0.276 

PSI3 0.904 0.617 0.332 0.189 0.614 0.271 0.212 0.260 

PSI4 0.905 0.610 0.305 0.192 0.608 0.223 0.249 0.258 

RECIP1 0.488 0.808 0.353 0.160 0.453 0.307 0.193 0.245 

RECIP2 0.492 0.832 0.368 0.214 0.506 0.277 0.217 0.277 

RECIP3 0.598 0.838 0.437 0.086 0.592 0.289 0.174 0.258 

RECIP4 0.512 0.806 0.366 0.107 0.565 0.322 0.209 0.209 

COST2 0.136 0.308 0.742 -0.015 0.145 0.477 0.106 0.192 
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COST3 0.340 0.499 0.914 -0.175 0.346 0.514 0.007 0.251 

COST4 0.219 0.378 0.873 -0.101 0.232 0.456 0.036 0.194 

COST5 0.180 0.321 0.833 -0.174 0.147 0.461 -0.015 0.190 

SELEF1 0.179 0.095 -0.166 0.815 0.212 -0.097 0.246 0.211 

SELEF2 0.188 0.182 -0.104 0.761 0.251 -0.089 0.255 0.234 

SELEF3 0.277 0.136 -0.114 0.841 0.282 -0.127 0.253 0.209 

REFF1 0.588 0.481 0.175 0.299 0.843 0.062 0.163 0.260 

REFF2 0.565 0.552 0.225 0.272 0.832 0.088 0.225 0.236 

REFF3 0.563 0.544 0.203 0.308 0.864 0.106 0.191 0.230 

REFF4 0.519 0.573 0.341 0.145 0.780 0.160 0.186 0.289 

INFR1 0.240 0.383 0.476 -0.116 0.150 0.873 -0.004 0.090 

INFR3 0.133 0.225 0.430 -0.081 0.101 0.804 0.013 0.164 

INFR5 0.067 0.242 0.483 -0.125 0.026 0.790 -0.058 0.134 

SEVE1 0.263 0.193 0.018 0.225 0.227 -0.033 0.851 0.403 

SEVE2 0.224 0.197 0.040 0.304 0.211 -0.013 0.828 0.417 

SEVE3 0.213 0.209 0.003 0.244 0.133 0.005 0.806 0.382 

VULN1 0.231 0.223 0.191 0.201 0.234 0.091 0.421 0.829 

VULN2 0.338 0.372 0.353 0.133 0.306 0.234 0.319 0.762 

VULN3 0.144 0.130 0.057 0.301 0.190 0.032 0.401 0.778 

Table 4. Factor loadings and cross-loadings 

5.2 Structural model 

The R-squared value equals 0.56, indicating that 56% of the variance of Prosocial sharing can be 
explained by the research model. All the Variance Inflation Factors were less than 5, representing no 
multicollinearity issue. Table 5 provided the structural findings, where most of the hypotheses, except 
H2, were supported. Specifically, both perceived health risk and perceived information quality risk 
significantly influence motivational factors, which include both social exchange motivation (i.e., 
reciprocity) and protection motivations (i.e., self-efficacy and response efficacy). Additionally, these 
motivational factors were found to have significant impacts on prosocial sharing. Regarding the control 
variables, education and social media frequency were found to have significant impacts on prosocial 
sharing of HRI, whereas other demographics variables such as age, gender, and country did not 
influence the prosocial sharing behavior. 

Hypotheses Beta T-value P-value Conclusions 

H1 Reciprocity  Prosocial sharing 0.319 3.917 0.000 Supported 

H2 Info. verification cost  Prosocial sharing -0.016 0.345 0.730 Not supported 

H3a Perceived health risk  Response efficacy 0.303 4.801 0.000 Supported 

H3b Perceived health risk  Sharing self-efficacy 0.349 5.360 0.000 Supported 

H3d Perceived health risk  Reciprocity  0.290 4.603 0.000 Supported 

H4a Perceived info. qual. risk  Response efficacy 0.101 2.012 0.045 Supported 

H4b Perceived info. qual. risk  Sharing self-efficacy -0.156 3.058 0.002 Supported 

H4c Perceived info. qual. risk  Reciprocity  0.341 6.986 0.000 Supported 

H5 Sharing self-efficacy  Info. verification cost -0.158 2.583 0.010 Supported 

H6 Sharing self-efficacy  Prosocial sharing 0.102 2.067 0.039 Supported 

H7 Response efficacy  Prosocial sharing 0.405 5.415 0.000 Supported 
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Control Age  Prosocial sharing 0.026 0.662 0.508 Not sig. 

Control Country  Prosocial sharing -0.066 0.974 0.331 Not sig. 

Control Education  Prosocial sharing 0.142 3.039 0.002 *** 

Control Gender  Prosocial sharing 0.044 1.203 0.230 Not sig. 

Control Social media freq.  Prosocial sharing 0.099 2.208 0.028 ** 

Table 5. Structural model results 

6 Discussions  

6.1 Discussions on findings 

This study aims to identify factors affecting the prosocial sharing of HRI during a health crisis by 
integrating the SET and FAM. While past studies have focused on either health concerns (e.g., Kar et al. 
2021; Sritharan and Sritharan 2020) or information problems (e.g., Tully et al. 2020), the findings 
highlighted that both health- and information-related problems have positive impacts on prosocial 
sharing via motivational factors. Regarding the motivational factors, during a health crisis, online users 
were found to behave both rationally and cognitively. Specifically, online users were likely to share 
information on social media with the expectation of getting reciprocal information and support from 
others. The sharing intention was also affected by the fear-aroused factors, which means online users 
appeared to evaluate the crisis risks, following by appraising the effectiveness of online prosocial sharing 
activities before taking the sharing action. The insignificance of the impact of information verification 
cost on sharing intention can be explained in two ways. First, the information verification might have 
been low-cost so that online users did not take it into their consideration. Second, online users might 
not care to verify online information before consuming it. Past studies found that online users shared 
online information on social media without verifying effort during a health crisis (Laato et al. 2020). 

6.2 Research contributions 

Theoretically and perhaps most critically, the significance can be originated from the development of a 
conceptual framework from two theoretical bases, the SET and FAM. The literature review indicated 
that although the SET was commonly applicable and effective in justifying the online sharing of HRI 
during the normal routine (Lin and Chang 2018; Yan and Tan 2014; Yan et al. 2016), it was not sufficient 
to justify this behavior during a health crisis when the fear was spread among the community (Li 2021). 
The integration of the SET and FAM in the so-called dual-motivation model can better explain the 
prosocial sharing during a health crisis, as well as make contributions to both theories. Another 
theoretical contribution includes the differentiation between online sharing domains. The 
differentiation of prosocial sharing, sharing “without much thought”, and sharing misinformation can 
pave the way to future research since each type of sharing domain accompanies different motivations 
and derives different consequences. While current studies on health crisis communication focused on 
sharing misinformation (Tully et al. 2020), this study highlighted the importance of prosocial sharing. 

Practically, the identification of motivational factors can provide suggestions for health communicators 
to promote online users’ prosocial sharing of HRI on social media during a health crisis, which helps to 
enhance disease awareness and reduce health risks. Regarding information problems during a health 
crisis, information problems might vary throughout a health crisis, for example, information shortage 
in the early stage, but information overload in the later stage. Understanding the sharing motivation can 
help to provide appropriate incentive/restrictive policy to harmonize the information volume across the 
crisis stages, and reduce the problems of misinformation and information overload (OECD 2015). In 
other words, prosocial sharing can be an effective strategy to address the problem of misinformation 
spreading, which has emerged seriously in recent years.  

6.3 Limitations and future research 

This study suffered several limitations. First, using the survey instrument, this study only captured the 
impacts of health and information risks and motivational factors on sharing intention in a longitudinal 
period, which might be necessary since a health crisis typically prolongs and users’ behavior would 
change continually during the health crisis. Future research can track the sharing behavior of online 
users for a longer time to better understand their motivation. Second, online behavior might differ 
across personal traits and cultural values (e.g., Le and Duong 2020). Future research can extend this 
argument to understand the differences in online sharing engagement of online users from different 
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cultural backgrounds. Finally, this study’s findings indicated the significant impacts of education and 
social media use frequency on Prosocial sharing. Future research can explore further these impacts, 
especially the roles of health literacy and social media literacy (Jones-Jang et al. 2021).  
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