
The Journal of the Southern Association for Information Systems The Journal of the Southern Association for Information Systems

Volume 9 Issue 1 Article 2

3-15-2022

Toward Remaking Software Development to Secure It Toward Remaking Software Development to Secure It

Jonathan Jenkins
Middle Georgia State University, jonathan.jenkins2@mga.edu

Follow this and additional works at: https://aisel.aisnet.org/jsais

Recommended Citation Recommended Citation
Jenkins, J. (2022). Toward Remaking Software Development to Secure It. The Journal of the Southern
Association for Information Systems, 9, 15-37. https://doi.org/doi:10.17705/3JSIS.00020

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for
inclusion in The Journal of the Southern Association for Information Systems by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/jsais
https://aisel.aisnet.org/jsais/vol9
https://aisel.aisnet.org/jsais/vol9/iss1
https://aisel.aisnet.org/jsais/vol9/iss1/2
https://aisel.aisnet.org/jsais?utm_source=aisel.aisnet.org%2Fjsais%2Fvol9%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/doi:10.17705/3JSIS.00020
mailto:elibrary@aisnet.org%3E

Toward Remaking Software Development to Secure It Toward Remaking Software Development to Secure It

Cover Page Footnote Cover Page Footnote
https://doi.org/doi:10.17705/3JSIS.00020

This article is available in The Journal of the Southern Association for Information Systems: https://aisel.aisnet.org/
jsais/vol9/iss1/2

https://aisel.aisnet.org/jsais/vol9/iss1/2
https://aisel.aisnet.org/jsais/vol9/iss1/2

ABSTRACT

Modern software development depends on tools and techniques to represent implied information processing

logic to the human engineer, relying chiefly on effortful human reasoning to best determine critical

properties of the software system. Current conceptualization, visualization and contextualization of

software in development amounts to a significant under-utilization of already limited development

resources directed to optimization, prevention, and addressing fundamental security properties of the

software system. As a step toward increasing such utilization as a basis for a global ecosystem of secure

software, this work explores and evaluates an alternative representation of software source code for the

sake of secure development, manifesting universal, critical properties of the system to enhance control of

security-determinative factors while the bulk of the properties of the system are being determined and the

costly skills of the developer are directed to the many aspects of the task.

KEYWORDS

Software Development, Secure Software

INTRODUCTION

With software systems bearing an increasing share in the provision of modern services, there is a spectrum

of activities aimed at the realization of secure software systems, from the more timely mitigations of

vulnerabilities during the engineering process to the “late” application of security updates to deployed

systems. With a growing set of particular instances of costly security incidents (PwC, 2020) and ongoing

vulnerabilities that are slowly addressed and costly to society (Veracode, 2021), responses have relied on

an approach which either increases the labor and costs of developers or reactively expends resources to

mitigate vulnerabilities that have already led to incidents damaging to business processes and reputation. A

well established attribute of software flaws is that the cost of repair increases as the point of intervention

advances further in the software engineering process, where less advantage can be made of the focused

talent and more diversion of resources becomes necessary.

Although the introduction of flaws into software systems is an assumed, admitted presence in modern

software engineering, the discipline has seen an evolution of alterations to software architecture, design,

implementation and maintenance that support mitigation of risk and resistance to intentional attack. At the

most systematic perspective, the use of layered architectures is one example of a design approach that

achieves an isolation of system components from each other, enforcing a controlled interface between

them and restricting unauthorized information flow. Such architectural measures set the stage for security

’from the ground up,’ but do not address the creation of exploitable flaws during the implementation of

the source code.

Modifications to software development tools and techniques for security purposes have largely focused

on overt source code phenomena and practices tied to particular vulnerabilities. Turning to more focused

interventions, manual analysis of source code for the removal of security flaws is both an effective and

significantly costly addition to the engineering process, while automated security scanning tools

experience practical limitations in performance and power of revelation that limit their application. Secure

programming has a meaningful role in a large scale secure software effort, yet requires intentional

vigilance in the observance of coding practices beyond those needed to meet software requirements.

Notably, training of software developers in secure programming techniques is a more direct attempt to

address the human element in the creation of software systems, but also represents a reduction in the

effectiveness of employment of the developer’s human resources: the developer trains to observe

practices beyond those needed for the construction of software rather than benefiting from an adjustment

to their own development paradigm and conception of the software. Existing approaches force the

1

Jenkins: Toward Remaking Software Development to Secure It

Published by AIS Electronic Library (AISeL), 2022

developer to apply human effort to abstractly represent the properties that are determinative of the

security of the software system in development.

The modern expansion of software into the conveyance of a wider envelope of business services must

motivate an “all hands on deck” exploration of fundamental alterations to the paradigm of secure software

development. The exploration of such alterations is necessary in order to reveal protections that enhance

the developer’s efficacy without adding ‘passes’ to the development process, protections that mitigate

vulnerabilities in a more far-reaching manner rather than leave each new attack to be addressed

separately. The widely practiced reactive approach to securing software systems follows from a

prioritization of functionality before risk, but can only attempt to prevent further damage within software

systems already exploited, especially with defenses (e.g. “patches”) that are not systematic.

The contribution, the result, of this work is a fundamental change to the development representation of the

software system in order to enable the explicit manifestation of properties that have direct influence on

the security of the deployed system, yet are not “visible” in raw source code. From the novel model,

manifestations of the key properties are derived for use as part of the visual representation of software

during development. Further, the feasibility of the novel representation and its ability to convey the

corresponding augmented security information in support of development are evaluated through the

creation of a prototype source code editor in Java.

The work presented here also acts as a step (a measured step in line with practical constraints of modern

software engineering) toward more effective development models of software that deemphasize non-

functional aspects of the system, such as labels, in favor of properties that objectively prescribe critical

functionality. The new representation is realized as part of the software development process, where

source code text is segmented and augmented to allow effective, explicit depiction of, and reasoning

about, properties such as information flow.

The change in representation proposed here can be instructively compared to the major transition in the

construction of software systems that occurred as part of the introduction of object oriented programming

near the end of the 20th century. Where object oriented programming introduces the object as the new,

chief structural unit of work in software (yet does not alter the work done), the proposal here preserves

the functional structure of the system under development, but segments functional source code symbols to

enable representation and prioritization of properties, augmenting the system representation to explicitly

position the properties to inform development as part of the development tool set rather than in their

traditional, abstract role requiring training and cost to employ.

The advocacy for such widely applicable software development interventions additionally reflects the

responsibility for globally secure software as a shared burden. Since there is an unavoidable relationship

of reuse and dependency between modern software components (originating within the same product, or

not) and systems, the importance of bidirectional assurances of security derived from commonly

employed, general protections is demonstrated.

In the remainder of this work, the most applicable work of similar approach to the present effort is reviewed,

followed by coverage of the global software development context in which this work is born, an explanation

of the foundational principle of properties that is to replace a pure language-based conception of software,

an explanation of the feasibility of changing and augmenting the representation of software in development

for security purposes, a specification of the changes made to the developer’s software development

environment in order to capture the properties introduced, an evaluation of the feasibility of the proposed

property-based development paradigm in the form of a prototype source code editor, and finally

conclusions.

2

The Journal of the Southern Association for Information Systems, Vol. 9 [2022], Iss. 1, Art. 2

https://aisel.aisnet.org/jsais/vol9/iss1/2
DOI: doi:10.17705/3JSIS.00020

RELATED WORK

There exists an established set of options for the intervention toward the security of software, both in

development and as deployed, but through the best efforts of the author, no significant efforts toward the

proposed degree of fundamental alterations of the development software representation for secure

development are found.

However, to address the major task of ubiquitously secure software, the spectrum of practices that support

engineering of secure software systems must be considered as a complementary combination rather than a

set of mutually exclusive, competitive categories.

Security tools provide scanning services to identify potential vulnerabilities in software systems without

continuous human intervention, yet such tools are realistically applied as assistive processes for the

human developer, and may require the creation of tool-specific analysis data as a prerequisite (Wichers et

al., 2020; NIST, 2020).

Manual effort by the human developer provides more intelligent and abstract security analysis of a

software system, yet introduces cost and falls short of the performance of automated tools. Software

scanning services such as the ample Fortify static code analyzer (MicroFocus, 2020) automate the

security analysis of software as a service, dynamically analyzing executing code, and may be

complemented with manual efforts to secure the system, such as penetration testing. With scaling and

performance now commonly delivered in cloud environments, the developer is provided with rapid

feedback on the tool’s findings and able to take corrective action.

Recent developments in the security analysis of software systems have led to the employment of

‘semantic’ reasoning in order to identify and mitigate security vulnerabilities. This form of analysis, to be

treated distinctly from syntactic and lexical analysis of code, focuses on identifying and analyzing the

meaning and intent of the expressed code statements that is not expressed in the source code. Semantic

analysis leads to the identification of patterns of dangerous code that are visible in, for example, whether

variables are defined before use, and comparing expressed types to required types.

The addition of security analysis capabilities to the GNU compiler collection (GCC, 2010) represents a

useful indicator of the penetration of such techniques into the wider creation of software. Though there

can be significant impact on compilation performance, the compiler is able to scan for a set of distinct

“bugs” such as double free of memory references and the “unsanitized” used of an index value.

Secure programming practices (Oracle, 2020; OWASP Project, 2020; Red Hat Inc., 2020), when already

constrained attention and resources are available, are employed during software development as additive

adjustments to the implementation of functional requirements, with examples found in the validation of

input data and the use of security services such as encryption, authentication and access control. Though

the benefits of secure practices with respect to security incidents are significant and clear, the practical

adherence to proper practices is limited by a justified focus on core functionality during software

development, a lack of immediate security consequences and a lack of ubiquitous training.

Security engineering addresses the mitigation of risk during the professional production of complex

software products by intervening at the architectural level, where decisions can be made to build

systematic protection ‘into’ the system with e.g. layering or code reviews, or also by applying dedicated

testing for vulnerabilities. Moving toward the organizational context, risk management can be applied to

identify and reduce the risk factors of the software project in ways that may reduce vulnerabilities.

As a representative example of efforts to alter the software development support structure in service of

more effective development, the work in (Bragdon et al., 2010) alters the containment representation of

source code, but does not adjust the representation of the code itself, allowing no opportunity to reveal the

breadth of the security-relevant properties of the software system in development.

3

Jenkins: Toward Remaking Software Development to Secure It

Published by AIS Electronic Library (AISeL), 2022

The work in (Xie et al., 2011) implements interactive support for secure programming within the

integrated development environment (IDE), but relies on heuristics to detect “common” security issues in

program source code. The project shares with the current work an emphasis on improving the code during

development, as well as enabling useful annotations that support the developer.

In summary, there is a body of work that aims to analyze the software system in development, in source

code, in order to identify code sequences which are judged to match a known vulnerability pattern.

However, such measures are dependent on language-specific constructs and labels, and are tied to

particular vulnerabilities. Though there is typically a set of particular categories of vulnerabilities which

are prominent (OWASP Project, 2020), new attacks continue to appear as variations that present a new

’fingerprint’ which does not match existing signatures in spite of potential similarities in strategy or

pattern.

LANGUAGE VS. PROPERTIES

A conventional, high level representation of software, for software development purposes, is the product

of an effort to represent a complex expression of logic in a manner that resembles natural language,

sufficiently for the purpose of development. However, the use of high level programming languages for

the expediency of human interpretation does not manifest a set of inherent properties that drive important

consequences of its execution, yet are not evident to visual inspection of source code.

A question beyond the scope of this work is on the general necessity of language-bound details in the

development representation of software. Although there are various practical factors that drive the

creation and maintenance of distinct programming languages, a property-based development

representation of software would be capable of an increase in efficiency through the condensing of

language-specific details into common logical operations in a unified syntax. Nevertheless, rather than

attempt to summarily discard widely used programming language environments on which vast running

software systems depend, the approach taken here is to compromise via a representation that preserves

language-bound details (keywords, syntax symbols), yet alters the structure of the presented system

enough to introduce a general structure that manifests properties within the user interface and augments

the display elements for the purpose of the manifestation of the security properties discussed here.

Information flow is a well-studied aspect of software source code and execution (Denning, 1976). The

flow of influence between data storage locations serves as an effective model of the undesirable

propagation of untrusted data and of key elements in security attacks on computer systems. The transfer

of data from restricted access storage locations that are marked as sensitive to others that are less sensitive

represents a clear security violation in military contexts and in others where information is controlled.

There are expressions of information flow which may be deduced within program source code, yet do not

exhibit explicit transfer of information between storage locations. Such implied information flow occurs

when information about a stored value a can be inferred through, for example, the effect of a

conditionally executed statement on a separately stored value b. In a statement such as if a == 0 then b =

c, the explicit information flow from storage location c to b through assignment is clear, yet conditional.

An implicit flow also exists from a to b, since the storage of the value in variable b exposes information

about the value of a that is checked in the conditional statement. In the model studied here, explicit

information flows are accounted for, while implicit flows are viewed as a direction for future study.

Information flow is revealed as a controllable property of most programming language environments that

feature programmer-managed storage, but it is not generally exposed to software developers as they work

to produce software systems which rely on such flow for the useful effect of the systems. In spite of its

relatively unmanifested role in the software development process, information flow models an enabling

factor that is a key driver of transitions in security-relevant properties that are discussed in this work.

4

The Journal of the Southern Association for Information Systems, Vol. 9 [2022], Iss. 1, Art. 2

https://aisel.aisnet.org/jsais/vol9/iss1/2
DOI: doi:10.17705/3JSIS.00020

Supported by information flow, a complex of properties are expressed at the composition of data and

logic which is described by the function interface. The definition and call of functions is one of the

fundamental software constructs that enable the construction of large scale, robust software systems: the

function code, bearing unenforced requirements for secure operation, is reused to process unique data of

remote origin and distinct requirements for secure use. Where a function is employed, information flow

facilitates the action of multiple related, security-relevant properties, to include structure, parity and

extent (and the potential for more, to be studied).

The basis for the focus on the call interface as the chief locus of property action in this work is its

characteristic imposition of interactions between data elements and the interactions between the invoking

code and the code which is invoked. There is also a characteristic discontinuity between the intent and

safety requirements of both ’sides’ of the functional interface, leading to countless security

vulnerabilities, and revealed here to be expressed as action via properties. Beyond that, the concept of

composition of requirements is widely applicable to software constructs, opening the way for future

study.

Firstly, the parity property (Table Security Relevant Properties Captured and Manifested) describes the

state of symmetry between subsets of the data operated on by the invoked code. Commonly, parity is

required in order for the correct and secure operation of functions which rely on a ’match’ between

specifiers for parameter count and the number of actual parameters passed in. Mismatches between

specifiers and parameter values in calls to format functions can result in undefined and insecure program

behavior. Such phenomena is famously observed in format string security vulnerabilities, which have

demonstrated the capability to leak information and execute unauthorized code (OWASP, 2020;Teso,

2001).

5

Jenkins: Toward Remaking Software Development to Secure It

Published by AIS Electronic Library (AISeL), 2022

Property Description
Security Phenomena

Captured
Practical Examples

Information

Flow

(explicit)

Propagation of

information

from source

storage

location to

destination

Integrity violations via the

transfer of information to

protected data repositories,

confidentiality violations

via the transfer of restricted

access information to

unauthorized repositories

Sabotage of data, data

corruption,

information leak

Composition

of Parity

Imposed

interaction

between data

items via their

mutual

presence or

absence

Potential integrity,

confidentiality and

availability failures due

to the absence of correct,

required data item for

each required input

Format string

vulnerability, e.g. C

printf function

Composition

of Structure

Imposed

interaction of

data with data,

via a structural

or topological

operation

Potential integrity,

confidentiality and

availability failures due

to the use of incorrect data

to interact with data as part

of structural operation

Indexing

vulnerabilities, e.g.

use of out of bounds

index. Attacks with

crafted input, e.g.

parsing

Composition

of Extent

Imposed

interaction of

magnitudes of

data with data

Potential integrity,

confidentiality and

availability violations

due to the transfer of data

from source to

destination, where the

violations are a result of

unmatched safety

requirements between

data and interface

Buffer overflow

vulnerability,

overwrite of data in

memory through lack

of bounds checking

Table 1: Security Relevant Properties Captured and Manifested

The structural property captures the use of incoming data by the function to impose spatially partitioning

operations on data or functionality. A prominent example of the structural property in action is in the

indexing of sequence variables, where a numeric (or other) data value ’selects’ the particular data element

to access or process. The use of unvalidated data to index a sequence data structure is a recognized

pathway for multiple attacks.

An extent property is visible in the relative magnitudes of the data that is made by the function to interact.

In the implementation activity of software engineering, it is the information flow that enables the potential

extent interaction which is visible for analysis. The measurement of the action of information flow

through extent can be fully measured only with analysis of executing software, since the true relationship

between magnitudes is defined only when data is in use. Still, the incompatibility between the extents

6

The Journal of the Southern Association for Information Systems, Vol. 9 [2022], Iss. 1, Art. 2

https://aisel.aisnet.org/jsais/vol9/iss1/2
DOI: doi:10.17705/3JSIS.00020

presented by actual data and the requirements for secure reuse of the function directly describes the

conditions for the endlessly applied buffer overflow attack (Aleph1, 1996).

That there are meaningful properties of the actions implied by source code is evident to cursory analyses.

However, existing strategies for exposing such properties to the software engineer are not efficient or

scalable, requiring for example new analyses of the same codebase, with separate development efforts

aimed at addressing the consequences of software failures. Ultimately, the increase in valuable

information obtained by the manifestation of properties justifies the general re-representation of source

code in a property-exposing form.

REMAKING SOFTWARE DEVELOPMENT FOR SECURE DEVELOPMENT

While secure software is inarguably a critical goal for today’s digitally-driven services, there are clear

limitations to an approach in which each software vulnerability is analyzed to the exclusion of others and

addressed with reactive, tailored defenses. As successful and necessary as a patch for a specific software

vulnerability is, it is applicable to the identified flaw and does not inherently apply even to related

vulnerabilities. Notably, attackers successfully renew their attacks with minor adjustments to techniques

and implementations.

A more general approach to increasing the feasibility of secure software development is through a

combination of re-representation of the logic to be implemented and the addition of augmented

information that manifests security-relevant properties. The high level representations of program logic

used in modern programming languages take the form of recognizable natural language symbols,

reducing the burden of the developer’s task in directly reasoning about abstract logic. However, such

representations also demonstrate the amenability of program logic to re-representation, an opening to

further adjustments toward a new baseline of secure software in development.

Conventional software development code representations and practices are a significant under-utilization

of time, effort, and other resources, and an under-application of parallelism in terms of the overtness of

software properties that are critical to the software system in production. There is a way forward to an

increased utilization of the valuable human resources engaged in software development through

alternative representations of the software system that ‘prefer’ properties rather than localized labels,

exposing properties that aid the classification process of identifying vulnerable code.

The composition of distinct sets of source code constructs (and their implied execution effects) is a key

construct which enables the effective application of a language-agnostic, property based software

development methodology. The concept of composition can be applied to the most fundamental

constructive technique of software development, the specification and call of external procedures, though

its application is not limited to this aspect.

The definition of, and call to, reusable procedures is a fundamental enabler of the construction of

complex, maintainable software systems. A trade-off of control for expediency takes place in the

engineering of modern software products, in which the developer’s own implementation directives are

replaced with the ability to call a procedure implemented to honor a ’contract’ of work done with the

incoming data.

A key realization of composition is at the function interface, where arriving data carries with it a set of

requirements for safe use, in terms of its extent, its parity with the remaining data items, and the

imposition of structural interaction between separate data items by the function instructions. Thus, the

function interface composes two potentially disjoint sets of security requirements, leading to an

opportunity for the violation of the intent of the program author.

Importantly, the actions modeled by the security properties, and the attacks which are derived from action

through the properties, are only truly realized during the execution of the software system. As a result,

7

Jenkins: Toward Remaking Software Development to Secure It

Published by AIS Electronic Library (AISeL), 2022

software development with a property representation of a software system is best aimed at constraining

undesirable property ‘pathways’ in the source code prior to program execution. The program resulting

from such development disallows uncontrolled pathways through the security properties, and thus

prevents the attacker from constructing security violations in terms of sequences of property state

changes.

The judgements of the software developer, when informed by a view that exposes and prioritizes key

properties which normally require intentional effort to reason about, benefit from a new baseline in

representational accuracy of a complex system under construction. The increased accuracy is reflected in

the manifestation of the properties that implement the intent of the author and determine security, rather

than merely in terms of the labels of a single language system. As a practical matter, such an advancement

can be realized by, for example, useful visual indicators of dangerous property disparities displayed

within the development environment.

For the sake of exploration, a valid, alternative approach for the augmentation of software development

practice for security purposes is the creation of a new ’special purpose’ programming language

environment that enforces additional requirements with the goal of reducing the likelihood of security

vulnerabilities. Apart from the significant effort involved in such an endeavor and the obstacles to

adoption among a context of legacy software, such a task would recreate with a new set of labels the

familiar limitations of conventional programming languages in the face of security threats. An

exploitation of a program implemented in such a language abuses its characteristic capabilities and

restrictions, and defenses envisioned during development are traditionally expressed as alterations within

the label system of the language, rather than the transformations in universal properties that truly

determine the security of modern software.

In summary, a property-based representation of software for the purpose of secure development will

expose and prioritize security properties that are directed by the code expressed yet not overtly

manifested, and it will further augment the development task with sufficient information for the developer

to curtail uncontrolled property transitions.

RE-REPRESENTING SECURITY DURING SOFTWARE DEVELOPMENT

Taking the construct of composition as a guiding principle for the support of secure software

development, a property-based software development source code representation can meaningfully

expose indicators of security property state changes that are implied by source code in development. The

function call is a key interface at which the composition of these properties acts, and at which our novel

software representation exposes this complex for the benefit of the software developer toward

implementation better reflective of the process in progress.

The goal of a property-based software development representation of software must be a concise model

that manifests the ’pathways’ for security-relevant flows and discontinuities, but avoids obscuring the

remaining properties that may be of interest to other development views. For the sake of generality, the

representation of software is best formed in a property-agnostic way that assumes a granularity

appropriate for the individual elements of statements which can exhibit information flow or composition.

Achieving such generality is possible through the segmentation of code statements at least to the extent

that information flow sources and destinations are given exclusive positioning.

Moving to the particular security properties introduced, the first property that must be represented,

information flow from a source storage location to a set of others within a code scope or “block”, can

reveal the passage of information to unauthorized (or insufficiently privileged) carriers or repositories of

that information. Unauthorized information flow represents a violation of the confidentiality principle,

among the three of the classical CIA triangle. A key manifestation of information flow during software

8

The Journal of the Southern Association for Information Systems, Vol. 9 [2022], Iss. 1, Art. 2

https://aisel.aisnet.org/jsais/vol9/iss1/2
DOI: doi:10.17705/3JSIS.00020

development is, given a storage label, a visual indication of all transfers of information from the referrent

of that label to other locations, including indirect flows, within the block.

Parity reflects the degree to which separate references, composed by code to interact, bear mutually

present data. Parity can be indicated in the development view by the visible distinction between a data

parameter string that contains a probable specifier pattern and the remaining data elements that are

required to be present to ’match’ the specifier parameter. To maximize the generality of the parity

information displayed, the parity analysis of parameter strings is approached as an abstract pattern

repetition search, using a maximum likelihood detection strategy in which the pattern most repeated is

chosen as the probable repetition pattern.

Structural interaction between data entering the function can be indicated with suggestive symbols placed

with the augmented parameter representation. Notably, the important indication of cross-parameter

structural interaction is directional, and symbols should be sufficiently expressive for this purpose.

Information flow is also directional, and can be similarly indicated within the parameter representation by

symbols that illustrate the direction, source and destination of flow between function parameters.

A unifying interface concept for the manifestation of unsafe composition is the visual distinction between

the elements of the composition that would exhibit similarity in a secure configuration. A standardized

awareness of the presence of such interactions before the system is tested is a necessary prerequisite for

informed development of secure software. To indicate the information flow between function parameters,

an appropriate approach is to augment the representation of the function call element within the statement

by adding a compact representation of all parameters that provides a directional indicator to indicate, for

each parameter p, which other parameters are recipients of information flow from p.

Considering the property-based development representation advocated here in relation to existing

approaches to the construction of secure software, the present approach either advantageously provides

support earlier in the lifecycle of the software system, or reduces the reasoning and classification burden

placed on the developer seeking to mitigate vulnerabilities. Further, this work advances efforts toward an

entirely general representation of security-relevant phenomena during development, which is applicable

to essentially all software systems to be built.

Rather than scanning for “top 10” vulnerabilities or variations of studied vulnerabilities, the properties

manifested in the present work can capture precursors to entire categories of attacks, and developers

benefit from their overt representation as part of a holistic view during the implementation process. The

actual mitigation of vulnerabilities is left to the human developer, given that alterations to the system

source code are required. Here, a comparative analysis of property based development relative to existing

work is conducted.

In comparison to the present work, manual effort by the human developer provides more intelligent and

abstract security analysis of a software system, and security testing of deployed software systems can

clearly mitigate vulnerabilities, yet the resources consumed by adding developer effort are significant,

both during development and after deployment. These forms of alterations to the engineering process can

contribute to the reduction of vulnerabilities, but remain part of an intentional effort that must be

employed uniquely to each project: it cannot be employed as a new ‘baseline’ of security support apart

from the development effort.

Relative to manual intervention during or after development activities, a property-based model of

development acts as a transfer of cost from human resources used for representational effort and

classification to an ‘up front’ cost for the implementation and adoption of the model within development

tools and practices. However, such a transfer is not complete, since the vulnerability classification task,

though reduced in degree, still requires an intelligent assessment of risk based on the unique presentation

of property effects of the present software system. The property-based development approach

9

Jenkins: Toward Remaking Software Development to Secure It

Published by AIS Electronic Library (AISeL), 2022

nevertheless provides a ‘baseline’ of increased security, since the developer’s challenging classification

task begins with augmented support.

Risk management offers principles and software project practices that can objectively identify project

risks earlier, and may ‘save’ a software project. There exists in the discipline of software engineering an

interest in positioning risk management as an early, guiding set of processes to reduce project costs and

support success (Boehm, 1991). Risk management, as applied to software engineering, aims to coherently

and precisely identify key project risk factors, preventing them from becoming specified and implemented

to build threats to success into the product. One example of such a risk is in the case of faulty

requirements admitting the use of insecure software features.

Although project management level intervention is not attempted by the present work, risk management

can be considered complementary to property-based development. While risk management serves to

prevent unknown risks (including security threats) from impacting on the project’s success at an

organizational level, intervening in the implementation activity (as is advocated here) instead prioritizes

the developer’s role in the most effective and efficient use of their human resources in reasoning with the

security properties of the complex system in development and avoiding the introduction of risk.

Software testing can be applied during the development in a way that supports the security of the

produced system, but can also be applied in dedicated security testing (Sommerville, 2016). Software

testing is able to increase software quality and prevent flaws from remaining in software systems to be

exploited by attackers, yet adds costly activities to the development process as quality increases, and is

subject to all limitations of the software engineering process. After all, an accepted phenomena in

software engineering is the increase in cost necessary to achieve highly dependable software systems that

resist attack.

Achieving secure software systems by ‘patching’ systems after deployment enjoys a perverse benefit of

the information about how a vulnerability or flaw is exploited, yet clearly does not represent a

development intervention, does not minimize significant potential costs of addressing damage to business

processes, reputation and services, and does not ease the complex classification and mitigation task of the

human developer. On the other hand, the property based approach aims to intervene during the

development process, and provide a more secure ‘starting point’ in development at the current view of the

code.

Static security analysis of source code (Stefanović, 2020) is a major, modern approach to producing

secure software, and can be considered complementary to the work proposed here, in that such analysis

places the focus on the software system in its development activity. Static analysis involves the manual or

automated processing of the software source code with the goal of revealing security vulnerabilities. The

use of software tools for static analysis of source code (NIST, 2020 ;Wichers et al., 2020) has achieved

varying levels of performance, and characteristic inclusion of false positives in warnings to the developer

(Scanlon, 2018). Due to the various limitations of scanning tools, developers are not likely to extract the

optimal benefit from them (Jamil, ben Othmane, Valani, AbdelKhalek and Tek, 2020; Thomas,

Tabassum, Chu and Lipford, 2018).

Software security scanning services such as Fortify static code analyzer (MicroFocus, 2020) and

(Veracode, 2020) provide automated, external analysis of software systems, identifying code sequences

that exposes the system to risk and threat. With the use of such tools come the limitations of external

analysis which can ’see’ only what is evident in code, missing semantic details and any benefits of

alternative developer-facing development representations of the software system.

Although static analysis can be performed with automated tools that execute at machine speed as often as

needed, the breadth of the vulnerabilities that can be detected in an automated scan is limited to the

capabilities of machine (not human) intelligence and the representational power of the source code,

10

The Journal of the Southern Association for Information Systems, Vol. 9 [2022], Iss. 1, Art. 2

https://aisel.aisnet.org/jsais/vol9/iss1/2
DOI: doi:10.17705/3JSIS.00020

resulting in tools typically being applied in a supporting role for security analysts working to locate and

mitigate flaws.

Static analysis does not change the nature of the support available to the developer as the source code is

developed, and does not reveal or expose the key fundamental properties that influence the security of the

developed system, properties advocated here as central to the way forward in tool-supported, secure

software development.

Thus, the limitations of static code analysis in comparison to the present work are categorical: the model

proposed here directly alters the development representation of software to expose security-critical

properties and augments the representation with development support to reason with these properties,

while static analysis analyzes the source code ‘as is’, revealing problems that are evident to software

based intelligence. The recognition of vulnerable code patterns by static analysis is dependent upon an

accumulated, costly experience with past security violations that are constructed from effects of the

properties discussed in this work.

Admitting the common approach of intervention during development in (Xie et al., 2011) and the current

work, the interactive static code security analysis enabled by the ASIDE project is an important point of

comparison. The project implements developer support for adaptable awareness of common security

problems in the development environment tool, realized in an Eclipse plugin. An example of the

application of ASIDE to a security vulnerability is the automatic recognition of the absence of validation

for an input data item: the tool generates applicable Java source code, using standardized libraries, which

can be added by the developer.

Although such interactive, in-development security refactoring clearly is capable of identifying code of

concern and facilitating mitigation, the approach, further developed in (Zhu, 2014), is subject to false

positive warnings that would be expected from a software-based classification capability, and does not

fundamentally alter the representation of the software system toward secure systems. The present work

does not attempt software-based classification, but advances a model of software that is properly

representative of security-critical properties reasoned with during development, in order to increase the

effectiveness of human developer classification, where true security-expertise resides.

As reflected in the plugin implemented in the work of Zhu et al., development tools such as Eclipse

demonstrate not only the current state of support for general customizations of the development process,

but also the amenability of development frameworks and tools to augmentation with security-relevant

functional support, on which the practicability of the present work relies.

Secure programming (Bishop, 2006) is an approach to the production of secure software systems that is

more directly similar to the present work than static code analysis, in that the intervention is applied to the

development paradigm, rather than through the application of automatic analysis. The use of proper input

validation to sanitize data originating from untrusted sources is one example of a programming practice

that mitigates vulnerabilities in which input interfaces are exploited.

While secure programming can be taught to developers in training and employed to significant benefit by

professional engineers to prevent well-known categories of vulnerabilities, ongoing training, resources

and vigilance beyond the fundamental efforts of constructing working software are necessary to realize

the benefits. In comparison to the present work, secure programming represents an allocation of tasks of

arbitrary size to the developer, requiring the ongoing application of patterns to programming scenarios

that present uniquely.

11

Jenkins: Toward Remaking Software Development to Secure It

Published by AIS Electronic Library (AISeL), 2022

 Costs
Software

Lifecycle
Developer Classification Effort

Software

Testing

Development

activity resource

consumption

During

development

Developer classification of

incorrect or faulty code

Patching

Software

maintenance

costs, security

testing,

organizational

incident response

After

deployment

Developer classification of

insecure code

Code

analysis

Ongoing tool

costs, Developer

verification

During

development

Partially automated classification,

developer effort for confirmation

Secure

Programming

Ongoing

Training,

Developer

resources

During

development

Developer classification of

insecure code

Property-

Based

Development

Initial

development tool

implementation

and adoption

During

development
Significantly automated

Table 2: Interventions for Software Security

In context, the present model prioritizes properties which increase coverage of security vulnerabilities

rather than requiring an intentional, abstract and arbitrarily complex classification process, the scale of the

classification can be reduced and uniform adjustments applied to mitigate vulnerabilities (see

Interventions for Software Security and Interventions for Software Security).

As depicted for key security vulnerability categories in table Table 3: Comparison of Developer Action,

By Vulnerability Category, a property-based development model of software enables the transformation

of the developer action from, at best, assisted identification with developer manual mitigation to

significantly automated identification with supported mitigations that apply to entire categories of

vulnerabilities.

12

The Journal of the Southern Association for Information Systems, Vol. 9 [2022], Iss. 1, Art. 2

https://aisel.aisnet.org/jsais/vol9/iss1/2
DOI: doi:10.17705/3JSIS.00020

Secure

Programming
Static Code Analysis

Property-Based

Development

Sabotage of data,

data corruption,

information leak

Intentional

developer training

and practice for

removal

Scanning for explicit

flows with human

intervention for each

flow

Automated flow

identification,

developer

mitigation (e.g.

disabling of flows

not specified in

requirements)

Format string

vulnerability, e.g.

C printf function

Developer training

and vigilance to

avoid dangerous

dual channel

functions

Scanning for

function usage, with

human intervention

for verification of

vulnerability

Automated

identification of

parity risk,

developer

mitigation (e.g.

forced parity)

Indexing, parsing

vulnerabilities,

e.g. use of out of

bounds index or

crafted input

Developer training

and practice to avoid

use of unchecked

index values or

validate index

values

Scanning for source-

code visible, unsafe

index uses

Automated

identification of

indexing

relationship,

developer

mitigation

Buffer overflow

vulnerability,

memory

overwrite

Developer training

and practice to

implement bounds

checking

Language-based

pattern scanning ,

developer

verification and

unique mitigation

per instance

Automated

identification of

information flow

and extent

relationship,

developer

mitigation

Table 3: Comparison of Developer Action, By Vulnerability Category

The feasibility of a property-based model of development is supported by potential implementations in

the context of any programming language, given the universal nature of the security properties given

priority in this work. Information flow, for instance, usefully models dangerous flows of influence

between data, regardless of the language system used to direct the uses of the data in variables. The

properties directed at the site of the invocation of a function remain in force independently of the data

types, calling conventions or parameter passing in place for the programming environment.

With regard to the adoption of property based development, mass application is possible via the bearing

of a one-time cost of implementation of the model within community-developed software development

tools such as Eclipse, as demonstrated by the plugin additions described in (Zhu, 2014). Since the

properties are inherent in the useful action of all modern software, the need to support unique

visualizations or representations for each security concern is avoided, requiring only a useful visualization

of each property of interest and potential indicators for a limited number of function parameters.

13

Jenkins: Toward Remaking Software Development to Secure It

Published by AIS Electronic Library (AISeL), 2022

The use of a property-agnostic visual arrangement can be tuned to preserve the overt, language and label-

specific details of program statements to the degree necessary to maintain development recognition to the

prevailing needs of the state of the discipline, and the prioritization of properties does not create

significant compatibility issues with structure in programming languages that support segment-able code

statements. Since the literal source code contents are preserved, computation of property information is

largely a one-time cost, and the source code representation can be augmented with visually concise

indicators, no significant degradative impact on the speed of development is expected.

In summary, the property-based development representation does not force the developer to train to

expose to reasoning key properties that influence software security, but faithfully positions such

properties in view during the process of their direction by the developer. Without direct representation of

properties during development, developers must unnecessarily train and exert effort to manifest them,

consuming project resources at a disadvantage to avoid the dangerous direction of such properties,

leading to vulnerabilities.

A PROOF-OF-CONCEPT PROTOTYPE PROPERTY-BASED SOFTWARE DEVELOPMENT SOURCE CODE
EDITOR

For the evaluation of the feasibility and efficacy of a property-based, security augmenting software

representation, a proof of concept, prototype software development source code editor, JPSCE, is

implemented in the modern JavaFX graphical framework, for use with the Java programming language.

Since the properties and constructs studied in this work are applicable to essentially all modern software

development approaches, the possibility of the addition of support for other programming languages

follows from the demonstration here, but is considered a secondary focus here and a topic for potential

future work.

Importantly, as an early evaluative measure for a novel model of software, JPSCE is not (and cannot be)

an assessment of property based development in practical use or of a secure development software tool,

the former being an undertaking that can be envisioned only in future work and the latter out of scope.

Fundamental software source code editing functionality is supported in the prototype, to include the

addition, transformation and deletion of source code lines, whether the modification of individual

statement elements or entire source code lines. Editing of individual source code line elements, possible

via the user of a separate editable text field per element, requires the use of an update button functionality

to regenerate the full code element representation to take the modifications into account, and a save

button writes the current status of the code to long term storage. Bulk editing of an entire source code line

is possible with an editable text field at the horizontal end of each ’row’ of code elements which construct

the code statement. A selection of screen shots of JPSCE in operation is presented here in figures 1-5 in

an appendix.

JPSCE places source code statement elements in a grid arrangement in order to expose properties in a

manner that is both orderly, and agnostic to properties of interest to the developer. Information flow is an

example property which requires the separation of statement elements such as operators and storage

labels. The scale of subdivision of traditional code statements must be agnostic to language and property.

The exposure of information flow within code blocks is made possible on demand, relative to a single

flow source of choice, via the use of event-driven programming and clickable element boxes. A click

applied to a code element for a statement within a block, if the code element is a potential information

flow source (a storage location label), triggers an updated colored indication of the other storage labels

that receive information flow from the source.

The representation of the method call is an abstract representation that includes not only the original,

editable call statement code, but a representation of the composition interaction effects of the parameters

to the call, and also a hide-able, contained, scrollable display of the function implementation (if such

14

The Journal of the Southern Association for Information Systems, Vol. 9 [2022], Iss. 1, Art. 2

https://aisel.aisnet.org/jsais/vol9/iss1/2
DOI: doi:10.17705/3JSIS.00020

implementation is accessible). The augmentations to the source code call are placed with the element

holding the textual name of the called function.

With the call representation constructed as a vertical box, the upper most container is reserved for the

definition that is matched to the current statement’s call, if such a definition is directly accessible in the

present source code file (as it is tied to the questionable availability of outside source code, processing

remote definitions is left for future study). The method definition, held within a fixed size, scrollable

window, can be shown or hidden with double click actions applied to the function name element in the

source code line.

The container second from the top in the function name element representation includes visual

representations of each actual parameter, with augmented indicators for the display of security-relevant

properties. Finally, the vertically lowest element in the three container method name representation

displays the method name, implemented to receive double click events for toggle of visibility of any

locally available definition.

Within the second container, dedicated to parameter representation, the visualization of parity is

implemented as color difference within the parameter that is concluded via analysis to most probably

contain a specifier pattern that imposes parity in the call. Structural interaction between parameters is

indicated with common indexing symbols, square brackets placed around the parameter used to index

with the proposed sequence that is indexed to the left of the brackets.

Given that conventional software development, for various practical reasons previously mentioned, relies

on a set of competing source code language representations, a lack of an objective, property-focused

representation forces the initial analysis of language-based elements in order to reveal meaningful

property-based effects as part of the development display. As discussed, the argued compromise between

support for modern programming languages and efforts to generalize secure development requires that

JPSCE preserve the target language string content, yet change the granularity and layout of code elements

to support property-based representation.

As a demonstration of the feasibility of a property-based mode of source code development, JPSCE

implements features that expose information flow and security-relevant aspects of source code interface

constructs. Information flow is exposed in the characteristic flow of data from data sources (e.g. Java

reference variables) in source code, and can be revealed on demand by user action upon a particular code

element that is a potential information flow source. Information flow is currently implemented within the

scope of code blocks, which indirectly reflects information flow interactions between data sources

entering the method and data storage locations processed within the method body.

In line with the goals of the presented theory and model of software in this work, JPSCE does not attempt

security scanning of existing source code, a task implemented by numerous tools referenced, but instead

implements a novel representation of the software system in development that is representative of key

properties that influence its security, and augments the representation with information that manifests

such properties in a way that enables informed, holistic development with improved security properties.

While the property-based representation demonstrated here enables a baseline of increased attention and

awareness of security-relevant factors, the large landscape of existing programming language

environments that are used to express today’s software systems must be acknowledged. Further, in the

short term, the coalescence of programming languages toward a unified, domain independent option is not

realistic. Thus, this demonstration does not discard information locked to programming language

constructs and labels, preserving it within the flexible, element-based representation, though the

expendability of unique language details is a worthy matter for future discussion.

JPSCE embodies the model and focus of a property-based view of software in development,

demonstrating the capability to expose entirely general information that nevertheless allows informed

15

Jenkins: Toward Remaking Software Development to Secure It

Published by AIS Electronic Library (AISeL), 2022

development, revealing key interactions that act as ’pathways’ to security vulnerabilities, independent of

particular variations of attack that appear in concrete code patterns.

CONCLUSION

In this work, a novel model for the representation of software systems under construction has been

presented, and beyond that an evaluation of the model for the support of secure software development. A

software system in development has been revealed to be amenable to representation as a sequence of

implied information flows, acting through the composition of security requirements and expression of

particular properties.

A practical demonstration of the fundamental capabilities enabled by the proposed representation and

augmented development view has been presented. This development prototype demonstrates the

feasibility of the application of the novel representation toward property-based development supported by

awareness of properties which underlie all software systems. Such a property-based development process

reveals the power of key security properties, information flow as a representative, well-understood

example, to uniquely expose information that indicates the possibility of security vulnerabilities.

The composition of software based action with data, and the properties that are expressed at the call

interfaces that direct such composition, have been revealed as key points at which to intervene during

development to mitigate the introduction of vulnerabilities, if the full scope of relevant information is

provided to the developer.

Left to future work are considerations of the expansion of the augmented development process to other

programming environments, and the exploration of additional properties that may have more to offer a new

standard of assisted, secure software development. The detection and manifestation of implicit information

flows are another avenue for future exploration.

REFERENCES

1. Aleph1. (1996) Smashing the stack for fun and profit. Phrack 7, 49

https://phrack.org/issues/49/14.html.

2. Bragdon, A., Reiss, S., Zeleznik, R., Karamuri S. , Cheung, W., Kaplan, J. , Coleman,C.,

Adeputra,F. and Laviola, J. J. (2010) Code bubbles: Rethinking the user interface paradigm of

integrated development environments. In Proceedings of the 32nd International Conference on

Software Engineering, 455-464, doi: 10.1145/1806799.1806866

3. Bishop, M. and Orvis, B.J. (2006) A clinic to teach good programming practices. In Proceedings

from the tenth colloquium on information systems security education, 6, 168–174

4. Boehm, B. (1991) Software Risk Management: Principles and Practices. IEEE Software, 8, 1, 32-

41, doi:10.1109/52.62930

5. Denning, D. E. (1976) A lattice model of secure information flow, Communications of the ACM,

19, 5, 236-243. https://doi.org/10.1145/360051.360056

6. GCC (2010) Options that control static analysis. https://gcc.gnu.org/onlinedocs/gcc/Static-

Analyzer-Options.html

7. Red Hat Inc. (2020) Secure coding. https://developers.redhat.com/topics/secure-coding

16

The Journal of the Southern Association for Information Systems, Vol. 9 [2022], Iss. 1, Art. 2

https://aisel.aisnet.org/jsais/vol9/iss1/2
DOI: doi:10.17705/3JSIS.00020

8. Jamil A., ben Othmane, L., Valani, A., AbdelKhalek, M., and Tek, A.. (2020) The current

practices of changing secure software: An empirical study. In Proceedings of the 35th Annual

ACM Symposium on Applied Computing, 1566-1575, doi: 10.1145/3341105.3373922.

9. MicroFocus (2020) Fortify static code analyzer. https://www.microfocus.com/en-

us/products/static-code-analysis-sast/overview

10. NIST (2020) Source code security analyzers - samate

https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html.

11. Oracle (2020) Secure coding guidelines for Java SE,

https://oracle.com/java/technologies/javase/seccodeguide.html

12. OWASP (2020) Format string software attack. https://owasp.org/www-

community/attacks/Format_string_attack

13. Open Web Application Security Project (2020) Owasp secure coding practices-quick reference

guide. https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/migrated

content

14. OWASP Project (2020) Owasp top 10. https://www.owasp.org/www-project-top-ten

15. PwC (2020) Global economic crime and fraud survey 2020.

http://www.pwc.com/gx/en/services/forensics/economic-crime-survey.html.

16. Sommerville, I. (2016) Software Engineering, 10, Pearson, Hoboken

17. Scanlon, T. (2018) 10 Types of Application Security Testing Tools: When and How to Use

Them. https://insights.sei.cmu.edu/sei blog/2018/07/10-types-of-application-security-testing-

tools-when-and-how-to-use-them.html

18. Scut/Team Teso. (2001) Exploiting format string vulnerabilities.

https://crypto.stanford.edu/cs155old/cs155-spring08/papers/formatstring-1.2.pdf

19. Stefanović, D., Nikolić, D., Dakic, D., Spasojević, I. and Ristic, S. (2020) Static Code Analysis

Tools: A Systematic Literature Review. Proceedings of the 31st DAAAM International

Symposium. Published by DAAAM International, ISBN 978-3-902734-xx-x, ISSN 1726-9679,

Vienna, 10.2507/31st.daaam.proceedings.078.

20. Thomas, T.W., Tabassum, M., Chu, B., and Lipford, H.. (2018) Security during application

development: An application security expert perspective. In Proceedings of the 2018 CHI

Conference on Human Factors in Computing Systems, 4, 1-12. doi:10.1145/3173754.3173836.

21. Veracode (2020) Application analysis. https://www.veracode.com/products/application-analysis.

22. Veracode (2021) State of Software Security v11. https://info.veracode.com/report-state-of-

software-security-volume-11.html

23. Wichers, D., itamarlavender, will obrien, Eitan Worcel, Prabhu Subramanian, kingthorin, coad-

aflorin, hblankenship, GovorovViva64, pfhorman, GouveaHeitor, Clint Gibler, DSotnikov,

Abraham, A., and Rathaus, N. (2020) Source code analysis tools https://owasp.org/www-

community/Source_Code_Analysis_Tools.

24. Xie, J., Chu, B. and Lipford, H.R. (2011) Idea: Interactive support for secure software

development. In Proceedings of the Third international conference on Engineering secure

software and systems, ESSoS’11, 6542, 02, 248-255, doi: 10.1007/978-3-642-19125-1 19

25. Zhu, J., Xie, J., Lipford, H.R. and Chu B. (2014) Supporting secure programming in web

applications through interactive static analysis, Journal of Advanced Research, 5, 4, 449-462,

ISSN 2090-1232, https://doi.org/10.1016/j.jare.2013.11.006

17

Jenkins: Toward Remaking Software Development to Secure It

Published by AIS Electronic Library (AISeL), 2022

https://oracle.com/java/technologies/javase/seccodeguide.html
https://info.veracode.com/report-state-of-software-security-volume-11.html
https://info.veracode.com/report-state-of-software-security-volume-11.html
https://doi.org/10.1016/j.jare.2013.11.006

Appendix

FIGURES

Figure 1: JPSCE User Interface

Figure 2: Information Flow Indicators

18

The Journal of the Southern Association for Information Systems, Vol. 9 [2022], Iss. 1, Art. 2

https://aisel.aisnet.org/jsais/vol9/iss1/2
DOI: doi:10.17705/3JSIS.00020

Figure 3: Function Call Parameter Parity Visualization

Figure 4: Function Call Parameter Structural Interaction Indicator

Figure 5: Toggled Visibility of Available Definition for Called Function

19

Jenkins: Toward Remaking Software Development to Secure It

Published by AIS Electronic Library (AISeL), 2022

Sample Java Input File

import java.util.Scanner ;

//comment

import java.io.File ;

public class input{

private static String key ;

private static String imgfn ;

public static void f (int a , int b) {

int c = a ;

b = c ;

}

public static void f2 (int ... a) {

int c = a [0] ;

int b = c ;

int d = 2 ;

int e = b ;

int j = c ;

}

public static void f3 (int [] e , int g) {

int c = e [g] ;

}

public static void f4 (int a , int b) {

a = b ;

}

20

The Journal of the Southern Association for Information Systems, Vol. 9 [2022], Iss. 1, Art. 2

https://aisel.aisnet.org/jsais/vol9/iss1/2
DOI: doi:10.17705/3JSIS.00020

public static void f5 (String fmt , int ... a) {

;

}

 /**

 * The main method is only needed for the IDE with limited

 * JavaFX support. Not needed for running from the command line.

 */

public static void main (String [] args) {

 //read in a key password

int x = 2 , y = 3 ;

int [] z = new int [4] ;

f2 (x , y) ;

f3 (z , y) ;

f4 (x , y) ;

//System.out.printf("%d %d", 2,4);

f5 ("%d%d" , 2 , 4) ;

Scanner s = new Scanner (System.in) ;

Scanner s2 = s ;

System.out.println("Enter an image file name on a line") ;

imgfn = s.nextLine () ;

}

}

21

Jenkins: Toward Remaking Software Development to Secure It

Published by AIS Electronic Library (AISeL), 2022

	Toward Remaking Software Development to Secure It
	Recommended Citation

	Toward Remaking Software Development to Secure It
	Cover Page Footnote

	Ref_Table0_caption_only
	Ref_Table2_caption_only
	Ref_Table1_full
	Ref_Table2_caption_only1

