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Abstract 

Information dashboards are a critical capability in contemporary business intelligence and analytics 

systems. Despite their strong potential to support better decision-making, the massive amount of 

information they provide challenges users performing data exploration tasks. Accordingly, dashboard 

users face difficulties in managing their limited attentional resources when processing the presented 

information on dashboards. Also, studies have shown that the amount of concentrated time humans can 

spend on a task has dramatically decreased in recent years; thus, there is a need for designing user 

interfaces that support users’ attention management. In this design science research project, we propose 

attentive information dashboards that provide individualized visual attention feedback (VAF) as an 

innovative artifact to solve this problem. We articulate theoretically grounded design principles and 

instantiate a software artifact leveraging users’ eye movement data in real time to provide 

individualized VAF. We evaluated the instantiated artifact in a controlled lab experiment with 92 

participants. The results from analyzing users’ eye movement after receiving individualized VAF reveal 

that our proposed design has a positive effect on users’ attentional resource allocation, attention shift 

rate, and attentional resource management. We contribute a system architecture for attentive 

information dashboards that support data exploration and two theoretically grounded design principles 

that provide prescriptive knowledge on how to provide individualized VAF. Practitioners can leverage 

the prescriptive knowledge derived from our research to design innovative systems that support users’ 

information processing by managing their limited attentional resources. 

Keywords: Eye Tracking, Attentive User Interface, Design Science Research, Information 

Dashboards 

Sudha Ram was the accepting senior editor. This research article was submitted on December 16, 2019 and underwent 

two revisions. 

1 Introduction 

Already in 1971, Herbert Simon pointed out that “in an 

information-rich world, the wealth of information means 

a dearth of something else: a scarcity of whatever it is that 

information consumes … it consumes the attention of its 

recipients.” (Simon, 1971, pp. 40-41). Following this 

thinking, Goldhaber (1997) and Davenport and Beck 

(2001) articulated the concept of the “attention 

economy,” emphasizing that human attention should be 

treated as a scarce commodity in today’s information-rich 

world. According to the CEO of Microsoft, Satya 

Nadella, “we are moving from a world where computing 

power was scarce to a place where it now is almost 

limitless, and where the true scarce commodity is 

increasingly human attention” (Gausby, 2015, p. 4). 
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Studies have shown that users’ attention spans, i.e., the 

amount of concentrated time a person can spend on a task 

without becoming distracted, have massively decreased 

in recent years (Gausby, 2015; Statistics Brain, 2015). 

This means that users today allocate their attention to 

tasks for only short periods of time and shift their attention 

rather quickly. However, proper attention allocation plays 

an important role in information processing, as it enables 

individuals to focus on important information to pursue 

goals (Atkinson & Shiffrin, 1968; Wickens et al., 2016) 

and perform tasks (Bera et al., 2019; Orquin & Mueller 

Loose, 2013). Given this situation, supporting users in 

managing their limited attentional resources is one of the 

most pressing and difficult challenges in practice and 

research in our current information-rich world (Anderson 

et al., 2018; Bulling, 2016; Davern et al., 2012; Lerch & 

Harter, 2001).  

In the digital world, users’ attentional resource allocation 

is driven by stimulus features provided by user interfaces 

(UI) (Ahn et al., 2018; Lorigo et al., 2008; Nielsen, 

2006). Because attention is a limited resource 

(Broadbent, 1958; Chun et al., 2011; Kahneman, 1973), 

users cannot attend to all stimuli at the same time and 

need to select specific parts on the UI. UI designers are 

aware of this and are attempting to overcome this 

limitation and direct users’ attention to important items 

by integrating specific design elements (e.g., size, color, 

animation, etc.) regarding the users’ specific tasks 

(Cheung et al., 2017; Hong et al., 2004). However, some 

tasks may require a comprehensive overview of all 

information presented on the UI. For these tasks, users 

need to conduct several attention shifts to properly 

allocate their attention to all information rather than 

having their attention guided by specific design features. 

Users’ attention shift rate can differ according to task, 

characteristics, and UI design. Therefore, to process all 

information on a UI, users need to manage their 

attentional resource allocation by themselves.  

To support that, studies suggested several years ago 

that intelligent UIs, identified as attentive UI, should 

be designed to assist users in managing their 

attentional resources. Vertegaal (2003, p. 32) 

described attentive UIs as “computer interfaces that are 

sensitive to the user’s attention,” and that “measure 

and model the focus and priorities of attention … 

structuring communication such that the limited 

resource of attention is allocated optimally across the 

user’s tasks.” Recently, scholars from different 

disciplines have emphasized the increasing need for 

designing attentive UIs, especially when users are 

dealing with huge amounts of information (Anderson 

et al., 2018; Bailey & Konstan, 2006; Bulling, 2016; 

Roda, 2011; Roda & Thomas, 2006). 

 
1 In the remainder of the paper we use the terms “information 

dashboards” and “dashboards” synonymously. 

In the information-rich world, organizations collect 

and analyze data from various sources to assist users in 

making better decisions and bringing more value to the 

business (Günther et al., 2017). Collecting data, 

extracting insight, and creating value from data 

represent many complex activities included in 

companies’ attempts to advance users’ possibilities. 

One key activity is helping decision makers gain 

seamless access to information from different 

perspectives in the form of descriptive analytics (Delen 

& Ram, 2018). A well-known class of information 

systems (IS) that supports such data-driven decisions 

are business intelligence and analytics (BI&A) systems 

(Chen et al., 2012). Information dashboards are a 

prominent mechanism facilitating the interaction 

between decision-makers and BI&A systems 

(Behrisch et al., 2018; Pauwels et al., 2009; Preece et 

al., 2015; Yigitbasioglu & Velcu, 2012). Few (2006, p. 

34) has defined the information dashboard1 as “a visual 

display of the most important information needed to 

achieve one or more objectives that has been 

consolidated on a single computer screen so it can be 

monitored at a glance.”  

Dashboards are known as one of the most effective 

BI&A tools (Negash & Gray, 2008). They should be 

designed to present insights in a comprehensive way 

and be effective for decision makers (Bačić & Fadlalla, 

2016; Pauwels et al., 2009; Phillips-Wren et al., 2015; 

Yigitbasioglu & Velcu, 2012). Also, Gartner (2017) 

has emphasized that well-designed dashboards enable 

data exploration and support proper decision-making 

as a critical capability of BI&A systems. In data 

exploration tasks, the user browses the dashboard 

generally to get a comprehensive understanding of the 

visualized information. In this case, the user examines 

data without having prior understanding of what 

information it might contain (Baker et al., 2009; 

Vandenbosch & Huff, 1997). However, even with a 

well-designed dashboard, users find processing the 

compressed amount of visualized information 

challenging (Baskett et al., 2008; Figl & Laue, 2011; 

Haroz & Whitney, 2012; Healey & Enns, 2012; Sedig 

& Pasob, 2013). Many BI&A systems are not 

beneficial to organizations because of inadequate 

design and improper use of interaction technologies, 

including dashboards (Deng & Chi, 2012; Schwarz et 

al., 2014; Trieu, 2017). In fact, the main challenge of 

organizations is not to collect more information and 

derive insights but to use the information effectively 

(Lerch & Harter, 2001).  

In the first stage, users’ cognition plays an important 

role in making business decisions (Chen & Lee, 2003; 

Niu et al., 2013). However, humans have limited 

cognitive abilities that affect their performance, even 
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when working with dashboards (Davern et al., 2012; 

Lerch & Harter, 2001; Yigitbasioglu & Velcu, 2012). 

In particular, dashboards can potentially create 

difficulties for users managing their attentional 

resources. Attentional resources are allocated as a set 

of processes enabling and guiding the selection of 

incoming perceptual information (Eriksen & Yeh, 

1985). When exploring dashboards, users can only 

focus on a limited selection of information, thus 

missing other parts (Alberts, 2017; Dilla et al., 2010). 

Properly allocating attentional resources is necessary 

to analyze business insights when processing 

information dashboards (Lerch & Harter, 2001; Singh, 

1998). Therefore, advanced dashboards should support 

users in managing attentional resources. Existing 

research on BI&A systems is limited to their business 

significance, while their widespread use and role in 

providing solutions regarding corresponding users’ 

cognitive challenges when they work with BI&A 

systems continue to present a research gap (Browne & 

Parsons, 2012; Chen & Lee, 2003; Davern et al., 2012; 

Niu et al., 2013).  

In this study, we focus on designing attentive 

information dashboards that are sensitive to users’ 

attention and assist them in allocating their attention 

properly across the entire dashboard. Because users 

predominantly interact with dashboards through the 

visual channel, we propose designing a self-tracking 

feature based on how users visually explore 

dashboards. Research has long been interested in 

attention allocated through visual channels (i.e., visual 

attention) (Carrasco, 2011), especially regarding users’ 

eye movements as an approximation for measuring 

their visual attention (Kowler, 2011). Scholars in IS 

have also suggested using eye trackers to design 

innovative IS applications (Davis et al., 2014; Dimoka 

et al., 2012; Riedl & Léger, 2016; vom Brocke et al., 

2013). 

In the BI&A field, eye tracking technology has thus far 

been limited to use for diagnostic purposes (Kurzhals 

et al., 2016). However, researchers have called for 

integrating eye tracking technology in BI&A systems 

and designing innovative features that support decision 

makers as they use these systems, based on real-time 

eye movement data (Silva et al., 2019). Previous 

research has identified the need to provide feedback to 

proactively inform users of critical states (O’Donnell 

& David, 2000; Yigitbasioglu & Velcu, 2012). 

Providing such feedback positively contributes to 

employees’ performance (Chenoweth et al., 2004; 

Jung et al., 2010; Montazemi et al., 1996). In addition, 

previous studies in other disciplines highlight the 

positive impact of individualized visual attention 

feedback (VAF) as a self-tracking feature on 

information processing performance (Deza et al., 

2017; Qvarfordt et al., 2010; Sharma et al., 2016; van 

Gog et al., 2009). However, only a few studies have 

examined the potential of eye movement data for 

designing such feedback for IS (Lux et al., 2018) and, 

to the best of our knowledge, no studies have 

specifically focused on integrating it for dashboards. 

Therefore, to close this knowledge gap in IS research, 

our study addresses the following research question: 

RQ: How can attentive information dashboards that 

provide individualized visual attention feedback 

for data exploration tasks be designed to enhance 

users’ information processing? 

To answer this research question, we conducted a 

comprehensive design science research (DSR) project 

(Gregor & Hevner, 2013) focusing on designing 

innovative artifacts within three design cycles. In this 

paper, we specifically focus on the second design cycle 

of our DSR project and propose two theoretically 

grounded design principles for attentive information 

dashboards. We instantiate both design principles in an 

artifact and evaluate the proposed design in a large-

scale, rigorous lab experiment. Specifically, we 

analyze users’ eye movements during their first use of 

the dashboard, after having received individualized 

VAF (revisit phase), and at the end of the task. In the 

experiment, we compare users who received 

individualized VAF to users who received general 

VAF in the form of a simple text explanation about the 

importance of proper attentional resource allocation 

when exploring the dashboard. Our results show that, 

indeed, individualized VAF positively influences 

users’ attentional resource allocation and management, 

as well as their attention shift rate.  

Our findings contribute to the IS discipline by 

providing prescriptive knowledge in the form of 

theoretically grounded and evaluated design 

principles. Additionally, we contribute by designing 

and demonstrating attentive information dashboards 

for BI&A systems as an innovative artifact. From a 

practical point of view, we support dashboard 

designers in better understanding users’ challenges in 

managing their attention, and we assist them by 

designing an attentive information dashboard.  

This paper is structured as follows. Section 2 

summarizes the conceptual foundations and related 

work. Section 3 introduces the three design cycles of 

our larger DSR project and explains the second design 

cycle in more detail. In Section 4, we conceptualize our 

meta-requirements and design principles and describe 

the instantiation of the artifact. In Section 5, we derive 

the hypotheses and present the steps for evaluating the 

developed artifact and the experimental design. 

Section 6 presents the findings of the experiment, and 

Section 7 outlines our contributions, limitations, and 

avenues for future work.  
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2 Conceptual Foundations and 

Related Work 

In this chapter, we first present the conceptual 

foundations for this study, including attention as a 

key concept and human information processing 

theory. Subsequently, we present relevant work 

related to this study that focuses on attentive UI that 

track users’ eye movement in real time. Further, we 

discuss existing work on systems that provide 

individualized VAF to improve the performance of 

users while processing information. 

2.1 Conceptual Foundations 

2.1.1 Attention 

The Cambridge dictionary defines attention as “the act 

of directing the mind to listen, see, or understand.” 

Scholarly work, however, rarely offers a field-specific 

definition for the concept (Anderson et al., 2018) and 

considers it rather generally as selective processing of 

incoming sensory information (Driver, 2001), thus 

noting humans’ limited attention capacity (Chun et al., 

2011). Selective attention was initially introduced as a 

part of Broadbent’s filter theory (Broadbent, 1958), 

which argues that humans’ perceptual system starts to 

process information through a selective filter to avoid 

being overwhelmed by information overload. The 

limited capacity of attentional resources is not fixed 

but can vary based on different conditions such as task 

and user characteristics (Kahneman, 1973). For 

example, an easy task requires limited attention, while 

a difficult task demands more attentional resources. 

Further, users with different kinds of expertise can 

have different capacities. 

Attention has been differentiated as goal-directed vs. 

stimuli-driven, and as covert vs. overt (Desimone & 

Duncan, 1995). Goal-directed attention is steered 

voluntarily, whereas stimulus-driven attention is 

involuntary (Corbetta & Shulman, 2002). Scholars 

consider goal-directed attention as selective attention. 

In this case, users voluntarily and consciously select a 

stimulus to which they allocate their attention. In 

contrast, researchers refer to stimuli-driven attention 

when users unconsciously respond to external stimuli 

that capture their attention. Color, orientation, size, 

motion, depth, and the like, are known as guiding 

representations that involuntarily direct users’ 

attention to salient objects (Treisman & Gelade, 1980; 

Wolfe & Horowitz, 2004).  

Further, Posner (1980) distinguished overt and covert 

attention as two additional categories. Overt attention 

is an extrinsic form of behavior that aids humans in 

monitoring the environment as well as guiding users’ 

head turning and eye movements toward an object 

(Carrasco, 2011). Overt attention can be measured 

using eye tracking devices (Kowler, 2011). The eye-

mind assumption (Just and Carpenter, 1980) explains 

the relationship between patterns of eye movement and 

their underlying cognitive processes. This assumption 

determines that users’ current fixation dedicates their 

overt attention. Both goal-directed and stimuli-driven 

attention control users’ eye movements and therefore 

overt attention during decision-making (Orquin & 

Mueller Loose, 2013). In contrast, covert attention is 

an inward activity in which the brain attends to an 

object without any extrinsic behavior. This attention 

type influences brain signals, typically measured by 

leveraging neuroscience tools such as electro-

encephalograms (EEG) and functional magnetic 

resonance imaging (fMRI) (Chun et al., 2011; Dimoka 

et al., 2012). 

2.1.2 Human Information Processing Theory 

The human mind is an information processing system 

(Card, 1983). Human information processing theory 

describes how individuals encode information, capture 

it in their memory, and retrieve it when needed. In this 

study, we refer to Wickens et al.’s (2016) adapted 

version of the human information processing stages. 

The adapted version enables a better understanding of 

users’ information processing when they interact with 

dashboards and distinguishes different components 

that affect their perception. Figure 1 depicts key 

elements of the human information processing theory 

used in this study and the relationship between them. 

The first important component is the attention 

resource connected to sensory processing, perception, 

and memory processes. Generally, for information 

processing, allocating limited attention is considered in 

two different steps (Healey & Enns, 2012): First, pre-

attentive processing relies on methods for drawing 

users’ stimulus-driven attention. In this step, users 

encode a stimulus for a short time based on the 

elements that attract their attention, and they perceive 

the information through their sensory organs (e.g., eye, 

ear, etc.). Second, post-attentive processing focuses on 

goal-directed attention, processing the perceived 

information in detail.  

The second important component is memory. 

Atkinson and Shiffrin (1968) introduced the 

multistore model of memory to explain the 

relationship between three types of memory: (1) 

sensory memory stores raw information that the brain 

receives from the sense organ (e.g., color, shape, etc. 

of the objects) and keeps for few seconds; (2) 

working memory stores information temporarily and 

affects higher-order cognitive functions (Baddeley 

and Hitch, 1974); and (3) long-term memory stores 

information for a long time by rehearsing the 

information from the working memory.  
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Figure 1. Human Information Processing Stages (adapted from Wickens et al., 2016) 

 

Users encode and transfer information to the working 

memory by allocating their attention to the information 

collected in the sensory memory. Working memory 

plays an important role in complex cognitive behaviors 

such as comprehension, reasoning, and problem-

solving (Engle, 2002). However, working memory 

capacity is a limited resource and is known as one 

important difference between individuals (Baddeley, 

1992). Researchers have defined it as an important 

individual characteristic that people rely on when 

working with visualized information (Borkin et al., 

2016; Haroz & Whitney, 2012; Healey & Enns, 2012; 

Toker et al., 2013). Miller (1956) has shown that 

humans can store seven (plus or minus two) 

information chunks. Moreover, he found that users can 

store more information if they receive it as chunked 

information. Users’ working memory capacity is 

important because it can predict their control of 

attentional resources (Engle et al., 1999; Kane et al., 

2001; Kane & Engle, 2003). In addition, users with 

high and low capacities have different abilities to 

control their attentional resources, which impacts their 

task performance. 

The third component is perception, the process of 

recognizing (being aware of), organizing (gathering 

and storing), and interpreting (binding to knowledge) 

information, e.g., as presented on dashboards (Ward et 

al., 2010). Information perception, for example on 

dashboards, subsequently supports users in making 

decisions based on this information (Ware, 2012).  

2.2 Related Work 

2.2.1 Eye Tracking and Information 

Dashboards 

Duchowski (2002) categorizes eye tracking 

applications into two classes: diagnostic and 

interactive. Diagnostic eye tracking applications use 

offline records of eye movement data for further 

evaluation. Interactive eye tracking applications use 

eye movement data in real-time and enable eye-based 

interactions for their users. In the IS discipline, eye 

trackers are mainly used for diagnostic purposes (Riedl 

et al., 2017; Vasseur et al., 2019), and Dimoka et al. 

(2012), for example, emphasized eye tracking devices 

as important tools for understanding users’ visual 

behavior. Existing dashboard studies have utilized eye 

trackers to evaluate certain design features (e.g., 

presentation formats, colors, size, etc.) by analyzing 

offline records of eye movement data (Bera, 2014, 

2016; Burch et al., 2011; Nadj et al., 2020). Other 

studies have investigated decision makers’ visual 

analytics strategies to determine the relationship 

between the accuracy, speed, and consistency of 

decisions (Cöltekin et al., 2010; Vila & Gomez, 2016) 

and users’ cognitive effort when working with 

visualized information (Fehrenbacher & Djamasbi, 

2017; Smerecnik et al., 2010). Further, researchers 

have used eye movement data to examine the 

relationship between user characteristics and 

visualized information such as perceptual speed and 
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visual and verbal working memory (Okan et al., 2016; 

Toker et al., 2013). However, only a few studies have 

utilized eye movement data in real time, e.g., for fovea-

based filtering (Okoe et al., 2014), and there is a need 

for further research on this topic (Silva et al., 2019). 

Additionally, Majaranta and Bulling (2014) 

emphasized the attentive capability of eye tracking 

applications considered to be attentive UI. Attentive 

UIs are computer interfaces that are sensitive to users’ 

attention and structure communication by allocating 

limited attention optimally across users’ tasks 

(Vertegaal, 2003). Research on attentive UIs arose 

from the idea that users are increasingly surrounded by 

huge amounts of information, while their attention is a 

limited resource (Anderson et al., 2018; Bulling, 

2016). Eye movement data represents the most popular 

data source for designing attentive UIs (Bulling, 2016; 

Henderson et al., 2013; Majaranta & Bulling, 2014). 

Researchers have developed attentive UIs in different 

fields, such as reading assistants in attentive 

documents (Buscher et al., 2012), attentive 

recommender systems (Xu et al., 2008), attentive 

tutoring systems (D’Mello et al., 2012), attentive UIs 

to support task resumption (Kern et al., 2010; 

Mariakakis et al., 2015), remote communications 

(D’Angelo & Gergle, 2018; Zhang et al., 2017), and 

attentive conversational agents (Ishii et al., 2013).  

Although IS scholars have suggested using use eye 

movement data to design innovative systems (Davis et 

al., 2014; Dimoka et al., 2012; Maglio et al., 2000; 

Riedl & Léger, 2016; vom Brocke et al., 2013), 

applying attentive UIs to increase users’ awareness by 

means of self-tracking features has not been 

investigated in the IS discipline thus far. One possible 

reason for this could be the difficulty that users have 

with these devices as built-in functions of the IT 

artifact (vom Brocke et al., 2013). However, more 

recently, eye tracking technology usage has increased 

considerably in different research areas, primarily 

because of the availability of cheaper, faster, more 

accurate, and easier to use eye trackers (Duchowski, 

2017). In this study, we attempt to close this research 

gap by using low-cost eye tracking devices for 

designing attentive information dashboards as a 

common UI used in BI&A systems. 

2.2.2 Visual Attention Feedback 

Providing users feedback during their interaction with 

a UI is one of the most basic and important usability 

principles (Nielsen, 1993). Preece et. al (2015, p. 26) 

defined feedback as “sending back information about 

what action has been done and what has been 

accomplished while allowing the person to continue 

with the activity.” Various feedback types are available 

to assist users in accomplishing their tasks in digital 

environments; for example, cognitive feedback 

presents information about users’ cognitive strategies 

(Lim et al., 2005; Nah & Benbasat, 2004). Prior studies 

have shown that cognitive feedback influences 

successful task accomplishment (Balzer et al., 1989; 

Nah & Benbasat, 2004; Sengupta & Te’eni, 1993).  

Previous research in different disciplines has shown 

that using eye trackers to provide users with feedback 

about their attentional resource allocation can support 

them in improving their performance. For example, 

Sharma et al. (2016) showed that their gaze-aware 

feedback tool significantly improves students’ 

attentional resource allocation and learning gains. 

D’Mello et al. (2012) found that informing students 

about their information processing behavior supports 

reorienting their attentional patterns and promotes 

learning, motivation, and engagement. Sarter (2000) 

showed the need for giving feedback about effective 

attentional resource allocation to support users in 

managing their limited attention when working with 

highly complex information-rich environments. Deza 

et al. (2017) demonstrated the benefit of using eye 

trackers to improve users’ performance in visual 

search tasks because the huge amount of data makes 

operators susceptible to information overload and 

attentional resource allocation inefficiencies. 

Qvarfordt et al. (2010) and Sridharan et al. (2012) 

investigated the use of eye movement data as a form of 

feedback to improve the inspection method in various 

applications such as radiology and imaginary analysis.  

Summing up existing research, we identified a lack of 

design knowledge describing how to provide feedback 

on users’ attentional resource allocation in order to 

improve their information processing performance in 

general. This is specifically relevant when users are 

exploring dense information on UIs, such as 

dashboards. Moreover, Lux et al.’s (2018) literature 

review of real-time feedback applications based on 

neuroscience tools in IS revealed that there is an IS 

research gap regarding the use of eye trackers for 

designing cognitive feedback. This study closes the 

identified research gap by contributing design 

knowledge on how to provide users with 

individualized feedback on their visual attention 

allocation when interacting with dashboards based on 

real-time eye movement data. 

3 Design Science Research Project 

This study is part of a larger DSR project that delivers 

an innovative solution (attentive information 

dashboards) for a real-world problem (managing 

users’ limited attentional resources) (Gregor & 

Hevner, 2013). Specifically, we address the lack of 

design knowledge on how to utilize users’ eye 

movement data in real time to provide feedback on 

attentional resource allocation. We adapted the 

approach from Kuechler and Vaishnavi (2012) and 

divided the entire DSR project into three consecutive 

design cycles (see Figure 2). 
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Figure 2. Design Cycles of the Research Project 

 

The work presented in this paper focuses on the second 

design cycle. In the following sections, we briefly 

outline the overall DSR project to provide further 

background and to illustrate our overall research goal.  

We started the first design cycle with an exploratory 

literature review on the use of eye tracking in the 

context of information visualization and dashboards. 

The findings highlight that previous research has used 

eye tracking devices mostly for diagnostic purposes by 

accessing offline records of users’ eye movement data. 

Further, previous studies have mainly focused on the 

role of limited attention and working memory for users 

exploring single charts (e.g., Borkin et al., 2013; 

Healey & Enns, 2012; Somervell, McCrickard, North, 

& Shukla, 2002) rather than several charts located on 

one screen in the form of a dashboard. To analyze 

business insights, exploring dashboards and properly 

allocating attentional resources (Lerch & Harter, 2001; 

Singh, 1998) is important. Cognitive limitations and 

related errors are underresearched topics in the IS field, 

which explains the general need for more research on 

these topics (Browne & Parsons, 2012). Also, only a 

few researchers have examined BI&A systems and 

users’ cognitive limitations when using these systems 

(Davern et al., 2012; Niu et al., 2013). Particularly, 

researchers have emphasized the need to study 

individual cognitive limitations with respect to the 

effectiveness of information dashboards (Pauwels et 

al., 2009; Yigitbasioglu & Velcu, 2012). Therefore, we 

conducted a pilot experimental study using eye 

tracking devices to investigate potential attention 

challenges and the role of users’ working memory 

capacity when interacting with dashboards (Toreini & 

Langner, 2019). We found that users tend to be biased 

toward charts located on the left side of the screen. Our 

findings are in sync with previous studies that have 

investigated users’ visual behavior on other 

information-rich UIs (Ahn et al., 2018; Lorigo et al., 

2008; Nielsen, 2006). Also, we found that users repeat 

their behavior if they receive the same dashboard for a 

second time, independent of whether they have a low 

or high working memory capacity, and then do not 

allocate their attentional resources properly.  

These findings support our conclusion that users 

require feedback in the form of individualized VAF. 

We thus focus on users’ goal-driven attention because 

we would like to support them in managing the 

attentional resources they voluntarily allocate to 

certain dashboard elements during data exploration 

tasks (Corbetta & Shulman, 2002). In addition, we 

focus on users’ overt attention in this project because 

we can measure that with eye tracking devices 
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(Duchowski, 2017; Kowler, 2011) and can link users’ 

cognitive processes to their eye movements (Carrasco, 

2011; Hayhoe & Ballard, 2005; Just & Carpenter, 

1980; Kowler, 2011; Liversedge & Findlay, 2000; 

Rayner, 1998). Summing up, we identified our initial 

meta-requirement for dashboards that consider users’ 

limited attention and working memory when 

performing data exploration tasks (Toreini & Langner, 

2019; Toreini & Morana, 2017): The dashboard should 

support users in managing their attention by providing 

individualized VAF while they are exploring data.  

Subsequently, we developed two approaches for 

providing VAF that operate based on eye movement 

data grounded in research on attention and self-tracking 

feedback. We compared their effectiveness with respect 

to users’ information processing during data exploration 

tasks (Toreini et al., 2020). One of these approaches 

provides general VAF, including offline eye movement 

data from previous users who performed the same task. 

The other approach uses real-time eye movement data 

of users to provide individualized VAF. After 

developing both approaches, we designed and executed 

an eye tracking pilot study to investigate the 

effectiveness of each approach. The first participant 

group used general VAF by providing an example of 

proper attention allocation integrating offline records of 

eye movement data from other users who had performed 

the same task on the same dashboard. The second group 

also received the offline records of eye movement data 

from other users, but with improper attention allocation. 

The third group received individualized VAF that 

represented their actual attention allocation as 

individualized VAF. Later, we compared the effects of 

general and individualized VAF. The findings reveal 

that, compared to general VAF types, individualized 

VAF has positive effects on information processing. 

In the second design cycle, on which this paper 

focuses, we investigated the individualized VAF’s 

influence in more detail. First, we refined the 

theoretical grounding for designing the individualized 

VAF and the corresponding design principles. Second, 

we instantiated an improved version of the attentive 

information dashboard including the individualized 

VAF as our artifact. Third, we conducted a large-scale, 

controlled laboratory experiment to assess the 

effectiveness of our design principles by providing 

individualized VAF on users’ information processing 

performance using eye tracking technology.  

In the third design cycle, we investigated the 

consequences of providing individualized VAF in a 

multitasking scenario. Previous research identified the 

need to provide attention management systems for 

multitasking environments (Anderson et al., 2018). We 

assume that individualized VAF can support users if 

they frequently need to shift their attention from 

monitoring dashboards (primary task) to other tasks, 

such as answering emails (secondary task), and back to 

the monitoring task. Such feedback works as a memory 

aid for users to remember their previous attentional 

resource allocation and supports them in resuming the 

primary task properly instead of starting again from 

scratch. For this cycle, we evaluate different gaze 

visualization for individualized VAF and identify the 

appropriate task resumption support for dashboards 

(Toreini et al., 2018a, 2018b).  

4 Conceptual and Instantiation of 

Individualized Visual Attention 

Feedback for Attentive 

Information Dashboards 

4.1 Meta-Requirements and Design 

Principles 

In the first design cycle, we identified the need to 

support users in managing their attention by providing 

feedback when they are exploring data on dashboards. 

Additionally, we found preliminary evidence for the 

effectiveness of individualized VAF based on real-

time eye movement data in contrast to general VAF 

based on offline eye movement data. In the second 

design cycle, we investigated the influence of 

individualized VAF in more detail. Thus, we refined 

the theoretical grounding for designing attentive 

information dashboards and individualized VAF, 

which we describe in the following paragraphs (see 

Table 1 for the summary). 

Based on our initial meta-requirement, we specifically 

demanded that the system should monitor users’ 

attentional resource allocation in real time (MR1). 

According to the eye-mind assumption (Just & 

Carpenter, 1980) users’ eye movement data can be 

used as an approximation of their overt attention 

(Kowler, 2011). Eye trackers are capable of collecting 

eye movement data in real time, and these data can be 

utilized to design attentive UIs (Bulling, 2016; Bulling 

et al., 2011; Henderson et al., 2013; Majaranta & 

Bulling, 2014; Roda & Thomas, 2006; Vertegaal, 

2003). Tracking users’ eye movement data in real time 

provides the opportunity to design innovative IS 

applications (F. D. Davis et al., 2014; Riedl & Léger, 

2016; vom Brocke et al., 2013). Thus, we articulated 

the second meta-requirement of estimating users’ 

attentional resource allocation based on their eye 

movement data (MR2). These two meta-requirements 

lay the foundation for the first design principle (DP) 

we propose: 

DP1: Provide the system with the capability of 

computing users’ attentional resource allocation 

based on monitoring their eye movement with an 

eye tracking device in real time while they are 

performing data exploration tasks using the 

information dashboard. 
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Table 1. Meta-Requirements and Design Principles 

Design cycle one Design cycle two 

Initial meta requirement  Refined meta requirements Design principles 

Initial MR: The information 

dashboard should support 

users in managing their 

attention by providing VAF 

when they are exploring data. 

MR1: Monitor users’ attentional resource 

allocation in real time. 

DP1: Provide the system with the capability of 

computing users’ attentional resource allocation 

based on monitoring their eye movement with an eye 

tracking device in real time while they are performing 

data exploration tasks using the information 

dashboard. 

MR2: Estimate users’ attentional resource 

allocation based on eye movement data 

recorded with eye trackers. 

MR3: Provide feedback on users’ 

attentional resource allocation to enable 

self-awareness. 

DP2: Provide the system with the capability to 

provide individualized visual attention feedback 

based on users’ computed attentional resource 

allocation when they are performing data exploration 

tasks using the information dashboard. MR4: Provide individualized, precise, and 

nonsuggestive VAF via the information 

dashboard. 

Being able to monitor users’ eye movements when 

they are exploring dashboards is a prerequisite to 

assisting users in improving their attentional resource 

allocation. Providing feedback that informs users 

about their previous behavior is expected to increase 

their self-awareness and to support them in improving 

their information processing performance. Previous 

research has shown that tracking users with different 

devices and providing real-time feedback can 

influence their behavior (Hibbeln et al., 2017; Jung et 

al., 2010). In particular, the studies found evidence that 

providing feedback supports users in allocating their 

limited attentional resources more appropriately, and 

ultimately improves their task performance when 

working with UIs that contain massive amounts of 

information (D’Mello et al., 2012; Deza et al., 2017; 

Göbel & Kiefer, 2019; Qvarfordt et al., 2010; Sharma 

et al., 2016; Sridharan et al., 2012; van Gog et al., 

2009). Therefore, as the third meta-requirement 

(MR3), we expect attentive information dashboards to 

provide users with VAF at the end of the task, to 

increase their self-awareness and thereby enable them 

to improve their information processing performance. 

VAF enables users to recognize their current 

attentional resource allocation and potentially adjust 

it. The provided VAF should enable users to improve 

information processing when exploring the presented 

information. Therefore, the VAF needs to be 

individualized and precise. Individualized VAF 

should increase users’ self-awareness about goal-

directed attention by presenting their eye movement 

patterns to them. We presume that such feedback will 

support users in identifying their attentional failures, 

such as having missed important information on the 

dashboard. Therefore, as the fourth meta-requirement 

(MR4), we propose that individualized precise, and 

nonsuggestive VAF is needed. The proposed third 

and fourth meta-requirements inform our second 

design principle: 

DP2: Provide the system with the capability to provide 

individualized visual attention feedback based on 

users’ computed attentional resource allocation 

when they are performing data exploration tasks 

using the information dashboard. 

4.2 Instantiation of the Design 

To map the proposed design principles to concrete 

design features, we propose the system architecture 

depicted in Figure 3. The system architecture 

comprises three important subsystems. First, the 

information dashboard subsystem connects with the 

BI&A system and presents information to users. 

Typically, the layout of dashboards comprises visual 

features (e.g., charts, tables, etc.) and interaction 

features (e.g., drill down, zoom, etc.), depending on 

the intended purpose of the dashboard (e.g., 

planning, monitoring, communication, etc.) and on 

the different characteristics of the dashboard users 

(e.g., levels of knowledge, personality, etc.) 

(Yigitbasioglu & Velcu, 2012).  

Second, the eye tracking subsystem establishes a 

connection to the eye tracking device and provides the 

functionality to track and store the users’ eye 

movement data to extract the attentional states of users. 

Previous studies have used different procedures in 

extracting users’ cognitive states and their attentional 

status from their gaze data (Duchowski, 2017; Kowler, 

2011). This subsystem provides the capability to 

extract users’ attentional states in real time from the 

collected gaze data. 
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Figure 3. System Architecture of the Proposed Attentive Information Dashboard 

 

Third, the attention-aware subsystem focuses on 

matching users’ attentional states with the dashboard 

layout and provides individualized VAF. In this 

subsystem, the attention analyzer component uses 

information from the eye tracking subsystem (i.e., the eye 

movement data) in combination with information on the 

dashboard’s layout (e.g., the position of important 

elements) and users’ interaction with the dashboard to 

derive their attentional spotlight. Hence, the dashboard 

becomes sensitive to the user’s attention by tracking 

which information on the dashboard is processed by the 

user, and for how long. 

The first design principle maps onto the foundational 

attentive information dashboard capability of computing 

users’ attentional resource allocation based on monitoring 

users’ eye movements with an eye tracking device. The 

second design principle specifically maps onto the 

individualized VAF capability building on the feedback 

generator component. The specific individualized VAF 

design can vary, based on the feedback purpose and the 

specific characteristics and requirements of the task users 

perform. We describe the actual implementation of the 

individualized VAF this study uses, in the experimental 

software and apparatus section (see Section 5.2.2). 

5 Laboratory Experiment 

To evaluate the effects of the two proposed design 

principles, we instantiated the design in a running 

software artifact and conducted a controlled laboratory 

experiment. In the following sections, we outline the 

underlying hypotheses investigated in the experiment 

and describe the experiment’s methodology. 

5.1 Hypotheses Derivation for 

Laboratory Experiment 

To assess the proposed design, we outline 

hypotheses on the proposed effects that existing 

research justifies. Before deriving the hypotheses, 

we need to consider the interdependencies of both 

design principles. The second design principle 

(provision of individualized VAF) builds on the first 

design principle (monitoring users’ eye movement 

data), thus a distinct evaluation of each design 

principle is technically not possible. We therefore 

decided to assess our design by instantiating both 

design principles (referred to as the individualized 

VAF group) and then compare it to a baseline 
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system that instantiates no design principle but 

provides general feedback (referred to as the general 

VAF group). 

Our study is undertaken in the context of supporting 

users in data exploration tasks on dashboards, done in 

three phases: (1) first visit phase, (2) revisit phase, and 

(3) end of the task. The differentiation in these phases is 

important because individualized VAF requires eye 

movement data, thus users need first to interact with the 

dashboard (i.e., in the first visit phase) before the actual 

feedback can be provided. The provided feedback will 

then affect users’ attentional resource allocation in the 

revisit phase. We argue that users need to remember 

their attentional resource allocation during the first visit 

on the dashboard in order to be able to allocate an 

appropriate level of attentional resources in the revisit 

phase. Previous research has shown that users find it 

difficult to remember their previous attentional resource 

allocation and typically repeat their visual behavior in 

the revisit phases (Cane et al., 2012; Monk et al., 2008; 

Singh, 1998). Therefore, we argue that users with 

general VAF (i.e., without the support our design 

provides) will be challenged in finding an appropriate 

revisit strategy in comparison to users who receive 

individualized VAF (i.e., with the support our design 

provides). Previous research has shown that providing 

individualized VAF guides users toward recognizing 

high and low-visited parts of the UI (Göbel & Kiefer, 

2019; Qvarfordt et al., 2010) and enables them 

subsequently to optimize their behavior. Summing up, 

we propose our first hypothesis as follows:  

H1: Providing individualized VAF results in better 

attentional resource allocation performance in the 

revisit phase compared to providing generic VAF. 

Further, receiving individualized VAF will enable users 

to derive a proper strategy for the revisit phase. 

Accordingly, users can purposefully turn their attention 

to specific elements on the dashboard (i.e., elements 

previously less attended to), rather than randomly 

switching between different dashboard elements (again) 

because they lack a proper strategy for the revisit phase. 

Researchers have demonstrated that providing VAF 

increases the user’s focus while they are conducting 

tasks (D’Mello et al., 2012). Consequently, users who 

received individualized VAF require less attention shifts 

in the revisit phase compared to users who did not 

receive it. Summing up, we propose our second 

hypothesis as follows: 

H2: Providing individualized VAF results in a lower 

attention shift rate in the revisit phase compared 

to providing generic VAF. 

Previous research has found that the position of the 

stimulus in the UI affects how users allocate their 

attention to the stimulus (Lorigo et al., 2008; Nielsen, 

2006; Soegaard, 2020). Previous studies have shown 

that users process information similar to the F pattern. 

In fact, users start from the left side of the UI and then, 

reading from left to right, allocate less attention to the 

information given on the right. An eye tracking study 

on dashboards by Tableau (Alberts, 2017) has shown 

that users typically focus their attention on specific 

areas and thereby potentially miss other parts of the 

dashboard. Also, the results from the first design cycle 

in this DSR project revealed that users typically 

analyze the charts on the left side of the dashboard 

more intensively than the other parts of the dashboard 

(Toreini & Langner, 2019). Therefore, we argue that 

providing individualized VAF can prevent users from 

focusing only on specific areas of a dashboard while 

neglecting others and can support them in better 

managing the distribution of their limited attentional 

resources. Summing up, we propose our third 

hypothesis:  

H3: Providing individualized VAF results in better 

attentional resource management at the end of the 

task compared to providing generic VAF. 

Figure 4 depicts the research model that we 

investigated in the laboratory experiment. 

5.2 Laboratory Experiment Methodology 

We assess our proposed design’s effect in a mixed 

model design with two groups (both design principles 

instantiated, providing individualized VAF x both 

design principles not instantiated, providing general 

VAF) as the between-subject manipulation, as well as 

the time of providing the feedback (before and after 

receiving VAF) as the within-subject manipulation. 

5.2.1 Participants 

In all, 92 university students (35 female, 57 male) with an 

average age of 23.45 (SD=3.39) participated in this 

experiment. We used student participants for the 

laboratory experiment, as doing so provides two key 

advantages. First, in contrast to employees in 

organizations, students are not specifically trained to 

work with dashboards and are not biased by contextual 

information. Therefore, like novice users, they likely have 

little or no prior knowledge of the underlying 

experiment’s process (i.e., the information processing 

task). Second, it is relatively easy to reach a large enough 

sample size of student participants to achieve adequate 

statistical power without unreasonable effort. 

Consequently, students are an adequate and 

representative sample for the experimental setup (Burton-

Jones & Meso, 2008). 

Each student received 10 euros as a financial incentive to 

participate in and complete the experiment. We recruited 

a total of 107 participants from an experiment pool and 

randomly assigned them to the two experimental groups. 

Eventually, we removed 15 participants from the sample 

because of the following three reasons.  
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Figure 4. Research Model to Investigate the Effect of Design Principles 1 and 2 

 

First, we removed 12 participants because their recorded 

eye movement data covered less than 75% of the overall 

experimental time (basically less than 90 seconds in the 

first visit or less than 45 seconds in the revisit phase). We 

assumed that these participants did not engage in the 

data exploration task seriously or that the eye tracker 

had technical problems recording their eye movement 

data. Two participants were excluded from the sample 

because they did not answer the control question in the 

post-experimental survey correctly. Finally, we 

excluded one more participant because of self-reported 

health problems affecting the eyes. In summary, our 

sample assigned 48 participants to the control group 

(general VAF) and 44 participants to the treatment 

group (individualized VAF). 

5.2.2 Experimental Software and Apparatus 

The experiment was conducted with self-developed 

software that incorporates the capability to track users’ 

eye movement data in real time. Further, the 

application collected the data required for further 

analysis in the evaluation section. We used the Tobii 

Eye Tracker 4C, which enables tracking users’ eye 

movement data in real time and records relevant eye 

movement data. The corresponding Tobii license was 

included to store and process the collected data. This 

eye tracker is a desktop-mounted device measuring 17 

x 15 x 335 mm (0.66 x 0.6 x 13.1 in) in size; it has a 

sampling rate of 90 Hz, and is considered one of the 

low-cost eye trackers in the market (Farnsworth, 

2019). We selected this particular eye tracker because 

we determined that the use of such devices for 

designing attentive UI is applicable for daily working 

tasks on a large scale. We connected the eye tracker to 

a computer that displays the dashboard on a 21-inch 

screen with a resolution of 1920x1080 for all 

participants. We developed the experimental software 

in the .NET framework by using C# programming 

language because Tobii provides the relevant SDKs for 

developing gaze-aware UI (Core SDK) and collecting 

data for research purposes (Pro SDK) in this 

framework. We included gaze-aware UI elements (i.e., 

graphs, as in Figure 5) as areas of interest (AOIs) on 

our dashboard to collect users’ gaze duration while 

they explored the provided information in these AOIs 

in real time. The collected gaze duration was 

transferred to the feedback generator component. With 

this approach, we were able to present the 

individualized VAF in the form of gaze duration on 

each AOI subsequent to the task. In addition to our 

experimental software, we used the software Tobii Pro 

EyeTracker Manager to calibrate the eye tracker 

device at the beginning of each experimental session.  

The quality of our research design and results depended 

on factors that affect users’ attentional resource 

allocation. Therefore, we maintained the internal 

validity of our experiment as follows: First, we 

evaluated the artifact instantiating our design in a 

laboratory experiment that ensured high internal validity 

by minimizing the influence of external factors that can 

affect users’ performance. Second, we minimized the 

influence of external factors that could affect the quality 

of the collected eye movement data, such as movements 

and light conditions. To do this, we controlled the 

calibration’s quality several times during the experiment 

with our developed experimental software using Tobii’s 

SDKs. Third, we used the collected eye movement data 

to verify that users conducted the experimental task 

according to our instructions and removed users that did 

not follow the instructions. Fourth, we controlled the 

elements of the dashboard that affect users’ stimuli-

driven attention while they are exploring. Figure 5 

displays the dashboard layout that we designed and used 

for this experiment. 
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Figure 5. The Information Dashboard Designed to Control for Stimulus-Driven Attention 

 

This dashboard includes six charts, which we designed 

in such a way that they have almost similar complexity. 

All six charts are of the same type (bar chart) to 

minimize potential distraction due to different visual 

formats (Kelton et al., 2010), and all charts, words, and 

numbers are equal in size (Alberts, 2017). We chose 

six chunks of information for our experiment because 

seven (plus or minus two) chunks of information 

represent the maximum capacity for individuals’ 

working memory capacity (Miller, 1956). To control 

the influences of interactive features on users’ 

attention (Liu and Stasko, 2010) the dashboard 

includes only static charts. The dashboard uses gray 

colors with similar variations to control for a potential 

color impact on users’ attention (Bera, 2016). To 

summarize, the same visualization format, size, 

number of information chunks, lacking interactive 

features, and gray color, we argue that from an 

information representation perspective, the six charts 

have similar complexity.  

We acknowledge that in having a similar complexity 

across all charts, our dashboard does not represent a 

real-world scenario. Using elements that influence 

users’ stimulus-driven attention is common in real-

world dashboards, and highly impacts users’ 

attentional resource allocation (Alberts, 2017; Pauwels 

et al., 2009; Yigitbasioglu & Velcu, 2012). However, 

our controlled dashboard design enables us to track the 

users’ goal-directed attention during the experiment. 

We followed this approach to maintain a high level of 

internal validity regarding users’ attentional resource 

allocation, attention shift rate, and attentional resource 

management. We were thereby able to prevent 

potential biases from stimulus-based attention and 

focus on goal-directed attention in our study.  

5.2.3 Experimental Procedure 

We started the experiment by calibrating the eye 

trackers using Tobii Pro Eye Tracker Manager before 

we started our self-developed experimental software. 

The software first displayed instructions to the 

participants and required them to start the experimental 

task manually. In the instructions, we outlined the 

scenario of the experiment and the experimental task’s 

steps. We told participants to imagine being a sales 

manager of a company. They had recently joined the 

Title of the dashboard

Experimental timer

A static dashboard with six AOIs all include same:
graph type, size, number of information chunks, no color, no 

interactive options
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be an Area of Interest (AOI)



Designing Attentive Information Dashboards 

 

534 

sales organization and were about to meet with their 

supervisor. A few minutes before the meeting, they 

received the sales report from the last six months in a 

dashboard format. We asked participants to prepare for 

this meeting by exploring and memorizing the 

company’s status regarding the provided sales data. 

Further, we informed them of the time available for 

this task (120 seconds) and mentioned that the 

experimental software included a timer for tracking the 

remaining time for each step of the experimental task. 

Moreover, we told the participants that they would 

receive additional information after exploring the 

dashboard (i.e., in the VAF phase) and would 

subsequently be given a second chance to explore the 

dashboard (i.e., in the revisit phase). The instruction 

ended with control questions to ensure that participants 

properly understood the experimental steps and the 

information we had provided on the dashboard.  

After completing the instruction step, we showed the 

participants a simplified version of the experiment’s 

dashboard (providing no VAF) to enable them to 

familiarize themselves with the software and 

experimental task. After completing this step, we 

asked them to rest for two minutes before starting the 

main part of the experiment. We added this break to 

control for carry-over effects between the trial and the 

main part of the experiment.  

Figure 6 depicts the steps for the main part of the 

experiment. In the first phase of data exploration, 

participants received the dashboard and scrutinized it for 

120 seconds. After that, they were interrupted for 30 

seconds. In this step, participants received one of the two 

VAF treatments (individualized VAF or general VAF) 

based on their group assignment. Subsequently, in the 

revisit phase, we asked participants to revisit the same 

dashboard for an additional 60 seconds. In the last step 

of the experimental task, participants provided their 

demographics. Finally, we asked them to rest for a few 

minutes and get ready for the working memory capacity 

tests that we performed using the visuospatial working 

memory capacity test (Kessels et al. 2000) and digit 

working memory capacity test (Conway et al., 2005) 

from the PEBL test battery (Mueller & Piper, 2014). 

5.2.4 Treatment Design: Visual Attention 
Feedback 

Based on our proposed design, the individualized VAF 

should present the summary of users’ previous 

attentional resource allocations to increase their self-

awareness. Therefore, we instantiated the second 

design principle in such a way as to present the actual 

gaze duration on each visual feature (e.g., charts, 

tables, etc.) on the dashboard in a time format. We 

assumed that providing such information would enable 

users to properly assess their previous attentional 

resource allocation, and subsequently, when required, 

to improve their attention allocation. Figure 7 

visualizes an instantiation of the individualized VAF 

that exhibits the user’s gaze duration on a dashboard 

with six visual features (see Part 2), similar to the 

experiment’s dashboard. In addition to the 

individualized VAF, we provided the following 

general text-based explanation (see Part 1): 

Many users have a problem allocate[ing] 

their attention properly while using 

information dashboards. In the following, 

you can see your attention allocation so far 

based on the time that you looked at each 

chart. Please think about your attention 

allocation performance in the previous step 

and then you will have one more minute to 

continue exploring the dashboard. 

This individualized VAF was provided to the treatment 

group in our experiment. The control group did not 

receive additional information on their individualized 

gaze duration values in the form of graphical or text-

based information; they only received general VAF in 

the form of the following text:  

Many users have a problem allocate[ing] 

their attention properly while using 

information dashboards. Please think about 

your attention allocation performance in 

the previous step and then you will have one 

more minute to continue exploring the 

dashboard.  

5.2.5 Measurements 

In this study, we collected and analyzed the users’ eye 

movement based on predefined areas of interest 

(AOIs) on the dashboard. The dashboard included six 

charts, each of which we considered to be one AOI. As 

Figure 8 shows, we named six AOIs based on their 

position on the dashboard layout. We use the AOIs’ 

names to discuss the results in the following sections. 

Additionally, we measured several dependent and 

participant-specific control variables during different 

steps of the experiment. Table 2 displays a summary of 

all measurements. 

Our dependent variables focus on different facts of 

users’ information processing regarding their 

attentional resource allocation and management, as 

well as attention shift rates. First, we measured users’ 

attentional resource allocation, following Cheung et 

al.’s (2017) suggestions. Based on this study, users’ 

fixation duration and the number of fixations on each 

predefined AOI are treated as each user’s attentional 

resource allocation on that AOI.  
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Figure 6. The Experiment’s Procedure Used to Evaluate Proposed Design Principles 

 

 

Figure 7. Instantiation of Design Principle 2: Individualized Visual Attention Feedback 

 

 

Figure 8. Names Assigned to the Six AOIs on the Dashboard Based on Their Position
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Table 2. The Dependent Variables and Controls Used in this Study 

 Construct Definition Measurement References 

Information  

processing 

(revisit phase) 

Attentional 

resource allocation 

Users’ performance in 

allocating attention to 

previously low-attended AOIs 

and ignoring previously high-

attended AOIs. 

Eye tracking 

(fixation duration, 

number of fixations) 

(Cheung et al., 2017; 

Just & Carpenter, 1980; 

Qvarfordt et al., 2010) 

Attention shift rate 

The number of instances 

directing attention toward 

another AOI. 

Eye tracking 

(total number of 

transitions pairs) 

(Blascheck et al., 2014; 

Hong et al., 2004) 

Information  

processing 

(end of the task) 

Attentional 

resource 

management 

The ability to distribute the 

attention properly across all 

stimuli on the screen. 

Eye tracking 

(variance of fixation 

duration on six AOIs) 

Self-defined 

Controls 

Visuospatial 

working memory 

capacity 

The capacity of users’ visuo-

spatial memory. 
Corsi span (Kessels et al., 2000) 

Digit working 

memory capacity 

The capacity of users’ ability 

to memorize digit numbers. 
Digit span (Conway et al., 2005) 

To assess users’ attentional resource allocation, we 

compared the fixation duration and number of 

fixations of the first visit to the dashboard with the 

revisit phases, based on six AOIs. According to 

chance, each AOI (i.e., each chart) should receive 

(100/6 = 16.67%) of the attentional resource 

allocation. This was subtracted from the actual 

attentional resource allocation percentage, which 

yielded a score reflecting whether a given AOI was 

attended to more (or less) than the theoretical average. 

We treated the revisit phase as an opportunity to 

enhance information processing performance by using 

a higher attentional resource allocation on the 

previously low attended charts in the revisit phase.  

Second, we measured users’ attentional shift rate in 

the revisit phase. This measure shows how the user 

centers attention on a single stimulus, or a limited set 

of stimuli, rather than how the user shifts attention 

between all the elements. In eye tracking research 

users’ attentional shift rate between AOIs is used to 

explain how focused the users’ attention is (Bednarik 

& Tukiainen, 2006, 2008). The attention shift rate 

between AOIs is measured by the number of 

transitions, indicated by the movement of the eyes 

from one AOI to another (we ignored transitions within 

the same AOI). Consequently, the transition matrix 

represents the attention shift rate between all possible 

combinations of AOIs (Ponsoda et al., 1995). The 

transition matrix is a descriptive summary 

representation of the collected eye movement data that 

provides support for the analysis of users’ data 

exploration behavior (Blascheck et al., 2014; Burch et 

al., 2011; Kurzhals et al., 2016).  

Third, we measured users’ attentional resource 

management at the end of the data exploration task. As 

explained in Section 5.2.2, all six AOIs on the 

dashboard have the same complexity and level of 

importance. Therefore, a more even distribution of 

attention between all six AOIs would indicate a high 

attentional resource management performance. We 

calculated the standard deviation (SD) of fixation 

durations and number of fixations of all six AOIs at the 

end of the data exploration task. Lower SD values 

indicated that these six variables are closer to each 

other and that users properly distributed their attention. 

In contrast, a higher SD value indicates a lower 

attentional resource allocation management 

performance. 

We measured several participant-specific control 

variables (demographics as well as two different 

working memory capacity types) in addition to our 

three main variables. Regarding demographics, we 

captured gender, age, and the participant’s experience 

of working with dashboards through survey questions. 

We also measured the users’ working memory capacity 

from two perspectives. We chose users’ working 

memory capacity as a control variable because of its 

importance in processing information, as described in 

Section 2.1.2. Users’ working memory capacity 

predicts their attention control (Kane & Engle, 2003) 

and has been defined as one important individual 

characteristic of users interacting with visualized 

information (Borkin et al., 2016; Haroz & Whitney, 

2012; Healey & Enns, 2012; Toker et al., 2013). 

Researchers have defined working memory span tasks 

as the most adequate instrument for comparing various 

individuals’ working memory capacity with one 

another (Conway et al., 2005). Also, individuals have 

different capabilities in remembering different types of 

information. Consequently, there are different working 

memory spans that can be measured. In this study, we 

measured two types of working memory span that 

users have, namely their digit and visuospatial working 

memory capacities. This choice was motivated by the 
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fact that dashboard users mostly deal with digits and 

visualized information on the dashboard. We collected 

the users’ visual working memory capacity by running 

a visuospatial Corsi block-tapping test (Kessels et al., 

2000). To measure the number of digits that an 

individual user can memorize, we used the digit span 

test (Conway et al., 2005). Both tests report the 

working memory span value, defined as the longest 

sequence a user can correctly repeat in each test. The 

higher the working memory span value, the higher the 

working memory capacity. 

6 Results 

6.1 Manipulation and Control Checks 

Before testing the hypotheses, we checked whether the 

random-assignment between-participant conditions 

was successful or not by testing whether the two 

groups differed in their working memory capacity and 

the three demographic variables.  

The chi-squared test for comparing participants’ 

gender per condition (individual VAF and general 

VAF) was not significant (chi-square = 0.558, p = 

0.45). Moreover, as Table 3 shows, the Wilcoxon 

signed-rank test results for all the other control 

variables (age, experience level, Corsi span, and digit 

span) did not show any difference between the two 

groups. Thus, we assume that our random assignment 

was successful. In addition, to confirm that all users 

had the same visual behavior in the first visit phase on 

the dashboard, we analyzed the users’ eye movement 

data and compared their attentional resource allocation 

and management, as well as the attention shift rate 

between the two groups. The results indicate that users 

in the two groups had similar visual behavior before 

receiving different VAF types. We present the details 

of this analysis separately in the following sections. 

6.2 Attentional Resource Allocation 

Figure 9 shows the heatmaps based on the users’ 

attentional resource allocation in both groups. The left 

column displays the attentional resource allocation of 

the first visit phase and the right column shows the 

revisit phase. In the first visit phase, visual behavior 

did not differ between the groups, while the attentional 

resource allocation was primarily influenced by the 

position of the AOIs. In both groups, the left-sided 

charts (AOI1, AOI4) received the most attention, 

followed by the charts in the middle (AOI2, AOI5), 

with the charts on the right side (AOI3, AOI6) 

receiving the least attention. Similarly, a column-based 

observation reveals that charts in the first row (AOI1, 

AOI2, AOI3) have a higher attentional resource 

allocation compared to the corresponding charts in the 

second row (AO4, AOI5, AOI6). These results confirm 

that users are biased toward allocating their attention 

to the left and top of the dashboards, similar to other 

UI types (Lorigo et al., 2008; Nielsen, 2006).  

During the revisit phase, the general VAF group’s 

results show that users repeated their visual behavior, 

while users in the individualized VAF changed it. 

Investigating both rows in more detail shows that for 

the general VAF group, the left-sided AOIs have 

higher values than the right-sided AOIs. Similarly, the 

column-based investigation indicates that the general 

VAF group had higher values for the AOIs in the upper 

position compared to the AOIs in the lower position. 

However, users in the individualized VAF group had 

more attentional resource allocation on the right-sided 

AOIs and higher attentional resource allocation on 

AOIs positioned in the lower row. Overall, by 

qualitatively analyzing the visual behavior of both 

groups via heatmaps, we found that users who received 

individualized VAF improved their attentional 

resource allocation in the revisit phase, while users 

with the general VAF tended to repeat their visual 

behavior in the revisit phase. 

For testing the attentional resource allocation 

performance hypothesis in the revisit phase (H1), we 

carried out repeated-measures regression analyses based 

on the percentage fixation duration and number of 

fixations. In addition, prior to the analysis, we centered 

the attentional resource allocation scores around the mean 

average percentage (100/6). Accordingly, zero reflects 

the average percentage of attentional resource allocation 

spent on an AOI at a given point in time. 

 

Table 3. Comparing the Control Variables 

Control variable Conditions Median Mean SD W P-value R 

Age 
Individualized VAF 22.50 22.77 2.75 

851.5 0.108 -0.167 
General VAF 24.00 24.06 3.8 

Experience level 
Individualized VAF 5.00 5.00 1.38 

856.5 0.117 -0.163 
General VAF 5.67 5.42 1.43 

WMC: Corsi span 
Individualized VAF 6.00 6.01 0.84 

1139.5 0.509 -0.068 
General VAF 5.50 5.94 1.09 

WMC: digit span 
Individualized VAF 7.00 7.32 1.27 

1074.5 0.880 -0.015 
General VAF 7.00 7.25 1.33 

Note: *p < 0.05, **p < 0.01 
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Figure 9. Heatmaps of Both Groups in the First and Revisited Phases 

 

In the first model, we predicted the fixation duration 

per AOI in the revisit phase from the fixation duration 

of that AOI in the first visit, the experimental condition 

(0 = general VAF group; 1 = individualized VAF 

group), and their interaction. First, the effect of the 

fixation duration percentage in the first visit was 

significant; b = 1.145 percentage, SE = 0.223 

percentage, t(548) = 5.129, p < 0.001. This indicated 

that in the general VAF group, the fixation duration of 

an AOI was a strong predictor of the same AOI’s 

fixation duration in the revisit phase. In other words, 

participants showed consistency in their behavior as 

expected regarding the fixation duration. Figure 10, on 

the left, shows the positive slope in the general VAF 

group. An AOI that received a higher percentage of 

attentional resource allocation (in terms of fixation 

duration and number of fixations) in the first visit, also 

received more attentional resource allocation in the 

revisit phase. Second, there was a significant 

interaction of fixation duration percentage in the first 

visit and the individualized VAF group; b = -0.75 

percentage, SE = 0.138 percentage, t(548) = -5.468, p 

< 0.001. This shows that the individualized VAF 

compensated for the fixation duration effect of the first 

visit on the fixation duration of the revisit phase 

(Figure 10, left side). Thus, compared to the general 

VAF group, an AOI that had high fixation duration in 

the first visit, had relatively less fixation duration in the 

second phase for the individualized VAF group. Vice 

versa, an AOI with a previously low fixation duration 

had a high fixation duration in the second phase.  

Similar to fixation duration, an analogous analysis for the 

number of fixations also yielded two significant effects: 

First, the effect of the number of fixations in the first visit 

was significant; b = 1.211 percentage, SE = 0.221 

percentage, t(548) = 5.467, p < 0.001. This indicates that 

in the general VAF group, the number of fixations on an 

AOI strongly predicted the number of fixations on the 

same AOI in the revisit phase, and participants showed 

consistency in their behavior regarding the number of 

fixations. Second, the effect of the number of fixations in 

the first visit on the number of fixations in the revisit phase 

was compensated for by the individualized VAF (Figure 

10, right side). Crucially, the results show that the number 

of fixations in the first visit significantly interacted with the 

individualized VAF group, b = -0.812 percentage, SE = 

0.133 percentage, t(548) =-6.067, p < 0.001. 

To summarize, the qualitative analysis results of the 

heatmap, as well as quantitative analyses for fixation 

duration and number of fixations, show that the 

attentional resource allocation performance of users 

with the individualized VAF improved in comparison to 

the users with general VAF. Participants with the 

general VAF were consistent, and AOIs that were highly 

attended to in the first phase also received more attention 

in the revisit phase. However, for the users with 

individualized VAF, an AOI that received more 

attentional resource allocation (in terms of fixation 

duration and number of fixations) in the first visit, 

received less attentional resource allocation in the revisit 

phase, and vice versa. Therefore, H1 is supported. 
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Figure 10. The Interaction Between and After Feedback for Both Groups 

 

6.3 Attention Shift Rate 

Figure 11 displays the transition proportions between 

the six AOIs in the first phase and the revisit phase for 

both groups. In these matrixes, the number in the cell 

represents the attention shift rate in percentage 

between each possible pair of AOIs. The reason for 

showing the proportions rather than the actual number 

of transitions for each pair lies in the difference 

between the data exploration time in the first visit (120 

seconds), and the revisit phase (60 seconds). In 

addition, the color scaling shows the differences 

between values on these matrixes to facilitate the 

qualitative analysis.  

Figure 11 shows that in the first visit, both groups had 

similar visual behavior, focusing mostly on transitions 

between AOI1 and AOI2. However, comparing the 

transition matrix of the first to revisit phase shows that 

the users with individualized VAF changed their 

strategy and investigated the relationship between 

AOIs on the right side of the dashboard. For this group, 

the transitions between AOI5 and AOI6 have the 

highest value while for the general VAF group the 

transitions between AOI1 and AOI2 remained as the 

highest value. A comparison of the heatmaps to the 

transition matrixes indicates that the users with 

individualized VAF not only had higher attentional 

resource allocation on previously low attended AOIs 

but they also investigated the relationships between 

them more specifically. Also, users in the general VAF 

group repeated their attentional resource allocation and 

investigated the relationship between them rather than 

focusing on others.  

As discussed in Section 5.2.5, the total number of 

transitions in each phase represents the user’s attention 

shift rate in that phase. To compare the attention shift 

rate in the first visit phase, we conducted an 

independent t-test between individualized VAF (M = 

77.66, SD = 24.21) and general VAF (M = 83.56, SD = 

21.66) groups, and found no significant difference 

t(86.59) = -1.22, p = 0.22. Therefore, we argue that the 

two groups had the same attention shift rate in the first 

visit phase. However, in the revisit phase, the results of 

the Wilcoxon rank-sum test indicate that users with 

individualized VAF (Mdn = 35) had significantly 

lower attention shift rates than the users with general 

VAF (Mdn = 45), W= 661.5, p = 0.002, r = -0.321. 

Thus, based on the analysis of the eye movement data, 

H2 is supported. 

6.4 Attentional Resource Management 

Figure 12 shows the interaction plot for fixation duration 

and number of fixations that shows how users’ 

attentional resource management changed during the 

experiment. The attentional resource management of 

users with individualized VAF improved massively, 

while this is not the case for users with general VAF (the 

lower SD values among six AOIs represent better 

attentional resource management). 
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Figure 11. Transition Matrix of the Users in Both Groups 

 

 

 

Figure 12. Interaction Effect of VAF in Groups and Phases on Attentional Resource Management Performance 
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Table 4. Comparing Users’ Attentional Resource Management Performance in Both Groups 

Between subject analyses 

Dependent variable Exp. Phase Condition Median W P-value R 

Attentional resource 

management 

performance 

(based on fixation 

durations) 

End of the first phase 
General VAF 5.40 

1019 0.770 -0.029 
Individualized VAF 5.37 

End of the task 
General VAF 5.33 

1364 0.015* -0.251 
Individualized VAF 4.14 

Attentional resource 

management 

performance 

(based on number of 

fixations) 

End of the first phase 
General VAF 4.77 

868 0.143 -0.150 
Individualized VAF 5.23 

End of the task 
General VAF 4.30 

1322 0.037* -0.216 
Individualized VAF 3.56 

Within subject analyses 

Dependent variable Conditions Exp. Phase Median V P-value R 

Attentional resource 

management 

performance   

(based on fixation 

durations) 

General VAF 
End of the first phase 5.40 

754 0.089 -0.173 
End of the task 5.33 

Individualized VAF 
End of the first phase 5.37 

807 
<0.001 

*** 
-0.403 

End of the task 4.14 

Attentional resource 

management 

performance   

(based on number of 

fixations) 

General VAF 
End of the first phase 4.77 

767 0.066 -0.187 
End of the task 4.33 

Individualized VAF 
End of the first phase 5.23 

869 
<0.001 

*** 
-0.498 

End of the task 3.56 

Note: *p < 0.05, **p < 0.01, ***p < 0.001 

First, we conducted a Wilcoxon’s rank-sum test to 

investigate differences between the two conditions at 

the end of the first visit (between-subject analysis). 

There was no difference between the two groups in 

users’ attentional resource management at the end of 

the first visit phase for both fixation durations (p = 

0.77) and number of fixations (p = 0.14) (see Table 4). 

This is aligned with our previous findings that users of 

the two groups had the same visual behavior in the first 

visit. However, the results show significant differences 

for both fixation duration (p = 0.01) and number of 

fixations (p = 0.03) at the end of the task. Second, we 

investigated users’ attentional resource management 

by comparing each group in the two phases (within-

subject analysis). The results of the Wilcoxon signed-

rank test show that, comparing the two phases, the 

attentional resource management of users with 

individualized VAF for both fixation duration (p < 

0.001) and number of fixations (p < 0.001) differ 

significantly. However, the general VAF did not 

support users to improve their attentional resource 

management significantly.  

The findings of the within-subject and between-subject 

analyses of the attentional resource management show 

that at the end of the data exploration task, users with 

individualized VAF had better attentional resource 

management than the users with general VAF. Thus, 

H3 is supported. 

7 Discussion 

The laboratory experiment’s results demonstrate that 

the proposed design principles and their instantiation 

in a software artifact increase users’ attentional 

resource allocation and attention shift rate performance 

in the revisit phase (confirming H1 and H2) and 

improve attentional resource management 

performance at the end of the task (confirming H3). 

The findings confirm our assumption that a dashboard 

providing individualized VAF supports users in 

processing information in a comparatively better way 

than dashboards without such individualized feedback. 

In the following sections, we discuss this study’s 

findings from a theoretical and practical point of view. 

Subsequently, we present the study’s limitations and 

delineate opportunities for future research. 

7.1 Theoretical Implications 

Vom Brocke et al. (2013) have emphasized that only a 

limited number of contributions in the DSR community 

make actual use of the potential of neuroscience tools 

(e.g., eye trackers) to design advanced built-in capability 

for IT artifacts. To the best of our knowledge, our DSR 

project is the first that investigates the integration of 

real-time eye movement data as a built-in capability for 

dashboards. Our study provides prescriptive knowledge 

on integrating real-time eye movement data for 



Designing Attentive Information Dashboards 

 

542 

supporting users in managing their limited attention 

capacity by providing individualized VAF. We present a 

system architecture for attentive information dashboards 

that supports data exploration through three components 

(i.e., a dashboard subsystem, an eye tracking subsystem, 

and an attention-aware subsystem) and two theoretically 

grounded design principles that provide prescriptive 

knowledge on how to deliver individualized VAF. 

We justify the proposed design referring to theory on 

human attention limitations based on Broadbent’s filter 

theory (Broadbent, 1958). Also, we explain the different 

stages of processing information on dashboards and the 

important role of users’ attention during this processing 

using an adapted version of Wickens et al.’s (2016) 

human information processing stages. Further, we justify 

using eye movement data as an approximation for users’ 

attention based on the eye-mind assumption (Just & 

Carpenter, 1980) and on established studies that focused 

on the users’ gaze direction and cognitive processing 

(Kowler, 2011; Rayner, 1998). We evaluated the 

proposed design in a controlled laboratory experiment 

and our results confirm the derived hypotheses. Our 

findings highlight the supportive role of individualized 

VAF in improving users’ information processing 

performance during data exploration tasks. The 

experiment’s data analysis reveals that users receiving 

individualized VAF (Design Principles 1 and 2 

instantiated) eventually exhibited better attentional 

resource allocation and management and better attention 

shift rate performance. In contrast, the control group 

receiving only general VAF had difficulties in managing 

their limited attention. 

To summarize, our theoretically grounded design 

principles contribute valuable prescriptive knowledge on 

how to design attentive information dashboards that are 

capable of supporting users in their data exploration tasks. 

Following Gregor and Hevner’s (2013) DSR contribution 

framework, we consider our contribution to be an 

improvement because we successfully developed a new 

solution (individualized VAF based on real-time eye 

movement data) to the existing problem (managing 

limited attentional resources). Our findings can therefore 

support the extension of using real-time eye movement 

data to design and develop attentive information systems 

beyond the dashboard used in this study. Also, beyond the 

use of such support in dashboards, our findings can be 

transferred to design other attentive UI for IS applications. 

7.2 Practical Implications 

The use of eye trackers has moved from the controlled 

lab environment to everyday settings (Chuang et al., 

2019), and the number of applications that work with 

eye tracking has increased during the last couple of 

years. Tobii, one of the leading companies in this field, 

has announced that enterprises should prepare for eye 

tracking technology that is coming to the devices we 

use every day (Eskilsson, 2019). So far, commercial 

BI&A tool providers such as Tableau use eye tracking 

devices to understand users’ behavior while they are 

exploring dashboards (Alberts, 2017); however, the 

use of eye movement data in real time has not yet been 

integrated into BI&A platforms (Silva et al., 2019). 

Therefore, our findings support practitioners in solving 

existing attention-relevant challenges of dashboard 

users by designing features based on the proposed 

prescriptive knowledge regarding the design of 

attentive information dashboards.  

In recent years, technology firms have recognized the 

potential of neuroscience technologies in advancing 

human-computer interaction (vom Brocke et al., 

2013). Thus far, the high price and complexity of 

neuroscience tools have presented challenges to using 

these devices in the working environment. However, 

the use of eye tracking technology has recently 

increased due to the availability of cheaper, faster, 

more accurate, and easier-to-use eye trackers 

(Duchowski, 2017). In this study, we used Tobii Eye 

Tracker 4C, one of the least expensive eye trackers in 

the market (Farnsworth, 2019) to design and develop 

an attentive information dashboard providing 

individualized VAF. Our work represents an 

important step toward supporting practitioners to use 

not only the mouse and keyboard as input devices but 

also the eye tracker as an innovative, interactive 

device for work environments. 

Further, the findings of our study can support eye-based 

application developers in designing data exploration 

support features for enterprise applications beyond 

dashboards. For example, SAP considered the use of eye 

tracking devices for the next version of their enterprise 

systems (Galer, 2019). In addition, Microsoft released the 

use of eye control on Windows 10 to facilitate the 

interaction between users and the system (Microsoft, 

2019). The functionality can be integrated into self-

tracking dashboards such as the MyAnalytics dashboard 

developed by Microsoft (2020) for workplaces. It can also 

support users in managing their limited attentional 

resources. Further, this knowledge can be transferred to 

applications that appear in augmented and virtual reality 

(AR/VR). Specifically, in virtual reality, eyes are known 

as the main source of understanding users’ intentions. 

Thus, the design principles introduced in this DSR project 

might be used in designing individualized VAF in VR or 

AR-based information systems. 

Another interesting finding of our study is that most of 

the participants started in the top-left area of the 

dashboard and focused their attentional resource 

management on this part of the dashboard. This finding 

agrees with existing research that found similar 

patterns for dashboards and other Uis (Lorigo et al., 

2008; Nielsen, 2006; Soegaard, 2020). Thus, we 

confirm the existing design suggestion for practitioners 

to place important elements of a dashboard in the top-

left area of the dashboard. 
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7.3 Limitations and Future Research 

Although our research project’s findings clearly 

demonstrate the positive effect of attentive information 

dashboards on managing limited attentional resources, 

we also recognize some limitations that we need to 

mention. 

First, we used Tobii Eye Tracker 4C for both designing 

and evaluating the proposed design principles. This 

device is a low-cost eye tracker that was mainly 

designed for eye-based interactive features, such as in 

gaming contexts. The technical capabilities of these 

eye trackers were sufficient to support us in designing 

attentive information dashboards by tracking users’ 

eye movement data in real time and providing 

individualized VAF based on the data. However, for 

the evaluation part, we could have used more 

professional eye trackers that collect eye movement 

data more accurately and also collect additional data, 

such as pupil dilation (Buettner et al., 2018; 

Fehrenbacher & Djamasbi, 2017). With more 

advanced technology, future research could analyze 

users’ eye movements between single elements within 

one chart.  

Our study defined rather broad AOIs (600 x 394 

pixels), given the technical capabilities of the selected 

eye trackers and the goal of our analysis. The ability to 

capture the eye movement data of smaller AOIs could 

enable the investigation of more realistic dashboards 

with uneven complexity distributions (e.g., charts of 

different sizes, charts with varying content, etc.). 

Further, collecting additional data such as pupil 

dilation could enable the analysis of users’ mental 

effort during their interaction with the dashboard and 

while receiving feedback (Paas et al., 2003). Thereby, 

future research could, for example, investigate whether 

providing individualized VAF decreases or increases 

users’ mental effort in the feedback phase as well as in 

the subsequent revisit phase. Our findings show that 

providing individualized VAF improves users’ 

attentional resource allocation and management; 

however, it would be interesting to follow up on users’ 

mental effort during the data exploration phase.  

Second, the dashboard used in this study does not 

represent a real-world dashboard design. As discussed 

in Section 5.2.2, we selected this design to explore 

users’ goal-driven attention by controlling their 

stimulus-driven attention (Corbetta & Shulman, 2002; 

Desimone & Duncan, 1995). However, features that 

derive stimulus-driven attention play an important role 

in the effectiveness of dashboards (Pauwels et al., 

2009; Yigitbasioglu & Velcu, 2012). For example, the 

color, orientation, and size of dashboard elements can 

guide users’ attention toward these salient objects 

(Treisman & Gelade, 1980; Wolfe & Horowitz, 2004). 

Moreover, we controlled for interactive features (e.g., 

filtering, zooming, etc.) and used a static dashboard, 

but most real-world dashboards in the market provide 

interactive features to support users in exploring 

information from different perspectives. We decided to 

control the dashboard’s design, the complexity of the 

dashboard content, and the lack of interactive features 

in our study because we wanted to focus on the 

influence of the individualized VAF. Therefore, it was 

important to conduct the experiment with a high 

internal validity by limiting other potentially 

influential factors affecting users’ attentional resource 

allocation and management and their attention shift 

rates. Future research could investigate more realistic 

dashboards with, for example, varying complexity and 

interactive features. Additionally, there is an 

opportunity to conduct further research that considers 

the importance of certain information provided in 

dashboards based on the computation of information 

entropy (Krejtz et al., 2014, 2016). Analyzing eye 

movement data (using more accurate eye trackers) 

could highlight areas in the dashboard with high 

information entropy. Such entropy-based models 

could support the design of VAF types that consider 

the importance of different information types and 

guide users’ attention on that basis. Finally, we 

believe that there is a need to conduct field studies 

that focus on the impact of individualized VAF in 

organizational environments. 

Third, our study relies on eye movement data to track 

users’ attentional resource allocation and management. 

Human eye movement data demonstrates users’ overt 

attention (Carrasco, 2011; Kowler, 2011). However, 

Duchowski (2017, p. 13) has pointed out that “in all 

eye tracking work … we assume that attention is linked 

to foveal gaze direction, but we acknowledge that it 

may not always be so.” Roda (2006) has suggested 

using eye trackers in addition to other bio-signals like 

heart rate, EEG, brain signals with fMRI, etc. to design 

attentive UI. Future research could, for example, 

investigate the use of electroencephalogram (EEG) or 

functional magnetic resonance imaging (fMRI) data in 

addition to eye movement data collected with an eye 

tracker (Léger et al., 2014), which would enable more 

accurate measurements of users’ attentional reactions 

regarding the processing of information on 

dashboards, receiving feedback on their behaviors, and 

attention management. These findings could also be 

used to revise or extend our first design principle by 

utilizing additional sensory data to compute users’ 

attentional resource allocation.  

Fourth, the individualized VAF provided in this study 

is in the form of the gaze duration on each chart in a 

time format. While this format was found to be 

effective for our study, further feedback formats based 

on eye movement visualization approaches are 
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available (Blascheck et al., 2014). Future research 

could investigate different gaze visualizations (e.g., 

heatmap, scan path, etc.) and/or animate forms of these 

visualizations to provide individualized VAF from 

different perspectives (Langner et al., 2020).  

Fifth, in this study, we focused on improving users’ 

information processing performance through the 

management of attentional resources, rather than on the 

influence of attentive information dashboards on 

business decisions. Previous studies have shown that 

attention patterns can explain task performance (Bera et 

al., 2019). Also, engaging users with the information on 

dashboards may allow them to extract and remember 

more detailed information (Healey & Enns, 2012). 

Furthermore, usage of attentive information dashboards 

may have impacts on users’ mental load, confidence 

level, stress, etc. Future research could investigate the 

impacts of attentive information dashboards beyond 

attention management. 

8 Conclusion 

This study was motivated by challenges that users 

experience in managing their limited attention when 

exploring information dashboards. Following the DSR 

paradigm, we provide a new solution to this problem 

and articulate theoretically grounded design principles 

for designing an innovative artifact: namely, the 

attentive information dashboard. This artifact is 

capable of tracking users’ eye movement data in real 

time and can provide users with individualized VAF, 

based on this data. Further, we evaluated the proposed 

design in an eye tracking laboratory experiment with 

92 participants. Our findings reveal the positive effect 

of using individualized VAF on information 

processing performance, focusing on attentional 

resource allocation and management and on attention 

shift rates. We contribute to research and practice 

through prescriptive knowledge on how to design 

attentive information dashboards.   
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