
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ITAIS 2021 Proceedings Annual conference of the Italian Chapter of AIS
(ITAIS)

2021

A Tool for Improving Privacy in Software Development A Tool for Improving Privacy in Software Development

Maria Teresa Baldassarre
university of bari, italy, mariateresa.baldassarre@uniba.it

Vita Santa Barletta
university of bari, italy, vita.barletta@uniba.it

Danilo Caivano
university of bari, italy, danilo.caivano@uniba.it

Giovanni Dimauro
university of bari, italy, giovanni.dimauro@uniba.it

Antonio Piccinno
university of bari, italy, antonio.piccinno@uniba.it

Follow this and additional works at: https://aisel.aisnet.org/itais2021

Recommended Citation Recommended Citation
Baldassarre, Maria Teresa; Barletta, Vita Santa; Caivano, Danilo; Dimauro, Giovanni; and Piccinno, Antonio,
"A Tool for Improving Privacy in Software Development" (2021). ITAIS 2021 Proceedings. 16.
https://aisel.aisnet.org/itais2021/16

This material is brought to you by the Annual conference of the Italian Chapter of AIS (ITAIS) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ITAIS 2021 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/itais2021
https://aisel.aisnet.org/itais
https://aisel.aisnet.org/itais
https://aisel.aisnet.org/itais2021?utm_source=aisel.aisnet.org%2Fitais2021%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/itais2021/16?utm_source=aisel.aisnet.org%2Fitais2021%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A Tool for Improving Privacy in Software Development

Maria Teresa Baldassarre1[0000-0001-8589-2850], Vita Santa Barletta1[0000-0002-

0163-6786], Danilo Caivano1[0000-0001-5719-7447], Giovanni Dimauro1[0000-0002-

4120-5876] and Antonio Piccinno1[0000-0003-1561-7073]

1Department of Computer Science,
University of Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy

{mariateresa.baldassarre,vita.barletta,danilo.caivano,
giovanni.dimauro, antonio.piccinno}@uniba.it

Abstract. Privacy is considered a necessary requirement for software develop-
ment. It is necessary to understand how certain software vulnerabilities can create
problems for organizations and individuals. In this context, privacy-oriented soft-
ware development plays a primary role to reduce some problems that can arise
simply from individuals’ interactions software applications, even when the data
being processed is not directly linked to identifiable. The loss of confidentiality,
integrity, or availability at some point in the data processing, such as data theft
by external attackers or the unauthorized access or use of data by employees.,
represent some types of cybersecurity-related privacy events. Therefore, this re-
search work discusses the formalization of 5 key privacy elements (Privacy by
Design Principles, Privacy Design Strategies, Privacy Pattern, Vulnerabilities
and Context) in software development and presents a privacy tool that support
developers’ decisions to integrate privacy and security requirements in all soft-
ware development phases.

Keywords: Privacy by Design, Security by Design, Software Security Engineer-
ing.

1 Introduction

The development of software projects requires both tools and techniques for efficient
management and the integration of privacy and security requirements. Like a cancer,
vulnerable software can be invaded and modified to cause damage to previously healthy
software, and infected software can replicate itself and be carried across networks to
cause damage in other systems [1]. Several factors contribute to the increase of cyber-
attacks such as the emergence of new technologies, the growing sophistication of soft-
ware projects’ scope characterized by challenging technical, time and cost requirements
and the increasing number of stakeholders involved [2].

Therefore, software development requires the adoption of processes, tools and tech-
niques that integrate security and privacy into all phases of the software lifecycle. The
security is not simply embedded in the network security technologies in a software sys-
tem through various types of security activities [3]. It is particularly important to stress

2

concepts such as confidentiality (the data is not made available or disclosed to unau-
thorized individuals, entities, or processes), integrity (the ability to make sure that a
system and its data has not been altered or compromised) and availability (data or sys-
tem must be available to authorized users at all times) in all phases of software devel-
opment [4]. Privacy and security issues can be introduced by disconnects and miscom-
munications during the planning development, testing and maintenance of the compo-
nents [5]. So, it is necessary to identify the key elements associated to the privacy and
security oriented software development and provide the tools necessary to support de-
velopers’ decisions all phases of the software life cycle [6].

The research work identifies developers as end users and formalizing key elements
into a knowledge base allows for support on how and what to incorporate in order to
develop security and privacy oriented software.

The paper is organized as follow. Section 2 discusses related works. Section 3 pre-
sents the privacy elements and Section 4 the Privacy Tool. Section 5 describes the meth-
odologies. Section 6 reports the obtained results and, finally discussions and conclu-
sions are given respectively in Section 7 and Section 8.

2 Related Works

Software is considered secure, that is a prerequisite to integrate privacy requirements,
when it exhibits three interrelated properties [1]: the software executes correctly and
predictably, even when confronted with malicious or anomalous inputs or stimuli (De-
pendability); the software itself contains no malicious logic or any flaws or anomalies
that could be exploited or targeted as vulnerabilities by attackers (Trustworthiness);
when the software is able to resist most attempted attacks, tolerate the majority of those
it cannot resist, and recover with minimal damage from the very few attacks that suc-
ceed (Resilience). This imposes the adoption of processes, techniques and tools to mit-
igate the risks related security and data privacy [7].

Awanthika at al. [8] conducted a study on the difficulty of developing privacy pre-
serving software systems. They identified 5 issues that developers faced when embed-
ding privacy into the designs: Requirements in the design contradict with privacy re-
quirement (Contradiction); Relating requirements to practice (How can I implement the
fair information practices?, embedding privacy is too complex); Assurance (I tried to
use the theories in the design but I’m not sure if I really did, I think I did, I don’t know
if I have done it right); Personal opinion (storing raw data in the db does not affect the
privacy); Lack of knowledge (I did not use the this privacy theory because I don’t know
them, I haven’t heard of PIA). Issues that the various identified methodologies would
need to address in order to support developers.

Notario et al. [9] defined how privacy requirements should be incorporated into the
software development life cycle; Deng et al. [10] identified a privacy threat modeling
methodology that supports analysts in systematically eliciting and mitigating privacy
threats in software architectures. The identified privacy threats are mapped with the
existing privacy-enhancing technologies (PETs) [11]. He & Anton [12] considered pri-
vacy requirements as constraints on permissions and user roles in order to define access
control policies; Kallpniatis et al. [13] described the effect of privacy requirements on
business processes and facilitate the identification of the system architecture that best

3

supports the privacy-related business processes. Security quality requirements engi-
neering methodology supports the elicitation of privacy requirements at the early stages
of software life cycle in the SQUARE methodology developed by Mead et al. [14]. It
consists of nine steps which include what techniques will be used to elicit security re-
quirements then categorize, prioritize, and inspect the requirements.

In each of these methodologies, privacy and security requirements are addressed
during the first phase of the software development. Moreover, it is necessary to take
into account that some elements as highlighted in [8] are not clearly outlined how to
integrate them in the different contexts. So, starting from these needs, the research work
aims to identify the key elements in supporting developers in the development of secu-
rity and privacy-oriented software and to develop a tool to support developers at each
stage of development.

3 Privacy Elements

The elements identified to support developers in all phases of the software development
are Privacy by Design (PbD) Principles, Privacy Design Strategies, Privacy Pattern,
Vulnerabilities and Context. These elements are formalized in a knowledge base that is
the basis to support developer decisions in privacy-oriented software development.

Privacy by Design Principles [15]. These principles provide an excellent framework
for system design, especially when privacy-sensitive data is involved [16]: PbD antici-
pates and prevents privacy threats (Proactive not Reactive); the privacy built into the
system should not require any further user setup (Privacy as the default setting); privacy
should not be implemented in response to a given event, but embedded in the design,
IT system architecture and business logic (Privacy Embedded into Design); PbD needs
both, privacy and security (Full Functionality); PbD ensures secure lifecycle manage-
ment of information, end-to-end (End-to-End Security); component parts and opera-
tions remain visible and transparent to users and providers (Visibility and Transpar-
ency); architects and operators must consider the interests of the individual (Respect for
User Privacy).

Privacy Design Strategies [17]. They translate vague legal norms in concrete design
requirements. There are eight different privacy design strategies, divided over two dif-
ferent categories: data-oriented strategies and process-oriented strategies.
Data Oriented Strategies, called “Privacy-by-Architecture”, are methodologies to pre-
vent attacks: limit the processing of personal data as much as possible (Minimize); pro-
tect personal data or make it unlikable or unobservable (Hide); separate the processing
of personal data as much as possible (Separate); limit the detail in which personal data
is processed (Abstract).
Process Oriented Strategies, also known as “Privacy-by-Policy”, aim to inform the user
and to make decisions according to their needs: inform data subjects about the pro-
cessing of their personal data (Inform); provide data subjects an adequate control over
the processing of their personal data (Control); commit to processing personal data in
a privacy-friendly way (Enforce); demonstrate personal data is being processed in a
privacy-friendly manner (Demonstrate).

4

Privacy Pattern [18]. They underline the concept of pattern and can be used in all those
situations where privacy is violated, and a user’s personal data is no longer secure. They
standardize language in the context of privacy protection document common solutions
to privacy problems; help designers identify and address privacy concerns; integrate
privacy and security mechanisms. Each privacy pattern represents a solution on which
privacy design strategies to implement and which vulnerabilities it mitigates.

Vulnerabilities. Vulnerabilities within the code allow a malicious user to attack the
application. In this step of the research, the vulnerabilities of the OWASP Top Ten and
those related to the GDPR (General Data Protection Regulation) category have been
integrated [23]. An example of privacy vulnerability is Access Violation. Figure 1
shows code that supplies a user-controlled indicator to a method that fetches employee
data. If an attacker supplies whitespace for parameter p_xfeld, no authorization checks
are performed before returning an employee’s personal and contact information.

Context. It is a key element for the system development and reengineering. The context
is formalized of Architectural Requirements that determine the flow of data within the
system, roles and responsibilities; Use Cases and Scenarios define all interactions with
the system in order to protect the information from unauthorized reading and manipu-
lation; Privacy Enhancing Technologies (PETs), tool and technologies that help protect
the personal information handled by the applications.

Fig. 1. Access Control: Authorization Bypass.

4 Privacy Tool

A privacy tool has been implemented to support the team’s choices in all the software
development phases and to evaluate the research proposal. It implements the key ele-
ments identified as shown in Figure 2. Starting from a specific vulnerability of the
OWASP Top 10, the tool shows a short description of the macro categories of vulner-
abilities, an example that causes it and outlines how to mitigate it. For each

5

vulnerability, the privacy patterns that help mitigate it are shown. For example, Figure
3 shows the privacy patterns that implement the data-oriented strategy (Hide) for a cli-
ent server architecture and to mitigate an injection vulnerability (V01 – Injection).
Moreover, there is the possibility of exporting examples of identified patterns (Figure
4) as well as viewing the description and relationships with other elements.

Each pattern is structured as follows: Name that represents the problem addressed;
Context that contains a generic description of the setting and specifies the conditions
under which the privacy pattern should be applied; Problem, the situation requiring the
application of privacy requirements; Solution describes the possibility of implementing
certain mechanisms to solve the problem under investigation; Diagram represents the
behavior and the structure of the pattern.

In this way, a developer with no specific knowledge and competences on privacy,
can understand which principles of PbD are violated by the selected vulnerability and
which privacy design strategies must be implemented through the use of privacy pat-
terns. The relationship between these elements will support the developer in designing
a Privacy Software Architecture. In addition, the tool integrates the result of static code
analysis, derived from third party static code analysis tools, so that each vulnerability
identified in the legacy system is associated to a privacy pattern, allowing to fix the
architectural defects.

Fig. 2. Relationship between 5 elements.

6

Fig. 3. Relationship between 5 elements

Fig. 4. Pattern Onion Routing

5 Methodology

The research leaded to define and implement a tool that integrates privacy and security
elements for secure software development. Therefore, the main goal can be defined as
follows: “Analyze the potential utility of the tool with the purpose of providing opera-
tional guidelines from the point of view of developers in the context of privacy and
security oriented software development.” The research carried out has been organized
according to four steps (Figure 5): Definition, Planning, Execution, Analysis and Inter-
pretation.

7

Fig. 5. Methodology.

Definitions. In this step we identified the research goal mentioned above and further
refined it in terms of the following research questions [20]:
• RQ1: Do the key elements implemented in the tool allow to support the deci-

sion making in privacy and security software development?
• RQ2: Does the tool improve improves developers’ choices in integrating pri-

vacy and security requirements?

Planning. The goal of this step was to identify the experimental variables, define the
experiment design, select the subjects involved in the study and prepare the experi-
mental materials needed for supporting the execution phase. More precisely:
• Experimental Variables Identification. The relevant variables that character-

ize the phenomena under study need to be identified. In the context of this re-
search work they were identified through a literature review aimed to finding
out the key elements that influence the privacy-oriented software development
on one hand, and methodologies to support developers. The following are the 5
key elements identified:

o The 7 principles of Privacy by Design;
o Privacy Design Strategies: Data-oriented Strategies and Process-ori-

ented Strategies;
o Privacy Pattern;
o Vulnerabilities;
o Context: Use cases and Scenarios, Architectural Requirements and Pri-

vacy Enhancing Technologies.
• Experiment Design. The pilot experiment was identified to evaluate the poten-

tial utility of the privacy tool for supporting the team’s choices in privacy-ori-
ented software development. A total of 12 junior developers, representing our
potential users in this research work. They were divided into three groups, 4 for
each group (Group A, Group B and Group C), and asked to identify privacy and

8

security requirements in a legacy system to be reengineered. The legacy system
was used by a public company for processing the personal data.
The evaluation took place in four parallel sessions and in different research la-
boratories, during which the tool was introduced by a member of the groups for
10 minutes. Thereafter, each group was asked to perform the following tasks:

o Task 1. Identify the principles of Privacy by Design violated by vul-
nerability in the legacy system.

o Task 2. Identify the Privacy Design Strategies to be implemented in the
legacy system to respect the principles of Privacy by Design.

o Task 3. Identify the privacy patterns that substantiate the Privacy De-
sign Strategies.

o Task 4. Identify the Data Strategies Component to implement in Target
Architecture in order to re-engineer the system from a privacy point of
view.

o Task 5. Identify the Processes Component Strategies to implement in
Target Architecture in order to re-engineer the system from a privacy
point of view.

• Selection of the experimental sample. For the selection of the experimental
sample “Convenience sampling” was used, a specific type of non-probability
sampling method based on data collected from population members [21]. The
subjects were selected mainly because they were easiest to recruit for the study
in comparison to testing the entire population that would have been too large
and therefore impossible to include everyone. In the study 12 junior developers
were involved with no specific knowledge and competences on software secu-
rity and privacy. The reason for not involving security experts in this step of the
research is to evaluate the potential utility of the tool in integrating privacy and
security requirements into software development. The developers have a bach-
elor’s degree in computer science and are employees in small companies. The
average is 25 years old, and they have knowledge of Java and PHP program-
ming.

Execution. The experiment was carried out as follows: the security report, containing
the list of security and privacy vulnerabilities identified during the static code analysis
of the legacy system (Issue ID, Category, Severity, Short Description), was given to
each group. Then, starting from the security report, the developers carried out each task
in order. Once completed each task, developers were requested to complete a SUS [22]
[23] questionnaire through a Google form to measure the tool’s usability. After having
completed all tasks and questionnaire, the researchers facilitated a discussion focused
on the privacy key elements that support the privacy-oriented software development.

Analysis and Interpretation. The goal of this research work is to observe the interaction
with the tool to operationally implement privacy requirements in the software develop-
ment. guideline in privacy-oriented software. Therefore, the correct identification of
the privacy elements required in each task has been considered; the developer's assess-
ment of the use of the tool to identify the elements needed.

9

6 Results

The results obtained using the privacy tool are described below. Task 1, 2 3 were suc-
cessfully completed by both groups in the given time limit (we estimated 30 minutes
for Task1 and Task 2; 60 minutes for Task 3; 90 minutes for the remaining two, Task
4 and Task 5).

Whereas, for task 4 and 5, the results of the three groups were different:
• Task 4 was completed by Group B, while Group A and Group B failed to com-

plete it.
• Task 5 was completed by Group A and Group B, but Group C failed to complete

it couldn’t complete it in time.
Despite not having completed all the tasks, this represents a good result: develop-
ment teams were able to correctly identify the principle of privacy by design violated
by the vulnerabilities identified during static code analysis; the privacy strategies to
implement to respect the Privacy by Design; the Privacy Design Strategies to imple-
ment; and somehow relate privacy patterns in the two Privacy Design Components,
Data and Processes.

Table 1. Task Results Group A

Task Success Failure Time spent
Task 1 - PbD violated x - 0h 17m

Task 2 - Privacy Design Strategies to be implemented x - 0h 25m

Task 3 - Privacy Patterns x - 1h 01m

Task 4 - Data Component Strategies - x 1h 35m

Task 5 - Process Component Strategies x - 1h 23m

Table 2. Task Results Group B

Task Success Failure Time spent
Task 1 - PbD violated x - 0h 22m

Task 2 - Privacy Design Strategies to be implemented x - 0h 26m

Task 3 - Privacy Patterns x - 0h 59m

Task 4 - Data Component Strategies x - 1h 25m

Task 5 - Process Component Strategies x - 1h 27m

Table 3. Task Results Group C

Task Success Failure Time spent
Task 1 - PbD violated x - 0h 25m

Task 2 - Privacy Design Strategies to be implemented x - 0h 30m

Task 3 - Privacy Patterns x - 0h 59m

Task 4 - Data Component Strategies - x 1h 49m

Task 5 - Process Component Strategies - x 1h 45m

10

For what concerns the qualitative analysis, we investigated how junior developers
(our end users) considered the Privacy tool. The SUS score obtained was 89,7. We find
these results to be encouraging, given that developers had little time to become familiar
with the tool and they have no experience with privacy by design, privacy pattern and
privacy design strategies.

During the discussion some suggestions have emerged: more detail on the relation-
ships between vulnerabilities and privacy patterns; the possibility to export privacy pat-
terns in different programming languages; the ability to identify privacy patterns
needed when new use cases and scenarios arise.

7 Discussions

In this research work, the potential utility of privacy key elements through the use of
the Privacy tool was evaluated. The study involved 12 junior developers and the results
obtained are encouraging for supporting decision-making in privacy-oriented software
development. One aspect that emerged during the discussion with the developers is to
introduce new elements and relationships based on new cyber threats and changes in
regulations such as GDPR.

An interesting point as it allows to enrich the underlying identified by the formali-
zation of the 5 key privacy elements, improving privacy in software development. In
this case, artificial intelligence (A.I.) plays a fundamental role. In particular, the privacy
tool supports decision making in both new system development (forward mode) and re-
engineering (backward mode). Therefore, the proper integration of privacy elements
could be tested through static code analysis and penetration testing. This allows to val-
idate the security of the system and consequently the privacy compliance, and to obtain
a dataset that has been generated from all the formalized rules between the existing
privacy elements. By training the A.I. model over the privacy existing solutions (da-
taset), it is possible to support team’s decisions when, for example, new use cases and
scenarios arise in the software development. Thus, the new privacy solutions obtained
can be provided to the A.I. model to improve at various phases of software development
the integration of privacy requirements and consequently support each decision of the
development team. Figure 6 describes this idea in detail.

Fig. 6. A.I. model to support Privacy Oriented Software Development

11

8 Conclusions

This paper analyzed the key elements to integrate privacy, and consequently security,
requirements in software development and to support decision-making in all phases of
the software lifecycle. Privacy engineering require knowledge and skills, therefore the
privacy tool implemented shows that it is able to translate best practices for both secure
application development and data privacy, into operational guidelines, software archi-
tectures and code structures to be used. It supports developers to fix vulnerabilities, and
in the privacy-oriented reengineering of the legacy system [24], in assuming design
decisions even though they may have no specific skills and knowledge about security
and privacy. To evaluate the potential utility of the tool we conducted a pilot study with
junior developers and the results suggest that the tool can meet the developers’ needs
in the context of privacy and security.

Given the results obtained, as future work we have planned to evaluate the devel-
oper’s productivity adopting the tool; the development of artificial intelligence model
in order to improve the decision making in all phases of the software development. Like
to threat intelligence that can be used to inform decisions regarding the subject’s re-
sponse to the menace or hazard (Gartner), in this research privacy intelligence can be
to better understand process threat data and their vulnerabilities, respond faster to im-
plement privacy and security requirements, identify in the code analyzed a new vulner-
ability. The idea is to use machine learning to automate data collection and processing,
take in unstructured data from different sources, and then connect the knowledge ac-
quired by providing context on privacy and security requirements, and tactics, tech-
niques, and procedures of privacy-oriented software development.

References

1. Goertzel, K., (2008). Enhancing the development life cycle to Produce Secure Software
2. Nonino F., Annarelli A., Gerosa S., Mosca P., Setti S., “Project Management: Driving Com-

plexity”, PMI® Italian Academic Workshop, (2018). ISBN 978-88- 9377-086-6
3. Masahito, S., Atsuo, H., Nobukazu, Y., Takanori, K., Hironori, W., Haruhiko, K., Takao,

O., (2015). A Case-based Management System for Secure Software Development Using
Software Security Knowledge. Procedia Computer Science, Volume 60, 2015, pp. 1092-
1100, ISSN 1877-0509. https://doi.org/10.1016/j.procs.2015.08.155.

4. Ellison, R. J., “Security and Project Management”, 2006. Software Engineering Institute –
Carnegie Mellon University

5. Baldassarre, M.T., Barletta, V.S., Caivano, D., Scalera M., 2020. Integrating security and
privacy in software development. Software Qual J (2020). https://doi.org/10.1007/s11219-
020-09501-6

6. Baldassarre, M.T., Barletta, V.S., Caivano, D., Piccinno, A. 2021. Integrating Security and
Privacy in HCD-Scrum. CHItaly 2021: 14th Biannual Conference of the Italian SIGCHI
Chapter. Association for Computing Machinery, New York, NY, USA, Article 37, 1–5.
https://doi.org/10.1145/3464385.3464746

7. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016
on the protection of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive 95/46/EC.

12

8. Awanthika,S., Nalin A. G. A., (2018). Why developers cannot embed privacy into software
systems? An empirical investigation. In Proceedings of the 22nd International Conference
on Evaluation and Assessment in Software Engineering 2018 (EASE'18). Association for
Computing Machinery, New York, NY, USA, 211–216.
https://doi.org/10.1145/3210459.3210484

9. Notario, N., Crespo, A., Martìn, Y. S., Del Alamo, J. M., Le Métayer, D., Antignac, T.,
Kung, A., et al. (2015). PRIPARE: Integrating Privacy Best Practices into a Privacy Engi-
neering Methodology. IEEE Security and Privacy Workshops, San Jose, CA, pp. 151-158.
https://doi.org/10.1109/SPW.2015.22

10. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W., 2011. A privacy threat anal-
ysis framework: supporting the elicitation and fulfillment of privacy requirements. Require-
ments Engineering, vol. 16, no. 1, pp. 3-32, 2011.

11. Van Blarkom, G.W., Borking, J.J., and Olk, J.G.E. (2003). Handbook of Privacy and Pri-
vacy-Enhancing Technologies. The Case of Intelligent Software Agents. College Bescher-
ming Bersoonsgegevens, ISBN 90-74087-33-7

12. He, Q., Anton, A.I., 2003. A framework for modelling privacy requirements in role engi-
neering, In: Proceedings of REFSQ, vol. 3, pp. 137-146, 2003.

13. Kallpniatis, C., Kavakli, E., Gritzalis, S. (2008). Addressing privacy requirements in system
design: the PriS method. Requirements Engineering, vol. 13, pp 241-255. Springer-Verlag.
https://doi.org/10.1007/s00766-008-0067-3

14. Mead, N. R., Stehney, T., 2005. Security quality requirements engineering (SQUARE)
methodology, ACM, vol. 30, no. 4, pp. 1-7, 2005

15. Cavoukian, A. (2010). Privacy by Design: The 7 Foundational Principles.
16. Aad, I., & Niemi, V. (2010). NRC Data Collection and the Privacy by Design Principles.
17. Hoepman, J.-H. (2014). Privacy Design Strategies. In IFIP, ICT Systems Security and Pri-

vacy Protection (pp 446-459). Springer Berlin Heidelberg
18. Privacy Patterns, https://privacypatterns.org. Resource document. UC Berkeley, School of

Information. Accessed 29 May 2021.
19. Micro Focus, Fortify Taxonomy: Software Security Errors. https://vulncat.fortify.com/en.

Accessed 29 May 2021.
20. Basili, V., Heidrich, J., Lindvall, M., Münch, J., Regardie, M., Rombach, D., Seaman, C.,

Trendowicz, A., GQM+Strategies: A Comprehensive Methodology for Aligning Business
Strategies with Software Measurement, 2014

21. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012).
Experimentation in software engineering. Springer Science & Business Media.
https://doi.org/10.1007/978-3-642-29044-2

22. Brooke, J. “SUS - A quick and dirty usability scale.”, in Usability evaluation in industry,
CRC Press, 1996.

23. Borsci, S., Federici, S., & Lauriola, M. (2009). On the dimensionality of the System Usabil-
ity Scale: a test of alternative measurement models. Cognitive Processing, 10(3), 193-197.
https://doi.org/10.1007/s10339-009-0268-9

24. Baldassarre, M.T., Caivano, D., and Visaggio, G., “Software renewal projects estimation
using dynamic calibration,” International Conference on Software Maintenance, 2003.
ICSM 2003. Proceedings., 2003, pp. 105-115, https://doi.org/10.1109/ICSM.2003.1235411.

	A Tool for Improving Privacy in Software Development
	Recommended Citation

	tmp.1646554799.pdf.GvT22

