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Abstract 

Online forums sponsored by electronic networks of practice (ENPs) have become an important 

platform for technology-mediated knowledge exchange, yet relatively little is known about how ENP 

participants filter and evaluate the information they encounter on these forums. This study integrates 

perspectives from expectation confirmation theory, prospect theory, and neuroscience research to 

explore how ENP forum filtering judgments are influenced when expectations formed on the basis 

of contextual cues are confirmed or disconfirmed by the examination of solution quality. We 

summarize six different models of expectation confirmation explored in previous IS literature and 

report the results of a neuroimaging experiment using functional MRI (fMRI) that paired both 

positive and negative contextual cues with high- and low-quality solutions on a mock ENP forum 

interface. Results show that evaluation judgments are strongest in conditions where initial contextual 

cue judgments are confirmed by examination of solution quality except when the perceived 

expectation-experience gap is large, providing evidence for an assimilation-contrast model of 

expectation confirmation. We also found neural activation differences for expectation confirmation 

vs. disconfirmation and, consistent with prospect theory, differences in filtering behaviors with 

respect to unexpected gains vs. unexpected losses. 

Keywords: Electronic Networks of Practice, Expectation Confirmation Theory, Prospect Theory, 

NeuroIS, fMRI 

René Riedl was the accepting senior editor. This research article was submitted on February 17, 2020 and underwent 

two revisions.  

1 Introduction 

Electronic networks of practice (ENPs) are groups of 

loosely connected, geographically separated individuals 

who share common interests and communicate over 

technology-mediated channels (Wasko et al., 2004, 2009; 

Wasko & Faraj, 2005). In today’s era of online 

communication, ENPs have become an important and 

popular medium for knowledge exchange because of their 

open nature and the diversity of domains they cover, 

ranging from parenting (www.parenting.com/parenting-

forums), paragliding (www.paraglidingforum.com), and 

programming (www.stackoverflow.com), just to name a 

few. Although ENPs may comprise hundreds or 

thousands of participants, exchanges that take place on 

ENP forums are typically dyadic: an individual seeking 

a solution to a problem posts a question to which other 

network participants can respond (Beck et al., 2014). 

Because of their open nature, a single query posted to 

an ENP forum may elicit several responses from a 

variety of ENP participants, ranging from highly 

specialized subject matter experts to casual observers. 

Thus, an ENP knowledge seeker faces the challenge of 

evaluating multiple responses to a query and 

evaluating which is best suited to solve the problem at 

hand, a process termed information filtering (Fadel et 

al., 2015; Meservy et al., 2014). To aid in this filtering 
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process, most forums offer contextual cues 

surrounding each solution that offer indications as to 

its purported quality. These cues may include 

indicators of the expertise of the solution author, 

endorsement of a subject matter expert, or an 

aggregation of community feedback about a given 

solution. Such cues can help to quickly eliminate or 

target specific solutions in the filtering process; 

however, there is no guarantee that the indications of 

these cues will be consistent with each other or 

accurately reflect the true quality of the solution. The 

ENP knowledge seeker must therefore engage in a 

filtering process that relies on (1) evaluation of 

contextual cues, (2) evaluation of the solution content 

itself, or (3) some combination of both.  

One particularly salient characteristic of ENP forums 

is that, unlike other technology-mediated knowledge 

exchange platforms such as email (Sussman & Siegal, 

2003) or knowledge repositories (Fadel et al., 2009), 

the multiplicity of solutions and cues available on ENP 

forums present a complex information filtering task 

where consistent or conflicting signals may exist about 

the utility of a given solution. For example, an ENP 

knowledge seeker may form expectations about the 

utility of a posted solution based on its surrounding 

contextual cues (e.g., an endorsement by an expert or 

the community), only to find that these expectations 

are violated when examining the content of the 

solution. Alternatively, the knowledge seeker may 

anchor on the indications of certain cues and then fail 

to adjust filtering judgments in light of subsequent 

contradictory evidence. In such a scenario, it is not 

clear how different combinations of cues influence 

both each other and ultimate filtering judgments. 

Exploring both the behaviors and cognitions involved 

in this type of multi-attribute, multi-alternative 

filtering task constitutes an important step toward 

better theory development surrounding the use of 

ENPs as a mechanism for technology-mediated 

knowledge exchange.  

In this paper, we examine how ENP information 

filtering judgments are influenced, both behaviorally 

and neurocognitively, by different combinations of 

contextual cues and solution content. Drawing from 

expectation confirmation theory (Oliver, 1980, 2010) 

and neurological studies of prediction error (Schultz, 

2016; Schultz & Dickinson, 2000), the central premise 

of our theorization is that initial expectations about a 

solution based on contextual cues can be confirmed or 

disconfirmed by evaluation of the solution content, and 

that this confirmation/disconfirmation has differential 

effects on both filtering outcomes and cognitive 

processes that underlie the filtering process. Based on 

prospect theory (Kahneman & Tversky, 1979), we 

further postulate that the nature and magnitude of these 

effects will differ depending on their directionality; 

i.e., when expectations are positively disconfirmed 

(exceeded) vs. when they are negatively disconfirmed 

(unmet). We examine these postulates using a NeuroIS 

study design to better understand how ENP 

information filtering judgments are influenced by 

various combinations of contextual cues and solution 

content at both a behavioral and cognitive level. 

NeuroIS is a nascent branch of IS research that “relies 

on neuroscience and neurophysiological knowledge 

and tools to better understand the development, use, 

and impact of information and communication 

technologies” (Riedl et al., 2010, p. 245). A NeuroIS 

approach is particularly valuable for theory 

development surrounding ENP information filtering, 

as it sheds light not only on the behaviors associated 

with this filtering but also on the neurocognitive 

structures and processes that underlie these behaviors. 

We conducted a controlled fMRI experiment using a 

custom instrument that mimicked the structure of an 

ENP forum and measured participants’ behavioral and 

hemodynamic responses to contextual cues and 

subsequent evaluation of solution content. We report 

both the behavioral and neural results of our 

experiment and theorize on the possible cognitive 

underpinnings of filtering in these scenarios.  

The results of our experiment contribute to extant IS 

literature on both ENPs (Fadel et al., 2015; Meservy et 

al., 2014, 2019) and expectation confirmation (Brown 

et al., 2008, 2012, 2014) in two primary ways. First, 

from a behavioral perspective, we explore how 

expectations and experiences interact in ENP filtering 

tasks. In IS research, although expectation 

confirmation theory has been applied to the domain of 

information technology acceptance and continuance, to 

our knowledge it has not been applied to the way that 

information itself is filtered and evaluated; yet, just as 

people can form expectations about the utility of an 

information system, so too can they form expectations 

about the utility of information itself (Bozan & Berger, 

2018; Delone & Mclean, 1992, 2003). Moreover, as 

evidenced by the divergent results of both IS and 

broader research, it seems probable that different 

theoretical models of expectation confirmation could 

offer more or less explanatory power depending on the 

context in question. In this study, we postulate a unique 

pattern of results based on each of six competing 

models of expectation confirmation and, based on 

experimental data, show that ENP filtering judgments 

conform most closely to an assimilation-contrast 

model. Consistent with prospect theory (Kahneman & 

Tversky, 1979), we also show a differential effect of 

gains and losses in information filtering; namely, that 

information judgments based on content assimilate 

more toward contextual cue indications when 

expectations based on these cues are negatively 

disconfirmed vs. positively disconfirmed. To our 

knowledge, this is the first study to explore how these 

expectations and experiences interact with respect to 
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online information, thus constituting an important 

theoretical and empirical step toward better 

understanding of ENP filtering behaviors. 

Second, this study employs a NeuroIS approach using 

functional MRI (fMRI) data collected during the 

experiment to examine the neural mechanisms 

associated with expectation (dis)confirmation in ENP 

information processing. Dimoka et al. (2011) identify 

seven possible ways that NeuroIS methods can 

contribute to the corpus of knowledge in IS; this study 

contributes to the IS literature in at least three of these 

ways. First, by testing for unique brain activation 

patterns when ENP knowledge seekers experience 

confirmation vs. disconfirmation, we localize the 

neural correlates of these constructs in the domain of 

ENP information filtering. Establishing these 

correlates is an important first step toward 

understanding common vs. differentiated cognitive 

processes involved in this context. Second, our study 

complements existing data sources with brain data that 

show what occurs on a neurocognitive level when 

expectations are confirmed vs. disconfirmed. 

Specifically, we show distinct activation patterns in 

regions associated with functions such as error 

detection and reward anticipation, including the 

anterior cingulate cortex (ACC) and anterior insula 

when people experience disconfirmation vs. 

confirmation, and the ventral striatum in connection 

with positive and negative disconfirmation. Finally, 

our results enhance IS theories by offering both a new 

context for exploring expectation confirmation/ 

disconfirmation as well as deeper insights into what 

cognitive functions may come to bear when these 

conditions are experienced by ENP users. 

2 Theoretical Background & 

Related Work 

2.1 ENP Information Filtering 

IS research on ENPs has examined the factors that 

influence how and why knowledge is both contributed 

(Wasko et al., 2004, 2009; Wasko & Faraj, 2005) and, 

more recently, consumed (Fadel et al., 2015; Meservy 

et al., 2014, 2019) on ENP forums. The present study 

focuses on the consumption side of the knowledge 

exchange equation. Recent IS research has made 

inroads in understanding behaviors associated with 

ENP information filtering. Much of this work draws on 

dual-process theories of human cognition (e.g., Eagly 

& Chaiken, 1984; Petty & Cacioppo, 1986), which 

posit that information processing can occur via a 

central (systematic) route in which information content 

is carefully scrutinized, or via a peripheral (heuristic) 

route in which quicker and easier judgments are 

reached based on surrounding contextual cues. Studies 

have shown that both information content and 

contextual cues play an important role in the 

information filtering process. For example, Meservy et 

al. (2014) showed that although greater elaboration of 

information content positively moderated its effect on 

filtering decisions, contextual cues exerted an even 

larger influence on these decisions, even among ENP 

knowledge seekers with the ability and motivation to 

analyze information content. Fadel et al. (2015) 

examined how attentional switching patterns between 

solutions vs. between different cues within the same 

solution affected filtering decisions, with results 

suggesting that greater filtering accuracy is associated 

with systematic comparisons of solution content and 

increased attribute-based filtering over time. Finally, 

Meservy et al. (2019) showed that filtering judgments 

were influenced by the valence and source of 

contextual cues, as well as an interaction between 

different types of cues and the solution content itself. 

Using an fMRI experimental protocol, Meservy et al. 

(2019) also offer preliminary propositions surrounding 

differential neural systems recruited during the 

information filtering process.  

Although the studies cited have begun to shed light on 

how information found on ENP forums is filtered and 

evaluated, several important theoretical questions remain, 

including how combinations of contextual cues and 

content interact to influence filtering judgments. In this 

study, we rely on two theoretical perspectives to guide our 

investigation of this question. First, expectation 

confirmation theory (Oliver, 1980, 2010) offers a useful 

lens for understanding how expectations and their 

subsequent confirmation/disconfirmation via experiences 

influence outcome evaluations. Second, prospect theory 

(Kahneman & Tversky, 1979) provides a theoretical 

rationale for explaining differential outcomes based on 

positive vs. negative expectation disconfirmation.  

2.2 Expectation Confirmation Theory 

Expectation confirmation theory (Oliver, 1980, 2010) 

has been widely applied in IS research to explain user 

satisfaction with and continued use of information 

systems (e.g., Brown et al., 2014; Lankton & McKnight, 

2012). Originating in the domain of marketing and 

consumer behavior, this theory postulates that 

satisfaction and subsequent outcome evaluations with 

regard to an artifact are a function of initial expectations 

about that artifact that are either confirmed or 

disconfirmed by experience. Research has shown, for 

example, that both satisfaction and continued use of an 

information system are positively influenced by the 

degree to which expectations about an information 

system are exceeded in a positive direction (termed 

positive disconfirmation) vs. when they are unmet 

(termed negative disconfirmation) (Bhattacherjee, 2001; 

Bhattacherjee & Premkumar, 2004).  
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Table 1. Six Models of Expectation Confirmation 

Model Explanation of expectation confirmation Sample IS studies 

Assimilation 

Experiences assimilate to expectations. Outcome 

evaluations are highest (lowest) when expectations 

are high (low). 

(Lankton & McKnight, 2012; Szajna & 

Scammell, 1993) 

Contrast 

The contrast of expectations and experiences leads to 

more extreme outcome evaluations. Evaluations are 

highest (lowest) when experiences positively 

(negatively) disconfirm expectations. 

(Staples et al., 2002) 

Assimilation-Contrast 

When the gap between expectations and experiences 

is small, outcome evaluations assimilate to 

expectations. When the gap is large, positive 

(negative) disconfirmation produces the highest 

(lowest) outcome evaluations. 

(Brown et al., 2012; Goode et al., 2017; 

Masuch et al., 2019) 

 

Generalized Negativity 

Any departure of experiences from expectations has a 

negative effect on outcome evaluations. Evaluations 

are highest when expectations are met. 

(Ginzberg, 1981; Goode et al., 2017; 

Tan et al., 1999; Venkatesh & Goyal, 

2010) 

 

Expectations Only 
Expectations directly predict outcome evaluations; 

experiences are irrelevant. 
(Davis et al., 1989; Köbler et al., 2011) 

Experiences Only 
Experiences directly predict outcome evaluations; 

expectations are irrelevant.  

(Brown et al., 2008; Hakkarainen, 2013; 

Medina et al., 2015) 

Although the fundamental concept of expectation 

confirmation/disconfirmation is straightforward, the 

interplay between expectations and experience and their 

effect on subsequent outcomes is not universal. 

Literature in consumer behavior (e.g., Anderson, 1973; 

Schifferstein et al., 1999) as well as IS (e.g., Brown et 

al., 2014) has identified at least six theoretical models 

that offer competing accounts of expectation 

confirmation: assimilation, contrast, assimilation-

contrast, generalized negativity, expectations only, and 

experiences only. The following paragraphs describe the 

key tenets of each these models, which are summarized 

in Table 1 (adapted from Brown et al., 2014). 

The assimilation model of expectation confirmation 

holds that expectations serve as an anchor to 

experiences such that the evaluation of experiences 

assimilates toward expectations. When expectations 

are high (low), outcome evaluations tend to be higher 

(lower) to reduce the cognitive dissonance between 

expectations and experiences (Brown et al., 2014). 

This means that expectations should be set high to 

achieve the most positive evaluation of experiences 

(Boulding et al., 1993). Conversely, the contrast model 

asserts that high or low outcome evaluations result not 

from the initial value of expectations per se, but from 

the contrast between these expectations and what is 

experienced (Staples et al., 2002). Under this account 

of expectation confirmation, outcome evaluations are 

highest when experiences markedly exceed 

expectations, and lowest when they fall markedly short 

of expectations. This would suggest that the positive 

disconfirmation of initially low expectations will 

produce the most positive outcome evaluation. 

The assimilation-contrast model combines the 

assimilation and contrast perspectives. According to this 

model, the interplay between expectations and 

experience depends on the degree of separation between 

them (Klein, 1999). For small differences, outcome 

evaluations will assimilate toward experiences. As 

differences increase, the contrast weighs more heavily 

and produces the most extreme outcome evaluations: 

highest for positive disconfirmation and lowest for 

negative disconfirmation (Brown et al., 2014). Under 

this model, high outcome evaluations result from 

assimilation to moderately high expectations, or positive 

disconfirmation of very low expectations. 

The fourth model, generalized negativity, offers a very 

different account of expectations and experiences. 

Under this model, any departure of experience from 

expectations results in a lower outcome evaluation. This 

model therefore predicts that outcome evaluations are 

highest when experiences (positive or negative) are 

consistent with expectations (confirmation) and lowest 

when they are inconsistent (disconfirmation) (Ginzberg, 

1981; Venkatesh & Goyal, 2010). 

The final two models posit that expectations and 

experiences do not interact in influencing outcome 

evaluations. The expectations only model holds that 

experiences do not affect outcome evaluations at all— 

only expectations matter (Davis et al., 1989). Outcome 

evaluations are therefore highest when expectations are 

high. In contrast, the experiences only model makes the 

opposite assertion: outcome evaluations are shaped only 

by experiences, regardless of initial expectations 

(Brown et al., 2008). Here, positive outcome evaluations 

are achieved only through positive experiences. 
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Over the past two decades, several studies in the IS 

literature have applied expectation confirmation theory 

to understand how expectations and experiences 

associated with an information system influence its 

subsequent use (e.g., Bhattacherjee, 2001; 

Bhattacherjee & Premkumar, 2004; Brown et al., 2012, 

2014; Ginzberg, 1981; Lankton & McKnight, 2012; 

Staples et al., 2002; Szajna & Scammell, 1993; 

Venkatesh & Goyal, 2010). Results from this body of 

work have been mixed, with some studies finding 

support for each of the six models summarized above 

(see Brown et al., 2014 for a review). In their study, 

Brown et al. (2014) explicitly compared each of these 

six models using survey data that measured people’s 

expected and experienced perceived usefulness of a 

system and its subsequent use. They concluded that in 

the domain of information systems use, “the 

assimilation-contrast model has the highest predictive 

ability and is the best available model for explaining 

the relationship between usefulness and key dependent 

variables in IS” (Brown et al., 2014, p. 749).  

2.3 Prospect Theory 

Prospect theory, a foundational theory of behavioral 

economics, suggests that human decision-making is 

asymmetrical with respect to anticipated gains and 

losses resulting from a decision (Kahneman & Tversky, 

1979). In particular, when faced with a potential loss vs. 

a commensurately sized gain, people weigh the disutility 

of the loss disproportionately higher than the utility of 

the gain, and consequently go to greater lengths (or 

assume more risk) to avoid the loss than to achieve the 

gain. For example, most people would choose to win 

$500 with certainty than accept a 50% chance of 

winning $1000 or $0, even though the expected value of 

these two options is the same. However, faced with a 

certain loss of $500 or a 50% chance of losing $1000 or 

$0, most people choose the latter (riskier) option to 

avoid the certainty of loss (Chiu & Wu, 2011). 

The predictions of prospect theory can be framed within 

the lens of expectation confirmation theory, where 

positively and negatively disconfirmed expectations are 

viewed as gains (getting more than one expected) or 

losses (getting less than one expected), respectively 

(Schifferstein et al., 1999). The asymmetry predicted by 

prospect theory means that the magnitude of a person’s 

response to negative disconfirmation (a perceived loss) 

will be greater than the magnitude of a response to a 

comparable positive disconfirmation (a perceived gain). 

In other words, when people have high expectations 

about an object (e.g., an information system or 

information itself) and these expectations are unmet, the 

fallout from this negative disconfirmation is larger than 

the corresponding benefit of having expectations 

exceeded (Brown et al., 2014; Cheung & Lee, 2009; 

Lankton & McKnight, 2012).  

A handful of studies in the IS literature have explored 

prospect theory as it relates to information systems 

adoption. For example, Lankton and McKnight (2012) 

found that negative disconfirmation of expectations 

surrounding an information system’s usefulness (i.e., 

the system was less useful than expected) had a 

disproportionately stronger negative impact on user 

satisfaction with the system than the positive impact 

that occurred when expectations were exceeded. 

(Interestingly, an opposite positive asymmetry was 

observed for expectations surrounding ease of use.) 

Similarly, Cheung and Lee (2009) showed that 

negative perceptions of qualities such as information 

accuracy, timeliness, and appropriateness had a 

stronger deteriorating effect on user satisfaction with 

an online portal than the satisfaction-enhancing effect 

of similarly-scaled positive perceptions. Principles of 

prospect theory have also been observed in other areas 

of IS research, including software project escalation 

(Keil et al., 2000), continuance (Newman & 

Sabherwal, 1996), and investment (Rose et al., 2004). 

2.4 Prediction Errors 

Expectation confirmation and prospect theories offer 

useful insights into behaviors resulting from 

expectation confirmation/disconfirmation, but what 

happens in the brain when expectations are violated has 

also been a topic of ongoing interest to neuroscience 

researchers. Expectation confirmation/ 

disconfirmation has been explored in a variety of 

contexts in both human and animal neurocognitive 

studies, including pattern recognition (Bubic et al., 

2009), reward prediction (Martin et al., 2009), and 

reasoning about ontological and causal relationships 

(Danek et al., 2015; Porubanova et al., 2014). Studies 

in this area typically identify expectation violation as a 

form of prediction error, defined as the difference 

between an expected (predicted) and actual outcome 

(Schultz, 2016; Schultz & Dickinson, 2000). 

Prediction errors can be either positive (i.e., the actual 

outcome varies from expectations in a positive way) or 

negative (i.e., the actual outcome varies from 

expectations in a negative way) (Asaad & Eskandar, 

2011). In an ENP forum context, prediction error 

(expectation disconfirmation) would occur when 

expectations formed about the quality of a forum 

solution based on contextual cues are later violated 

(either positively or negatively) through an 

examination of solution content.  

Neurobiological studies exploring prediction error in 

different contexts have exhibited some divergence in 

observed patterns of neural activity depending on the 

context in question; however, meta-analyses of this 

body of work have converged on certain brain areas 

that seem to reliably activate across different types of 

prediction error scenarios. For example, in their review 

of 35 neural studies involving reward prediction error 
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paradigms, Garrison et al. (2013) identified the 

striatum, anterior cingulate cortex (ACC), and the 

lateral prefrontal cortex as areas commonly associated 

with prediction error. A more recent meta-analysis by 

D’Astolfo and Rief (2017, p. 4) revealed similar 

findings: prediction error was associated with 

activation changes in the striatum, insula, thalamus, 

and fronto-medial structures (such as the ACC): areas 

that are associated with the fronto-striatal circuit which 

is commonly assumed to be “involved in expectation 

violation processing and the resulting expectation and 

behavioral adaptation.” These findings may be due to 

the role of the ACC in error detection (Carter et al., 

1998), the role of the striatum in signaling reward 

anticipation and prediction error (O’Doherty, 2004), 

and the role of the prefrontal cortex in monitoring 

ongoing behavior and updating goals based on 

feedback (Miller & Cohen, 2001). 

In the following section, we draw from tenets of 

expectation confirmation theory, prospect theory, and 

neural response to prediction errors to develop our 

research hypotheses. We first hypothesize about 

patterns of filtering behaviors when expectations based 

on contextual cues are confirmed or disconfirmed. 

Then, integrating neurobiological evidence related to 

prediction errors, we hypothesize about the neural 

mechanisms that underlie these behaviors. 

3 Hypotheses 

As noted earlier, the central premise of our theorization 

is that ENP knowledge seekers can form initial 

expectations about the utility of a solution based on 

contextual cues, and these expectations can be 

confirmed or disconfirmed by subsequent evaluation 

of solution content. This premise is supported by extant 

ENP research, which has shown that because 

contextual cues are quickly and easily consumed, they 

can form the basis of initial judgments about solutions 

even for those experienced and knowledgeable enough 

to evaluate solution content itself (Meservy et al., 

2014). For the purposes of our theorization, we 

consider a prototypical case where contextual cues set 

high (H) or low (L) expectations for the quality of the 

solution, and the content quality of the solution itself is 

either high (H) or low (L). Combining these conditions 

produces four possible outcomes: two in which 

expectations are confirmed as high (HH) or low (LL), 

and two in which expectations are disconfirmed, either 

positively (LH) or negatively (HL). For example, a 

knowledge seeker who sees that a solution is highly 

rated (H) by a subject matter expert and/or other 

participants on the ENP forum may reasonably expect 

that the quality of the solution (i.e., its correctness and 

 
1 We consider boundary conditions for theoretical exposition, 

though more moderate judgments are also possible. 

utility for solving the problem) will be high (H). If the 

subsequent evaluation of solution content fails to 

identify any flaws in the solution or if there is enough 

evidence to indicate that the solution solves the 

problem, this expectation may be confirmed (HH), and 

the user will likely decide to adopt the solution. 

However, if the user perceives an error or other 

problem with the solution after examining its content 

(HL), then negative disconfirmation occurs, and the 

user’s initial high expectations of quality will be 

tempered. Similar outcomes can occur for the negative 

side: expectations about solutions whose contextual 

cues indicate lower quality (e.g., community 

downvotes or expert critiques), may subsequently be 

confirmed by verification of flaws within the solution 

(LL) or positively disconfirmed if the solution itself 

appears to be viable (LH).  

The six models of expectation confirmation outlined 

earlier predict different outcomes for expectation 

(dis)confirmation in ENP information filtering tasks. 

The assimilation model predicts that experiences 

assimilate to expectations and, therefore, prescribes 

that expectations should be set high (Boulding et al., 

1993). Under this model, judgments (i.e., experiences) 

of information quality based on examination of the 

information content are swayed by initial expectations 

based on contextual cues and should be most extreme 

when these judgments confirm expectations. In other 

words, the solutions most (least) likely to be adopted 

are those whose high (low) initial expectations—based 

on contextual cues—are subsequently confirmed by 

evaluation of solution content (HH, LL), whereas 

evaluation of solutions whose content disconfirms 

initial expectations (HL, LH) will be more moderate 

due to the anchoring effect of these expectations 

(Lankton & McKnight, 2012; Szajna & Scammell, 

1993). This outcome is depicted graphically in Figure 

1(a) below. In the figure, initial expectations about 

solution quality (shown on the left) may be high or 

low1 depending on the initial indications of contextual 

cues. When the individual then evaluates the actual 

solution content, new judgments are formed (shown on 

the right) that may confirm or disconfirm expectations. 

If no assimilation occurs, the final judgments about 

high-quality solutions should be the same whether 

expectations are confirmed (HH) or disconfirmed 

(LH), and the same should be true for low-quality 

solutions (LL and HL). However, if assimilation is 

present, the final evaluations of high-quality solutions 

initially expected to be of low quality should be lower 

than those expected to be of high quality due to 

assimilation toward lower initial expectations (the 

inverse would hold for low-quality solutions). 
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Figure 1. Expectation Confirmation/Disconfirmation Models 

Counter to the assimilation model, the contrast model 

predicts that the highest or lowest outcome evaluations 

occur under conditions of disconfirmation, i.e., when 

the difference between expectations and experiences is 

the largest in either a positive or negative direction 

(Staples et al., 2002). Under this model, solutions that 

are eventually rated highest by ENP users should be 

those where initial low expectations based on 

peripheral cues are positively disconfirmed (exceeded) 

by evaluation of the content itself, and vice versa for 

low-quality solutions initially expected to be of high 

quality. Under this model, depicted graphically in 

Figure 1(b), the contrast between expectations and 

experiences creates an amplifying effect wherein 

experiences that disconfirm expectations are evaluated 

as more extreme (high or low) than those that confirm 

expectations. This would suggest that expectations 

should be set low to produce high outcome evaluations. 

The assimilation-contrast model, as its name suggests, 

combines predictions from the assimilation and 

contrast model. As indicated in Figure 1(c), this model 

holds that for small departures from expectations, 

experiences will assimilate to expectations. However, 

as the distance between expectations and experience 

increases, the effect of surprise/disappointment from 

exceeded/unmet expectations becomes stronger, and 

the contrast effect manifests itself (Brown et al., 2012). 

For ENP users, this would suggest that when the 

differences between contextual cue-based expectations 

and content-based experiences are small, evaluation of 

solution content will assimilate toward cue-based 

expectations. When solution content quality is 

perceived to be markedly higher (or lower) than 

initially expected, this surprise effect will produce 

more extreme outcome evaluations consistent with the 

contrast model. This suggests that outcome evaluations 

are highest when expectations are slightly high, 

accurate, or extremely low (Brown et al., 2014). 

Unlike the assimilation and contrast model, the 

generalized negativity model posits that any departure 

of experience from expectations will result in a lower 

outcome evaluation; that is, both positive and negative 

disconfirmation will result in lower outcome 

evaluations than either positive or negative 
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confirmation (Ginzberg, 1981; Venkatesh & Goyal, 

2010). As shown in Figure 1(d), this means that final 

evaluations of solution quality would be higher when 

evaluations of solution quality confirm contextual cue-

based expectations whether these expectations are high 

or low. Under this model, expectations should be set 

accurately to achieve the highest outcome evaluations. 

The final two models, expectations-only and 

experiences-only, posit that expectations and 

experiences do not interact. Under the expectations-only 

model, outcome evaluations are shaped only by 

expectations; experiences are irrelevant (Davis et al., 

1989). In ENP information filtering, this would mean 

that judgments are based solely on indications of 

contextual cues; evaluation of solution content would 

not alter these judgments. On the other hand, the 

experiences-only model holds that expectations do not 

matter—outcome evaluations are determined only by 

experiences (Brown et al., 2008). This would imply that 

ENP users ignore indications of contextual cues and 

base their judgments only on evaluations of solution 

content. Figures 1(e) and 1(f) depict these patterns. In 

the expectations-only model, judgments are uniform for 

any condition where contextual cues are the same (HH 

and HL, LL and LH); in the experiences-only model, 

judgments track with the evaluations of solution content 

(HH and LH, LL and HL). 

Research in both IS and other domains has provided 

support for each of the six models of expectation 

confirmation in various domains; however, due to the 

paucity of such research in the domain of ENP forums, 

it is unclear which of these models offers the most 

accurate theoretical account of information filtering 

behaviors based on expectations and experiences. 

Previous research in ENP information filtering 

provides strong evidence that both contextual cues and 

solution content exert influence on the information 

filtering process (Fadel et al., 2015; Meservy et al., 

2014); thus, it seems unlikely that the expectations-

only model (based exclusively on contextual cues) or 

the experiences-only model (based exclusively on 

solution content) would hold in this context. However, 

the assimilation, contrast, generalized negativity, or 

assimilation-contrast models of expectation 

confirmation each entail a role for both expectations 

and experiences, and each offer a plausible but unique 

explanation of how they might interact in ENP 

information filtering. Accordingly, in the absence of 

empirical data favoring one model in this context, we 

test a hypothesis of competing alternatives: 

H1: In ENP information filtering, expectations based 

on contextual cues interact with experiences 

based on solution content in a pattern consistent 

with either (a) assimilation, (b) contrast, (c) 

generalized negativity, or (d) assimilation-

contrast models of expectation confirmation. 

Theories of human decision-making offer insights not 

only into the anticipated outcomes of confirmed and 

disconfirmed expectations, but also regarding the 

asymmetric impact of the valence of these 

expectations. In the context of expectation 

confirmation, asymmetry refers to the condition in 

which the effect of positive or negative 

disconfirmation on the outcome variable is 

disproportionately larger or smaller than the other, 

suggesting a nonlinear relationship between 

expectations, experiences, and outcome variables. 

Expectation confirmation research in IS (Cheung & 

Lee, 2009; Lankton & McKnight, 2012) and in other 

domains (Schifferstein et al., 1999) has typically 

provided evidence for negative asymmetry, meaning 

that the diminishing effect of negative disconfirmation 

on an outcome variable is disproportionately larger 

than a commensurate amplifying effect of positive 

disconfirmation. For example, research has shown that 

the negative disconfirmation of expectations about the 

usefulness of an IS has a larger negative impact on user 

satisfaction with the system than the corresponding 

positive impact from positive disconfirmation (Cheung 

& Lee, 2009; Lankton & McKnight, 2012).  

The asymmetry associated with expectation 

disconfirmation is rooted in prospect theory (Kahneman 

& Tversky, 1979), which holds that when making 

judgments, people weigh potential losses more heavily 

than they weigh equivalent gains. In other words, a 

course of action that would lead to avoidance of a loss 

would generally be preferred to one that produces a 

commensurate gain. As explained by Lankton and 

McKnight (2012, p. 94), “not responding to something 

that might have positive outcomes has less dire 

consequences (e.g., mere regret) than responding to 

something that might have negative outcomes (e.g., 

actual harm).” Applying this concept to the context of 

ENP filtering, we might expect that a solution favored 

by the indications of contextual cues but then found to 

be of low quality (an unexpected loss), will evoke a 

greater adjustment in judgment than a solution initially 

signaled as low quality that is later deemed to be viable 

(an unexpected gain). That is, people will adjust their 

filtering judgments more dramatically to avoid a loss 

(adopting a bad solution) than to achieve a gain 

(adopting a good solution). Importantly, this prediction 

that the upward adjustments of positive disconfirmation 

will be more modest than the downward adjustments of 

negative disconfirmation is distinct from that of the 

generalized negativity model, which holds that any 

departure from expectations will be negative. 

H2: When evaluation of content is inconsistent with 

expectations based on contextual cues, evaluation 

adjustments will be larger for a negative 

disconfirmation (an unexpected loss) than for a 

positive disconfirmation (an unexpected gain).  
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Hypotheses 1 and 2 posit that different combinations 

of cues on ENP forums will lead to different types of 

filtering behaviors; however, equally important are the 

neural mechanisms that underlie these behaviors. 

Elucidating the neural generators of these behaviors 

can help advance theory beyond explaining what 

happens during ENP filtering to explaining why these 

behaviors occur. We therefore turn our attention to the 

neural correlates of expectation (dis)confirmation that 

may provide explanatory insights to forum information 

filtering behaviors. 

Summative studies of brain research employing 

prediction error paradigms have pointed to several 

brain regions possibly associated with the processing 

of prediction errors, including the ACC, insula, 

prefrontal cortex, the striatum, and the midbrain 

(D’Astolfo & Rief, 2017; Garrison et al., 2013). To 

narrow these broad regions of interest in a systematic 

way, we performed a meta-analysis using the 

Neurosynth database (neurosynth.org) and the search 

term “prediction error.” Neurosynth scrapes the 

PubMed Central database (maintained by the US 

National Institutes of Health) for fMRI publications 

that report locations of activations resulting from 

contrasts associated with specific terms and returns 

brain locations that are associated with a given term. 

The ACC, left and right anterior insula, left and right 

ventral striatum, and the midbrain (presumably the 

ventral tegmental area or VTA) were all identified as 

associated with contrasts of “prediction error” (in what 

Neurosynth terms a “uniformity test”). However, the 

ACC and anterior insula likely signal errors generally, 

while the ventral striatum and VTA, identified as 

preferentially associated with prediction error, may be 

more specifically involved in evaluating positive and 

negative prediction errors (see below). In this 

hypothesis, we therefore focus on brain regions that 

have only been shown to be involved in expectation 

disconfirmation generally, and not specifically 

associated with either positive or negative 

disconfirmation. Consequently, we hypothesize that 

brain regions that signal errors generally would be 

more active when there is a prediction error (regardless 

of whether the error is positive or negative) as in the 

case where ENP solution quality is inconsistent with 

contextual cues versus the case where there is no 

prediction error:  

H3: Distinct neural activation patterns will be 

observed when expectations (predictions) based 

on contextual cues are confirmed vs. when they 

are disconfirmed. Specifically, there will be a 

higher BOLD signal in the ACC and anterior 

insula when there is a prediction error compared 

to when there is no prediction error.  

In connection with H2, neuroscience research also 

offers some evidence for differential neural substrates 

corresponding to positive and negative prediction 

error. For instance, in a study that involved 

probabilistic reversal learning tasks (tasks where 

stimuli associated with success and failure outcomes 

are repeatedly reversed), Meder et al. (2016) found that 

positive prediction errors were coded by the ventral 

striatum and the medial frontal cortex, a finding 

corroborated by earlier work examining valenced 

prediction errors (Hauser et al., 2015; Iglesias et al., 

2013). D’Ardenne et al. (2008) used primary rewards 

(liquid delivered to thirsty participants) and found 

decreased activation in the ventral striatum for 

negative prediction errors relative to positive 

prediction errors. The pattern of increased activation 

for positive prediction errors relative to negative 

prediction errors in the ventral striatum and VTA has 

been replicated numerous times (e.g., Abler et al., 

2006; see Wang et al., 2016 for review); however, 

error-related processing in response to informational 

rewards such as online solutions has received less 

attention. These findings of differential activation for 

positive and negative prediction error are consistent 

with the results of our Neurosynth meta-analysis that 

identified the ventral striatum and VTA as 

preferentially associated with contrasts of “prediction 

error,” indicating that activation in the ventral striatum 

and VTA should distinguish between positive and 

negative prediction errors. Drawing from this work, we 

anticipate similar activation differences when 

knowledge seekers experience positive prediction error 

(encountering a solution that is unexpectedly good 

despite negative contextual cues) vs. negative 

prediction error (encountering a solution that is 

unexpectedly bad despite positive contextual cues) on 

an ENP forum.  

H4: Distinct neural activation patterns will 

characterize the processing of negative 

prediction errors (unexpected losses) vs. 

positive prediction errors (unexpected gains). 

Positive prediction errors (solution quality 

higher than indicated by contextual cues) will 

be associated with a higher BOLD signal than 

negative prediction errors in the ventral 

striatum and in the VTA. Further, we 

hypothesize a higher BOLD signal in these 

same regions for no prediction error than for a 

negative prediction error.  

4 Methodology 

We selected programming as our experimental context, 

as software developers often search online forums to 

find solutions. To evaluate our hypotheses, we 

conducted a controlled experiment where participants 

were presented with solutions to programming 

problems on a mock ENP forum and were asked to 

evaluate the solutions and render a judgment as to 

whether each would solve the problem at hand. The 

experiment was conducted in a magnetic resonance 
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imaging (MRI) scanner (a 3T Siemens TIM Trio 

scanner using a 12-channel head coil) so that we could 

measure participants’ brain activity as they evaluated 

the solutions.  

4.1 Experimental Instrument and 

Measures 

We developed a custom experimental instrument that 

mimicked the appearance and content of actual online 

ENP forums. Six common programming problems (e.g., 

sorting an array, reversing a string) were selected, and 

eight distinct solutions were developed for each 

problem. To manipulate the quality of the solutions, we 

found eight valid solutions for each problem on actual 

online forums and then introduced logical and other 

errors into half of the solutions to ensure that they would 

not solve the problem. Thus, each programming 

problem had four high-quality and four low-quality 

solutions. All solutions were standardized to a common 

programming language (C#). 

The instrument paired each of the solutions described 

above with two contextual cues: an indicator of whether 

the solution had been validated by a domain expert 

(expert validation) and an indication of whether the 

solution had been validated by the larger population of 

ENP participants (community validation). Using a 

thumbs-up/thumbs-down model, the valence of these 

cues was either positive (suggesting a high-quality 

solution) or negative (suggesting a low-quality solution). 

This produced four treatment conditions: contextual cues 

that were either positive/high (H) or negative/low (L) 

paired with either high-quality (H) or low-quality (L) 

solutions (HH, HL, LH, and LL).2 Additional contextual 

information like screen names, avatars, and join dates 

were taken from actual online forums to increase the face 

validity of the instrument. To minimize the potential 

exogenous influence of these factors, screen names, 

avatars, and join dates were randomly associated with 

different solutions across all participants such that this 

contextual information would not be more likely for one 

condition, problem, or solution than for another. Screen 

names and avatars were only paired with a single solution 

and never repeated. 

The experimental instrument allowed us to capture both 

behavioral and cognitive measures during information 

filtering. To isolate the behavioral impact of contextual 

cues, we first presented the cues by themselves with the 

code blurred such that the participant could tell that a 

solution existed but could not see the details of the code 

(phase 1). We displayed contextual cues first because 

previous studies have found that those cues are often 

used in filtering potential solutions before evaluating 

 
2 Our stimuli also included four additional conditions where 

contextual cues were inconsistent with each other (one 

positive, one negative); however, in this paper, we only 

content cues (Fadel et al., 2015; Meservy et al., 2014). 

After evaluating the cues alone, participants provided a 

rating of how likely they would be to adopt the solution 

on a 5-point scale ranging from unlikely to likely. 

Following this rating, the code was unblurred (phase 2), 

enabling the participant to evaluate the solution content 

itself. Participants could then adjust their initial rating of 

the solution if they wished. The phase 1 and phase 2 

ratings obtained for each treatment condition (HH, HL, 

LH, and LL) were used to test hypotheses H1 and H2. 

Participants had up to 30 seconds to complete both 

phases for each solution but were not constrained to a 

certain amount of time in either phase. On average, 

participants spent 4.7 (SD = 2.2) seconds on phase 1 and 

16.5 (SD = 6.1) seconds on phase 2. Figure 2 shows a 

sample stimulus for phase 1. Appendix A contains 

additional information about the experimental 

procedure and a sample stimulus for phase 2. 

To measure cognitive activity associated with H3 and 

H4, we measured hemodynamic brain response during 

the experimental task using an MRI scanner. We 

followed guidelines established in NeuroIS literature 

(Brocke & Liang, 2014; Dimoka, 2011) for conducting 

and reporting an fMRI study. Similar to other studies of 

prediction error, we analyzed the hemodynamic 

response during phase 2 of each trial from the onset of 

the display of the programming solution to the response 

of the participant to capture the neural processes 

associated with outcome evaluation. See Appendix B for 

MRI scan parameters and details of MRI data analyses.  

4.2 Participants and Procedure 

To test and refine the experimental instrument, we first 

conducted a pilot study with six experienced software 

developers. This pilot test allowed us to verify the 

effectiveness of the experimental manipulations and 

make minor alterations to improve clarity in process and 

content. We then recruited experienced software 

developers from the local community to participate in 

the experiment. Participants were screened to ensure 

safety and compatibility with the MRI machine and to 

ensure they were proficient in Java, C#, or C++ and had 

at least one year of programming experience. In total, 29 

participants (93.1% male, average age 26.2 years, 

average of 4.0 years of programming experience) were 

recruited from local companies and compensated with 

either $25 or a digital 3D model of their brain. 

When participants arrived at the MRI center, they were 

shown an introductory video that provided an overview of 

the study, an introduction to the problems they would try 

to solve, how they would provide their answers, and also a 

brief overview of safety concerns related to MRI studies.  

consider solutions where contextual cues were congruent in 

their indications. See Appendix A for additional details on 

the complete data that was collected. 
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Figure 2. Sample Phase 1 Stimuli: Rating Based on Contextual Cues 

Researchers then answered any questions before 

situating participants in the MRI machine, where 

participants interacted with the instrument using a four-

button controller and communicated with the 

researchers via a microphone and headphones. First, a 

structural scan was captured so that fMRI signal data 

could later be co-registered with specific areas of the 

brain. Next, participants went through a training session 

to become further acclimated to the task and how to 

interact with the experimental instrument. After training, 

researchers answered any questions the participant may 

have had. Then, each of the programming problems and 

their associated potential solutions were presented. 

Solutions were grouped by problem to decrease 

switching costs between problems. All other aspects of 

the experiment were fully randomized, including the 

overall order of the problems, the order of the solutions 

within each problem, the pairing of contextual cues 

(positive or negative) with code quality (high or low), 

the avatars, screen names, other information of the 

 
3 Familiarity was measured on a 5 point scale ranging from 

1-Not familiar at all to 5-Extremely Familiar. Difficulty was 

measured on a 7 point scale from 1-Extremely easy to 7-

Extremely difficult. Participants reported an average 

familiarity of 3.94 (SD: 0.95) and an average difficulty of 

2.44 (SD: 1.16). 

expert providing the validation of the solution, etc. The 

programming problems were broken into two blocks of 

three problems each in order to give the participant an 

opportunity to rest and avoid fatigue. Between blocks, 

participants saw a blank screen with a plus sign in the 

middle, as is common when separating stimuli in an 

fMRI experiment (Huettel et al., 2003). After the 

experiment, participants completed a survey about their 

experience, including familiarity with and perceived 

difficulty of the programming problems presented.3 

5 Analysis and Results 

We employed two types of analysis to test our 

hypotheses. To measure filtering behaviors associated 

with H1 and H2, we estimated a series of linear mixed-

effects models using the lmer function in the lme4 

package (version 1.1-23) in R (version 4.0.2; Bates et 

al., 2015) to compare solution ratings across treatment 

conditions and phases. 4  Because each solution was 

4  Strictly speaking, our dependent rating variable was 

measured on an ordinal (Likert) scale. Although there is 

support for using linear mixed-effects models with this type 

of data (Kizach, 2014; Norman, 2010), as a robustness check 

we also conducted a parallel analysis using the Cumulative 

Link Mixed Models (CLMM) function of the ordinal 
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evaluated by each participant, the models included 

random intercept terms for solution and participant. 

We also controlled for participant characteristics, 

including gender, age, educational level, years of 

experience, and programming knowledge, problem 

familiarity, and problem difficulty. None of these 

variables had a significant effect except for gender and 

problem familiarity. Ratings provided by women were 

somewhat lower than those provided by men and were 

slightly higher for problems with which participants 

were more familiar. However, inclusion of the control 

variables did not significantly improve the fit of the 

model (χ2 = 13.839, p = 0.054) or alter the significance 

pattern of the main effects. Appendix C provides 

regression coefficients and fit indices for both models. 

H1 posited a competing alternatives hypothesis 

between assimilation, contrast, assimilation-contrast, 

and generalized negativity accounts of expectation 

confirmation in ENP information filtering. We ran 

several analyses to test this hypothesis. First, all of the 

models in H1a-d posit an interaction between 

expectations and experiences. To test for such an 

interaction, we estimated a two-way linear mixed 

effects model that compared the changes in solution 

ratings between phase 1 and phase 2 for each of the 

different treatment conditions, as well as the 

differences between ratings among conditions within 

each phase. Omnibus test results showed a statistically 

significant interaction between phase and condition on 

the final rating (F (3, 1388) = 204.98, p < 0.001). Post 

hoc mean comparisons using a Tukey multiple 

comparisons correction revealed significant 

differences both within and across phases (see Tables 

2 and 3). In phase 1, where participants made 

judgments based only on the contextual cues, mean 

ratings for the HH and HL conditions were not 

significantly different from each other (t = -0.350, n.s.) 

as expected; similar results were observed for the LL 

and LH conditions (t = -0.353, n.s.). However, ratings 

for both of the high contextual cue conditions were 

significantly higher than those of the low contextual 

cue conditions, as shown in the unshaded areas of 

Tables 2 and 3. In phase 2, where participants were 

exposed to the solution content, results showed 

significant differences in the mean ratings between all 

conditions, with mean ratings decreasing from 4.21 

(HH) to 3.21 (LH) to 2.32 (HL) to 1.52 (LL) (see gray 

shaded areas of Tables 2 and 3). These results 

substantiate the expected effects of our experimental 

manipulations and provide evidence that each 

combination of contextual cues and solution content 

quality has a unique effect on information filtering 

decisions, suggesting an interaction effect between 

these forum elements that would not be consistent with 

an expectations- or experiences-only account of 

expectation confirmation.  

To ascertain which type of expectation confirmation 

model (assimilation, contrast, assimilation-contrast, 

generalized negativity; H1a-d) most closely accounted 

for the interaction between expectations and 

experiences in an ENP forum context, we examined the 

between-phase ratings within each condition (reported 

in the diagonal of Table 3) in conjunction with the 

comparisons reported above. Comparisons showed 

that the change in ratings between phases for the 

confirmation conditions (HH and LL) were 

nonsignificant; ratings did not change substantially 

when evaluation of code confirmed the indications of 

contextual cues. In contrast, ratings did change 

significantly for the disconfirmation conditions (HL 

and LH), with HL ratings decreasing by 2.05 in phase 

2 (t = -19.265, p < 0.001) and LH ratings increasing by 

1.67 (t = 15.703, p < 0.001). In both disconfirmation 

cases, final ratings moved toward the actual code 

quality; however, these adjustments did not produce 

final ratings that were equivalent to or more extreme 

than those of the corresponding confirmation 

conditions. Thus, our results fail to support either a 

contrast (H1b) or general negativity (H1c) account of 

expectation disconfirmation in this context (see Figure 

1). Instead, as shown in Figure 3, final ratings for the 

disconfirmation conditions were more moderate than 

those of the corresponding confirmation conditions. 

This suggests that the contextual cues created an 

anchoring effect to final judgments about solution 

quality, a pattern that is consistent with either an 

assimilation (H1a) or assimilation-contrast (H1d) 

account of expectation confirmation. 

Distinguishing between assimilation (H1a) or 

assimilation-contrast (H1d) models requires 

examining the size of the gap between expectations and 

experiences. As noted earlier, although both 

assimilation and assimilation-contrast accounts 

suggest that assimilation to expectations occurs, the 

latter posits that contrast effects manifest themselves 

as the differences between expectations and 

experiences grow. In our dataset, evidence for an 

assimilation-contrast model would exist if final phase 

2 ratings for the disconfirmation conditions (HL and 

LH) were more extreme than the corresponding 

confirmation conditions (LL and HH, respectively) in 

cases where there was a large gap between initial 

expectations and the final content-based solution 

evaluation (see Figure 1c).  

 
package (version 2019-12.10) in R (version 4.0.2) 

(Christensen, 2015; Team, 2017) to estimate ordinal mixed 

effects regression models with both fixed and random effects. 

The pattern of results from this analysis were identical to 

those obtained using lmer. Because the lmer coefficients 

correspond to mean rating values for each condition and thus 

offer a more straightforward interpretation, we report the 

results of this analysis. 
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Table 2. Mean Ratings and 95% Confidence Intervals by Phase and Condition 

 Phase 1 Phase 2  

Condition Mean SE Upper CI Upper CI Mean SE Upper CI Upper CI 
Phase 

difference 

HH 4.33 0.094 4.14 4.52 4.21 0.094 4.02 4.39 -0.12 

HL 4.37 0.094 4.18 4.56 2.32 0.094 2.13 2.50 -2.05 

LH 1.54 0.095 1.36 1.73 3.21 0.095 3.03 3.40 1.67 

LL 1.59 0.094 1.40 1.77 1.52 0.094 1.33 1.70 -0.07 

Table 3. T-Ratios of Ratings Contrasts by Phase and Condition 

 HH HL LH LL 

HH -1.133 15.110** 9.168** 21.510** 

HL -0.325 -19.265** -7.160** 7.457** 

LH 25.698** 22.603** 15.703** 13.562** 

LL 21.924** 25.911** -0.353 -0.648 
**p < 0.001 

 Between-condition contrasts for Phase 1 

   Between-condition contrasts for Phase 2 

   Within-condition contrasts between phases (Phase 2 – Phase 1) 

 

Figure 3. Ratings Pattern by Condition and Phase 

Our experimental instrument allowed for a maximum 

expectations-experience gap measurement of 4 

(difference between the highest possible rating of 5 and 

lowest possible rating of 1). Thus, to see whether such 

evidence existed, we isolated disconfirmation cases 

where the gap between phase 1 and phase 2 ratings was 

3 or 4 (termed HLlarge-gap and LHlarge-gap) and those 

where the gap was 1 or 2 (termed HLsmall-gap and 

LHsmall-gap), and separately compared each of these 

groups to the confirmation conditions. Following the 

analysis above, we ran two-way linear mixed effects 

models that compared the changes in solution ratings 

between phases and conditions for each of the groups. 

The omnibus F statistic for the large-gap model was 

significant (F (3, 998) = 466.23, p < 0.001). Post hoc 

tests of mean ratings (Tables 4 and 5) showed that the 

contrasts between ratings for phase 1 were consistent 

with those reported earlier: differences existed only 

between the sets of high and low contextual cue 

conditions. In phase 2, however, the final rating for 

HLlarge-gap (1.13) was significantly lower than that of 

LL (1.52; t = -3.389, p < 0.01); the average final rating 

for LHlarge-gap (4.48) was higher than that of HH (4.21), 

though the difference was not statistically significant. 

Contrasts of within-condition ratings across phases 

were consistent with those reported earlier, with 

significant differences observed only for the 

disconfirmation conditions.  
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Table 4. Large-Gap Mean Ratings and 95% Confidence Intervals by Phase and Condition  

(disconfirmation conditions only) 

 Phase 1 Phase 2  

Condition Mean SE Upper CI Upper CI Mean SE Upper CI Upper CI 
Phase 

difference 

HL 4.46 0.087 4.29 4.63 1.13 0.087 0.96 1.30 -3.33 

LH 1.23 0.104 1.02 1.43 4.48 0.104 4.28 4.69 3.26 

Table 5. T-Ratios of Large-Gap Ratings Contrasts by Phase and Condition 

 HH HL LH LL 

HH -1.469 29.451** -2.261 30.719** 

HL -1.089 -29.304** -25.517** -3.839* 

LH 27.055** 24.586** 23.668** 24.903** 

LL 31.306** 28.593** -3.002 -0.839 
**p< 0.001; *p< 0.01 

 Between-condition contrasts for Phase 1 

   Between-condition contrasts for Phase 2 

   Within-condition contrasts between phases (Phase 2 – Phase 1) 

For the small-gap model, the F statistic was also 

significant (F (3, 952) = 34.73, p < 0.001). The pattern 

of between-conditions contrasts for phase 1 again 

remained consistent, as did the between-phase 

contrasts for each condition (Tables 6 and 7). In phase 

2, ratings for the disconfirmation conditions of HLsmall-

gap (3.10) and LHsmall-gap (3.02) were not significantly 

different from each other. However, the average final 

rating for HLsmall-gap was significantly higher than that 

of LL (1.52), while the rating for LHsmall-gap was 

significantly lower than that of HH (4.21), similar to 

results observed in the original model. 

Figure 4 provides a visual depiction of the ratings 

patterns observed for the large- and small-gap groups. 

Although one of the comparisons (LHlarge-gap vs. HH) 

did not meet the threshold of statistical significance, 

these results suggest a general pattern that is consistent 

with an assimilation-contrast (H1d) account of 

expectation-confirmation in ENP information filtering. 

Drawing from prospect theory, H2 posited asymmetric 

effects of unexpected losses vs. unexpected gains in 

ENP information filtering. To test this hypothesis, we 

conducted a paired samples t-test comparing the rating 

adjustment for the positive disconfirmation condition 

(LH) to that of the negative disconfirmation condition 

(HL). This test showed that the change for HL was 

significantly greater than that for LH (t = 3.40, p < 

0.005), suggesting that people adjusted their original 

context-cue-based judgments more drastically to avoid 

an unexpectedly bad solution than to adopt an 

unexpectedly good one. This provides support for H2.  

To examine the neural activity associated with filtering 

scenarios (H3 and H4), we analyzed the fMRI imaging 

data using the Analysis of Functional Neuroimages 

(AFNI) suite of programs (Cox, 1996). We followed 

standard fMRI practices when analyzing neural data 

(Dimoka, 2011). To capture the neural responses to 

expectation confirmation/disconfirmation as well as 

unexpected gains and losses, we performed a series of 

repeated-measures analyses that contrasted brain 

activations during phase 2 of the experiment in 

conditions where the quality of the code was high or 

low and consistent or inconsistent with the indications 

of contextual cues.  

H3 postulated neural activation differences in the ACC 

and anterior insula when expectations based on 

contextual cues were confirmed vs. disconfirmed by 

subsequent evaluation of solution content. To test this 

hypothesis, we performed an analysis of fMRI 

activation within brain regions identified in a meta-

analysis of fMRI papers with contrasts labeled 

“prediction error,” which identified the ACC and 

anterior insula as commonly associated with contrasts 

of that term (Figure 5). In the first analysis, we 

examined mean fMRI activation (beta-values) within 

each of the identified regions of interest (ROIs). We 

collapsed confirmation conditions (HH, LL) and 

disconfirmation conditions (HL, LH) with the 

hypothesis that BOLD activation would be higher for 

the disconfirmation conditions than for the 

confirmation conditions.  

As shown in Table 8, we observed significantly higher 

activation for disconfirmation than confirmation in the 

left anterior insula (t(28) = 2.105, p = 0.022) and in the 

ACC (t(28) = 2.319, p = 0.014). In the right anterior 

insula activation for disconfirmation was numerically 

higher than for confirmation (t(28) = 1.655, p = 0.055) 

though the difference did not reach statistical 

significance.  
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Table 6. Small-Gap Mean Ratings and 95% Confidence Intervals by Phase and Condition  

(disconfirmation conditions only) 

 Phase 1 Phase 2 

Condition Mean SE Upper CI Upper CI Mean SE Upper CI Upper CI 
Phase 

difference 

HL 4.08 0.132 3.82 4.34 3.10 0.132 2.84 3.36 -0.98 

LH 1.83 0.115 1.60 2.05 3.02 0.115 2.79 3.24 1.19 

Table 7. T-ratios of Large-Gap Ratings Contrasts by Phase and Condition 

 HH HL LH LL 

HH -1.273 7.521** 9.557** 24.944** 

HL 1.735 -5.821** 0.488 11.285** 

LH 19.958** 13.390** 8.216** 11.157** 

LL 25.422** 17.806** 1.802 -0.727 

Note: **p< 0.001; *p< 0.01 

 
Between-condition contrasts for Phase 1 

   Between-condition contrasts for Phase 2 

   Within-condition contrasts between phases (Phase 2 – Phase 1) 

 

  

Figure 4. Ratings Pattern by Condition and Phase: Large Gap vs. Small Gap 

Table 8. Activation Differences between Confirmation and Disconfirmation in Anterior Insula and ACC 

Region Contrast Mean difference SD T Df Sig. (1-tailed) 

L anterior insula Disconfirm – Confirm 0.00728 0.0186 2.105 28 0.022 

R anterior insula Disconfirm – Confirm 0.00686 0.02232 1.655 28 0.055 

ACC Disconfirm – Confirm 0.01153 0.02676 2.319 28 0.014 
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Note: Activation was higher for the disconfirmation condition than the confirm condition in the left anterior insula and 

ACC. Error bars ±SEM. L. = left; R. = right; ACC = anterior cingulate cortex 

Figure 5. Regions of Interest Used to Test H3 (left) and fMRI Activation for the Contrast of  

Disconfirm-Confirm Conditions (right).  

 

Note: Activation was higher for the confirmation condition than the HL (negative prediction error) condition in the 

right ventral striatum. Error bars ±SEM. L.=left; R.=right 

Figure 6. Regions of Interest Used to test H4 (left) and fMRI Activation for the HL, LH and  

Confirm (HH, LL) Conditions (right)  

Table 9. Activation Differences between Confirm and Positive and Negative Prediction Error  

in the Left and Right Ventral Striatum and VTA. 

Region Contrast Mean difference SD T Df Sig. (1-tailed) 

L Ventral 

Striatum 

Confirm – HL 0.010 0.036 1.538 28 0.068 

Confirm – LH 0.005 0.042 0.651 28 0.261 

R Ventral 

Striatum 

Confirm – HL 0.013 0.024 2.887 28 0.004 

Confirm – LH 0.005 0.026 1.051 28 0.151 

VTA 
Confirm – HL -0.012 0.116 -0.539 28 0.297 

Confirm – LH -0.012 0.079 -0.834 28 0.206 
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Consistent with H3, there was higher activation in 

brain regions associated with error processing (the 

anterior insula and ACC) for prediction 

disconfirmations than for prediction confirmations. An 

exploratory whole-brain analysis revealed no 

additional significant clusters of activation differences 

(see https://neurovault.org/collections/12268/ for 

contrast maps). 

To assess whether there were neural differences for 

positive vs. negative disconfirmation and prediction 

confirmation, as posited by H4, we contrasted 

activations for positive prediction error (LH), negative 

prediction error (HL), and confirmation conditions in 

the ventral striatum and VTA. Figure 6 depicts the 

locations of the regions of interest and mean BOLD 

activation (beta estimates) used to test H4, and Table 9 

reports the mean activation differences along with 

inferential statistics. 

There was significantly higher BOLD activation for the 

confirmation condition than the HL (negative prediction 

error) condition in the right ventral striatum (t(28) = 

2.887, p = 0.004, one-sided). However, inconsistent with 

H4, the difference in activation between positive (LH) 

and negative (HL) prediction error conditions failed to 

reach significance. Similarly, there was no 

differentiation of activation between these conditions in 

the VTA. Thus, we observed partial support for H4. 

Finally, in parallel with our behavioral hypotheses that 

posited differences in final ratings based on initial 

expectations, we performed an analysis of the fMRI data 

incorporating the change in behavioral ratings between 

phase 1 and phase 2 for each trial. Trials were 

categorized according to participants’ change in ratings 

between phase 1 and phase 2. In order to maximize the 

reliability of the estimate of fMRI activation, we 

collapsed large ratings changes equal to or greater than 

2 in either direction, resulting in response categories for 

≤-2, -1, 0, +1, and ≥+2. 5  Consistent with H3, we 

predicted that activation in regions sensitive to 

expectation violations tested in H3 (i.e., left and right 

anterior insula and ACC) would show a U-shape 

function, with greater activation for large rating changes 

in either disconfirmation direction. Consistent with H4, 

we predicted that activation in regions sensitive to 

negative and positive prediction error (i.e., left and right 

ventral striatum and VTA) would approximate a linear 

function, with greater activations for positive shifts in 

ratings. Figure 7 depicts the fMRI activation for the 

ROIs tested in H3 (Figure 7 left) and in H4 (Figure 7 

right). Visual inspection indicates a roughly U-shaped 

 
5 One participant did not have any trials with rating changes 

≥+2 and was excluded from direct contrasts involving that 

condition but was otherwise included in these analyses. 

function in the H3 regions of interest, as we predicted. 

Although the quadratic contrast failed to reach 

significance (see Table 10), we did find significant 

differences between the ≤ -2 and 0 conditions in the left 

insula (t(28) = 3.273, p = 0.003), right insula (t(28) = 

3.140, p = 0.004), and right ACC (t(28)=2.084, p=0.046) 

and between the ≥ +2 and 0 conditions in the right ACC 

(t(27) = 2.349, p = 0.026). Similarly, there appears to be 

a linear trend, as predicted in the H4 ROIs. Although the 

linear contrast again failed to reach statistical 

significance (Table 10), we observed significant 

differences between the endpoint conditions (≤ -2 and ≥ 

+2) in the VTA (t(27) = 2.424, p = 0.022). These results 

provide additional confirmatory evidence of the patterns 

anticipated in H3 and H4. 

6 Discussion 

Adoption and use of information via technology-

mediated channels is a core province of the IS 

discipline; nevertheless, despite their popularity as a 

platform for technology-mediated knowledge 

exchange, relatively little is known about the way 

knowledge seekers evaluate and filter information 

found on ENP forums. By employing a combined 

behavioral/NeuroIS approach that integrates concepts 

from expectation confirmation theory (Oliver, 1980, 

2010), prediction error (Schultz, 2016; Schultz & 

Dickinson, 2000), and prospect theory (Kahneman & 

Tversky, 1979), this study addresses an important facet 

of this question by exploring how filtering judgments 

are influenced when expectations formed on the basis 

of contextual cues are confirmed or disconfirmed by 

examination of solution quality. Our results point to 

several interesting implications for ongoing theory 

development in this area.  

First, although expectation confirmation theory has 

been applied to understanding use and satisfaction with 

information systems, to our knowledge, this study is 

the first in the IS domain to examine how expectation 

confirmation operates in the context of filtering 

information itself, specifically, information that is 

encountered in increasingly popular online forums. 

Our results provide theoretical evidence that filtering 

judgments exhibit both assimilation and contrast 

patterns that correspond with the predictions of an 

assimilation-contrast account of expectation 

confirmation. This result is consistent with other IS 

research that has explored expectation confirmation in 

adoption of information systems (Brown et al., 2014), 

but represents a novel finding with respect to the 

adoption of information itself.  
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Figure 7. Exploratory Analysis of fMRI Activation as a Function of the Change in Participants’ Ratings 

between Phase 1 and Phase 2 of Each Trial in Regions of Interest Used to Test H3 (left)  

and H4 (right). Error Bars ±SEM 

Table 10. Quadratic and Linear Contrasts of the Activation in the H3 and H4 ROIs as a Function  

of the Change in Rating between Phase 1 and Phase 2 of Each Trial  

Region Contrast F Df1 Df2 Sig. 

L Anterior Insula Quadratic 2.566 1 27 0.121 

ACC Quadratic 3.684 1 27 0.066 

R Anterior Insula Quadratic 4.159 1 27 0.051 

L Ventral Striatum Linear 1.842 1 27 0.186 

R Ventral Striatum Linear 3.054 1 27 0.092 

VTA Linear 1.884 1 27 0.181 

Specifically, although some studies in technology-

mediated information exchange have emphasized the 

role of content in information adoption decisions (e.g., 

Fadel et al., 2009; Sussman & Siegal, 2003), our results 

show that judgments of solution quality on ENP forums 

do indeed assimilate to expectations formed on the basis 

of contextual cues, meaning that more robust content-

based evaluation is not immune to influence from 

contextual cues, even in cases where the evaluator’s 

expertise enables judgment of the solution on its own 

merits. Moreover, when judgments of solution quality 

are markedly different from expectations based on 

contextual cues, the contrast can produce a “slingshot” 

effect that produces more extreme evaluations than 

would occur had expectations been confirmed or mildly 

disconfirmed (Brown et al., 2014). For theory, this 

implies that the effects of expectation (dis)confirmation 

on ENP information filtering are likely not monotonic, 

but rather shift in correspondence to the gap between 

cue-based expectations and content-based experiences. 

Ongoing work in this domain should examine further the 

interplay and boundary conditions between the magnitude 

of expectation disconfirmation and the associated 

assimilation/contrast effects that occur as a result.  

Another interesting behavioral implication of our 

results can be derived from the asymmetric effect of 

positive disconfirmation (unexpected gains) and 

negative disconfirmation (unexpected losses) in 

information filtering tasks (H2). Because people 

consult ENP forums to find solutions to problems, one 

might expect the identification of an optimal solution 

to be the primary driver behind information filtering 

decisions. However, our study provides support for the 

prospect theory notion that, in ENP information 

filtering, losses factor more heavily than gains in 

people’s adjustments to their evaluation decisions. 

Specifically, our results suggest that information 

seekers are more inclined to change their initial 

filtering judgments when they believe that doing so 

avoids the adoption of a bad solution than when they 

believe that it leads to the adoption of a good solution. 

This intriguing result has not yet been demonstrated in 

the ENP literature but is consistent with predictions of 

prospect theory (Kahneman & Tversky, 1979) as well 

as with results of other expectation confirmation 

research in the IS domain. For example, Brown et al. 

(2014, p. 749) found that “the negative influence of 

negative disconfirmation had a stronger impact on user 

evaluations [of an information system] than the 

positive influence of positive disconfirmation,” 

leading them to conclude that the positive effect of 

exceeded expectations is proportionally smaller than 

that of unmet expectations on system evaluations. Our 

results suggest that a similar phenomenon occurs for 

evaluating information itself—people appear, either 

consciously or subconsciously, to take lesser measures 
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to adopt valid ENP solutions than they do to avoid 

faulty ones. This result merits further scrutiny and 

highlights a need for ongoing theoretical development 

on the interplay of gain seeking and loss avoidance in 

ENP information filtering tasks.  

Additional theoretical implications can be drawn with 

respect to the neural results of our study. In connection 

with H3, we find evidence for differential neural 

indices of confirmation vs. disconfirmation, regardless 

of the direction (positive or negative) of the 

confirmation/disconfirmation. Based on prior 

literature, we hypothesized that there would be greater 

activation in brain regions associated with error 

processing, such as the anterior insula and anterior 

cingulate cortex (ACC), for disconfirmation conditions 

than for confirmation conditions. Previous 

neuroscience literature has demonstrated that the ACC 

and bilateral anterior insula responds to errors, both 

when the participant is consciously aware and not 

aware of the error (Klein et al., 2007). Models of 

reinforcement learning commonly incorporate a 

“surprise” term that captures the difference between 

the expected outcome of an event and the actual 

outcome. Models such as the PRO (predicted response 

outcome; Alexander & Brown, 2011) propose that the 

ACC performs a kind of error monitoring by signaling 

deviations from expectations for both better-than-

expected and worse-than-expected outcomes. Our data 

are consistent with such models and show that neural 

error detection extends to the domain of ENP 

information filtering. Specifically, the results of our 

experiment provide novel evidence that neural 

mechanisms known to be associated with expectation 

disconfirmation related to primary reinforcers such as 

food and water (e.g., D’Ardenne et al., 2008) appear to 

be similarly implicated in resolving expectation 

disconfirmation associated with informational cues 

such as those found on ENP forums. For IS research, 

our results provide complementary and confirmatory 

neurobiological evidence of expectation-confirmation 

processes at work during ENP information filtering. 

These results highlight the important role of contextual 

cues in the information filtering processes, and show 

that expectations based on contextual cues influence 

subsequent content-based evaluation at the 

neurological level.  

We further hypothesized (H4) that regions 

preferentially associated with prediction error, namely 

the ventral striatum and VTA, would show differential 

responses depending on the direction of the prediction 

error, whether positive or negative. This hypothesis 

was based on previous neuroscience literature 

demonstrating that dopaminergic neurons in the 

ventral striatum scale their responses according to the 

prediction error with an increase in firing for greater-

than-expected rewards (i.e., positive prediction error) 

and a decrease in firing for less-than-expected rewards 

(i.e., negative prediction error). We do show a trend in 

this direction, with higher fMRI activation for positive 

prediction errors (LH) than for negative prediction 

errors (HL); however, this contrast does not reach 

statistical significance. Negative prediction error did 

have significantly lower fMRI activation than expected 

outcomes (confirmation), which is consistent with 

previous fMRI findings using primary rewards (e.g., 

D’Ardenne et al., 2008). For IS theory development, 

our results suggest that the neurocognitive systems that 

distinguish between expected and unexpected 

outcomes in an ENP context appear to be similar to 

those that distinguish between unexpected losses and 

gains in other domains. In particular, the diminished 

activation of the right ventral striatum for negative 

disconfirmation vs. confirmation affirms prior research 

showing that the ventral striatum is more attuned to 

processing gains than losses (Taswell et al., 2018). 

However, the larger activation difference between 

negative disconfirmation vs. confirmation as opposed 

to positive disconfirmation vs. confirmation suggests 

that the negatively skewed behavioral adjustments 

observed in connection with H2 may arise from 

differently scaled neural responses to positive vs. 

negative prediction errors. This apparent asymmetry 

reinforces the idea that information seekers do not 

respond equivalently to positive vs. negative 

disconfirmation on ENP forums. Rather, in keeping 

with prospect theory, our results imply that the 

neurocognitive functions involved in information 

filtering might be more sensitive to encountering 

worse-than-expected solutions than to expected or 

better-than expected solutions. Further investigation of 

this possibility presents an area of important inquiry for 

ongoing behavioral and NeuroIS research.  

For practice, the results of our study substantiate the 

important role that contextual cues play in the filtering 

process. Both forum designers and ENP knowledge 

seekers should be aware that expectations formed 

based on contextual cues may sway later judgments 

based on solution content. Specifically, our results 

show that for small perceived discrepancies between 

indications of contextual cues and content quality, 

judgments of solution quality are moderated by 

expectations set by contextual cues; however, large 

discrepancies seem to produce contrast effects that 

cause knowledge seekers to become more extreme in 

their evaluations, contrary to the indications of 

contextual cues. Over time, repeated exposure to such 

discrepancies could erode confidence in these cues and 

lead forum users to discount their indications 

altogether, leaving scrutiny of content as the only 

viable means of evaluating solution quality and 

causing users to look elsewhere for platforms that offer 

less taxing ways of evaluating solution quality. This 

suggests that forum designers should ensure that 

contextual cues accurately represent the actual quality 

of forum solutions. Additionally, to the extent that the 



Information Filtering in Electronic Networks of Practice  

 

510 

filtering is subject to metacognitive control, ENP 

knowledge seekers should be conscious of the apparent 

bias in the adjustment of filtering judgments that favor 

avoiding a bad solution over adopting a good solution. 

If the trial-and-error cost is relatively low, it may be 

worthwhile to pay more attention to solutions that 

appear to be viable for the given problem, even when 

contextual cues indicate otherwise. 

7 Limitations and Conclusion 

This study has limitations that should be considered 

when evaluating its results. First, our experimental 

design induced a controlled information processing 

sequence that presented solutions one at a time, with 

contextual cues first, followed by solution content. 

Although this ordering was intentional for our research 

purposes and is supported by prior research (Meservy 

et al., 2014), filtering patterns on actual forums may 

differ (e.g., the person could examine the solution 

content first, followed by the contextual cues). 

Additionally, although every effort was made to 

maximize the fidelity of our experimental instrument 

to actual ENP forums, unavoidable environmental 

differences remain between a controlled fMRI 

environment vs. the natural context of ENP filtering, 

which may affect the generalizability of our results. 

We selected programming as our experimental context, 

where we controlled for objectively correct or incorrect 

answers; however, some ENPs have solution content 

that is more subjective depending on the context of the 

individual evaluating the proposed solution. Third, our 

participant sample was 93% male. Although this is 

roughly representative of the gender imbalance in the 

programming domain (Murthy, 2014), it may temper 

the generalizability of our findings to other ENP forum 

domains that have broader appeal to women or both 

genders.  

In conclusion, this study is among the first to apply a 

NeuroIS approach to the domain of information 

filtering in ENP forums. By integrating diverse 

theoretical perspectives, our results offer important 

insights into how expectation confirmation/ 

disconfirmation based on contextual cues and solution 

content influences ENP information filtering patterns, 

both behaviorally and on a neural level. We encourage 

ongoing research that builds upon and extends the 

theoretical and practical groundwork laid by this study. 

 

  



Journal of the Association for Information Systems 

 

511 

References 

Abler, B., Walter, H., Erk, S., Kammerer, H., & 

Spitzer, M. (2006). Prediction error as a linear 

function of reward probability is coded in 

human nucleus accumbens. NeuroImage, 31(2), 

790-795.  

Alexander, W. H., & Brown, J. W. (2011). Medial 

prefrontal cortex as an action-outcome 

predictor. Nature Neuroscience, 14(10), 1338-

1344.  

Anderson, R. E. (1973). Consumer dissatisfaction: The 

effect of disconfirmed expectancy on perceived 

product. In Source: Journal of Marketing 

Research 10, 38-44. 

Asaad, W. F., & Eskandar, E. N. (2011). Encoding of 

both positive and negative reward prediction 

errors by neurons of the primate lateral 

prefrontal cortex and caudate nucleus. The 

Journal of Neuroscience, 31(49), 17772-17787.  

Bates, D., Mächler, M., Bolker, B., & Walker, S. 

(2015). Fitting linear mixed-effects models 

using lme4. Journal of Statistical Software, 

67(1), 1-48.  

Beck, R., Pahlke, I., & Seebach, C. (2014). Knowledge 

exchange and symbolic action in social media-

enabled electronic networks of practice: A 

multilevel perspective on knowledge seekers 

and contributors. MIS Quarterly, 38(4), 1245-

1270.  

Bhattacherjee, A. (2001). Understanding information 

systems continuance: An expectation-

confirmation model. MIS Quarterly, 25(3), 351.  

Bhattacherjee, A., & Premkumar, G. (2004). 

Understanding changes in belief and attitude 

toward information technology usage: A 

theoretical model and longitudinal test. MIS 

Quarterly, 28(2), 229-254.  

Boulding, W., Kalra, A., Staelin, R., & Zeithaml, V. A. 

(1993). A dynamic process model of service 

quality: From expectations to behavioral 

intentions. Journal of Marketing Research, 

30(1), 7-27.  

Bozan, K., & Berger, A. (2018). The effect of unmet 

expectations of information quality on post-

acceptance workarounds among healthcare 

providers. Proceedings of the 51st Hawaii 

International Conference on System Sciences, 

3039-3048.  

Brocke, J. vom, & Liang, T. P. (2014). Guidelines for 

neuroscience studies in information systems 

research. Journal of Management Information 

Systems, 30(4), 211-233. 

Brown, S. A., Venkatesh, V., & Goyal, S. (2012). 

Expectation confirmation in technology use. 

Information Systems Research, 23(2), 474-487.  

Brown, S. A., Venkatesh, V., & Goyal, S. (2014). 

Expectation confirmation in information 

systems research: A test of six competing 

models. MIS Quarterly, 38(3), 729-756.  

Brown, S. A., Venkatesh, V., Kuruzovich, J., & 

Massey, A. P. (2008). Expectation 

confirmation: An examination of three 

competing models. Organizational Behavior 

and Human Decision Processes, 105, 52-66.  

Bubic, A., Yves Von Cramon, D., Jacobsen, T., 

Schröger, E., & Schubotz, R. I. (2009). 

Violation of expectation: Neural correlates 

reflect bases of prediction. Journal of Cognitive 

Neuroscience, 21(1), 155-168.  

Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, 

M. M., Noll, D., & Cohen, J. D. (1998). 

Anterior cingulate cortex, error detection, and 

the online monitoring of performance. Science, 

280(5364), 747-749.  

Cheung, C. M. K., & Lee, M. K. O. (2009). User 

satisfaction with an internet-based portal: An 

asymmetric and nonlinear approach. Journal of 

the American Society for Information Science 

and Technology, 60(1), 111-122.  

Chiu, A., & Wu, G. (2011). Prospect theory. In Wiley 

Encyclopedia of Operations Research and 

Management Science. https://doi.org/10.1002/ 

9780470400531.eorms0687.  

Christensen, R. H. B. (2015). Ordinal: Regression 

models for ordinal data. http://www.cran.r-

project.org/package=ordinal/ 

Cox, R. W. (1996). AFNI: Software for analysis and 

visualization of functional magnetic resonance 

neuroimages. Computers and Biomedical 

Research, 29(3), 162-173.  

Cox, R. W. (2018). Equitable thresholding and clustering. 

BioRxiv. https://doi.org/10.1101/295931 

D’Ardenne, K., McClure, S. M., Nystrom, L. E., & 

Cohen, J. D. (2008). BOLD responses 

reflecting dopaminergic signals in the human 

ventral tegmental area. Science, 319(5867), 

1264-1267.  

D’Astolfo, L., & Rief, W. (2017). Learning about 

expectation violation from prediction error 

paradigms: A meta-analysis on brain processes 

following a prediction error. Frontiers in 

Psychology, 8, Article 1253.  

Danek, A. H., Ã-llinger, M., Fraps, T., Grothe, B., & 

Flanagin, V. L. (2015). An fMRI investigation 



Information Filtering in Electronic Networks of Practice  

 

512 

of expectation violation in magic tricks. 

Frontiers in Psychology, 6, Article 84.  

Davis, F. D., Bagozzi, R., & Warshaw, P. R. (1989). 

User acceptance of computer technology: A 

comparison of two theoretical models 

Management Science, 35(8), 982-1003.  

Delone, W. H., & Mclean, E. R. (1992). Information 

systems success: The quest for the dependent 

variable. Information Systems Research, 3(1), 

60-95.  

Delone, W. H., & Mclean, E. R. (2003). The DeLone 

and McLean model of information systems 

success: A ten-year update. Journal of 

Management Information Systems / Spring, 

19(4), 9-30.  

Dimoka, A. (2011). How to conduct a functional 

magnetic resonance (fMRI) study in social 

science research. MIS Quarterly, 36(3), 811-

840.  

Dimoka, A., Pavlou, P. A., & Davis, F. D. (2011). 

Research commentary—NeuroIS: The 

potential of cognitive neuroscience for 

information systems research. Information 

Systems Research, 22(4), 687-702.  

Eagly, A. H., & Chaiken, S. (1984). Cognitive theories 

of persuasion. Advances in Experimental Social 

Psychology, 17, 267-359. 

Fadel, K. J., Durcikova, A., & Cha, H. S. (2009). 

Information influence in mediated knowledge 

transfer: An experimental test of elaboration 

likelihood. International Journal of Knowledge 

Management, 5(4), 26-42. 

Fadel, K. J., Meservy, T. O., & Jensen, M. L. (2015). 

Exploring knowledge filtering processes in 

electronic networks of practice. Journal of 

Management Information Systems, 31(4), 158-

181.  

Garrison, J., Erdeniz, B., & Done, J. (2013). 

Neuroscience and biobehavioral reviews 

prediction error in reinforcement learning: A 

meta-analysis of neuroimaging studies. 

Neuroscience and Biobehavioral Reviews, 

37(7), 1297-1310.  

Ginzberg, M. J. (1981). Early diagnosis of MIS 

implementation failure: Promising results and 

unanswered questions. Management Science, 

27(4), 459-478.  

Goode, S., Hoehle, H., Venkatesh, V., & Brown, S. A. 

(2017). User compensation as a data breach 

recovery action: An investigation of the sony 

playstation network breach. MIS Quarterly: 

Management Information Systems, 41(3), 703-

727.  

Hakkarainen, S. (2013). Expectations and user 

experiences as determinants of technology 

adoption and continued use. Aalto University 

Learning Centre. https://aaltodoc.aalto.fi/ 

handle/123456789/8918 

Hauser, T. U., Iannaccone, R., Walitza, S., Brandeis, 

D., & Brem, S. (2015). Cognitive flexibility in 

adolescence: Neural and behavioral 

mechanisms of reward prediction error 

processing in adaptive decision making during 

development. NeuroImage, 104, 347-354.  

Huettel, S. A., Song, A. W., & McCarthy, G. (2003). 

Functional magnetic resonance imaging. 

Sinauer Associates.  

Iglesias, S., Mathys, C., Brodersen, K. H., Kasper, L., 

Piccirelli, M., den Ouden, H. E. M., & Stephan, 

K. E. (2013). Hierarchical prediction errors in 

midbrain and basal forebrain during sensory 

learning. Neuron, 80(2), 519-530.  

Kahneman, D., & Tversky, A. (1979). Prospect theory: 

An analysis of decision under risk. 

Econometrica, 47(2), 263-292.  

Keil, M., Mann, J., & Rai, A. (2000). Why software 

projects escalate: An empirical analysis and test 

of four theoretical models. MIS Quarterly, 

24(4), 631-664.  

Kizach, J. (2014). Analyzing Likert-scale data with 

mixed-effects linear models: A simulation 

study. Poster presented at at Linguistic 

Evidence 2014 Conference. 

Klein, J. G. (1999). Developing negatives: Expectancy 

assimilation and contrast in product judgments. 

Advances in Consumer Research, 26(1), 463-

469.  

Klein, T. A., Endrass, T., Kathmann, N., Neumann, J., 

von Cramon, D. Y., & Ullsperger, M. (2007). 

Neural correlates of error awareness. 

NeuroImage, 34(4), 1774-1781.  

Köbler, F., Goswami, S., Koene, P., Leimeister, J. M., 

& Krcmar, H. (2011). NFriendConnector: 

Design and evaluation of an application for 

integrating offline and online social 

networking. AIS Transactions on Human-

Computer Interaction, 3(4), 214-235.  

Lankton, N. K., & McKnight, H. D. (2012). Examining 

two expectation disconfirmation theory models: 

Assimilation and asymmetry effects. Journal of 

the Association for Information Systems, 13(2), 

88-115.  

Martin, L. E., Potts, G. F., Burton, P. C., & Montague, 

P. R. (2009). Electrophysiological and 

hemodynamic responses to reward prediction 

violation. Neuroreport, 20(13), 1140-1143.  



Journal of the Association for Information Systems 

 

513 

Masuch, K., Greve, M., & Trang, S. (2019). Does It 

meet my expectations? Compensation and 

remorse as data breach recovery actions-an 

experimental scenario based investigation. 

Proceedings of the 14th Pre-ICIS Workshop on 

Information Security and Privacy.  

Meder, D., Madsen, K. H., Hulme, O., & Siebner, H. 

R. (2016). Chasing probabilities: Signaling 

negative and positive prediction errors across 

domains. NeuroImage, 134, 180-191.  

Medina, C., Rufín, R., & Rey, M. (2015). Mediating 

relationships in and satisfaction with online 

technologies: Communications or features 

beyond expectations? Service Business, 9(4), 

587-609.  

Meservy, T. O., Fadel, K. J., & Kirwan, C. B. (2019). 

An fMRI exploration of information processing 

in electronic networks of practice. MIS 

Quarterly, 43(3), 851-872.  

Meservy, T. O., Jensen, M. L., & Fadel, K. J. (2014). 

Evaluation of competing candidate solutions in 

electronic networks of practice. Information 

Systems Research, 25(1), 15-34.  

Miller, E. K., & Cohen, J. D. (2001). An integrative 

theory of prefrontal cortex function. Annual 

Review of Neuroscience, 24(1), 167-202.  

Murthy, S. (2014). Women in software engineering: 

The sobering stats. LinkedIn Talent Blog. 

https://business.linkedin.com/talent-

solutions/blog/2014/03/women-in-

engineering-the-sobering-stats 

Newman, M., & Sabherwal, R. (1996). Determinants 

of commitment to information systems 

development: A longitudinal investigation. MIS 

Quarterly, 20(1), 23-54.  

Norman, G. (2010). Likert scales, levels of 

measurement and the “laws” of statistics. 

Advances in Health Sciences Education, 15(5), 

625-632.  

O’Doherty, J. P. (2004). Reward representations and 

reward-related learning in the human brain: 

Insights from neuroimaging. Current Opinion 

in Neurobiology, 14(6), 769-776.  

Oliver, R. L. (1980). A cognitive model of the 

antecedents and consequences of satisfaction 

decisions. Journal of Marketing Research, 

17(4), 460-469.  

Oliver, R. L. (2010). Satisfaction: A behavioral 

perspective on the consumer. M. E. Sharpe. 

Petersen, S. E., & Dubis, J. W. (2012). The mixed 

block/event-related design. NeuroImage, 62(2), 

1177-1184.  

Petty, R. E., & Cacioppo, J. T. (1986). The elaboration 

likelihood model of persuasion. In Advances in 

Experimental Social Psychology, 19, 123-205.  

Porubanova, M., Shaw, D. J., McKay, R., & Xygalatas, 

D. (2014). Memory for expectation-violating 

concepts: the effects of agents and cultural 

familiarity. PloS One, 9(4), Article e90684.  

Riedl, R., Banker, R. D., Benbasat, I., Davis, F. D., 

Dennis, A. R., Dimoka, A., Gefen, D., Gupta, 

A., Ischebeck, A., Kenning, P., M̈uller-Putz, G., 

Pavlou, P. A., Straub, D. W., vom Brocke, J., & 

Weber, B. (2010). On the foundations of 

NeuroIS: Reflections on the Gmunden retreat 

2009. Communications of the Association for 

Information Systems, 27(1), 243-264.  

Rose, J. M., Rose, A. M., & Norman, C. S. (2004). The 

evaluation of risky information technology 

investment decisions. Journal of Information 

Systems, 18(1), 53-66.  

Schifferstein, H. N. J., Kole, A. P. W., & Mojet, J. 

(1999). Asymmetry in the disconfirmation of 

expectations for natural yogurt. Appetite, 32(3), 

307-329.  

Schultz, W. (2016). Dopamine reward prediction error 

coding. Dialogues in Clinical Neuroscience, 

18(1), 23-32.  

Schultz, W., & Dickinson, A. (2000). Neuronal coding 

of prediction errors. Annual Review of 

Neuroscience, 23, 473-500.  

Staples, D. S., Wong, I., & Seddon, P. B. (2002). 

Having expectations of information systems 

benefits that match received benefits: Does it 

really matter? Information & Management, 

40(2), 115-131.  

Sussman, S. W., & Siegal, W. S. (2003). Informational 

influence in organizations: An integrated 

approach to knowledge adoption. Information 

Systems Research, 14(1), 47-65. 

Szajna, B., & Scammell, R. W. (1993). The effects of 

information system user expectations on their 

performance and perceptions. MIS Quarterly, 

17(4), 493-516.  

Tan, B. C. Y., Wei, K. K., Raman, K. S., & Sia, C. L. 

(1999). A partial test of the task-medium fit 

proposition in a group support system 

environment. ACM Transactions on Computer-

Human Interaction, 6(1), 47-66.  

Taswell, C. A., Costa, V. D., Murray, E. A., & 

Averbeck, B. B. (2018). Ventral striatum’s role 

in learning from gains and losses. Proceedings 

of the National Academy of Sciences of the 

United States of America, 115(52), E12398-

E12406.  



Information Filtering in Electronic Networks of Practice  

 

514 

Team, R. C. (2017). R: A language and environment 

for statistical computing. R Foundation for 

Statistical Computing. https://www.r-

project.org/ 

Venkatesh, V., & Goyal, S. (2010). Expectation 

disconfirmation and technology adoption: 

Polynomial modeling and response surface 

analysis. MIS Quarterly, 34(2), 281-303.  

Wang, K. S., Smith, D. V., & Delgado, M. R. (2016). 

Using fMRI to study reward processing in 

humans: Past, present, and future. Journal of 

Neurophysiology, 115(3), 1664-1678.  

Wasko, M. M., & Faraj, S. (2005). Why should I share? 

Examining social capital and knowledge 

contribution in electronic networks of practice. 

MIS Quarterly, 29(1), 35-57.  

Wasko, M. M., Faraj, S., & Teigland, R. (2004). 

Collective action and knowledge contribution 

in electronic networks of practice. Journal of 

the Association for Information Systems, 5(11-

12), 493-513.  

Wasko, M. M., Teigland, R., & Faraj, S. (2009). The 

provision of online public goods: Examining 

social structure in an electronic network of 

practice. Decision Support Systems, 47(3), 254-

265. 



Journal of the Association for Information Systems 

 

515 

Appendix A: Experiment Description 

The data used in this study were collected using a custom experimental instrument that participants interacted with while in 

an MRI machine. Figure A1 provides a high-level overview of the steps of the experiment. Participants were experienced 

software developers and were initially screened to ensure they were eligible to participate in the study. Upon arriving at the 

MRI facility, participants were provided with the research study consent form and once again screened to ensure participant 

safety. Participants then watched an overview video that explained the purpose of the experiment, the types of programming 

problems to be presented, the experimental task procedures (e.g., how to answer questions using a 4-button controller), and 

safety protocols related to the MRI machine. At this point, researchers answered any questions and reiterated safety 

procedures related to the scanner. 

Participants then proceeded with the main experiment where they were situated in the scanner. A quick localization scan and 

a seven-minute structural scan were completed so that the participant’s brain structure could be co-registered with the 

functional MRI data. After the structural scan, a task training session was conducted wherein participants viewed and 

evaluated four different sample solutions to familiarize them with the experimental task. Researchers then answered any 

questions related to the task before beginning the actual experiment. 

During the experiment, participants were shown eight different solutions to six different problems, for a total of 48 different 

solutions. For each problem, the instrument presented eight different solutions, each consisting of a combination of three 

cues (expert rating, community rating, and code quality), each with one of two levels (e.g., high quality, low quality). The 

eight solutions for each problem thus offered a full factorial design with random pairings among the two levels of each factor 

and random ordering of solutions within each problem. Although we presented and collected data on all 48 solutions, this 

study is focused on expectation disconfirmation between contextual cues (i.e., expert and community ratings) and content 

(i.e., code) and only uses data from the 24 solutions (four per problem) where the contextual cues were congruent in their 

indications. Figure A2 shows a sample solution with a high expert rating, a high community rating, and high code quality. 

All solutions for a given problem were presented in a random sequence to reduce cognitive load. To minimize fatigue, the 

experimental task was split into two question blocks where participants evaluated solutions to three of the problems (24 

solutions) during Block 1 and the final three questions during Block 2. Participants were able to rest between blocks. 

Although solutions were grouped within each problem, the order of problems and solutions within each problem were 

randomized. Further, other aspects of the experimental instrument were randomized including information related to the 

expert (name and image) and pairing of code blocks with contextual cues. 

Each solution was presented for an interval of up to 30 seconds that was split into two variable-length phases. During phase 

1, participants were shown the solution with the code blurred and asked to provide an initial rating based solely on the 

contextual cues. Participants used the button bar to select how likely they would be to adopt the presented solution on a 5-

point Likert scale ranging from unlikely to likely. Once participants selected and locked in their rating, they moved on to 

phase 2 where the code was unblurred and they could adjust their initial rating based on evaluation of the code. After 30 

seconds had passed, a blank screen was presented with a fixation cross for two seconds in between stimuli. As phases were 

self-terminated when the participant locked in a rating, each phase had a variable length for each solution. On average, 

participants took 4.7 seconds (SD = 2.2 seconds) during phase 1 and 16.5 seconds (SD = 6.1 seconds) during phase 2. Figure 

A3 provides an overview of a sample stimulus block.  

In our fMRI individual-level analysis (described in Appendix B), we modeled the two phases as variable-length events. 

Signal data for any remaining time left in the 30-second block was combined with data captured during the two second 

interstimulus interval in the model’s baseline, thus accomplishing random temporal jitter between trials in the model. This 

represents a mixed blocked/event-related design (Petersen & Dubis, 2012) which more closely mirrors a participant’s 

experience when seeking information from an online forum. 

 

Figure A1. Experiment Overview 
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Figure A2. Sample Stimulus Layout for Phase 2 

 

 

Figure A3. Overview of Each Stimulus Block 
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Appendix B: MRI Scanning Parameters and Analyses 

All MRI data are available from https://openneuro.org/datasets/ds001353 and analysis scripts are available from 

https://github.com/Kirwanlab/InformationFiltering. MRI scans were acquitted using a 3-Tesla Siemens Tim Trio scanner 

with a 12-channel head coil. Structural MRI scans were collected using a T1-weighted magnetization-prepared rapid 

acquisition with gradient echo (MP-RAGE) sequence with the following parameters: TR = 1900ms; TE = 2.26ms; 176 1-

mm thick slices (no gap); acquisition matrix = 256 × 215; field of view = 218 × 250mm; voxel size = 0.97 × 0.97 × 1mm. 

Functional images were collected using an echo-planar imaging (EPI) sequence with the following parameters: TR = 

2500ms; TE = 28ms; flip angle = 90°; 43 3-mm thick slices (no gap); acquisition matrix = 64 × 64; field of view = 192 × 

192; voxel size = 3 × 3 × 3mm. We collected two functional runs of 324 volumes (TRs) each. MRI data were analyzed 

using Analysis of Functional Images (AFNI; version AFNI_18.2.15). MRI preprocessing included estimation of motion 

correction parameters based on the functional volume (or TR) with the lowest noise levels. Structural scans were also 

aligned with this functional volume then skull stripped and warped into MNI space using a non-linear diffeomorphic 

transformation. All motion correction and spatial normalization transformations were concatenated such that functional 

data were transformed just one time, thus reducing blurring from repeated resampling. Final spatial resolution of the 

functional data was maintained at 3 × 3 × 3mm. Functional data were scaled by the mean of the signal within each voxel 

for each run. Functional volumes (or TRs) with large motion events were excluded from the single-subject first-level 

regression analysis. Coverage masks were created for each subject that excluded voxels with very low EPI signal. These 

coverage masks were combined with a gray-matter mask in the whole-brain group analysis described below. 

Single-subject first-level regression analyses were conducted to fit the ideal hemodynamic response to the neural data for 

each voxel. The design matrix for the regression model included polynomial regressors to account for scanner drift and 

low-frequency fluctuations in the signal (7 regressors per run), and regressors for motion for each run (3 translations, 3 

rotations, 2 runs). Behavioral regressors coded for phase 2 timepoints for HH, LL, HL, and LH task conditions. Regressors 

also coded for all phase 1 timepoints and phase 2 timepoints where contextual cues were inconsistent with each other (see 

footnote 2 in the main text). Both of these classes of conditions were not considered in further analyses. Behavioral 

regressors were modulated by the time to lock in the final response and convolved with the canonical hemodynamic 

response. All nuisance regressors (polynomial drift and motion regressors) were included in the model baseline; thus, the 

baseline (or “0”) in the model represents the null hypothesis against which beta-weights were calculated for the active 

task conditions (see https://afni.nimh.nih.gov/pub/dist/doc/program_help/ 3dDeconvolve.html) and does not represent a 

true baseline of brain activity. Accordingly, all comparisons in subsequent analyses were made between active task 

conditions and not against the baseline model. Parameter estimates (i.e., betas) from these individual-level models were 

not blurred prior to a priori anatomical ROI or whole-brain exploratory analyses. 

Regions of interest (ROIs) were defined using meta-analyses in Neurosynth (neurosynth.org) for the search term 

“prediction error”. The Neurosynth algorithm returns two types of maps: uniformity test maps, which indicate brain 

locations that are consistently but non-specifically active in studies associated with the search term, and association test 

maps, which highlight brain locations that are preferentially or specifically associated with the search term. Both sets of 

maps were FDR corrected at 0.01 and further restricted to include just the largest, most reliable clusters. The Uniformity 

map regions included left and right anterior insula and right anterior cingulate (ACC) cortex in addition to the left and 

right ventral striatum (see Table B1). The Association map included the left and right striatum and a cluster in the 

midbrain, presumably the VTA (Table B2). Since ventral striatum appeared in both maps, we focused on the unique 

clusters when testing H3, which regarded non-specific error processing signals. For both sets of analyses, we performed 

“whole-ROI” analyses by extracting the mean beta-values from the whole ROI for further analyses. Some software 

packages (i.e., SPM) use the term “ROI analysis” to refer to voxel-wise analyses within a smaller region of interest with 

adjusted corrections for multiple comparisons. Since we treated each ROI as a single unit, correction for multiple 

comparisons across voxels was not necessary for this analysis. Whole-brain exploratory (or “voxel-wise”) analyses used 

two-tailed comparisons between conditions of interest (e.g., positive prediction error vs. negative prediction error). We 

employed the equitable thresholding and clustering (ETAC) method to control for multiple comparisons (Cox, 2018).  

Table B1. Regions of Interest Identified in the Neurosynth Uniformity Test (or nonspecific) Map.  

Label Volume (mm3) 
Center of mass (MNI) 

X Y Z 

L ventral striatum 3753 -13 7.8 -6.4 

R ventral striatum 3699 13.6 8.7 -3.6 

L anterior insula 2916 -33.2 20.9 -2 

R anterior insula 2565 35.3 21.6 -2.4 

R anterior cingulate 1782 1.9 19.3 46.7 
Note: The anterior insula and anterior cingulate regions were used to test H3. L = left; R = right 
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Table B2. Regions of Interest Identified in the Neurosynth Association Test Map Used to Test H4.  

Label Volume (mm3) 
Center of mass (MNI) 

X Y Z 

L ventral striatum 3159 -12 8.2 -8.4 

R ventral striatum 2592 13 9.6 -6.4 

R ventral tegmental area 405 4.5 -14.3 -22.3 
Note: L = left; R = right 
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Appendix C: Regression Models 

Table C1. Mixed Effects Models 

 Base model Model with control variables 

Fixed effects variables Estimate SE Estimate SE 

(Intercept) 

HL 

LH 

LL 

Phase 2 

HL * Phase 2 

LH * Phase 2 

LL * Phase 2 

Gender = female 

Age 

Education level 

Years experience 

Programming knowledge 

Problem familiarity 

Problem difficulty 

4.33*** 

0.04 

-2.79*** 

-2.74*** 

-0.12 

-1.93*** 

1.79*** 

0.05 

0.09 

0.12 

0.11 

0.12 

0.11 

0.15 

0.15 

0.15 

4.63*** 

0.04 

-2.79*** 

-2.74*** 

-0.12 

-1.93*** 

1.79*** 

0.05 

-0.34* 

0 

-0.04 

-0.01 

-0.08 

0.10* 

0.03 

0.51 

0.12 

0.11 

0.12 

0.11 

0.15 

0.15 

0.15 

0.16 

0.01 

0.04 

0.02 

0.08 

0.04 

0.03 

Log likelihood 

AIC 

N (ratings) 

N (solutions) 

N (participants) 

1996.0 

4014.0 

1,392 

48 

29 

 1989.1 

4014.2 

1,392 

48 

29 

 

Note: All models included random intercept effects for solution and participant. HH and phase 1 are baseline conditions in the models. *p < 

0.05; **p < 0.01; ***p < 0.001 
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