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ABSTRACT 

A common application of security analytics is binary classification problems, which are 

typically assessed using measures derived from signal detection theory, such as accuracy, 

sensitivity, and specificity. However, these measures fail to incorporate the uncertainty inherent 

to many contexts into the results. We propose that the types of binary classification problems 

studied by security researchers can be described based on the level of uncertainty present in the 

data. We demonstrate the use of Bayes data analysis in security contexts with varying levels of 

uncertainty and conclude that Bayesian analysis is particularly relevant in applications 

characterized by high uncertainty. We discuss how to apply similar analyses to other information 

security research. 

Keywords: Binary classification, security, Bayesian analysis, uncertainty, prevalence, positive 

predictive value 

INTRODUCTION 

The information security field contains many binary classification problems such as 

insurance fraud detection (Artís et al. 2002), finding security bugs (Jiang et al. 2020), intrusion 

detection (Li et al. 2020), and management fraud detection (Cecchini et al. 2010). Shaukat and 

colleagues (Shaukat et al. 2020) recently compared eighteen review papers related to the use of 

machine learning techniques in cybersecurity. The base rate in the samples, the size of the 
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sample, the prevalence of cases in the population, and the sensitivity and specificity of the test all 

contribute to varying levels of uncertainty in the contexts above. In this paper, we use Bayesian 

data analysis methods to show how this uncertainty impacts results and recommend when 

incorporating Bayesian data analysis is most useful to decision makers.  

Evaluating Classification Problems 

In most security research using binary classification, classification models are evaluated 

using signal detection measures such as accuracy, sensitivity, specificity, precision, F-score, and 

area under the ROC curve (AUC) as defined in Table 1 (Japkowicz and Shah 2011; Shaukat et 

al. 2020) derived from a confusion matrix (see Table 2). These measures are useful both to  

Table 1: Definitions of common classification measures. 

Measure Formula Description 

Sensitivity, Recall, Hit Rate, 
True Positive Rate (TPR):  

Of all class A’s, the fraction labeled 
class A 

Specificity, True Negative 
Rate (TNR):  

Of all class B’s, the fraction labeled 
class B 

Precision, Positive 
Predictive Value (PPV):  

The posterior probability of a case 
labeled class A being class A 

Negative Predictive Value 
(NPV):  

The posterior probability of a case 
labeled class B being class B 

Accuracy: 
 

Of all cases, the fraction correctly 
labeled 

F1: 
 

Average of sensitivity and precision 

AUC: 
 

Area under the ROC curve 

 

compare classification models and aid decision-makers (Green and Swets 1966). AUC, for 

example, provides a measurement that incorporates the accuracy of a model at every possible 
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threshold or output probability of that model. This, however, is best used for comparing models 

rather than determining the model’s usefulness. For exploratory studies on new topics or 

techniques, the measures above provide an adequate baseline for future research. For evaluating 

how detection systems might work in the field, however, these measures may fall short.  

Table 2: Confusion Matrix 

 Classified as: A* Classified as: B 
True Class: A True Positives (TP) False Negative (FN) 
True Class: B False Positive (FP) True Negative (TN) 
Note: Here we assume class A is the class of most interest to the researcher.  

Uncertainty refers to a lack of complete information that prevents perfect decision 

making (Twitchell and Fuller 2018). The lack of information, or uncertainty, may lead to 

overconfidence in results both by expressing unsupported precision and failing to recognize the 

full range of possibilities. For example, neither sensitivity nor specificity (as defined in Table 2) 

incorporate any information about the prevalence, or proportion of the population represented by 

the class of most interest.  (Note that we refer to “prevalence” to mean the percentage of a 

population with the phenomenon being detected.  We will use “base rate” to refer to the number 

of positive cases in the sample used in the study).  

Researchers frequently build classification models on balanced samples to overcome the 

inherent problems of training a model on a low base rate sample. While this is a well-justified 

strategy, results should also be evaluated with respect to the prevalence. When results are 

evaluated in relation to the prevalence, sensitivity may be unacceptably low or the false positive 

rate too high for the model to have practical value (Twitchell and Fuller 2018;  National 

Research Council, 2003). ROC curves, AUC and F-score are frequently reported, but are less 

useful for analyzing performance in specific scenarios or contexts than they are for comparing 

algorithms. Precision, or the proportion of positive identifications that are correct, does 
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incorporate the sample’s base rate, but does not help the user understand the uncertainty about 

the base rate and is often not representative of the true prevalence (Twitchell and Fuller 2018). 

These signal detection measures are point estimates that tell us how a classifier performs on the 

sample data. They do not tell us how well a classifier might perform on future data, nor do they 

incorporate any uncertainty in the data. To achieve its full potential, analytics research should 

more fully evaluate the results in the intended context. 

Bayesian Data Analysis 

Bayesian data analysis methods are well-suited for understanding the type of uncertainty 

we describe above. Unlike frequentist methods, they do not assume a sampling distribution. 

Instead, they require building a full probability model on all parameters and allow sampling from 

the posterior distribution of this model. The posterior distribution is not assumed to have any 

shape and includes uncertainty about all parameters in the model including any prior uncertainty 

we have about any of the parameters. 

Bayesian data analysis goes beyond a simple application of Bayes’ theorem. A well-

known application of Bayes’ theorem is calculating the probability of having a disease given a 

positive diagnostic test. In this application, a positive result from a diagnostic test with 99% 

accuracy when testing for a disease with a 1% prevalence in the general population yields a 

probability of having the disease of approximately 50% (Horgan 2016). Missing from this 

analysis is sources of uncertainty related to the accuracy of the test or related to the prevalence of 

the disease. The specificity and sensitivity of the test and the prevalence of the disease are all 

subject to measurement error and bias from the contexts in which those measurements were 

taken. Finally, the more uncertain the test, the more influence the prevalence has on the test 
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precision. A very uncertain test combined with a very low prevalence results in a precision not 

much different than the prevalence.   

Modern Bayesian data analysis—as described in extensive detail in (Gelman et al. 

2013)—encourages researchers to include these errors as uncertainty in the analysis by working 

with probability distributions rather than point estimates. At its essence, Bayesian data analysis 

requires describing a prior distribution of all applicable parameters before incorporating the data 

and a likelihood distribution of the data. Multiplying them together and dividing by the data 

distribution (i.e., applying Bayes’ theorem to the probability distributions) results in a joint 

posterior distribution of all the parameters. In many applications, this procedure can’t be done by 

exact computation (Geyer 2011), so current methods employ Markov Chain Monte Carlo 

(MCMC), an approximate, probability-based, numerical method to sample directly from the 

posterior distribution.  Descriptive statistics can then be derived from the sample to summarize 

the posterior distribution and make inferences. In the next section, we illustrate the use of 

Bayesian data analysis with examples from information security.  

METHODOLOGY 

While Bayesian data analysis is becoming more commonly used in the medical field 

(Gelman and Carpenter 2020), it has only recently appeared in IS research and behavioral 

business research (Cecchini et al. 2010; Dutta et al. 2018; Twitchell and Fuller 2018). To 

demonstrate the utility of incorporating Bayesian data analysis into security analytics research, 

we identified several studies, shown in Table 3, that use binary classification models to find 

phenomena of interest such as cases of fraud, bugs, and deception.  These studies, unlike many 

others, provided a full confusion matrix and prevalence estimates. Many studies don’t provide 

prevalence, likely because it is difficult to obtain or the study authors decided it wasn’t 
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important. Prevalence (Prev. in Table 3) is the estimated prevalence of the phenomenon being 

detected in a real-world setting, not the prevalence of the sample used to train or test the model. 

Prevalence n (Prev. n in Table 3) is the size of the real-world population used to determine 

prevalence. Sample size is the size of the testing set used to test the detection method in the 

study.  

Table 3. Studies included along with reported results 

The studies we found in the security literature did not attempt to estimate prevalence from a 

field test. Instead, if they reported any prevalence, they reported it as a feature of their sample or 

the population from which the sample was drawn. For example, in the criminal statements data, 

the sample the study used had a base rate of 79 deceptive statements out of 366 total statements. 

Since the base rate is given, we include the prevalence estimate as a prior instead of estimating it 

as part of the likelihood. Another example is the intrusion detection study (Li et al. 2020) which 

only provided the prevalence of its training set. The prevalence did not reflect the real-world 

ratio of true positives to overall number of cases. So, we used the closer-to-real-world prevalence 

found in the CICIDS2017 data set (Panigrahi and Borah 2018). We used Model 1 in the 

appendix to analyze the studies. We translated this model into the Stan probabilistic 

Study TP FP TN FN Sample 
Size 

Prev.  Prev. n 

Insurance Fraud (Artís et al. 2002) 768 290 708 229 1995 0.333 3 

Security bugs (Jiang et al. 2020) 107 8 16,917 3,938 20970 0.038 138,982 

Criminal Statements (Fuller et al. 2009) 63 93 194 16 366 0.216 366 

Intrusion Detection (Li et al. 2020)  137,884 53 85,070 4,299 227306 0.001 2,830,540 

Credit Card Fraud (Arya and G 2020) 99 40 56,821 2 56962 0.002 284,807 

Data Loss Prevention (Faiz et al. 2020) 135 28 2,159 114 2436 0.105 8,117 

Management Fraud (Cecchini et al. 2010) 20 92 890 5 1007 0.032 6,427 

Crowdfunding Fraud (Siering et al. 2016) 288 38 232 94 652 0.007 44,054 
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programming language (Carpenter et al. 2017) for fitting via MCMC. The code for the model is 

linked in the appendix. 

RESULTS 

The sensitivity, specificity and prevalence of these studies are summarized in Table 4, along 

with the credible intervals (CrI) for each. Because the results of the model are posterior 

distributions that may not be normally distributed, we follow (Edwards et al. 1963) and use 

credible interval to indicate the interval which contains 95% of the probability density starting 

from the 2.5% quantile and ending at the 97.5% quantile. We abbreviate this CrI to distinguish it 

from confidence intervals used in frequentist statistics. While insurance fraud and management 

fraud have similar sensitivity levels, management fraud has a much wider credible interval and 

thus less certain results than those for insurance fraud. We further investigate the impact of 

prevalence through its influence on positive predictive value (PPV), as shown in Table 5. 

Table 4. Summary statistics for the model posterior distribution 

Study Model Sens. μ (95% 
CrI) 

Model Spec. μ (95% 
CrI) 

Model Prev. μ (95% 
CrI) 

Insurance Fraud 0.770 (0.746, 0.793) 0.709 (0.684, 0.733) 0.394 (0.070, 0.801) 

Security Bugs 0.026 (0.023, 0.030) 0.999 (0.999, 1.000) 0.038 (0.037, 0.039) 

Criminal Statements 0.791 (0.704, 0.870) 0.675 (0.631, 0.717) 0.217 (0.176, 0.261) 

Intrusion Detection 0.970 (0.969, 0.971) 0.999 (0.999, 1.000) 0.001 (0.001, 0.001) 

Credit Card Fraud 0.971 (0.931, 0.994) 0.999 (0.999, 0.999) 0.002 (0.002, 0.002) 

Data Loss Prevention 0.542 (0.489, 0.593) 0.987 (0.982, 0.991) 0.105 (0.098, 0.112) 

Management Fraud 0.779 (0.611, 0.910) 0.906 (0.892, 0.919) 0.032 (0.028, 0.037) 

Crowdfunding Fraud 0.753 (0.714, 0.789) 0.857 (0.816, 0.894) 0.007 (0.007, 0.008) 
 

Table 5 shows the PPV of each study. We focus on PPV as the model output of interest since 

detection is focused on finding “positive” cases and PPV provides the probability that a case 
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labeled as positive is actually positive. Additionally, we highlight PPV uncertainty to show how 

accuracy, prevalence, and sample size affect result in differing levels of uncertainty. Though we 

view uncertainty as a spectrum, to facilitate description, we describe three broad categories of 

uncertainty:  high, medium, and low, and have labeled our results accordingly in We use these 

categories to frame the discussion below. 

Table 5. Summary statistics for the model posterior distribution of NPV and PPV 

Study NPV μ (95% CrI) PPV μ (95% CrI) PPV Uncertainty Level 

Insurance Fraud 0.800 (0.436, 0.976) 0.594 (0.167, 0.916) high 

Security Bugs 0.963 (0.962, 0.964) 0.672 (0.524, 0.816) high 

Criminal Statements 0.921 (0.881, 0.954) 0.402 (0.330, 0.477) medium 

Intrusion Detection 1.000 (1.000, 1.000) 0.517 (0.453, 0.586) medium 

Credit Card Fraud 1.000 (1.000, 1.000) 0.701 (0.642, 0.761) medium 

Data Loss Prevention 0.948 (0.942, 0.955) 0.829 (0.772, 0.879) low 

Management Fraud 0.992 (0.986, 0.997) 0.215 (0.165, 0.264) low 

Crowdfunding Fraud 0.998 (0.997, 0.998) 0.039 (0.029, 0.052) low 
High Uncertainty 

The Insurance Fraud study (Artís et al. 2002) illustrates a PPV with high uncertainty. Even 

though the sensitivity and specificity seem good at 0.77, PPV is very uncertain with a mean of 

0.594 and a 95% CrI that spans from 0.167 to 0.914. This high uncertainty stems from the 

prevalence. To determine the prior prevalence of fraudulent claims, the researchers asked the 

company’s claim inspectors for an estimate, which they gave as 1/3 of all claims. We entered this 

into the model as priorpos = 1 and priorneg = 2. The resulting beta distribution is very wide, which 

results in the PPV also being very wide. The PPV is much lower than the sensitivity or 

specificity. 
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The Security Bugs (Jiang et al. 2020) study’s PPV also has high uncertainty. This is despite 

its very certain sensitivity, in terms of credible interval (95% CrI: 0.023–0.030), specificity (95% 

CrI: 0.999–1.000), and prevalence (95% CrI: 0.37–0.39), which are a result of the high sample 

size.  Despite the low uncertainty in these measures, the PPV has a high uncertainty, which 

results from the low accuracy due to low sensitivity (μ: 0.026). Calculating the raw PPV from the 

sample confusion matrix results in 107/(107 + 8) = 0.930, but incorporating the prevalence 

reported in the paper of 0.038 rather than the sample base rate of 0.193 and using a probabilistic 

model shows that this point estimate is misleading. Instead, Model 1 predicts a PPV with a mean 

of 0.672 whose 95% CrI stretches from 0.524 to 0.816. In situations of high uncertainty, results 

must be applied with caution.  

Medium Uncertainty 

The Criminal Statements, Intrusion Detection, and Credit Card Fraud studies all have PPVs 

of medium uncertainty. All three have more narrow intervals than the high uncertainty studies, 

with Criminal Statements having a 95% CrI that spans from 0.330 to 0.477, Intrusion Detection 

having a 95 % CrI between 0.453 and 0.586, and Credit Card Fraud having a 95% CrI that 

ranges from 0.642 to 0.762. Even in the medium uncertainty category, the prevalence can have a 

large effect on the PPV. Criminal Statements and Credit Card Statements are heavily influenced 

by the prevalence. Criminal Statements has a sensitivity of 0.797 but has a much lower mean 

PPV (0.402). Similarly, Credit Card Fraud has a high sample sensitivity of 99/101, but, because 

of its very low prior prevalence of 492/284807 (0.002), a much lower model mean PPV of 0.632 

than the sensitivity alone would imply.  
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Low Uncertainty 

The studies with the most certain PPVs include Data Loss Prevention, Management Fraud, 

and Crowdfunding Fraud. Of these, Crowdfunding fraud is the most certain with its certainty 

resulting from a very low and certain model prevalence of 0.007 (95% CrI: 0.029–0.052). This 

prevalence results in a very low PPV of 0.039. The low PPV itself also drives its certainty. The 

model assumes a binomial distribution for the PPV; therefore, the PPV distribution can’t be 

lower than zero. As the distribution gets closer to zero or one it gets narrower since there isn’t 

room for it to spread out without crossing zero or one. In low uncertainty contexts, the usefulness 

of signal detection measures is not greatly enhanced by incorporating results from Bayesian 

analysis. 

DISCUSSION 

In this research, we have shown that including prevalence and uncertainty in addition to 

standard performance measures may better provide researchers and practitioners the information 

they need to evaluate the utility of binary classification models. We see credible intervals 

indicating high uncertainty in the Insurance Fraud (Artís et al. 2002) and Security Bugs (Jiang et 

al. 2020) studies with 95% credible intervals of 75 and 28 percentage points, respectively. In 

both studies, what might look like reasonable accuracies when looking at point estimates become 

much less useful when uncertainty is included. 

These high uncertainty estimates are dramatic, but estimating uncertainty is also useful when 

it is medium and low. First, without estimating uncertainty we can’t know whether it is high, 

medium, or low.  Second, in some contexts where the impact of misclassification is high. even 

what we labeled medium or low uncertainty in this paper may be too uncertain to be useful. 

Security researchers can estimate prevalence and then use that prevalence to demonstrate the 
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usefulness of the detection method using PPV and NPV. Even when prevalence is only crudely 

estimated as demonstrated by the “one-third” estimate in the Insurance Fraud (Artís et al. 2002) 

study, researchers can still use that information to estimate include prevalence.   

Despite prior relevant studies not incorporating uncertainty and prevalence, they still add 

value to the field. We see these previous studies and the current paper’s contributions as points 

along a line of maturation. In the past, reporting accuracy, sensitivity, specificity, and precision 

from sample data were considered sufficient to understand a binary classification problem. Many 

studies have gone beyond this by reporting ROC curves and AUC. This paper furthers this 

process of maturation by including uncertainty to enable assessment of their practical 

application.  

Recommendations for researchers 

We recommend researchers estimate the amount of uncertainty in their models when 

performing security analytics research. They can then know whether their research has low, 

medium, or high uncertainty. When uncertainty is low, reporting point estimates and indicating 

that uncertainty was tested and is low should be sufficient. When uncertainty is high, however, 

we recommend researchers include measures and visualizations of that uncertainty. We also 

recommend researchers temper their conclusions based on the measures of uncertainty. If, for 

example, the PPV of a detection mechanism has a wide credible interval, basing conclusions on 

the mean PPV would be inappropriate if the low or high end of the credible interval would lead 

to a different conclusion. When uncertainty falls in the medium category, researchers should 

report it, but how much it affects the conclusions or how much emphasis they should put on the 

uncertainty depends on the context. In contexts like credit card fraud (where banks assume the 

cost of a certain amount of fraud) some uncertainty may not have much consequence: the bank 
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would do the same thing whether the result was at the high or low end of the credible interval. In 

contexts with higher stakes such as security intrusions in critical infrastructure, results at 

different ends of the credible interval may change which security measure are put in place. 

To fully estimate uncertainty researchers must estimate the prevalence the phenomenon of 

interest for their detection mechanism. In our extensive search for relevant studies that included 

prevalence we only found 13 (8 of which we included as exemplars) out of several hundred 

candidates. As the studies above show, without an estimate of prevalence it is impossible to 

know the level of uncertainty in PPV. We recommend researchers include some estimate of 

prevalence, even if that estimate is crude.   

Limitations and Future Directions 

Future studies should incorporate a larger variety of data sets to obtain a more comprehensive 

view of uncertainty in detection studies across the security literature. Using more samples will 

allow researchers to explore the issue of context dependency and incorporate a wider variety of 

prevalences more fully. Though we have demonstrated the impact of Bayesian data analysis 

across multiple studies and contexts (and provide additional results through the link in the 

appendix), we were restricted by the number of studies that provided sufficient information to 

conduct the analysis. The description of the samples used to train and test models is also 

inconsistent, preventing reproducibility of their results and more extended performance 

evaluation. We recommend that researchers include a confusion matrix and as mentioned above 

prevalence (known or estimated) for their data in the context of interest, if the prevalence is 

different than the sample base rate.  

The Bayesian data analysis presented in this paper may not be appropriate for every study. 

For example, studies that are simply comparing the performance of various classification 

algorithms (Lessmann et al. 2015) or determining important classification features (Ho et al. 



Twitchell and Fuller  Uncertainty in Security Analytics Research  
 

Proceedings of the 16th Pre-ICIS Workshop on Information Security and Privacy, Austin, TX, December 12, 2021 13 
 

2016), prevalence and PPV may be less of a priority. It may also be beyond the scope of 

exploratory research. However, we advocate for including measures that could enable this 

analysis as research in a context accumulates. Reviewers and editors should also encourage 

publishing data and a consistent set of metrics. We have also shown that Bayesian data analysis 

may be less useful where the researcher can establish that their context and sample is one of low 

uncertainty. 

CONCLUSION 

This paper shows how Bayesian analysis can be used to better understand studies that use 

machine learning for security tasks. It demonstrates that studies that use machine learning may 

that expressing uncertainty in these studies provides a better measure of their usefulness. More 

specifically, it shows that incorporating Bayes data analysis techniques, specifically prevalence 

and PPV, provides a clearer view of a detection method’s certainty and therefore usefulness. 
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APPENDIX 

Model 1. 

 

 

 

 

 

 

	

Where y is the number people who tested positive, which is distributed binomially according 

to n, the number of tests, and p the rate of positives for the test.  p is the true-positive rate (i.e., 

the sensitivity, sens) plus the false-positive rate (i.e., fpr or 1 minus the specificity).  These are 

multiplied by the prevalence, prev. The model jointly estimates the parameters sens, fpr, and 

prev.  prev is estimated from y, the number of positives and n, the number of tests, and it is 

constrained by sens and fpr.  sens is estimated as a probability for a binomial distribution that 

generates the number of true positives, ntp, from the number of positive cases, npos. fpr is 

similarly estimated from the number of known false positives nfp and the number of negative 

cases, nneg.  prevtest is the prevalence of the test set used to establish the sensitivity and sensitivity 

of the detection algorithm. priorpos  and priorneg  are the prevalence given by the study rather than 

estimated by the model. Finally, we assume we have no prior information about the three 

parameters, sens and fpr, which are given flat priors from the Beta distribution.  
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Once the model estimates sens, fpr, and prev we can calculate the positive predictive value 

(ppv), or the probability of a positive test given that a subject is positive, as follows: 

	

Similarly, we calculate the negative predictive value (npv, or the probability of a negative test 

given the subject is negative). 

	

Code and Supplementary Analysis 

The R and Stan code along with the data used for the analysis and creating the tables and 

figures are here: https://osf.io/rbe8p/?view_only=a1aa9b6553a4464ebe3761c56f3a0832.  
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