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Abstract: Priorities for the exploration of Mars involve the identification and observation of biosig-
natures that indicate the existence of life on the planet. The atmosphere and composition of the
sediments on Mars suggest suitability for anaerobic chemolithotrophic metabolism. Carbonates
are often considered as morphological biosignatures, such as stromatolites, but have not been con-
sidered as potential electron acceptors. Within the present study, hydrogenotrophic methanogen
enrichments were generated from sediments that had received significant quantities of lime from
industrial processes (lime kiln/steel production). These enrichments were then supplemented with
calcium carbonate powder or marble chips as a sole source of carbon. These microcosms saw a
release of inorganic carbon into the liquid phase, which was subsequently removed, resulting in
the generation of methane, with 0.37 ± 0.09 mmoles of methane observed in the steel sediment
enrichments supplemented with calcium carbonate powder. The steel sediment microcosms and lime
sediments with carbonate powder enrichments were dominated by Methanobacterium sp., whilst the
lime/marble enrichments were more diverse, containing varying proportions of Methanomassiliicoccus,
Methanoculleus and Methanosarcina sp. In all microcosm experiments, acetic acid was detected in
the liquid phase. Our results indicate that chemolithotrophic methanogenesis should be considered
when determining biosignatures for life on Mars.

Keywords: methanogenesis; carbonate; biosignature

1. Introduction

The search for evidence of life on Mars has been a priority in Mars exploration for a
number of years [1]. This activity has focused on the analysis of the Martian environment
for biosignatures, or signals that indicate the presence, or previous existence, of life [2] and
has driven the development of a number of planetary investigations, including the Mars
Rover [3], InSight [4] and ExoMars Missions [5].

It is recognised that the consistent detection of methane on Mars [6] may be an indica-
tion of either current or ancient microbial methanogenesis [7]. Methanogenesis proceeds by
a number of routes [8], with hydrogenotrophy (4H2 + CO2→ CH4 + 2H2O) being identified
as the most plausible Martian route [9] since it can proceed at the expense of molecular
hydrogen generated by serpentinisation [10] and/or seismology [11]. Consequently, terres-
trial serpentinisation systems have been identified as potential Martian analogues [12,13].
However, whilst serpentinisation does provide hydrogen, it is associated with alkaline
conditions [12,14,15], which pose issues for hydrogenotrophic methanogens due to the
reduction in available CO2 through carbonate precipitation.
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Carbonates are of interest from a Martian perspective, since a warmer, wetter climate
with a CO2-rich atmosphere was predicted during the Noachian epoch [16] and the mineral
phases are likely to be an indicator of atmospheric evolution [17]. Carbonate deposits
represent a potential Martian habitat [18] from which microbial communities could emerge
through direct interactions with these deposits.

In the present study, we investigate the potential for hydrogenotrophic methanogens
to generate methane in the presence of mineral carbonates at an alkaline pH. Enrichment
cultures were prepared from the sediments of sites across the north of England that had
received waste disposal from the lime kiln or steel industries. On interaction with ground
and spring waters, there is hydrolysis, resulting in the formation of aqueous calcium
hydroxide, which subsequently results in the formation of tufa following the dissolution of
CO2 [19]. These hydrogenotrophic enrichments were then sub-cultured to microcosms in
which CO2 was only available in the form of mineral carbonates.

2. Materials and Methods
2.1. Release of Dissolved Inorganic Carbon from Carbonate Sources

To determine the extent of the release of dissolved organic carbonate (DIC) at pH 10.0,
5 g of a carbonate source (calcium carbonate powder or marble chips with a granule size of
20–30 mm, both Fisher Scientific, Hampton, NH, USA) was added to basal medium (BM,
Tables S1 and S2 and described in [20]). Liquid samples of BM were then taken every 7 days
DIC, determined using a Shimadzu TOC5000A employing nitrogen as a carrier gas at a
flow rate of 150 mL/min with sodium carbonate/sodium hydrogen carbonate standard
solutions for calibration.

2.2. Sampling Sites and Preparation of Enrichment Cultures

Sediment samples were obtained from 13 sites comprising environments that had
received lime because of quarrying, historical lime kiln operations, or steel slag from
stainless steel production between 40 and ~350 years of age (Table S3 and described
in [20]). The hydration of these waste forms leads to the formation of alkaline leachates
(often pH > 11) that flow into nearby soils and waterbodies with little to no dilution. The
evolution of these soils leads to them becoming a source of alkaliphilic and alkalitolerant
microorganisms. Soil sediment cores were taken by removing the grass layer and upper
layer (10–15 cm) of soil before the lower 5–10 cm of sediment was collected and used
to fill a 50 mL sterile collection tube to exclude the headspace and sealed. To generate
hydrogenotrophic enrichment cultures, 5 g of sediment was mixed with 5 mL of a BM
(pH 10.0) before 5 mL of the slurry was added to a 100 mL bottle with 45 mL of the
BM. All manipulations were carried out in an anaerobic chamber with a 10%/90% H2:N2
atmosphere and bottles sealed immediately with a butyl rubber stopper. The enrichments
were then incubated at 25 ◦C for 2 weeks in the dark before the headspace gas was analysed
(see below) for the presence of methane gas. In the enrichments where methane was
detected, they were sub-cultured by taking 5 mL of inoculum and adding it to 45 mL
of fresh BM and regenerated headspace. Following the three subcultures, the resulting
enrichment was used as a stock inoculum for the carbonate supplementation experiments.
Throughout the preparation of the enrichment cultures, there was no addition of any
organic carbon substrates, and the dilution factor associated with their preparation meant
that any residual organic carbon from the soil matter was below the detection limits of the
TOC analysis described below.

2.3. Reaction Set-Up and Analysis

Hydrogenotrophic methanogen enrichment cultures (5 mL) were added to 100 mL
bottles in duplicate with 40 mL of BM and 5 g of either calcium carbonate powder or
marble chips. Microcosms were prepared in an anaerobic chamber containing a 10%/90%
H2:N2 atmosphere and sealed with a rubber butyl stopper. The overall development of
the microcosms is summarised in Figure S1. Apart from the microbial biomass, there
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was no addition of organic carbon to any of the test or control reactions. As a control,
in a second set of microcosms, the same set-up was established with 5 mL of culture
replaced with uninoculated BM, a H2/N2 headspace, and no added inorganic carbon
source (calcium carbonate powder/marble chips). The sealed microcosms were incubated
at 25 ◦C for 42 days in the dark and sampled every 7 days. Samples of headspace gas were
analysed using an Agilent GC6850 equipped with a HP-PLOT/Q column with particle traps
(35 m × 0.32 mm × 20 µm, Agilent Technologies, Cheadle, UK). A sample of the liquid
phase (1 mL) was also taken from the microcosm and filtered through a 0.45 µm syringe filter.
For the determination of dissolved inorganic carbon (DIC), a Shimadzu TOC5000A was
used employing nitrogen as a carrier gas at a flow rate of 150 mL/min with DIC quantified
against a sodium carbonate/sodium hydrogen carbonate standard. Volatile fatty acids
present within the microcosms were determined through the addition of 1 part of sample to
9 parts of 85% w/v phosphoric acid and vortexing, before analysis by HP GC6890 under the
operating conditions described in Rout et al. [21]. At the end of the 42 days of incubation,
the microcosm fluid from each site was pooled for the extraction of nucleic acids. The
samples were initially concentrated by centrifugation at 8000× g for 10 min, with 5 mL of
the supernatant used to re-suspend the pellet. DNA was then extracted from the suspension
following the method of Griffiths et al. [22]. The presence of DNA was confirmed through
electrophoresis and quantified through a Qubit fluorometer. The V4 region of the Archaeal
16S rRNA gene was then sequenced from each community through Illumina Miseq Nano
sequencing (ChunLab Inc., Seoul, Korea). The resulting reads were trimmed and quality-
checked using an in-house protocol, and identifications were made by comparison with
EZBioCloud. Non-metric multidimensional scaling (NMDS) analysis was carried out using
the VEGAN package (https://cran.r-project.org/web/packages/vegan/index.html, last
accessed on 10 March 2022) in R version 3.6.

3. Results

In the absence of a microbial inoculum, there was no evidence of methane generation
(data not shown). These abiotic experiments did, however, result in the release of inorganic
carbon into the liquid phase (Figure 1). The release of DIC was greater from the calcium
carbonate powder, reaching 4.6 ± 0.7 mmoles C compared with 2.1 ± 0.4 mmoles C from
the marble chips. Using PHREEQc analysis with the BM and calcium carbonate, the
concentration of total calcium and DIC after equilibration with calcite at pH 10.0 was
determined assuming a closed system. This suggested that, at pH 10 and equilibrium, any
dissolved inorganic carbonate would be predominantly present as HCO3

− (61.6%) and
CO3

2− (38.4%) over CO2 (0.01%).
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Microcosms amended with calcium carbonate powder and the hydrogenotrophic
methanogen enrichments from the lime and steel site sediments also saw the release of
dissolved inorganic carbon within the liquid phase, which subsequently plateaued and
fell following 14 days (lime) and 7 days (steel, Figure 2). Within the lime methanogen
reactors amended with carbonate powder, 0.31 ± 0.03 mmoles of methane were produced
at the end of 42 days of incubation (Figure 2A), compared with 0.37 ± 0.08 mmoles in
those reactions with the steel methanogen inoculum (Figure 2B). Hydrogen was removed
from the headspace from both reactor types. Within the microcosms amended with the
marble chips, the generation of DIC, consumption of hydrogen headspace, and generation
of methane were observed (Figure 2C,D). There was reduced generation of methane across
the lime methanogen-inoculated reactions, with a mean production of 0.17 ± 0.02 mmoles
compared with 0.31 ± 0.09 mmoles in those receiving the steel sediment methanogen
inoculum (Table S4). Regardless of the carbonate source, the release of DIC into the liquid
phase was observed within 14 days of incubation. Evidence of the consumption of the DIC
was also observed across the different reaction types throughout the incubation period.
Through headspace gas analysis, there was no evidence of carbon dioxide within the
headspace of the microcosms.
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Overall, the microcosms utilising the lime enrichment of methanogens and supple-
mented with marble chips demonstrated both the lowest hydrogen consumption and
methane generation rates (Figure 3). Microcosms that were prepared with methanogen en-
richment from the steel site had greater than average methane generation rates, regardless
of incubation with calcium carbonate powder or marble chips. With the exception of site
SC, the hydrogen consumption rates were also above the average of the sample group. The
lime methanogen enrichments that were supplemented with the calcium carbonate powder
showed the greatest range of both the hydrogen consumption (37.0–75.1 µmol/d) and
methane generation (4.4–10.6 µmol/d) rates. The stoichiometry of the reactors suggested
that, although hydrogen was removed from the headspace and DIC from the liquid phase,
these substrates were not diverted entirely to methane production (Table S5). This was
further evidenced by the analysis of volatile fatty acids within the liquid phase, in which
acetic acid was produced in both the lime and steel sediment enrichments supplemented
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with either calcium carbonate powder or marble chips; however, no VFA were detected in
the abiotic controls (Figure S2).
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The enrichments from the lime kiln sites that were supplemented with calcium car-
bonate powder were dominated by taxa of the genus Methanobacterium, ranging from 57.1%
in the community from the LK3 enrichment to 99.3% within the B enrichment (Figure 4).
Within the lime samples supplemented with marble chips, the B enrichment was also
dominated by Methanobacterium sp., representing 96.8% of the community profile, which
contrasted with the other lime site sediment enrichments supplemented with marble chips.
In the remaining marble chip enrichments, the communities of the T, LK1, LK3, and LK4 en-
richments were composed largely of Methanomassiliicoccus (34.6–55.3%) and Methanoculleus
sp. (42.1–54.1%). Communities from the H, LK2, LK3, and LK5 enrichments also contained
Methanosarcina sp. within their communities (16.5–65.9%). The microcosm communities
from the steel site enrichments were again dominated by Methanobacterium sp., whether
supplemented with calcium carbonate powder or marble chips representing >86.8% of all
the communities.

When supplemented with marble chips, the CS and RC communities also contained
>10.9% Methanocalculus sp. NMDS analysis (Figure 5) of the Archaeal communities further
illustrated the dissimilarity of the marble chip-supplemented lime enrichment communities
in comparison to both the marble chip/steel and powder-supplemented communities
from both sites. The lime site sediment enrichments that were supplemented with the
marble chips contained more diverse communities than those supplemented with calcium
carbonate powder, containing both a greater number of OTUs (Table S6) and Chao1 values
(Figure S3).
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include all the sites within the NMDS based upon supplement (inner ellipse = powder) centred on
the mean NMDS for those samples.
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4. Discussion

The data indicate that mineral carbonates can provide an electron acceptor in the
presence of a hydrogen electron donor to facilitate methanogenesis. Whilst this was
demonstrated previously with Ca and Mg carbonate powders at pH 6.9–8.4 with pure
cultures of methanogens [23], the authors suggested that the organisms were utilising
the small amounts of CO2 released in equilibrium. The PHREEQC analysis indicated
that, at elevated pH values, the carbon released from the soluble phase was more likely
to be as a soluble carbonate or bicarbonate, and that methanogenic archaea could utilise
this inorganic carbon as a CO2 source for hydrogenotrophic methanogenesis. Although
carbonates only represent ~2–5% of Martian dust, deposits of carbonate have been observed
in environments such as the Jezero Crater/Syrtis–Terra Tyrrhena region [24,25] and could,
therefore, represent a carbon source for utilisation by microorganisms within these niche
environments. The release of carbon from the mineral phase does not appear to be a rate-
limiting step for methanogenesis, since there was residual DIC present within the liquid
phase. In addition, comparable rates of methane production when comparing the mineral
forms within the steel site sediment enrichments were observed. There were, however,
contrasting rates when comparing the mineral forms and lime enrichments.

The archaeal communities within both the steel and lime site sediment enrichments
supplemented with calcium carbonate powder had similar profiles, dominated by Methanobac-
terium and Methanomasiliicoccus sp. Both these species are described as hydrogenotrophic
within the literature [26–28]. Despite the similarities in the profiles of these communities
observed by NMDS, there were differences in the methane generation and hydrogen con-
sumption rates, particularly in the case of sites B, T, LK2, and LK4 enrichments; however,
there was no correlation observed between these rates and the community profiles. In
the lime site sediment enrichments supplemented with marble chips, there was an in-
creased diversity of archaea. With the exception of the site B enrichment, there was a
reduced presence of Methanobacterium sp., with increased detection of Methanoculleus and
Methanosarcina sp. Whilst Methanoculleus sp. are described as hydrogenotrophic within the
literature [29], Methanosarcina sp. are known to be more metabolically diverse, capable of
acetoclastic, hydrogenotrophic and methylotrophic methane-producing metabolism [30];
however, the data here suggest that these genera present within the microcosms were
unable to perform acetoclastic methanogenesis at pH 10.0. The absence of these species
within the steel/marble microcosms may indicate that these taxa are not present within
the in situ sediments. There was a production of acetic acid in all reactors, which may
be a result of acetogens within the microbial communities. There is evidence to suggest
that some methanogens can perform acetogenesis through a mechanism not dissimilar to
the Wood–Ljungdahl pathway, acting as a carbon storage strategy [31,32], but this did not
coincide with a subsequent removal, nor any enhancement to the methane generation rates
within those associated microcosms. This suggests that elevated pH inhibits acetoclastic
methanogenesis, and that Methanosarcina sp. observed in these reactions are contributing
to hydrogenotrophic methanogenesis, which has been previously observed where alkaline
soil communities were fed on hydrogen and carbon dioxide headspace [20].

Carbonate structures have been of interest from a Martian perspective as a morpholog-
ical biosignature, in which it is expected that biological structures may entomb or preserve
organisms, much like stromatolites [33,34]. Whilst these structures may be caused by
biological activity, there may be potential for the formation of carbonates on the Martian
surface due to serpentinisation events with mafic minerals in the subsurface, which also
may generate hydrogen [12]. Overall, the data generated indicate that hydrogenotrophic
methanogenesis should be considered as a potential biogenic route to methane in the
Martian atmosphere.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/geosciences12030138/s1; Table S1: Mineral media composition per litre; Table S2: Trace
element solution composition per litre. Table S3: Site locations and descriptions; Table S4: Mean
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production of methane by soil and leachate type over 42 days of incubation; Table S5: Stoichiometric
calculations of methane production and hydrogen consumption assuming the reduction of carbon
dioxide to methane as CO2 + 4 H2 → CH4 + 2 H2O; Table S6: Number of OTUs observed within each
microcosm Archaeal community; Figure S1: Overall scheme of microcosm development. In the control
experiments, 5 mL of BM was added in place of 5 g of inoculum; Figure S2: The production of acetic
acid was observed in microcosms, irrespective of lime/steel enrichment or carbonate supplement
source; Figure S3: Chao1 values for the Archaeal communities present within the lime/steel and
calcium carbonate powder/marble chip microcosms.
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