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In this paper, we establish several new connections between the generalizations of Fibo-
nacci and Lucas sequences and Hessenberg determinants. We also give an interesting con-
jecture related to the determinant of an infinite pentadiagonal matrix with the classical
Fibonacci and Gaussian Fibonacci numbers.
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1. Introduction

The Fibonacci sequence, say fnf gn2N is the sequence of positive integers satisfying the recurrence relation f0 ¼ 0; f1 ¼ 1 and
fn ¼ fn�1 þ fn�2;n P 2. The Lucas sequence, say lnf gn2N is the sequence of positive integers satisfying the recurrence relation
l0 ¼ 2; l1 ¼ 1 and ln ¼ ln�1 þ ln�2;n P 2.

In recent years, several connections between the Fibonacci and Lucas sequences with matrices have been given by re-
searches. In [3], some classes of identities for some generalizations of Fibonacci numbers have been obtained. The relations
between the Bell matrix and the Fibonacci matrix, which provide a unified approach to some lower triangular matrices, such
as the Stirling matrices of both kinds, the Lah matrix, and the generalized Pascal matrix, were studied in [23]. In [16], _Ipek
computed the spectral norms of circulant matrices with classical Fibonacci and Lucas numbers entries. In [4], Bozkurt first
computed the spectral norms of the matrices related with integer sequences, and then he gave two examples related with
Fibonacci, Lucas, Pell and Perrin numbers.

Some of traditional methods for calculation of the determinant of an n� n matrix are based on factorization in a product
of certain matrices such as lower, upper, tridiagonal, pentadiagonal and Hessenberg matrices. A brief overview of the theory
of determinants can be found, for example, in [14,21].

In some papers related with relationships between the Fibonacci and Lucas sequences with certain matrices, the results
on relations between determinants of families of tridiagonal and pentadiagonal matrices with Fibonacci and Lucas numbers
have been presented. Cahill and Narayan [7] showed how Fibonacci and Lucas numbers arise as determinants of some tri-
diagonal matrices. Strang [20] has introduced real tridiagonal matrices such that their determinants are Fibonacci numbers.
Nallı and Civciv [19] gave a generalization of the presented in [7]. Also, Civciv [9] investigated the determinant of a special
pentadiagonal matrix with the Fibonacci numbers. In [11], by the determinant of tridiagonal matrix, another proof of the
Fibonacci identities is given. In [22], another proof of Pell identities is presented by the determinant of tridiagonal matrix.

In general we use the standard terminology and notation of Hessenberg matrix theory, see [13]. The determinant
Hn ¼ aij

�� ��
n;
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where aij ¼ 0 when i� j > 1 or when j� i > 1 is known as a Hessenberg determinant or simply Hessenbergian. If aij ¼ 0
when i� j > 1, the Hessenbergian takes the from
Hn ¼

a11 a12 a13 � � � a1;n�1 a1n

a21 a22 a23 � � � a2;n�1 a2n

a32 a33 � � � � � � � � �
a43 � � � � � � � � �

� � � � � � � � �
an;n�1 ann

��������������

��������������
n

:

If aij ¼ 0 when j� i > 1, the triangular array of zero elements appears in top right-hand corner.
It is well known that several famous numbers may be represented as determinants of Hessenberg matrices. In many pa-

pers related with relationships between the Fibonacci and Lucas sequences with certain matrices, the results on relations
between determinants of families of Hessenberg matrices with Fibonacci and Lucas numbers have been given [5, 6, 8,
20]. In [6], complex Hessenberg matrices such that their determinants are Fibonacci numbers have been introduced. It
was showed in [8] that the maximum determinant achieved by n� n Hessenberg 0;1ð Þ-matrices is the nth Fibonacci number
fn. Esmaeili [10] gave several new classes of Fibonacci–Hessenberg matrices whose determinants are in the form tfn�1 þ fn�2

or fn�1 þ tfn�2 for some real or complex number t. In [18], by constructing new Fibonacci–Hessenberg matrices, another
proofs of two results relative to the Pell and Perrin numbers is given.

Besides the usual Fibonacci and Lucas numbers many kinds of generalizations of these numbers have been presented in
the literature. For any integer numbers s > 0 and t – 0 with s2 þ 4t > 0; the nth s; tð Þ-Fibonacci sequence, say Fn s; tð Þf gn2N is
defined recurrently by
Fnþ1 s; tð Þ ¼ sFn s; tð Þ þ tFn�1 s; tð Þ for n P 1; ð1Þ
with F0 s; tð Þ ¼ 0, F1 s; tð Þ ¼ 1.
For any integer numbers s > 0 and t – 0 with s2 þ 4t > 0; the nth s; tð Þ-Lucas sequence, say Ln s; tð Þf gn2N is defined recur-

rently by
Lnþ1 s; tð Þ ¼ sLn s; tð Þ þ tLn�1 s; tð Þ for n P 1; ð2Þ
with L0 s; tð Þ ¼ 2, L1 s; tð Þ ¼ s.
In the rest of the paper, Fn s; tð Þ and Ln s; tð Þ would be written as Fn and Ln respectively.
The following table summarizes special cases of Fn and Ln:
s; tð Þ
 Fn
 Ln
1;1ð Þ
 Fibonacci numbers
 Lucas numbers

2;1ð Þ
 Pell numbers
 Pell–Lucas numbers

1;2ð Þ
 Jacobsthal numbers
 Jacobsthal–Lucas numbers

3;�2ð Þ
 Mersenne numbers
 Fermat numbers
Binet’s formula are well known in the Fibonacci numbers theory [17]. Binet’s formula allows us to express the s; tð Þ-Fibo-
nacci and Lucas numbers in function of the roots a and b of the following characteristic equation, associated to the recur-
rence relation (1), or (2):
x2 ¼ sxþ t: ð3Þ
Theorem 1 (Binet’s formula). The nth s; tð Þ-Fibonacci and Lucas numbers are given by
Fn ¼
an � bn

a� b
and Ln ¼ an þ bn; ð4Þ
where a; b are the roots of the characteristic equation (3), and a > b (see [17]).
Note that, since 0 < s, then
b < 0 < a and bj j < aj j;

aþ b ¼ s and ab ¼ �t;

a� b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4t

p
:

In this paper, we derive some relationships between the s; tð Þ-Fibonacci and Lucas numbers and determinants of some
types of Hessenberg matrices, and we give a conjecture on the determinant of an infinite pentadiagonal matrix with the clas-
sical Fibonacci and Gaussian Fibonacci numbers.
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The main contents of this paper are organized as follows: in Section 2, we introduce new classes of Hessenberg matrices
whose determinants are the s; tð Þ-Fibonacci and Lucas numbers, where cofactor expansion is used to obtain these determi-
nants. We also give the following interesting conjecture on the determinant of an infinite pentadiagonal matrix with the
classical Fibonacci and Gaussian Fibonacci numbers in Section 3.

2. The determinants of Hessenberg matrices with the s; tð Þ-Fibonacci and Lucas sequences

Theorem 2. For any integer numbers s > 0 and t – 0 with s2 þ 4t > 0, define the nþ 1ð Þ � nþ 1ð Þ matrix Hnþ1 as
Hnþ1 ¼

F2n 2tF2n�1 2tð Þ2F2n�2 2tð Þ3F2n�3 � � � 2tð Þn�1Fnþ1 2tð ÞnFn

1 �s s2 �s3 � � � � � �
n

0

� �
�sð Þn

1 �2s 3s2 � � � � � �
n

1

� �
�sð Þn�1

1 �3s � � � � � �
n

2

� �
�sð Þn�2

� � � � � � � � � � � �
1 �sn

���������������������

���������������������
nþ1

; n P 0:
Then, the determinant Hnþ1 is given by
Hnþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4tð Þn

q
F2n; if n is zero or even;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4tð Þn�1

q
L2n; if n odd:

8><
>:
Proof. If we expand the determinant Hnþ1 by the two elements in the last row, and repeat this operation on the determi-
nants of lower order which appear, then we obtain
Hnþ1 ¼ �
Xn

k¼1

n
k

� �
skHnþ1�k þ �2tð ÞnFn:
From where, the Hnþ1 term can be absorbed into the sum, thus we have
�1ð Þn 2tð ÞnFn ¼
Xn

k¼0

n

k

� �
skHnþ1�k: ð5Þ
Since the polynomial in (5) is an Appell polynomial, using inverse relation of Appell polynomial (for more details see [1,2])
we obtain
Hnþ1 ¼ ð�1Þn
Xn

k¼0

n
k

� �
2tð Þn�kskFnþk: ð6Þ
From (4) and (6) we have
Hnþ1 ¼
�1ð Þn

a� b

Xn

k¼0

n

k

 !
2tð Þn�ksk anþk � bnþk

� �

¼ �1ð Þn

a� b

Xn

k¼0

n

k

 !
2tð Þn�k an asð Þk � bn bsð Þk

h i
ð7Þ

¼ �1ð Þn

a� b
an 2t þ asð Þn � bn 2t þ bsð Þn
� 	

¼ �1ð Þn

a� b
an a2 � ab

 �n � bn b2 � ab


 �n
h i

¼ �1ð Þn

a� b
a2n a� bð Þn � �1ð Þnb2n a� bð Þn
� 	

¼ a� bð Þn �1ð Þna2n � b2n

a� b

 !
; ð8Þ
where a; b are the roots of the characteristic equation (3), and a > b. Consequently, from (8) we get
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Hnþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4tð Þn

q
F2n; if n is zero or even;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4tð Þn�1

q
L2n; if n odd:

8><
>:
This completes the proof. h

For unðsÞ, we have the following values:
s; tð Þ
 H2
 H3
 H4
 H5
1;1ð Þ
 5F4
 �5L6
 25F8
 �25L10
1;2ð Þ
 9F4
 �9L6
 81F8
 �81L10
Theorem 3. For any integer numbers s > 0 and t – 0 with s2 þ 4t > 0, define the nþ 1ð Þ � nþ 1ð Þ matrix H�nþ1 as
H�nþ1 ¼
1
n!

F2n 2tF2n�1 2tð Þ2F2n�2 2tð Þ3F2n�3 � � � 2tð Þn�1Fnþ1 2tð ÞnFn

n �s

n� 1 �2s

n� 2 �3s

� � � � � � � � � � � �

1 �ns

�������������������

�������������������
nþ1

; n P 0:
Then, the determinant H�nþ1 is given by
H�nþ1 ¼
1
n!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4tð Þn

q
F2n; if n is zero or even;

� 1
n!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4tð Þn�1

q
L2n; if n odd:

8><
>:
Proof. Since some of H�nþ1’s elements are functions of n, the minor obtained by removing its last row and column is not
equal to H�n . Hence, this implies that there is no obvious recurrence relation linking H�nþ1;H

�
n;H

�
n�1, etc. Therefore, by a

series of row operations which reduce some of its elements to zero, the determinant H�nþ1 can be obtained by transform-
ing Hnþ1.

By performing the row operations
R0i ¼ Ri �
i� 1

nþ 1� i

� �
ð�sÞRiþ1;
with 2 6 i 6 n, we get the determinant Cnþ1 with ðn� 1Þ zero elements. Then, again by performing the row operations
R0i ¼ Ri �
i� 1

nþ 1� i

� �
ð�sÞRiþ1;
with 2 6 i 6 n� 1, we get the determinant Cn with ðn� 2Þ zero elements. Then, with 2 6 i 6 n� 2, etc., and, finally, with
i ¼ 2, we get the determinant H�nþ1. h

For H�nþ1, we have the following values:
s; tð Þ
 H�2
 H�3
 H�4
 H�5
1;1ð Þ
 5
2 F4
 � 5

6 L6

25
24 F8
 � 5

24 L10
1;2ð Þ
 9
2 F4
 � 3

2 L6

81
24 F8
 � 27

40 L10
Corollary 4. For any integer numbers s > 0 and t – 0 with s2 þ 4t > 0, define the nþ 1ð Þ � nþ 1ð Þ matrix Snþ1 and Tnþ1,
respectively, as
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Snþ1 ¼

n

0

� �
n

1

� �
n

2

� �
n

3

� �
� � �

n

n� 1

� �
n

n

� �
�as 2t

�as 2t

�as 2t

� � � � � � � � � � � �
�as 2t

����������������

����������������
nþ1
and
Tnþ1 ¼

n

0

� �
n

1

� �
n

2

� �
n

3

� �
� � �

n

n� 1

� �
n

n

� �
�bs 2t

�bs 2t

�bs 2t

� � � � � � � � � � � �
�bs 2t

����������������

����������������
nþ1

;

with n P 0. Then,
�1ð Þn

a� b
anSnþ1 � bnTnþ1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4tð Þn

q
F2n; if n is zero or even;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4tð Þn�1

q
L2n; if n odd:

8><
>:
Proof. Since
Snþ1 ¼
Xn

k¼0

n

k

� �
2tð Þn�k asð Þk
and
Tnþ1 ¼
Xn

k¼0

n

k

� �
2tð Þn�k bsð Þk;
thus from the Eq. (8) we have �1ð Þn
a�b anSnþ1 � bnTnþ1ð Þ ¼ a� bð Þn �1ð Þna2n�b2n

a�b

� �
. From the Binet’s formulas of the nth s; tð Þ-Fibo-

nacci and Lucas numbers, the result appears. h
Theorem 5. For any integer numbers s > 0 and t – 0 with s2 þ 4t > 0, define the nþ 1ð Þ � nþ 1ð Þ;n P 0, matrices Anþ1 and Bnþ1,
respectively, as
Anþ1 ¼

1 as asð Þ2 asð Þ3 � � � asð Þn�1 asð Þn

� 1
t 1 as asð Þ2 � � � asð Þn�2 asð Þn�1

� 1
t 1 as � � � asð Þn�3 asð Þn�2

. .
. . .

.

� � � � � � � � � � � �
� 1

t 1

����������������

����������������
nþ1
and
Bnþ1 ¼

1 bs bsð Þ2 bsð Þ3 � � � bsð Þn�1 bsð Þn

� 1
t 1 bs bsð Þ2 � � � bsð Þn�2 bsð Þn�1

� 1
t 1 bs � � � bsð Þn�3 bsð Þn�2

. .
. . .

.

� � � � � � � � � � � �
� 1

t 1

����������������

����������������
nþ1

;

with a ¼ sþ
ffiffiffiffiffiffiffiffiffi
s2þ4t
p

2 and b ¼ s�
ffiffiffiffiffiffiffiffiffi
s2þ4t
p

2 . Then,
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Anþ1 þ Bnþ1 ¼
1
tn L2n:
Proof. If we recall the properties of determinant and use the Binet’s formulas of the nth s; tð Þ-Fibonacci and Lucas numbers,
we obtain
Anþ1 þ Bnþ1 ¼ t�n asþ tð Þn þ bsþ tð Þn
� 	

¼ t�n
Xn

k¼0

n

k

� �
tn�k asð Þk þ bsð Þk

h i
¼
Xn

k¼0

n

k

� �
t�k asð Þk þ bsð Þk
h i

¼
Xn

k¼0

n

k

� �
as
t

� �k

þ bs
t

� �k
" #

¼ as
t
þ 1

� �n

þ bs
t
þ 1

� �n

¼ asþ t
t

� �n

þ bsþ t
t

� �n

¼ 1
tn a2n þ b2n
 �

¼ 1
tn L2n:
Thus, the proof is completed.
For n ¼ 0, we have
A1 þ B1 ¼ 2 ¼ 1
t0 L0
and for n ¼ 1 we have
A2 þ B2 ¼
1
t

s2 þ 2t

 �

¼ 1
t

L2:
h

3. The determinant of an infinite pentadiagonal matrix with Fibonacci and Gaussian Fibonacci numbers

Gaussian numbers were investigated in 1832 by Gauss [12]. A Gaussian integer is a complex number whose real and
imaginary part are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers,
form an integral domain, usually written as Z½i�. This domain does not have a total ordering that respects arithmetic, since
it contains imaginary numbers. Gaussian integers are the set
Z½i� ¼ aþ ib : a; b 2 Z and i2 ¼ �1
n o

:

Horadam [15] examined Fibonacci numbers on the complex plane and established some interesting properties about
them. Gaussian Fibonacci numbers (GFNS) f ðGÞn are defined f ðGÞn ¼ f ðGÞn�1 þ f ðGÞn�2;n P 2, where f ðGÞ0 ¼ i; f ðGÞ1 ¼ 1. The first six GFNs
are 1;1þ i;2þ i;3þ 2i;5þ 3i and 8þ 5i. Therefore, clearly, f ðGÞn ¼ fn þ ifn�1; n P 1. Here, fn is the nth classical Fibonacci
number [17].

In the paper [9], the determinant of a pentadiagonal matrix with Fibonacci numbers such that
Ek ¼

1� fkfk�1 fkþ1 fkfk�1

�fkþ1 1� 2f kfk�1
. .

. . .
.

fkfk�1 �fkþ1
. .

. . .
. . .

.

. .
. . .

. . .
.

fkþ1 fkfk�1

. .
. . .

.
1� 2f kfk�1 fkþ1

fkfk�1 �fkþ1 1� fkfk�1

2
6666666666664

3
7777777777775

k�k
was computed.
In here, we give the following interesting conjecture on the determinant of an infinite pentadiagonal matrix with the clas-

sical Fibonacci and Gaussian Fibonacci numbers:

Conjecture 6.
�f ðGÞ1 i
ffiffiffiffi
f1

p
0 0 0 0 0 � � �

�if ðGÞ2

ffiffiffiffi
f1

p
�f ðGÞ1 f ðGÞ2 �if ðGÞ3

ffiffiffiffi
f3

p
i2 ffiffiffiffiffiffiffiffi

f3f5

p
0 0 0 � � �

i2 ffiffiffiffiffiffiffiffi
f1f3

p
if ðGÞ1

ffiffiffiffi
f3

p
�f ðGÞ2 f3 if ðGÞ2

ffiffiffiffi
f5

p
0 0 0 � � �

0 0 �if ðGÞ4

ffiffiffiffi
f5

p
�f ðGÞ3 f ðGÞ4 �if ðGÞ5

ffiffiffiffi
f7

p
i2 ffiffiffiffiffiffiffiffi

f7f9

p
0 � � �

0 0 i2 ffiffiffiffiffiffiffiffi
f5f7

p
if ðGÞ3

ffiffiffiffi
f7

p
�f ðGÞ4 f ðGÞ5 if ðGÞ4

ffiffiffiffi
f9

p
0 � � �

..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
.

������������������

������������������

¼ 0;
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where fn and f ðGÞn are the nth classical Fibonacci and Gaussian Fibonacci numbers, respectively, i2 ¼ �1, and f ðGÞn is the conjugate of
the nth Gaussian Fibonacci number.
4. Conclusions

We obtain formulas for the determinants of some Hessenberg matrices associated with the s; tð Þ-Fibonacci numbers and
the roots of the characteristic equation (3) and they are computational feasible. Also, we give the following interesting con-
jecture on the determinant of an infinite pentadiagonal matrix with the classical Fibonacci and Gaussian Fibonacci numbers.
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