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In this study, after doping ytterbium oxide (Yb2O3) to a-bismuth trioxide (a-Bi2O3)
in the range of 9% � n � 20% in a series of different mole ratios, heat treatment was
performed by applying a cascade temperature rise in the range of 700–790�C for
48 hours and new phases were obtained in the (Bi2O3)1 � x(Yb2O3)x system. After
24 hours of heat treatment at 700�C and 750�C and 48 hours of heat treatment at
790�C, mixtures containing 9–20 mol% Yb2O3 formed a face-centered cubic phase.
With the help of X-ray diffraction (XRD), the crystal systems and lattice parameters
of the solid solutions were obtained and their characterization was carried out. The sur-
faces of the solid solutions were detected by a scanning electron microscope (SEM).
Thermal measurements were made by using a simultaneous DTA/TGA (differential
thermal analysis/thermogravimetric analysis) system. The total conductivity (sT) in
the d-Bi2O3 doped with Yb2O3 system was measured using the four-probe DC method.

Keywords: oxides; ionic conductivity; X-ray diffraction; electron microscopy

1. Introduction

Until now, researchers have reported six polymorphs of bismuth trioxide (Bi2O3). These

are the monoclinic (a-Bi2O3), body-centered cubic (bcc) (g-Bi2O3), face-centered cubic

(fcc) (d-Bi2O3), tetragonal (b-Bi2O3), triclinic (v-Bi2O3), and orthorhombic (e-Bi2O3)

phases [1–7]. The a-phase is stable at room temperature, while the other five forms are un-

stable crystal modifications that are formed at high temperatures. If pure a-Bi2O3, whose

melting temperature is 824�C, is heated until around 729�C, it transforms into the d-Bi2O3

phase, which is stable at high temperature and up to the melting point. When it is cooled

again, it transforms into the b-Bi2O3 phase at �650�C and the g-Bi2O3 phase at �639�C.
If the b- and g-phases are cooled to lower temperatures, they transform into the a-Bi2O3

phase again at around �500�C. Orthorhombic (e-Bi2O3) and triclinic phases (v-Bi2O3),

on which there is scarce information, can be obtained with notable special synthesis reac-

tions and hydrothermal heat treatment processes at 240�C and 800�C, respectively [3,8].
Bismuth oxide systems exhibit high oxide ion conductivity and have been proposed as

good electrolyte materials for applications such as solid oxide fuel cells and oxygen sen-

sors. However, due to their instability under conditions of low oxygen partial pressures,

there has been difficulty in developing these materials as alternative electrolyte materials

compared with the state-of-the-art cubic stabilized zirconia electrolyte. Bi2O3 polymorphs

have important scientific and industrial uses. For example, they are used in the construc-
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tion of ceramic solid fuel cell electrodes and membranes, in the catalysis of some hetero-

geneous reactions, in the partial oxidation of hydrocarbons, and in the removal of the

harmful effects of exhaust gases as catalytic converters. The other most important area of

use is the production of electrochemical energy [1,9–19].

2. Experimental

Ytterbium oxide (Yb2O3) was added to a-Bi2O3 in the range of 9% � n� 20% mol in dif-

ferent ratios. The combined substances were grinded in an agate mortar to achieve a solid-

state reaction and were subjected to 24 and 48 hours of heat treatment in a porcelain cru-

cible. The mixtures were heat-treated at 700�C, 750oC, and 790�C. After each reaction,

the products were cooled gradually until they reached room temperature.

After each solid-state reaction, the product was examined to detect whether there was

a change in each powder sample’s mass. Powder patterns were recorded using the X-ray

diffraction (XRD) method and their crystal systems were detected. XRD data were

recorded with a Bruker AXS D8 Advance model diffractometer (Bragg–Brentano geome-

try, graphite monochromator with CuKa radiation, 0.002
o pitch angle, 2Q ¼ 10o–90o).

The analysis of microstructure properties of the powder samples’ surfaces and the mi-

croprobe analysis were performed at three different locations of solid solutions using a

LEO 440 model scanning electron microscope (SEM).

Thermal measurements were made by using a simultaneous DTA/TGA (differential

thermal analysis/thermogravimetric analysis) system (Shimadzu FC-60 type). The sam-

ples of d-Bi2O3 doped with Yb2O3 were heated at a rate of 10�C min�1 from room tem-

perature to 830�C. Measurements were made in a 60 mL min�1 nitrogen atmosphere

using a platinum sample holder and an a-Al2O3 inert reference substance.

The total electrical conductivity (sT) measurements were made on samples pelletized

(diameter 10 mm, thickness �1 mm) using a four-probe DC method in the temperature

range 100�C–750�C. To reduce contact resistance, fine platinum wires were attached di-

rectly to the surface of the samples. All data were recorded by a Keithley 2400 source me-

ter and a Keithley 2700 electrometer, which were controlled by a computer.

3. Results and discussion

The minimum temperature needed to obtain a crystal system that is stable in its single

phase under reaction circumstances is 750�C. Solid solutions were obtained in d-Bi2O3

crystallized in a face-centered cubic crystal system in the (Bi2O3)1 � x(Yb2O3)x system in

the range of 0.09 � x � 0.20 mol fractions. The powder patterns of 15 mol% Yb2O3

doped the solid solutions are given in Figure 1 as a sample.

All the designs of the samples indexed in the face-centered cubic crystal system show

a similarity with the designs in Figure 1. The change in unit cell parameters in these pow-

der samples with the amount of Yb2O3 doped is presented in Figure 2. Fifteen mol%

Yb2O3-doped solid solutions’ SEM images are given in Figure 3. The microstructures of

the substances consisted of regular fine grains with an average size of about 0.5–2.5 mm.

In Figure 4, the electrical conductivity plots of d-Bi2O3 doped with 12 mol% Yb2O3,

14 mol% Yb2O3, 15 mol% Yb2O3, and 16 mol% Yb2O3 contents are presented, and the

sT plots for the other d-Bi2O3 phases are quite similar. These data were obtained during a

repeated heating run at a constant heating rate in air. The electrical conductivity of

d-Bi2O3 doped with 9–20 mol% Yb2O3 increased with increasing temperature up to

�634�C. Beyond this temperature, the conductivity increased sharply up to about 670�C.
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The reason for the sharp increase in the conductivity was the phase formation and an al-

teration in the crystal structure, possibly causing a change in the conductivity mechanism.

Structural disorder during the phase formation may also contribute to the improvement in

ionic conductivity. Actually, the DTA/TGA measurements also suggested that a polymor-

phic formation took place, and the endothermic phase transition was observed on the

DTA curve at about the same temperature range (Figure 5). As can be seen from Figure 4,

the formation temperature is �637�C, which was determined by DTA; the transition tem-

perature in the conductivity versus temperature graph is in the range of 634–670�C. The
mass of substance was not changed in the 50–1000�C temperature range in the TGA ther-

Figure 2. The relationship between the amount of Yb2O3 doping and the lattice parameter of
d-Bi2O3.

Figure 1. XRD patterns of d-Bi2O3 doped with 15% mol Yb2O3 (a) at 700
�C, (b) at 750�C, and

(c) at 790�C.
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Figure 3. SEM image of d-Bi2O3 doped with 15% mol Yb2O3.

Figure 4. Arrhenius plots of electrical conductivity for d-Bi2O3 doped with (a) 12 mol% Yb2O3,
(b) 14 mol% Yb2O3, (c) 15 mol% Yb2O3, and (d) 16 mol% Yb2O3.
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mogram, and the DTA curve shows the endothermic peak in the range of 620–651�C,
which shows d-Bi2O3 phase formation.

Producing a phase in the (Bi2O3)1 – x(Yb2O3)x system requires a long duration of heat

application. In solid-state reactions that take place at high temperature, ytterbium (III)

ions are diffused gradually into the Bi2O3 lattice. If the doping process is successful, dif-

fused ytterbium (III) cations prefer to change place with bismuth (III) cations in the lat-

tice. This situation is thought to cause nonstoichiometry and transformation to a defect

structure in the lattice as well as to cause O2� ion conductivity.

The experimental results showed that in our samples, the oxygen lattice points of the

d-Bi2O3 doped with ytterbium (III) were not completely occupied with oxygen ions. If

the oxygen sublattices were fully occupied by O2� ions, the Yb2O3-doped d-Bi2O3 phases

would not show such a high degree of electrical conductivity. Some of the oxygen lattice

points located around the tetrahedral sites may have been vacant, forming an oxygen va-

cancy. These oxygen vacancies were filled randomly with neighboring oxygen ions at an

increasing rate with increasing temperature. Jumping oxygen ions left their former sites

vacant; thus, another vacancy was formed. Since this process was random, the total oxy-

gen flow was zero in any direction without an applied electric field [20].

The conductivity of d-Bi2O3 phases doped with Yb2O3 increased with increasing tem-

perature. It was proposed that this was related to ionic mobility, which rises with increas-

ing temperature. At elevated temperatures, the thermal vibrational energy of the ions

increased, causing a higher oxygen ion-jumping rate. Although oxygen vacancies were

present in the crystal structure at low temperatures (below 150�C), the thermal energy of

the anions was not high enough for them to jump out of their lowest energy positions.

Thermal vibrations may also have assisted in the jumping process for a short time by ei-

ther shortening the jumping distance or by widening the jumping channels through the

crystal [21].

Figure 5. DTA/TG diagrams of d-Bi2O3 phase doped with 15 mol% Yb2O3.
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4. Conclusions

As a result of this research, the d-phases of Bi2O3 that are unstable at room temperature

were obtained by doping Yb2O3 to a-Bi2O3 under solid-state reactions. The effective

factor in the synthesis of these polymorphs is high temperature application. In addition to

this, the amount of doped Yb2O3 is not an effective factor at increasing or decreasing the

oxygen ionic conductivity.

It can be concluded from the exchange of Yb3þ with crystal structured Bi3þ cations

that nonstoichiometric phases are synthesized. Since the synthesis process was performed

using a high temperature application that lasted for a long period, we can say that ytter-

bium cations diffuse in the crystal structure slowly. d-phase (Bi2O3)1 � x(Yb2O3)x (x ¼
0.09–0.20) binary oxide compounds possessing oxygen ionic conductivity were synthe-

sized. The nonstoichiometry of the d-Bi2O3 phase was thought to lead to interesting elec-

trical properties.

The ionic conductivity in the d-Bi2O3 phase supports the view that there is an average

occupation of oxide ions in oxygen lattice sites, which can move from site to site through

the bismuth sublattice. The sample conductivity of �0.678 ohm�1 cm�1 at 750�C was

the d-phase of the (Bi2O3)0.88(Yb2O3)0.12 system. The other samples conductivities were

observed between �0.737 and �0.837 ohm�1 cm�1 at 750�C. When these results are

compared with the results of our other studies [20,21], it seems that the conductivities of

d-(Bi2O3)1 � x(Yb2O3)x system are lower than the conductivities of d-(Bi2O3)1 �
x(Tb4O7)x, b-(Bi2O3)1 � x(Tb4O7)x, and d-(Bi2O3)1 � x(Lu2O3)x systems.
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