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Abstract

Green fluorescent protein (GFP) molecules are attached to titanium dioxide and cadmium oxide nanoparticles via sol–gel method and
fluorescence dynamics of such a protein–metal oxide assembly is investigated with a conventional time correlated single photon counting
technique. As compared to free fluorescent protein molecules, time-resolved experiments show that the fluorescence lifetime of GFP molecules
bound to these metal oxide nanoparticles gets shortened dramatically. Such a decrease in the lifetime is measured to be 22 and 43 percent for
cadmium oxide and titanium dioxide respectively, which is due to photoinduced electron transfer mechanism caused by the interaction of GFP
molecules (donor) and metal oxide nanoparticles (acceptor). Our results yield electron transfer rates of 3.139� 108 s�1 and 1.182� 108 s�1 from
the GFP molecules to titanium dioxide and cadmium oxide nanoparticles, respectively. The electron transfer rates show a marked decrease with
increasing driving force energy. This effect represents a clear example of the Marcus inverted region electron transfer process.
& 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
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1. Introduction

Green fluorescent protein (GFP) is a protein of 238 amino
acids with a molecular weight of 27 kDa, which emits a bright
green fluorescence with a peak wavelength at 509 nm when
exposed to ultraviolet or blue light. GFP emits green fluores-
cence without a need in any enzyme or co-factors. The
emission of the GFP of the jellyfish Aequora Victoria
originates from the spontaneous formation of an emitting
chromophore inside a rigid β-barrel structure [1]. The GFP
fluorescence activity can be detected with minimal handling
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efforts, for example, it does not need the detection tools like use
of a fluorescence microscope, a fluorometer, a fluorescence-
activated cell sorting machine, an imaging micro plate reader,
or a lysate preparation [2]. Many GFP mutants have been
reported in the scientific literature and more than 20 crystal
structures of GFP mutants and homologs are listed in the
Protein Data Bank [3]. Although the GFP mutants have quite
different spectroscopic characteristics, their structural features
are remarkably similar [4].
GFP is an accomplished fluorescent molecule widely used in

cell imaging applications, gene expression, visualizing pro-
tein–protein interactions and protein localization due to its
unique characteristics [5–7]. Recently, Bogdanov et al. dis-
covered a new feature of GFPs of diverse origins to act as the
light-induced electron donors in photochemical reactions with
various electron acceptors [8]. Moreover, the interaction
mechanism between fluorescent proteins and nanoparticles
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could provide further control over the fabrication of nano-optic
and nano-electronic devices. Quenching of green fluorescent
molecules, when it is in close proximity to a metal nanopar-
ticle, like gold or silver, has been successfully studied both
theoretically and experimentally [9,10]. However, excitation
mechanism of GFP-metal oxide nanoparticles (MON) has not
been clarified yet, which is envisaged to be one of the most
popular parts of the nano-technological applications.

Metal oxide nanoparticles are emerging as highly attractive
materials for many fields of technology including catalysis,
sensing, optoelectronic devices, environmental remediation
and energy conversion [11–13]. The most commonly used
metal oxide nanoparticles are titanium dioxide (TiO2), zinc
oxide (ZnO), iron (III) oxide (Fe2O3), Chromium (III) oxide
(Cr2O3) and Cadmium oxide (CdO). Especially, TiO2 and ZnO
are the preferred nanoparticle types due to their large band gap
energy and their high electron mobility [14,15]. Stable metal
oxide nanoparticles cannot absorb visible light due to their
relatively wide band gaps. Sensitization of these metal oxide
materials with photo sensitizers – such as with organic dyes –
allow absorption of the visible light. Therefore, such systems
have been extensively studied in silver halide photography,
electrophotography, and – more recently – in solar energy cells
[16]. In the sensitization process, the excited dye molecule
injects an electron into the conducting band of the metal oxide
nanoparticle within a few picoseconds [17]. Then, the oxidized
dye is reduced back to its ground state and the injected electron
flows through the semiconductor network.

In this paper, the effects of titanium dioxide and cadmium
oxide nanoparticles on the fluorescence intensity and lifetime
dynamics of the green fluorescent protein molecules are exam-
ined. Recently, it has been demonstrated that the band gap energy
of a metal oxide nanoparticle is strongly effective on the
performance of MON based devices [18]. Therefore, two
different metal oxide nanoparticles are studied in this work, one
of them with a wide band gap energy (TiO2, 3.42 eV) and the
other with a relatively narrower band gap energy (CdO, 2.36 eV).
It is observed that the average lifetime of the GFP molecules on
the metal oxide nanoparticles is significantly shortened than that
on a glass substrate. As a consequence of photoinduced electron
transfer process between GFP and metal oxide nanoparticles, the
fluorescence lifetime of GFP on CdO and TiO2 nanoparticles
drops from 2.419 ns down to 1.881 ns and 1.375 ns, respectively.
Moreover, the electron injection yield of the GFP/TiO2 nanopar-
ticle system is expectedly around three times of that of the GFP/
CdO nanoparticle system.

Relentless efforts are underway all over the world to obtain
efficient photovoltaic energy conversion using dye sensitized
metal oxide or semiconductor nanomaterials. During the last
few years, a number of dyes, such as phthalocyanines, tri-
phenyl methane, xanthenes, coumarins, porphyrins and ruthe-
nium have been tested as sensitizer [19]. These dyes and those
chemically engineered are hard to put up and are too
expensive. Therefore, natural dye sensitizers should be inves-
tigated to develop low cost and environmental friendly green
solar cells. In the present article, photoinduced electron transfer
dynamics of GFP bound to TiO2 and CdO nanoparticles is
discussed in details. Our time resolved experimental results
suggest that the green fluorescent protein molecules have a
great potential to be remarkable candidates as sensitizers in
photovoltaic energy conversion devices.

2. Experimental section

2.1. Expression and purification of hexa histidine tagged GFP

The plasmid vector pBAD–GFPuv carrying deoxyribonucleic
acid (DNA) fragment encoding for GFP is digested using two
different restriction enzymes (Nhe I and Eco RI) The GFP-
encoded DNA fragment is introduced into pET28a plasmid
(Merck; Novagen) using Nhe I and Eco RI restriction sites.
The GFP gene is ligated into pET28a after gel purification of both
vector and insert. The final plasmid is named pETGFP and DNA
sequencing of this plasmid showed that the hexa histidine-tagged
GFP-encoded DNA fragment is correctly inserted. Six histidine-
tagged GFP is expressed in an Escherichia coli BL21 DE3
(pLysE) strain. The strain is transformed with pETGFP plasmid
and grown on Luira Bertoni (LB) plates with kanamycin (40 mg/
ml) and chloramphenicol (35 mg/ml) selection. Four milliliters of
LB medium in a screw capped test tube with antibiotics is
inoculated with a single E. coli colony and grown overnight at
37 1C. A 4 ml overnight culture is introduced into 600 mL of the
LB medium in 2 L flasks containing kanamycin and chloram-
phenicol. Bacteria are grown up to an optical density (OD 600) of
0.8 and induced by the addition of a final concentration of 1 mM
isopropyl-thiogalactopyranoside (IPTG) and then grown for
additional 4 h. E. coli cells are harvested and resuspended in
20 mM phosphate and 300 mM sodium chloride (NaCl) (pH 8)
buffer containing RNAse, DNAse, and protease inhibitors (1 mM
phenylmethylsulfonyl fluoride and 1 mM benzamidine). The cells
are lysed in a French press and the supernatant is obtained by
ultracentrifugation (Beckman Coulter Optima L-80 ultracentri-
fuge and Ti 45 rotor) at 40,000 rpm (125,000g) for 1 h. The
N-terminal hexa-histidine-tag facilitated purification of the GFP by
means of a Ni–NTA agarose affinity resin (Qiagen). The fusion
protein is washed onto the column with a 20 mM phosphate and
300 mM NaCl buffer, and then additionally washed with the same
buffer containing 50 mM imidazole and eluted in 300 mM
imidazole, pH 7.0. The expression of GFP protein is qualitatively
analyzed by sodium dodecyl sulfate polyacrylamide gel electro-
phoresis (SDS-PAGE) (Fig. 1). The concentration of protein is
determined by UV absorption at 280 nm. The molecular weight of
the his-tagged GFP is 28.890 kDa and its extinction coefficient is
22.015 M�1 cm�1 at 280 nm.

2.2. Synthesis of TiO2 nanoparticle solution

In order to prepare a TiO2 solution, firstly titanium tetra-
ispropoxide (2.4 mL, Ti(OC3H7)4, ex. TiZ98%, Merck) is
added in ethanol (25 mL, C2H6O, 99.9%, Merck), and the
solution is kept in a magnetic stirrer for one hour. Next, glacial
acetic acid (5 mL, C2H4O2, 99.9%, Merck), triethylamine
(1.5 mL, (C2H5)3N, 99%, Merck) and ethanol (25 mL) are
added to the solution. After, it is mixed in the magnetic stirrer
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for 1 h. Also, to obtain the GFP-doped TiO2 solution, GFP is
added into the undoped TiO2 solution, and the solution is
subjected to the magnetic stirrer for two additional hours.
Finally, the pure and GFP-doped TiO2 solution is aged at room
temperature for one day before deposition.
2.3. Synthesis of CdO nanoparticle solution

In order to prepare a CdO solution, first, 1 mol cadmium
acetate [Cd(CH3COO)2þ2H2O, Merck] is added in 46 mol
methanol solvent [CH3OH, Merck] and the solution is kept in a
magnetic stirrer for 1 h. Then, 0.2 mol glycerol [C3H8O3,
Fig. 1. A photograph of 12% SDS-PAGE of expressed GFP protein. Lane 1
molecular weight marker (BIO-RAD Dual Color Precision Plus Protein
standard), lanes 2 and 3, elution of His-tagged GFP with 300 mM imidazole.
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Merck] and 0.5 mol triethylamine [C8H15N, Merck] are added
in the solution, and after, it is mixed in the magnetic stirrer for
1 h. To obtain the GFP-doped CdO solution, GFP is added into
the undoped CdO solution, and the solution is subjected to the
magnetic stirrer for two additional hours. Finally, the pure and
GFP-doped CdO solution is aged at room temperature for one
day before deposition.
2.4. Fabrication of thin films

Microscope glass slides are used as the substrates for thin
films. Prior to deposition, the glass slides are sequentially
cleaned in an ultrasonic bath with acetone and ethanol. Finally
they are rinsed with distilled water and dried. After the above
treatment, spin coating process is applied to cover solutions on
the glass substrates. The spinning process is performed using
Holmarc Spin Coating Unit and coating is done by rapidly
depositing 0.6 mL of solution onto a glass substrate spun at
6000 rpm for 30 s in air. In order to obtain as-deposited films,
ten spin coated layers are carried out on each substrate.
2.5. Time-resolved lifetime and fluorescence ıntensity
Measurements

Time resolved fluorescence lifetime and fluorescence inten-
sity measurements are performed using a TimeHarp 200 PC-
Board system (Picoquant, GmbH) and a fiber optic spectro-
meter (USB-VIS–NIR Ocean Optics), respectively [20]. Fig. 2
shows the optical experimental setup. The excitation source
used in the experiment is an ultraviolet pulsed diode laser head
with a wavelength of 405 nm (LDH-C-D-470 Picoquant,
GmbH). According to the GFP absorbance (excitation) spec-
trum, which is given in Fig. 4, GFP has two excitation peaks.
The major excitation peak is observed at 395 nm and a minor
peak at 475 nm. Therefore, the near UV light is an excellent
excitation source, as GFP's chromophore absorbs at a wave-
length of 395 nm, exciting the electrons in the chromophore
and boosting them to a higher energy state. In order to obtain a
meter
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Gaussian beam illumination, a single mode optical fiber is used
as a waveguide (Thorlabs, S405-HP). The separation of the
fluorescence emission and the excitation occurs at a dichroic
mirror. The excitation light is focused onto the sample using a
microscope objective of 0.55 numerical apertures with a
working distance of 10.1 mm (Nikon, ELWD 100� ).
A confocal pinhole, which has a diameter 75 μm, is placed in
the focal plane, to exclude out of focus background fluores-
cence. The optical system used in our experimental work is
based on a confocal light detection scheme via a 75 mm pinhole
in the setup, which allows monitoring the reflected light coming
from the very center of the small focused area only. In other
words, the possibility of getting illuminations apart from the
focal center is eliminated by this pinhole.

For multi-exponential fluorescence decay fitting, FluoFit
computer program (Picoquant, GmbH) is used. The fluores-
cence intensity decays is recovered from the frequency-domain
data in terms of a multiexponential model

IðtÞ ¼ ∑
n

i ¼ 1
Ai expð� t=τiÞ ð1Þ

where Ai is the amplitude of each component and τi is its
lifetime. The fractional contribution of each component to the
steady-state intensity is described by

f i ¼
Aiτi

∑jAjτj
ð2Þ

the intensity weighted average lifetime is represented as

〈τ〉¼∑
i
f iτi ð3Þ

and the amplitude-weighted lifetime is given by

τ ¼ ∑iAiτi
∑iAi

ð4Þ

3. Results and discussion

The size measurements of metal oxide nanoparticles are
accomplished by means of a scanning electron microscope
(SEM). Fig. 3 shows SEM micrographs of top view of the
GFP fluorescent protein coated CdO and TiO2 nanoparticles. The
mean diameter of CdO and TiO2 nanoparticles are measured as
34.5374.82 nm and 31.2573.25 nm, respectively. Especially,
in solar cell structures, two electrically conducting phases must
inter-penetrate completely to allow full closed circuit operation.
According to the SEM images, our nanoparticles are well
connected to their neighbors and they satisfy this condition.

The UV–vis. absorption spectra of the metal oxide nano-
particles and green fluorescent protein are obtained to deter-
mine the relationship between the band gap energy values and
the electron transfer efficiency. The fundamental absorption
spectra, which correspond to electron excitation from the
valence band to conduction band, are recorded with a
Shimadzu 3600 UV–vis–NIR spectrometer, as shown in
Fig. 4. The optical band gap energies of metal oxide
nanoparticles are calculated using Tauc relation [21]. The
calculated values of direct optical band gap are 3.42 and
2.36 eV for TiO2 and CdO nanoparticles, respectively. The
shift from Egap¼3.2 eV for bulk anatase TiO2 to Egap¼3.42
eV for nanoparticles is interpreted as a result of a quantum size
effect. It is observed that addition of GFP on the metal oxide
nanoparticle surface shifts the onset of absorption to the visible
range and GFP molecules leads to a decrease in the band gap
energy values of metal oxides. Calculated band gap values are
3.37 and 2.26 eV for GFP doped TiO2 and CdO nanoparticles,
respectively. This result is clear evidence that GFP fluorescent
molecules are chemically bonded to the metal oxide nanopar-
ticles. In addition, the decrease in the band gap energy values
of the GFP doped nanoparticles, probably due to adhesion of
the nanoparticles. Energy difference between the first excited
state and the ground state of GFP is calculated as 2.25 eV.
Metal oxide nanoparticles shown in Fig. 3 are impregnated

by GFP fluorescent protein molecules and the fluorescence
intensity and spontaneous emission rate of GFP are studied in
the optical setup shown in Fig. 2. It is observed that the free
GFP, which is coated on a microscope slide, exhibits a bright
emission spectrum with a peak wavelength at about 509 nm
under the illumination of 405 nm pulsed diode laser. GFP dye
molecules are chemically attached to TiO2 and CdO metal
oxide nanoparticles. Although concentration of GFP fluores-
cent protein is kept constant for all samples, a significant
reduction in the fluorescence intensity of GFP is observed (see
Fig. 5). This result indicates that the metal oxide nanoparticles
quench the fluorescence of GFP molecules. Moreover, our
steady state fluorescence studies show that the effect of TiO2

nanoparticles on the fluorescence intensity of GFP is more
effective than CdO nanoparticles. The fluorescence quenching
of GFP molecules on the metal oxide nanoparticles is ascribed
to the environmental change to the GFP core chromophore
which is highly protected by the beta sheet barrel structure.
Fluorescence is not an inherent property of the isolated
fluorophore, the elucidation of its three-dimensional structure
will help provide an explanation for the generation of
fluorescence in the mature protein. Spectral properties of a
common fluorophore are altered as a function of protein
environment within red, blue, or green opsins. In our samples,
the characteristic of fluorescence spectrum of our GFP remains
the same, therefore; it is obvious that the barrel structure does
not change when attached to the metal oxide nanoparticles.
The time-resolved fluorescence lifetime of the GFP mole-

cule is performed using the PCI-Board system (TimeHarp 200,
PicoQuant). The measurement of the fluorescence lifetime is
based on the time correlated single photon counting (TCSPC)
method. In this method, the time between the detected single
photon of the fluorescence (start signal) and the excitation laser
pulse (stop signal) is measured. The measured data is plotted
as a fluorescence lifetime histogram. Decay parameters are
determined using the double exponential tailfit model, and the
best fits are obtained by minimizing χ2 values as seen in Fig. 6.
The spontaneous emission of an emitter is not an intrinsic

property of the emitter and it is strongly affected by the
surrounding environment. Therefore, the decay lifetime of an
emitter in the vicinity of a nano-structure is inhibited or
enhanced. Such structure may be, for example, a flat surface,



Fig. 3. SEM images of GFP fluorescent protein on (a) an ordinary microscope slide, (b) CdO, and (c) TiO2 nanoparticles.
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a nano-sphere, a nano-rod or a nano-particle [22–24]. Under-
standing and controlling the emission properties of molecules
in nanostructured geometries has a great potential for applica-
tions in the area of nano-optics, biochemistry and molecular
biology [25].

In our experiments, three different GFP solutions are
prepared; such as GFP1 (dilute solution), GFP2 and GFP3
(concentrated solution) in order to control the concentration
dependence of fluorescence lifetime of GFP molecule. While
the intensity weighted fluorescence lifetime is measured as
about 2.41 ns, the amplitude weighed fluorescence lifetime is
measured as about 1.81 ns for all solutions (see Table 1).
According to our experimental results, the fluorescence life-
time of GFP molecules are independent of fluorescent protein
concentration.
In the second part of this work, the fluorescence lifetime of a
free GFP molecule and a GFP molecule attached to a metal
oxide nanoparticle (CdO and TiO2) are compared. Decay
parameters of GFP are analyzed using double-exponential
fitting model and calculated lifetime values are summarized
in Table 1. It is observed that the decay rates of the fluorescent
molecules interacting with their surroundings are substantially
different than those of free fluorescent molecules. When GFP
molecules are embedded in CdO nanoparticles, the intensity
weighted lifetime of the molecules is inhibited and its
measured value is 1.881 ns. On the other hand, TiO2 nano-
particles yield significantly more efficient inhibition of the
decay parameters of GFP and the intensity weighted fluores-
cence lifetime of GFP decreases up to 1.375 ns.
The dynamics behind the quenching mechanism of GFP

photoluminescence and the inhibition of the fluorescence
lifetime of GFP is anticipated to be due to the energy transfer
mechanism from GFP molecules to metal oxide nanoparticles.
It is well know that an efficient energy transfer requires a good
spectral overlap between GFP emission and nanoparticles
absorption spectra. In our system, TiO2 nanoparticles have
an absorption capacity in the UV region as shown in Fig. 4.
The spectral overlap region between the absorption spectrum
of TiO2 nanoparticles and the emission spectrum of GFP
molecules is exactly zero; therefore, excitation energy of GFP
cannot be transferred to TiO2 nanoparticles. Moreover, the
absorption spectrum of CdO nanoparticles has maximum
intensity about 300 nm and the absorbance intensity becomes
almost zero at 600 nm. The spectral overlapping area between
the absorption spectrum of CdO nanoparticles and emission
spectrum of GFP can be calculated using J(λ) integral [26]. It
is observed that there is a poor spectral overlap region but not
enough to be a good FRET pair. Another important require-
ment of energy transfer is that donor and acceptor species are
separated from each other in a nanometer scale. Energy can be
transmitted over a very limited distance between 2 and 10 nm.
GFP has a typical beta barrel structure with a diameter of about
24 Å and a height of 42 Å [3]. At the center of this barrel
structure lies chromophore which is a short chain of altered
amino-acids responsible for the light emission and the barrel
structure is making GFP capable of fluorescing under almost
any conditions. GFP molecules are chemically connected to
metal oxide nanoparticles; therefore the distance between
chromophore of GFP and nanoparticles is smaller than 2 nm.
Thus, direct energy transfer between GFP and metal oxide



Fig. 6. (a) Fitting and calculation of decay parameters of GFP on (blue) microscope slide, (pink) CdO nanoparticles, (green) TiO2 nanoparticles. (–) Indicates multi-
exponential fitting curve. Residuals for fittings on (b) microscope slide, (c) CdO nanoparticles, and (d) TiO2 nanoparticles. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Decay parameters for GFP.

Sample A1 (au) τ1 (ns) A2 (au) τ2 (ns) 〈τ〉a (ns) τb (ns) χ2

GFP1 13,881 3.006 18,239 0.903 2.411 1.812 1.416
GFP2 13,909 2.997 17,858 0.886 2.416 1.810 1.643
GFP3 11,020 2.942 12,735 0.847 2.419 1.818 1.261
GFP3þCdO 11,916 2.091 6090 0.782 1.881 1.648 1.383
GFP3þTiO2 2323 1.732 3143 0.561 1.375 1.059 0.997

aThe intensity weighted average lifetime (Eq. (3)).
bThe amplitude weighted average lifetime (Eq. (4)).
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nanoparticles, such as CdO and TiO2, is also ruled out and the
effective quenching mechanism is not caused by an energy
transfer from GFP to MON.

Photoinduced electron transfer process is another important
quenching mechanism that results in the decrease of the
fluorescence lifetime of the GFP. Electron transfer kinetics
can be evaluated in terms of Marcus theory [27,28]. The theory
implies that the logarithm of the electron transfer rate is a
quadratic function with respect to the driving force, �ΔG. The
simplified form of the rate constant of ET, kET , is given by

kET ¼ Aexp
�ðΔG0þλÞ2

4λkBT

� �
ð5Þ

where ΔG is the driving force, λ is the reorganization energy,
kB is Boltzmann's constant and T is the temperature. In the
region of driving force smaller than the reorganization energy
(the normal region), ET rate increases as driving force
increases. This expression is successfully used by Kamat to
investigate electron transfer kinetics between CdSe quantum
dots and TiO2 nanoparticles [29]. Electron transfer rate reaches
a maximum value at �ΔG¼λ. When the driving force for
reaction is greater than λ, inverted region kinetics are observed
and ET rate increases as the driving force increases. Inverted
region ET process is well established from experiments on
systems with donor and acceptor distances fixed by protein
framework [30].

The driving force for electron transfer between a photo-
sensitizer and metal oxide nanoparticle can be dictated by the
energy difference between the oxidation potential of photo-
sensitizer and reduction potential of metal oxide nanoparticle.
The Rehm–Weller equation can be utilized to determine the
driving force energy changes for photoinduced electron
transfer process [31]. This equation gives the driving force
energy changes between a donor (D) and an acceptor (A) as

ΔG0 ¼ e½ΕOxi:ðDÞ�ΕRed:ðAÞ��ΔΕn ð6Þ
where e is the unit electrical charge, ΕOxi:ðDÞ and ΕRed:ðAÞ are
the oxidation and reduction potentials of electron donor
and acceptor, respectively. ΔΕn is the electronic excitation
energy corresponding to the energy gap between ground and
the first excited states of donor species. In this study, GFP
fluorescent protein is used as a photosensitizer and the excited
state energy level of GFP depends on the photo physical
formation of its chromophore. The chromophore of GFP,
p-hydroxybenzylidene-imidazolinone (HBI), is formed by
a cyclization reaction of three residues (Ser 65, Tyr 66 and
Gly 67) in the main chain of GFP [32]. This chromophore is
always located in the middle part of a central helix inside an
eleven-stranded β-barrel and it plays an important role for the
intense fluorescence of GFP [33]. Possible protonation states
of the quantum mechanical chromophore model of GFP are
neutral (HOY, N, OX), anionic (OY, N, OX), zwitterionic (OY

–,
HNþ , OX) and cationic (HOY, HN, OX). In the study of
photophyscis of GFP, it is determined that the neutral form of
the chromophore absorbs light at 375 nm and the deprotonated
anionic form absorbs at 494 nm. Excitation at both wave-
lengths leads to fluorescence emission at 509 nm. This is
presumably due to the fact that the phenolic oxygen of Tyr 66
is more acidic in the excited state than in the ground state;
excited-state proton transfer occurs resulting in a common
anionic excited state that is responsible for the observed
emission spectrum. Also, experimental estimate for the wave-
length of absorption maximum in the cationic and zwitterionic
form are 406 and 503 nm, respectively [34]. A computational
analysis of the GFP chromophore and obtained absorption
spectrum suggest that its chromophore has an anionic form.
For computational analysis, ProtParam bioinformatics compu-
ter program is used. This program computes various physico-
chemical properties that can be deduced from a protein
sequence. The computed parameters include the molecular
weight, theoretical pI, amino acid composition, atomic com-
position, extinction coefficient, estimated half-life, instability
index, aliphatic index and grand average of hydropathicity
(GRAVY). The detailed results of ProtParam bioinformatics
program are provided in the Supporting Information. Polyakov
et al. described the ground and excited state electronic
structures of anionic form of GFP chromophore and the S00
and S10 energy gap of anionic chromophore is computed as
2.37 eV. According to the absorption spectrum of our GFP
chromophore, energy gap is calculated as 2.25 eV and this
calculated result is in well agreement with Palyakov's results.
Moreover, oxidation potential of the anionic form of GFP is
determined as 0.47 V [35]. The energy level of conduction
band edges for our TiO2 nanoparticle which is known as a
wide band gap semiconductor (Eg¼3.42 eV) is calculated as
�4.19 eV. On the other hand, a narrower band gap semi-
conductor CdO (Eg¼2.36 eV) possesses a conduction band
level around �4.45 eV. The electron transfer process from
GFP to metal oxide nanoparticles and the band edge positions
of metal oxides are shown in Fig. 7. Reduction potentials of
metal oxides are given on the right according to the normal
hydrogen electrode (NHE). The reduction potentials of CdO
and TiO2 are measured as �0.05 V and �0.31 V, respec-
tively. Consequently, driving forces for CdO and TiO2 are
calculated as �1.73 eV and �1.47 eV using Eq. (6).
The reorganization energy (λ) of rigid dye molecules can be

estimated from the stokes shift of the fluorescence spectrum
[36]. According to the absorption and emission spectrum of
green fluorescent protein, its reorganization energy should
be r0.3 eV. This appears to be a typical value for rigid
molecules, since calcultions by Moser et al. of solvent reorgani-
zation energy for coumarin-343, alizarin, and merocyanin Mc 2 in



Fig. 7. Diagram of the electron transfer mechanism between GFP and metal
oxide nanoparticles.

Table 2
Intensity weighted fluorescence lifetimes and electron transfer rate constants.

Sample 〈τ〉a ðnsÞ ΔG0 (eV) kET ðs�1Þ

GFP3 2.419 – –

GFP3þCdO 1.881 �1.73 1.182� 108

GFP3þTiO2 1.375 �1.47 3.139� 108
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an ethanol–methanol mixture resulted in similar reorganization
energies [37,38]. Because of the fact that reorganization energy of
GFP is smaller than our calculated driving forces, the strong
quenching of time resolved fluorescence lifetime under such
conditions can be correlated to the inverted region photoinduced
electron transfer process.

If we suppose that the observed decrease in fluorescence
lifetime is entirely due to the photoinduced electron transfer
process, the rate constant, kET , can be estimated by comparing
the fluorescence lifetimes in the presence and absence of metal
oxide nanoparticles (MON).

kET ¼ 1
τGFPþMON

� 1
τGFP

ð7Þ

where τGFP and τGFPþMON are the fluorescence lifetimes of the
GFP in the absence and presence of the metal oxide nano-
particles respectively. Using this relation, the electron transfer
rate can be obtained from the fluorescence lifetime of GFP on
CdO and TiO2 metal oxide nanoparticles as shown in Table 2.
The electron transfer rate, kET, of GFP on CdO and TiO2 are
1.182� 108 and 3.139� 108 s�1, respectively. In fact, effec-
tive electron injection into the conduction band of the metal
oxide nanoparticle is highly enhanced with the decrease of the
energy difference between reduction of metal oxide nanopar-
ticle and oxidation potential of GFP. This relation satisfies the
inverted region electron transfer mechanism of Marcus model.

The time resolved fluorescence lifetime measurement of the
emission of GFP reveal that electron transfer to the TiO2

nanoparticles occurs with a characteristic time constant of
0.3 ns. However, more recent investigations with other sensi-
tizing molecules show that the electron transfer occurs on a
femtosecond time scale [36,39]. Since intraband and free
electron transitions should be proportional to the density of
states in the conduction band, the particle size is decisive in
determining the photophysical and chemical properties of
metal oxide nanoparticles [40]. In other words, the photo-
induced electron transfer rate from a GFP molecule to a metal
oxide nanoparticle can be controlled with the nanoparticle size.
As the size of the semiconductor crystal changes, different
facets and surface steps may be created. Small TiO2 nanopar-
ticles have a high surface area which gives rise to a lot of
defects. Consequently, the surface defect density will be
smaller for larger diameter (410 nm) systems, which makes
the electron injection yield smaller. By decreasing the particle
size of the metal oxides (TiO2 and CdO), we can increase the
electron transfer rate and obtain more efficient dye sensitized
solar cells.
4. Conclusion

The ensemble averaged electron injection dynamics from
excited green fluorescent protein molecules to metal oxide
nanoparticles is investigated by time-resolved fluorescence
lifetime spectroscopy method. In our experimental studies of
electron injection, TiO2 and CdO nanoparticles are used as
electron acceptors. Electron transfer process is monitored by
the fluorescence emission spectrum intensity and fluorescence
lifetime decay of GFP molecule. It is observed that fluores-
cence intensity of GFP is quenched due to electron transfer on
the picosecond time scale. Furthermore, electron transfer
process causes a significant decrease in the fluorescence
lifetime of the GFP molecules. The rate of the electron transfer
is calculated using fluorescence lifetime of GFP molecules. It
is observed that employing a wide band gap metal oxide
nanoparticle, such as TiO2, give rises to more efficient
photoinduced electron transfer process. The practical applica-
tion of this system could be dye sensitized solar cell which has
attracted wide attention for the potential application to convert
sunlight into electricity. The energy conversion mechanism of
dye-sensitized solar cells involves photoinduced electron
transfer reactions. In this research, we have experienced the
usefulness of green fluorescent molecule for dye sensitized
solar cell device applications. We believe that the availability
of efficient natural dye sensitizers such as fluorescent proteins
may enhance the development of a long term stable dye
sensitized solar cells.
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