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Abstract. The notion of projection invariant subgroups was first introduced by Fuchs in
[7]. We will define the module-theoretic version of the projection invariant subgroup.
Let R be a ring and M a right R-module. We call a submodule N of M the projection
invariant if every projection � of M onto a direct summand maps N into itself, i.e. N
is invariant under any projection of M . In this note, we give several characterizations
to these class of modules that generalize the recent results in [14]. We also define and
study the PI-lifting modules which is a generalization of FI-lifting module. It is shown
that if each Mi is a PI-lifting module for all 1 ≤ i ≤ n, then M = ⊕

n

i=1Mi is a PI-lifting
module. In particular, we focus on rings satisfying the following condition:
(*) Every submodule of M is projection invariant.

We prove that if R has the (∗) property, then R ⊕ R does not satisfy the (∗)

property.

Keywords: Fully invariant submodules; Projection invariant submodules; Duo modules

and rings; Finite exchange property; Lifting modules.

1. Introduction

Throughout this paper, R is an associative ring with identity and all modules
are unitary. For a right R-module M , we use S = EndR(MR) to denote the
endomorphism ring of M . Obviously, the module M is an (S,R)-bimodule.
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A submodule N of M is said to be a fully invariant if f(N) is contained
in N for every f ∈ S. Clearly, 0 and M are fully invariant submodules of M .
The right R-module M is said to be duo provided every submodule of M is
fully invariant. It is clear that every simple right R-module is a duo module.
Moreover, if the right R-module R is a duo module, then the ring R is called
right duo. Note that a ring R is a right duo ring if and only if every right ideal
of R is a two-sided ideal, equivalently Ra is contained in aR for every element a
in R.

Example 1.1. Let ℤ be the ring of integers, n a positive integer and p a prime
integer. Then, ℤ and ℤ/ℤpn are duo ℤ-modules, but the filed of rationals is not
a duo ℤ-module.

Example 1.2. (see [1, Example 6]) Let p be a prime integer.Then, we have the
following properties:

(1) The ℤ-module ℤ⊕A is not duo for any ℤ−module A.

(2) For any distinct prime integers pi (i = 1, 2, ..., n), the ℤ−module M =
⊕n

i=1ℤ/ℤp
ni

i is a duo module for any positive integers ni(i = 1, 2, ..., n).

(3) The ℤ-module ℚ⊕A is not a duo module for any ℤ-module A.

An R-module M is said to have the summand sum property if the sum of any
two direct summands of M is a direct summand of M (SSP ).

M is said to have the summand intersection property if the intersection of
any two direct summands of M is a direct summand of M (SIP ) (see [8],[10],
[19]).

Theorem 1.3. ([1, Theorem 5]) Let M be a duo module. Then M has the SIP
and the SSP.

In Section 2, we obtain some new properties of fully invariant submodules
and duo modules. In particular, it is shown that a direct summand complement
of a direct summand ofM is unique if and only if it is a fully invariant submodule
of M .

Let M be a module and N be a submodule of M . We call N a projection
invariant submodule of M if every projection � of M onto a direct summand
maps N into itself, i.e. N is invariant under any projection of M . Clearly, each
fully invariant submodule of a module is a projection invariant submodule.

In the first part of Section 3, we obtain some basic properties of projection
invariant submodules and also we study the interrelation between these submod-
ules and the finite exchange property .

In the last part of Section 3, we consider the condition (∗).

We will prove that the condition (∗) holds for every direct summand of M =
⊕i∈IMi where each Mi (i ∈ I) is an indecomposable submodule of M if and
only if
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(1) Hom(Mi,Mj) = 0 for all distinct i, j ∈ I, and

(2) For every direct summand N of M , there exist a (finite) subset I ′ of I such
that N = ⊕i∈I′(N ∩Mi).

Let M be an R-module and N be a submodule of N . N is called small,
written N ≪ M , if M ∕= N +L for every proper submodule L of M . Properties
of small submodules are given in [13, Lemma 4.2] and [19, Proposition 19.3].
Let M be a module. M is said to be a lifting module, if for every submodule N
of M , M has a decomposition M = M1 ⊕M2 with M1 ≤ N and M2 ∩N small
in M2, i.e. if for every submodule A of M there exists a direct summand B of
M such that B ≤ A and A/B is small in M/B.

According to Koşan [12], the module M is called FI-lifting if for every fully
invariant submodule A of M , there exists a direct summand B of M such that
B ⊆ A and A/B small inM/B as a generalization of lifting module. By [12], if X
is a fully invariant submodule of a FI-lifting module M then M/X is FI-lifting.
In this section, similar to FI-lifting modules, we define PI-lifting modules. M
is called a PI-lifting module if for every projection invariant submodule A of
M , there exists a direct summand B of M such that B ⊆ A and A/B small in
M/B. This definition is not meaningless, that is not every PI-lifting module is
a lifting module. Let Mℤ = ℤ/2ℤ ⊕ ℤ/8ℤ. Then Mℤ is a FI-lifting module by
[12, Corollary 3.5]. Therefore, M is a PI-lifting module. We note that Mℤ is not
a lifting module by [11, Example 1 ]. On the other hand,

(1) M is a PI-lifting module if and only if for every projection invariant sub-
module A of M there exist a decomposition M = M1 ⊕ M2 such that
M1 ≤ A and M2 ∩ A is small in M2.

(2) By definitions, every lifting modules are FI-lifting and PI-lifting. One may
suspect that if M is an FI-lifting module then it is also a PI-lifting module.
But the following example eliminates this possibility: Let R be a simple
domain that is not a division ring (e.g. the first Weyl Algebra over a field
of characteristic 0). Then the only fully invariant right ideals of R are the
trivial ones, so RR is FI-lifting. Since the only idempotents of R are 0 and
1 any right ideal of R is projection invariant; but J(R) = 0, so that RR is
not PI-lifting.

In Section 4, we obtain some basic properties of projection invariant lifting
modules. In particular, it is shown that if each Mi is a PI-lifting module, then
M = ⊕n

i=1Mi is a PI-lifting module.

The texts by Anderson and Fuller [2] and Wisbauer [20] are the general
references for notions of rings and modules not defined in this work.

2. Fully Invariant Submodules

The next results are well known facts proved for groups in Lemma 9.5, Theo-
rem 9.6 and Corollary 9.7 of [7], respectively.
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Lemma 2.1. Let M = M1 ⊕M2 be a decomposition of M with associated projec-
tions �i : M → Mi (for i = 1, 2). If we also have M = M1⊕M3 with projections
�′
1 : M → M1 and �3 : M → M3, then, for some endomorphism � of M , we

have

�′
1 = �1 + �1��2 and �3 = �2 − �1��2 (2.1)

Conversely, if �′
1 and �3 are endomorphisms of M satisfying (2.1) for some

� ∈ End(M), then M = M1 ⊕ �3(M).

Proof. Let � = �2 − �3. Then M1 ≤ Ker(�). Since ��1 = 0 and 1M = �1 + �2,
� = ��1 + ��2 = ��2. Let m = m1 +m2 = m′

1 +m3 ∈ M where m1,m
′
1 ∈ M1,

m2 ∈ M2, and m3 ∈ M3. Then �(m) = (�2−�3)m = m2−m3 = m′
1−m1 ∈ M1.

Hence �1�(m) = �(m) for all m ∈ M . Thus � = �1�. Since � = �1� = ��2,
we have � = �1��2 and �3 = �2 − � = �2 − �1��2. Since 1M = �′

1 + �3, then
�′
1 = 1M − �3 = �1 + �2 − �3 = �1 + �1��2.

Conversely, assume that �′
1 and �3 are of the form (2.1). We add the equalities

(2.1) side by side to get �′
1 + �3 = �1 + �2 = 1M . Also it is easy to check that

�′
1 and �3 are orthogonal idempotents in S. Then M = �′

1(M) ⊕ �3(M). By
(2.1), �′

1(M) ≤ �1(M), and since �1(M) = M1 and �3(M) ∩M1 = 0, we have
M = M1 ⊕ �3(M).

Theorem 2.2. If M1 is a direct summand of the module M , then the intersection
of all direct summand complements of M1 in M is the maximal fully invariant
submodule of M that has the zero intersection with M1.

Proof. Let K denote the intersection of all direct summand complements of M1

in M . Let M = M1 ⊕ M2 and both �1 and �2 be projections of M along
M1 and M2 respectively, and let � ∈ S = End(M). By Lemma 2.1, M3 =
(�2 − �1��2)(M) is again a direct summand complement of M1 in M . Let
x ∈ K. Since K ≤ M2 ∩M3, (�2 − �1��2)(x) = x and �2(x) = x. Hence 0 =
(�1��2)(x) = (�1�)(x). Thus, �(x) ∈ M2, for all direct summand complement
of M2 in M . It follows that �(x) ∈ K. Now clearly M1 ∩ K = 0. If L is
any fully invariant submodule of M with L ∩ M1 = 0 and M = M1 ⊕ M2,
then, if x ∈ L with x = m1 + m2 where m1 ∈ M1 and m2 ∈ M2, we have
m1 = �1(x) ∈ M1 ∩ L = 0, and so L = (L ∩M1) ⊕ (L ∩M2) = L ∩M2. Hence
L ≤ M2 for all direct summand complements of M2 in M .Thus, L ≤ K. This
completes the proof.

Corollary 2.3. Let M be a module. A direct summand complement of a direct
summand of M is unique if and only if it is a fully invariant submodule of M .

Following Warfield [18], we say that a ring R is exchange in case the regular
right R-module RR satisfies the (finite) exchange property, that is, for every
R-module M and decompositions

M = X ⊕ Y = ⊕i∈IMi
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with X ∼= RR (and I finite), there exist submodules Ni ⊆ Mi such that

M = X ⊕ (⊕i∈INi).

Some kinds of generalized exchange rings were studied by Chen Huayin in [5].
We remark here that GM-condition on a ring R was also stated by H.Chen and
M.Chen which generalizes the known unit 1-stable range condition [6]. By using
this GM-condition, they investigated the exchange rings with Artinian primitive
factors satisfying the GM-condition.

It is well know that all continuous modules have the full exchange property
(see [13]). The following theorem is a slight version of this result on quasi-
injective modules. For some new results on injective module and quasi injective
modules, the readers are referred to [16], [9] and [15].

Theorem 2.4. Every quasi-injective duo module has the finite exchange property.

Proof. Let M be a quasi-injective duo module with S = EndR(M). Note that
every module is a submodule of a quasi-injective module. Let N be a right
R-module and g : N → M be a monomorphism. Then we may assume g(N)
is a fully invariant submodule of M . Since M is a quasi-injective module, for
�, � ∈ S′ = EndR(N) with �+ � = 1N , there exist a f ∈ S such that g� = fg.
It is easy to see that g� = (1M − �)g and so � + (1M − �) = 1M . Now,
since S/J(S) is regular and self-injective, the ring S is an exchange ring by [17,
Theorem 29.2]. By [17, Theorem 29.1], we have e1 ∈ �S with e21 = e1 and
e2 ∈ (1M −�)S with e22 = e2 such that e1+e2 = 1M . Let e1 = �s1 and e2 = �s2
for some s1, s2 ∈ S. Since g(N) is a fully invariant submodule of M , there
are unique ℎ1, ℎ2, t1, t2 ∈ S′ such that gℎ1 = e1g, gℎ2 = e2g , gt1 = s1g and
gt2 = s2g. Then ℎ1, ℎ2 are idempotents and ℎ1 + ℎ2 = 1N . Since g : N → M is
monomorphism, we have ℎ1 = �t1 and ℎ2 = �t2. Now, by [17, Theorem 29.1],
the ring S′ is an exchange ring. This implies that N has the finite exchange
property.

3. Projection Invariant Submodules

We list below some of the basic properties of projection invariant submodules
that will be needed in this paper.

Proposition 3.1. Let M be a module and N be a submodule of M . Then;

(1) N is a projection invariant submodule of M if and only if �(N) = N ∩
�(M) for every projection � of M .

(2) N is a projection invariant submodule of M if and only if N is an inter-
section of projection invariant submodules of M .

(3) Any sum and intersection of projection invariant submodules of M is
again a projection invariant submodule of M .
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(4) A projection invariant direct summand of M is a fully invariant submod-
ule of M .

(5) Let M = M1⊕M2 be a decomposition and N be any projection invariant
submodule of M . Then N = (N ∩M1)⊕ (N ∩M2).

(6) If M = ⊕i∈IMi and N is a projection invariant submodule of M , then
N = ⊕i∈I�i(N) = ⊕i∈I(Mi∩N), where �i is the i-th projection homomorphism
of M along Mi.

Proof. (1) Assume that N is a projection invariant submodule of M . Let � be
a projection of M . Then �(N) ≤ N ∩ �(M) ≤ �(N). Since N ∩ �(M) ≤ �(N)
always holds, then �(N) = N ∩ �(M). The converse is clear.

(2) Assume that N is a projection invariant submodule of M . Note that
M is a projection invariant submodule of M . Since N = N ∩ M , then N is
the intersection of projection invariant submodules N and M . Conversely, let
N = ∩i∈INi where Ni (i ∈ I) are projection invariant submodules of M and let
� be a projection of M . Then �(N) = �(∩i∈INi) ≤ ∩i∈I�(Ni) ≤ ∩i∈INi = N .
Hence �(N) ≤ N .

(3) This is similar to [12, Lemma 3.2].

(4) Let M1 be a projection invariant direct summand ofM , f ∈ S = End(M)
and M = M1 ⊕ M2. Let �1 and �2 be projections of M onto M1 and M2,
respectively. Let � be any element in S. By Lemma 2.1, we obtain that �3 =
�1 − �2��1 is a projection of M . By hypothesis, �3(M1) ≤ M1. Let x ∈ M1.
Then �3(x) = x− (�2�)(x) ∈ M1. Hence (�2�)(x) = 0. Thus �(x) ∈ M1.

(5) Let �1 and �2 be projections of M along with M1 and M2 respectively.
Then, for any m = m1 + m2 ∈ M where m1 ∈ M1 and m2 ∈ M2, we have
�1(m) = m1 and �2(m) = m2. Let n = n1 + n2 ∈ N where n1 ∈ M1 and
n2 ∈ M2. By hypothesis, we obtain that �1(n) = n1 ∈ N and �2(n) = n2 ∈ N ,
and so �1(n) = n1 ∈ N ∩M1 and �2(n) = n2 ∈ N ∩M2. Then n = n1 + n2 ∈
N ∩M1 +N ∩M2. Hence N ≤ N ∩M1 +N ∩M2. The rest is clear.

(6) This is similar to [12, Lemma 3.2].

Let M and N be two submodules with S = EndR(MR) and S′ = EndR(NR).
For a right R-homomorphism g : N → M , we consider the set I = {f ∈ S :
gf = 0}. It is easy to see that I is a right ideal of S.

Proposition 3.2. Let M be a quasi-projective module. With the above notation,
if I is a projection invariant direct summand, then S/I ∼= S′.

Proof. Let M be a quasi-projective module and I = {f ∈ S : gf = 0} for any
rightR-homomorphism g : N → M . By Proposition 3.1, we may assume that I is
fully invariant. Then we have the R-module homomorphism ℎ : M/Rad(M) → S
such that ℎg = gf . Now � : S → S′, defined by �(f) = ℎf where ℎf depends
on any f ∈ S, is a homomorphism. Since M is a quasi-projective module, for
any � ∈ S′, there exist a f ′ ∈ S such that �g = gf ′. It is easy to see that � is a
surjective homomorphism and Ker(�) = I.
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Theorem 3.3. Let M be a quasi-projective module and N be a module. With the
above notations, let I be a projection invariant direct summand. If M has the
finite exchange property, then

(1) N has the finite exchange property.

(2) I is an exchange ring.

(3) For any f ∈ S, if Im(f − f2) ⊆ I then there exists an idempotent e ∈ S
such that Im(f − e) ⊆ I.

Proof. (1) Assume that M has the finite exchange property. By [17, Theo-
rem 28.7], the ring S is an exchange ring. Then, by Proposition 3.2, we have
S/I ∼= S′. By [3, Theorem 2.2], the ring S′ is an exchange ring. Then N has the
finite exchange property.

(2) Clear.

(3) For any f ∈ S, there exist an idempotent e ∈ S such that f−e = (f−f2)f ′

for some f ′ ∈ S by [17, Theorem 29.1]. This implies that g(f−e) = g(f−f2)f ′ =
0, i.e., Im(f − e) ⊆ I.

We consider the condition (∗) for an R-module M .

Clearly, duo modules satisfy the (∗)-condition. If M is a right R-module,
then M satisfies the (∗)-condition because M is a duo module.

Proposition 3.4.

(1) If a module satisfies the (∗)-condition, then any direct summand of it also
satisfies the (∗)-condition.

(2) Let M be an R-module. Assume that the (∗)-condition holds for every
summands of M , i.e. all direct summands of M are projection invariant.
Then M has the SIP and SSP properties.

Proof. (1) Assume M satisfies the (∗)-condition andM = M ′⊕M ′′ with M ′,M ′′

submodules of M . Let �M ′ : M → M ′ be the canonical projection and let N
be any submodule of M ′. Suppose that � is a projection of M ′, i.e. � : M ′ =
M ′⊕ (0) → M ′. Then p = ��M ′ is a projection of M and �(N) = p(N) which is
contained in N because M satisfies the (∗)-condition. It follows that M ′ satisfies
the (∗)-condition.

(2). Let M1 and M2 be direct summands of M . Note that, M1 and M2

are fully invariant submodules of M by Prop. 3.1(4). For some submodule M ′
2

of M , let M = M2 ⊕ M ′
2. By assumption and Prop. 3.1(6), we have M1 =

(M1 ∩M2) ⊕ (M1 ∩M ′
2). Clearly, M1 ∩M2 is a direct summand of M , i.e. M

has the SIP property. Since M1 + M2 = M2 ⊕ (M1 ∩ M ′
2) and M1 ∩ M ′

2 is a
direct summand of M ′

2, then M1 ∩ M ′
2 is a direct summand of M , i.e., M has

the SSP property.

Remark 3.5. Note that Proposition 3.5(2) also follows from Proposition 3.1.(4)
and Theorem 1.3.
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In [14, Proposition 1.3], it is proved that any direct summand of a duo
module is also a duo module.

Proposition 3.6. Any direct summand of a duo module is also a duo module.

Proof. The proof is clear from Props. 3.4 and 3.1.

Proposition 3.7. Let M be an R-module.

(1) Assume that M has a decomposition M = M1 ⊕ M2 for some submod-
ules M1,M2 of M . If M1 is a projection invariant submodule of M , then
Hom(M1,M2) = 0.

(2) Assume that the (∗)-condition holds for every direct summand of M . If M
has a decomposition M = M1 ⊕ M1 for some submodules M1,M2 of M ,
then Hom(M1,M2) = 0.

Proof. (1). By Prop. 3.1, we can suppose that M1 is a fully invariant submodule
of M . Let f : M1 → M2 be any homomorphism. Let p1 : M → M1 denote the
canonical projection and let i2 : M2 → M denote inclusion. Then f∗ = i2fp1
is an endomorphism of M . By hypothesis, f∗(M1) ⊆ M1, so that f(M1) ⊆
M1 ∩M2 = 0. It follows that f = 0.

(2). By (1) and Prop. 3.1(4).

Theorem 3.8. Let a module M = ⊕i∈IMi be a direct sum of submodules Mi

(i ∈ I). Then, the (∗)-condition holds for every direct summand of M if and
only if

(1) The (∗)-condition holds for every direct summand of Mi for all i ∈ I,

(2) Hom(Mi,Mj) = 0 for all distinct i, j ∈ I,

(3) N = ⊕i∈I(N ∩Mi) for every direct summand N of M .

Proof. Sufficiency. It is clear from by Props. 3.1 and 3.7.

(Necessity). Suppose that M satisfies (1), (2) and (3). Let K be any direct
summand of M and let f be any endomorphism of M . For each j in I, let
pj : M → Mj denote the canonical projection and let ij : Mj → M denote the
inclusion.Then,by (1), we have pjfij(K ∩Mj) ⊆ K ∩Mj for all j ∈ I. Because
every projection-invariant direct summand of Mj is a fully invariant submodule
by Prop. 3.1(4). Moreover, we have pkfij(K ∩Mj) = 0 for all distinct j, k ∈ I
by (2). Now ,(3) gives f(K) =

∑
j∈I f(K ∩ Mj) ⊆

∑
j∈I pjfij(K ∩ Mj) ⊆∑

j∈I(K ∩ Mj) ⊆ K. Thus, K is a fully invariant submodule of M and so a
projection invariant submodule of M .

Corollary 3.9. Let a module M = ⊕i∈IMi be a direct sum of indecomposable
submodules Mi (i ∈ I). Then the (∗)-condition holds for every direct summand
of M if and only if

(1) Hom(Mi,Mj) = 0 for all distinct i, j ∈ I.
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(2) For every direct summand N of M , there exist a (finite) subset I ′ of I such
that N = ⊕i∈I′(N ∩Mi).

Proof. (Sufficiency). Clear from by Thm. 3.8 and Prop. 3.4.

(Necessity). By Thm. 3.8.

Let R be a ring and let M be a right R-module. For any non-empty subset
S of M , the annihilator of S (in R) will be denoted by ann(S), i.e.ann(S) =
{r ∈ R : sr = 0 for all s in S}. In case S = {m}, then we write ann(m) for
ann({m}). We now prove another basic fact about direct sum decompositions.

Lemma 3.10. ([14, Lemma 2.4]) Let a module M = ⊕i∈IMi be a direct sum of
submodules Mi (i ∈ I). Then the following statements are equivalent.

(1) R = ann(mi) + ann(mj) for all mi ∈ Mi, mj ∈ Mj, for all i ∕= j in I.

(2) N = ⊕i∈I(N ∩Mi) for every (cyclic) submodule N of M .

Moreover, in this case Hom(Mi,Mj) = 0 for all distinct i, j in I.

Theorem 3.11. Let a module M = ⊕i∈IMi be a direct sum of submodules Mi

(i ∈ I). Then M satisfies the (∗)-condition if and only if

(1) Mi satisfies the (∗)-condition for all i ∈ I, and

(2) N = ⊕i∈I(N ∩Mi) for every submodule N of M .

Proof. Using Lemma 3.10, the proof is similar to that of Cor. 3.9.

Corollary 3.12. Let a module M = ⊕i∈IMi be a direct sum of submodules Mi

(i ∈ I). Then M satisfies the (∗)-condition if and only if Mi ⊕Mj satisfies the
(∗)-condition for all distinct i, j in I.

Proof. (Sufficiency). By Prop. 3.4.

(Necessity). Let Mi ⊕ Mj satisfy the (∗)-condition for all distinct i ∕= j in
I. Then Mi satisfies the (∗)-condition for all i ∈ I, by Prop. 3.4. Moreover,
for all i ∕= j in I, R = ann(mi) + ann(mj) for all mi ∈ Mi, mj ∈ Mj by
Prop. 3.1 and Lemma 3.10. Hence M satisfies the (∗)-condition by Lemma 3.10
and Theorem 3.11.

If the right R-module R has the (∗) property, we say R has the (∗) property
on the right side. Clearly commutative rings and division rings satisfy the (∗)
property on the right side.

Remark 3.13.

(1) If R has the (∗) property, then R⊕R does not satisfy the (∗) property.

(2) Any 2× 2 matrix ring over division rings does not satisfy the (∗) property.
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Proof. Let A and B be right R-modules and f : A → B be an epimorphism.
Then A is not projection invariant in M = A ⊕ B, because if p : M → A
denotes the canonical projection, then fp : M → B is a projection to the direct
summand B, but fp(A) = B is not contained in A. Hence the module M does
not have property (∗). In particular, for any non-zero module M, the module
M ⊕ M does not have property (∗), independent of M having property (∗) or
not. This shows that neither R⊕R nor the ring of 2× 2 matrices over any ring
R ( R can be even a field) satisfies (∗).

Question 3.14. Let R be a ring and R′ be a proper subring of R. Does R′
R satisfy

the (∗)-property or not ?

4. The Lifting Condition

Following [12], the module M is called FI-lifting if for every fully invariant
submodule A of M , there exists a direct summand B of M such that B ⊆ A
and A/B small in M/B.

Definition 4.1. A right R-module M is called PI-lifting if for every projection
invariant submodule A of M , there exists a direct summand B of M such that
B ⊆ A and A/B small in M/B.

Lemma 4.2. The following statements are equivalent for a right R-module M .

(1) M is a PI-lifting module.

(2) For every projection invariant submodule A of M there is a decomposition
A = N ⊕ S with N a direct summand of M and S small in M .

(3) For every projection invariant submodule X of M , there exists an idempo-
tent homomorphism e : M → X such that (1− e)(X) ≤ (1− e)(M).

Proof. (1) ⇒ (2). Let A be a projection invariant submodule of M . Since M is a
PI-lifting module, there exist a decomposition M = M1⊕M2 such that M1 ≤ A
and M2 ∩ A small in M2. Therefore A = M1 ⊕ (A ∩M2), as required.

(2) ⇒ (1). Assume that every projection invariant submodule has the stated
decomposition. Let A be a projection invariant submodule of M . By hypothesis,
there exist a direct summand N of M and a small submodule S of M such that
A = N ⊕ S. Now M = N ⊕ N ′ for some submodule N ′ of M . Consider the
natural epimorphism � : M −→ M/N . Then �(S) = (S + N)/N = A/N small
in M/N . Therefore M is a PI-lifting module. (1) ⇔ (3). Clear.

Theorem 4.3. Let M = ⊕n
i=1Mi. If each Mi is a PI-lifting module, then M is a

PI-lifting module

Proof. Let N be a projection invariant submodule of M . It is easy to see that
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for every 1 ≤ i ≤ n, N ∩ Mi is projection invariant in Mi by Lemma 3.1.
Since Mi is a PI-lifting module for every i, there exist a direct summand Ki of
Mi such that Ki ≤ N ∩ Mi and (N ∩ Mi)/Ki is small in Mi/Ki for every i.
Clearly, K = ⊕n

i=1Ki is a direct summand of M and K ⊆ ⊕n
i=1(N ∩Mi). We

know that ⊕n
i=1

(N ∩Mi) = M by Lemma 3.1. Now consider the homomorphism
� : ⊕n

i=1
(Ni/Ki) → (⊕n

i=1
Mi)/K with (m1+K1, ...,mn+Kn) → (Σn

i=1
mi)+Ki,

wheremi ∈ Mi for 1 ≤ i ≤ n. Then �(⊕n
i=1((N∩Mi)/Ki)) = (⊕n

i=1(N∩Mi))/K.
Since any finite sum of small submodules again a small submodule, ⊕n

i=1
((N ∩

Mi)/Ki) is small in ⊕n
i=1(Mi/Ki). Then by [13, Lemma 4.2], (⊕n

i=1(N∩Mi))/K
is small in M/K.

We do not know if any direct sum of PI-lifting modules is a PI-lifting module.

Corollary 4.4. If M is a finite direct sum of lifting (or hollow) modules, then M
is a PI-lifting module.

Example 4.5. Let R be a PID and M be any finitely generated R-module. We
consider the torsion submodule Tor(M) of M . Since Tor(M) is a finite direct
sum of hollow R-modules, then Tor(M) is a PI-lifting module by Corollary 4.4.

Let M be a lifting module. By [12, Corollary 2.2], for every fully invariant
submodule Y of M , M/Y is a lifting module. Let X be a fully invariant sub-
module of M . If M is an FI-lifting module then M/X is an FI-lifting module
(see [12, Proposition 3.3]).

Proposition 4.6. Let M be a module and X be a projection invariant submodule
of M . Assume that X ′/X is a projection invariant submodule of M/X where
X ≤ X ′ ≤ M . Then X ′ is a projection invariant submodule of M . If M is a
PI-lifting module then M/X is a PI-lifting module.

Proof. Let Y be a submodule of M with X ⊆ Y and let Y/X be a projection
invariant submodule of M/X . By assumption, Y is a projection invariant sub-
module of M . Since M is a PI-lifting module, there exist a direct summand D
of M such that D ≤ Y and Y/D is small in M/D. Assume M = D ⊕ D′

for some submodule D′ of M . Let � be the projection with the kernel D
and i : D′ → M the inclusion map. Now, � = i� : M → M be a homo-
morphism of M . Since X and Y are projection invariant submodules of M ,
then �(X) ⊆ X and �(Y ) ⊆ Y . It is easy to see that Y = �−1(Y ). Now,
�−1(X) ⊆ Y = �−1(Y ). Let K be a submodule of M with �−1(X) ⊆ K
and M/�−1(X) = (Y/�−1(X)) + (K/�−1(X)). Then M = Y + K and since
Y/D is small in M/D, M = K. Therefore Y/�−1(X) is small in M/�−1(X),
namely (Y/X)/(�−1(X)/X) << (M/X)/(�−1(X)/X). Now, we want to show
that �−1(X)/X is a direct summand of M/X . Since M = D ⊕ D′, then
M = �−1(X) + D′. Therefore M/X = (�−1(X)/X) + (D′ + X)/X . Since
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�−1(X) ∩ (D′ + X) = X + (�−1(X) ∩ D′) = X , then �−1(X)/X is a direct
summand of M/X . Hence M/X is a PI-lifting module.

Theorem 4.7. Let M = M1 ⊕M2 be a module with the (*)-condition. Then M
is a PI-lifting module if and only if each Mi is a PI-lifting module for i = 1, 2.

Proof. By Theorem 4.3 and Proposition 4.6.
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