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Abstract. Let R be a commutative Noetherian ring with non-zero identity and a
an ideal of R. In the present paper, we examine the question whether the support of
Hn

a (N,M) must be closed in Zariski topology, where Hn
a (N,M) is the nth general

local cohomology module of finitely generated R-modules M and N with respect to
the ideal a.
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1. Introduction. Throughout this paper, we will assume that R is a commu-
tative Noetherian ring with non-zero identity, a is an ideal of R and M , N are two
finitely generated R-modules. Also, we shall use N0 (respectively, N) to denote the
set of non-negative (respectively, positive) integers.

Local cohomology was first defined and studied by Grothendieck [3]. For each
n ∈ N0, the nth local cohomology module of M with respect to an ideal a is defined
as

Hn
a (M) = lim−−−→

m∈N
ExtnR(R/am,M).

∗The second author was partially supported by a grant from TUBITAK (Turkey).
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480 C. Abdioĝlu, K. Khashyarmanesh and M.T. Koşan

It is well known that, in general, the local cohomology modules Hn
a (M) are not

finitely generated for all n ∈ N. One of the important problems concerning local
cohomology is to find when the set of associated primes of Hn

a (M) is finite (cf. [7,
Problem 4]). There are several papers devoted to studying the associated prime
ideals of local cohomology modules. We refer the reader to the papers of Hellus
[4], Huneke and Sharp [9], Lyubeznik [15, 16], Singh [24], Katzman [10] and also
Singh and Swanson [25]. So it is natural to ask whether the sets of primes minimal
in the support of Hn

a (M) are finite for all n ∈ N. This is equivalent to asking the
following question (see Lemma 2.1(i)).

Question 1.1. Let R be a Noetherian ring, M a finitely generated R-module, a an
ideal of R, and n a non–negative integer. Is the support of Hn

a (M) a Zariski-closed
subset of Spec(R)?

Recently, Huneke, Katz and Marly, in [8], provided some partial answers for
Question 1.1 in the case when the ideal a generated by n elements and the top
local cohomology modules Hn

a (M) are considered. For instance, they proved that:

• The support of H2
(x,y)(M) is closed for all x, y ∈ R.

Also, they showed that:

• If the support of H3
a(M) is closed for every three-generated ideal a of R

then, for all non-negative integers n, SuppRH
n
b (M) is closed for every n-generated

ideal b of R.

Afterward, Khashyarmanesh, in [12], showed that:

• Over an arbitrary commutative ring R, the following conditions are equiv-
alent:

(a) For all positive integers n, SuppRH
n
a (M) is closed for every ideal a.

(b) For i = 2, 3, 4, SuppRHomR(R/(x1, . . . , xi+1),Hi
(x1,...,xi)

(M)) is closed, for
every sequence x1, . . . , xi+1 of elements of R such that x1, . . . , xi is an
(x1, . . . , xi+1)-filter regular sequence on M .

(c) SuppRH
2
a(M) is closed for every three-generated ideal a of R, SuppRH

3
a(M)

is closed for every four-generated ideal a of R, and SuppRH
4
a(M) is closed

for every five-generated ideal a of R.

On the other hand, a generalization of the local cohomology functor has been
given by Herzog in [5] (see also [27]). For each n ∈ N0, the ith generalized local
cohomology module of the pair (N,M) with respect to an ideal a is defined as

Hn
a (N,M) = lim−−−→

m∈N
ExtnR(N/amN,M).

Clearly, Hi
a(R,N) ∼= Hi

a(N) for all i ∈ N0. So, we are led to the following natural
question:
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Support of general local cohomology modules 481

Question 1.2. Let R be a Noetherian ring, M and N be finitely generated R-
modules, a an ideal of R, and n a non-negative integer. Is the support of Hn

a (N,M)
a Zariski-closed subset of Spec(R)?

The finiteness properties of generalized local cohomology modules are not well
understood (cf. [1], [6] and [14], [17]). In this paper we provide a partial answer to
Question 1.2.

Now, let E be the injective hull of the direct sum of all simple R-modules and
D(−) be the functor HomR(−, E), which is a natural generalization of the Matlis
duality functor to non-local rings (see [19, 20, 21, 22]). The co-support of an
R-module L is defined as follows (cf. [22]):

co− SuppRL = SuppRD(L).

So as a dual version “in some sense” of Questions 1.1 and 1.2, we have that:

Question 1.3. Let R be a Noetherian ring, M and N finitely generated R-
modules, a an ideal of R, and n a non-negative integer. Is the co-support of
Hn

a (N,M) a Zariski-closed subset of Spec(R)?

In Section 3, we provide a partial answer to Question 1.3.

Our terminology follows the textbook [2] on local cohomology. For basic proper-
ties of generalized local cohomology modules, we refer the reader to [1], [6] and [14].

2. Support of generalized local cohomology modules. The concept of a
filter regular sequence plays an important role in this paper. A sequence x1, . . . , xn
of elements of the ideal a of R is said to be an a-filter regular sequence on M , if

SuppR

(
(x1, . . . , xi−1)M :M xi

(x1, . . . , xi−1)M

)
⊆ V (a)

for all i = 1, . . . , n, where V (a) denotes the set of prime ideals of R containing
a. The concept of an a-filter regular sequence on M is a generalization of the one
for a filter regular sequence which has been studied in [23], [26] and has led to
some interesting results. Note that both concepts coincide if a is the maximal ideal
in a local ring. Also note that x1, . . . , xn is a weak M -sequence if and only if it
is an R-filter regular sequence on M . It is easy to see that the analogue of [26,
Appendix 2(ii)] holds true whenever R is Noetherian, M is finitely generated and
m is replaced by a; so that, if x1, . . . , xn is an a-filter regular sequence on M , then
there is an element y ∈ a such that x1, . . . , xn, y is an a-filter regular sequence on
M . Thus, for a positive integer n, there exists an a-filter regular sequence on M of
length n.

Lemma 2.1. Suppose that X is an R-module.

(i) SuppRX is closed if and only if the number of the minimal elements in
SuppRX is finite.
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482 C. Abdioĝlu, K. Khashyarmanesh and M.T. Koşan

(ii) Let 0 −→ Y −→ X −→ Z −→ 0 be an exact sequence of R-modules. If the
sets SuppRY and SuppRZ are closed, then so is SuppRX.

Proof. (i) Assume that the support of X is closed. Hence SuppRX = V (a)
for some ideal a of R. Let a = ∩ti=1qi be a minimal primary decomposition of a,
where qi is a pi-primary ideal for all i with 1 6 i 6 t. Then V (a) = V (∩ti=1qi) =
∪ti=1V (qi). Also, it is easy to see that V (qi) = V (pi) for all 1 6 i 6 t. Therefore
V (a) = ∪ti=1V (pi). So the number of the minimal elements in SuppRX is finite.
Conversely, if the number of the minimal elements in SuppRX is finite, then clearly
SuppRX is closed.

(ii) It follows from (i). 2

Notation 2.2. For an R-module X, we denote the set of minimal elements in
SuppR(X) by minSuppR(X)

In the following theorem, for a fixed integer n, we study the closeness of the
support of the generalized local cohomology module Hn

(x1,...,xn)
(N,M).

Theorem 2.3. Let n be a non-negative integer and x1, . . . , xn be an a-filter regular
sequence on M , where a := (x1, . . . , xn). Assume that

(i) SuppR(Extn−i+1
R (N,Hi

a(M))) ⊆ SuppR(Extn−i
R (N,Hi

a(M))) for all i = 0, 1,
. . . , n− 1,

(ii) Hn−i−2
a (N,Hi+1

(x1,...,xi+1)
(M)) = 0, for all i = 0, 1, . . . , n− 2,

(iii) SuppR(Extn−i
R (N,Hi

a(M))) is closed for all i = 1, . . . , n− 1,

(iv) minSuppR(Hn
a (M)) ⊆ SuppR(N), and

(v) the set SuppR(Hn
a (M)) is closed.

Then SuppR(Hn
a (N,M)) is closed.

Proof. Let xn+1 be an element in a such that x1, . . . , xn+1 is an a-filter regular
sequence on M . (Note that the existence of such element is explained in the
beginning of this section.) Put S0 := M and Si := Hi

(x1,...,xi)
(M) for i = 1, . . . , n+

1. Hence, by [11, Lemma 2.2], for each i = 0, 1, . . . , n, we obtain the following
exact sequence:

0 −→ Hi
a(M) −→ Si

fi−→ (Si)xi+1 −→ Si+1 −→ 0.

Put Li := Imfi for i = 0, 1, . . . , n. Since the multiplication by xi+1 provides
an automorphism on (Si)xi+1 and Hj

a(N, (Si)xi+1) is an a-torsion module, for all
j ∈ N0, it follows from the exact sequence 0 −→ Li −→ (Si)xi+1 −→ Si+1 −→ 0
that

H0
a(N,Li) = 0 (1)
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Support of general local cohomology modules 483

and
Hj

a(N,Li) ∼= Hj−1
a (N,Si+1) (2)

for all i = 0, 1, . . . , n and j ∈ N. Hence, for i = 0, 1, . . . , n, by applying the functor
Hj

a(N,−) on the exact sequence 0 −→ Hi
a(M) −→ Si −→ Li −→ 0, in conjunction

with (1), (2) and [14, Lemma 2.2], one can obtain an exact sequence:

0 −→ Ext1R(N,Hi
a(M)) −→ H1

a(N,Si)
g1−→ H0

a(N,Si+1)

−→ Ext2R(N,Hi
a(M)) −→ H2

a(N,Si)
g2−→ H1

a(N,Si+1)

−→ . . .

−→ ExtjR(N,Hi
a(M)) −→ Hj

a(N,Si)
gj−→ Hj−1

a (N,Si+1)

−→ Extj+1
R (N,Hi

a(M)) −→ . . . .

Now, let i be an arbitrary integer with 0 6 i 6 n − 1. Then, by assumption (ii),
there exists an exact sequence:

0 −→ Extn−i
R (N,Hi

a(M)) −→ Hn−i
a (N,Si)

gn−i−→ Hn−i−1
a (N,Si+1)

−→ Extn−i+1
R (N,Hi

a(M)).

So, in view of the hypothesis in condition (i), it is routine to check that the minimal
elements in SuppR(Hn−i

a (N,Si)) are contained in the set

minSuppR(Extn−i
R (N,Hi

a(M))) ∪minSuppR(Hn−i−1
a (N,Si+1)). (3)

Thus, in view of assumption (iii) and (3), if SuppR(Hn−i−1
a (N,Si+1)) is closed, then

the support of Hn−i
a (N,Si) is also closed. So, by using the telescoping method, we

need only to show that SuppR(H0
a(N,Sn)) is closed. To achieve this, note that

H0
a(N,Sn) ∼= H0

a(HomR(N,Sn))

and HomR(N,Sn) is a-torsion. Hence

H0
a(N,Sn) ∼= HomR(N,Sn) = HomR(N,Hn

a (M)).

Since minSuppR(Hn
a (M)) ⊆ SuppRN, and the set SuppR(Hn

a (M)) is closed, the
support of H0

a(N,Sn) is also closed by Lemma 2.1, as required. 2

Corollary 2.4. Let x1, x2 be an a-filter regular sequence on M , where a :=
(x1, x2). Assume that

(i) SuppR(Ext3−i
R (N,Hi

a(M))) ⊆ SuppR(Ext2−i
R (N,Hi

a(M))) for i = 0, 1,

(ii) H0
a(N,H1

(x1)
(M)) = 0,

(iii) SuppR(Ext1R(N,H1
a(M))) is closed, and
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484 C. Abdioĝlu, K. Khashyarmanesh and M.T. Koşan

(iv) minSuppR(H2
a(M)) ⊆ SuppRN.

Then SuppR(H2
a(N,M)) is closed.

Proof. It immediately follows from [8, Theorem 1.2] and Theorem 2.3. 2

Let L be a class of R-modules. We say that an R-module X is L-projective if
ExtiR(L,X) = 0 for all L ∈ L and for all i ∈ N (see also [18]).

Similarly, we say that X is a-projective if ExtiR(T,X) = 0 for every a-torsion
module T and for all i ∈ N. So we have the following corollary.

Corollary 2.5. Let n be a non-negative integer and x1, . . . , xn be an a-filter
regular sequence on M , where a := (x1, . . . , xn). Assume that

(i) N is a-projective,

(ii) Hn−i−2
a (N,Hi+1

(x1,...,xi+1)
(M)) = 0, for all i = 0, 1, . . . , n− 2,

(iii) minSuppR(Hn
a (M)) ⊆ SuppR(N), and

(iv) the set SuppR(Hn
a (M)) is closed.

Then SuppR(Hn
a (N,M)) is closed.

3. Support of the Matlis dual of generalized local cohomology modules.
Let

∑
R denote the direct sum ⊕

m∈MaxSpec(R)

R/m

of all simple R-modules, ER be the injective hull of
∑

R, and D(−) be the functor
HomR(−, ER).

Note that D(−) is a natural generalization of the Matlis duality functor to
non-local rings.

Recall that the arithmetic rank of a, denoted by ara(a), is the least number of
elements of R required to generate an ideal which has the same radical as a.

Proposition 3.1. For any ideal a of R, HomR(R/a, D(Hn
a (M))) = 0, where n =

ara(a).

Proof. Since n = ara(a), there exists a sequence y1, . . . , yn of elements of R such
that

√
a =

√
(y1, . . . , yn). Hence there exists t ∈ N such that yti ∈ a for all 1 6 i 6 n.

Clearly V (a) = V ((yt1, . . . , y
t
n)). Also, by [28, Proposition 1.2], there exists an

(yt1, . . . , y
t
n)-filter regular sequence x1, . . . , xn on M such that Hn

(yt
1,...,y

t
n)

(M) ∼=
Hn

(x1,...,xn)
(M). It is easy to see that x1, . . . , xn is also an a-filter regular sequence

on M . Thus Hn
a (M) ∼= Hn

(x1,...,xn)
(M). Now HomR(R/a, D(Hn

a (M))) = 0 by [13,

Lemma 3.2(i)]. 2
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Support of general local cohomology modules 485

In [12], it was shown that, for an a-filter regular sequence x1, . . . , xn on M ,

SuppR(Hn
a (M)) = SuppR(HomR(R/a,Hn

(x1,...,xn)
(M))).

Moreover, in view of Proposition 3.1, HomR(R/a, D(Hn
a (M))) = 0, where n =

ara(a). In this section we study the support of D(Hn
a (N,M)) which is a dual of

question 1.1 in [8] ‘in some sense’ in the context of the generalized local cohomology
modules.

Theorem 3.2. Let n be a non-negative integer and x1, . . . , xn be an a-filter regular
sequence on M , where a := (x1, . . . , xn). Assume that

(i) SuppR(D(Hn−2−i
a (N,Hi

(x1,...,xi)
(M))))

⊆ SuppR(D(Hn−1−i
a (N,Hi

(x1,...,xi)
(M)))) for all i = 0, 1, . . . , n− 2,

(ii) SuppR(D(Extn−i
R (N,Hi

a(M)))) is closed for all i = 0, 1, . . . , n− 1,

(iii) Extn+1−i
R (N,Hi

a(M)) = 0 for all i = 0, 1, . . . , n− 1, and

(iv) the set SuppR(N ⊗R D(Hn
(x1,...,xn)

(M))) is closed.

Then SuppR(D(Hn
a (N,M))) is closed.

Proof. By using the method which we employed in the proof of Theorem 2.3 for
i = 0, 1, . . . , n− 1, we have the following exact sequence

. . . −→ D(Hj−1
a (N,Si+1)) −→ D(Hj

a(N,Si)) −→ D(ExtjR(N,Hi
a(M)))

−→ D(Hj−2
a (N,Si+1)) −→ . . .

−→ D(H1
a(N,Si+1)) −→ D(H2

a(N,Si)) −→ D(Ext2R(N,Hi
a(M)))

−→ D(H0
a(N,Si+1)) −→ D(H1

a(N,Si)) −→ D(Ext1R(N,Hi
a(M))) −→ 0.

Thus, in view of the hypothesis in conditions (i), (ii) and (iii), we have that the
minimal element in SuppR(D(Hn−i

a (N,Si))) is a subset of

minSuppR(D(Hn−i−1
a (N,Si+1))) ∪minSuppR(D(Extn−i

R (N,Hi
a(M))))

for all i = 0, 1, . . . , n− 1. Hence we need only to show that SuppR(D(H0
a(N,Sn)))

is closed. To do this, note that

D(H0
a(N,Sn)) ∼= D(H0

a(HomR(N,Sn)))

∼= D(H0
a(HomR(N,Hn

a (M))))
∼= D(HomR(N,Hn

a (M)))
∼= N ⊗R D(Hn

a (M)).

The result now follows from (iv). 2
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486 C. Abdioĝlu, K. Khashyarmanesh and M.T. Koşan

Corollary 3.3. Let x1, x2 be an a-filter regular sequence on M , where a :=
(x1, x2). Assume that

(i) SuppR(D(H0
a(N,M))) ⊆ SuppR(D(H1

a(N,M))),

(ii) SuppR(D(Ext1R(N,H1
a(M)))) is closed,

(iii) Ext3−i
R (N,Hi

a(M)) = 0 for all i = 0, 1, and

(iv) the set SuppR(N ⊗R D(H2
(x1,x2)

(M))) is closed.

Then SuppR(D(H2
a(N,M))) is closed.
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Leftschetz locayx et globaux (SGA 2) North-Holland Publishing Co., Amsterdam,
1968.

4. M. Hellus, On the set of associated primes of local cohomology modules, J.
Algebra 237 (2001), 406–419.
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