Universities of Leeds, Sheffield and York http:/leprints.whiterose.ac.uk/

This is an author produced version of a paper published in Tetrahedron.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/4740/

[^0]
Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

$\mathrm{X}=\mathrm{Y}-\mathbf{Z H}$ Compounds as Potential 1,3-Dipoles. Part

Leave this area blank for abstract info.

64. ${ }^{3 \mathrm{~b}}$ Synthesis of Highly Substituted Conformationally

Restricted and Spiro Nitro-pyrrolidines via Ag (I)

Catalysed Azomethine Ylide Cycloadditions

Ronald Grigg, ${ }^{*}$ Colin Kilner, Mohammed A. B. Sarker and Cecilia Orgaz de la Cierva
Molecular Innovation, Diversity and Automated Synthesis (MIDAS) Centre, School of Chemistry, Leeds University, Leeds LS2 9JT, UK

42-98\% (22 examples)
i. Toluene or $\mathrm{MeCN}, 25^{\circ} \mathrm{C}, \mathrm{AgOAc}$ or $\mathrm{Ag}_{2} \mathrm{O}$, NEt_{3} or DBU

42-85\%
(10 examples)
$\mathrm{R}=\mathrm{alkyl} /$ aryl/heteroaryl

Pergamon

$\mathrm{X}=\mathrm{Y}-\mathrm{ZH}$ Compounds as Potential 1,3-Dipoles. Part 64. ${ }^{\text {3b }}$ Synthesis of Highly Substituted Conformationally Restricted and Spiro Nitro-pyrrolidines via Ag (I) Catalysed Azomethine Ylide Cycloadditions

Ronald Grigg, ${ }^{*}$ Colin Kilner, Mohammed A. B. Sarker and Cecilia Orgaz de la Cierva
Molecular Innovation, Diversity and Automated Synthesis (MIDAS) Centre, School of Chemistry, Leeds University, Leeds LS2 9JT, UK.

Abstract

Dipolar reactions of imines of both acyclic and cyclic α-amino esters with a range of nitroolefins using a combination of AgOAc or $\mathrm{Ag}_{2} \mathrm{O}$ with NEt_{3} are described. In most cases the reactions were highly regio- and stereo-specific and endo-cycloadducts were obtained in good yield. However, in a few cases the initially formed cycloadducts underwent base catalysed epimerisation. The stereochemistry of the cycloadducts was assigned from n.O.e data and established unequivocally in several cases by X-ray crystallography. © 2008 Elsevier Science. All rights reserved

Keywords: Metallo-azomethine ylides, cycloaddition, silver oxide, nitroolefins, pyrrolidines, spirocycles.

1

2

We introduced facile and wide ranging metal salt-tertiary amine catalysed cycloaddition reactions of imines, activated by an appropriately located carbanion stabilising substituent, with electron deficient alkenes. ${ }^{1}$ Subsequently, we have utilized this methodology for the synthesis of a
wide variety of heterocycles including pyrrolizidines, indolizidines ${ }^{2}$ and spiro nitrogen heterocycles ${ }^{3}$ as well as the synthesis of pyrrolidine based β-lactams ${ }_{5}^{4}$, epibatidine analogues ${ }^{5 a}$ and uracil polyoxin C analogues. ${ }^{5 b}$

Dopamine $\mathbf{1}$ is one of the most important neurotransmitters, the body's natural stimulants, and plays a key role in schizophrenia and Parkinson's disease. Several reports appear in the literature for the synthesis of both simple and conformationally restricted dopamine analogues ${ }^{6}$ and evaluation of their biological properties. Nitropyrrolidines are potentially useful as sources of conformationally restricted analogues of dopamine $\mathbf{1}$ and DOPA $\mathbf{2}^{7}$ (vide infra). This type of compound e.g 3-5 is accessible via 1,3dipolar cycloaddition of appropriate azomethine ylides and nitrostyrenes. Nyerges et al. ${ }^{8}$ applied this cycloaddition methodology to the stereoselective synthesis of azacephalotaxine ${ }^{8, \mathrm{~b}}$ and indolic aza-analogues ${ }^{\text {8c }}$ of cephalotaxine. They have also reported a new method for the synthesis of substituted pyrroles ${ }^{8 \mathrm{~d}}$ from nitropyrrolidines. Several authors explored the 1,3-dipolar cycloaddition of both non-stablized ${ }^{9}$ and stablized 10 azomethine ylides with nitroolefins for the synthesis of substituted nitropyrrolidines. For stabilized azomethine ylides it was concluded that lithio-azomethine ylides ${ }^{10}$ undergo preferential formation of endo-cycloadducts whilst silver salts favour the formation of exo-cycloadducts. Further work showed that incorporating certain groups in the aromatic moiety of aryl azomethine ylides modifies the

[^1]stereoselectivity ${ }^{10 b}$. These latter results confirmed prior work by our group on proton-sponge effects in azomethine ylide formation. ${ }^{11}$ An asymmetric catalytic version of 1,3dipolar cycloaddition of nitroalkenes to an imino ester derived from glycine has been reported ${ }^{12}$ as has microwave assisted synthesis of highly substituted nitroproline esters via 1,3-dipolar cycloaddition. ${ }^{13}$

This paper describes our studies of the silver catalysed synthesis of nitropyrrolidines 3 and their derivatives $\mathbf{4 , 5}$ all of which proceed via endo-transition states. The latter provide interesting dopamine mimetics because of the conformational rigidity conferred by the 5 -membered ring and the differing dihedral angle between the aryl and amine moieties. We further report a series of spirocyclic nitropyrrolidines arising from homoserine lactone 11.

Cycloadditions of non-cyclic imines 6a-f

A number of nitro-olefins 7a-f were examined to explore the diversification of the metallo-azomethine ylide
cycloaddition. These were prepared from the corresponding aryl aldehydes by the Henry reaction ${ }^{14}$ and were reacted with a series of aryl or aliphatic imines of cyclic or acyclic α-amino esters.

The aryl imines 6a-f underwent cycloaddition reactions with nitroolefins in toluene in the presence of NEt_{3} and $\mathrm{Ag}_{2} \mathrm{O}$ ($10 \mathrm{~mol} \%$) or AgOAc (1.5 mol equiv.) (Scheme 1). The results of the reactions are presented in Table 1. The cycloaddition of the less hindered imines $\mathbf{6 a , d}$ with anthracene nitrostyrene $7 \mathbf{7 a}$ afforded single cycloadducts endo-9a,b in good yield ($72-80 \%$)(Table 1, entries 1 and 2), whereas imines $\mathbf{6 b}, \mathbf{c}$ from alanine and phenylalanine failed to react under the same conditions due to the steric hindrance between the Me and Bn groups of the imines and the anthracenyl group of the dipolarophile.

a. $\mathrm{Ar}^{1}=$ naphthyl, $\mathrm{R}=\mathrm{H}$
b. $\mathrm{Ar}^{1}=$ naphthyl, $\mathrm{R}=\mathrm{CH}_{3}$
c. $\mathrm{Ar}^{1}=$ naphthyl, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$
d. $\mathrm{Ar}^{1}=$ biphenyl, $\mathrm{R}=\mathrm{H}$
e. $\mathrm{Ar}^{1}=$ biphenyl, $\mathrm{R}=\mathrm{CH}_{3}$ f. $\mathrm{Ar}^{1}=$ biphenyl, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$

a. $\mathrm{Ar}^{2}=9$-anthracenyl
b. $\mathrm{Ar}^{2}=3$-indolyl
c. $\mathrm{Ar}^{2}=4$-hydroxy-3-methoxyphenyl
d. $\mathrm{Ar}^{2}=2$-furyl
e. $\mathrm{Ar}^{2}=2$-thienyl
f. $\mathrm{Ar}^{2}=3$-pyridyl

Scheme 1

Table 1: Silver salt/ NEt_{3} catalysed cycloaddition of $\mathbf{6 a - f}$ with E - nitroolefins 7a-f. ${ }^{\text {a }}$

Entry	Imine	Dipolarophile	Cycloadduct	Ag salt	Time (h)	Yield (\%) ${ }^{\text {b }}$
1	6a	7 a		AgOAc	18	80
2	6d	7a		AgOAc	18	72
3	6a	7b		AgOAc	18	$95^{\text {c }}$
4	6 b	7 b		$\mathrm{Ag}_{2} \mathrm{O}$	18	60
5	6c	7b		$\mathrm{Ag}_{2} \mathrm{O}$	18	60
6	6d	7 b		$\mathrm{Ag}_{2} \mathrm{O}$	18	$95^{\text {d }}$

7	6 e	7 b		$\mathrm{Ag}_{2} \mathrm{O}$	18	72
8	6 f	7 b		$\mathrm{Ag}_{2} \mathrm{O}$	18	62
9	6a	7 c		$\mathrm{Ag}_{2} \mathrm{O}$	16	$42^{\text {c }}$
10	6 b	7c		$\mathrm{Ag}_{2} \mathrm{O}$	17	91
11	6d	7 c		AgOAc	16	82
12	6 e	7c		$\mathrm{Ag}_{2} \mathrm{O}$	18	65
13	6a	7d		AgOAc	15	87

14	6b	7d		AgOAc	18	80
15	6 e	7d		AgOAc	16	78
16	6d	7 d		AgOAc	22	98
17	6a	7 e		AgOAc	16	$90^{\text {c }}$
18	6b	7 e		$\mathrm{Ag}_{2} \mathrm{O}$	16	91
19	6c	7 e		$\mathrm{Ag}_{2} \mathrm{O}$	17	70
20	6d	7 e		AgOAc	16	70
21	6a	7 f		$\mathrm{Ag}_{2} \mathrm{O}$	16	73

22	6b	7f		AgOAc	18	$78^{\text {c }}$

a. Toluene, NEt_{3} (1.5 eq.), $\mathrm{Ag}_{2} \mathrm{O}\left(10 \mathrm{~mol} \%\right.$) or $\mathrm{AgOAc}(1.5 \mathrm{eq}),. 2{ }^{\circ} \mathrm{C}$.
b. Isolated yield. c. 3:1 endo/exo mixture. d. 5:1 endo/exo mixture.
e. 2:1 endo-exo mixture.

Similar cycloaddition of imines $\mathbf{6 b}, \mathbf{c}, \mathbf{e}, \mathbf{f}$ with indolyl nitrostyrene 7b afforded single cycloadducts $\mathbf{9 d} \mathbf{d , e , g , h}$ (Table 1, entries 4, 5, 7 and 8), whereas glycine imines $\mathbf{6 a , d}$ afforded a 3-5:1 mixture of endo-9c,f and exo-10c,f cycloadducts (Table 1, entries 3 and 6) respectively. Toke et al. ${ }^{10}$ have observed similar results in the 1,3-dipolar cycloaddition of glycine imine with different nitroolefins and they have reported that silver salts favour the formation of exo-cycloadduct in the case of nitroolefins with bicyclic aryl groups. They have suggested that secondary orbital interactions of the aryl groups play a major role in this change of stereoselectivity. This type of interaction is not possible in the case of imines $6(\mathrm{R}=\mathrm{Me}$ or Bn$)$ because of the steric hindrance between the bulkier groups (Me and Bn) of the imines and the aryl group of the nitroolefins. Therefore, in all cases the cycloaddition reactions were overwhelmingly endo-specific.

$\mathrm{Ar}^{1}=$ naphthyl, \quad exo- $\mathbf{1 0 f}$
endo-9f

Figure 1
Similarly, cycloaddition of imines 6b-e with nitroolefins $\mathbf{7 c} \mathbf{c} \mathbf{f}$ afforded endo cycloadducts $\mathbf{9 j} \mathbf{- p}, \mathbf{r}-\mathbf{u}$ (Table 1, entries 10-16 and 18-21) whereas glycine imine $\mathbf{6 a}$ with nitroolefins 7c,e afforded a 2-3:1 mixture of endo-9i,q and exo-10i,q cycloadducts (Table 1, entries 9 and 17) respectively. Nitroolefin $7 \mathbf{f}$ reacted with alanine imine $\mathbf{6 b}$ to give a 3:1 mixture of endo-9v and exo-10v cycloadducts (Table 1, entry 22).

Product structures indicate that in all cases the imines generate the expected metallo-1,3-dipoles 8a-f stereoselectively under kinetic control and the coordination of the metal ion depicted in $\mathbf{8}$ is believed to be responsible for this kinetic preference. ${ }^{15}$ The potential cycloadducts 9 and $\mathbf{1 0}$ arise from the dipoles $\mathbf{8}$ via endo- and exotransition states respectively. Structural assignments are
based on ${ }^{1} \mathrm{H}$ COSY and n.O.e data. For example, the methoxy signal at 3.86 ppm in 9 f indicated a trans disposition of the ester and the indolyl groups, whilst in $\mathbf{1 0 f}$ the methoxy signal occurs at 3.06 ppm suggesting shielding of the OMe by a cis-indolyl group. This observation was confirmed (Fig. 1) by n.O.e experiments. Thus the irradiation of H-4 in $\mathbf{9 f}$ effects a 9.1% enhancement of the signal for H-5 suggesting cis relationship between H-4 and $\mathrm{H}-5$, whereas a smaller enhancement (4.8\%) of the $\mathrm{H}-3$ signal indicates H-3 and H-4 are trans related. Irradiation of $\mathrm{H}-2$ in 9 f shows no enhancement of the $\mathrm{H}-3$ proton indicating a trans relationship between $\mathrm{H}-2$ and $\mathrm{H}-3$. Similarly irradiation of $\mathrm{H}-4$ in $\mathbf{1 0 f}$ gave a small enhancement (1.4\%) of H-5 and H-3 (3.5 \%) suggesting trans relationship of both $\mathrm{H}-5$ and $\mathrm{H}-3$ with $\mathrm{H}-4$ whilst irradiation of $\mathrm{H}-2$ effected a 9.4% enhancement of H-3. These data suggest that H-4 and H-5 are trans-related and $\mathrm{H}-2$ and $\mathrm{H}-3$ are cis-related in $\mathbf{1 0 f}$.

The 5 examples of endo/exo cycloadduct mixtures comprise of 4 cases involving glycine imines (Table 1, entries $3,6,9,17$) and one involving an alanine imine (entry 22). In the former case we hypothesise that π stacking of the electron rich $\mathrm{C}(3)-\mathrm{Ar}$ substituent and the $\mathrm{C}(2)$-ester carbonyl group lowers the exo-transition state energy sufficiently to make it competitive. Factors favouring the exo isomer in the latter case (entry 22) are unclear.

Cycloaddition of imines 12a-f ${ }^{\mathbf{3 b}}$ of homoserine lactone 11

We extended our studies to spiro nitropyrrolidines employing metallo-azomethine ylide formation from aldimines of cyclic α-amino ester 11 using a combination of AgOAc in MeCN or $\mathrm{Ag}_{2} \mathrm{O}$ in toluene with NEt_{3}. Imines of a range of aldehydes (aryl, heteroaryl, aliphatic) were examined to explore the diversification of the metalloazomethine ylide cycloaddition. In some cases imines of long chain aliphatic aldehydes were used to increase the lipophilicity of the cycloadducts. The aryl 12a-c and aliphatic 12d-j imines were employed in cycloadditions with a range of nitrostyrenes (Table 2).

Imines 12a-c reacted with various nitrostyrenes in acetonitrile in the presence of triethylamine and AgOAc to give mixtures of 14a-c (major) and 15a-c (minor) cycloadducts in $59-83 \%$ yield (Scheme 2)(Table 2, entries $1-3)$. The isomer ratio varied from $4.5: 1$ to $2: 1$ depending
on the aryl group present in the imines 12a-c. Endo cycloadducts $\mathbf{1 4}$ are formed from metallo-dipole 13 via endo-transition states. Cycloadducts 15 arise by the base catalysed epimerisation of $\mathbf{1 4}$. Fejes et al ${ }^{16}$ reported similar epimerised cycloadducts due to the strongly activated
nature of the proton (low $\mathrm{p} K_{\mathrm{a}}$) adjacent to the nitro-group. Cossio et a ${ }^{10 \mathrm{~b}}$ carried out similar cycloadditions with trans nitrostyrene using LiClO_{4} as catalyst and proposed a stepwise mechanism for the formation of this type of cycloadduct.

Scheme 2
Table 2: Catalysed cycloaddition of imines 12a-c with E-nitrostyrene using AgOAc in $\mathrm{MeCN}^{\mathrm{a}}$.
Entry

[^2]Table 3: Catalysed cycloaddition of imines $\mathbf{1 2 d} \mathbf{d}$ with E-nitrostyrenes using $\mathrm{Ag}_{2} \mathrm{O} / \mathrm{NEt}_{3}$ in toluene ${ }^{\text {a }}$.
Entry
(22)
a. Toluene, NEt_{3} (1.1 mol equiv.), $\mathrm{Ag}_{2} \mathrm{O}(10 \mathrm{~mol} \%), 25^{\circ} \mathrm{C}, 1-5 \mathrm{~h}$. b. Isolated yield.

In order to rule out formation of $\mathbf{1 5}$ by a non-concerted cycloaddition, the major isomer $\mathbf{1 4 a}$ was subjected to base catalysed isomerisation, to probe epimerization, with the following results. $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{AgOAc}$, acetonitrile, $25^{\circ} \mathrm{C}, 48 \mathrm{~h}$ gave a $3: 1$ mixture of $\mathbf{1 4 a}$ and 15a. The same ratio of isomers was obtained by changing the base to $\mathrm{i}-\mathrm{Pr}_{2} \mathrm{NEt}$. In the original reaction, carried out in acetonitrile in the presence of AgOAc and NEt_{3}, the ratio of the isomers was 3:1 after 4 h and 16 h . The observation of the same isomer ratio in both the original reaction and base catalysed isomerisation of major isomer $\mathbf{1 4 a}$ is compelling evidence that the formation of $\mathbf{1 5 a}$ occurs by equilibration of $\mathbf{1 4 a}$ via 16. The $\mathrm{p} K_{\mathrm{a}}$ of the $\mathrm{C}-3$ proton is expected to be ca. 10 while the $\mathrm{p} K_{\mathrm{a}}$'s of the protonated amines are also approximately 10. Equilibrium is reached between the two stereoisomers with steric factors favouring $\mathbf{1 4 a}$ as the major isomer (Scheme 3). The structure and relative stereochemistry of the cycloadducts 14a and $\mathbf{1 5 a}$ was partly established by ${ }^{1} \mathrm{H}$ NMR, 2D-COSY ${ }_{H-H}$ and n.O.e. studies (see experimental section). Subsequently X-ray crystallographic studies
firmly established the stereochemical relationships (Figs. 2 and 3).

Aliphatic aldimines 12d-j underwent $\mathrm{Ag}_{2} \mathrm{O}$ catalysed cycloaddition with trans-nitrostyrene in toluene in the presence of NEt_{3} to afford the corresponding endocycloadducts $\mathbf{1 4 d} \mathbf{- j}$ in $42-85 \%$ yield (Table 3, entries 1-7). Cycloadducts $\mathbf{1 4 e}, \mathbf{g}-\mathbf{j}$ comprised $1: 1$ mixtures of racemic diastereomers (due to the chiral centre present in the side chain) and it was possible to separate both isomers in the case of $\mathbf{1 4 i}$ using silica gel chromatography. Cycloadducts 14f comprised an inseparable $1: 1$ mixture of chiral diastereomers. In all cases the cycloaddition was regio-and stereo-selective and involved only the E,E-dipole $\mathbf{1 3}$ (Scheme 2). The stereochemistry of the cycloadducts $\mathbf{1 4 d} \mathbf{d} \mathbf{j}$ was established by comparison of their 1H NMR spectra with those of the previously described analogues. ${ }^{3 \mathrm{~b}}$

Scheme 3

Figure 2: X-ray crystal structure of $\mathbf{1 4 a}$

Figure 3: X-ray crystal structure of 15a

Reduction of nitro compounds to amines

Several attempts at reducing the nitro moiety to the amine based on literature methods (ammonium formate, 10% Pd / C in dry methanol, ${ }^{17}$ metal acid combinations eg, $\mathrm{SnCl}_{2} / \mathrm{AcOH}$ in methanol, ${ }^{18} \mathrm{In} / \mathrm{HCl}$ in aq. THF, ${ }^{19} \mathrm{Zn} /$ conc. $\left.\mathrm{HCl}, \mathrm{Fe} / \mathrm{AcOH}^{20}\right)$ failed. However the reduction of the nitro group to amine was successful using Zn /ethanol/conc. HCl after protecting the NH of the pyrrolidine ring as the N acetyl derivative ${ }^{8 \mathrm{~b}}$ (Scheme 4).

The reaction of the $3: 1$ mixture of thienyl cycloadducts $\mathbf{9 q}$ and $\mathbf{1 0 q}$ with acetic anhydride (11 mol eq) in pyridine at 0 ${ }^{\circ} \mathrm{C}$ to rt gave a $1.5: 1$ mixture of N -acetyl derivatives 16 a and $\mathbf{1 6 b}$ in 66% yield. The two N -acylated isomers were separated by column chromatography. Close examination of the major product 16a showed it had undergone epimerisation at $\mathrm{C}-4$. Thus the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were consistent with the general structure of both N-acetyl derivatives, but n.O.e experiments (Figure 4) were
necessary to assign the relative disposition of the substituents.

Figure 4. N.O.e. data of compound 16a

Irradiation of $3-\mathrm{H}$ and $4-\mathrm{H}$ in compound 16a effects a 14.3% and 14.2% enhancement of $4-\mathrm{H}$ and $3-\mathrm{H}$ respectively, suggesting a cis relationship between them. Irradiation of $2-\mathrm{H}$ produced a 10.3% enhancement of the thienyl $3^{\prime}-\mathrm{H}$. Finally, irradiation of the methyl group of the N -acetyl group produced a 3.7% enhancement of $5-\mathrm{H}$ but no enhancement of 2-H establishing that the major solution phase conformer of the amide group is as shown in Figure 4 , supporting the relative disposition shown.

Acid / base catalysed epimerisation occurred at C-4 of the major isomer endo-9q, facilitated by the low pKa of the 4 H, to provide 16a. The C-4 epimerisation was confirmed by the X-ray crystal structure of 16a (Figure 5) which shows the naphthyl ring and the ester group on one face of the pyrrolidine ring and the nitro group and the thienyl ring on the opposite side. Additionally, distances and dihedral angles were calculated from the X-ray structure (Figure 5) to add further proof of the relative disposition of the substituents on the pyrrolidine ring: $2-\mathrm{H}-3^{\prime}-\mathrm{H}=2.4205 \AA$ and 12.18 deg , establishing that the 3 -(2 '-thienyl) group is orthogonal to the plane on the pyrrolidine ring. It was also found that in this crystal structure there is a disorder in the thiophene ring and in about half the molecules in the crystal the thiophene ring is rotated 180°, so that the sulphur occupies the position of $\mathrm{C}-3$ ' as shown in Figure 5.

Figure 5: X-ray crystal structure of 16a
The X-ray crystal structure shows that the pyrrolidine ring of compound 16a is in the shape of an envelope where C-4, bearing the nitro group, is now the atom out of the plane (pointing downwards on the left side of the "stick" model below) formed by $\mathrm{N}, \mathrm{C}-2, \mathrm{C}-3$ and $\mathrm{C}-5$ of the pyrrolidine ring. Calculated values for the dihedral angles from the X ray crystal structure of 16a are : $2-\mathrm{H}-\mathrm{C}-2-\mathrm{C}-5-5-\mathrm{H}=$ $150.65 \mathrm{deg}, 5-\mathrm{H}-\mathrm{C}-5-\mathrm{C}-4-4-\mathrm{H}=-36.69 \mathrm{deg}$ and $4-\mathrm{H}-$ $\mathrm{C}-4-\mathrm{C}-3-3-\mathrm{H}=-98.55$ deg. The N-acetyl group remains in the same plane of those four atoms, the methyl group oriented towards C-5. Thus the solid state orientation of the amide matches that established for the solution phase from the n.O.e. data. The 4-nitro group has a pseudo axial disposition while the 3-(2'-thienyl), 5-(2'-naphthyl) rings and 2-methyl ester group are pseudo equatorial. The 3-(2'thienyl) and 5-(2'-naphthyl) rings are orthogonal to the plane formed by N, C-2, C-3 and C-5 (Figure 6).

Figure 6. Stick model of $\mathbf{1 6 a}$
The relative stereochemistry of the substituents minor isomer 16b was assigned in the same way from n.O.e. experiments. Irradiation of $3-\mathrm{H}$ effected a 13.0%
enhancement of 2-H, suggesting a cis relationship between them, and a 6.3% enhancement of $5-\mathrm{H}$. Irradiation of $4-\mathrm{H}$ produced a 9.6% enhancement of the thienyl 4 '-H. Finally, irradiation of $5-\mathrm{H}$ led to a 4.5% enhancement of the methyl group of the N-acetyl group, suggesting the relative disposition shown on Figure 7 and establishing the same preferred amide orientation in both major and minor isomers.

Figure 7. N.O.e. data of compound $\mathbf{1 6 b}$

The relative disposition of the substituents in compound 16b was confirmed by an X-ray crystal structure (Figure 8), which showed the 5-(2'-naphthyl) ring, 3-(2'-thienyl) ring and ester group are on the same face of the pyrrolidine ring. Calculated values for the dihedral angles from the X-ray crystal structure of $\mathbf{1 6 b}$ also provide further data on the relative orientation of the substituents: 5-H - C-5 - C-2 -$2-\mathrm{H}=34.13 \mathrm{deg}, 4-\mathrm{H}-\mathrm{C}-4-\mathrm{C}-5-5-\mathrm{H}=-168.69 \mathrm{deg}$ and $3-\mathrm{H}-\mathrm{C}-3-\mathrm{C}-4-4-\mathrm{H}=158.78 \mathrm{deg}$.

Figure 8: X-ray crystal structure of $\mathbf{1 6 b}$
As in compound 16a the 3-(2'-thienyl) and the 5-(2'naphthyl) rings in compound $\mathbf{1 6 b}$ are orthogonal to the pyrrolidine ring, and the methyl group of the acetyl group is oriented towards C-5 as shown in Figure 9a.

(a)

(b)

Figure 9. Two possible orientations of the N-acetyl
The preference for orientation (a) (Figure 9) might be dipole-dipole interaction of the amide and ester carbonyl groups (Figure 10). Calculated distances, from the X-ray structures, confirm the proximity between the pairs of carbonyl carbon atoms and the corresponding oxygen atoms. Thus for 16a the O (carbonyl ester) - C (carbonyl amide) distance is $3.1914 \AA$, whilst the O (carbonyl amide) - C (carbonyl ester) distance is $3.0204 \AA$. In 16b the O (carbonyl ester) - C (carbonyl amide) distance is $3.4971 \AA$ and the O (carbonyl amide) - C (carbonyl ester) distance is $3.0731 \AA$. These data show the mutual orientation of the N acetyl groups and ester groups are consistent with π stacking in a manner that is dictated by dipole-dipole interaction (Figure 10).

Figure 10. Possible dipole-dipole interaction
In 16b $C-4$, bearing the nitro group, is the atom out of the plane pointing upwards on the right side of the "stick" model (Fig.11) formed by N, C-2, C-3 and C-5 of the pyrrolidine ring, whilst the N -acetyl group is in the same plane as these four atoms. The 4-nitro group has a pseudo equatorial disposition trans to the 3-(2'-thienyl), 5-(2'naphthyl) rings and the 2 - ester group. These last three substituents are in pseudo equatorial disposition minimising the axial interactions. The 3-(2'-thienyl) and 5-(2'-naphthyl) rings are orthogonal to the plane formed by $\mathrm{N}, \mathrm{C}-2, \mathrm{C}-3$ and C-5 of the pyrrolidine ring (Figure 11).

Figure 11. Model of $\mathbf{1 6 b}$
Note that because of C-4 epimerisation compounds 16a and 16b no longer have an endo / exo relationship.

To probe the generality of C-4 epimerisation two further examples were studied using the same reaction conditions but this time starting from the single endo cycloadducts exo-9c and endo-9i (Scheme 4). These gave exclusively the N -acylated epimerised products $\mathbf{1 7 a}, \mathbf{b}$ in $90-93 \%$ yield.
endo- $9 \mathbf{q}$ and exo-10q, endo-9c, 9i

16 a. Ar= 2-thienyl
17 a. Ar=3-indolyl
b. Ar=4-acetoxy-3-methoxyphenyl

Zn , conc. HCl EtOH

18a

18b

Scheme 4

In both cases the relative disposition of the substituents in the N-acetylated derivatives $\mathbf{1 7 a}$ and $\mathbf{1 7 b}$ were determined by n.O.e. experiments. It was concluded that the nitro
group and the C-3 aryl ring are cis-related in both compounds, and that there is a trans-relationship between the biphenyl / naphthyl rings and the nitro groups. Thus epimerisation at C-4 in the course of the N-acetylation reaction appears to be general. In the case of endo-9i the acetylation not only occurred at the pyrrolidine NH , but also at the phenolic OH .
N.O.e. studies on 17b are summarised in Figure 12. Thus irradiation of $4-\mathrm{H}$ produced a 9.15% enhancement of $3-\mathrm{H}$, but only a 3.6% enhancement of $5-\mathrm{H}$. Likewise irradiation of $3-\mathrm{H}$ caused an 9.0% enhancement of $4-\mathrm{H}$, whilst irradiation of $5-\mathrm{H}$ gave a 3.7% enhancement of $4-\mathrm{H}$, establishing a cis-relationship between $3-\mathrm{H}$ and $4-\mathrm{H}$, and a trans-relationship between 4-H and 5-H. Finally irradiation of $5-\mathrm{H}$ also produced a 7.7% enhancement of the methyl of the N -acetyl group and no enhancement of 2-H establishing the same orientation of the amide as observed previously.

Figure 12. N.O.e data of compound 17b
Reduction of 16a and 16b was carried out with zinc dust (17 mol eq) in 50:1 ethanol/conc.hydrochloric acid at 40$50^{\circ} \mathrm{C}$, then for 12 h at reflux giving the corresponding amino derivatives $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$ in $88-95 \%$ yield.

The relative stereochemistry of the pyrrolidine ring substituents in the amino derivative 18a was assigned from n.O.e. data. (Figure 13) Irradiation of 3-H effects an 8.6% enhancement of $4-\mathrm{H}$, suggesting a cis relationship between them, whilst an 8.8% enhancement of the thienyl $3^{\prime}-\mathrm{H}$ occurred on irradiating 2-H. Finally, irradiation of the methyl of the N-acetyl group gave a 2.3% enhancement of $5-\mathrm{H}$ and no enhancement of $2-\mathrm{H}$ suggesting the relative stereochemistry and conformation of the N-acetyl group shown in Figure 13.

Figure 13. N.O.e of compound 18a

In conclusion we have shown that (i) in situ generated argento azomethine ylides undergo concerted cycloaddition to E - nitrostyrenes via endo - transition states in good yield (ii) the pyrrolidine ring has an envelope conformation with the C-4 nitro bearing carbon the out-of-plane atom (iii) N-acetylation with $\mathrm{Ac}_{2} \mathrm{O}$ is accompanied by $\mathrm{C}-4$ epimerisation (iv) a combination of nOe solution studies and X-ray crystallography show a dipole-dipole stacking interaction involving the $\mathrm{C}-2$ ester and N -acetyl carbonyl groups with the methyl group of the latter oriented towards the C-5 aryl substituent. (v) reduction of the C-4 nitro group with $\mathrm{Zn} / \mathrm{HCl} / \mathrm{EtOH}$ affords the corresponding amines.

Acknowledgements

We thank Leeds University for support and the Commonwealth Scholarship Commision for a studentship (to M.A.B. Sarker).

Experimental

Melting points were determined on a Reichert hot-stage or Buchi B-545 apparatus and are uncorrected. Microanalysis was performed using a Carlo Erba MOD 1108 or 11016 instrument. Mass spectral data were recorded on a V.G.AutoSpec instrument operating at 70 eV . Accurate molecular weights were recorded on a Micromass LCT KAIII electrospray (ES) machine. Infra-red spectra were recorded either on KBr discs or on films, prepared by evaporation of a dichloromethane solution, on a Nicolet Magna FT-IR or Nicolet 460ESP FT-IR Spectrometer. Nuclear magnetic resonance spectra were recorded at 250 MHz on a Bruker AC250 instrument or at 300 MHz on a Bruker DPX300 or at 500 MHz on a Bruker DRX500 instrument. Chemical shifts (δ) are given in parts per million (ppm). Deuterochloroform was used as the solvent unless otherwise stated. The following abbreviations are used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ double doublet, $\mathrm{dt}=$ double triplet, $\mathrm{ddd}=$ double double doublet, $\mathrm{m}=$ multiplet, $\mathrm{b}=$ broad, app $=$ apparent. Flash
chromatography was performed either with silica gel 60 (230-400 mesh) or with $10 \mathrm{~g} / 20 \mathrm{~g}$ SPE-Anachem SI Mega Bond-Elut. All solvents were purified according to standard procedures. The term ether refers to diethyl ether. Analytical grade anhydrous silver salts were used as purchased. In all reactions involving silver (I) salts the reaction flask was covered with aluminium foil.

General Procedure for Silver(I) Catalysed Cycloaddition Reactions

The appropriate aldimine (1 mol equiv.), triethylamine, dipolarophile (1 mol equiv.) and silver acetate (1.5 mol equiv.) were mixed in freshly distilled acetonitrile. Silver oxide ($10 \mathrm{~mol} \%$) as metal catalyst and toluene (dried over sodium wire) as solvent were used in the case of aliphatic aldimines. The resulting suspension was stirred for an appropriate period at room temperature (monitored by TLC and ${ }^{1} \mathrm{H}$ NMR). After completion of the reaction the mixture was quenched with saturated aqueous ammonium chloride and extracted with ether or dichloromethane (2 x). The dried (magnesium sulphate) organic layer was concentrated under reduced pressure. The ratio of any isomers present in the residue was calculated from the integrals of appropriate peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum. Flash chromatography afforded the individual stereoisomers when present.

Methyl 3-(9-anthryl)-5-(2-naphthyl)-4-nitro-prolinate (9a) Obtained from imine 6a ($227 \mathrm{mg}, 1 \mathrm{mmol}$), E nitrostyrene 7 a ($249 \mathrm{mg}, 1 \mathrm{mmol}$), triethylamine (0.21 mL , $1.5 \mathrm{mmol})$ and silver acetate ($250 \mathrm{mg}, 1.5 \mathrm{mmol}$) in toluene $(20 \mathrm{~mL})$ over 18 h . Purification was achieved by triturating with ether and filtering to afford the product ($380 \mathrm{mg}, 80 \%$) as a pale yellow amorphous solid, m.p. $130-132{ }^{\circ} \mathrm{C}$. Found: C, 75.35 ; H, 5.15; N, 5.75. $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, 75.60; H, 5.10; N, $5.90 \% ; \delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right): 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, 8.00-7.50 (m, 15H, ArH), 6.17 (dd, 1H, J 6.2 and $7.5 \mathrm{~Hz}, 4-$ H), 6.01 (dd, 1H, J 6.2 and $9.7 \mathrm{~Hz}, 3-\mathrm{H}$), 5.76 (d, 1H, J 7.5 Hz, 5-H), 4.81 (d, 1H, J $9.7 \mathrm{~Hz}, 2-\mathrm{H}$), 3.60 (bt, 1H, J 9.7 $\mathrm{Hz}, \mathrm{NH})$ and $3.48(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}) ; \delta\left({ }^{13} \mathrm{C}\right): 172.4$ (CO), $133.8,133.5,132.6,129.8\left(\mathrm{C}_{\mathrm{q}}\right), 129.7,128.9,128.6,128.2$ (2 x ArCH), 127.6, $127.0\left(\mathrm{C}_{\mathrm{q}}\right), 126.9,126.4,124.7,123.5$ $(2 \mathrm{x} \mathrm{ArCH}), 97.7\left(\mathrm{C}_{4}\right), 68.2\left(\mathrm{C}_{2}\right), 66.1\left(\mathrm{C}_{3}\right), 52.9\left(\mathrm{C}_{5}\right)$ and $50.8\left(\mathrm{OCH}_{3}\right) ; v_{\max }(\mathrm{KBr}): 3057,1737,1557,1266,1214$ and $756 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\%): 476\left(\mathrm{M}^{+}, 20\right), 427$ (20), 370 (50) and $202(100) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right): 500\left(\mathrm{M}^{+}+1+\mathrm{Na}\right), 499\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, $477\left(\mathrm{M}^{+}+1,100\right)$.

	\% Enhancement				
Irradiated proton	H-1	H-2	H-3	H-4	H-5
H-2	2.5		-	-	3.2
H-3	0.8	-		-	-
H-4	-	-	-		6.0
H-5	-	4.2	-	8.8	

Methyl 3-(9-anthryl)-5-(1,1'-biphenyl-4-yl)-4-nitroprolinate (9b) Obtained from imine $\mathbf{6 d}(253 \mathrm{mg}, 1 \mathrm{mmol})$, E-nitrostyrene 7a ($249 \mathrm{mg}, 1 \mathrm{mmol}$), triethylamine (0.21 $\mathrm{mL}, 1.5 \mathrm{mmol}$) and silver acetate ($250 \mathrm{mg}, 1.5 \mathrm{mmol}$) in toluene $(20 \mathrm{~mL})$ over 18 h . Purification by flash chromatography eluting with $\mathrm{DCM} /$ hexane (20%) afforded the product ($361 \mathrm{mg}, 72 \%$) as a pale yellow powder, m.p. $270-272{ }^{\circ} \mathrm{C}$. Found: C, 76.55 ; H, 5.25; N, 5.45. $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $76.50 ; \mathrm{H}, 5.20 ; \mathrm{N}, 5.55 \% ; \delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right)$: 8.50 (s, 1H, ArH), 8.34-7.97 (m, 5H, ArH), 7.95-7.80 (m, $3 \mathrm{H}, \mathrm{ArH}), 7.75-7.39(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 7.30-7.05(\mathrm{~m}, 2 \mathrm{H}$, ArH), 6.17 (dd, 1H, J 6.3 and $7.5 \mathrm{~Hz}, 4-\mathrm{H}$), 6.00 (dd, 1H, J 6.3 and $9.8 \mathrm{~Hz}, 3-\mathrm{H}), 5.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 7.5 \mathrm{~Hz}, 5-\mathrm{H}), 4.81(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J} 9.8 \mathrm{~Hz}, 2-\mathrm{H}), 3.48$ (s, $3 \mathrm{H}, \mathrm{OMe}$) and $2.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; $\delta\left({ }^{13} \mathrm{C}\right): 172.4(\mathrm{CO}), 133.8,133.5,132.6\left(\mathrm{C}_{\mathrm{q}}\right), 129.7(2 \mathrm{x}$ $\mathrm{ArCH}), 129.5(2 \mathrm{x} \mathrm{Cq}), 128.9$ (2 x ArCH), 128.6 (4 x $\mathrm{ArCH}), 128.2$ (2 x ArCH), $127.6\left(\mathrm{C}_{\mathrm{q}}\right)$, 127.0 (2 x ArCH), $126.9\left(\mathrm{C}_{\mathrm{q}}\right), 126.4(2 \mathrm{x} \mathrm{ArCH}), 125.7\left(\mathrm{C}_{\mathrm{q}}\right), 124.7,123.5$ (2 x $\mathrm{ArCH})$, $97.7\left(\mathrm{C}_{4}\right), 68.2\left(\mathrm{C}_{2}\right), 66.1\left(\mathrm{C}_{3}\right), 52.9\left(\mathrm{C}_{5}\right)$ and 50.8 $\left(\mathrm{OCH}_{3}\right) ; v_{\text {max }}(\mathrm{KBr}): 3353,3053,3031,2953,2849,1737$, 1557, 1438, 1231, 891, 765, 730, and $700 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right)$: $502\left(\mathrm{M}^{+}, 100\right)$.

Methyl 3-(1H-indol-3-yl)-5-(2-naphthyl)-4-nitro-

 prolinate (9c and 10c) Obtained from imine $\mathbf{6 a}(227 \mathrm{mg}, 1$ mmol), E-nitrostyrene 7b ($188 \mathrm{mg}, 1 \mathrm{mmol}$), triethylamine ($0.21 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and silver acetate ($250 \mathrm{mg}, 1.5 \mathrm{mmol}$) in toluene (20 mL) over 18 h . Purification by cartridge column SPE-Anachem 20g SI Mega Bond-Elut eluting with 100% hexane to 100% ethyl acetate gradient elution afforded first endo-9c ($291 \mathrm{mg}, 70 \%$), followed by exo-10c ($104 \mathrm{mg}, 25 \%$).endo-9c: Obtained as colourless plates, m.p. $163-165{ }^{\circ} \mathrm{C}$. Found: C, 69.25; H, 5.15; N, 9.85. $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 69.40; H, 5.10; N, 10.10%; $\delta\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}\right): 10.50$ (bs, 1H, indole NH), 7.88-7.11 (m, 12H, ArH), 5.49 (dd, 1H, J 2.8 and $5.9 \mathrm{~Hz}, 4-\mathrm{H}), 5.11$ (dd, 1H, J 5.9 and $10.9 \mathrm{~Hz}, 5-\mathrm{H})$, 4.57 (dd, 1H, J 3.0 and $7.2 \mathrm{~Hz}, 3-\mathrm{H}$), 4.44 (2 x overlapping d, 1H, J 9.0, $7.0 \mathrm{~Hz}, 2-\mathrm{H}$), 3.82 (s, $3 \mathrm{H}, \mathrm{OMe}$) and $3.62(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J} 10.9 \mathrm{~Hz}, \mathrm{NH}) ; \delta\left({ }^{13} \mathrm{C}\right): 172.6$ (CO), 137.1, 133.6, 133.5, $132.0\left(\mathrm{C}_{\mathrm{q}}\right), 128.9,128.5,128.0(\mathrm{ArCH}), 126.8(2 \mathrm{x}$
$\operatorname{ArCH}), 126.3\left(\mathrm{C}_{\mathrm{q}}\right), 125.9124 .4,123.5,122.3,120.8,119.0$ $(\mathrm{ArCH}), 114.0\left(\mathrm{C}_{\mathrm{q}}\right), 112.1(\mathrm{ArCH}), 96.4\left(\mathrm{C}_{4}\right), 67.8\left(\mathrm{C}_{2}\right)$, $65.9\left(\mathrm{C}_{3}\right), 53.1\left(\mathrm{C}_{5}\right)$ and $48.7\left(\mathrm{OCH}_{3}\right) ; v_{\max }(\mathrm{KBr}): 3328$, 3057, 1733, 1552, 1384, 1215,1112 and $747 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (ES): $416\left(\mathrm{M}^{+}+1\right), 414\left(\mathrm{M}^{+}-1\right)$.

nOe data for $\mathbf{9 c}$:

	\% Enhancement				
Irradiated proton	H-3	H-4	H-5	H-2'	Aryl
H-1	6.4	2.1	-	-	-
H-2	-	-	4.1	7.7	3.1
H-3		3.9	-	2.7	3.5
H-4	4.8		9.1	-	$2.7,4.0$
H-5	4.6	12.8		-	$5.7,2.8$

exo-10c: Obtained as pale orange plates, m.p. 207-209 ${ }^{\circ} \mathrm{C}$. Found: C, 69.45; H, 5.15; N, 10.00. $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 69.40; H, 5.10; N, 10.10 \%; $\delta\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}+2\right.$ drops DMSO): 9.87 (bs, 1 H , indole NH), 7.85-6.93 (m, $12 \mathrm{H}, \mathrm{ArH}$), 5.27 (t, 1H, J $8.1 \mathrm{~Hz}, 4-\mathrm{H}$), 4.86 (t, 1H, J 8.1 Hz, $5-\mathrm{H}$), 4.65 (t, 1H, J $8.1 \mathrm{~Hz}, 3-\mathrm{H}$), 4.51 (dd, 1H, J 6.7 and $8.1 \mathrm{~Hz}, 2-\mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$ and $2.92(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J} 6.7$ and $8.1 \mathrm{~Hz}, \mathrm{NH}) ; \delta\left({ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}+2\right.$ drops d_{6}-DMSO): 172.9 (CO), $136.6\left(\mathrm{C}_{\mathrm{q}}\right), 136.2\left(2 \mathrm{x} \mathrm{C}_{\mathrm{q}}\right), 133.7,133.5,\left(\mathrm{C}_{\mathrm{q}}\right), 129.3$, $128.4,128.0,126.8,126.7,126.5,124.6,122.7,122.3$, $119.7,118.7,111.9(\mathrm{ArCH}), 109.7\left(\mathrm{C}_{\mathrm{q}}\right), 95.6\left(\mathrm{C}_{4}\right), 67.8$ $\left(\mathrm{C}_{2}\right), 63.9\left(\mathrm{C}_{3}\right), 51.9\left(\mathrm{C}_{5}\right)$ and $46.3\left(\mathrm{OCH}_{3}\right) ; v_{\max }(\mathrm{KBr})$ 3418, 3356, 2948, 1742, 1543, 1361, 1204 and $739 \mathrm{~cm}^{-1}$; $\mathrm{m} / \mathrm{z}(\mathrm{ES}): 417\left(\mathrm{M}^{+}\right), 416\left(\mathrm{M}^{+}+1,100\right)$.

nOe data for exo-10c:

	\% Enhancement					
Irradiated proton	H-2	H-3	H-4	H-5	H- 2^{\prime}	Aryl
H-1	5.4	-	-	-	5.8	$4.8,4.0$
H-2		9.4	-	3.5	-	-
H-3	11.8		3.6	5.2	2.5	9.3
H-4	-	3.5		1.5	9.2	$4.1,4.9$
H-5	3.6	4.3	-		-	$10.3,3.5$

Methyl 3-(1H-indol-3-yl)-2-methyl-5-(2-naphthyl)-4-nitro-prolinate (9d) Obtained from imine 6b (241 mg, 1 mmol), E-nitrostyrene 7b ($188 \mathrm{mg}, 1 \mathrm{mmol}$), triethylamine ($0.21 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and silver oxide ($30 \mathrm{mg}, 0.13 \mathrm{mmol}$) in toluene (20 mL) over 18 h . Purification by triturating with ether and filtering afforded the product ($258 \mathrm{mg}, 60 \%$) as a pale orange amorphous solid, m.p. $190-193{ }^{\circ} \mathrm{C}$. Found: C, 70.05; H, 5.25; N, 9.80. $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 69.90; $\mathrm{H}, 5.40 ; \mathrm{N}, 9.80 \% ; \delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}, \mathrm{CDCl}_{3}+2\right.$ drops $\mathrm{d}_{6}-$ DMSO): 10.33 (bs, 1H, indole NH), 7.42 (s, 1H, ArH), 7.33-6.50 (m, 11H, ArH), 5.43 (bt, 1H, J 7.7 Hz, 4-H), 4.80 (bt, 1H, J $9.1 \mathrm{~Hz}, 5-\mathrm{H}$), 4.35 (bd, 1H, J $7.7 \mathrm{~Hz}, 3-\mathrm{H}$), 3.26 (s, 3H, OMe), 3.09 (bd, 1H, J $9.1 \mathrm{~Hz}, \mathrm{NH}$), 0.75 (s, 3 H , $\left.\mathrm{CH}_{3}\right) ; \delta\left({ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}+2\right.$ drops DMSO): $175.5(\mathrm{CO}), 136.6$, 133.9, 133.4, $133.2\left(\mathrm{C}_{\mathrm{q}}\right), 128.4,127.9(\mathrm{ArCH}), 127.3\left(\mathrm{C}_{\mathrm{q}}\right)$, 126.6 (2 x ArCH), 126.3, 125.1, 123.4, 122.1 119,6, 118.9, $112.1(\mathrm{ArCH}), 109.9\left(\mathrm{C}_{\mathrm{q}}\right), 96.6\left(\mathrm{C}_{4}\right), 68.6\left(\mathrm{C}_{2}\right), 64.4\left(\mathrm{C}_{3}\right)$, $53.1\left(\mathrm{C}_{5}\right)$, $50.2\left(\mathrm{OCH}_{3}\right)$ and $21.9\left(\mathrm{CH}_{3}\right)$; $v_{\text {max }}(\mathrm{KBr})$: 3070, $3425,1722,1544,1456,1395,1139,855,819$ and $747 \mathrm{~cm}^{-}$ ${ }^{1} ; \mathrm{m} / \mathrm{z}(\mathrm{ES}): 430\left(\mathrm{M}^{+}+1,100\right), 428\left(\mathrm{M}^{+}-1,100\right)$.

Methyl 2-benzyl-3-(1H-indol-3-yl)-5-(2-naphthyl)-4-nitro-prolinate (9e) Obtained from imine $\mathbf{6 c}(377 \mathrm{mg}, 1$ mmol), E-nitrostyrene 7b ($188 \mathrm{mg}, 1 \mathrm{mmol}$), triethylamine $(0.21 \mathrm{~mL}, 1.5 \mathrm{mmol})$ and silver oxide ($30 \mathrm{mg}, 0.13 \mathrm{mmol}$) in toluene (20 mL) over 18 h . Purification by flash chromatography eluting with $19: 1 \mathrm{v} / \mathrm{v}$ dichloromethane /hexane afforded the product ($303 \mathrm{mg}, 60 \%$) as pale yellow needles, m.p. 143-146 ${ }^{\circ} \mathrm{C}$. Found (HRMS, $\mathrm{M}^{+}+\mathrm{Na}$): 528.1899. $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}$ requires: 528.1899; $\delta\left({ }^{1} \mathrm{H}, 250\right.$ $\mathrm{MHz}): 8.30(\mathrm{~s}, 1 \mathrm{H}$, indole NH), $7.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.85-$ 7.77 (m, 4H, ArH), 7.49-7.42 (m, 4H, ArH), 7.26-7.10 (m, $8 \mathrm{H}, \mathrm{ArH}$), 5.81 (dd, 1H, J 5.0 and $7.1 \mathrm{~Hz}, 4-\mathrm{H}$), 5.46 (dd, $1 \mathrm{H}, \mathrm{J} 7.1$ and $9.3 \mathrm{~Hz}, 5-\mathrm{H}$), 4.90 (d, 1H, J $5.0 \mathrm{~Hz}, 3-\mathrm{H}$), $3.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 9.3 \mathrm{~Hz}, \mathrm{NH})$ and 2.86 $\left(\mathrm{S}_{\mathrm{AB}}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \delta\left({ }^{13} \mathrm{C}\right): 174.2(\mathrm{CO}), 136.7,136.1,133.4$, $133.2,133\left(\mathrm{C}_{\mathrm{q}}\right), 130.0,128.9,128.4,128.2,128.0,127.7$ (ArCH$), 127.3\left(\mathrm{C}_{\mathrm{q}}\right), 126.8,126.4,126.2,124.6,122.8$, $120.4,119.2,111.6(\mathrm{ArCH}), 111.0\left(\mathrm{C}_{\mathrm{q}}\right), 96.8\left(\mathrm{C}_{4}\right), 73.1$
$\left(\mathrm{C}_{2}\right) 65.2\left(\mathrm{C}_{3}\right), 52.4\left(\mathrm{C}_{5}\right), 50.6\left(\mathrm{OCH}_{3}\right)$ and $40.6\left(\mathrm{CH}_{2}\right)$; $v_{\text {max }}$ (KBr) 3377, 3057, 1727, 1555, 1457, 1430, 1370, 1200, 819, 749 and $707 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right): 530\left(\mathrm{M}^{+}+2+\mathrm{Na}\right), 529$ $\left(\mathrm{M}^{+}+1+\mathrm{Na}\right), 506\left(\mathrm{M}^{+}+1,100\right),\left(\mathrm{ES}^{-}\right) 505\left(\mathrm{M}^{+}\right), 504\left(\mathrm{M}^{+}-1\right.$, 100).

Methyl 5-(1,1'-biphenyl-4-yl)-3-(1H-indol-3-yl)-4-nitroprolinate ($\mathbf{(9 f}$ and 10f) Obtained from imine $\mathbf{6 d}(253 \mathrm{mg}, 1$ mmol), E-nitrostyrene 7b ($188 \mathrm{mg}, 1 \mathrm{mmol}$), triethylamine $(0.21 \mathrm{~mL}, 1.5 \mathrm{mmol})$ and silver oxide ($30 \mathrm{mg}, 0.13 \mathrm{mmol}$) in toluene (20 mL) over 18 h . Purification by SPEAnachem 20 g SI Mega Bond-Elut cartridge using 100\% hexane to 100% ethyl acetate gradient elution afforded first endo-9f ($304 \mathrm{mg}, 69 \%$), followed by exo-10f (114 mg , 26%).
endo-9f: Obtained as colourless plates, m.p. $152-154{ }^{\circ} \mathrm{C}$. Found: C, $70.80 ; \mathrm{H}, 5.30 ; \mathrm{N}, 9.25 . \mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 70.75 ; H, 5.25; N, 9.50%; $\delta\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}\right.$): 8.30 (bs, 1 H , indole NH), 7.66-7.19 (m, 14H, ArH), 5.43 (dd, 1H, J 2.6 and $6.0 \mathrm{~Hz}, 4-\mathrm{H}), 4.97$ (d, 1H, J $6.0 \mathrm{~Hz}, 5-\mathrm{H}), 4.58$ (dd, 1H, J 2.6 and $6.8 \mathrm{~Hz}, 3-\mathrm{H}), 4.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 6.8 \mathrm{~Hz}, 2-\mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe})$ and $3.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}) ; \delta\left({ }^{13} \mathrm{C}\right)$: $172.6(\mathrm{CO})$, 141.8, 140.7, 137.1, $133.7\left(\mathrm{C}_{\mathrm{q}}\right), 129.2$ (2 x ArCH), 127.9 (ArCH), 127.8 (2 x ArCH), 127.5 (2 x ArCH), 127.2 (2 x ArCH), $126.3\left(\mathrm{C}_{\mathrm{q}}\right), 123.5$ (indole C_{2}), 122.3 (indole C_{5}), 120.8 (indole $\mathrm{C}_{4}{ }^{\prime}$), 118.9 (indole $\mathrm{C}_{6^{\prime}}$), 113.9 (indole $\mathrm{C}_{3^{\prime}}$), 112.1 (indole C_{7}), $96.5\left(\mathrm{C}_{4}\right), 67.5\left(\mathrm{C}_{2}\right), 65.9\left(\mathrm{C}_{3}\right), 53.1\left(\mathrm{C}_{5}\right)$ and $48.6\left(\mathrm{OCH}_{3}\right) ; v_{\max }(\mathrm{KBr}) 3294,3038,2953,2903$, $1735,1542,1372,1212,1095,835,765,745$ and $701 \mathrm{~cm}^{-1}$; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right): 464\left(\mathrm{M}^{+}+\mathrm{Na}\right), 443\left(\mathrm{M}^{+}+2\right), 442\left(\mathrm{M}^{+}+1,100\right)$; (ES): $441\left(\mathrm{M}^{+}\right), 440\left(\mathrm{M}^{+}-1,100\right)$.
exo-10f: Obtained as pale orange plates, m.p. $171-173{ }^{\circ} \mathrm{C}$. Found: C, 70.50 ; H, 5.10 ; N, $9.25 . \mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 70.75 ; H, 5.25; N, 9.50%; $\delta\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}\right): 8.21(\mathrm{bs}, 1 \mathrm{H}$, indole NH), 7.67-7.06 (m, 14H, ArH), 5.31 (t, 1H, J 7.9 Hz, 4-H), 4.88 (d, 1H, J $7.9 \mathrm{~Hz}, 5-\mathrm{H}$), 4.76 (t, 1H, J 7.9 Hz, 3H), 4.63 (d, 1H, J $7.9 \mathrm{~Hz}, 2-\mathrm{H}$), 3.18 (s, $3 \mathrm{H}, \mathrm{OMe}$) and 2.92 (bs, $1 \mathrm{H}, \mathrm{NH}$); $\delta\left({ }^{13} \mathrm{C}\right): 172.8$ (CO), 142.1, 140.9, 137.6, 136.4, $130\left(\mathrm{C}_{\mathrm{q}}\right), 129.2$ (2 x ArCH), 128.1 (2 x ArCH), $127.9\left(\mathrm{C}_{\mathrm{q}}\right), 127.6(2 \mathrm{x} \mathrm{ArCH}), 127.5(2 \mathrm{x} \mathrm{ArCH}), 123.1$, 122.2, 120.4, 119.2 (indole $\mathrm{C}_{2^{\prime}-6}$), 111.6 (indole C_{7}), 111.3 $\left(\mathrm{C}_{3^{\prime}}\right), 95.8\left(\mathrm{C}_{4}\right), 67.6\left(\mathrm{C}_{2}\right), 64.1\left(\mathrm{C}_{3}\right), 52.1\left(\mathrm{C}_{5}\right)$ and 46.2 $\left(\mathrm{OCH}_{3}\right) ; v_{\text {max }}(\mathrm{KBr}): 3382,3059,2954,2873,1743,1547$, 1362, 1200, 909, 853, 768, 734 and $702 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right)$: $443\left(\mathrm{M}^{+}+2\right), 442\left(\mathrm{M}^{+}+1,100\right)$; $\left(\mathrm{ES}^{-}\right): 441\left(\mathrm{M}^{+}\right), 440\left(\mathrm{M}^{+}\right.$$1,100)$.

Methyl 5-(1,1'-biphenyl-4-yl)-3-(1H-indol-3-yl)-2-methyl-4-nitro-prolinate (9g) Obtained from imine 6e

 ($267 \mathrm{mg}, 1 \mathrm{mmol}$), E-nitrostyrene 7b ($188 \mathrm{mg}, 1 \mathrm{mmol}$), triethylamine ($0.21 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and silver oxide (30 mg , $0.13 \mathrm{mmol})$ in toluene (20 mL) over 18 h . Purification by flash chromatography eluting with $9: 1 \quad \mathrm{v} / \mathrm{v}$ dichloromethane/hexane afforded the product (327 mg , 72%) as pale orange plates m.p. $132-136{ }^{\circ} \mathrm{C}$. Found: C, 71.15; H, 5.30; N, 9.15. $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 71.20; H , 5.55 ; N, 9.20%; $\delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right): 8.31$ (bs, 1 H , indole $\mathrm{NH}), 7.69-7.14(\mathrm{~m}, 14 \mathrm{H}, \mathrm{ArH}), 5.75(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J} 6.5$ and 7.5 Hz, 4-H), 5.21 (d, 1H, J 7.5 Hz, 5-H), 4.90 (d, 1H, J 6.5 Hz ,$3-\mathrm{H}), 3.86$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$) and $1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta\left({ }^{13} \mathrm{C}\right)$: 175.7 (CO), 142.0, 140.8, 136.5, $134.9\left(\mathrm{C}_{\mathrm{q}}\right), 129.2$ (2 x $\mathrm{ArCH}), 127.9(\mathrm{ArCH}), 127.8,127.5$ (3 x ArCH), 127.4 $\left(\mathrm{C}_{\mathrm{q}}\right), 123.1,122.8,120.6,119.5$ (indole $\mathrm{C}_{2^{2}-6}$), 111.9 (indole $\left.\mathrm{C}_{7}\right)$, $111.5\left(\mathrm{C}_{3}\right), 96.8\left(\mathrm{C}_{4}\right), 69.0\left(\mathrm{C}_{2}\right), 64.9\left(\mathrm{C}_{3}\right), 53.4\left(\mathrm{C}_{5}\right)$, $50.4\left(\mathrm{OCH}_{3}\right)$ and $22.3\left(\mathrm{CH}_{3}\right) ; v_{\text {max }}(\mathrm{KBr}): 3406,3298,3039$, $1735,1543,1435,1251,1138,1115,846,764,745$ and 700 $\mathrm{cm}^{-1} ; \mathrm{m} / \mathrm{z}(\%, \mathrm{FAB}): 456\left(\mathrm{M}^{+}+1,80\right), 308$ (100), 268(85); $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right): 479\left(\mathrm{M}^{+}+1+\mathrm{Na}\right), 478\left(\mathrm{M}^{+}+\mathrm{Na}\right), 456\left(\mathrm{M}^{+}+1\right.$, 100); (ES'): $455\left(\mathrm{M}^{+}\right), 454\left(\mathrm{M}^{+}-1\right)$.

Methyl 2-benzyl-5-(1,1'-biphenyl-4-yl)-3-(1H-indol-3-yl)-4-nitro-prolinate (9h) Obtained from imine 6 (343 $\mathrm{mg}, 1 \mathrm{mmol}$), E-nitrostyrene 7b ($188 \mathrm{mg}, 1 \mathrm{mmol}$), triethylamine ($0.21 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and silver oxide (30 mg , 0.13 mmol) in toluene (20 mL) over 18 h . Purification by flash chromatography eluting with $9: 1 \quad \mathrm{v} / \mathrm{v}$ dichloromethane/hexane afforded the product (330 mg , 62%) as pale yellow plates, m.p. $174-178{ }^{\circ} \mathrm{C}$. Found: C, 74.55 ; H, $5.50 ; \mathrm{N}, 7.90 . \mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 74.55 ; H, $5.50 ; \mathrm{N}, 7.90 \%$; $\delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right): 8.30(\mathrm{bs}, 1 \mathrm{H}$, indole NH), 7.90-6.90 (m, 19H, ArH), 5.75 (dd, 1H, J 6.6 and 5.2 Hz, 4-H), 5.34 (d, 1H, J $6.6 \mathrm{~Hz}, 5-\mathrm{H}$), 4.87 (d, 1H, J 5.2 Hz , $3-\mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.42(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH})$ and $2.84(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \delta\left({ }^{13} \mathrm{C}\right) 174.6(\mathrm{CO}), 142.1,140.9,137.1,136.5$, $135.1\left(\mathrm{C}_{\mathrm{q}}\right), 130.4,129.2,128.5$ (2 x ArCH), 127.9, 127.8 (3 $\mathrm{x} \operatorname{ArCH})$, $127.7\left(\mathrm{C}_{\mathrm{q}}\right)$, 127.5 (2 x ArCH), 127.2, 123.2, 120.8, 119.6, $111.9(\mathrm{ArCH}), 111.4\left(\mathrm{C}_{3^{\prime}}\right), 97.2\left(\mathrm{C}_{4}\right), 73.4$ $\left(\mathrm{C}_{2}\right), 65.2\left(\mathrm{C}_{3}\right), 52.9\left(\mathrm{C}_{5}\right) 50.8\left(\mathrm{OCH}_{3}\right)$ and $41.0\left(\mathrm{CH}_{2}\right) ; v_{\max }$ (KBr): 3381, 3055, 2963, 1728, 1553, 1457, 1428, 1370, $1200,819,748$ and $706 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}\left(\%, \mathrm{FAB}^{+}\right): 532\left(\mathrm{M}^{+}+1\right.$, 80), 308 (100).

Methyl 3-(4-hydroxy-3-methoxyphenyl)-5-(2-naphthyl)-4-nitro-prolinate (9i) Obtained from imine 6a ($227 \mathrm{mg}, 1$ mmol), E-nitrostyrene $7 \mathrm{c}(195 \mathrm{mg}, 1 \mathrm{mmol})$, triethylamine ($0.21 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and silver oxide ($30 \mathrm{mg}, 0.13 \mathrm{mmol}$) in toluene (20 mL) over 16 h . Trituration with $9: 1 \mathrm{v} / \mathrm{v}$ dichloromethane/methanol and filtration afforded the product ($177 \mathrm{mg}, 42 \%$) as colourless plates, m.p. 208-210 ${ }^{\circ} \mathrm{C}$. Found: C, $65.40 ; \mathrm{H}, 5.25 ; \mathrm{N}, 6.50 . \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\mathrm{C}, 65.40 ; \mathrm{H}, 5.25 ; \mathrm{N}, 6.65 \% ; \delta\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}\right): 8.0(\mathrm{bs}$, 1H, OH), 7.93 (d, 1H, J $8.7 \mathrm{~Hz}, ~ A r H), ~ 7.86$ (dd, 2H, J 6.0 and $3.4 \mathrm{~Hz}, \mathrm{ArH}$), 7.72 (dd, 1H, ArH), 7.52 (dd, 2H, J 6.0 and 3.4 Hz ArH), 6.85 (d, 1H, J $8.7 \mathrm{~Hz}, \mathrm{ArH}$), 6.78 (m, 2H, ArH), 5.70 (m, 1H, NH), 5.26 (t, 1H, J $7.7 \mathrm{~Hz}, 4-\mathrm{H}$), 4.93 (d, 1H, J $7.7 \mathrm{~Hz}, 5-\mathrm{H}), 4.55$ (d, 1H, J $8.7 \mathrm{~Hz}, 2-\mathrm{H}$), 4.35 (dd, $1 \mathrm{H}, \mathrm{J} 8.7$ and $7.7 \mathrm{~Hz}, 3-\mathrm{H}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right.$) and 3.42 (s, 3H, OMe); $\delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}, \mathrm{D}_{6} \mathrm{DMSO}\right): 9.06$ (s, $1 \mathrm{H}, \mathrm{OH}$), 7.92 (m, 4H, ArH), 7.61 (dd, 1H, J 1.5 and 8.5 $\mathrm{Hz}, \mathrm{ArH}$), 7.53 (m, 2H, ArH), 7.02 (d, 1H, J $1.8 \mathrm{~Hz}, \mathrm{ArH}$), 6.82 (dd, 1H, J 1.8 and $8.1 \mathrm{~Hz}, \mathrm{ArH}$), 6.75 (d, 1H, J 8.1 Hz , ArH), 5.71 (dd, 1H, J 5.0 and $7.9 \mathrm{~Hz}, \mathrm{NO}_{2} \mathrm{CH}$), 5.22 (t, 1 H , J 7.9 Hz , naphthyl-CH), $4.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}+\mathrm{H}_{2}\right), 3.93(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}$ 7.9 Hz , phenyl-CH), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right)$ and $3.71(\mathrm{~s}, 3 \mathrm{H}$, OMe); $\delta\left({ }^{13} \mathrm{C}, \mathrm{D}_{6}\right.$ DMSO): 172.3 (CO), 148.1, 146.4, 135.1, 133.0, 132.9, $129.2\left(\mathrm{C}_{\mathrm{q}}\right), 128.3,127.9,127.8,126.6,126.5$, 126.0, 125.7, 120.9, 115.8, 112.3 (ArCH), $96.5\left(\mathrm{C}_{4}\right), 66.5$ $\left(\mathrm{C}_{2}\right), 65.6\left(\mathrm{C}_{3}\right), 56.1\left(\mathrm{ArOCH}_{3}\right), 54.0\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ and 52.5 $\left(\mathrm{C}_{5}\right) ; v_{\max }(\mathrm{KBr}): \mathrm{cm}^{-1} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right): 423\left(\mathrm{M}^{+}+1,100\right)$.

Methyl 3-(4-hydroxy-3-methoxyphenyl)-2-methyl-5-(2-naphthyl)-4-nitro-prolinate (9j) Obtained from imine 6b ($241 \mathrm{mg}, 1 \mathrm{mmol}$), E-nitrostyrene 7 c ($195 \mathrm{mg}, 1 \mathrm{mmol}$), triethylamine ($0.21 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and silver oxide (30 mg , $0.13 \mathrm{mmol})$ in toluene (20 mL) over 17 h . Purification by triturating with dichloromethane and filtering afforded the product ($396 \mathrm{mg}, 91 \%$) as a pale yellow solid, m.p. 164$166{ }^{\circ}$ C. Found: C, 65.90; H, 5.55; N, 6.40. $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\mathrm{C}, 66.05 ; \mathrm{H}, 5.55 ; \mathrm{N}, 6.40 \% ; \delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}, \mathrm{d}_{6}{ }^{-}\right.$ DMSO): 9.07 (s, 1H, OH), 7.96-7.87 (m, 4H, ArH), 7.647.49 (m, 3H, ArH), 6.95 (d, 1H, J 1.9 Hz, ArH), 6.83 (dd, $1 \mathrm{H}, \mathrm{J} 1.9$ and $8.2 \mathrm{~Hz}, \mathrm{ArH}$), 6.74 (d, 1H, J $8.2 \mathrm{~Hz}, ~ A r H)$, 6.27 (t, 1H, J $8.6 \mathrm{~Hz}, 4-\mathrm{H}), 5.29(\mathrm{t}, 1 \mathrm{H}, \mathrm{J} 8.6 \mathrm{~Hz}, 5-\mathrm{H}), 4.53$ (d, 1H, J $8.6 \mathrm{~Hz}, 3-\mathrm{H}$), 3.93 (d, 1H, J $8.6 \mathrm{~Hz}, \mathrm{NH}$), 3.81 (s, $\left.3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$ and $1.21\left(\mathrm{CH}_{3}\right) ; \delta\left({ }^{13} \mathrm{C}\right.$, $\mathrm{CDCl}_{3}+2$ drops DMSO): 174.7 (CO), 147.5, 146.3, 134.0, 133.1, $132.9\left(\mathrm{C}_{\mathrm{q}}\right), 128.0,127.9,127.6(\mathrm{ArCH}), 126.3\left(\mathrm{C}_{\mathrm{q}}\right)$, 126.1, 125.0, 120.8, 115.4, $112.7(\mathrm{ArCH}), 95.0\left(\mathrm{C}_{4}\right), 68.3$ $\left(\mathrm{C}_{2}\right), 63.8\left(\mathrm{C}_{3}\right), 56.1\left(\mathrm{ArOCH}_{3}\right), 56.0\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 52.7\left(\mathrm{C}_{5}\right)$ and $21.4\left(\mathrm{CH}_{3}\right)$; $v_{\text {max }}(\mathrm{KBr}): 3294,2952,1740,1547,1436$, $1264,1128,863,832$ and $746 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right): 460$ $\left(\mathrm{M}^{+}+1+\mathrm{Na}\right), 437\left(\mathrm{M}^{+}+1,100\right)$; $\left(\mathrm{ES}^{-}\right): 436\left(\mathrm{M}^{+}\right), 435\left(\mathrm{M}^{+}-\right.$ $1,100)$.

nOe data for $\mathbf{9 j}$:

	\% Enhancement						
Irradiated proton	$\mathrm{H}-3$	$\mathrm{H}-4$	$\mathrm{H}-5$	Phenyl	Naph-	CH_{3}	
$\mathrm{H}-3$	4.2	-	10.7	$1.3,1.4$	11.8		
$\mathrm{H}-4$	1.9		4.8	7.9	$2.8,2.4$	-	
$\mathrm{H}-5$	-	8.2		3.0	$5.3,4.8$	3.3	
CH_{3}	0.4	0.8	2.0	1.8	-	-	

Methyl 5-(1,1'-biphenyl-4-yl)-3-(4-hydroxy-3-methoxyphenyl)-4-nitro-prolinate (9 k) Obtained from imine $\mathbf{6 d}(401 \mathrm{mg}, 1.6 \mathrm{mmol})$, E-nitrostyrene 7c (309 mg , $1.6 \mathrm{mmol})$, triethylamine ($0.33 \mathrm{~mL}, 2.4 \mathrm{mmol}$) and silver acetate ($395 \mathrm{mg}, 2.4 \mathrm{mmol}$) in toluene (30 mL) over 16 h . Purification by triturating with $9: 1 \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane afforded the product ($367 \mathrm{mg}, 82 \%$) as a colourless solid, m.p. $187-190{ }^{\circ} \mathrm{C}$. HRMS ($\mathrm{M}^{+}+\mathrm{H}$): 449.1710. $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$
requires $449.1712 . \delta\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}+2\right.$ drops d_{6} DMSO): 7.56-7.52 (m, 4H, ArH), 7.42-7.28 (m, 5H, ArH), $6.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 7.5 \mathrm{~Hz}, \mathrm{ArH}), 6.75$ (dd, 1H, J 2.3 and $7.5 \mathrm{~Hz}, \mathrm{ArH}$), 6.74 (s, 1H, ArH), $5.70(\mathrm{~m}, 1 \mathrm{H}$, NH), 5.24 (dd, 1H, J 3.4 and $6.4 \mathrm{~Hz}, 4-\mathrm{H}$), 4.90 (dd, 1H, J 6.4 and $10.9 \mathrm{~Hz}, 5-\mathrm{H}), 4.12(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}+3-\mathrm{H}), 3.87(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$) and $3.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}) ; \delta$ $\left({ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}+2\right.$ drops DMSO): 172.3 (CO), 147.8, 146.3, $130.2\left(\mathrm{C}_{\mathrm{q}}\right), 129.1(2 \mathrm{x} \mathrm{ArCH}), 127.9(\mathrm{ArCH}), 127.7(2 \mathrm{x}$ $\mathrm{ArCH}), 127.4$ (2 x ArCH), 127.3 (2 x ArCH), 120.1, 115.9, $111.2(\mathrm{ArCH}), 104.4\left(\mathrm{C}_{\mathrm{q}}\right), 97.5\left(\mathrm{C}_{4}\right), 73.1\left(\mathrm{C}_{2}\right), 67.6\left(\mathrm{C}_{3}\right)$, $55.5\left(\mathrm{ArOCH}_{3}\right), 53.0\left(\mathrm{C}_{5}\right)$ and $40.7\left(\mathrm{OCH}_{3}\right) ; v_{\max }(\mathrm{KBr})$: 3459, 3254, 3008, 2956, 1739, 1601, 1555, 1457, 1438, 1367, 1204, 1008 816, 759 and $697 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right): 473$ $\left(\mathrm{M}^{+}+\mathrm{Na}+2\right), 472\left(\mathrm{M}^{+}+\mathrm{Na}+1\right), 471\left(\mathrm{M}^{+}+\mathrm{Na}\right), 449\left(\mathrm{M}^{+}+1\right.$, 100); (ES $): 448\left(\mathrm{M}^{+}\right), 447\left(\mathrm{M}^{+}-1,100\right) ; \mathrm{m} / \mathrm{z}\left(\%, \mathrm{FAB}^{+}\right)$: $449\left(\mathrm{M}^{+}+1,100\right), 315(50)$.

Methyl 5-(1,1'-biphenyl-4-yl)-3-(4-hydroxy-3-methoxyphenyl)-2-methyl-4-nitro-prolinate
 (91)

 Obtained from imine 6e ($267 \mathrm{mg}, 1 \mathrm{mmol}$), E-nitrostyrene $7 \mathrm{c}(195 \mathrm{mg}, 1 \mathrm{mmol})$, triethylamine ($0.21 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and silver oxide ($30 \mathrm{mg}, 0.13 \mathrm{mmol}$) in toluene (20 mL) over 18 h . Purification by flash chromatography eluting with dichloromethane afforded the product ($300 \mathrm{mg}, 65 \%$) as a pale yellow amorphous solid, m.p. 172-175 ${ }^{\circ} \mathrm{C}$. Found: $\mathrm{C}, 67.70 ; \mathrm{H}, 5.70 ; \mathrm{N}, 6.35 . \mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\mathrm{C}, 67.50$; $\mathrm{H}, 5.70 ; \mathrm{N}, 6.05 \% ; \delta\left({ }^{\mathrm{l}} \mathrm{H}, 300 \mathrm{MHz}\right): 7.62-7.59(\mathrm{~m}, 5 \mathrm{H}$, ArH), 7.55 (m, 4H, ArH), 6.92 (m, 1H, ArH), 6.78 (m, 2H, ArH), 5.69 (t, 1H, J 7.3 Hz, 4-H), 5.12 (d, 1H, J 7.3 Hz, 5H), $4.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 7.3 \mathrm{~Hz}, 3-\mathrm{H}), 3.88\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right.$ and $\mathrm{OMe}), 3.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH})$ and $1.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta\left({ }^{13} \mathrm{C}\right.$, $\mathrm{CDCl}_{3}+2$ drops d_{6}-DMSO): 175.1 (CO), 147.6, 146.5, $141.5,140.6,135.4\left(\mathrm{C}_{\mathrm{q}}\right)$, 129.1 (2 x ArCH), 127.8 (3 x ArCH), 127.4 (2 x ArCH), 127.3 (2 x ArCH), 126.8 (C_{q}), $120.9,115.5,112.8(\mathrm{ArCH}), 104.4\left(\mathrm{C}_{\mathrm{q}}\right), 95.6\left(\mathrm{C}_{4}\right), 68.8$ $\left(\mathrm{C}_{2}\right), 64.3\left(\mathrm{C}_{3}\right), 56.7\left(\mathrm{ArOCH}_{3}\right), 56.3\left(\mathrm{C}_{5}\right), 53.2\left(\mathrm{OCH}_{3}\right)$ and $21.9\left(\mathrm{CH}_{3}\right) ; v_{\max }(\mathrm{KBr}): 3258,1736,1600,1558,1437$, $1258,1137,853,760$ and $717 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\%, \mathrm{FAB}): 463$ $\left(\mathrm{M}^{+}+1,100\right), 315$ (95); m/z (ES $\left.{ }^{+}\right): 485\left(\mathrm{M}^{+}+\mathrm{Na}\right), 463$ $\left(\mathrm{M}^{+}+1,100\right) ;\left(\mathrm{ES}^{-}\right): 462\left(\mathrm{M}^{+}\right), 461\left(\mathrm{M}^{+}-1,100\right)$.Methyl 3-(2-furyl)-5-(2-naphthyl)-4-nitro-prolinate (9m) Obtained from imine 6a ($227 \mathrm{mg}, 1 \mathrm{mmol}$), E-nitrostyrene $7 \mathbf{d}(139 \mathrm{mg}, 1 \mathrm{mmol})$, triethylamine ($0.21 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and silver acetate ($250 \mathrm{mg}, 1.5 \mathrm{mmol}$) in toluene (20 mL) over 15 h . Trituration with ether and filtration afforded the product ($318 \mathrm{mg}, 87 \%$) as pale yellow needles, m.p. 131$133{ }^{\circ} \mathrm{C}$. Found: C, 65.30; H, 4.90; N, 7.80. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires C, 65.55; H, 4.95; N, 7.65%; $\delta\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}\right)$: 7.87-7.83 (m, 4H, ArH), 7.54-7.47 (m, 3H, ArH), 7.43 (d, $1 \mathrm{H}, \mathrm{J} 1.9 \mathrm{~Hz}$, furyl-H.), 6.42 (dd, 1H, J 1.9 and 3.4 Hz , furyl-H), 6.34 (d, 1H, J 3.4 Hz , furyl-H.), 5.46 (dd, 1H, J 6.0 and $2.6 \mathrm{~Hz}, 4-\mathrm{H}$), 5.05 (bs, 1H, 5-H), 4.38 (dd, 1H, J 6.8 and $2.6 \mathrm{~Hz}, 3-\mathrm{H}$), 4.29 (bd, 1H, J $6.0 \mathrm{~Hz}, 2-\mathrm{H}$), 3.90 (s, $3 \mathrm{H}, \mathrm{OMe})$ and 3.48 (bs, $1 \mathrm{H}, \mathrm{NH}) ; \delta\left({ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}+2\right.$ drops d_{6}-DMSO): $171.4(\mathrm{CO}), 150.7$ (furan C_{2}), 143.0 (furan C_{5}) 133.1, $133.0\left(\mathrm{C}_{\mathrm{q}}\right), 128.2,128.1,127.6(\mathrm{ArCH}), 126.5(2 \mathrm{x}$ ArCH), 125.6, 124.5 (ArCH), 110.8, 107.9 (furan $\mathrm{C}_{3^{\prime}}, \mathrm{C}_{4}$), $93.9\left(\mathrm{C}_{4}\right), 67.1\left(\mathrm{C}_{2}\right), 64.3\left(\mathrm{C}_{3}\right), 52.7\left(\mathrm{C}_{5}\right)$ and $48.2\left(\mathrm{OCH}_{3}\right)$; $v_{\text {max }}(\mathrm{KBr}) 3302,1743,1541,1436,1127,863,812$ and 747
$\mathrm{cm}^{-1} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 390\left(\mathrm{M}^{+}+1+\mathrm{Na}\right), 389\left(\mathrm{M}^{+}+\mathrm{Na}, 100\right), 367$ $\left(\mathrm{M}^{+}+1\right) ; \mathrm{m} / \mathrm{z}(\%, \mathrm{FAB}): 367\left(\mathrm{M}^{+}+1,100\right), 233(55)$.

Methyl 3-(2-furyl)-2-methyl-5-(2-naphthyl)-4-nitroprolinate (9n) Obtained from imine $\mathbf{6 b}$ ($241 \mathrm{mg}, 1 \mathrm{mmol}$), E-nitrostyrene $7 \mathbf{d}(139 \mathrm{mg}, 1 \mathrm{mmol})$, triethylamine $(0.21$ $\mathrm{mL}, 1.5 \mathrm{mmol})$ and silver acetate ($250 \mathrm{mg}, 1.5 \mathrm{mmol}$) in toluene (20 mL) over 18 h . Trituration with ether and filtration afforded the product ($304 \mathrm{mg}, 80 \%$) as a colourless solid, m.p. $110-112{ }^{\circ} \mathrm{C}$. Found: C, 66.20 ; H, 5.25; N, 7.35. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires C, 66.30; H, 5.30; N, 7.35%; $\delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right): 7.87-7.80(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.52-$ 7.41 (m, 4H, ArH), 6.39 (dd, 1H, J 2.0 and 3.2 Hz , furylH), 6.31 (d, 1H, J 3.2 Hz, furyl-H), 5.69 (dd, 1H, J 4.5 and $6.8 \mathrm{~Hz}, 4-\mathrm{H}), 5.28$ (dd, 1H, J 6.8 and $10.1 \mathrm{~Hz}, 5-\mathrm{H}), 4.64$ (d, 1H, J $4.5 \mathrm{~Hz}, 3-\mathrm{H}$), 3.92 (s, 3H, OMe), 3.54 (d, 1H, J $10.1 \mathrm{~Hz}, \mathrm{NH})$ and $1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta\left({ }^{13} \mathrm{C}\right): 175.0(\mathrm{CO})$, 150.1 (furan $\mathrm{C}_{2^{\prime}}$), 143.1 (furan $\mathrm{C}_{5^{\prime}}$) 133.8, $133.5\left(\mathrm{C}_{\mathrm{q}}\right), 128.9$, 128.6, 128.1, 126.9, 126.8, 126.4, 124.8 (ArCH), 111.2, 109.7 (furan $\mathrm{C}_{3^{\prime}}, \mathrm{C}_{4}$), $94.2\left(\mathrm{C}_{4}\right), 69.9\left(\mathrm{C}_{2}\right), 65.8\left(\mathrm{C}_{3}\right)$, 53.5 $\left(\mathrm{C}_{5}\right), 51.5\left(\mathrm{OCH}_{3}\right)$ and $22.5\left(\mathrm{CH}_{3}\right) ; v_{\max }(\mathrm{KBr}): 3361,2998$, 2949, 1734, 1552, 1436, 1148, 1014, 863, 772 and $752 \mathrm{~cm}^{-}$ ${ }^{1} ; \mathrm{m} / \mathrm{z}(\%): 379\left(\mathrm{M}^{+}-1,10\right), 363(25), 333$ (40); m/z (ES): $404\left(\mathrm{M}^{+}+1+\mathrm{Na}\right), 403\left(\mathrm{M}^{+}+\mathrm{Na}\right), 381\left(\mathrm{M}^{+}+1,100\right)$.

nOe data for $9 \mathbf{n}$:

	\% Enhancement				
Irradiated proton	$\mathrm{H}-3$	H-4	H-5	Furyl	Naph-
$\mathrm{H}-3$		2.9	-	5.5	-
$\mathrm{H}-4$	4.5		7.4	2.0	-
$\mathrm{H}-5$		13.5		6.2	6.7
CH_{3}	1.5	0.8	2.1	-	-

Methyl 2-benzyl-3-(2-furyl)-5-(2-naphthyl)-4-nitroprolinate (90) Obtained from imine $\mathbf{6 c}(377 \mathrm{mg}, 1 \mathrm{mmol})$, E-nitrostyrene $7 \mathbf{d}(139 \mathrm{mg}, 1 \mathrm{mmol})$, triethylamine $(0.21$ $\mathrm{mL}, 1.5 \mathrm{mmol}$) and silver acetate ($250 \mathrm{mg}, 1.5 \mathrm{mmol}$) in toluene (20 mL) over 16 h . Trituration with ether and filtration afforded the product ($355 \mathrm{mg}, 78 \%$) as a pale orange amorphous solid, m.p. 151-154 ${ }^{\circ}$ C. Found: C, 70.80 ; H, 5.30; N, 6.05. $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires C, 71.05; H, 5.30; N, $6.15 \% ; \delta\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}\right): 7.92$ (bs, $1 \mathrm{H}, \mathrm{ArH}$), $7.87-7.79$ (m, 4H, ArH), 7.53-7.47 (m, 4H, ArH), 7.25-7.14 (m, 5H, ArH), 6.48-6.44 (m, 2H, furyl-H), 5.63 (dd, 1H, J 3.8 and $6.4 \mathrm{~Hz}, 4-\mathrm{H}), 5.34$ (bt, 1H, J $7.7 \mathrm{~Hz}, 5-\mathrm{H}$), 4.55 (d, 1H, J $3.8 \mathrm{~Hz}, 3-\mathrm{H}$), 3.79 (s, 3H, OMe), 3.48 (bd, 1H, J 9.4 Hz ,

NH), 2.78 (AB, d, J $13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH})$ and 2.63 (AB, d, J $13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}) ; \delta\left({ }^{13} \mathrm{C}\right): 173.9(\mathrm{CO}), 149.9\left(\right.$ furan $\left.\mathrm{C}_{2}\right)$, $136.8,133.8,133.6,132.7\left(\mathrm{C}_{\mathrm{q}}\right), 130.4$ (2 x ArCH), 128.6 (ArCH), 128.5 (2 x ArCH), 128.1, 127.4, 126.9, 126.8, 126.4, 124.9 (ArCH), 111.3, 110.5 (furan $\mathrm{C}_{3^{\prime}}, \mathrm{C}_{4}$), 94.4 $\left(\mathrm{C}_{4}\right), 74.4\left(\mathrm{C}_{2}\right), 66.1\left(\mathrm{C}_{3}\right), 53.0\left(\mathrm{C}_{5}\right), 52.3\left(\mathrm{OCH}_{3}\right)$ and 40.8 $\left(\mathrm{CH}_{2}\right) ; v_{\text {max }}$ (film): 3328, 3122, 3056, 2951, 1740, 1602, 1542, 1455, 1429, 1195, 900, 868, 750 and $701 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ $\left(\mathrm{ES}^{+}\right): 457\left(\mathrm{M}^{+}+1,100\right)$.

Methyl 5-(1,1'-biphenyl-4-yl)-3-(2-furyl)-4-nitroprolinate (9p) Obtained from imine $\mathbf{6 d}(253 \mathrm{mg}, 1 \mathrm{mmol})$, E-nitrostyrene $7 \mathbf{d}$ ($139 \mathrm{mg}, 1 \mathrm{mmol}$), triethylamine (0.21 $\mathrm{mL}, 1.5 \mathrm{mmol})$ and silver acetate ($250 \mathrm{mg}, 1.5 \mathrm{mmol}$) in toluene (20 mL) over 22 h . Purification by flash chromatography eluting with $19: 1 \mathrm{v} / \mathrm{v}$ dichloromethane/ hexane afforded the product ($384 \mathrm{mg}, 98 \%$) as a colourless powder, m.p. $144-148{ }^{\circ} \mathrm{C}$. Found: C, 67.30 ; H, 5.15 ; N, 7.20. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 67.35 ; \mathrm{H}, 5.15 ; \mathrm{N}, 7.15 \% . \delta$ ${ }^{1} \mathrm{H}, 250 \mathrm{MHz}$): 7.61-7.51 (m, 4H, ArH), 7.48-7.30 (m, 6H, ArCH), 6.39 (dd, 1H, J 1.9 and 3.6 Hz , furyl-H $)$), 6.31 (dd, $1 \mathrm{H}, \mathrm{J} 0.5$ and 3.6 Hz , furyl-H), 5.38 (dd, 1H, J 2.6 and 6.2 Hz, 4-H), 4.91 (dd, 1H, J 6.4 and $11.4 \mathrm{~Hz}, 5-\mathrm{H}$), 4.33 (dd, $1 \mathrm{H}, \mathrm{J} 2.6$ and $7.0 \mathrm{~Hz}, 3-\mathrm{H}$), 4.25 (dd, 1H, J 7.0 and 9.3 Hz , $2-\mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$ and 3.37 (dd, 1H, J 9.3 and 11.4 $\mathrm{Hz}, \mathrm{NH}) ; \delta\left({ }^{13} \mathrm{C}, 250 \mathrm{MHz}\right): 171.8(\mathrm{CO}), 151.2$ (furyl C_{2}), 143.4 (furyl $\mathrm{C}_{5^{\prime}}$), 142.0, 140.7, $133.3\left(\mathrm{C}_{\mathrm{q}}\right), 129.2$ (2 x $\mathrm{ArCH}), 128.0$ (ArCH), 127.9, 127.5, 127.3 (2 x ArCH), 111.2, 108.4 (furyl $\left.\mathrm{C}_{3^{\prime}}+\mathrm{C}_{4}\right)^{\prime}$, $94.4\left(\mathrm{C}_{4}\right), 67.9\left(\mathrm{C}_{2}\right), 65.2\left(\mathrm{C}_{3}\right)$, $53.3\left(\mathrm{C}_{5}\right)$ and $49.3\left(\mathrm{OCH}_{3}\right) ; v_{\max }(\mathrm{NaCl}): 3375,3030,2952$, 1742, 1551, 1437, 1214, 1008, 840, 766 and $699 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (\%): $393\left(\mathrm{M}^{+}+1,100\right)$.

Methyl 5-(2-naphthyl)-4-nitro-3-thien-2-yl-prolinate (endo-9q and exo-10q) Obtained from imine 6a ($227 \mathrm{mg}, 1$ $\mathrm{mmol})$, E-nitrostyrene $7 \mathrm{e}(155 \mathrm{mg}, 1 \mathrm{mmol})$, triethylamine $(0.21 \mathrm{~mL}, 1.5 \mathrm{mmol})$ and silver acetate $(250 \mathrm{mg}, 1.5 \mathrm{mmol})$ in toluene (20 mL) over 16 h . Trituration with ether and filtration afforded the product ($343 \mathrm{mg}, 90 \%$)(3:1 mixture of endo-9q and exo-10q) as colourless plates, m.p. 124-130 ${ }^{\circ} \mathrm{C}$. Found: C, 62.70; H, 4.80; N, 7.30; S, 8.40. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 62.80 ; \mathrm{H}, 4.75 ; \mathrm{N}, 7.30 ; \mathrm{S}, 8.40$ $\%$; NMR for both isomers were assigned from the 3:1 mixture.
$\delta_{\mathrm{A}}\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}\right)$ for endo- $\mathbf{9 q}$: 7.85-7.80 $(\mathrm{m}, 4 \mathrm{H}, \mathrm{ArH})$, 7.60-7.55 (m, 4H, ArH), 7.03 (m, 2H, thienyl-H), 5.38 (dd, $1 \mathrm{H}, \mathrm{J} 3.1$ and $6.2 \mathrm{~Hz}, 4-\mathrm{H}), 5.06$ (d, 1H, J $6.2 \mathrm{~Hz}, 5-\mathrm{H})$, 4.59 (dd, 1H, J 3.1 and $7.1 \mathrm{~Hz}, 3-\mathrm{H}$), 4.26 (d, 1H, J 7.1 Hz , $2-\mathrm{H})$ and $3.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}) ; \delta_{\mathrm{A}}\left({ }^{13} \mathrm{C}\right): 171.7(\mathrm{CO}), 141.6$, 133.7, 133.5, $131.7\left(\mathrm{C}_{\mathrm{q}}\right), 129.0,128.6,128.1,128.0,127.0$, 126.9, 126.3, 126.1, 125.8, 124.5, (ArCH), $97.2\left(\mathrm{C}_{4}\right), 68.5$ $\left(\mathrm{C}_{2}\right), 67.8\left(\mathrm{C}_{3}\right), 53.3\left(\mathrm{C}_{5}\right)$ and $50.9\left(\mathrm{OCH}_{3}\right)$;
$\delta_{\mathrm{B}}\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}\right)$ for exo-10q: 8.06-7.84 (m, 4H, ArH), 7.69-7.48 (m, 3H, ArH), 7.23 (dd, 1H, J 1.6, 4.9Hz, thienylH), 6.97 (m, 2H, thienyl-H), 5.24 (dd, 1H, J 6.5 and 7.6 Hz , $4-\mathrm{H}$), 4.87 (d, 1H, J $7.6 \mathrm{~Hz}, 5-\mathrm{H}$), 4.69 (dd, 1H, J 6.5 and $8.1 \mathrm{~Hz}, 3-\mathrm{H}), 4.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 8.1 \mathrm{~Hz}, 2-\mathrm{H})$ and $3.50(\mathrm{~s}, 3 \mathrm{H}$, OMe); $\delta_{\mathrm{B}}\left({ }^{13} \mathrm{C}\right): 171.6(\mathrm{CO}), 138.3,135.3,133.8\left(\mathrm{C}_{\mathrm{q}}\right)$, 129.6, 128.2, 127.4, 126.8, 124.5, (ArCH), $96.7\left(\mathrm{C}_{4}\right), 68.2$
$\left(\mathrm{C}_{2}\right), 64.9\left(\mathrm{C}_{3}\right), 52.6\left(\mathrm{C}_{5}\right)$ and $49.4\left(\mathrm{OCH}_{3}\right) ; v_{\text {max }}(\mathrm{KBr})$: $3365,3322,2950,1740,1546,1436,1203,832,751$ and $709 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\%$, FAB $) 383\left(\mathrm{M}^{+}, 100\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right): 406$ $\left(\mathrm{M}^{+}+1+\mathrm{Na}, 22\right), 405\left(\mathrm{M}^{+}+\mathrm{Na}, 100\right), 383\left(\mathrm{M}^{+}+1,48\right)$.

Methyl 2-methyl-5-(2-naphthyl)-4-nitro-3-thien-2-ylprolinate (9r) Obtained from imine $\mathbf{6 b}(241 \mathrm{mg}, 1 \mathrm{mmol})$, E-nitrostyrene 7 e ($155 \mathrm{mg}, 1 \mathrm{mmol}$), triethylamine (0.21 $\mathrm{mL}, 1.5 \mathrm{mmol}$) and silver oxide ($30 \mathrm{mg}, 0.13 \mathrm{mmol}$) in toluene (20 mL) over 16 h . The crude material was washed with ether and filtered to afford the product ($360 \mathrm{mg}, 91 \%$) as pale brown prisms, m.p. $156-158{ }^{\circ} \mathrm{C}$. Found: C, 63.50 ; H, 5.00; N, 7.10; S, 8.20. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires C, 63.60; H, 5.10; N, 7.05; S, 8.10%; $\delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right): 7.88-7.80$ $(\mathrm{m}, 4 \mathrm{H}, \mathrm{ArH}), 7.53-7.45(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}$, thienyl-H), 7.02 (m, 2H, thienyl-H), 5.68 (t, 1H, J 7.0 Hz , 4-H), 5.24 (t, 1H, J $9.0 \mathrm{~Hz}, 5-\mathrm{H}$), 4.93 (d, 1H, J $6.8 \mathrm{~Hz}, 3-$ H), 3.95 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 9.4 \mathrm{~Hz} \mathrm{NH})$ and 1.34 (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta\left({ }^{13} \mathrm{C}\right): 174.7$ (CO), 138.2, 133.8, 133.5, $133.2\left(\mathrm{C}_{\mathrm{q}}\right), 128.8,128.6,128.1,127.5,127.1,126.9,126.8$, 126.7 125.7, 124.9, (ArCH), $96.3\left(\mathrm{C}_{4}\right), 68.8\left(\mathrm{C}_{2}\right), 64.4\left(\mathrm{C}_{3}\right)$, $53.4\left(\mathrm{C}_{5}\right), 52.3\left(\mathrm{OCH}_{3}\right)$ and $22.2\left(\mathrm{CH}_{3}\right)$; $v_{\text {max }}(\mathrm{KBr}): 3355$, 2997, 2947, 1747, 1553, 1435, 1147, 822, 752 and $713 \mathrm{~cm}^{-}$ ${ }^{1} ; \mathrm{m} / \mathrm{z}(\%, \mathrm{FAB}): 397\left(\mathrm{M}^{+}+1,85\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right): 420\left(\mathrm{M}^{+}\right.$ $+1+\mathrm{Na}), 419\left(\mathrm{M}^{+}+\mathrm{Na}\right), 397\left(\mathrm{M}^{+}+1,71\right)$.

nOe data for $\mathbf{9 r}$:

	\% Enhancement				
Irradiated proton	H-3	H-4	H-5	Thiophe-	Naph-
H-3		1.9	-	3.0	$1.5,1.3$
H-4	2.5		7.8	4.5	-
H-5	-	9.8		0.8	$4.6,4.7$

Methyl 2-benzyl-5-(2-naphthyl)-4-nitro-3-thien-2-ylprolinate (9s) Obtained from imine $\mathbf{6 c}(317 \mathrm{mg}, 1 \mathrm{mmol})$, E-nitrostyrene $7 \mathrm{e}(155 \mathrm{mg}, 1 \mathrm{mmol})$, triethylamine (0.21 $\mathrm{mL}, 1.5 \mathrm{mmol})$ and silver oxide ($30 \mathrm{mg}, 0.13 \mathrm{mmol}$) in toluene (20 mL) over 17 h . Purification was achieved by triturating the residue with ether and filtration to afford the product ($330 \mathrm{mg}, 70 \%$) as a pale brown amorphous solid, m.p. $158-161^{\circ} \mathrm{C}$. Found: C, 68.35 ; H, 5.15 ; N, 6.10 ; S, 7.00. $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 68.65 ; \mathrm{H}, 5.10$; $\mathrm{N}, 5.95$; S, $6.80 \% ; \delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right): 7.93$ (bs, 1H, ArH), 7.87-7.00 (m, 14H, ArH), 5.72 (dd, 1H, J 5.5 and $7.3 \mathrm{~Hz}, 4-\mathrm{H}), 5.38$ (bs, $1 \mathrm{H}, 5-\mathrm{H}), 4.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 5.5 \mathrm{~Hz}, 3-\mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}$, OMe), 3.39 (bs, $1 \mathrm{H}, \mathrm{NH}$) and $2.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \delta\left({ }^{13} \mathrm{C}\right)$:
173.9 (CO), 137.9, 136.6, 133.8, 133.5, 133.1 (C_{q}), 130.4 (2 x ArCH), 128.9 (ArCH), 128.6 (3 x ArCH), 128.1, 128.0, 127.6, 127.5, 127.0, 126.9, 126.7, 126.0, 124.9 (ArCH), $97.1\left(\mathrm{C}_{4}\right), 73.1\left(\mathrm{C}_{2}\right), 64.9\left(\mathrm{C}_{3}\right), 53.4\left(\mathrm{C}_{5}\right), 53.0$ $\left(\mathrm{OCH}_{3}\right)$ and $40.9\left(\mathrm{CH}_{2}\right) ; v_{\max }(\mathrm{KBr}) 3330,3118,3094$, 3055, 2948, 1743, 1543, 1453, 1428, 1194, 954, 902, 867, 749 and $702 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right): 496\left(\mathrm{M}^{+}+1+\mathrm{Na}\right), 495$ $\left(\mathrm{M}^{+}+\mathrm{Na}\right), 473\left(\mathrm{M}^{+}+1,100\right)$; $\left(\mathrm{ES}^{-}\right): 471\left(\mathrm{M}^{+} \cdot 1,100\right) . \mathrm{m} / \mathrm{z}$ $\left(\mathrm{FAB}^{+}\right): 495\left(\mathrm{M}^{+}+\mathrm{Na}, 10\right), 473\left(\mathrm{M}^{+}+1,100\right)$.

Methyl 5-(1,1'-biphenyl-4-yl)-4-nitro-3-thien-2-ylprolinate (9t) Obtained from imine $\mathbf{6 d}(253 \mathrm{mg}, 1 \mathrm{mmol})$, E-nitrostyrene 7 e ($155 \mathrm{mg}, 1 \mathrm{mmol}$), triethylamine (0.21 $\mathrm{mL}, 1.5 \mathrm{mmol}$) and silver acetate ($250 \mathrm{mg}, 1.5 \mathrm{mmol}$) in toluene (20 mL) over 16 h . Purification was achieved by dissolving the residue in toluene and adding ether dropwise which afforded the product ($285 \mathrm{mg}, 70 \%$) as colourless needles, m.p. $\quad 162-164{ }^{\circ} \mathrm{C}$. Found: C, 64.65 ; H, 5.05 ; N, 6.85; S, 7.85. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ S requires C, 64.70; H, 4.95; N, $6.85 ; \mathrm{S}, 7.85 \% ; \delta\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}\right): 7.60-7.48(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$, 7.43-7.24 (m, 5H, ArH and thienyl-H), 6.31 (dd, 1H, J 2.3 and 3.0 Hz , thienyl-H), $6.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 3.0 \mathrm{~Hz}$, thienyl-H), 5.30 (dd, 1H, J 3.0 and $6.0 \mathrm{~Hz}, 4-\mathrm{H}$), 4.83 (bd, 1H, J 6.0 $\mathrm{Hz}, 5-\mathrm{H}), 4.25(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J} 3.0$ and $6.8 \mathrm{~Hz}, 3-\mathrm{H}), 4.15(\mathrm{~d}, 1 \mathrm{H}$, J $6.8 \mathrm{~Hz}, 2-\mathrm{H})$, and $3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}) ; \delta\left({ }^{13} \mathrm{C}\right): 171.5(\mathrm{CO})$, $151.0\left(\mathrm{C}_{2^{\prime}}\right), 143.2(\mathrm{ArCH}), 141.8,140.5,133.0\left(\mathrm{C}_{\mathrm{q}}\right), 129.0$ $(2 \mathrm{x} \mathrm{ArCH}), 127.7(\mathrm{ArCH}), 127.6(2 \mathrm{x} \mathrm{ArCH}), 127.3(2 \mathrm{x}$ $\mathrm{ArCH}), 127.0(2 \mathrm{x} \mathrm{ArCH}), 111.0,108.1$ (thienyl CH), 94.2 $\left(\mathrm{C}_{4}\right), 67.6\left(\mathrm{C}_{3}\right) 65.0\left(\mathrm{C}_{5}\right), 53.0\left(\mathrm{C}_{2}\right)$ and $49.1\left(\mathrm{OCH}_{3}\right) ; v_{\max }$ (KBr): 3303, 3031, 2998, 2958, 1744, 1547, 1435, 1211, 1012, 830,761 and $696 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right): 431\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, $393\left(\mathrm{M}^{+}-15,100\right), 375\left(\mathrm{M}^{+}-33\right)$.

Methyl 5-(2-naphthyl)-4-nitro-3-pyridin-3-yl-prolinate (9u) Obtained from imine 6a (227 mg , 1 mmol), $E-$ nitrostyrene $7 \mathrm{f}(150 \mathrm{mg}, 1 \mathrm{mmol})$, triethylamine $(0.21 \mathrm{~mL}$, 1.5 mmol) and silver oxide ($30 \mathrm{mg}, 0.13 \mathrm{mmol}$) in toluene $(20 \mathrm{~mL})$ over 16 h . Purification was achieved by washing with ether and filtering off the product ($150 \mathrm{mg}, 40 \%$) as pale yellow plates, m.p. $159-162^{\circ} \mathrm{C}$. Found: C, 66.95 ; H, $5.20 ; \mathrm{N}, 11.30 . \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 66.85; $\mathrm{H}, 5.05$; N, $11.15 \% ; \delta\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}+2\right.$ drops d_{6}-DMSO): 8.39 (bd, 1H, J 1.9 Hz , pyridyl-H), 8.34 (dd, 1H, J 1.9 and 4.7 Hz , pyridyl-H), 7.66 (bs, 1H, ArH), 7.62-7.56 (m, 3H, ArH), 7.52 (dt, 1H, J 1.9 and 7.9 Hz , pyridyl-H), 7.27-7.23 (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.13 (dd, 1H, J 4.7 and 7.9 Hz , pyridyl-H), 5.28 (dd, 1H, J 4.7 and $7.3 \mathrm{~Hz}, 4-\mathrm{H}$), 4.94 (dd, 1H, J 7.3 and $9.4 \mathrm{~Hz}, 5-\mathrm{H}), 4.06(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J} 4.7$ and $8.3 \mathrm{~Hz}, 3-\mathrm{H}), 3.93$ (t, 1H, J $8.3 \mathrm{~Hz}, 2-\mathrm{H}$), 3.57 (s, 3H, OMe) and 3.29 (bt, 1H, J 9.4 Hz, NH); $\delta\left({ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}+2\right.$ drops d_{6}-DMSO): 171.6 (CO), 149.8, 149.6 (pyridyl C_{2}, C_{6}), 135.5 (pyridyl CH), $134.3,133.5,133.3\left(\mathrm{C}_{\mathrm{q}}\right), 128.7,128.4,128.0(\mathrm{ArCH})$, 126.8 ($2 \times \mathrm{ArCH}$), 126.2, 124.7, 124.3, (ArCH), $96.4\left(\mathrm{C}_{4}\right)$, $67.6\left(\mathrm{C}_{2}\right), 67.2\left(\mathrm{C}_{3}\right), 53.1,\left(\mathrm{C}_{5}\right)$ and $52.4\left(\mathrm{OCH}_{3}\right) ; v_{\text {max }}$ (KBr): 3276, 3024, 2959, 1746, 1544, 1432, 1213, 832, 750 and $719 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\%$, FAB $): 378\left(\mathrm{M}^{+}+1,80\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right)$: $401\left(\mathrm{M}^{+}+1+\mathrm{Na}\right), 400\left(\mathrm{M}^{+}+\mathrm{Na}\right), 378\left(\mathrm{M}^{+}+1,100\right)$; $\left(\mathrm{ES}^{-}\right)$: $377\left(\mathrm{M}^{+}\right) 376\left(\mathrm{M}^{+}-1,100\right)$.

Methyl 2-methyl-5-(2-naphthyl)-4-nitro-3-pyridin-3-ylprolinate (9v) Obtained from imine $\mathbf{6 b}(241 \mathrm{mg}, 1 \mathrm{mmol})$,

E-nitrostyrene 7 f ($150 \mathrm{mg}, 1 \mathrm{mmol}$), triethylamine (0.21 $\mathrm{mL}, 1.5 \mathrm{mmol}$) and silver acetate ($250 \mathrm{mg}, 1.5 \mathrm{mmol}$) in toluene (20 mL) over 18 h . Purification was achieved using a SPE-Anachem SI Mega Bond-Elut (20 g). Eluting with 100% hexane to 100% ethyl acetate gradient elution afforded the product ($305 \mathrm{mg}, 78 \%$) as a colourless powder, m.p. $127-129^{\circ} \mathrm{C}$. Found: C, 67.50 ; H, 5.35 ; N, 10.55. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 67.50 ; \mathrm{H}, 5.40 ; \mathrm{N}, 10.75 \%$; $\delta\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz}\right): 8.63(\mathrm{bs}, 1 \mathrm{H}$, pyridyl-H), $8.61(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$ 1.7 and 4.5 Hz , pyridyl-H), 7.92 (bs, $1 \mathrm{H}, \mathrm{ArH}$), 7.86 (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.68 (dt, 1H, J 1.7 and 7.9 Hz , pyridyl-H), 7.51 (m, 3H, ArH), 7.38 (dd, 1H, J 4.5 and $7.9 \mathrm{~Hz}, \mathrm{ArH}$), 5.75 (dd, 1H, J 6.6 and $7.3 \mathrm{~Hz}, 4-\mathrm{H}$), 5.28 (d, 1H, J 7.3 Hz, $5-\mathrm{H}$), 4.64 (d, 1H, J $6.6 \mathrm{~Hz}, 3-\mathrm{H}$), 3.93 (s, 3H, OMe), 3.50 (bs, $1 \mathrm{H}, \mathrm{NH})$ and $1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta\left({ }^{13} \mathrm{C}\right)$: $174.6(\mathrm{CO}), 150.4$, 149.9 (pyridyl $\mathrm{C}_{2}, \mathrm{C}_{6^{\prime}}$), 136.4 (ArCH), 133.8, 133.5, 132.9, $131.8\left(\mathrm{C}_{\mathrm{q}}\right)$, 128.9, 128.6, 128.1, 126.93, 126.86, 126.7, 124.8, $123.9(\mathrm{ArCH}), 95.2\left(\mathrm{C}_{4}\right), 68.8\left(\mathrm{C}_{2}\right), 65.1\left(\mathrm{C}_{3}\right), 54.6$ $\left(\mathrm{C}_{5}\right), 53.5\left(\mathrm{OCH}_{3}\right)$ and $22.8\left(\mathrm{CH}_{3}\right) ; v_{\text {max }}(\mathrm{KBr}) 3367,3322$, 3024, 2947, 1757, 1741, 1547, 1430, 1136, 819, 757 and $715 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\mathrm{ES}): 414\left(\mathrm{M}^{+}+\mathrm{Na}\right), 393\left(\mathrm{M}^{+}+2\right), 392$ $\left(\mathrm{M}^{+}+1,100\right)$; (ES $): 392,391\left(\mathrm{M}^{+}\right), 390\left(\mathrm{M}^{+}-1,100\right)$.

3-Nitro-2,4-diphenyl-7-oxa-1-azaspiro[4.4]nonan-6-one
(14a and 15a) Obtained from imine 12a ($200 \mathrm{mg}, 1.05$ $\mathrm{mmol}), E$-nitrostyrene ($0.16 \mathrm{~g}, 1.05 \mathrm{mmol}$), triethylamine $(0.16 \mathrm{~mL}, 1.55 \mathrm{mmol})$ and silver acetate $(0.26 \mathrm{~g}, 1.6 \mathrm{mmol})$ in acetonitrile (10 mL) over 4 h . Purification by flash chromatography eluting with $4: 1 \mathrm{v} / \mathrm{v}$ ether:hexane afforded first $\mathbf{1 5 a}(70 \mathrm{mg}, 20 \%)$, followed by $\mathbf{1 4 a}(0.19 \mathrm{~g}, 54 \%)$ as colourless solids.

Cycloadduct 14a. Crystallised from dichloromethane /hexane as colourless plates, m.p. $144-146{ }^{\circ} \mathrm{C}$. Found: C, 67.20; H, 5.40; N, 8.10. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires: C, $67.40 ; \mathrm{H}$, 5.40 ; N, $8.30 \% ; \delta\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz}\right): 7.42-7.26(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-$ H), $5.79(\mathrm{t}, 1 \mathrm{H}, \mathrm{J} 8.0 \mathrm{~Hz}, 3-\mathrm{H}), 4.92(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J} 8.0$ and 10.9 $\mathrm{Hz}, 2-\mathrm{H}), 4.65$ (d, 1H, J $8.0 \mathrm{~Hz}, 4-\mathrm{H}$), 4.18 (ddd, 1H, J 5.3, 8.0 and $\left.8.9 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right), 3.32(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J} 7.3$ and $8.9 \mathrm{~Hz}, 8-$ $\left.\mathrm{CH}_{2}\right), 3.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 10.9 \mathrm{~Hz}, \mathrm{NH})$ and 2.28-2.18 (m, 2H, 9CH_{2}); $v_{\text {max }}$ (film): $1768,1552,1497,1456,1370,1219$, $1181,1146,1125$ and $1053 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\%): 339\left(\mathrm{M}^{+}+1,0.4\right)$, $328(2.2), 248(54), 247(53), 232(86), 189(43), 149(60)$, 77(92) and 57(100).

nOe data for 14a:

	\% Enhancement					
Irradiated proton	H-4	H-3	H-2	NH	$8-\mathrm{CH}_{2}$	ArH
H-4		-	-	2.0	-	7.3
H-3	1.0		6.8	-	-	8.5
H-2	-	6.7		1.0	3.8	5.6

Cycloadduct 15a. Crystallised from dichloromethane/hexane as colourless plates, m.p. 174-176 ${ }^{\circ} \mathrm{C}$. Found: C, 67.35; H, 5.50; N, 8.30. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires: $\mathrm{C}, 67.40 ; \mathrm{H}, 5.40 ; \mathrm{N}, 8.30 \% ; \delta\left({ }^{\mathrm{I}} \mathrm{H}, 500 \mathrm{MHz}\right)$, 7.65 (d, 2H, J 7.4 Hz, Ar-H), 7.41-7.26 (m, 8H, Ar-H), 5.76 (t, 1H, J $8.3 \mathrm{~Hz}, 3-\mathrm{H}$), 5.28 (d, 1H, J $8.3 \mathrm{~Hz}, 2-\mathrm{H}$), 4.28 (ddd, $1 \mathrm{H}, \mathrm{J} 4.2,6.8$ and $9.3 \mathrm{~Hz}, 8-\mathrm{CH}_{2}$), 4.12-4.08 (m, 2H, $8-\mathrm{CH}_{2}$ and $\left.4-\mathrm{H}\right), 2.44(\mathrm{~b}, 1 \mathrm{H}, \mathrm{NH}), 2.36(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J} 6.8$ and $\left.13.6 \mathrm{~Hz}, 9-\mathrm{CH}_{2}\right)$ and $2.27(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J} 6.8$ and $10.3 \mathrm{~Hz}, 9-$ CH_{2}); $v_{\text {max }}$ (film): $1762,1547,1496,1456,1372,1219$, 1182 and $1022 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\%): 339\left(\mathrm{M}^{+}+1,0.3\right), 292(26)$, 248(66), 232(88), 193(100) and 115(89).

nOe data for 15a:

	\% Enhancement			
Irradiated proton	H-4	H-3	H-2	ArH
H-4		4.7	-	4.2
H-3	8.5		-	4.8
H-2	-	1.6		15.0

3-Nitro-4-phenyl-2-pyridin-3-yl-7-oxa-1-

azaspiro[4.4]nonan-6-one (14b) Obtained from imine 12b ($200 \mathrm{mg}, 1.05 \mathrm{mmol}$), E-nitrostyrene ($0.16 \mathrm{~g}, 1.05 \mathrm{mmol}$), triethylamine $(0.16 \mathrm{~mL}, 1.55 \mathrm{mmol})$ and silver acetate $(0.26$ $\mathrm{g}, 1.6 \mathrm{mmol})$ in acetonitrile (10 mL) over 4 h . Purification by flash chromatography eluting with ethyl acetate afforded the cycloadduct $\mathbf{1 4 b}$ ($144 \mathrm{mg}, 40 \%$) as a colourless solid together with small amount of epimerised cycloadduct. Product 14b crystallised from dichloromethane/hexane as colourless needles, m.p. $170-172{ }^{\circ} \mathrm{C}$. Found: C, 63.45 ; H, $5.00 ; \mathrm{N}, 12.55 . \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}_{3}$ requires: $\mathrm{C}, 63.71 ; \mathrm{H}, 5.05$; N , $12.38 \% ; \delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right): 8.63(\mathrm{~m}, 2 \mathrm{H}$, pyridyl-H), 7.9 $(\mathrm{m}, 1 \mathrm{H}$, pyridyl -H$), 7.45-7.26(\mathrm{~m}, 6 \mathrm{H}$, pyridyl- H and $\mathrm{Ar}-$ H), $5.82(\mathrm{t}, 1 \mathrm{H}, \mathrm{J} 8.3 \mathrm{~Hz}, 3-\mathrm{H}), 4.96(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J} 8.3$ and 10.2 Hz, 2-H), 4.65 (d, 1H, J $8.3 \mathrm{~Hz}, 4-\mathrm{H}$), 4.17 (dd, 1H, J 5.0 and $\left.8.6 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right), 3.28\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J} 7.4\right.$ and $\left.8.6 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right)$, 3.08 (d, 1H, J $10.2 \mathrm{~Hz}, \mathrm{NH}$) and 2.36-2.15 (m, 2H, $\left.9-\mathrm{CH}_{2}\right)$; $v_{\text {max }}$ (film): $1769,1552,1372,1218,1183$ and $1024 \mathrm{~cm}^{-1}$; $\mathrm{m} / \mathrm{z}(\%): 340\left(\mathrm{M}^{+}+1,7\right), 293(12), 249(59), 233(91)$, 194(100) and 115(21).

nOe data for 14b:

	\% Enhancement					
Irradiated proton	H-4	H-3	H-2	NH	ArH	
H-4		-	-	1.8	12.0	
H-3	-		7.7	-	13.4	
H-2	-	8.4		1.7	7.9	

3-Nitro-4-phenyl-2-N-sulphonylindol-3-yl-7-oxa-1-

azaspiro[4.4]nonan-6-one (14c and 15c) Obtained from imine 12c ($200 \mathrm{mg}, 0.54 \mathrm{mmol}$), E-nitrostyrene (0.08 mg , $0.54 \mathrm{mmol})$, triethylamine ($0.08 \mathrm{~mL}, 0.6 \mathrm{mmol}$) and silver acetate $(0.14 \mathrm{~g}, 0.59 \mathrm{mmol})$ in acetonitrile (20 mL) over 24 h. Purification by flash chromatography eluting with 9:1 v / v ether:hexane afforded first $\mathbf{1 5 c}(191 \mathrm{mg}, 68 \%)$ followed by $14 \mathrm{c}(42 \mathrm{mg}, 15 \%)$.

Cycloadduct 14c Crystallised from dichloromethane/hexane as colourless needles, m.p. 138-
$140{ }^{\circ} \mathrm{C}$. Found (HRMS, $\mathrm{M}^{+}+\mathrm{H}$): 518.1388. $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{~N}_{3} \mathrm{~S}$ requires: $518.1386 ; \delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right)$: 7.97-7.24 $(\mathrm{m}, 10 \mathrm{H}$, ArH), 5.83 (t, 1H, J $7.5 \mathrm{~Hz}, 3-\mathrm{H}$), 5.12 (dd, 1H, J 7.5 and $11.0 \mathrm{~Hz}, 2-\mathrm{H}), 4.68$ (d, 1H, J $7.5 \mathrm{~Hz}, 4-\mathrm{H}$), 4.19 (ddd, 1H, J $5.9,7.6$ and $11.3 \mathrm{~Hz}, 8-\mathrm{CH}_{2}$), $3.36(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J} 7.2$ and 11.3 $\mathrm{Hz}, 8-\mathrm{CH}_{2}$), 3.21 (d, 1H, J $11.0 \mathrm{~Hz}, \mathrm{NH}$) and 2.28-2.21(m, $2 \mathrm{H}, 9-\mathrm{CH}_{2}$); $v_{\text {max }}$ (film): $1769,1552,1448,1368,1216$ and $1175 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\%): 517(1.3), 471(6), 427(9), 368(54)$, $285(11), 271(8), 227(28)$ and $77(100)$.

Cycloadduct 15c Crystallised from dichloromethane/hexanae as colourless plates, m.p. 157$159{ }^{\circ} \mathrm{C}$. Found (HRMS, $\mathrm{M}^{+}+\mathrm{H}$): 518.1390. $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{~N}_{3} \mathrm{~S}$ requires: 518.1386; $\delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right)$: 7.98-7.23 (m, 10H, ArH), 5.73 (t, 1H, J $6.4 \mathrm{~Hz}, 3-\mathrm{H}$), 5.47 (d, 1H, J $6.4 \mathrm{~Hz}, 2-$ H), $4.34\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 4.16-4.07\left(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{CH}_{2}\right.$ and $4-$ $\mathrm{H}), 2.66(\mathrm{~b}, 1 \mathrm{H}, \mathrm{NH})$ and $2.48-2.32\left(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{CH}_{2}\right) ; v_{\max }$ (film): $1766,1549,1448,1371,1175$ and $1125 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (\%): 517(M $\left.{ }^{+}, 1.5\right), 427(28), 368(24), 329(6), 285(38)$, 230(41) and 77(100).

2-Cyclohexyl-3-nitro-4-phenyl-7-oxa-1-

azaspiro[4.4]nonan-6-one (14d) Obtained from imine 12d $(1 \mathrm{~g}, 5.11 \mathrm{mmol})$, E-nitrostyrene ($0.76 \mathrm{~g}, 5.11 \mathrm{mmol}$), triethylamine ($0.8 \mathrm{~mL}, 5.62 \mathrm{mmol}$) and silver oxide $(0.12 \mathrm{~g}$, 0.5 mmol) in toluene (50 mL) over 1 h . Purification by flash chromatography eluting with $1: 1 \mathrm{v} / \mathrm{v}$ ether:hexane afforded the product ($1.32 \mathrm{~g}, 74 \%$) which crystallised from dichloromethane/hexane as colourless plates, m.p. 159-161 ${ }^{\circ} \mathrm{C}$. Found: C, 66.25; H, 7.15; N, 8.40. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires: C, $66.25 ; \mathrm{H}, 7.00 ; \mathrm{N}, 8.15 \% ; \delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right)$: 7.57-7.12 (m, 5H, Ar-H), 5.51 (dd, 1H, J 4.7 and $5.9 \mathrm{~Hz}, 3-$ $\mathrm{H}), 4.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 4.7 \mathrm{~Hz}, 4-\mathrm{H}), 4.16$ (dt, 1H, J 6.8 and 8.7 $\left.\mathrm{Hz}, 8-\mathrm{CH}_{2}\right), 3.45\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 3.19(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.79$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J} 14.1 \mathrm{~Hz}, \mathrm{NH}), 2.05-1.99\left(\mathrm{~m}, 3 \mathrm{H}, 9-\mathrm{CH}_{2}\right.$ and cyclohexyl-H) and $1.89-1.21\left(\mathrm{~m}, 10 \mathrm{H}\right.$, cyclohexyl- H); $\mathrm{v}_{\text {max }}$ (film): 2925, 2853, 1769, 1546, 1452, 1369, 1218 and 1175 $\mathrm{cm}^{-1} ; \mathrm{m} / \mathrm{z}(\%): 345\left(\mathrm{M}^{+}+1,0.7\right), 298(16), 254(76)$, 199(91), 170(73), 156(77), 143(40) and 117(100).

2-Cyclohex-3-en-1-yl-3-nitro-4-phenyl-7-oxa-1-

azaspiro[4.4]nonan-6-one (14e) Obtained from imine 12e ($400 \mathrm{mg}, 2.06 \mathrm{mmol}$), E-nitrostyrene ($0.31 \mathrm{~g}, 2.06 \mathrm{mmol}$), triethylamine ($0.3 \mathrm{~mL}, 2.26 \mathrm{mmol}$) and silver oxide (47 mg , $0.2 \mathrm{mmol})$ in toluene (30 mL) over 1 h . Purification by flash chromatography eluting with ether afforded the product $(0.36 \mathrm{~g}, 51 \%)$ as a $1: 1$ mixture of diastereomers which crystallised from dichloromethane/hexane as colourless plates, m.p. $134-142{ }^{\circ} \mathrm{C}$. Found: C, 66.45 ; H, 6.50; $\mathrm{N}, 8.00 . \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires: $\mathrm{C}, 66.65 ; \mathrm{H}, 6.50$; N , 8.20%; $\delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right): 7.38-7.14$ (m, 5H, Ar-H), 5.68$5.48(\mathrm{~m}, 3 \mathrm{H}$, olefinic-H and $3-\mathrm{H}), 4.44$ and $4.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $4.5 \mathrm{~Hz}, 4-\mathrm{H}), 4.16\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 3.49-3.30(\mathrm{~m}, 2 \mathrm{H}, 8-$ CH_{2} and $\left.2-\mathrm{H}\right), 2.86$ and $2.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 6.4 \mathrm{~Hz}, \mathrm{NH})$ and 2.27-1.59 (m, 9H, 9- CH_{2} and cyclohexenyl-H); $v_{\text {max }}$ (film): 2918, 1769, 1733, 1653, 1546, 1506, 1496, 1437, 1317 and $1271 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\%): 342\left(\mathrm{M}^{+}, 0.4\right), 325(0.6), 252(90)$, $215(23), 197(64), 170(71), 156(93), 143(73)$ and 117(100).

2-(2,6-Dimethyl-5-heptenyl)-3-nitro-4-phenyl-7-oxa-1-azaspiro[4.4]nonan-6-one (14f) Obtained from imine $\mathbf{1 2 f}$
($700 \mathrm{mg}, 2.95 \mathrm{mmol}$), E-nitrostyrene ($0.44 \mathrm{~g}, 2.95 \mathrm{mmol}$), triethylamine ($0.5 \mathrm{~mL}, 3.24 \mathrm{mmol}$) and silver oxide (68 mg , 0.3 mmol) in toluene (30 mL) over 4 h . Purification by flash chromatography eluting with $1: 1 \mathrm{v} / \mathrm{v}$ ether:hexane afforded the product $(0.44 \mathrm{~g}, 42 \%)$ as a pale yellow oil which comprised a $1: 1$ mixture of diastereomers. Found: C, 68.50; $\mathrm{H}, 7.90 ; \mathrm{N}, 7.10 . \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires: $\mathrm{C}, 68.40 ; \mathrm{H}$, 7.80 ; N, 7.25%; $\delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right): 7.41-7.16$ (m, 5H, ArH), $5.48(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 5.06(\mathrm{~m}, 1 \mathrm{H}$, olefinic-H), $4.49(\mathrm{~m}$, $1 \mathrm{H}, 4-\mathrm{H}), 4.16\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 3.65(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.35(\mathrm{~m}$, $1 \mathrm{H}, 8-\mathrm{CH}_{2}$), $2.50(\mathrm{~b}, 1 \mathrm{H}, \mathrm{NH}), 2.12-1.91\left(\mathrm{~m}, 4 \mathrm{H}, 9-\mathrm{CH}_{2}\right.$ and citronellyl-H), 1.69 and $1.60\left(2 \mathrm{x} \mathrm{s}, 2 \times 3 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}=\mathrm{C}\right)$ and 1.58-1.14 (m, 3H, citronellyl- CH_{3}); $v_{\max }$ (film): 2954, 2916, 1770, 1549, 1373, 1219, 1180 and $1023 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (\%): 386(M $\left.\mathrm{M}^{+}, 1.2\right), 340(16), 312(21), 296(100), 282(20)$, 256(6), 241(9), 210(12), 184(41), 170(83) and 156(96).

2-(8,8-Dimethyl-1,2,3,4,5,6,7,8-octahydro-2-

 naphthalenyl)-3-nitro-4-phenyl-7-oxa-1-azaspiro[4.4]nonan-6-one (14g) Obtained from imine 12g $(1.0 \mathrm{~g}, 3.6 \mathrm{mmol})$, E-nitrostyrene $(0.53 \mathrm{~g}, 3.6 \mathrm{mmol})$, triethylamine ($0.55 \mathrm{~mL}, 3.9 \mathrm{mmol}$) and silver oxide $(0.08 \mathrm{~g}$, 0.36 mmol) in toluene (40 mL) over 3 h . Purification by flash chromatography eluting with $1: 1 \mathrm{v} / \mathrm{v}$ ether:hexane afforded the product $(0.89 \mathrm{~g}, 58 \%)$ as a $1: 1$ mixture of diastereomers which crystallised from dichloromethane/ hexane as colourless plates, m.p. $165-172{ }^{\circ} \mathrm{C}$. Found: C, $71.00 ; \mathrm{H}, 7.65$; $\mathrm{N}, 6.35 . \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires: $\mathrm{C}, 70.75$; H , 7.60; N, 6.60%; $\delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right): 7.38-7.35$ (m, 3H, ArH), 7.16-7.14 (m, 2H, Ar-H), 5.53 (m, 1H, 3-H), 4.45 (m, $1 \mathrm{H}, 4-\mathrm{H}), 4.18$ and $3.46\left(2 \times \mathrm{m}, 2 \times 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 3.43(\mathrm{~m}$, $1 \mathrm{H}, 2-\mathrm{H}), 2.84(\mathrm{~b}, 1 \mathrm{H}, \mathrm{NH}), 2.06-1.43\left(\mathrm{~m}, 15 \mathrm{H}, 9-\mathrm{CH}_{2}\right.$ and aliphatic-H), 1.02 and $0.95\left(2 \mathrm{x} \mathrm{s}, 2 \times 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; $v_{\text {max }}($ film $)$: 2924, 1771, 1547, 1369, 1219, 1176 and $1023 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (\%): 424(M $\left.{ }^{+}, 1.5\right), 407(5), 378(10), 334(25), 216(62)$, 143(80), 117(80) and 91(100).

2-[3-(4-Methyl-3-pentenyl)-3-cyclohexen-1-yl]-3-nitro-4-phenyl-7-oxa-1-azaspiro[4.4]nonan-6-one (14h) Obtained from imine 12h ($1.5 \mathrm{~g}, 5.4 \mathrm{mmol}$), E-nitrostyrene (0.81 g , $5.4 \mathrm{mmol})$, triethylamine ($0.83 \mathrm{~mL}, 5.9 \mathrm{mmol}$) and silver oxide ($0.12 \mathrm{~g}, 0.54 \mathrm{mmol}$) in toluene $(40 \mathrm{~mL})$ over 4 h . Purification by flash chromatography eluting with $1: 1 \mathrm{v} / \mathrm{v}$ ether:hexane afforded the product $(1.96 \mathrm{~g}, 85 \%)$ as a $1: 1$ mixture of diastereomers which crystallised from dichloromethane/hexane as colourless plates, m.p. 94-102 ${ }^{\circ} \mathrm{C}$. Found: C, 70.75; H, 7.60; N, 6.60. $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires: C, 70.75; H, 7.60; N, $6.60 \% ; \delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right)$: 7.38-7.33 (m, 3H, Ar-H), 7.17-7.14 (m, 2H, Ar-H), 5.58 and 5.51 (dd, 1H, J 4.5 and $5.9 \mathrm{~Hz}, 3-\mathrm{H}), 5.36(\mathrm{~b}, 1 \mathrm{H}$, olefinic-H), 4.45 and 4.42 (d, 1H, J $4.5 \mathrm{~Hz}, 4-\mathrm{H}$), 4.17 (ddd, $1 \mathrm{H}, \mathrm{J} 1.9,6.7$ and $\left.8.7 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right), 3.44\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right)$, 3.34 (m, 1H, 2-H), 2.84 (b, 1H, NH), 2.25 (m, 1H, aliphatic- H$), 2.06-1.98\left(\mathrm{~m}, 11 \mathrm{H}, 9-\mathrm{CH}_{2}\right.$ and aliphatic-H), 1.69 and $1.61\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right)$ and $1.43(\mathrm{~m}, 1 \mathrm{H}$, aliphatic-H); $v_{\max }$ (film): 2917, 1771, 1547, 1369, 1219, 1176,1119 and $1023 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\%): 424\left(\mathrm{M}^{+},<1\right), 407(3)$, 378(5), 333(3), 91(34), 77(16) and 69(100).

2-[2-(4-Isopropylphenyl)-1-methylethyl)-3-nitro-4-phenyl-7-oxa-1-azaspiro[4.4]nonan-6-one (14i)
mixture of imine $\mathbf{1 2 i}(1.0 \mathrm{~g}, 3.6 \mathrm{mmol})$, E-nitrostyrene ($0.54 \mathrm{~g}, 3.6 \mathrm{mmol}$), triethylamine ($0.56 \mathrm{~mL}, 4.0 \mathrm{mmol}$) and silver oxide ($0.08 \mathrm{~g}, 0.36 \mathrm{mmol}$) in toluene (40 mL , was stirred for 5 h . Flash chromatography eluting with $1: 1 \mathrm{v} / \mathrm{v}$ ether:hexane separated the $1: 1$ mixture of diastereomers (combined yield $1.11 \mathrm{~g}, 72 \%$).

First eluting isomer: Crystallised from dichloromethane/hexane as colourless rods, m.p. 143-145 ${ }^{\circ}$ C. Found: C, 71.15; H, 7.25; N, 6.45. $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires: C, 71.10; H, 7.15; N, 6.65%; $\delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right)$: 7.39-7.34 (m, 3H, Ar-H), 7.15-7.10 (m, 6H, Ar-H), 5.46 (dd, 1H, J 4.6 and $5.7 \mathrm{~Hz}, 3-\mathrm{H}$), 4.43 (d, 1H, J $4.6 \mathrm{~Hz}, 4-\mathrm{H}$), 4.25 (ddd, $1 \mathrm{H}, \mathrm{J} 6.5,7.5$ and $8.7 \mathrm{~Hz}, 8-\mathrm{CH}_{2}$), 3.54 (ddd, 1 H , J 5.8, 7.5 and $8.7 \mathrm{~Hz}, 8-\mathrm{CH}_{2}$), $3.14(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.03-2.83$ (m, 3H, NH and aliphatic-H), 2.59 (dd, 1H, J 8.1 and 14.5 Hz , aliphatic- CH_{2}), 2.09-1.92 (m, 3H, 9- CH_{2} and aliphaticH), $1.24\left(\mathrm{~d}, 2 \times 3 \mathrm{H}, \mathrm{J} 6.9 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$ and $0.97(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}$ $6.6 \mathrm{~Hz}, \mathrm{CH}_{3}$); $v_{\text {max }}$ (film): 2969, 1772, 1548, 1457, 1370, 1220 and $1022 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\%): 422\left(\mathrm{M}^{+},<1\right), 407(<1)$, $378(13), 332(47), 277(9), 244(10), 170(57), 133(100)$, 117(51) and 91(38).

Second eluting isomer: Crystallised from dichloromethane/hexane as colourless rods, m.p. 120-122 ${ }^{\circ} \mathrm{C}$. Found: C, 70.95; H, 7.00; N, 6.70. $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires: $\mathrm{C}, 71.10 ; \mathrm{H}, 7.15 ; \mathrm{N}, 6.65 \% ; \delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right)$: 7.42-7.33 (m, 3H, Ar-H), 7.17-7.05 (m, 6H, Ar-H), 5.61 (dd, 1H, J 5.2 and $6.3 \mathrm{~Hz}, 3-\mathrm{H}), 4.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 5.2 \mathrm{~Hz}, 4-\mathrm{H}$), $4.18\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J} 6.8\right.$ and $\left.8.8 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right), 3.44(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J} 6.8$ and $\left.8.8 \mathrm{~Hz}, 8-\mathrm{CH}_{2}\right), 3.31(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.99-2.77(\mathrm{~m}, 3 \mathrm{H}$, NH and aliphatic-H), 2.34 (dd, $1 \mathrm{H}, \mathrm{J} 9.8$ and 13.2 Hz , aliphatic- CH_{2}), $2.06-2.01\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J} 6.8 \mathrm{~Hz}, 9-\mathrm{CH}_{2}\right), 1.90(\mathrm{~m}$, 1 H , aliphatic-H), $1.24\left(\mathrm{~d}, 2 \times 3 \mathrm{H}, \mathrm{J} 7.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$ and 1.01 (d, 3H, J $6.6 \mathrm{~Hz}, \mathrm{CH}_{3}$); $v_{\text {max }}$ (film): 2961, 1771, 1652, 1547, 1507, 1497, 1369 and $1219 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\%): 422\left(\mathrm{M}^{+}\right.$, <1), 407(1), 376(9), 332(61), 277(12), 244(15), 170(56) and 133(100).

2-(2-Methyl-4-phenylbutyl)-3-nitro-4-phenyl-7-oxa-1-azaspiro[4.4]nonan-6-one (14j) Obtained from imine 12j $(1.0 \mathrm{~g}, 3.85 \mathrm{mmol})$, E-nitrostyrene ($0.57 \mathrm{~g}, 3.85 \mathrm{mmol}$), triethylamine ($0.6 \mathrm{ml}, 4.23 \mathrm{mmol}$) and silver oxide (0.089 $\mathrm{g}, 0.38 \mathrm{mmol})$ in toluene (40 mL) over 4 h . Purification by flash chromatography eluting with $1: 1 \mathrm{v} / \mathrm{v}$ ether:hexane afforded the product $(0.93 \mathrm{~g}, 59 \%)$ as a $1: 1$ mixture of diastereomers which crystallised from dichloromethane/ hexane as colourless plates, m.p. $75-83{ }^{\circ} \mathrm{C}$. Found: C, $70.80 ; \mathrm{H}, 6.70 ; \mathrm{N}, 6.60 . \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires: C, $70.60 ; \mathrm{H}$, $6.90 ; \mathrm{N}, 6.85 \% ; \delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right): 7.38-7.14(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-$ H), $5.44(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}, 8-$ CH_{2}), $3.63(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.34\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 2.70-2.47$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{NH}\right.$ and aliphatic-H), 2.09-1.98 (m, 2H, $\left.9-\mathrm{CH}_{2}\right)$, $1.73-1.39(\mathrm{~m}, 5 \mathrm{H}$, aliphatic-H) and 1.04 and $1.0(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}$ $6.4 \mathrm{~Hz}, \mathrm{CH}_{3}$); $v_{\text {max }}$ (film): 2922, 1770, 1548, 1496, 1455, 1370, 1270 and $1177 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\%): 408\left(\mathrm{M}^{+},<1\right), 362(6)$, 334(7), 318(70), 304(10), 263(8), 185(14) and 91(100).

N -Acetylation of Cycloadducts ${ }^{88}$

Acetic anhydride (11 mol equiv., $0.46 \mathrm{~mL}, 0.5 \mathrm{~g}, 4.86$ mmol) was added at $0^{\circ} \mathrm{C}$ to a solution of cycloadducts endo- $9 \mathbf{q}$ and exo-10q ($170 \mathrm{mg}, 0.44 \mathrm{mmol}$) in pyridine (3 mL). The mixture was stirred at room temperature for 3 h ., and then poured into ice water. The products were extracted with dichloromethane and the organic layer washed sequentially with 5% aqueous HCl , saturated aqueous NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The isomers were separated by column chromatography eluting with $3: 2 \mathrm{v} / \mathrm{v}$ hexane / ethyl acetate.

Methyl N-acetyl-5-naphthalen-2-yl-4-nitro-3-thiophen-2-yl-pyrrolidine-2-carboxylate (16a)

The major isomer ($255 \mathrm{mg}, 40 \%$) crystallised as colourless prisms from hexane-EtOAc, R_{f} 0.3, m.p. 203-205 ${ }^{\circ}$ C.Found: C, 62.25; H, 4.90; N, 6.65; S, 7.70. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 62.25 ; \mathrm{H}, 4.75 ; \mathrm{N}, 6.60 ; \mathrm{S}, 7.55 \% . \delta\left({ }^{1} \mathrm{H}, 500\right.$ $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) 8.61 (s, 1H, $\left.1^{\prime}-\mathrm{H}\right), 8.00(\mathrm{dd}, 1 \mathrm{H}, J 1.1,8.5 \mathrm{~Hz}$, $3^{\prime}-\mathrm{H}$), 7.98 (m, 1H, ArH), 7.83 (d, 1H, J $\left.8.5 \mathrm{~Hz}, ~ A r H\right), 7.74$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{ArH}), 7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.06(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J} 1.1,5.1$ Hz, Ha), 6.99 (d, 1H, J 3.6 Hz, Hc), 6.72 (dd, 1H, J 3.6, 5.1 $\mathrm{Hz}, \mathrm{Hb}), 6.12$ (s, 1H, 5-H), 5.45 (d, 1H, J $6.0 \mathrm{~Hz}, 4-\mathrm{H}$), 5.28 (d, 1H, J $10.9 \mathrm{~Hz}, 2-\mathrm{H}$), 4.52 (dd, 1H, J 6.0, 10.9 Hz , $3-\mathrm{H}), 3.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, and $1.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) . \delta$ $\left({ }^{13} \mathrm{C}\right) 171.9$ (ester CO), 171.1 (amide CO), $134.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $133.8\left(2 \mathrm{x} \mathrm{C}_{\mathrm{q}}\right), 132.8\left(\mathrm{C}_{\mathrm{q}}\right), 130.3,128.9,128.2,127.9$, 127.6 (ArCH), 127.5, 126.8 (2 x ArCH), 123.9 (ArCH), $96.3\left(\mathrm{C}_{4}\right), 66.8\left(\mathrm{C}_{5}\right), 64.2\left(\mathrm{C}_{2}\right), 53.4\left(\mathrm{OCH}_{3}\right), 45.1\left(\mathrm{C}_{3}\right)$, and $22.4\left(\mathrm{CH}_{3}\right)$. IR (DCM) 2952, 1746, 1663, 1556, 1437, 1367, 1207, 1178, 860, and $737 \mathrm{~cm}^{-1} . \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 425\left(\mathrm{M}^{+}+\right.$ $1,100)$.

n.O.e data for 16a:

	\% Enhancement							
Irradiated proton	H-4	COCH_{3}	H-1'	H-3'	H-5	H-3	H_{c}	
H-5	7.9	9.0	6.1	7.2	-	-	-	
H-4	-	-	1.5	3.2	4.4	13.4	-	
H-3	18.6	-	4.5	2.2	-	-	3.2	
H-2	-	-	2.6	-	1.1	3.0	10.3	

Methyl N-acetyl-5-naphthalen-2-yl-4-nitro-3-thiophen-2-yl-pyrrolidine-2-carboxylate (16b)

The minor isomer ($166 \mathrm{mg}, 26 \%$) crystalised from hexaneEtOAc as colourless prisms, $R_{\mathrm{f}} 0.2$, m.p. $212-214{ }^{\circ} \mathrm{C}$. Found: C, 61.95; H, 4.90; N, 6.55; S, 7.60. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 62.25 ; \mathrm{H}, 4.75 ; \mathrm{N}, 6.60 ; \mathrm{S}, 7.55 \% . \delta\left({ }^{1} \mathrm{H}, 500\right.$ $\mathrm{MHz}) 7.97$ (m, 3H, ArH), 7.87 (m, 2H, ArH), 7.55 (m, 2H, ArH), 7.29 (dd, 1H, J 1.0, $5.0 \mathrm{~Hz}, \mathrm{Ha}$), 7.00 (d, 1H, J 3.5 $\mathrm{Hz}, \mathrm{Hc}), 6.97$ (dd, 1H, J 3.5, $5.0 \mathrm{~Hz}, \mathrm{Hb}$), 5.67 (dd, 1H, J $8.5,11.6 \mathrm{~Hz}, 4-\mathrm{H}), 5.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 8.5 \mathrm{~Hz}, 5-\mathrm{H}), 5.19(\mathrm{~d}, 1 \mathrm{H}$, J $9.4 \mathrm{~Hz}, 2-\mathrm{H}), 4.67$ (dd, 1H, J 9.4, $11.6 \mathrm{~Hz}, 3-\mathrm{H}), 3.54$ (s, $\left.3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, and $1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) . \delta\left({ }^{13} \mathrm{C}\right) 171.3$, $171.2(\mathrm{CO}), 135.2,134.1,133.6,133.4\left(\mathrm{C}_{\mathrm{q}}\right), 130.6,128.6$, 128.3, 127.7, 127.4 (ArCH), , 127.3 (2 x ArCH), 127.2, 126.9, $123.8(\mathrm{ArCH}), 95.2\left(\mathrm{C}_{4}\right), 67.5\left(\mathrm{C}_{2}\right), 64.3\left(\mathrm{C}_{3}\right), 52.9$ $\left(\mathrm{C}_{5}\right), 45.6\left(\mathrm{OCH}_{3}\right)$, and $23.2\left(\mathrm{CH}_{3}\right)$. IR (DCM) 2951, 1742, 1663, 1558, 1437, 1369, 1215, 862, and $752 \mathrm{~cm}^{-1} . \mathrm{m} / \mathrm{z}$ $\left(\mathrm{ES}^{+}\right) 448\left(\mathrm{M}^{+}+1+\mathrm{Na}, 30\right), 446\left(\mathrm{M}^{+}+\mathrm{Na}, 100\right)$.

n.O.e data for $\mathbf{1 6 b}$:

	\% Enhancement						
Irradiated proton	H-5	H-4	H-1 ${ }^{1}$	H-2	H-3		
H-1 1	11.3	4.46	1.03	-	-	-	
H-5	5.6	-	5.28	5.54	2.02	-	
H-4	-	6.47	-	-	-	14.2	
H-3	-	-	14.3	-	-	-	
H-2	-	3.66	-	-	-	-	

Methyl N-acetyl-3(1-H-indol-3-yl)-5-naphthalen-2-yl-4-nitro-pyrrolidine-2-carboxylate (17a)

Prepared by the general method from endo-9c. Trituration with ether afforded the product as pale yellow needles (618
$\mathrm{mg}, 90$ \%), mp 190-192 ${ }^{\circ} \mathrm{C}$. Found: C, 68.25; H, 5.25; N, 9.30. $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires C, 68.26 ; H, 5.07 ; N, 9.18%. δ $\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right) 8.41(\mathrm{~s}, 1 \mathrm{H}$, indole NH), $8.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, 7.90-7.65 (m, 4H, ArH), 7.60-7.40 (m, 3H, ArH), 7.30 (d, $1 \mathrm{H}, \mathrm{J} 8.0 \mathrm{~Hz}, \mathrm{ArH}$), $7.20-7.05(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 5.72(\mathrm{~m}, 2 \mathrm{H}$, $5-\mathrm{H}+4-\mathrm{H}), 4.83(\mathrm{~d}, 1 \mathrm{H}, J 10.0 \mathrm{~Hz}, 2-\mathrm{H}), 3.78(\mathrm{t}, 1 \mathrm{H}, J$ $10.0 \mathrm{~Hz}, 3-\mathrm{H}), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, and $1.83(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}). $\delta\left({ }^{13} \mathrm{C}\right.$) 171.9 (ester CO), 171.2 (amide CO), 137.0 , 134.0, 133.6, $132.6\left(\mathrm{C}_{\mathrm{q}}\right), 129.6,128.9,128.2,127.8,127.3$, $127.1(\mathrm{ArCH}), 125.9\left(\mathrm{C}_{\mathrm{q}}\right), 124.7,123.4,123.2,120.7$, 118.9, $112.3(\mathrm{ArCH}), 108.5\left(\mathrm{C}_{\mathrm{q}}\right), 90.8\left(\mathrm{C}_{4}\right), 64.3\left(\mathrm{C}_{5}\right), 63.3$ $\left(\mathrm{C}_{2}\right), 53.2\left(\mathrm{OCH}_{3}\right), 41.5\left(\mathrm{C}_{3}\right)$, and $22.6\left(\mathrm{CH}_{3}\right)$. IR (DCM) 3420, 3058, 2951, 1745, 1653, 1558, 1436, 1349, 1214, 1014, 867, and $744 \mathrm{~cm}^{-1} . \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 458\left(\mathrm{M}^{+}+1,100\right)$.

Methyl N-acetyl-3-[4-(acetyloxy)-3-methoxyphenyl]-5-biphenyl-4-yl-4-nitro-pyrrolidine-2-carboxylate (17b)

Prepared by the general method from endo-9i. Trituration with ether afforded the product as a colourless amorphous powder ($707 \mathrm{mg}, 93 \%$), m.p. 206-208 ${ }^{\circ} \mathrm{C}$. HRMS found $533.1918 \mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{8}$ requires 533.1924. Found: C, 65.70; H, 5.35; N, 5.05. $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8}$ requires C, 65.40; H, 5.30; N, 5.26%. $\delta\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{C}_{6} \mathrm{D}_{6}\right) 7.80(\mathrm{~d}, 2 \mathrm{H}, J 8.3$ $\mathrm{Hz}, \mathrm{ArH}$), 7.68 (dd, 2H, J 1.9, 8.3 Hz, ArH), 7.57 (dd, 2H, J 1.2, $8.4 \mathrm{~Hz}, \mathrm{ArH}$), 7.42 (dd, 2H, J 7.0, 8.4 Hz, ArH), 7.33 (m, 1H, ArH), 6.94 (d, 1H, J $8.2 \mathrm{~Hz}, \mathrm{Hc}), 6.79$ (d, $1 \mathrm{H}, J$ $1.9 \mathrm{~Hz}, \mathrm{Ha}), 6.72$ (dd, 1H, J 1.9, $8.2 \mathrm{~Hz}, \mathrm{Hb}$), 5.43 (s, 1H, $5-\mathrm{H}), 5.22$ (d, 1H, J $10.8 \mathrm{~Hz}, 2-\mathrm{H}), 5.10$ (dd, 1H, J 0.7, 6.2 $\mathrm{Hz}, 4-\mathrm{H}), 4.02$ (dd, 1H, J 10.8, $6.2 \mathrm{~Hz}, 3-\mathrm{H}), 3.71$ (s, 3 H , $\mathrm{CO}_{2} \mathrm{CH}_{3}$), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}\right.$, ester $\left.\mathrm{CH}_{3}\right)$, and $1.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCOCH}_{3}\right) . \delta\left({ }^{13} \mathrm{C}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}+\right.$ $\mathrm{C}_{6} \mathrm{D}_{6}$) 171.9 (-CO), 170.6 (amide CO), 168.5 (ester -OCO), $151.6,142.2,140.3,140.0,136.5,129.9\left(\mathrm{C}_{\mathrm{q}}\right), 129.0,128.4$ (2 x ArCH), 127.9 (ArCH), 127.1, 127.0 (2 x ArCH), 123.5, 120.1, 111.8 (Vanillin ArCH), $96.3\left(\mathrm{C}_{4}\right), 66.4\left(\mathrm{C}_{5}\right)$, $62.2\left(\mathrm{C}_{2}\right), 55.9\left(\mathrm{ArOCH}_{3}\right), 52.9\left(\mathrm{OCH}_{3}\right), 48.7\left(\mathrm{C}_{3}\right), 21.9(\mathrm{~N}-$ acetyl CH_{3}), and $20.5\left(\mathrm{O}-\right.$ acetyl $\left.\mathrm{CH}_{3}\right)$. IR (DCM) cm^{-1} 3248, 3062, 3029, 2953, 1748, 1663, 1554, 1516, 1402, 1368, 1351, 1264, 1204, 1033, 1009, and 856. m/z (ES ${ }^{+}$) $556\left(\mathrm{M}^{+}+1+\mathrm{Na}, 36\right), 555\left(\mathrm{M}^{+}+\mathrm{Na}, 100\right)$.

General Procedure for Reduction of the $\mathbf{N O}_{\mathbf{2}}$ group

Zinc dust ($135 \mathrm{mg}, 2.06 \mathrm{mmol}$) was added to a stirred solution of nitro compound ($52 \mathrm{mg}, 0.12 \mathrm{mmol}$) in ethanol $(10 \mathrm{ml})$. The mixture was then heated to $40-45{ }^{\circ} \mathrm{C}$ and conc. $\mathrm{HCl}(0.2 \mathrm{ml})$ was added keeping the temperature in between $45-50{ }^{\circ} \mathrm{C}$. The reaction mixture was then refluxed for 12 h , filtered, and the filtrate evaporated in vacuo nearly to dryness. The residue was extracted with DCM and saturated NaHCO_{3} solution was added until the pH was slightly basic and then extracted with more DCM. The combined DCM extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the filtrate evaporated under reduced pressure.

Methyl $\quad N$-acetyl-4-amino-5-naphthalene-2-yl-3-
thiophen-2-yl-pyrrolidine-2-carboxylate (18a)
Flash column chromatography eluting with ethyl acetate followed by $3: 1 \mathrm{v} / \mathrm{v}$ methanol/ hexane afforded the product
as colourless plates ($347 \mathrm{mg}, 88 \%$), $R_{\mathrm{f}} 0.33$, m.p. $81-83^{\circ} \mathrm{C}$. Found: C, 66.70; H, 5.70; N, 6.85; S, 8.00. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 66.98 ; \mathrm{H}, 5.62 ; \mathrm{N}, 7.10 ; \mathrm{S}, 8.13 \% . \delta\left({ }^{1} \mathrm{H}, 250\right.$ $\mathrm{MHz}) 8.07$ (s, 1H, ArH), 7.75-7.51 (m, 3H, ArH), 7.35$7.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.85-6.80(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}$), 4.79 (d, 1H, J $7.4 \mathrm{~Hz}, 5-\mathrm{H}), 4.66$ (d, 1H, J 4.6 $\mathrm{Hz}, 2-\mathrm{H}$), 3.78 (dd, 1H, J 4.6, $7.4 \mathrm{~Hz}, 4-\mathrm{H}$), 3.63 (s, 3 H , $\mathrm{CO}_{2} \mathrm{CH}_{3}$), 3.47 (t, $1 \mathrm{H}, J 4.6 \mathrm{~Hz}, 3-\mathrm{H}$), and $1.69(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) . \delta\left({ }^{13} \mathrm{C}\right) 172.5,171.8(\mathrm{CO}), 138.0,137.6,133.8,133.4$ $\left(\mathrm{C}_{\mathrm{q}}\right), 129.5,128.6,128.1,127.6,127.1,126.9,126.8,126.3$, 125.6, $124.7(\mathrm{ArCH}), 70.7\left(\mathrm{C}_{4}\right), 64.3\left(\mathrm{C}_{2}\right), 63.8\left(\mathrm{C}_{3}\right), 53.0$ $\left(\mathrm{C}_{5}\right), 46.4\left(\mathrm{OCH}_{3}\right)$, and $22.7\left(\mathrm{CH}_{3}\right)$. IR (DCM) 2950, 1743, $1653,1559,1436,1406,1351,1201,861$, and $755 \mathrm{~cm}^{-1}$. m/z (ES') $396\left(\mathrm{M}^{+}+2\right), 395\left(\mathrm{M}^{+}+1,100\right)$.

Methyl $\quad N$-acetyl-4-amino-5-naphthalene-2-yl-3-thiophen-2-yl-pyrrolidine-2-carboxylate (18b)

Trituration with ether afforded the product as a colourless amorphous powder ($375 \mathrm{mg}, 95 \%$), m.p. 209-211 ${ }^{\circ} \mathrm{C}$. HRMS found $395.1429 \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires 395.1424 . Found: C, 66.40; H, 5.75; N, 6.90. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, 66.98; H, 5.62; N, 7.10%. $\delta\left({ }^{1} \mathrm{H}, 250 \mathrm{MHz}\right) 8.07$ (s, 1H, $\mathrm{ArH})$, 7.75-7.51 (m, 3H, ArH), 7.35-7.30 (m, 2H, ArH), 7.10-7.05 (m, 1H, ArH), 6.85-6.80 (m, 2H, ArH), 4.79 (d, $1 \mathrm{H}, J 7.4 \mathrm{~Hz}, 5-\mathrm{H}), 4.66(\mathrm{~d}, 1 \mathrm{H}, J 4.6 \mathrm{~Hz}, 2-\mathrm{H}), 3.78$ (dd, $1 \mathrm{H}, \mathrm{J} 4.6,7.4 \mathrm{~Hz}, 4-\mathrm{H}$), $3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.47(\mathrm{t}, 1 \mathrm{H}$, $J 4.6 \mathrm{~Hz}, 3-\mathrm{H})$, and $1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) . \delta\left({ }^{13} \mathrm{C}\right) 172.5,171.8$ (CO), 138.0, 137.6, 133.8, $133.4\left(\mathrm{C}_{\mathrm{q}}\right), 129.5,128.6,128.1$, 127.6, 127.1, 126.9, 126.8, 126.3, 125.6, 124.7 (ArCH), $70.7\left(\mathrm{C}_{4}\right), 64.3\left(\mathrm{C}_{2}\right), 63.8\left(\mathrm{C}_{3}\right), 53.0\left(\mathrm{C}_{5}\right), 46.4\left(\mathrm{OCH}_{3}\right)$, and $22.7\left(\mathrm{CH}_{3}\right)$. IR (DCM) 3058, 2949, 1740, 1652, 1559, 1436, 1403, 1351, 1201, 861, and $754 \mathrm{~cm}^{-1} . \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 396$ $\left(\mathrm{M}^{+}+2\right), 395\left(\mathrm{M}^{+}+1,100\right)$.

Supplementary information

Crystallographic data (excluding structural factors) for the structures in this paper have been deposited at the CambridgeCrystallographic Data Centre as supplementary publication nos. CCDC 682218 (compound 14a), CCDC 682219 (15a), CCDC 682220 (16a), and CCDC 682221 (16b).
Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK (fax: +44 (0) 1223336033 or via the web at: http://www.ccdc.cam.ac.uk/products/csd/request/).

References

1. Grigg, R.; Sridharan, V., Advances in Cycloaddition, Ed. D.P. Curran, JAI Press Inc., 1993, 3, 161-204.
2. a. Grigg, R.; Thornton-Pett, M.; Yoganthan, G., Tetrahedron, 1999, 55, 1763-1780. b. Grigg, R.; Hargreaves, S.; Redpath, R.; Turchi, S.; Yoganthan, G., Synthesis, 1999, 441-446.
3. a. Grigg, R.; Thornton-Pett, M.; Yoganthan, G., Tetrahedron, 1999, 55, 8129-8140. b. Part 63. Grigg, R.; Sarker, M.A.B. Tetrahedron, 2006, 62, 10332-10343.
4. Grigg, R.; Thornton-Pett, M.; Xu, J.; Xu, L-H., Tetrahedron, 1999, 55, 13841-13866.
5. a. Grigg, R.; Lansdell, M.I.; Thornton-Pett, M., Tetrahedron, 1999, 55, 2025-2044. b. Dondas, H.A.; Fishwick, C.W.G.; Grigg, R.; Kilner, C., Tetrahedron, 2004, 60, 3473-3485.
6. a. Pinna, G.A.; Curzu, M.M.; Sechi, M.; Chelucci, G.; Vianello, P.; Maciocco,E., Farmaco, 1998, 53, 684-689. b. Thurkauf, A.; Hutchison, A.; Peterson, J.; Cornfield, L.; Meade, R.; Huston, K.; Harris, K.; Ross, P.C.; Gerber, K.; Ramabhadran, T.V., J. Med. Chem., 1995, 38, 2251-2255. c. Norman, M.H.; Kelley, J.L.; Hollingsworth, E.B., J. Med. Chem., 1993, 36, 3417-3423. d. Gentles, R.G.; Middlemiss, D.; Proctor, G.R.; Sneddon, A.H., J. Chem. Soc., Perk. Trans. 1, 1991, 6, 14231431. e. Berger, J.G.; Chang, W.K.; Clader, J.W.; Hou, D.; Chipkin, R.E.; McPhail, A.T., J. Med. Chem., 1989, 32, 19131921. f. Crooks, P.A.; Szyndler, R.; Cox, B., Pharm. Acta Helv., 1980, 55, 134-137.
7. a. Rang, H.P; Dale, M.M., Pharmacology, Churchill Livingstone: Edinburgh; 1991. b. Albert, A., Selective Toxicity, Chapman and Hall: London; 1985. c. Shorter, E., A History of Psychiatry, Wiley: New York; 1997. d. Song, C.; Leonard, B.E., Fundamentals of Psychoneuroimmunology, John Wiley and Sons: Chichester, UK, 2000.
8. a. Nyerges, M.; Bitter, I.; Kádas, I.; Tóth, G.; Tóke, L., Tetrahedron Lett., 1994, 35, 4413-4414. b. Nyerges, M.; Bitter, I.; Kádas, I.; Tóth, G.; Tóke, L., Tetrahedron., 1995, 51, 11489-11502. c. Nyerges, M.; Rudas, M.; Bitter, I.; Tóke, L., Tetrahedron, 1997, 53, 3269-3280. d. Fejes, I.; Töke, L.; Blaskó, G.; Nyerges, M.; Pak, C.S., Tetrahedron, 2000, 56, 8545-8553.
9. a. Pak, C.S.; Nyerges, M., Bull. Kor. Chem. Soc., 1999, 20, 633-635. b. Nyerges, M.; Balázs, L.; Kádas, I.; Bitter, I.; Kövesdi, I.; Tőke, L., Tetrahedron, 1995, 51, 6783-6788. c. Poornachandran, M.; Raghunathan, R., Tetrahedron, 2006, 62, 11274-11282. d. Poornachandran, M.; Raghunathan, R., Synth. Commun., 2007, 37, 2507-2517. e. Poornachandran, M.; Muruganantham, R.; Raghunathan, R., Synth. Commun., 2006, 36, 141-150.
10. a. Nyerges, M.; Rudas, M.; Tóth, G.; Herényi, B.; Kádas, I.; Bitter, I; Tőke, L., Tetrahedron, 1995, 51, 13321-13330. b. Ayerbe, M.; Arrieta, A.; Cossío, F.P., J. Org. Chem., 1998, 63, 1795-1805. c. Vivanco, S.; Lecea, B.; Arrieta, A.; Prieto, P.; Morao, I.; Linden, A.; Cossío, F.P., J. Am. Chem. Soc., 2000, 122, 6078-6092.
11. a. Grigg, R.; McMeekin, P.; Sridharan, V., Tetrahedron, 1995, 51, 13331-13346.
12. Yan, X-X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X-L.; Wu, Y-D., Angew. Chem. Int. Ed., 2006, 45, 19791983.
13. Díaz-Ortiz, A.; de la Hoz, A.; Herrero, M.A.; Prieto, P.; Sánchez-Migallon, A.; Cossío, F.P.; Arrieta, A.; Vivanco, S.; Foces-Foces, C., Mol. Divers., 2003, 7, 175-180.
14. a. Kabalka, G.W.; Varma, R.S.; Org. Prep. and Proc. Int., 1987, 19, 283-; b. Becker, H-D.; Sörensen, H.; Sandros, K.; J Org. Chem.; 1986, 51, 3223-3226. c. Bourguignon, J.; Le Nard, G.; Queguiner, G., Can. J. Chem., 1985, 63, 23542361. d. Peterli, S.; Stumpf, R. ; Schweizer, M.; Sequin, U.; Mett H.; Traxler, P.; Helv. Chim. Acta., 1992, 75, 696-706. e. Sader-Bakaouni, L.; Charton, O.; Kunesch, N.; Tilliquin, F., Tetrahedron, 1998, 54, 1773-1782.
15. a. Grigg, R.; Kemp, J.; Warnock, W.J. J. Chem. Soc., Perkin Trans. 1. 1987, 2275-2284. b. Amornraksa, K.; Grigg, R.; Gunaratne, H.Q.N.; Kemp, J.; Sridharan, V. J. Chem. Soc., Perkin Trans. 1. 1987, 2285-2296.
16. Fejes, I.; Tőke, L.; Nyerges, M.; Pak, C.S., Tetrahedron, 2000, 56, 639-644.
17. a. Ram,S.; Ehrenkaufer, R.E, Tetrahedron Lett., 1984, 25, 3415-3418. b. Nielson, A.T., J. Org. Chem., 1962, 27, 19982001.
18. Krapcho, J.; Turk, C.F.; Piala, J.J., J. Med. Chem., 1968, 361364.
19. Lee, J.G.; Choi, K.I.;Koh, H.Y.; Kim, Y.; Kang, Y.; Cho, Y.S., Synthesis, 2001, 1, 81-84.
20. Hill, R.K.; Sawada, S.; Bock, M.G.; Greene, J.R., Heterocycles, 1987, 25, 515-520. Bryce, M.R.; Gardiner, J.M.; Hursthouse, M.B.; Short, R.L., Tetrahedron Lett., 1987, 28, 577-580.

[^0]: Published paper
 Grigg, R., Kilner, C., Sarker, M.A.B., Orgaz de la Cierva, C. and Dondas, H.A. (2008) $X=Y-Z H$ compounds as potential 1,3-dipoles. Part 64: Synthesis of highly substituted conformationally restricted and spiro nitropyrrolidines via Ag(I) catalysed azomethine ylide cycloadditions, Tetrahedron, Volume 64 (37), 8974-8991.

[^1]: * Corresponding author. Tel.: +44-(0)-113 3436501; fax: +44-(0)-113 3436501; e-mail: R.Grigg@chem.leeds.ac.uk.

[^2]: a. Acetonitrile, NEt_{3} (1.1 mol equiv.), $\mathrm{AgOAc}\left(1.5 \mathrm{~mol}\right.$ equiv.), $25^{\circ} \mathrm{C}, 4-24 \mathrm{~h} . \mathrm{b}$. Isolated yield.

