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. Introduction

n the present work the Multipoint Approximati Method (MAM) has been enhanced with

new capabilities that allow to solve large scdésign optimization problems more efficiently.

The first feature is adaptive building of appimate models during the optimization search.
And the second feature is a parallel implementation of MAM.

A traditional approach to adaptive buildingroétamodels is to check several types for their
quality on a set of design points and select thetlgpst The technique presented in this paper is
based on the assembly of multiple metamodeis one model using linear regression. The
obtained coefficients of the model assembhg not weights of the individual models but
regression coefficients determinedthg least squares minimization method.

The enhancements were implemented within Multipoint Approximation Method (MAM)
method related to mid-range approximation framewThe developed technique has been tested
on several benchmark problems.

[I.  Outline of Multipoint Approximation Method (MAM)

This technique (Toropov et al., 1993) s the original optimization problem by a
succession of simpler mathematical programming problems. The functions in each iteration
present mid-range approximations to the cquoesling original functions. These functions are
noise-free. The solution of andividual sub-problem becomes the starting point for the next
step, the move limits are changed and the opé#tran is repeated iteratively until the optimum
is reached. Each approximation function is defias a function of design variables as well as a
number of tuning parameters. The latter arerdeteed by the weighted least squares surface
fitting using the original function values (and their derivatives, when available) at several
sampling points of the design variable space. Some of the sampling points are generated in the
trust region, and the rest is taken from the extériest region, i.e. the pool of points considered
in the previous iterationNsan Keulen et al., 1997).

A general optimization problem can be formulated as

Fy(x)—>min, F(x)<1(j=1..M), 4,<x,<B, (i=1..,N) (1)

" Research Fellow
" Professor of Aerospace and Structiitagiineering, AIAA Associate Fellow
* RR Engineering Associate Fellow - Aerotheriabkign Systems, AIAA Associate Fellow, FRAeS

1
American Institute of Aeronautics and Astronautics

Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.



wherex refers to the vectoof design variables. In order to reduce the number of calls for the
response function evaluations and to lessen the influence of noise, the MAM replaces the
optimization problem by a sequenceapproximate optimization problems:

~

FE(x)—min, F (x)<1 (j=1..,M), 4"<x,<B' 4" >4, B <B, (i=1...N) (2

wherek is the iteration number.
The selection of the noiseek approximate response functigii¢x) (=0....,M) is such

that their evaluation is inexpensive as coragato the evaluation of the response functiBns
although they are not necessamyplicit functions of the design variables. The approximate
response functions are intendedoadequate in a current seastitp-domain. This is achieved

by appropriate planning of numeai experiments and use of the trust region defined by the side
constraints4’ andB; .

[11.  Building of approximations

In the present work an approach is irigeged based on the assembly of different
approximate models into one metamodel in the form

(=3 ho () ®

The use of multiple metamodels has recently tstedied for example by F.Viana et al. (2008)
and E.Acar et al(2008) where coefficients, in (3) were treated as weights reflecting the
accuracy of the individual surrogates on a ektvalidation points.Thus, more accurate
componentsy obtain larger values of the multipis and vice versa provided that

b =1 (4)

Individual surrogates such as Polynomial fese Surface (PRS), Kriging (KRG) and Radial
Basis Functions (RBF), Gaussian ProcesB)(@nd Support Vectdregression (SVR) were
considered in the above studies.

This work considers an alterinat approach for building the exgasion (3). The idea to use
the regression analysis for combining differergtamodels instead calculating the weights for
each component was motivated by our early wdikropov, 1989) where the regressors were
intended to describe the behavidrseparate structural (mecheatd) sub-systems. In the present
work, under “sub-systems” we imply individual metamodels obtained by any analytical or
numerical method.

The procedure is based on the minimaaif the weightedelast squares problem

Zplij[];}(xp)_ﬁ}(xp’bj)]z_)min ()
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that leads to solving the linear system 8F equations withVF unknownsh; whereNF' is the
number of regressors in the model bapk.{ Here the coefficients; are regression coefficients
that should not be considered as weight diat e.g. could be positive or negative. The
parametersw,, refer to the weights that reflect the inequality of data obtained in different
sampling point®, see Toropov et al. (1993).

The functionsp,in (3) are determined in the similar manner

Y, [F(x,) - 9,(x,.a, )] - min (6)

where minimization is carried out with respect to the tuning parametérbis is done prior to
the procedure (5) has been applied.

The selection of the regressasss based on the number ofhgaling points currently located
in the trust region. In the ohirange approximation framewolikexpensive approximate models
for objective and constraint functions are lbuising minimum requiré number of sampling
points. The simplest case is a lindamction of the tuning parameteas

P00 =a,+ @)

This structure can be extended toiaminsically linear function (Box, Draper 1987). Such
functions are nonlinear, but thepn be led to linear ones by simple transformations. The most
useful function among them fise multiplicative function

P00 =a,] [ ®)

Intrinsically linear functions hae been successfully used fowariety of design optimization
problems. The advantage of these approximatioetions is that a relatively small numbérl
(N is number of design variables) of tuning parametgrss to be determined, and the
corresponding least squares problem is solved eddilg is the most imptant feature of such
approximations as it allows applying théonarge scale optimization problems.

Other intrinsically linear functions may leensidered in the model bank, e.g.

N

¢(X):a0+zai/xi )
i-1
N

P(X) = ay+ Zaixiz (10)
i1
N

o(X) =a,+ Zai I x? (11)
i-1
3
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As more points are added to the trust redlmn approximations may be switched to higher
guality models, e.g. rational model

a, +a,x; +azx, +...+a, X,

p(X) = (12)

l+a, x +a, x,+..+a,, x,

This type of approximations was studied betoyee.g. Burgee et al. (1994) and Salazar Celis
et al. (2007). Due to rapidly gromg number of coefficients for larg¥ (that is the main
objective of this work), the function structuresha be limited to low degree polynomials (e.g.
linear) and small data sets

The coefficients in (12) are determined using a least squares approach which reduces to a
nonlinear optimization problem with a constraort the sign of the denominator (positive or
negative). The latter is necessary in ordeprevent denominator frorarossing the zero axis
within a specified trust region. One may note that this formulation yields the objective function
with many local minima. Currently this problesmresolved using optimization restarts from a
specified number of initial guessesid@amly generated in the trust region.

Tests results demonstrated thaithough the above functions-12) may describe the global
behavior rather poorly, such approximatiopsoved to be efficient in the mid-range
approximation framework of MAM.

It should be mentioned that functiops may also represent global approximations such as
PRS, KRG, RBF, etc. This issue wik addressed to our next work.

IV. Design of Experiments

In the present work, new sampling points are generated randomly. The added points are
checked for calculability of the response functéord, if the check fails, a new set of points is
generated until a required number of samplinghzo(all passing the check) are obtained. To
improve the quality of the random plan, a coaisitron the minimal distance between the points
is imposed using the following expression:

dist” (13)
Diag
where
N

Diag = Z(B[ _Ai)2 ,

i=1

N

dist® = Z(xf —x}”)2 (e,p=1...,Pie#p).

i=1

In (13) Diag is a characteristic size ofehrust region defined by lower and uppem; limits, e
is number of a new sampling poiptis number of a previously generated point, &g the
total number of sampling points the search sub-region.
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The parameter is initially set to 0.9. However if the condition (13) is not satisfied after a
prescribed number of random generations forea point, the value of the threshold ratio is
iteratively reduced

r=r*coeff, 09<coeff <1
until the constraint is satisfied.

Figure 1 demonstrates the quality of designxpleeiments using a proposed technique. As an
example, two patterns (20 and 1@8ints) were generated for theo-bar truss optimization test
problem; see Toropov et al. (1993).
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Figure 1. Designs of experiments generated randomly without (left) and with (right) a
constraint imposed on the minimal distance between sampling points

Analytical tests have shown that thboge technique may imprevthe quality of the
approximate functions and thereforduee number of MAM ojimization steps.

V. Parallel implementation

Currently parallel processing has been dgwvet without a CPU load testing mechanism (for
example, using uptime option). MAM sets up theaflal jobs using a specified number of free
processors (or noded)P available on a Linux cluster. It @&ssumed that this number is known
priory and is not changed during thptimization run, as for instance in implementation of van
Keulen and Toropov (1999) for the casdeferogeneous computing environment.
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In order to accelerate the performancetled algorithm, the nuber of sampling points
generated in each step (starting fribra second step) may be set equal®&P number wherg
> 1. In terms of the wall clock timehe latter will be equivalent thb function evaluations per
step.

To ensure that the head node is not overldadesubmission script was implemented based
on performing the individual jobs in local diteries of the slave nodes for each DOE point.
Otherwise such situation is likely to occur when a massive parallel run is submitted involving
simulations that need readingdawriting frequently to a disk.

VI. Trust region strategy

After having solved the approximate optaaiion problem, a newvirust region must be
defined, i.e. its new size and ltcation have to be specified. Thésdone on the basis of a set of
parameters that estimate the quality of thpraximations ("bad", "reasonable” or "good") and
the location of the sub-optimum point in the emtrtrust region. Once the parameters have been
determined, the trust region is moved and resized.

If the sub-optimum point does npass the check for calculabjl of the response functions,
the trust region is reduced atfte approximated problem is sety again. The only essential
assumption here is that all furans of the optimization problem exist at the starting point.

In a parallel mode, a set &P points (that includes the @ed optimum point of the
iteration) is submitted for evaltian after each iteration.

VII.  Optimization examples and discussions

The proposed method has been tested on sestaratural optimizatioproblems. The results
obtained for three test cases are presentediar tw give some insight into the approach.

Vanderplaats scalable beam

1 2 . s-1 s

- ’
F
b.'
Figure 2: Scalable beam with rectangular cross sections

The problem is formulated as follows: minimize the volume of a cantilever beam

V= ibihill.
i=1

under stress, aspect ratio, and tip deflection constraints
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0,15 <L hI(20h) <L y, /¥ <]
with the lower limits on cross section sizes

b 21 h 25

Three cases were considered depending on the number of elements in the bé&a®: (a)
resulting inN=10 design variables and 11 constraints; 650 resulting inN=100 and 101
constraints; (cy=500 resulting inv=1000 and 1001 constraints.

Following the proposed procedure (3) - (6) fuilding the approximate models, the next
intrinsically linear functions were includedtime model bank to solve the optimization problem:

1: linear

2: linear in squared variablesg

3: multiplicative

4: linear in reciprocal variablesxi/

5: linear in reciprocasquared variablesx47

It was found that a multipli¢&ve function (function 3 in the list) was given preference in the
model building for the stress ara$pect ratio constraints. A example, the coefficients
(i=1...5) obtained for one of the stress and asyaitt constraints arghown below

b;=-0.86E-05 5,=-0.12E-04 5;=1.00003 b,=0.32E-04 bs=-0.61E-04

As can be seen, all the parameters exéepctually equal to zero, i.e. the algorithm
automatically selects a right model from thank for a function whose behaviour is exactly
described by that model.

In contrast to the stress and aspect ratiotcaings, the models for the objective function and
displacement constraihiave non-zero coefficients for all the available regressors in the bank.
An example of coefficients determined for ttieplacement constrainturing the optimization
search is given below

b;=-0.119 b,=0.15E-01 5»3=0.453 b,=0.207 b5=0.444

5
It is interesting tonote that the normalian condition (4), i.eZblzl in this case, is
=1
automatically satisfied without explicit impag a corresponding constraint on the regression
coefficients.
MAM’s optimization result for the case (a) k61914 (cm) with the correponding vector
of design variables {2.99; 2.77; 2.52; 2.2075; 59.84; 55.55; 50.47; 44.09; 34.99} (cm). All
stress and aspect ratio constraints are adtivéhe optimal point except the displacement
constraint which is fulfiled with a big capacity. For comparison, Vanderplaats’'s solution
obtained using exterior palty function method i$=66169 (cr) with the vector {3.24; 2.90;
2.52; 2.26; 2.24; 56.77; 58L; 50.30; 44.87; 41.71} (cm).
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The optimization results obtained forl ghree cases (a-c) using MAM method are
summarized in Fig. 3. An important observatisthat number of MAM steps did not depend on
the number of design variables while numbecatfs for analysis depended linearly @n

110000 4

—— 36 analyses

100000 L T —— T 306 analyses —
\ —— 3006 analyses

80000

80000 \\\\

70000

volume

60000

50000

iterations

Figure 3: Convergence plotsfor the optimization caseswith (a) N=10, (b) N=100, and (c)
N=1000 design parameters. The number of analysesfor each caseis 36, 306, and 3006

respectively
A cantilever scalable thin-wall beam
w1 2 . s-1 s
. j:} y
F

Xj

Figure 4: Scalable beam with hollow squar e cr oss-sections

In this test, a cantilever beam is built upSaglements with hollow square cross sections. The
objective function is the weight of the beam thats to be minimized. There is a constraint
imposed on the tip displacement. The design veesahre heights (widths) of the square cross
sections, Fig. 4.

Based on the discretization of five elemetite optimization problem was formulated by
Svanberg (1987) in a closed form:

minimize

5
Fy(x) =0.0624 in
i=1
subject to

F(x)=61x"+37/x) +19/x3 +7/x} + 1 xS <1
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with a feasible starting point=5 (=1...5).

In order to solve the problem, the same seb akgressors was used as for the previous
example. Typical values of the regression coefficiebtained during the ojptization search
for the displacement constraint were

b; =1.828 b, =-0.746 b3 =0.15E-02 b, = 3.419 b5 =-3.502

that consistently satisfied the normalization condition (4).

For the objective function the algorithm always seledigd=1 andb; =0 (=2...5). The
solution was obtained after 5 MAM iterationsda31 analyses. The optimum point is {6.015;
5.309; 4.493; 3.502; 2.152}. The correspondiniyi®af the objective function is 1.339.

It is worth to note that this problem seemed to be tight for solving by approximation
techniques. For instance, Svanberg’s MMA methbodverged after four iterations after some
preliminary tuning while Fleury’s CONLIN optimer didn't converge at all. Using an earlier
version of Toropov’'s MAM (1993) with a multipkdive approximation (as a default type) for
the constraint function the solati was achieved after 17 steps (Bdlyses) that we considered
as unsatisfactory.

In order to verify the perfornmeze of the algorithm on the large-scale level, the problem was
extended to 100 and 500 beatements resulting iv=100 andN=500 design variables. The
corresponding solutions are compared in Fig.5.

16

1.55 . -4 31 analyses
15 \Q\ —a— 1 analyses
' \ —— 4951 analyses

R
\k

1.35

weight

1.3

1.25

12

115

1‘2I3‘4I5IEI7IEI9‘1D
iterations
Figure 5. Convergence plotsfor the optimization cases with N=5, N=100, and N=500 design
parameters. The number of analysesfor each caseis 31, 841, and 4951 respectively

N
Note that including a regressap(x) =a,+ Z“f /x} in the model bank can considerably
i=1
improve the performance of the algorithm as tHetsm of the problem in this case requires one
MAM iteration only.

Unconstraint minimization problem

9
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The robustness of the proposed technique was testedeomnttonstraint minimization
problem considered by Vanderplaats (1999) far-8pring system. The objective is to find an
equilibrium position of the springs by minimizing the total potential energy of the system

2 2
PE=0.5*K”/xf+(zl—x2)2—11] +0.5% K,x2 + (I, + x,)? —12] — Px,— Px,

The constantX; are spring stiffnesse®; are loads/; are the originabpring lengths, ang: are
displacements wher& ;=8 N/cm, K,=1 N/cm, P;=P,=5 N, /,=[,=10 cm. The two-variable
function space is shown in Fig. 6. In orderctnsider a positive range of variations for the
function and design variables, thdldaing scaling has been applie@E=PE+100; x,=x;+6.
Then the exact minimum of the scalg@blem is {14.63; 10.45} (cm) witRE=58.19 (N-cm).

In should be mentioned here tllaé method presented in this work is primarily developed for
solving constraint optimization problems whemimum always belongs to the boundary of the
feasible search domain. This is becausmpl monotonic functions were used as the
metamodels in the mid-range approximation concept. As it will be shown below, based on the
proposed approximation scheme (3-5) the methaoubvwe capable to solve ithsort of problems
too.

S — -
¥ \x = 140 o g)
210 M40 _‘/_/
— o a0

2
[N
N

@

]
|
gg

Figure 6: Two-variable function space for the spring-force system

Depending on number of sampling points generatethe trust region, three solutions were
obtained. The results are summarised in Tabkh&.optima were identified as internal points of
the trust region. Note thahe minimum number of samply points required to build the
approximation model (3) is five as five regresssese used in the model bank for this case.

sampling points x, x, PE iterations callgor
per iteration function
6 15.0 11.06 58.44 8 49
15 14.77 10.72 58.22 8 121
20 14.65 10.47 58.20 8 161
10
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Table 1. Optimization results depending on the number of sampling points in the trust
region

Typical regression coefficients for the model built in the first and fAsteBation using 20
sampling points are

1%iteration: b; =-5.86 b, =3.87 b; =5.67 b,=-3.40 bs =0.73
8" iteration: b, = -49603.9 b, = 24828.1 b; = 63.74 b, =-24755.0 bs; =49468.1

The meaning of the negative coefficients can nmvillustrated. Figures 7-8 show how the
technique defines different (positive/negative) slopes for monotonic funetidmesn the model

bank in order to assemble the adequate appedamwith non-monotonic behaviour in the trust
regions generated in the first and the 1a%) {&rations during the optimization search.
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Figure 7: Actual function an

d metamodel assembly built of ;‘iveregrrsin thefirst
MAM iteration
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Figure8: Actual functionén metamodel assembly‘builto‘fofiveregrrsinthe8th
MAM iteration

In order to compare the accayaof different components, with the performance of the
assembled moddt , RMSE of scaled response values was used

~ 2
I Ko F _ F
RMSE = —

test i=1 i

whereK,; is number of testing points randondgnerated in the trust regiorf;?l. and F, are

model and actual function values at test poiats.this case 500 test points were generated.
Values ofRMSE depending on the number of samplpants are given in Tables 2 and 3.
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Samp_ling points F ?i 2 3 ®4 Ps
per iteration
6 0.18 0.21 0.22 0.19 0.27 0.19
15 0.12 0.21 0.23 0.18 0.19 0.17
20 0.11 0.22 0.23 0.18 0.19 0.17
30 0.12 0.21 0.22 0.18 0.19 0.17
40 0.11 0.21 0.23 0.18 0.19 0.17

Table 2: RMSE for metamodel assembly and individual regressors in the first MAM iteration

The main finding from these results is thag thccuracy of the assembled model is always
higher than the accuracy of its components. The trend is kept for the different humber of
sampling points and is obsexvin different iterations.

~

Sampling points F @i @2 @3 P4 @5
per iteration
6 3.00e-3 6.28e-3 | 6.23e-3 6.23e-3 6.32e-3 6.38e-3
15 3.41e-3 3.88e-3 | 3.86e-3 3.88e-3 3.92e-3 3.90e-3
20 3.25e-3 4.57e-3 | 4.58e-3 4.54e-3 4.54e-3 4.56e-8
30 3.24e-3 3.56e-3 | 3.58e-3 3.53e-3 3.53e-3 3.54e-3
40 1.02e-3 1.97e-3 | 1.96e-3 1.97e-3 1.99e-3 1.99e-8

Table 3: RMSE for metamodel assembly and individual regressors in'thé/M iteration
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