
1

Representational Support for Collaborative Inquiry1

Dan Suthers
Department of Information and Computer Sciences

University of Hawai'i
1680 East West Road, POST 303A

Honolulu, HI 96822
suthers@hawaii.edu

                                                       
1Copyright 1999 IEEE. Published in the Proceedings of the Hawai’i International Conference on System Sciences, January 5-8, 199, Maui, Hawai’i.

Abstract
Empirical work with “Belvedere,”  a software
environment for the construction of diagrammatic
representations of evidential relations, is summarized,
leading to the hypothesis that variation in features of
representational tools can have a significant effect on the
learners’ discourse and on learning outcomes. For
example, by manipulating the concepts used by a toolkit,
it is possible to manipulate the distinctions attended to by
learners. Once learners have constructed some
representations, their learning interactions appear to be
further guided by the objects and relationships (expressed
or potential) that these representations make salient.
These kinds of design considerations are critical for
collaborative learning software, yet are insufficiently
studied. This paper describes the work that led to this
position, sketches a theoretical analysis of the roles of
constraint and salience in the effect of representational
bias on collaborative learning discourse, and describes
initial studies now underway that varies textual,
diagrammatic and tabular representations, and
investigates their effects on the quality of discourse
between learners.

1. Introduction

Decades of research into cognitive and social aspects of
learning has developed a clear picture of the importance
of learners’ active involvement in the expression,
examination, and manipulation of their own knowledge
(e.g., [8, 42, 50]), as well as the equal importance of
guidance provided by social processes and mentorship [5,
33, 54, 68]. Recently these findings have been reflected in
software technology for learning: systems are now
providing learners with the means to construct and
manipulate their own solutions while being guided by the
software and interacting with other learners. The present

work is within this spirit, providing representational tools
in support of collaborative learning.

Representational tools for data manipulation and
knowledge mapping range from basic office tools such as
spreadsheets and outliners to “knowledge mapping”
software. Such tools provide representational guidance
that help learners see patterns, express abstractions in
concrete form, and discover new relationships [15, 32].
These representational tools can function as cognitive
tools that lead learners into certain knowledge-building
interactions [11, 23, 31]. The present work is based on the
hypothesis that properly designed representational tools
guide collaborative as well as individual learning
interactions. Specifically, as learner-constructed external
representations become part of the collaborators’ shared
context, the distinctions and relationships that are made
salient by these representations may influence their
interactions in ways that influence learning outcomes.

Within classroom and laboratory settings,
collaborative learning has been shown to correlate with
greater learning, increased productivity, more time on
task, transfer of knowledge to related tasks, higher
motivation, and heightened sense of competence [20, 46,
52, 54]. Similarly, collaborative use of instructional
software can be at least as effective as individual use [21,
24, 67]. However, collaborative learning does not work
for all learners, and the results of instructional outcome
studies are mixed. We cannot expect learning gains just
because learners are sitting together [6]. Thus, a goal of
computer supported collaborative learning (CSCL)
systems [29,  40] – and of this work – is to improve the
effectiveness of collaborative learning as an instructional
format: i.e., to support peer interactions in a manner that
increases learning gains. In the K-12 environment,
collaborative learning with computers can also be a
necessity due to resource limitations. In postsecondary
distance education, electronic forms of collaborative
learning can help reduce the isolation of telecommuting
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learners and increase the interactivity of the distance
learning experience [1, 22].

The hypothesis of this paper – that representational
tools can influence collaborative learning discourse in
educationally significant ways – became apparent to the
author while working with a networked software system,
designed and deployed by the author with colleagues,2

that provides learners with shared workspaces for
coordinating and recording their collaboration in
scientific inquiry. During classroom and laboratory use of
“Belvedere,” the author has observed that by
manipulating the concepts used by a toolkit, it is possible
to manipulate the distinctions attended to by learners.
Furthermore, once learners have constructed some
representations, their learning interactions appear to be
further guided by the objects and relationships (expressed
or potential) that these representations make salient.
Based on these observations, the author is undertaking a
systematic study of how variation in features of the
representational tools provided by these environments can
have a significant effect on the learners’ knowledge-
building discourse and on learning outcomes.

This paper begins with a description of the Belvedere
software environment. Then, examples of the kinds of
interactions that led to the representational bias
hypothesis are provided, followed by a theoretical account
and an outline of the research program that is presently
underway.
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2. Software for Collaborative Inquiry

The “Belvedere” software is a networked software system
that provides learners with shared workspaces for
coordinating and recording their collaboration in
scientific inquiry. The version described in this paper,
Belvedere 2.x, is a complete redesign and
reimplementation of Belvedere 1.x, previously reported in
[62, 63]. Belvedere’s core functionality is a shared
workspace for constructing “inquiry diagrams,” which
relate data and hypotheses by evidential relations
(consistency and inconsistency). The software also
includes an artificial intelligence “advisor” [39, 64], a
"chat" facility for unstructured discussions, and facilities
for integrated use with Web browsers. The diagramming
window is shown in Figure 1, with an additional window
(left side) for a “chat” facility. The default “palette” (the
horizontal row of icons near the top of Figure 1) makes
salient the most crucial distinctions we want learners to
acquire in order to conduct scientific inquiry.

Left to right, the icons are “data” for empirical
statements, “hypothesis” for theoretical statements, then
links representing “for” and “against” evidential
relations. Learners use the palette by clicking on an icon,
typing some text (in the case of statements) and optionally
setting other attributes, and then clicking in the diagram
to place the statement or create the link. The palette is
configurable: other categories and relations can be added,
such as “unspecified” statements about which learners
disagree or are uncertain, “principle” for law-like

Figure 1. Belvedere Inquiry Diagram



3

statements, and a link for conjunction. An icon for an
automated “coach” can also be added.

Other features of Belvedere, briefly noted, include the
following. Users can set different “belief levels” for the
statements and relations, and display these as line
thickness with a “filter.” References to external objects
can be sent from other applications directly into the
Belvedere workspace. Java applets have been embedded
in the Web-based curricular materials, enabling learners
to send references to these pages into the workspace with
a click of a button. The feasibility of extending this
mechanism to other kinds of documents, such as MS
Word and Excel documents, has been demonstrated, and
it is possible to reinvoke these applications in a platform
independent manner. Thus Belvedere can be used as a
conceptual organizer for use of various tools during an
inquiry. Koedinger, Suthers & Forbus [28] have also
demonstrated coordinated integration of Belvedere with a
tutoring agent and a simulation engine.

2.1 Software Implementation

The Belvedere application is written in Java, and is
available for MacOS, Windows ‘95, NT, and Solaris. It is
deployed as a client within a networked architecture that
is designed to provide affordable access to intelligent
collaborative educational functionality on a variety of
desktop user platforms. Belvedere 2.1 includes a
lightweight, NT or Unix-based server consisting of a SQL
database (currently msql or postgres) for shared
workspaces and a Java “Connection Manager” that
provides for “what you see is what I see” updating of
clients sharing the same workspace. Each Belvedere 2.1
Java application (or, more recently, applet) includes the
evidence mapping facility, the built-in advisor, and a
JDBC interface to the database and Connection Manager.
Belvedere applications can also run stand-alone, saving
workspaces to the local disk but not providing distance
collaboration functionality. See [60] for a discussion of
the more complex CGI-based architecture of Belvedere
2.0 and other aspects of the design.

2.2 Classroom Implementation

In coordination with the software development, the
author’s colleagues3 developed a comprehensive method
for implementing Belvedere-supported collaborative
inquiry in the classroom. The approach includes student
activity plans worked out in collaboration with teachers.
Students work in teams to investigate real-world “science
challenge problems,”4 designed with attention to National
Science Education Standards to match and enrich the
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curriculum. A science challenge problem presents a
phenomenon to be explained, along with indices to
relevant resources. The teams plan their investigation,
perform hands-on experiments, analyze their results, and
report their conclusions to others. Investigatory roles are
rotated between hands-on experiments, table-top data
analysis, and computer-based literature review and use of
simulations and analytic tools as well as Belvedere.
Assessment rubrics are given to the students at the
beginning of their project as criteria to guide their
activities. The rubrics guide peer review, and help the
teacher assess nontraditional learning objectives. See [61]
for further information on this integrated approach to
classroom implementation, as well as discussion of a
third-party evaluation. The present paper focuses on
representational issues that arose from informal
observations during use in the classroom and laboratory
sessions, which have resulted in a new line of work.

3. Representations and Discourse

Belvedere 1.0 was initially used with students
aged 12-15 working alone or in pairs in our lab,
as well as by students working in small groups
in a 10th grade biology classroom. Belvedere
2.x is under use by 9th and 10th grade science
classes in Department of Defense Dependent
Schools overseas. During this time we learned
some important lessons about the role of
external representations in collaborative
learning.

Belvedere 1.0 was designed under the
assumption that a visual representation
language (augmented with automated advice-
giving) can help students learn the nuances of
scientific argumentation, provided that (a) the
language is capable of capturing all of these
nuances, and (b) students express their
arguments in the language. Guided by (a),
Belvedere 1.0 was provided with a rich palette
of statement types and relationships. One of the
Belvedere 1.0 palettes is shown to the left.

3.1 Locus of Discourse

As indicated by (b) above, we expected students
to express all of their significant argumentation
in the diagrams using primitives such as these.
However, we found that much relevant

argumentation was “external,” arguing from the
representations rather than arguing in the representations.
Faced with a decision concerning some manipulation of
the representations, students would begin to discuss
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substantial issues until they reached tentative agreement
concerning how to change the representation. In the
process, statements and relations we would have liked
students to represent went unexpressed.

Our initial frustration soon gave way to an
understanding that this is an opportunity: proper design
of manipulable representations can guide students into
useful learning interactions. Thus, we downplayed the
following potential roles of the representations: (1) as a
medium through which communication takes place, (2) as
a complete record of the argumentation process, and (3)
as a medium for expressing formal models – in favor of
their role in stimulating and guiding collaborative
learning discourse.

3.2 Discussion Initiated by Categorical Choices

Belvedere requires all knowledge units (statements and
relations) to be categorized at the time of creation. We
often observed that learners who were using Belvedere
initiated discussion of the appropriate categorical
primitive for a given knowledge unit when they are about
to represent that unit [59]. Although this is not
surprising, it is a potentially powerful guide to learning,
provided that it happens at the right time, and that
discussion focuses on the underlying concepts rather than
the interface widget to select. For example, consider the
following interaction in which students were working
with a version of Belvedere, that required all statements
to be categorized as either “data” or “claim.” (The
example is from a videotape of students in a 10th grade
science class.)

S1: So data, right? This would be data.
S2: I think so.
S1: Or a claim. I don’t know if it would be claim or

data.
S2: Claim. They have no real hard evidence. Go ahead,

claim. I mean who cares? who cares what they say?
Claim.

The choice forced by the tool led to a peer coaching
interaction on an distinction that was critically important
for how they subsequently handled the statement. The last
comment of S2 shows that the relevant epistemological
concepts were being discussed, not merely which toolbar
icon to press or which representational shape to use.

It is not always useful to confront learners with
choices, even if they may become important at some point
in the development of expertise. For example, in other
interactions with a more complex version of this tool that
provided more categories, we saw students’ discussion
sidetrack on subtle distinctions that were not important at
their stage of learning:

S_M: “So what would that be...”
S_E: “Uhh...”

S_M: “An ob--”
S_E: “A claim?”
S_E consults sheet of paper in front of her; [pause]

“How about a law? scientific color?”
S_M: “Do you want to say a warran-- uhh, no.”
S_E?: “Wait, what's a warrant? I just read that; why

some things...”
S_M: “[sigh] Oh dear.”
S_E: “Kind of like a law, like ...” [pause]
S_M: “Yeah, but there are exceptions, I think, because

it can't travel, like,
complete distances.”

It was not necessary for these students to be struggling
with all of these concepts at the outset of their learning
experience, although S_M’s final utterance was a nice
touch. These observations led us to simplify Belvedere’s
representational framework to focus on the most essential
distinction needed concerning the epistemological source
of statements: empirical (“data”) versus hypothetical
(“hypothesis”). Further simplifications, described in
sections 3.3 and 3.4 below, were motivated by similar
observations concerning the use of relations (links).

Interactions such as these suggested that (1) by
manipulating the primitive concepts and relations
provided by a representational formalism, it is possible to
manipulate what distinctions are attended to by learners;
(2) by manipulating when the software requires that a
category be chosen, it is possible to manipulate when
these distinctions are attended to. Combining this control
with a cognitive analysis of a given learning task, we
believe it is possible to design interface interaction
sequences that draw learners’ attention to the right
distinctions at the right time [25, 27].

3.3 Ontological Clarity

The original set of argumentation relations included
evidential, logical, causal, and rhetorical relations as well
as the various classifications of statements exemplified
above. In exchanges similar to the previous example, we
observed students’ confusion about which relation to use.
Sometimes more than one applied. We felt that the
ontologically mixed set of relation categories confused
students about what they were trying to achieve with the
diagrams, and did not help them focus on learning key
distinctions. In order to encourage greater clarity, we
decided to focus on evidential reasoning, and specifically
on the most essential relational distinction for evidence
based inquiry: whether two statements are consistent or
inconsistent.
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3.4 Artifactual versus Fundamental Distinctions

Furthermore, we eliminated directionality from
Belvedere’s link representations of relations. At one time
there were at least three versions of the “consistency”
relation: “predicts,” “explains” (drawn from hypotheses to
data) and “supports” (drawn from data to hypotheses).
Early versions of our automated advisor attempted to
reason about and even enforce these semantics. However,
we found that use of these links was inconsistent and
sometimes differed from the intended semantics,
consistent with other research on hypermedia link
categories [34, 53]. The use of “predicts,” “explains,” and
“supports” links was also misguided because these links
are “surface” level discourse relations that do not
encourage learners to think in terms of the more
fundamental consistency relationships. Whether a
hypothesis predicts or explains a datum is an artifact of
the chronology of the datum with respect to statement of
the hypothesis. Whether one uses “supports” (from datum
to hypothesis) or one of the other two links (from
hypothesis to datum) is an artifact of the focus of the
discourse process by which the diagram is being
constructed. Hence we eliminated these in favor of a
single non-directional relation that expresses the more
fundamental notion of evidential consistency.

3.5 Discussion Guided by Salience and Task

Consideration of ways in which subjects interacted with
the representations led us to appreciate subtle ways in
which external representations may guide discourse. For
example, Figure 2 outlines a diagram state in which three
statements were clustered near each other, with no links
drawn between the statements. One student pointed to two
statements simultaneously with two fingers of one hand,
and drew them together as she gestured towards the third
statement, saying “Like, I think that these two things,
right here, um, together sort of support that” (Figure 2,
from a videotape of an early laboratory study of Belvedere
in which it was possible to make N-to-one links).

This event was originally taken merely as an example
of how external representations facilitate the expression
of complex ideas. However, this observation applies to
any external representation. Reconsideration of this

example led to the hypotheses that several features of the
representational system in use made the student’s
utterance more likely. First, elaboration on these
particular statements is more likely because they (instead
of others) are expressed as objects of perception in the
representation. Second, this event is more likely to occur
in a representational environment that provides a
primitive for connecting statements with a support
relation (particularly N-to-1) than in one that did not --
the students perceive their task as one of linking things
together. Third, it may have been easier to recognize the
relationship between the three statements because they
happened to be spatially nearby each other. In this
example, proximity was determined by the users rather
than intrinsic to the representational toolkit. However, a
representational tool could constrain proximity based on
potential relationships between knowledge units
(although Belvedere does not currently do this).

3.6 Representations in CSCL Systems for
Collaborative Critical Inquiry

Observations such as these led the author to reexamine
other software systems in use for the collaborative
learning of “critical inquiry” and “scientific
argumentation” skills, and identify the need for a series of
systematic studies. Several major representational
approaches to CSCL for critical inquiry are summarized
below, in preparation for discussion of their implications
for discourse. (The purpose of this discussion is to
characterize major representational approaches in CSCL
systems rather than to provide an adequate review of the

systems themselves.)
Hypertext/hypermedia

systems include CLARE
[66]; CSILE [48, 49], the
Collaboratory Notebook
[14, 38], Web-Camile and
Web-SMILE [17].
(Seminal systems include
gIBIS [12] and NoteCards
[18], which were not
developed for educational

applications.) These systems all have in common a
hyperlinking of different comments relevant to an issue,

“Like, I think that these two things, right here, um, together sort of support that.”
(Shading indicates location of the fingers)

Figure 2. Gesturing to express a relationship between adjacent units.

What killed the dinos 65 my ago?
  > Volcanos killed them.
  > A meteor hit the Earth.
    >> Heavy metal found in the rocks
the dinos died in.
    >> Huge crater in Mexico from the
same time.

Figure 3. Threaded
Discussion
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usually with categorization of the hyperlinks or their
targets with labels such as “answer, argument, problem,
solution, comment,” etc. There is wide variation in this
category: some take the form of a threaded discussion or
other tree structure that may be viewed in summary form
(see Figure 3 for a characterization), while others support
construction of graphs of “nodes” or “cards” through
which one navigates, viewing one card at a time. For the
purpose of illustration, threaded discussions (Figure 3)
will stand for this class of representations. This choice
was made to provide a simple reference point for
comparison, and is not meant to detract from the richness
of mature systems such as CSILE or its successor,
Knowledge Forum, which uses several of the
representational approaches discussed herein.

Argument mapping
environments, a variation
on concept mapping [36],
include Belvedere [61,
62, 63], ConvinceMe
[44], and Euclid [55]. All
of these utilize node-link
graphs representing
rhetorical, logical, or
evidential relationships
between assertions
(usually categorized as
“hypothesis” versus “data” or “evidence”). As
characterized in Figure 4, the entire graph is viewed and
manipulated at once, distinguishing these systems from
hypermedia environments in which one normally views
and manipulates one node of the graph at a time.

SenseMaker [2], a
component of the KIE
system [3], exemplifies
an intermediate
approach. Statements
are organized in a 2-
dimensional space and
viewed all at once, as
in argument graphs
(see Figure 5).
However, SenseMaker
uses containment

rather than links to represent the relationship of
evidential support: an empirical statement is placed inside
the box of the theory it supports. SenseMaker also uses
containment to represent decomposition of a theory into
hypotheses, a facility that was tried in early versions of
Belvedere as well.

Finally, another representation is an evidence or
criteria matrix (Figure 6). Such matrices organize
hypotheses (or solutions) along one axis, and empirical

evidence (or
criteria) along
another, with
matches between the
two being expressed
symbolically in the
cells of the matrix.
Puntambekar et al.
[43] experimented
with such a representation in a paper-based collaboration
tool.

Examining the figures above, the differences in
representational formalisms provided by existing CSCL
software for critical inquiry is striking. Yet more striking
is the fact that there appear to be no systematic studies
comparing the effects of external representations on
collaborative learning discourse, although a number of
valuable studies have been conducted on software
utilizing single representational formalisms. (At a recent
conference on computer supported collaborative learning,
private communications with several designers of systems
exemplified above corroborated this need. The author and
other designers were not aware of such a study, and had
all chosen designs based on informed intuition.
Exceptions include [16, 69].) Given that these
representations define the fundamental character of
software intended to guide collaborative learning, a
systematic comparison is overdue. The question is not
“who’s system is better?” but rather “what kinds of
interactions, and therefore learning, does each
representational formalism encourage?” It may well be
the case that all of the above representations are useful,
albeit for different learning and problem solving phases
or task domains.

3.7 External Representations in Individual and
Collaborative Contexts

Substantial research has been and continues to be
conducted concerning the role of external representations
in individual problem solving, generally showing that the
kind of external representation used to depict a problem
may determine the ease with which the problem is solved
[7, 30, 32, 35, 70]. Some representations unnecessarily
restrict the solver's search space (e.g., the 9-dots problem
[19]). Alternatively, some forms of representation may
have constraints built into them so that the representation
actually enhances problem solving success [26, 57]. One
might ask whether this research is sufficient to predict the
effects of representations in collaborative learning. A
related but distinct line of work undertaken in
collaborative learning contexts is needed for several
reasons. The interaction of the cognitive processes of
several agents is different than the reasoning of a single

Volca nos ki ll ed
the m.

A meteor  hi t
t he Eart h.

Kra katoa
spread heavy
metal

Heavy metal  i n
t he rocks the
di nos died i n.

+ -

+-

A me te or  hi t
t he  Ear th.

Heavy me ta l  i n
t he rocks the
di nos  di ed i n.

Huge cr at er  in
Mexi co from
t he s ame time .

+ -

+

Hypo Data

Volc anos
ki ll ed t he m.

+

Figure 4. Graph

Volcanos killed
them.

A meteor hit the
Earth.

Heavy metal
in the rocks
the dinos died
in.

Huge crater in
Mexico from
the same time.

Heavy metal
in the rocks
the dinos died
in.

Figure 5. Containment

Da ta  \ Hypo Volcani c Me te or

Heavy me ta l
i n the  rocks .
Huge cr at er
i n Mexi co.

++

+

+ -

Figure 6. Matrix
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agent [37, 41, 47, 51], so may be affected by external
representations in different ways. In particular, shared
external representations can be used to coordinate
distributed work, and will serve this function different
ways according to their representational biases. Also, the
mere presence of representations in a shared context with
collaborating agents may change each individual’s
cognitive processes. One person can ignore discrepancies
between thought and external representations, but an
individual working in a group must constantly refer back
to the shared external representation while coordinating
activities with others. Thus it is conceivable that external
representations have a greater effect on individual
cognition in a social context than they do when working
alone.5 Finally, much prior work on the role of external
representations in individual problem solving have used
well defined problems. Further study is needed on ill
structured, open ended problems such as those typical of
scientific inquiry.

4. Theoretical Discussion

The major hypothesis resulting from the foregoing work
is that variation in features of representational tools used
by learners working in small groups can have a
significant effect on the learners’ knowledge-building
discourse and on learning outcomes. The claim is not
merely that learners will talk about features of the
software tool being used. Rather, with proper design of
representational tools, this effect will be observable in
terms of learners’ talk about and use of subject matter
concepts and skills. The author has begun investigations
concerned with the conditions under which effects on
learning interactions and outcomes are obtained: what
features have what kind of effect? This section develops
an initial theory of how representations guide learning
interactions, and applies this analysis to make specific
predictions concerning the effects of selected features of
representational tools. The discussion begins with some
definitions.

Representational tools are software interfaces in
which users construct, examine, and manipulate external
representations of their knowledge. The present work is
concerned with symbolic as opposed to analogical
representations. A formalism/artifact distinction [58] is
critical to the present work: A representational tool is a
software implementation of a representational
formalism that provides a set of primitive elements out of
which representations can be constructed. (For example,
in Figure 4 the representational formalism is the
collection of primitives for making hypothesis and data
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statements and “+” and “-” links, along with rules for
their use.) The software developer chooses the
representational formalism and instantiates it as a
representational tool, while the user of the tool constructs
particular representational artifacts in the tool. (For
example, in Figure 4 the representational artifact is the
particular diagram of evidence for competing
explanations of mass extinctions.)

Learning interactions include interactions between
learners and the representations, between learners and
other learners, and between learners and mentors such as
teachers or pedagogical software agents. The present
work focuses on interactions between learners and other
learners, specifically verbal and gestural interactions
termed collaborative learning discourse.

Each given representational formalism manifests a
particular representational bias, expressing certain
aspects of one’s knowledge better than others [65]. The
phrase knowledge unit will be used to refer generically to
components of knowledge one might wish to represent,
such as hypotheses, statements of fact, concepts,
relationships, rules, etc. Representational bias manifests
in two major ways:
♦ Constraints: limits on expressiveness, and

constraints on the sequence in which knowledge units
can be expressed [45, 57].

♦ Salience: how the representation facilitates
processing of certain knowledge units, possibly at the
expense of others [32].

Representational tools mediate collaborative learning
interactions by providing learners with the means to
articulate emerging knowledge in a persistent medium,
inspectable by all participants, where the knowledge then
becomes part of the shared context. Representational bias
constrains which knowledge can be expressed in the
shared context, and makes some of that knowledge more
salient and hence a likely topic of discussion.

4.1 A Perceptual/Logical Analysis

Zhang [70] distinguishes cognitive and perceptual
operators in reasoning with representations (Figure 7).
Cognitive operations operate on internal representations;
while perceptual operations operate on external
representations. According to Zhang, the latter perceptual
operations take place without making an internal copy of
the representation (although internal representations may
change as a result of these operations). The author’s
theoretical outlook is highly sympathetic with Zhang's
account. Expressed in terms of Zhang’s framework, the
present analysis is concerned primarily with perceptual
operations on external representations rather than
cognitive operations on internal representations. This is
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because the proposed work is concerned with how
representations that reside in learners' perceptually shared
context mediate collaborative learning interactions. While
it is the case that cognitive operations on internal
representations will influence interactions in the social
realm, CSCL system builders do not design internal
representations -- they design tools for constructing
external representations. These external representations
are accessed by perceptual operations, so it is the
perceptual features of a representational formalism that
are of greatest interest for CSCL systems.

Stenning and Oberlander [57] distinguish constraints
inherent in the logical properties of a representational
formalism from constraints arising from the architecture
of the agent using the representational formalism. This
corresponds roughly to the present author’s distinction
between “constraints” and “salience,” if one considers
primarily the perceptual architecture. “Constraints” are
logical and semantic features of the representational
formalism; while “salience” is not, being better
understood in terms of Zhang’s distinction between
obtaining information by “direct perception” versus
application of perceptual operators (Figure 7):
information that is recoverable from a representation is
salient to the extent to which it is recoverable by
automatic perceptual processing rather than through a
controlled sequence of perceptual operators.  (The author
does not hold the view that no computation is required for
perception. “Direct perception” requires computation,
albeit highly automatic and requiring no executive
control. Recovery of certain information from a
representation may require controlled application of
multiple direct perceptions. For example, examining a
graph, one’s perception of the color of a node in a graph
is more direct than one’s perception of whether this node
is connected by arcs to another specified node. Visual

search – a sequence of direct perceptions – is required to
make the latter judgement. For our purposes, the
important point is that the work required to retrieve
information from a representation can vary as the
representational system changes.)

The discussion now turns to the identification of
dimensions along which different representational
formalisms vary, and predictions that a given kind of
learning interaction will increase along that same
dimension.

4.2 Representational Formalisms Bias Learners
Towards Particular Ontologies

The first major hypothesis claims that important guidance
for learning interactions comes from ways in which a
representational formalism limits what can be represented
[45, 57]. A representational formalism provides a set of
primitive elements out of which representational artifacts
are constructed. These primitive elements constitute an
“ontology” of categories and structures for organizing the
task domain. Learners will see their task in part as one of
making acceptable representational artifacts out of these
primitives. Thus, they will search for possible new
instances of the primitive elements, and hence (according
to this hypothesis) will be biased to think about the task
domain in terms of the underlying ontology. This point is
illustrated by the examples from our Belvedere
experience, given previously.

4.3 Salient Knowledge Units Receive More
Elaboration

This hypothesis states that learners will be more likely to
attend to, and hence elaborate on, the knowledge units
that are perceptually salient in their shared
representational workspace than those that are either not
salient or for which a representational proxy has not been
created. This is for reasons of Reminding: the visual
presence of the knowledge unit in the shared
representational context serves as a reminder of its
existence and any work that may need to be done with it;
and of Ease of Reference: it is easier to refer to a
knowledge unit that has a visual manifestation, so
learners will find it easier to express their subsequent
thoughts about this unit than about those that require
complex verbal descriptions [10]. These claims apply to
any visually shared representations. However, to the
extent that two representational formalisms differ in kinds
of knowledge units they make salient, these functions of
reminding and ease of reference will encourage
elaboration on different kinds of knowledge units. The
ability to manipulate learners’ elaborations is important
because substantial psychological research shows that

Ext ernal
Re pr es ent at ion

Int ernal
Repres ent at ion

Pe rcept ual
Oper at ions

Di rec tl y
Pe rceived

Cognit ive
Oper at ions

Di rectl y
Re tr ieved

Lookahea d Bi as es
Le ar ned

Knowle dge

Acti ons

Figure 7. Perceptual Component of Zhang's
Model of External Representations in Problem

Solving
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elaboration leads to positive learning outcomes, including
memory for the knowledge unit and understanding of its
significance (e.g., [9, 13, 56]).

For example, consider the three representations of a
relationship between four statements shown in Figure 8.
The relationship is one of evidential support. The middle
formalism uses containment to represent evidential
support, while the right-hand formalism uses an arc. It
becomes easier to perceive and refer to the relationship as
an object in its own right as one moves from left to right
in the figure. Hence the present hypothesis claims that
relationships will receive more elaboration in the
rightmost representational formalism. (The opposite
prediction could be made in situations where learners see
their task as one of putting knowledge units “in their
place” in the representational environment. Once a unit is
put in its place, learners may feel it can be safely ignored
as they move on to other units not yet placed.)

4.4 Salience of Missing Knowledge Units Guides
Search for New Knowledge

Some representational formalisms provide structures for
organizing knowledge units, in addition to primitives for
construction of individual knowledge units. Unfilled
“fields” in these organizing structures, if perceptually

salient, can make missing knowledge units as salient as
those that are present. If the representational formalism
provides structures with predetermined fields that need to
be filled with knowledge units, the present hypothesis
predicts that learners will try to fill these fields. For
example, a two dimensional matrix has cells that are
intrinsic to the structure of the matrix: they are there
whether or not they are filled with content. Learners
using a matrix will look for knowledge units to fill the
cells. The ability to manipulate learners’ awareness of
missing knowledge could be a useful form of scaffolding
for metacognitive competence [4].

For example, Figure 9 shows artifacts from three
representational formalisms that differ in salience of
missing evidential relationships. In the textual
representation, no particular relationships are salient as
missing: no particular prediction about search for new
knowledge units can be made. In the graph
representation, the lack of connectivity of the volcanic
hypothesis to the rest of the graph is salient. However,
once some connection is made to one data item, the
hypothesis will appear connected, so one might predict
that only one relationship involving each object will be
sought. In the matrix representation, all undetermined
relationships are salient as empty cells. The present

What killed the dinos 65 my ago?
  > Volcanos killed them.
  > A meteor hit the Earth.
    >> Heavy metal found in the rocks
the dinos died in.
    >> Huge crater in Mexico from the
same time.

Volcanos killed
them.

A meteor hit the
Earth.

Heavy metal
in the rocks
the dinos died
in.

Huge crater in
Mexico from
the same time.

Heavy metal
in the rocks
the dinos died
in.

Volca nos ki ll ed
the m.

A meteor  hi t
t he Eart h.

Kra katoa
spread heavy
metal

Heavy metal  i n
t he rocks the
di nos died i n.

+ -

+-

A me te or  hi t
t he  Ear th.

Heavy me ta l  i n
t he rocks the
di nos  di ed i n.

Huge cr at er  in
Mexi co from
t he s ame time .

+ -

+

Hypo Data

Volc anos
ki ll ed t he m.

++

Threaded Discussion: limited
representation of relation.

Containment: Implicit
representation of relations.

Graph: Relationship as object of
perception.

Figure 8. Example of Elaboration Hypothesis

Maybe volcanos killed them. Or a
meteor hit the Earth.  Some scientists
found heavy metal in the rocks the
dinos died in. Others found a big
crater in Mexico from the same time.

Volca nos ki ll ed
the m.

A meteor hit
t he Eart h.

Kra katoa
spread heavy
metal

Heavy metal  i n
t he rocks the
di nos died in.

+ -

+-

A meteor hit
the Earth.

Heavy metal in
the rocks the
dinos died in.

Huge crater in
Mexico from
the same time.

+ -

+

Hypo Data

Volcanos
killed them.

+

Data  \ Hypo Volc ani c Meteor

Heavy me ta l
i n the  rocks .
Huge cr at er
i n Mexi co.

+

+

+ -

Text: No relation is saliently
missing.

Graph: Partial salience of missing
relations. (Also true of
Containment.)

Matrix: Salience of all missing
relations.

Figure 9. Example of Salient Absence Hypothesis
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hypothesis predicts that learners will be more likely to
discuss all possible relationships between objects when
using matrices.

Other variations on representational formalisms with
corresponding predictions are possible; however the
discussion must end here for space considerations. The
discussion now turns to studies now underway designed to
test these predictions.

5. A Systematic Investigation of the Effects of
Representational Bias on Discourse

The author has begun studies that test the effects of these
formalisms on collaborative discourse and learning. At
this writing, pilot studies have been run and are under
analysis, and a proposal for in-depth study has been
funded. Four representational formalisms are being
compared in a proximal collaborative learning
configuration. The four formalisms, which are
characterizations of systems being deployed today, were
chosen to maximize predicted differences along certain
dimensions. These formalisms are threaded discussions
(Figure 3), graphs (Figure 4), containment (Figure 5),
and matrices (Figure 6). These formalisms intentionally
differ on more than one feature (see Table 1). The
research strategy is to maximize the opportunity to
observe significantly different effects on learners’
discourse and on learning outcomes. These results will
then inform well-motivated selection of studies that vary

one feature at a time as needed to disambiguate alternate
representational explanations for the results. This
expedient approach is necessary in order to explore the
large space of experimental comparisons within the time
scale on which collaborative technology is being adapted.

Subjects are using a version of Belvedere modified for
the experiments. They are presented with a “science
challenge problem” in a web-browser. A science
challenge problem presents a phenomenon to be
explained, along with indices to relevant resources. It is
important that these are relatively ill-structured problems:
at any given point many possible knowledge units may
reasonably be considered. This provides the necessary
degrees of freedom within which representational bias can
work.

The computer screen is divided in half as shown in
Figure 10. The left hand side contains the
representational tool -- any one of Threaded Discussion,
Containment, Graph (shown), or Matrix. The right hand
side contains a web browser open to the entry page for the
science challenge materials. Students seated in front of
the same monitor are asked to read the problem statement
in the web browser on the right. They are then be asked to
identify hypotheses that provide candidate explanations of
the phenomenon posed, and evaluate these hypotheses on
the basis of laboratory studies and field reports obtained
through the hypertext interface. They are asked to use the
representational tool on the left to record the information
they find and how it bears on the problem.

Threaded Containers Graphs Matrices
Organization of
Inquiry Activity

Discussion topics are
posted, followed by
chronologically organized
replies.

Hypotheses are first
recorded as boxes in the
workspace. Empirical
observations are sorted by
placing them in boxes.

Hypotheses and empirical
observations are recorded
at any time as shapes
placed in the workspace.
Evidential relations are
recorded by linking
shapes together.

Hypotheses and empirical
observations are recorded
at any time by creating
new columns & rows
(respectively). Evidential
relations are recorded by
placing symbols in empty
cells.

Ontology Implicit:
♦ statements
♦ reply chronology

 Implicit:
♦ hypothesis
♦ empirical observation
♦ consistency

 Explicit:
♦ hypothesis
♦ empirical observation
♦ consistency
♦ inconsistency

 Explicit:
♦ hypothesis
♦ empirical observation
♦ consistency
♦ inconsistency

 Salience of
Known
Relations

 Implicit in Context:
♦ reply chronology

 Implicit in Context:
♦ consistency

 Explicit Object:
♦ consistency
♦ inconsistency

 Explicit Object:
♦ consistency
♦ inconsistency

Salience of
Missing
Relations

No salience. Lack of some consistency
relation for a hypothesis.

Lack of some consistency
or inconsistency relation
for a statement.

Relations for all
combinations of
hypothesis and empirical
observation.

Table 1. Features of Selected Representational Formalisms
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Analysis will be based on transcripts of subjects’
spoken discourse, gestures, and modifications to the
interface; as well as measures of learning outcomes.
Based on the features of representational formalisms
shown in Table 1 and the discussion of section 4, the
following predictions are made. The symbols “>“ and
“>>“ indicate that the discourse phenomenon at the
beginning of the list (concept use, elaboration, or search)
will occur at a significantly greater rate in the treatment
condition(s) on the left of the symbol than in those on the
right. The double symbol “>>” indicates greater
confidence in the prediction.

Concept Use (section 4.2): Graph, Matrix >>
Container, Threaded Discussion. The Graph and
Matrix representations require that one categorize
statements and relations. This will initiate
discussion of the proper choice, possibly including
peer coaching on the underlying concepts. The
Container and Threaded Discussion representations
provide only implicit categorization. There may be
some talk of where to put things, but this talk is less
likely to be expressed in terms of the underlying
concepts.

Elaboration on Relations (section 4.3): Graph > Matrix
>> Container > Threaded Discussion. Graphs and
Matrices make relations explicit as objects that can
be pointed to and perceived, while this is not the
case in the other two representations. More
tenuously, the ability to link relations to other
relations in Graphs may increase elaboration on
relations relative to Matrices, if this facility is used.
The appearance of one statement inside another’s
container constitutes a more specific assertion than
contiguity of statements in a Threaded Discussion.
Hence subjects are more likely to talk about whether
a statement has been placed correctly in the
Container representation.

Search for Missing Relations (section 0): Matrix >>
Graph, Container >> Threaded Discussion. In the
Matrix representation, there is an empty field for
every undetermined relationship, prompting
subjects to consider all of them. In Graphs or the
Container representations, salience of the lack of
some relationship goes away as soon as a link is
drawn to the statement in question or another is
placed in its container, respectively. Threaded
Discussion does not specifically direct search
towards missing relationships.

Follow-up studies will test the generality of selected
results in a distance learning environment. The method
will be similar except that learners will be working in
different rooms using a “chat” facility as a medium of
discourse instead of speech.

6. Summary

Prior experience with Belvedere suggests that variation in
features of the representational tools provided by such
technology can have a significant effect on the learners’
knowledge-building discourse and on learning outcomes.
The paper sketched a theoretical analysis of the role of
constraints and salience in representational bias, and
outlined a systematic investigation being undertaken by
the author. Work underway will inform the design of
future software learning environments and provide a
better theoretical understanding of the role of
representational bias in guiding learning processes.
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