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Wetlands importance for global cycles and theirs ecosystem services as biodiversity 

have been internationally recognized. Despite such recognition wetlands contamination 

and disappearance occurs. One of the pressures on wetlands comes from agriculture 

because of the need of land for crops resulting in its drainage, contamination, silting, 

transformation in irrigation ponds and eutrophization. Human population growth and its 

effects on agricultural needs and in higher agrochemical use will result in higher 

wetland pollution. European policy efforts are being made to achieve good chemical 

and ecological quality of all European water bodies. In order to prevent ecological 

impairment, one of the tools is the Ecological Risk Assessment (ERA) of chemical. The 

ERA evaluates the effect of toxicant exposures upon ecosystems, animals and humans. 

There is an objective asymmetry between community protection policy goals and ERA 

ecological realisms since it is mainly based on single-species tests. Therefore, an 

improvement of ERA is needed in order to increase its ecological relevance to facilitate 

management decisions. The needed areas to balance the mentioned objective 

asymmetry, which have been highlighted by ecotoxicology experts and European 

agencies, are: 1) influence of ecological interactions as competition and 2) predation on 

community responses and recovery capacity after toxicant exposures; 3) explore 

toxicant effects on biodiversity and 4) on ecosystem services and functions; and, 5) 

assess toxicant mixtures effects. Therefore, the thesis focuses on agrochemical scenarios 

(mixture, pulses frequency and limits) and ecological scenarios (ecological interactions 

as competition and hierarchical levels) through six chapters. There are three main 

objectives within those scenarios: 1) Assess the effect of agrochemicals commonly used 

above and below legal limits on aquatic community in order to test if current legislation 

over- or under protect aquatic communities; 2) Assess how agrochemicals mixture and 

pulses frequency effects on aquatic community vary compare to single agrochemical 

1



exposures; and 3) Assess the influence of ecological interactions on the sensitivity 

response of aquatic species to agrochemicals. The working hypothesis under this 

scenarios and objectives is that agrochemicals exposure due to prevailing agriculture 

intensive practices has negative effects on the aquatic community integrity at both 

structural and functional levels. As expected, negative effects of agrochemicals on 

plankton community were found despite of agrochemical concentrations being within 

legal limits. Moreover, the thesis deals with mixtures and frequency of agrochemicals 

exposures what seeks to simulate more realistic field chemical exposures. Results show 

a higher effect of single agrochemical exposures than mixture exposures, which is 

explained by indirect effects that counterbalance for direct toxic effects across the 

trophic web of one of the chemicals within this specific mixture. However, other results 

shown no compensation effects in mixtures versus single exposure because a drastic 

toxic effect (due to the insecticide) hiding potential interaction at lower mixtures 

concentrations. In addition to mixture, treatment frequency was not relevant because has 

been also hidden for the drastic effect of the insecticide since the first application.  The 

ecological interactions play a role in the sensitivity of aquatic organisms; the thesis 

regards the assessment of the effects of intra- and interspecific competition on 

macroinvertebrates exposed to a fungicide. However, it is complex to predict the 

positive or negative influence because it will vary depending on diverse factors as 

species, density pressures and behavioral aspects. The complexity of the results analysis 

shows how complex are natural systems, it stimulates scientific creativity for future 

research projects.  
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La importancia de los humedales en los ciclos globales y de sus servicios ecosistémicos, 

como la biodiversidad, ha sido reconocida internacionalmente. A pesar de dicho 

reconocimiento, la contaminación y desaparición de humedales sigue teniendo lugar. 

Una de las actividades que genera presiones sobre los humedales es la agricultura, 

principalmente por la necesidad de terrero para cultivos, lo que conlleva su desecación, 

contaminación, colmatación, transformación en balsas de regadío y eutrofización. El 

crecimiento de la población y el incremento en necesidades agrícolas junto a un mayor 

uso de agroquímicos da lugar a una mayor contaminación de los humedales. Las 

políticas europeas se están esforzando en conseguir una buena calidad química y 

ecológica de todos los sistemas acuáticos europeos. Con el objetivo de prevenir un 

deterioro ecológico, uno de las herramientas es la Evaluación del Riesgo Ecológico 

(ERA) de productos químicos. La ERA evalúa los efectos de los tóxicos sobre los 

ecosistemas, los animales y los humanos. Sin embargo, hay una asimetría entre las 

metas políticas de protección de las comunidades y el realismo ecológico de ERA 

debido a que se basa principalmente en los resultados de los tests toxicológicos con una 

única especie. Por tanto, se necesita una mejora del procedimiento de ERA para 

aumentar su relevancia ecológica y facilitar las decisiones de gestión. Las áreas 

necesarias para equilibrar dicha asimetría, las cuales han sido destacadas por expertos 

en ecotoxicología y agencias europeas, son: 1) la influencia de interacciones ecológicas 

como la competencia y 2) la depredación en la respuesta de la comunidad y en su 

capacidad de recuperación tras la exposición a químicos; 3) explorar los efectos de los 

tóxicos en la biodiversidad y 4) en los servicios ecosistémicos y en sus funciones; y, 5) 

evaluar los efectos de mezclas de tóxicos. En consecuencia, la tesis se centra en 

escenarios agroquímicos (mezclas, frecuencia de pulsos y límites) y escenarios 

ecológicos (interacciones ecológicas como la competencia y niveles jerárquicos) a 
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través de seis capítulos. Hay tres objetivos principales dentro de los mencionados 

escenarios: 1) Evaluar los efectos de agroquímicos comúnmente usado tanto por encima 

como por debajo de límites legales en las comunidades acuáticas con lo que se pretende 

comprobar si los límites actuales de legislación protegen o no a las comunidades 

acuáticas; 2) Evaluar cómo los efectos de la mezcla de agroquímicos y la frecuencia de 

pulsos en las comunidades acuáticas varía en comparación con la exposición a un único 

compuesto; y 3) Evaluar la influencia de las interacciones ecológicas en la respuesta de 

sensibilidad de las especies acuáticas a la exposición de agroquímicos. La hipótesis de 

trabajo bajo estos escenarios y objetivos es que la exposición a agroquímicos debido a 

las prácticas de agricultura intensiva predominantes tiene efectos negativos sobre la 

integridad de la comunidad acuática tanto a niveles estructurales como funcionales. 

Como se esperaba, se detectaron efectos negativos de agroquímicos en la comunidad 

planctónica incluso bajo concentraciones de agroquímicos dentro de los límites legales. 

Además, la tesis trata la mezcla y la frecuencia de la exposición de los agroquímicos lo 

cual aspira a simular exposiciones químicas más realistas y aproximarse a las 

condiciones de campo. Algunos de los resultados obtenidos muestras efectos mayores 

tras la exposición a un único compuesto en comparación con una exposición donde hay 

mezcla de agroquímicos, lo que se explica debido a efectos indirectos que implican una 

compensación de los efectos directos a través de la red trófica de uno de los químicos 

dentro de las mezclas específicas bajo estudio. Sin embargo, otros resultados no 

muestras efectos de compensación en mezclas versus exposiciones bajo un único 

compuesto (insecticida), lo que podría ocultar interacciones potenciales de mezclas de 

menor concentración. Sumado a las mezclas, la frecuencia del tratamiento no fue 

relevante posiblemente porque también pueda estar oculta debido a los efectos drásticos 

del insecticida desde la primera aplicación. Las interacciones ecológicas desempeñan un 
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papel importante en la sensibilidad de los organismos acuáticos; la tesis considera la 

evaluación de los efectos de la competencia intra- e interespecífica en 

macroinvertebrados bajo la exposición de un fungicida. Sin embargo, es complejo 

predecir si la influencia es positiva o negativa porque ésta varía dependiendo en 

diversos factores como las especies, las presiones de densidad y aspectos del 

comportamiento. La complejidad en el análisis de resultados muestra en sí misma la 

propia complejidad de los sistemas naturales, a la vez que estimula la creatividad 

científica para la planificación de investigaciones futuras. 
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INTRODUCTION 
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Wetlands, the threatened aquatic ecosystems  

Aquatic ecosystem embrace water bodies from large scale, as the oceans, to small scale, 

as ponds, being both scales equally important for global cycles and biodiversity 

(Downing, 2010). Within aquatic ecosystems, wetlands have been characterized by high 

economic, cultural, recreational, educational, and scenic values, characterized by high 

productivity and habitat heterogeneity, which results in a large landscape diversity and 

biodiversity (Mitsch and Gosselink, 2000). Considering the Ramsar definition, wetlands 

are “areas of marsh, fen, peatland or water, whether natural or artificial, permanent or 

temporary, with water that is static or flowing, fresh, brackish or salt, including areas of 

marine water the depth of which at low tide does not exceed six meters” (Ramsar, 

1971). The important of wetlands have been internationally recognized from the 

Convention on Wetlands (Ramsar, 1971) to nowadays (Millennium Ecosystem 

Assessment, 2005). Wetlands provides, regulate and support diverse ecosystem services 

as drinkable water, water storage, flooding control, nutrients cycling, biodiversity, 

migratory habitats among others (Millennium Ecosystem Assessment, 2005). Despite 

theirs values and international efforts to protect then wetland contamination and 

disappearance is a reality. The present study has taken place in the context of Spain, a 

Mediterranean country where more than 60% of wetlands have disappeared (Casado 

and Montes, 1995); even when the wetlands are maintained, they are suffering many 

anthropogenic impacts (Ortega et al., 2006). More specifically, this thesis has been 

developed in Andalucía which is rich in Mediterranean temporary ponds (MTPs). MTPs 

are considered high eco-social values for its peculiarity since are found in only 5 regions 

in the world with Mediterranean climate (Rhazi et al., 2006), therefore, are a priority 

habitat in European networks as Natura 2000. Going a local step further, in the Alto 

Guadalquivir area (Jaén and eastern Córdoba region) there are more than 90 wetlands 
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and just 14 of them are protected. The situation is worrying, actually one has been 

drained despite its protection (Ortega et al., 2003) what raise concern about the other 

wetlands future.  

 

Wetlands and agriculture 

Wetlands have faced a conflict with agriculture land needs meaning its drainage, 

pesticides and herbicides contamination, silting, transformation in irrigation ponds and 

eutrophization (Ortega et al., 2003). In fact, it has been reported that wetlands 

surrounded by agriculture are one of the most stressed natural systems due to 

agricultural development and runoff (Casado and Montes, 1995; Salvadó et al., 2006; 

Schulz et al., 2003). A future worst case scenario would be expected because human 

population growth will lead to an increase of agricultural needs worldwide so then to 

higher agrochemical use. Therefore, more use of fertilizers and pesticides as fungicides 

and insecticides that will impact aquatic systems. For instance, the European 

Environmental Agency have already published a fertilizer use increase of 35% from 138 

million ton in 1999 to 188 million in 2030 if the current intensive and inefficient 

management practices continue (EEA, 2014). In addition, global changes represent a 

multiple stressor scenario where warmer and more humid conditions are expected 

(Harvell et al., 2002). It may lead to an increase of insect and fungi resulting in a higher 

pest occurrence, consequently ending in a higher use of agrochemical potentially 

reaching aquatic systems. That situation will have an impact at social and economic 

levels owing to the loss of ecosystems services like a key one as biodiversity. Anthropic 

activities impact on biodiversity at both terrestrial and freshwater ecosystems, however 

this impact have been reported to be more drastic in aquatic systems (Sala et al., 2000; 

Ferreira, 2008). Indeed, agrochemicals negative effects on aquatic systems lead to 
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higher adverse consequences on terrestrial biodiversity (García-Muñoz et al., 2010, 

2011).  

European policy efforts are being made to prevent wetlands pollution. European 

authorities are aware of these ecological risks and make efforts to prevent, reduce and 

mitigate then. For instance, the Registration, Evaluation, Authorisation and Restriction 

of Chemicals (REACH) of the European Union (EU) had marked the need to further 

investigate chemical effects on aquatic organisms. Nonetheless, a balance between 

agriculture development and environmental protection is complex to achieve due to 

diverse agendas at economic and ecological levels sum up to the involvement of diverse 

actors (Kaika, 2003). In this sense, it is worthy to mention a specific example that link a 

priori positive politic agricultural decision with negative environmental consequences. 

The Common Agriculture Policy (CAP) pretended to provide a positive economic and 

social incentive to rural areas with low crop production (classified as Less Favored 

Areas (LFA)). However, the final results have been an inefficient and dependent 

agriculture on subsidies in this LFA together with environmental degradation (Caraveli, 

2000).  Figure 1a shows the European map of LFA (OECD, 1997), it is worthy to give 

particular attention to the fact that in South Spain the LFA areas coincide with the Alto 

Guadalquivir (Figure 1b) where 80% of wetlands are impacted by agricultural practices 

(Ortega et al., 2003). Considering our immediate environment, Andalucía is 

characterized by the olive tree agriculture. In fact, Spain is the world's leading olive 

groves producers and Andalucía accounts for more than 60% of the Spanish olive 

cultivated area and 32% of the EU (Junta de Andalucía, 2014a). In social terms, it 

means that olive groves are the main economic activity in more than 300 villages 

supporting more than 250.000 families (Junta de Andalucía, 2014b). It represents a 

complex scenario between environmental and economic criteria. To embrace agriculture 
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development and environmental protection entails complex challenges hard to 

harmonize. However, environmental relevance to maintain economic welfare cannot be 

underestimated as has been the case in many decisions in the past. Hence, this thesis 

seeks to contribute to the balance between agrochemical use in agriculture and aquatic 

ecosystems protection. For this purpose, the data presented pretend to support the 

increasing voices claiming more ecologically realistic risk assessments (ERA). 

 

 

Figure 1. a) Less-favored areas: uplands; b) Alto Guadalquivir wetlands (Ortega et al., 2006). 
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Thesis framework 

The pressure-state-response (PSR) framework states that human activities exert 

pressures on the environment, which can induce changes in the state of the 

environment. Then society has to develop responses to changes in pressures or state 

with environmental and economic policies and programs to prevent, reduce or mitigate 

pressures and/or environmental damage (Rodríguez, 2010). The PSR framework has 

been considered a good conceptual tool for both identify the thesis context and its 

clearness for public communication (Figure 2).  

 

Figure 2.Conceptual model of the thesis framework. 

Therefore, this thesis focuses on one of the agricultural pressures upon water bodies: 

agrochemicals inputs. As agrochemicals generate changes in the environmental state 

through their toxicity, the study was considered into Ecotoxicology. Ecotoxicology is “a 

subdiscipline of ecology that focuses on the effect of toxic substances on ecosystems 

and their living components” (Jorgensen, 2010). Ecotoxicological studies are helping to 

understand individuals, population and community responses to chemical exposures 
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giving science-based evidences to take decisions. In this sense, European Union efforts 

walk towards a good chemical and ecological quality of all European water bodies by 

2015 (Directive 2000/60/CE). One of the tools to evaluate chemicals impacts on the 

ecosystems is the Ecological Risk Assessment of chemicals (ERA).  

ERA is a set of different techniques and methodologies (Figure 3) to examine the effect 

of toxicant exposures on ecosystems, animals and humans (EEA, 2014). Ecotoxicology 

is mainly related and devoted to the ecological effects assessment. Frequently, the 

effects characterization and assessment is based on PNEC calculation (Predicted No-

Effect Concentration) that indicates the level of exposure that does not produce adverse 

effects on ecosystems. The easiest way to calculate PNEC is using the quotient method 

comparing toxicity to environmental exposure. In this method, the estimated 

environmental concentration (EEC) is compared to an effect level, such as an LC50 (the 

concentration of a toxic substance where 50% of the organisms die). When the quotient 

is bigger than 1, toxic risk exists. Initially, agrochemicals thresholds have been based on 

laboratory toxicity test to assess toxicant exposure effect based on endpoints (survival, 

growth or reproduction) in single species test and single compound, such as the classical 

LC50. But, two main shortcomings are associated with this approach: a) the 

extrapolation of the effect based on endpoint at individual levels into a complex 

ecosystem context with populations and communities (Van den Brink, 2013; Wootton, 

2002; Brooks et al., 2009), and b) chemicals do not occur alone in the environment, 

consequently mixtures should also be studied to better understand direct and indirect 

effect of agrochemicals inputs (LeBlanc et al., 2012; Anderson et al., 2006; Barata, 

2006).  
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Figure 3.The conceptual diagram for ecological risk assessment (ERA) together with risk 
communication, management and ecological monitoring (Jorgensen, 2010). 
 

Organizations as the Organization for Economic Co-operation and Development 

(OECD), the World Health Organization (WHO) and the European Center for 

Ecotoxicology and Toxicology of Chemicals (ECETOC) are actively working on the 

improvement of ERA in order to facilitate management decisions (EEA, 2014). In fact, 

it is informally known that EU directives protection goals based on individual-levels 

would need to increase its complexity level in order to fulfill population and ecosystem 

protection goals (De Laender et al., 2013). De Laender et al. (2013) highlight 5 main 

study areas to balance that objective asymmetry: study the influence of 1) competition 

and 2) predation on population and community levels and recovery capacity; 3) explore 

the chemical effects on biodiversity; 4) assess chemical exposure on ecosystem services 

and functions; and, 5) evaluate toxicant mixture effects. ERA seeks to establish 

standards for the use of chemicals to reduce ecological risk. In order to do so, ERA may 

have to be updated considering the 5 main study areas mentioned above in order to 
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stablish protective enough legal limits. In this respect, current legal limits are based on 

single species tests which lack ecological and chemical realisms. Therefore, it would be 

insufficient to obtain a realistic ecological risk assessment where direct and indirect 

effect would be difficult to evaluate (Crane, 1997; Boxall et al., 2002; Baird et al., 

2007). All the mentioned weaknesses represent an intricate challenge where it must be 

accepted that: a) it is extremely complicated to assume the cost of all environmental 

effects and, b) environmental managers have to take decision dealing with high 

uncertainty (Figure 4; Jorgensen, 2010). The aptitude to deal with this high complexity 

is not to get discouraged about the possibility of taking action to prevent environmental 

impacts. On the contrary, the consequence is to invest in research to take more science-

based decision and to apply the precautionary principle when there is lack of 

information. 

 

Figure 4. Aquatic ecotoxicological tests used to establish biologically safe concentrations of 
potential toxicants (Modified from Jorgensen, 2010). The diagram shows the difficulty of 
combine complex ecological studies with interpretation confidence.  
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Thesis scenarios 

From this unexplored new scientific niche, this thesis explores scenarios of chemical 

mixtures, of ecological conditions and of theirs interactions. Reassuming, the first rule 

to deal with complex scenarios is to simplify. In order to contribute to a better 

understanding of agrochemical effects on the aquatic communities, this work 

encompasses two main scenarios through 6 chapters: agrochemical scenarios (mixture, 

pulses frequency and limits) and ecological scenarios (ecological interactions: 

competition and hierarchical levels) (Figure 5).  

 

Figure 5. Two main scenarios of the thesis. 

The first scope deals with the complexity of agrochemicals exposure scenarios in the 

environment that mainly depend on the agriculture uses and legal limits. Chemical 

concentrations in runoff events will vary with seasonality and application times. In 

addition, there will be mixtures of the chemicals applied together in the same season 

and/or with the ones already present in the environment from previous applications. 

Therefore, the prevalence of interactive toxic effects over the occurrence of single 

solutions is a fact that should be studied (Kungolos et al., 2009). Such interactive effect 

could be: additive when chemicals do not interact and the effect is the sum of theirs 

toxicity effect; synergetic when chemicals interact and its combined effect is higher than 
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if additive behavior would have occurs; and, antagonistic when chemical interact and 

the toxicity effect of one counterbalance the effect of the other chemical. In addition, a 

further relevant branch is to explore the low doses of chemicals routinely detected in the 

environment (LeBlanc et al., 2012) that may fall within legal limits but still affecting 

aquatic systems. Further than this thesis focus, it raises the question if sublethal 

routinely detected levels of contamination influence microevolution or local adaptations 

towards more tolerant species. 

Agrochemicals used in agriculture will reach aquatic ecosystems by both direct spray 

and runoff events (Brock et al., 2006). The mode of action (pesticides, fungicides, 

fertilizers…) and the chemical characteristics (sequestration, detoxification, 

bioaccumulation, synergy…) have repercussion on the final toxic effect and could 

increase the ecological risk. One section of the experiments regards toxicity modulation, 

considering toxicant concentrations below and above legal limits, in order to detect 

ecological risk. The use of concentrations above legal limits is justified because 

pollutants concentrations can increase up to several orders of magnitude after rainfall 

events (Rabiet et al., 2010). The interest in study toxicant concentrations below legal 

limits comes from the potential sublethal effect of low doses routinely detected in the 

environment (Maltby et al., 2002; LeBlanc et al., 2012). For instance, one consequence 

of sublethal effect could be the development of tolerance of specific life stages or 

species what ultimately means a deviation from unpolluted communities. Brausch and 

Salice (2011) reported that the second generation of Daphnia magna was not affected 

by a low environmental realistic pesticides concentration what suggests the 

development of tolerance. Therefore, toxicant concentrations below legal limits may 

have sublethal effect that may be critical to better understand effects on field 

populations and communities. Apart from the toxicant concentration, pulse addition is 
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also a relevant factor that is becoming more important in ecotoxicological studies. Most 

of the studies assess constant toxicant concentrations (Hecnar, 1995; García-Muñoz et 

al., 2009), however, pulses addition of the same concentration could have different 

effects (Earl and Whiteman, 2009; García-Muñoz et al., 2011). In field conditions, 

contaminant exposures of aquatic organisms fluctuate in concentration, duration and 

frequency (Hoang et al., 2007; Downing et al., 2008). Agrochemicals inputs in aquatic 

systems will vary mainly owing to: runoff related to rainfall events; and, application 

timing depending on the cultivated species growth requirements and control of pests 

and diseases (FAO, 2006; LeBlanc et al., 2012; Haygarth et al., 2012; Reinert et al., 

2002; Hoang et al., 2007; Earl and Witheman, 2009). For that reason, experiments 

presented in this thesis explore both single and several pulses. Other section of the 

experiments deals with responses to single and mixture toxicant exposure. For instance, 

in Delta del Ebro more than 30 pesticides are routinely detected in surface water 

(Suárez-Serrano et al., 2010), however, pesticides effects on aquatic organisms are 

based on individual toxicant (Lydy et al., 2004). It is obvious the high complexity of 

extrapolate Ecological Risk Assessment (ERA) to field conditions when considering a 

single toxicant. Therefore, even if considering mixtures would be more appropriate, the 

complexity exponentially increases. Nevertheless, studies of mixtures are needed in 

order to fulfill such as relevant knowledge gap about complex exposure scenarios. In 

fact, the European Commission highlight that only few semi-field experiments assessed 

mixtures of pesticides effects on aquatic organisms and ecosystem functions (European 

Commission, 2006). This thesis explores the toxic effects of fertilizers (ammonium 

nitrate, nitrogen and phosphorus), fungicides (copper sulfate and carbendazim) and 

insecticide (chlorpyrifos). Agrochemicals selection responds to different criteria. 

Ammoniun nitrate and copper sulfate have been chosen because of its local relevance in 
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olive tree groves in Jaén (Andalucía) likewise its global use in other cultures. 

Experiments have focus con nitrate because ammonium quickly transform into nitrates 

by nitrification processes. Even though nitrate naturally occurs in aquatic systems, its 

concentrations have increased due to intensive fertilizers use. García-Muñoz et al. 

(2011) reported effects on amphibian tadpoles (Epidalea calamita) mortality and total 

length of sublethal pulses of nitrate. In the case of copper sulfate, it can even been 

directly applied into water systems as a plant herbicides and algaecide around the world. 

In addition, copper is a heavy metal what is a major category of pollutants impacting 

also human health (Duruibe et al., 2007).Copper sulfate is the commercial product used 

in agriculture, but copper is the target chemical from the experiments. Even though 

copper could be found naturally in different forms, it can be toxic in aquatic systems as 

Cu2+ (Lenwood et al., 1998). Previous studies have report direct effect on individuals 

and long-term effects on populations. Parra et al. (2005) showed copper effect on 

hatching rates and nauplii survival on the copepod Arctodiaptomus salinus; while, 

Johnston and Keough (2005) reported changes in population size structure of sessile 

marine invertebrates as a results of copper pulses. 

Nutrients (nitrogen and phosphorus) and chlorpyrifos are the agrochemicals used to 

explore mixture, pulses and pulses frequency scenarios. Nitrogen cycle has been highly 

disrupted by human activities meaning highly inputs in aquatic systems through runoff 

events from agricultural fields, livestock and atmospheric deposition (Galloway et al., 

2004). Phosphorus cycle has also been altered by human activity increasing its release 

from the sediments (Mooij et al., 2005) or entering by runoff events from fertilization 

cropping season, consequently altering natural aquatic systems. For instance, Miracle et 

al. (2007) proposed a relationship between nutrients inputs in aquatic ecosystems and a 

shift to a turbid water state as a result of zooplankton community change nutrient-
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induced. Nutrients changes co-occur with other chemical pressures as insecticide 

pollution. Chlorpyrifos is a broad-spectrum organophosphate insecticide used for 

agricultural purposes worldwide. Brock et al. (2000) reported insecticides toxicological 

effects upon growth, survival and reproduction of aquatic organisms. Chlorphyrifos and 

nutrients are likely to occur in the aquatic systems due to its application times ending in 

runoff events (FAO, 2001; FAO, 2006; Reinert et al., 2002). Moreover, Carbendazim is 

a worldwide fungicide to control pest in oilseed rape, maize and rice among others 

cultures. Carbendazim negative effect on macroinvertebrate species (Cuppen et al., 

2000) and zooplankton species (Van den Brink et al., 2000) has been previously 

described. The different types of agrochemicals have shown negatives effects on 

different organisms but also they could affect higher hierarchical levels such as 

community structure changes. Examples of some studies encompassing community 

complexity are Van den Brink et al. (2000) and Downing et al. (2008). Van den Brink 

et al. (2000) assessed the effects of a fungicide (carbendazim) in zooplankton and 

primary producers. They found structural changes as a consequence of both direct 

toxicant adverse effects on zooplankters and macroinvertebrates, and indirect effects of 

phytoplankton growth owing to grazing pressure release. In the same line, Downing et 

al. (2008) studied the freshwater community responses to environmental realistic 

pesticide (Sevin) pulses finding decreases of zooplankton endpoints (richness, diversity, 

abundance and oxygen concentrations) while increases in phytoplankton and microbial 

endpoints (abundance). 

The second scope focuses on the ecological conditions. Ecological risk assessment use 

single standard species test which results are used to stablish legal limits of chemicals. 

However, a main shortcoming of those tests is the lack of ecological relevance where 

ecological interactions are ignored and only standards species instead of local species 
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are used. Hence, the mentioned weakness compromises results extrapolation into 

ecosystem levels. The aquatic community is the thesis “studied subject”. It is known 

that pesticides and fertilizers can impact the ecological integrity of the aquatic 

community. The changes in its structure or function can be used as endpoint to assess 

the toxic effects at this hierarchical level. Traditionally, effects at morphological, 

physiological, biochemical or genetic levels have been reported (Troncoso et al., 2000). 

Consequently, species recruitment, hatching rates, survival rates, grazing capacity will 

be alter (Parra et al., 2005; Sharp and Stearns, 1997) raising concern about long term 

consequences for the ecosystems and the services they provide. In this sense, field 

experiments have linked algae blooms events with a decrease of invertebrate grazers 

affected by insecticides (Hurlbert et al., 1972, Boyle et al., 1996). Algae blooms could 

lead to eutrophization problems changing water quality, submerge vegetation density 

and biodiversity (Miracle et al., 2007) consequently, diminishing ecosystem services. 

The effects of agrochemicals on aquatic systems have been regulated with a focus on 

standard species (for instance, Daphnia sp. or Chironomus sp. for invertebrates, green 

algae for algae or Lemna sp. for macrophytes). However, agrochemicals will affect local 

communities that most likely differ from the few standard species better studied. In 

order to overcome this limitation microcosms experiments were done using natural local 

communities’ assemblages. The microcosms allowed establishing natural biological 

assemblages to assess toxicant exposure at population and community levels (Figure 4). 

Multispecies studies are not always available even though they have the potential to 

provide more ecological realistic data than single species test. Microcosms brings the 

possibility of assess indirect effects, recovery capacity and structural-functional 

relationships (OECD, 2006; Sanderson et al., 2009). Therefore, microcosms stablished 

with co-existing population in natural local wetlands were considered a proper set up for 
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the goals of the thesis. In addition, cosmos with a lower level of complexity were also 

use in order to explore specific ecological interaction as competition.  The use of simple 

ecological interactions studies in combination with community experiments may help to 

identify mechanisms controlling direct and indirect community responses to 

agrochemical exposure. This combination of experimental studies would allow a 

holistic effect interpretation at higher scales of complexity. In this context, it is crucial 

to consider biological and ecological factors as species present, genotype, life stage and 

ecological interactions (Hanazato et al., 2001; De Laender, 2013). Ecological 

interactions are a recent research area recommended to be considered in Ecological Risk 

Assessments (Van den Brink, 2013; De Laender et al., 2013; Brocks et al., 2006). It will 

contribute to not underestimate or overestimate agrochemical risk for the aquatic 

communities (Pestana et al., 2009; Foit et al., 2012). 

The emerging recognition of the role of small wetlands ecosystems (i.e. small lakes and 

ponds as are the majority of Jaén wetlands) in global processes and cycles being this 

research area mostly unexplored (Downing et al., 2010) is the mayor justification for 

the present work. In these aquatic ecosystems, Plankton (phytoplankton and 

zooplankton) is an important component at ecosystem levels for being a principal 

pathway for energy flow (Álvarez Cobelas and Rojo, 2000; Nayar et al., 2004). 

Phytoplankton is the primary producer in aquatic systems, therefore, its community 

structure and dynamic influence higher trophic levels as zooplankton. Changes in 

phytoplankton community could result in inedible taxa for zooplankton communities. 

Reduced grazing capacity of zooplankton are of extreme importance because can result 

in eutrophication impacts (Van Wijngaarden et al., 2005; Hanazato, 1998; Fleeger et al., 

2003). Zooplankton represents one of the major components of lake ecosystems having 

an influence on the water quality and upon other trophic levels. Previous studies 

23



highlight the consequences of zooplankton abundance and community changes upon the 

spring clear-water phase in lakes (Hanazato, 1998) and on fish larvae development 

(Zagarese, 1991). Benthos taxa were also used, the taxa selection criteria were based on 

its ecological importance likewise other relevant features for the experimental design as 

its natural co-occurrence and easy handle characteristic. Then, competition experiments 

were conducted using gasteropods (Bithynia tentaculata and Radix peregra), amphipods 

(Gammarus pulex) and isopods (Asellus aquatic). In the case of gastropods, its 

ecological relevance is due to its high abundance in aquatic systems up to 20%-60% of 

the biomass of macroinvertebrates in some freshwater ecosystems (Habdija et al., 

1995). And, amphipods are considered major decomposer of leaf material what is a 

crucial ecosystem function (Zubrod et al., 2010; Graça et al., 1994). 

Based on the previous sections and paragraphs, we defend the need of this research, 

conceptual framework, scenarios, methodology, likewise the agrochemical selection and 

species used. It supports the following hypothesis and objetives.   
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Los humedales, sistemas acuáticos amenazados 

Los sistemas acuáticos engloban cuerpos de agua desde aquellos de gran escala, como 

océanos, hasta los de pequeña escala, como charcas, siendo ambas escalas igual de 

importantes para los ciclos globales y la biodiversidad (Downing, 2010). Dentro de los 

sistemas acuáticos, los humedales han sido reconocidos por su alto valor económico, 

cultural, recreativo, educativo y escénico. Su alta productividad y heterogeneidad de 

hábitats da lugar una extensa diversidad de paisajes y alta biodiversidad  (Mitsch and 

Gosselink, 2000). Según la definición en Ramsar, los humedales son “áreas de 

marismas, pantanos y turberas, o agua, tanto natural como artificial, permanente o 

temporal, estática o corriente, dulce, salobre o salada, incluyendo áreas de agua marina 

cuya profundidad en marea baja no supera los seis metros” (Ramsar, 1971). La 

importancia de los humedales ha sido internacionalmente reconocida desde la 

Convención sobre Humedales (Ramsar, 1971) hasta la actualidad (Millennium 

Ecosystem Assessment, 2005). Los humedales aprovisionan, regulan y sustentan 

diversos servicios de los ecosistemas como de almacenamiento y abastecimeinto de 

agua, control de inundaciones, ciclo de los nutrientes, biodiversidad, habitar migratorios 

entre otros  (Millennium Ecosystem Assessment, 2005). A pesar de sus valores y de los 

esfuerzos internacionales para protegerlos, la contaminación de humedales y su 

desaparición es una realidad. El estudio que se presenta tiene lugar en el contexto de 

España, un país mediterráneo donde más del 60% de los humedales han desaparecido 

(Casado and Montes, 1995); incluso donde los humedales persisten, estos están bajo 

numerosos impactos antrópicos (Ortega et al., 2006). Más específicamente, esta tesis se 

ha desarrollado en Andalucía la cual es rica en Humedales Temporales Mediterráneos 

(en inglés Mediterranean Temporary Ponds, MTP). Los MTP se consideran sistemas de 

alto valor ecológico y social por su peculiaridad, ya que sólo se encuentran en 5 
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regiones con clima Mediterráneo en el mundo (Rhazi et al., 2009), por tanto, es un 

hábitat prioritario a proteger en redes Europeas como Natura 2000. Desde un enfoque 

aún más local, en el Alto Guadalquivir (Jaén y la zona este de Córdoba) hay más de 90 

humedales y tan sólo 14 de ellos están protegidos. La situación es cuanto menos 

preocupante, máxime cuando uno de ellos ha sido secado a pesar de estar protegido 

(Ortega et al., 2003), lo cual genera una preocupación aún mayor sobre el futuro del 

resto de humedales. 

 

Humedales y agricultura 

Los humedales han estado supeditados a las necesidades de la producción agrícola, lo 

que ha dado lugar a su desecación, contaminación con pesticidas y herbicidas, 

colmatación, transformación en balsas de regadío y eutrofización (Ortega et al., 2003). 

De hecho, hay información que constata que los humedales rodeados de zonas agrícolas 

son uno de los sistemas naturales más alterados debido al desarrollo de la agricultura 

intensiva junto al aumento de la escorrentía (Casado and Montes, 1995; Salvadó et al., 

2006; Schulz et al., 2003). Un escenario aún peor se espera porque el crecimiento de la 

población humana llevará a un aumento de las necesidades agrícolas a nivel mundial, 

por tanto también a un uso mayor de agroquímicos, lo que impactará de forma negativa 

a los sistemas acuáticos. Por ejemplo, la Agencia Europea de Medio ambiente (AEMA) 

ha publicado que habrá un aumento de fertilizantes del 35% pasando de 138 millones de 

toneladas en 1999 a 188 millones de toneladas en 2030 si continúan las prácticas 

agrícolas intensivas e ineficientes de la actualidad (EEA, 2014). Además, los cambios 

globales representan un escenario de presiones múltiples donde se prevén condiciones 

climáticas más cálidas y húmedas (Harvell et al., 2002). Esto puede conllevar un 
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aumento de las poblaciones de insectos y hongos que resultaría en una mayor incidencia 

de plagas, consecuentemente provocando un aumento del uso de agroquímicos que 

potencialmente podrían llegar a los sistemas acuáticos. Dicha situación tendrá, a su vez, 

impacto a niveles sociales y económicos debido a la pérdida de servicios de los 

ecosistemas, tales como la biodiversidad. Las actividades antrópicas impactan la 

diversidad tanto de sistemas terrestres como acuáticos, sin embargo se ha defendido que 

los impactos son más drásticos en sistemas acuáticos (Sala et al., 2000; Ferreira, 2008). 

De hecho, los impactos negativos de los agroquímicos en los sistemas acuáticos 

repercuten a su vez negativamente en la diversidad de los sistemas terrestres (García-

Muñoz et al., 2010, 2011). La unión europea está haciendo esfuerzos políticos para 

prevenir la contaminación de los humedales. Las autoridades europeas son conscientes 

de los riesgos medioambientales y apuestan por su prevención, reducción o mitigación. 

Por ejemplo, el Registro, Evaluación, Autorización y Restricción de químicos (REACH) 

de la EU ha destacado la necesidad de investigar en profundidad los efectos de 

sustancias químicas en organismos acuáticos. No obstante, es complejo alcanzar un 

equilibrio entre el desarrollo agrícola y la protección del medio ambiente debido a sus 

diferentes agendas e intereses a nivel económico y ecológico sumado a la implicación 

de agentes muy diversos (Kaika, 2003). En este sentido, merece la pena mencionar un 

ejemplo que enlaza una decisión política positiva a priori en el sector agrícola que 

acabó siendo una consecuencia medioambiental negativa. La Política Agraria Común 

(PAC) pretendía proporcionar un incentivo positivo social y económico a zonas rurales 

con poca producción (clasificadas como zonas desfavorecidas). Sin embargo, el 

resultado ha sido una agricultura ineficiente y dependiente de subsidios in dichas áreas 

desfavorecidas ligada a una degradación medioambiental (Caraveli, 2000). La figura 1a 

muestra un mapa de las zonas europeas clasificadas como desfavorecidas (OECD, 
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1997), merece la pena prestar atención al hecho de que en el Sur de España parte de las 

áreas desfavorecidas coinciden con el Alto Gualquivir (Figura 1b) donde el 80% de los 

humedales presentan distintos niveles de alteración debido a las prácticas agrícolas 

(Ortega et al., 2003). Si se considera nuestro entorno más inmediato, Andalucía se 

caracteriza por el cultivo del olivar. De hecho, España es el líder mundial en producción 

del olivar y Andalucía representa más del 60% de las zonas españolas con olivar y un 

32% de la EU (Junta de Andalucía, 2014a). En términos sociales, esto significa que el 

olivar es la principal actividad económica in más de 300 pueblos donde más de 250.000 

familias dependen de ésta (Junta de Andalucía, 2014b). Esta situación representa un 

escenario complejo entre criterios medioambientales y económicos. Equilibrar la 

protección agrícola y medioambiental conlleva retos complejos difíciles de armonizar. 

Sin embargo, no se puede desestimar la importancia medioambiental para mantener un 

bienestar económico como ha ocurrido en el pasado durante los procesos de toma de 

decisiones. Por lo tanto, esta tesis persigue contribuir al balance entre el uso de 

agroquímicos en agricultura y la protección del medio acuático. Con dicho objetivo, los 

datos presentados pretenden apoyar el aumento de voces pidiendo evaluaciones de 

riesgo ambiental más realistas ecológicamente.  

 

Figura 1. a) Zonas desfavorecidas: b)  Humedales del Alto Guadalquivir (Ortega et al., 2006). 
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Marco conceptual 

El marco conceptual de Presiones-Estado-Respuestas (PER) establece que la actividad 

humana ejerce presiones sobre el medio ambiente, lo cual induce cambios en su estado. 

En consecuencia la sociedad tiene que desarrollar respuestas a cada cambio de presión o 

estado a través de políticas medioambientales y económicas así como programas para 

prevenir, reducir o mitigar las presiones y daños medioambientales (OECD, 2003; 

Rodriguez, 2010). El marco conceptual PER se ha considerado una buena herramienta 

conceptual tanto para presentar el contexto de esta tesis como por su claridad para una 

comunicación pública (Figura 2). 

 

 Figura 2. Modelo conceptual del marco en que se encuadra la tesis.  

Por tanto, la tesis se centra en una de las presiones de la agricultura intensiva sobre las 

masas de agua: la contaminación por agroquímicos. Debido a que los agroquímicos 

general cambios en el estado del medio ambiente a través de su toxicidad, el estudio se 

consideró dentro de la ecotoxicologia. La ecotoxicologia es “una subdisciplina de la 
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ecología que se centra en los efectos de sustancias tóxicas en los ecosistemas y en sus 

componentes vivos” (Jorgensen, 2010). Los estudios ecotoxicológicos están ayudando a 

entender las respuestas de los individuos, poblaciones y comunidades a las presiones 

químicas, proporcionando evidencias científicas útiles para la toma de decisiones. En 

este sentido, la UE hace esfuerzos para caminar hacia un buen estado químico y 

ecológico de todas las masas de agua en 2015 (WFD 2000/60/CE). Una de las 

herramientas para evaluar los impactos químicos en los ecosistemas es la Evaluación del 

Riesgos Ecológico de los productos químicos (en inglés Ecological Risk Assessment 

ERA). 

Los ERA son un conjunto de diferentes técnicas y metodologías (Figura 3) que permiten 

examinar y evaluar los efectos en los ecosistemas y los seres vivos, incluidos los  

humanos, la exposición a tóxicos (EEA, 2014). La ecotoxicologia está ligada y debe 

dirigirse principalmente a la evaluación del riesgo ecológico. Frecuentemente, la 

caracterización y evaluación de los efectos se basa en el cálculo de la PNEC 

(Concentración prevista sin efecto, siglas en ingles de Predicted-No Effect 

Concentration) que indica el nivel de exposición al que no se producen efectos adversos 

sobre el ecosistema. La manera más fácil de calcular el PNEC es usar el método del 

cociente (en inglés, Risk Quotient) comparando la toxicidad con la exposición 

ambiental. En este método, la estimación de la concentración ambiental (EEC) se 

compara con un nivel de efecto, como el LC50 (la concentración de tóxico a la que 

muere el 50% de los organismos expuestos). Cuando el cociente es mayor a 1, existe 

riesgo de toxicidad. Inicialmente, los límites de agroquímicos se han basado en test de 

toxicidad de laboratorio que evaluaban los efectos de la exposición a un tóxico 

basándose en criterios de valoración (supervivencia, crecimiento y reproducción) de una 
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sola especie expuesta sólo a un compuesto, como la clásica LC50. Pero, hay dos 

limitaciones principales asociadas con este enfoque: a) la falta de realismo de la 

extrapolación de los efectos basados en criterios de valoración a nivel individuoal hacia 

niveles de mayor complejidad en el ecosistema como las poblaciones o las comunidades 

(Van den Brink, 2013; Wootton, 2002; Brooks et al., 2009), y b) que las sustancias 

químicas no aparecen individualmente en el medio, consecuentemente las mezclas 

deberían ser objeto de estudio para entender mejor tanto efectos directos como 

indirectos de los agroquímicos (LeBlanc et al., 2012; Anderson et al., 2006; Barata, 

2006).  

 

Figura 3. Diagrama conceptual de la evaluación de riesgos ecológicos (ERA) junto con los 
riesgos en comunicación, gestión y monitoreo ecológico (Jorgensen, 2010). 
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Organizaciones como la Organización para la Cooperación y Desarrollo Económicos 

(OECD), la Organización Mundial de la Salud (OMS) y el Centro Europeo de 

Ecotoxicología y Toxicología de Productos Químicos (el acrónimo se usa en inglés, 

ECETOC) trabajan de manera activa en la mejora de ERA para facilitar la toma de 

decisiones en el ámbito de la gestión (EEA, 2014). De hecho, se sabe de manera 

informal que las directivas con objetivos de protección de la UE basadas en resultados a 

nivel de individuos, necesitan aumentar su nivel de complejidad para alcanzar dichos 

objetivos de protección con los niveles de población y comunidad en los ecosistemas 

(De Laender et al., 2013). De Laender et al. (2013) destaca 5 áreas primordiales de 

estudio para equilibrar la asimetría mencionada entre la información utilizada y los 

objetivos de protección: estudiar la influencia de 1) la competencia y 2) la depredación 

en poblaciones y comunidades así como en la capacidad de recuperación; 3) explorar 

los efectos de los químicos en la biodiversidad; 4) determinar los efectos en los 

servicios de los ecosistemas y sus funciones tras exposción a químicos; y 5) evaluar los 

efectos de las mezclas de tóxicos. La evaluación del riesgo ecológico pretende 

establecer estándares en el uso de productos químicos para prevenir el impacto 

ambiental. Para dicho fin, los procedimientos seguidos en la evaluación del riesgo 

ecológico debería necesitar una actualización considerando las 5 principales áreas de 

estudio mencionadas arriba para establecer límites legales capaces de proteger lo 

suficiente al ecosistema. Con respecto a esto, los límites legales actuales están basados 

en test realizados con una sola especie por lo que carecen de realismos ecológico y 

químico. Por lo tanto, no serán adecuados para obtener evaluaciones de riesgo ecológico 

realistas con los que evaluar efectos tanto directos como indirectos (Crane, 1997; Boxall 

et al., 2002). La existencia de estas debilidades en los sistemas actuales de evaluación se 

presentan como un complejo reto en el que se debe aceptar varias limitaciones: a) es 
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extremadamente complicado asumir el coste de todos los impactos ambientales y, b) los 

gestores de medio ambiente tienen que tomar decisiones asumiendo un alto nivel del 

incertidumbre (Jorgensen, 2010). La actitud para afrontar esta alta complejidad no debe 

ser la desmotivación de llevar a cabo acciones para prevenir impactos medio 

ambientales. Por el contrario, la respuesta ante dicha complejidad debe ser invertir en 

investigación para tomar decisiones con una mayor base científica y, sobre todo, poner 

en práctica el principio de precaución cuando no tenemos suficiente información.  

 

 

Figura 4. Diferentes test ecotoxicológicos usados para establecer concentraciones 
biológicamente seguras de tóxicos en medios acuáticos (Modificado por Jorgensen, 2010). El 
diagrama muestra el aumento de la incertidumbre y la complejidad cuando se realizan estudios 
más realistas desde el punto de vista ecotoxicológico.  
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Escenarios de la tesis  

Esta tesis explora escenarios de mezcla de químicos, aspectos ecológicos y sus 

interacciones y como la primera regla para gestionar escenarios complejos es 

simplificar, se plantearon distintos contextos. Con el objetivo de contribuir a una mejor 

comprensión de los efectos de los agroquímicos en las comunidades acuáticas, este 

trabajo aúna dos escenarios principales a través de 6 capítulos: escenarios de 

agroquímicos (mezclas, frecuencia de pulsos y límites) y escenarios ecológicos 

(interacciones ecológicas: competición y depredación, y niveles jerárquicos) (Figura 5). 

 

Figura 5. Escenarios principales contemplados en la tesis.  

El primer objetivo trata la complejidad de escenarios de exposición de agroquímicos en 

el medioambiente que dependen principalmente de los usos agrícolas, factores 

ambientales (topografía, climatología, etc) y los límites legales. La concentraciones de 

químicos en eventos de escorrentía varían en función de la estación y de los tiempos de 

aplicación. Las interacciones entre tóxicos es un escenario más frecuente de que haya un 

único tóxico, por tanto debería ser estudiado (Kungolos et al., 2009). Tal interacción de 

efectos podría ser: aditiva cuando los químicos no interaccionan y el efecto es la suma 

de los efectos de su toxicidad individual; sinérgica cuando hay interacción entre 
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químicos y la combinación de sus efectos es mayor que si ocurriese una interacción 

aditiva; y, antagónica cuando los químicos interaccionan y el efecto tóxico de uno de 

ellos se contrapone al efecto tóxico del otro. Por otra parte es muy importante explorar 

los efectos de las bajas concentraciones de químicos que se detectan de manera rutinaria 

en el medio ambiente (Le Blanc et al., 2012) los cuales pueden estar dentro de los 

límites legales pero aún así afectar negativamente a los sistemas acuáticos. Esta última 

necesidad de investigación está actualmente en auge y va más allá del objetivo de esta 

tesis. Ya que lo mencionado plantea la pregunta de si niveles de contaminación 

subletales detectados rutinariamente podrían influenciar la microevolución o 

adaptaciones locales hacia poblaciones y/o especies más tolerantes.  

Los agroquímicos usados en agricultura alcanzarán los ecosistemas acuáticos tanto 

directamente por pulverización como por eventos de escorrentía (Brock et al., 2006).  

El modo de acción (pesticidas, fungicidas, fertilizantes…) y las características químicas 

(secuestro, detoxificación, bioacumulación, sinergia…) tienen repercusión en los 

efectos finales del tóxico y por tanto en la evaluación del riesgo ecológico. Una sección 

de los experimentos presentados considera la modulación de toxicidad, considerando 

concentraciones de los tóxicos por encima y por debajo de los límites legales, con el fin 

de determinar el posible riesgo ambiental. El uso de concentraciones por encima de los 

límites legales se justifica porque las concentraciones de los contaminantes puede 

aumenta varios órdenes de magnitud tras periodos de lluvias (Rabiet et al., 2010). El 

interés de estudiar concentraciones de tóxicos por debajo de los límites legales proviene 

de la posibilidad de que ocurran efectos subletales debido a dosis bajas rutinariamente 

detectadas en el medio ambiente (Maltby et al., 2002; Le Blanc et al., 2012). Por 

ejemplo, una consecuencia de efectos subletales podría ser el desarrollo de tolerancia de 

específicos estadios de vida o de determinadas especies, lo que vendría a significar una 
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desviación de lo que ocurriría en zonas no contaminadas. Brausch y Salice (2011) 

publicaron que la segunda generación de Daphnia magna no se veía afectada por bajas 

concentraciones de pesticidas medidas en el medio (realistas), lo que sugiere el 

desarrollo de tolerancia. Por tanto, concentraciones de tóxicos por debajo de límites 

legales podrían tener efectos subletales que pueden ser un punto crítico para entender 

mejor los efectos en campo a nivel de población y de comunidad. A parte de las 

concentraciones de tóxicos, los pulsos de tóxicos son también un factor relevante cada 

vez más importante en los estudios de ecotoxicología. La mayoría de los estudios 

evalúan concentraciones de tóxicos constantes (Hecnar 1995; García-Muñoz et al., 

2009), sin embargo, la aplicación de pequeños pulsos sumando la misma concentración 

final, podría tener efectos diferentes (Earl and Whiteman, 2009; García-Muñoz et al., 

2011). En condiciones de campo, la exposición de los organismos acuáticos a la 

contaminación fluctúa en concentración, duración y frecuencia (Hoang et al., 2007; 

Downing et al., 2008). La entrada de agroquímicos en sistemas acuáticos varia 

principalmente debido a: escorrentía relacionada con periodos de lluvia; y, el tiempo de 

aplicación dependiendo en los requisitos de crecimiento del cultivo y del control de 

plagas y enfermedades (FAO 2006; Le Blanc et al. 2012; Haygarth et al. 2012; Reinert 

et al. 2002; Hoang et al. 2007; Earl and Witheman, 2009). Por dicha razón, los 

experimentos presentados en esta tesis exploran tanto exposiciones de un único pulso 

como de varios.  

En otra sección de la tesis se plantean experimentos que tratan sobre la respuesta 

obtenida tanto a un único químico como a la mezcla de varios de ellos. Por ejemplo, en 

el Delta del Ebro se detecta de manera rutinaria más de 30 pesticidas en aguas 

superficiales (Suárez-Serrano et al., 2010), sin embargo, los efectos de los pesticidas en 

organismos acuáticos se basan en ensayos con un único tóxico (Lydy et al., 2004). Es 
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obvia la alta complejidad de extrapolar los resultados de Evaluaciones de riesgo 

ecológico (ERA) a condiciones de campo considerando resultados de test que usan un 

único tóxico. Por tanto, a pesar de que considerar mezclas sería más apropiado, la 

complejidad aumentaría exponencialmente. No obstante, los estudios de mezclas son 

necesarios para paliar el desconocimiento ante escenarios de exposición complejos. De 

hecho, la Comisión Europea subraya que solo unos pocos estudios, clasificados como 

de semi-campo, evalúan los efectos de la mezcla de pesticidas en organismos acuáticos 

y en las funciones de los ecosistemas (European Commission, 2006). Esta tesis explora 

los efectos tóxicos de fertilizantes (nitrato amónico, nitrógeno y fosforo), fungicidas 

(sulfato de cobre y carbendazim) e insecticidas (clorpirifós). La selección de los 

agroquímicos responde a diferentes criterios. El nitrato amónico y el sulfato de cobre se 

eligieron debido a su relevancia local en el cultivo del olivo en Jaén (Andalucía) así 

como por su uso global en otros tipos de cultivos. A pesar de que los nitratos aparecen 

de manera natural en sistemas acuáticos, sus concentraciones han crecido debido al uso 

de fertilizantes en la agricultura intensiva. García-Muñoz et al. (2011) encontaron 

efectos en la supervivencia y la longitud total en anfibios (Epidalea calamita) debido a 

la exposición de pulsos subletales de nitrato. En el caso del sulfato de cobre, se puede 

aplicar incluso directamente sobre sistemas acuáticos como herbicida o alguicida a nivel 

mundial. Además, el cobre, al ser un metal pesado, pertenece a una categoría superior 

de contaminantes que tienen impactos también sobre la salud humana (Duruibe et al., 

2007). El sulfato de cobre es el producto comercial que se usa en agricultura, pero el 

cobre es el químico en el que se centran los experimentos. Aunque el cobre se puede 

encontrar de manera natural en diferentes formas, éste puede ser tóxico en sistemas 

acuáticos como Cu2+ (Lenwood et al., 1998). Estudios previos han puesto de manifiesto 

efectos directos en individuos y a largo plazo en poblaciones. Parra et al., (2005) 
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muestran los efectos del cobre en las tasas de eclosión y la supervivencia de los nauplios 

del copépodo Arctodiaptomus salinus; mientras que, Johnston and Keough (2005) 

encuentra cambios en la estructura de la población de invertebrados sésiles marino 

como resultado a la exposición de pulsos de cobre.   

Los nutrientes (nitrógeno y fósforo) y el clorpirifós son los agroquímicos seleccionados 

para estudiar los escenarios de mezclas, pulsos y la frecuencia de pulsos. El ciclo del 

nitrógeno ha sido profundamente alterado por las actividades humanas conllevando 

numerosas entradas de nitrógeno en sistemas acuáticos a través de la escorrentía desde 

los campos de cultivo, la producción de ganado o la deposición atmosférica (Gallaway 

et al., 2004). El ciclo del fósforo ha sido también alterado por la actividad humana 

suponiendo un aumento de su liberación desde los sedimentos (Mooij et al., 2005) o 

entrando en los sistemas acuáticos a través de escorrentía durante la estación de 

fertilización de los cultivos, y consecuentemente alterando los sistemas acuáticos 

naturales. Por ejemplo, Miracle et al. (2007) propuso una relación entre entrada de 

nutrientes en sistemas acuáticos y un cambio hacia fases de aguas turbias como 

resultado de los cambios en la comunidad zooplanctónica inducidos por los cambios en 

la concentración de nutrientes. Estos cambios en las concentraciones de nutrientes 

tienen lugar junto a otras presiones químicas como la contaminación por insecticidas. 

Clorpirifós es un insecticida organofosforado de amplio espectro usado en agricultura a 

nivel mundial. Brock et al. (2000) publicaron efectos tóxicos del insecticida en el 

crecimiento, la supervivencia y la reproducción de organismos acuáticos. Actualmente 

existe una alta probabilidad de confluencia de Clorpirifós y distintos nutrientes en 

sistemas acuáticos rodeados de agricultura, debido a sus similares tiempos de aplicación 

acabando juntos en el medio acuático gracias a los eventos de escorrentía (FAO 2001; 

FAO 2006; Reinert et al., 2002). Por otra parte, Carbendazim es un fungicida usado 
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mundialmente en el control de plagas en colza oleaginosa, maíz y arroz entre otros 

cultivos. Se ha descrito previamente que el carbendazim tiene efectos negativos en 

especies de macroinvertebrados (Cuppen et al., 2000) y especies de plancton (Van den 

Brink et al., 2000). Los diferentes tipos de agroquímicos mencionados han mostrado 

efectos negativos sobre diferentes organismos lo que podrían afectar a niveles 

jerárquicos superiores mediante, por ejemplo, cambios en la estructura de la comunidad. 

Se han publicado varios estudios que abarcan la complejidad de las comunidades como 

los de Van den Brink et al. (2000) y Downing et al. (2008). Van den Brink et al. (2000) 

evaluó los efectos de un fungicida (carbendazim) en el zooplancton y en productores 

primarios. Estos investigadores encontraron cambios estructurales como consecuencia 

tanto de efectos adversos directos del tóxico en organismos zooplanctónicos y en 

macroinvertebrados, como de efectos indirectos en el crecimiento del fitoplancton 

debido a una disminución en la presión de herbivoría. También Downing et al. (2008) 

estudiaron la respuesta de una comunidad de aguas dulces a pulsos realistas (medidos en 

el medio) de un pesticida (Sevin) y encontraron una disminución de los indicadores de 

zooplancton (riqueza, diversidad, abundancia y concentración de oxígeno) mientras que 

hubo un aumento de los indicadores de abundancia del fitoplancton y de la actividad 

microbiana. 

El segundo escenario se centra en aspectos ecológicos. La evaluación del riesgo 

ecológico se basa en test con especies estándar cuyos resultados se usan para establecer 

límites legales para sustancias químicas. Sin embargo, una limitación principal de este 

tipo de test es la falta de relevancia ecológica al ignorar las interacciones ecológicas y al 

usar sólo especies estándar en lugar de especies locales. Por tanto, la mencionada 

debilidad compromete la extrapolación de resultados a nivel jeráquicos superiores. En 

este sentido hay que recalcar que el objeto de estudio de esta tesis es la comunidad 
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acuática. Es sabido que los pesticidas y los fertilizantes pueden impactar la integridad de 

la comunidad acuática. Los cambios en su estructura y funciones se pueden usar como 

indicadores para evaluar los efectos tóxicos a esos niveles jerárquicos. 

Tradicionalmente, se ha informado sobre efectos negativos a niveles morfológicos, 

fisiológicos, bioquímicos o genéticos (Troncoso et al., 2000). Esto consecuentemente, 

puede alterar la reclusión de especies, las tasas de eclosión, las tasas de supervivencia 

así como la capacidad de herbivoría (Parra et al., 2005; Sharp y Stearns, 1997), lo que 

agudiza la preocupación sobre las consecuencias a largo plazo para los ecosistemas y 

los servicios que estos proveen. En este sentido, algunos experimentos de campo han 

relacionado eventos de alta proliferación de algas con la disminución de invertebrados 

herbívoros afectados por insecticidas (Hurlbet et al., 1972, Boyle et al., 1996). Dicha 

proliferación de algas puede desembocar en problemas de eutrofización alterando la 

calidad del agua, la vegetación sumergida y la biodiversidad (Miracle et al., 2007) 

consecuentemente, disminuyendo los servicios de los ecosistemas. Los efectos de 

agroquímicos en los sistemas acuáticos se han regulado con un enfoque basado en 

especies estándar (por ejemplo, Daphnia sp. or Chironomus sp. para invertebrados, 

algas verdes para algas or Lemna sp. para macrófitos). No obstante, se puede defender 

con un alta probabilidad  que los agroquímicos afectaran las comunidades locales de 

manera distinta al limitado grupo de especies estándar más estudiado. Con el objetivo 

de superar esta limitación, se usaron experimentos de microcosmos con ensamblajes de 

comunidades locales. Los microcosmos permitieron establecer ensamblajes biológicos 

naturales para evaluar la exposición de los tóxicos a niveles de población y comunidad 

(Figura 4). Los estudios con múltiples especies no son abundantes a pesar de que 

potencialmente dan datos más relevantes ecológicamente comparados con los obtenidos 

con test de una única especie. Los microcosmos presenta la posibilidad de además, 
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evaluar efectos indirectos, capacidad de recuperación y relaciones estructurales-

funcionales (OECD, 2006; Sanderson et al., 2009). Por tanto, los microcosmos 

establecidos con poblaciones que coexisten en humedales naturales locales se 

consideraron una metodología adecuado para los objetivos de la tesis. Asimismo, 

microcosmos con un nivel de complejidad más bajo también se han usado para explorar 

relaciones ecológicas específicas como la competencia. El uso de ciertos estudios 

sencillos sobre interacciones ecológicas en combinación con experimentos a nivel de 

comunidad puede ayudar a identificar mecanismos que controlen tanto respuestas 

directas como indirectas a la exposición de agroquímicos. Esta combinación de estudios 

experimentales podría permitir una interpretación holística de los efectos a niveles 

jerárquicos de mayor complejidad. En este contexto, es crucial considerar factores 

biológicos y ecológicos como lo son las especies presentes, el genotipo, el estadio de 

vida y las relaciones ecológicas (Hanazato et al. 2001; De Laender, 2013).  

Las interacciones ecológicas son un área de investigación que recientemente se ha 

recomendado incluir en las evaluaciones de riesgo ecológico (Van den Brink, 2013; De 

Laender et al., 2013; Brocks et al., 2006). Así se contribuirá a no subestimar o 

sobreestimar el riesgo que suponen los agroquímicos sobre las comunidades acuáticas 

(Pestana et al., 2009; Foit et al., 2012). 

A pesar del reconocimiento emergente del papel que cumple los ecosistemas acuáticos 

de menor tamaño (tal como, lagos y charcas pequeñas como es el caso de la mayoría de 

los humedales de Jaén) en procesos y ciclos globales, la investigación sobre este tipo de 

sistemas relativa a ecotoxicología es un área aún inexplorada (Downing et al., 2010). 

Dicho desconocimiento es la justificación para que el presente estudio se centre en ellos. 

En estos sistemas acuáticos, el plancton (fitoplancton y zooplancton) es un componente 

importante porque es una vía principal en el flujo de energía (Alvarez-Cobelas and 
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Rojo, 2000; Nayar et al., 2004). El fitoplancton constituye el productor primario, así 

pues, su estructura y su dinámica influencian a niveles tróficos superiores como es el 

zooplancton. Los cambios en la comunidad de fitoplancton podrían dar lugar aumentar 

los taxones incomestibles para la comunidad del zooplancton. Una disminución de la 

capacidad de herbivoría del zooplancton es de extrema importancia porque puede 

desencadenar en procesos de eutrofización  (Van Wijngaarden et al., 2005; Hanazato, 

1999; Fleeger et al., 2003). El zooplancton representa uno de los mayores componentes 

en sistemas acuáticos y tiene una influencia tanto en la calidad del agua como en otros 

niveles tróficos. En estudios previos se ha subrayado las consecuencias de los cambios 

en la abundancia y en la estructura comunidad sobre la fase de aguas claras 

especialmente durante la primavera de los lagos (Hanazato, 1998) y su repercusión en el 

desarrollo de las larvas de peces (Zagarese, 1991). En esta tesis también se han usado 

organismos bentónicos, el criterio de selección de estos taxones se basa en su 

importancia ecológica así como en otros aspectos relevantes para el diseño experimental 

como es el que coexistieran en la naturaleza y la fácil manipulación de los organismos 

en laboratorio. Por tanto, los experimentos de competencia se llevaron a cabo usando 

gasterópodos (Bithynia tentaculata y Radix peregra), anfípodos (Gammarus pulex) e 

isópodos (Asellus aquatic). En el caso de los gasterópodos, su relevancia ecológica se 

debe a su alta abundancia en sistemas acuáticos, que supone entre un 20%-60% de la 

biomasa total de invertebrados en algunos ecosistemas de aguas dulces (Habdija et al., 

1995). Por otro lado, los anfípodos y los isópodos se consideran dos de los mayores 

descomponedores de hojarasca, lo que es crucial para evaluar aspectos funcionales de 

los ecosistemas (Zubrod et al., 2010; Graça et al., 1994).  

Con las secciones y párrafos anteriores defendemos la necesidad de esta investigación, 

el marco conceptual, los escenarios, la metodología, así como la selección de 
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agroquímicos y especies utilizadas. Lo que permite a continuación el planteamiento de 

la hipótesis de partida y los objetivos. 

 

55



HYPOTHESIS AND OBJECTIVES 
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The working hypothesis is that agrochemicals exposure due to prevailing agriculture 

intensive practices has negative effects on the aquatic community integrity at both 

structural and functional levels.  

The main objectives are: 

• OBJECTIVE 1. Assess the effect of agrochemicals commonly used above 

and below legal limits on aquatic community in order to test if current 

legislation over- or under protect aquatic communities. 

• OBJECTIVE 2. Assess how agrochemicals mixture and pulses frequency 

effects on aquatic community vary compare to single agrochemical 

exposures. 

• OBJECTIVE 3. Assess the influence of ecological interactions on the 

sensitivity response of aquatic species to agrochemicals. 

 

These objectives have been considered through the six chapters of this thesis. Chapters 

1, 2, 3 and 4, deal with single and mixture exposure of ammonium nitrate and copper 

sulfate and have the plankton community as studied subject, considering the effects on 

its structure and function using microcosms. Chapter 5 has the plankton community as 

studied subject; changes in its structure and function were assessed using microcosms 

but chlorpyrifos and nutrients were used as toxicants. However, all of them are related 

with objectives 1, 2 and 3, and embraces both agrochemical and ecological scenarios. 

Finally, chapter 6 presents two competition experiments with just one toxic substance, 

deepening mainly in aspects related to ecological interactions so objective 3. Each 

chapter corresponds to articles that have been published, sent or are submitted to 
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scientific journals. In order to facilitate the link between the objectives and the chapters 

the articles are cited below: 

Chapter I: Shifts across trophic levels as early warning signals of copper sulfate 

impacts in plankton communities. 

Chapter II: Could a single copper sulfate pulse within legal limits change plankton 

community’s features? 

Chapter III: Effects of nitrate concentrations within legal limits on natural assemblages 

of plankton communities. 

Chapter IV: Effects of environmental relevant agrochemical mixtures within legal 

limits on planktonic community. 

Chapter V: Zooplankton community response and recovery to disturbance variability: 

the importance of pulses, frequency and synchrony of agrochemical mixtures in 

wetlands. 

Chapter VI: Effects of intra- and interspecific competition on the sensitivity of aquatic 

macro-invertebrates to carbendazim. 

 

Understanding agrochemical effects on aquatic systems provides knowledge to improve 

Ecological Risk Assessment. It could also enhance policy makers to legislate based on 

science-evidences. These two statements linking basic and applied science were the 

engine of the thesis and its results and conclusions are presented in the following 

chapters.  
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CHAPTER 1   

 “Shifts across trophic levels as early warning signals of copper sulfate impacts in 

plankton communities” 

Published in Applied Ecology and Environmental Research 12(2): 493-503. 
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Abstract. Intensive agricultural practices have been characterized by an overuse of agrochemicals. The 
inputs of chemicals in a watershed are likely to alter trophic interactions affecting its ecological integrity. 
This ecotoxicological study aims to identify warning signals of agrochemicals effects on a plankton 
community. Eighteen outdoor microcosms were used to establish an experiment with 2 concentrations of 
copper sulfate above and below the legal limit with six replicates lasting two weeks. Phytoplankton and 
Zooplankton structure changes were studied. Chlorophyll-a concentration was used as a functional 
indicator. A rapid change in phytoplankton structural features, abundance and size classes, was detected 
after both, below and above legal, concentrations. Similarly, Zooplankton structural changes showed an 
effect of copper exposures on abundance and composition. As Phytoplankton response was so rapid, it 
could be used as an early and direct warning signal, but also to warn of future indirect effects on 
zooplankton structural features owing to a change of food resources. In summary, the shifts across both 
trophic levels could be use as warning signals. Moreover, even legal limits do not protect the plankton 
community, which emphasises the need of a more ecotoxicological and realistic approach to achieve a 
balance between agriculture development and ecosystems conservation. 
Key words: Copper; Microcosms; Plankton; Warning 

Introduction 
Current main environmental pressures are highly linked to human exponential 

population growth (United Nations Population Division 2000). One of the main 
consequences of population growth is an increase in food demand; therefore, 
agricultural practices intensify with the consequent increased use of agrochemicals 
(Valavanidis & Vlachogianni 2010). The socio-economic value of agriculture cannot be 
denied, however, its integration with environmental criteria must be a priority. The 
improper use and / or application in excess of pesticides, herbicides and fertilizers 
generate an impact on the ecological integrity of ecosystems, affecting their structure 
and function (Troncoso et al. 2002, Parra et al. 2005). In this sense, there is enough 
bibliographic information which shows that intensive agriculture is causing the 
disappearance and / or pollution of wetlands (Casado & Montes 1995, Troncoso et al. 
2000, Parra et al, 2005, García-Muñoz et al. 2011). These impacts have consequences at 
different hierarchical levels: from the individual by morphological, physiological and 
biochemical alterations, to the community level through the loss of diversity, and 
impairing the value and services that healthy ecosystems provide (Montes & Sala 2007). 

Ecological indicators are tools which detect changes on ecosystems that are likely to 
impact ecological integrity and so then the community structure and function, and 
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consequently ecosystem services. Structural features have been usually used alone to 
monitor and assess impacts on the ecosystem ecological integrity, focusing on 
communities assemblages and their resources. Structural attributes are easiest to 
visualize and they are, by far, the most commonly used. Examples are species numbers, 
dominant species, guild composition, taxonomic representation, abundances, size 
composition, and others (Bain et al. 2000). For instance, crustacean zooplankton size 
has been shown to be more strongly correlated with lake water quality than community 
taxonomic structure (Sprules 1984). In addition to structural levels, ecosystem 
functional aspects are gaining more importance in the evaluation of ecosystem integrity. 
Functional indicators assess rates and patterns of ecosystem processes and are 
considered to be an essential complementary aspect to assess ecological integrity due to 
their different sensibility from structural levels to environmental pressures (Gessner & 
Chauvet 2002). However nowadays, society is demanding this to go further, with the 
intent of detecting, as soon as possible, the negative effects on ecosystems. In this sense, 
a warning signal is an important component of the integrated approaches that are needed 
to acquire a general knowledge of toxic impact, and which will allow predictions and 
early mitigation measures (Schmitt-Jansen et al. 2008). 

The study is focused on the effects of a fungicide (copper sulfate) on trophic levels in 
wetlands which are surrounded by intensive olive tree agriculture. The aim was to 
evaluate how this toxic substance could alter structural and functional characteristics of 
the plankton components, and if these changes could be used as early warning signals. 
In the present study two different concentrations were used, the first above the legal 
limit, in order to find clear effects on the plankton community features. The second 
concentration, below the legal limit, in order to check if the changes could be detected 
even before the community was highly altered. 

Materials and methods 
Microcosms 

Eighteen microcosms were set, based on, and adapted from, OECD (2006), and were 
placed outdoors in a specific installation at the University of Jaén (HUMEXPUJA, 
experimental wetland infrastructure in the University of Jaén, which were exposed to 
the same environmental conditions). Microcosms length, height and width were 0.34-
0.28-0.24 cm respectively, 22.8 liters in volume and placed 15 cm apart from each other. 
Microcosms were filled with 18 liters of water and 5 cm of sediment. Water came from 
an artificial pond supply free of contamination and zooplankton (HUMEXPUJA). 
Sediment came from a natural wetland [Casillas wetland, UTM 30SVG1084 with a 
surface area of 2.2 ha. (Ortega et al. 2003)], it was homogenized and distributed among 
the microcosms. Microcosms were established in November 2011 and the experiment 
was finished in January 2012. There was a stabilization period of 7 weeks before adding 
copper to the microcosms in order to favour the development of the planktonic 
communities from the resistant structures present in the sediment. The experiment lasted 
21 days, with a single pesticide spike on day 0. 

 
Disturbance 

Control and two treatments of copper sulfate, with six replicates each one, were used 
in the experimental design. The first one, called high treatment (H: 0.2 mg l-1 Cu), 
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represents a concentration of copper sulphate over the limit established by both the 
Water Framework Directive (WFD 2000/60/CE) and its application into the Spanish 
National legislation (DMC 2000/60/CE) (0.04 mg l-1). The second one, low treatment 
(L: 0.02 mg l-1 Cu) shows a lower concentration than those legal limits previously 
mentioned. Therefore, our L treatment falls within legal limits, while the H treatment is 
one order of magnitude higher. Nominal dosages of copper sulfate were directly added 
and stirred over the water surface of the microcosms as an only pulse on day 0 for the 
whole experimental period. The criteria to establish the concentration of the treatments 
was not based on lethal concentration data of the species involved because the aim of 
the study focused on studying the effect over the entire plankton community. Water 
samples to control the fate of copper sulphate were taken every week and analyzed by 
ICP Mass Spectrometry. 

 
Physical-chemical variables 

Each microcosm was surveyed every seven days. Each time, physical-chemical 
measurements (temperature, pH, % dissolved oxygen and conductivity) were taken 
using field probes. At the same time, water samples were taken, cold stored and 
transported to the laboratory to perform nitrogen dissolved nutrients (nitrate) and 
alkalinity analysis. Alkalinity was measured in the lab using a 848 Tritino Plus device. 
Nitrate was determined following the reduced column Cadmium method (Keeney & 
Nelson 1982). 

 
Biological variables 

Abundance and changes in phytoplankton size distribution were evaluated with flow 
cytometry. Water samples were taken weekly, preserved in glutaraldehide (4%), frozen 
in liquid nitrogen and stored at 80ºC until running the analysis with BD- LSR Fortessa 
flow cytometer. Calibration spheres were used to obtain a cell size regression curve: y = 
0.011 x – 14,388, where “x” represents the mean of the Forward Scatter (FSC), and “y” 
represents the cell size of the cells in µm3. Three cell size populations were determined 
characterized by a mean volume of 58 µm3 (small), 304 µm3 (medium) and 749 µm3 
(high). Population cells abundance were determined from an acquisition time of 180 s at 
a rate of 60 µL min-1. Data analysis was performed using the FACSDIVA software. 

Chorophyll-a concentration was measured weekly with a field fluorometer 
(Aquafluor deTurner Design). Chlorophyll-a (Chl-a) concentrations were later 
calculated using a previously obtained calibration curve determinate by fluorometry. 
Calibration samples were filtered through Whatman GF/C glass microfibre filters (1.2 
μm pore-size), and extracted in 90% acetone for 24 h at 4ºC (Strickland & Parsons 
1968). 

Zooplankton in microcosms was sampled weekly during the study through water-
integrated samples of 100 ml. Water integrated samples were collected, then filtered 
through a plankton net of 30 μm, and preserved in situ with formalin (4%). The filtered 
water was returned to the microcosm. Zooplankton was identified to the lowest practical 
levels and abundance estimated. 

Physical-chemical, plankton and Chl-a variables were compared among microcosms 
using univariate and multivariate analyses with SPSS 19 software. Repeated measures 
of ANOVA were used to test for time and time x treatment effects. An univariate 
ANOVA and a post hoc Tukey test at the sampling date were used to determine the 
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significance of differences between treatments. Prior to analysis, data were tested for 
normality and homoscedasticity. Zooplankton data could not be treated with a 
parametric test due to its low abundance or even complete disappearance in some 
microcosms. Therefore, total zooplankton abundance, rotifera abundance, and copepod 
abundance were analyzed with the non-parametric test of Friedman to test for 
differences due to time and treatment. Wilcoxon post hoc test was also used to 
determinate which treatments were significantly different from one another. Ordination 
of treatment and control of physical-chemical parameters and biological variables, 
except phytoplankton cell size populations, were made considering a Principal 
Component Analysis (PCA) (CANOCO v4.5 software). PCA aimed understanding the 
main factors influencing microcosm’s responses. 

Results 
Copper nominal concentrations were achieved with the spike on day 0. The 

degradation was very low, therefore the average concentration exposure over the whole 
experiment matched the intended nominal concentrations (Table 1). 

Table 1. Mean ± standard deviation (S.D.) of copper sulfate after pulse, by the end of the 
experiment and the average concentration exposure.  

Nominal concentration 
(mg L-1) 

Concentration (mg/l) 
after pulse application 
(day 0) ± S.D. 

Concentration 
((mg/l) after pulse 
(day 14) ± S.D. 

Average 
concentration 
exposure (mg/l) 
± S.D. 

0 0.01± 0 0.01 ± 0 0.01 ± 0 
0.02 0.03 ± 0.01 0.09 ± 0.04 0.06 ± 0.05 
0.20 0.11 ± 0.09 0.18 ± 0.04 0.14 ± 0.07 

Temperature ranged from 9ºC to 13ºC during the experimental period. Dissolved 
oxygen (% DO), pH, conductivity and alkalinity presented significant differences 
between treatments and controls, while nitrate concentration did not present significant 
differences among them, independently of the treatment (Table 2). At the same time, pH 
was higher in H treatments in  day 0 (F = 396.820, P = 0.000) and in L and H treatments 
in  day 7 (F = 236.197, P = 0.000). Dissolved Oxygen (%) was lower in L and H 
treatments from  day 0 (F = 148.684, P = 0.000) till the end of the experiment in  day7 
(F = 143.703, P = 0.000). Average oxygen content in controls, L and H treatments were 
16, 13 and 12 mg l-1 respectively. Conductivity was higher in L and H treatments from 
day 0 (F = 4.104, P = 0.038) till the end of the experiment in  day7 (F = 6.273, P = 
0.010). Alkalinity was higher in L and H treatments in  day 7 (F = 43.707, P = 0.000). 
PCA shows that those differences were not relevant enough to discriminate among 
treatments. PCA of physical-chemical and biological variables discriminate the controls 
(to the left) from the treatments (to the right) (Fig. 1). The two main axes explain 89% 
of the variance, x-axis explains 69% and y-axis explains 20% and they are correlated to 
conductivity and copper concentration and to rotifera and zooplankton abundance, 
respectively. 

The results obtained show a negative effect of both copper sulphate concentrations 
tested on the plankton community under study. Even legal limits do not protect the 
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plankton community. The plankton community was affected by a decrease in 
phytoplankton and zooplankton abundances under both copper concentrations. 

 
Table 2. Physical-chemical and biological parameter measurements (mean ± SE) in 
treatments and controls microcosms along the whole experiment period. *Denotes statistical 
significant differences with the controls. 

 C
hl a (µg l-1) 

H
igh 

size 
phytoplankton 
(cells l-1) 

M
edium

 
size 

phytoplankton 
(cells l-1) 

Sm
all 

size 
phytoplankton 
(cells l-1) 

Total 
phytoplankton 
(cells l -1) 

Total 
zooplankton (ind 
l -1) 

C
opepoda 

abundance 
(ind l-1) 

R
otifera 

abundance 
(ind l-1) 

N
itrate (µg 
N

-N
O

3  l -1) 

A
lkalinity 

 C
onductivity 

(µS cm
-1) 

 %
 D

O
 

pH
 

Tem
perature 

Param
eters 

/ 
D

ays 

Treatm
ents 

1.98 ± 0.29 

13 *10
2 

17 *10
4 

15 *10
2 

17 *10
4 

33.33 ± 22.46 

33.33 ± 22.46 

0 0.09 ± 0.00 

48.33 ± 10.33 

0.80 ± 0.03 

149.81 ± 1.47 

9.01± 0.03 

14.23 ± 0.59 

0 C
ontrols 

1.97 ± 0.40 

13 *10
2 

95 *10
3 

23 *10
2 

98 *10
3 

16.67 ± 8.02 

1.67 ± 1.66 

15.00 ± 8.46 

0.09 ± 0.00 

58.00 ± 4.35 

0.83 ± 0.03 

133.81 ± 2.36 

8.81 ± 0.01 

7.26 ± 0.08 

7 

3.94 ± 0.76 

59 *10
1 

77 *10
3 

17 *10
2 

79 *10
3 

20.00 ± 7.30 

13.33 ± 8.81 

6.67 ± 3.33 

0.09 ± 0.00 

63.00 ± 5.10 

0.82 ± 0.03 

133.46 ± 1.25 

8.81 ± 0.03 

10.44 ± 0.08 

14 

1.89 ± 0.27 

18 *10
2 

24 *10
3 

14 *10
2 

27 *10
3 

26.67 ± 6.66 

18.33 ± 8.72 

8.33 ± 3.07 

0.09 ± 0.00 

60.00 ± 6.77 

0.84 ± 0.04 

150.81 ± 8.92 

8.92 ± 0.05 

13.73 ± 0.53 

0 Low 

0.78 ± 0.10 

37 *10
1 

26 *10
2 

64 *10
1 

35 *10
2 * 

0 0 0 0.09 ± 0.00 

63.67 ± 20.97 

0.93 ± 0.04 

98.75 ± 0.62* 

7.91 ± 0.04* 

7.68 ± 0.14 

7 

1.57 ± 0.14 

43 *10
1 

12 *10
3 

46 *10
2 

16 *10
3 * 

3.33 ± 3.33* 

0 3.33 ± 3.33 

0.09 ± 0.00 

131.67 ± 6.93* 

1.09 ± 0.17* 

101.86 ± 1.67* 

7.87 ± 0.04* 

11.72 ± 0.29* 

14 

1.25 ± 0.12 

97 *10
1 

34 *10
3 

34 *10
2 

38 *10
3 

46.67 ± 20.92 

16.67 ± 14.75 

30.00 ± 20.49 

0.09 ± 0.00 

58.67 ± 12.84 

0.85 ± 0.03 

141.66 ± 2.90 

8.86 ± 0.03 

14.19 ± 0.61 

0 H
igh 

1.60 ± 0.79 

2.4 *10
1 

20 *10
1 

1.8 *10
2 

24 *10
1 * 

8.33 ± 8.33 

0 8.33 ± 8.33 

0.09 ± 0.00 

79.67 ± 7.73 

0.98 ± 0.02 

108.81 ± 0.77* 

7.49 ± 0.03* 

9.20 ± 0.21* 

7 

2.00 ± 0.93 

25 *10
1 

40 *10
2 

21 *10
2 

61 *10
1 * 

0* 

0 0 0.09 ± 0.00 

121.33 ± 4.46* 

0.97 ± 0.03* 

110.90 ± 1.07* 

7.99 ± 0.02* 

12.50  ±  0.31* 

14 
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Figure 1. Physical-chemical PCA ordination graph. Arrows represent the lineal combination of 
zooplankton variables with the first and second axes. C, L and H stand for control, low and high 

copper treatments respectively. D indicates the sampling days. 
 
 
Phytoplankton presented differences in population abundance among microcosms (F 

= 5.447, P = 0.045, Table 2). A drastic decrease of phytoplankton populations can be 
observed after the copper application in the treatments with respect to the control (Fig. 2 
a). Chlorophyll a did not show significant differences (day 0, χ2 = 2.648, P = 0.104;  day 
7, χ2 = 2.406, P = 0.124;  day 14, χ2 = 2.351, P = 0.129;) even though it was lower in 
microcosms treated with copper (Table 2). Our functional indicator, Chl a, decreased 
but not significantly under both copper concentrations, in accordance with 
phytoplankton abundance decrease. In addition, variation of phytoplankton size classes 
of small, medium and high phytoplankton cells showed that copper treatment led to an 
increase in the small size group (Fig. 2). 

Total zooplankton abundance was negatively affected mainly at the end of the 
experiment. The average abundance of total zooplankton during the study period was 
23, 10 and 18 ind l-1 in the control, L and H treatments, respectively. The zooplankton 
community was represented by the presence of rotifera (Euclanis sp., Brachionus sp. 
and  Monostila sp.)  and copedoda (Calanoida). Zooplankton abundance (Table 2) 
showed statistical differences among the controls and treatments at the end of the 
experiment (χ2 = 9.500, P = 0.009) and was lower in L treatment (Wilcoxon test Z = -
2.060, P = 0.039,) and H treatment (Wilcoxon test, Z = -2.060, P = 0.039) than in 
controls. There were not statistically significant differences among zooplankton groups 
in control and treatments but they behaved in different ways. Copepods disappeared at 
the end of the experimental period, while the rotifers increased their abundance. 
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a) 

b) 

Figure 2. a) Phytoplankton abundance (cells L-1) and, b) cell class proportion (%) along the 
experiment. 

Discussion 
Even though there are some specific differences in physical-chemical parameters 

during the experiment, PCA shows that those differences were not relevant enough to 
discriminate among treatments. Therefore, all microcosms were under the same water 
quality and an environmental condition which allows us to refute that community 
differences are neither related to water quality and environmental-induced differences 
among microcosms, but owing to treatment effects. 
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Phytoplankton was highly affected during the whole experiment in both low and high 
treatments. Even working under legal copper concentrations, there are negative impacts 
on the aquatic community since phytoplankton abundance in treatments differed from 
the control abundance. Phytoplankton sensitivity to copper has been reported in other 
studies (Santos et al. 2002, Nayar et al. 2004). Moreover the changes in cell size group 
distribution showed by cytometry give information about the impairment in the 
plankton community and can be used as an early warning signal. Besides this fact, small 
size populations increased in microcosms treated with copper (Fig. 2 b). This implies a 
variation of predator-prey mass ratio. Body size relation is important in trophic 
interactions owing to its influence in growth efficiency. Growth efficiency depends on 
the relative body size of the prey, and on the prey density (Kerr & Dickie 2001), and 
copper sulfate treatments have affected both aspects. Therefore, phytoplankton cell size 
changes towards smaller sizes may have indirect effects upon the zooplankton 
community through a reduction in its growth efficiency. Phytoplankton structural 
features showed the first warning signals: these were a drastic decrease of 
phytoplankton abundance and changes towards smallest cell sizes after copper 
application; hence, its measure could be used as a simple and efficient tool to identify an 
early impairment signal. In this sense, flow cytometry has been shown as a very rapid 
and useful technique. As has been mentioned before, a warning signal is an important 
component of the integrated approaches that are needed to acquire a general knowledge 
of toxic impact allowing predictions and early mitigation measures (Schmitt-Jansen et 
al. 2008) and flow cytometry could be easily incorporated in the assessment and 
biomonitoring programs. 

The delay in zooplankton response could be related to an indirect effect of copper on 
trophic interactions. The direct effect of copper on phytoplankton affected zooplankton 
food availability. Therefore food resources decreased for zooplankton but the effect on 
zooplankton was not detected right away after copper application. Moreover, this 
different response timing is also related with the different life span of phytoplankton and 
zooplankton, being faster in phytoplankton. Even though there were no statistically 
significant differences among zooplankton groups in control and treatments, they 
behave in different way. For instance, the copepoda disappearance in some treatment 
microcosms suggest a specific impact in that group's ability to face the experimental 
conditions, and consequently in its potential recovery capacity. At the same time, 
rotifera responded differently to copper treatments, increasing its abundance in 
treatment microcosms, which implies that there had been a community shift both in L 
and H treatments that could not be observed at total zooplankton abundance level. In 
fact, the control microcosms had more than double that of the zooplankton  in both L 
and H treatments, showing the importance of analyzing changes at a lower hierarchical 
level in order to better understand the changes at a higher hierarchical level. Going 
deeper into zooplankton shift, it has been shown in other studies that rotifera are more 
tolerant immediately after copper application than other organisms even up to 20 mg l-1 
of copper, however after 8 days under copper exposure from 0.5 mg l-1 to 20 mg l-1 its 
population was dramatically affected (Källqvic & Meadows 1978). Large-bodied 
zooplankton also is more sensitive to environmental stressors including pesticides than 
their smaller congeners (Havens & Hanazato 1993). Further, copedoda and rotifera play 
a different role in the ecosystems and in the food web structure. For instance, 
macrozooplankton, as copedoda, grazing pressure has a stronger role than rotifera in 
regulating phytoplankton which is an important function to control eutrophication 
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(Miracle et al. 2007). Kasai & Hanazato (1995), using experimental ponds, observed 
that the herbicide simetryn caused a decrease in zooplankton density due to indirect 
effects related to a decrease of algae. But picking up the changes in phytoplankton size, 
it is interesting to note that at the end of the experiments, both L and H treatments, 
showed higher proportion of small phytoplankton cells than control. The smallest filter-
feeders could take advantage exploiting the mentioned small food resources, increasing 
their abundances. In addition, the community shift could be a response caused not only 
by the apparent higher rotifera tolerance to copper but also by other indirect situations. 
The main indirect effect is the decrease of competence for food resources due to 
copedoda reduction that allows the increase of rotifera population. Miracle et al. (2007) 
found an inverse relationship among rotifera and cyclopoida copepod abundance under 
perturbation. This inverse relationship of rotifera and copedoda under perturbation has 
been found in other studies. For instance Richard et al. (1985) observed how under 
herbicide treatment there were shifts from copedoda and copedoda-cladoceran 
dominated communities to rotifera and small cladoceran dominated communities. A 
similar relationship was found by Gagneten & Paggi (2009), under heavy metals 
treatments (Pb and Cu) rotifera increased while copedoda and cladocera decreased. Both 
studies used such relationship as a tool to characterize the water bodies under study: in 
the first case the trend towards rotifera was identified as an indicator of eutrophy 
impairment and in the second case as a tool to determinate heavy metals impairment. In 
this study, an inverse relationship between rotifera and copedoda matches with other 
observations that indicate copper impairment as the decrease of total zooplankton in the 
treatments. Therefore, it supports its use as an easy and cost-efficient indicator and 
warning signal of contamination in aquatic systems as Gagneten & Paggi (2009) also 
suggested. The negative impact that has been showed during this short term experiment 
on the poorest food resources could be intensified, in the long term, to the zooplankton 
community. The impairment in trophic relationships observed due to copper exposition, 
allows considering both, phytoplankton and zooplankton changes, as early warning 
signals. In nature, loss of species at basal trophic levels can affect production at higher 
levels and thus can also lead to decreased energy transfer efficiency (Gamfeldt et al. 
2005). Undoubtedly, further studies must be developed to confirm these results in long 
term exposition, with different toxic substances, and this with holistic approaches that 
can detect indirect effect and alarm signals as the phytoplankton did. 

Chlorophyll content is used to highlight stress due to a single environmental factor or 
to a combination of different environmental factors, but it also constitutes potential 
biomarkers of anthropogenic stress (Ferrat et al. 2003). However, in the present study 
Chlorophyll-a, as a functional indicator, has not been shown as effective as structural 
changes indicating alterations in plankton community. 

This study works towards a deeper understanding of the agrochemicals negative 
effects on plankton communities at concentrations above but also below their legal 
limits. Surprisingly, even legal limits do not protect the plankton community. This result 
emphasizes the need of more ecological and realistic approaches to ensure adequate 
regulation limits  in order to achieve a balance between development and conservation. 
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ABSTRACT 

Current main environmental pressures are highly linked to human population growth together 

with high consumption rates. One of the main consequences is an increase in food demand 

resulting in an increase of use of agrochemicals by intensive agriculture. This activity is 

causing the pollution of aquatic systems compromising ecosystem services. In order to reach 

protective legal limits, more ecological relevant exposures should be explored. The aim of the 

work was to study the effects of agrochemical concentrations within legal limits on a 

planktonic community. An experiment using a non-target aquatic community was done to test 

the hypothesis of negative effect of a single pulse of copper sulfate within legal limits on 

plankton abundance, structure, richness and diversity endpoints. The microcosms 

(20Lvolume) were established during 21 days, using six replicates for controls (C) and for 

two concentrations of copper sulfate (High treatment, H: 20 µg Cu L-1; and Low treatment, L: 

2µg Cu L-1), both within copper legal limit following the Water Framework Directive. 

General Lineal Model found significant differences at phytoplankton abundance endpoint. 

The Principal Response Curve of zooplankton pointed differences on abundance and structure 

between treatments and controls, what indicates trends of community changes owing to 

copper sulfate effects. In conclusion, even if copper concentrations under study were within 

legal limits they have shown the potential to induce changes on planktonic community’s 

features.  

 

Key works: plankton, copper, PRC, microcosms 
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INTRODUCTION 

Mediterranean aquatic systems are one of the most altered natural systems owing to 

agricultural practices worldwide (Casado and Montes, 1995; Beja and Alcazar, 2003; Parra et 

al., 2005; Zacharias and Zamparas, 2010; García-Muñoz et al., 2010). Their catchment: lake 

ratio is lower than in temperate lakes, so they experience stronger catchment effects (Álvarez-

Cobelas et al., 2005), many of them related to the intensive agriculture management 

(Guerrero et al., 2006). Although the socio-economic value of agriculture cannot be denied, 

its integration with more realistic ecological risk assessment must be a priority to prevent 

environmental hazard and consequently, human ones. The Water Framework Directive 

(WFD) faces this concern in relation to water bodies, so that it intends to assess, monitor and 

manage the ecological and chemical status of all surface and groundwater bodies.However, 

often-freshwater systems are ignored and undervalued (Downing, 2010). This preconception 

should change in light that freshwater systems, from large lakes to small ponds, contribute 

both to regional diversity (Oertli et al., 2002; Downing, 2010; Gilbert et al., in press) and to 

global cycles playing an important role, for instance, in carbon cycling (Downing, 2010).  

In this study context, aquatic systems can be impacted by agrochemicals as copper sulfate 

(CuSO4) that is used to control the fungi Cycloconium oleaginum in olive tree cultivation. 

Even though copper can be found naturally in different forms, it can be toxic in aquatic 

systems as Cu2+ (Lenwoodet al., 1998). Water Quality Criteria (WQC), following the 

European WFD, establishes a maximum legal limit in waters of 40µg L-1of copper. However, 

copper WQC may not be safe enough for not-target species since it is mainly based on single 

test organisms, but little information about the effects on other taxa is used in the regulation 

process. In this sense, previous studies has also found that 40µg L-1of copper is not a safe 

limit for amphibians as Bufo bufo, B. calamita and Pelodytes ibericus (García-Muñoz et al., 
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2011) or for plankton community (Del Arco et al.,in press); neither for marine fishes as Sparu 

saurata (Oliva et al., 2007).These impacts have consequences at different hierarchical levels, 

from the individual by morphological, physiological and biochemical alterations, to the 

community level through the loss of diversity, and impairing the value and services that 

healthy ecosystems provide (Montes and Sala, 2007). So then, community studies aiming at 

increase the knowledge about toxicant effect within legal limits on a wider range of species 

should be encourage in order to detect sublethal, direct and indirect effect upon the aquatic 

systems.  

The present study is the second of a series of experiment aiming to assess the effect of copper 

sulfate on plankton communities, both above and below legal limits. In the first study, we 

explored copper concentrations of 200 and 20 µg L-1, and adirect negative effect on the 

plankton community structure was found (Del Arco et al., in press). Therefore, a further step 

is to understand how even legal lower copper concentrations would affect the community. So 

then, the present experiment was proposed to study copper sulfate pulses under 20 µg L-1. In 

this framework, the hypothesis of this study was that treatments within legal limits would 

affect the aquatic community owing to both, sub lethal and indirect effect that are not detected 

in single species test used for legislation purposes, raising a concern about long term effects. 

 

MATERIAL AND METHODS 

Microcosms    

Eighteen outdoor microcosms (n = 6, circular plastic bucket of 20 L volume) were set based 

on and adapted protocol from OECD (2006). Microcosms were filled with 18 liters of water 

and 5 cm of sediment. Filtered water came from a supply artificial pond (HUMEXPUJA, 

experimental wetland infrastructure in the University of Jaén, Spain). Homogenized sediment 
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came from a natural freshwater wetland [Casillas wetland, UTM 30SVG1083 with a surface 

area of 2.7 ha (Ortega et al., 2006)]. Microcosms experiment was developed during 3 months, 

from March to May 2012. Previously to the start of the experiment, astabilization period of 7 

weeks was done in order to allow the development of the plankton and benthic communities 

from resistant structures present in the sediment.In addition, there was a pre-treatment week 

(D0) with no treatments before the copper pulse (D7). 

 

Copper analysis 

Microcosms were exposed to 2 concentrations of copper sulfate, High treatment (H): 20µg 

CuL-1; and Low treatment (L): 2µg Cu L-1. Following the WFD, the Spanish national 

legislation establishes a copper WQC level of 40µg Cu L-1(BOE, 2011). Therefore, both 

treatments, H and L, fall within legal limits.  

Six replicates were used in control and both treatments. Nominal dosages of copper sulfate 

were added directly spiked over the water surface on the microcosms as an only pulse on day 

7 (D7) for the whole experiment period. After stirring, water samples were taken to perform 

direct analysis by Inductively Coupled Plasma (ICP) Mass Spectrometry in order to confirm 

the target nominal concentrations of copper. In addition, water samples from the controls 

were analyzed to ensure no copper was present. 

 

Physical chemical variables 

Each microcosm was surveyed four times,on days 0, 7, 14 and 21 (D0, D7, D14 and D21), 

after the 7 weeks of stabilisation period. Data on physical-chemical variables: temperature, 

pH, dissolved oxygen and conductivity,were obtained using a field probe (YSI-556 MPS). At 

the same time water samples (100 mL) were taken and transported in cold and darkness 
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conditions to the laboratory for the analysis of alkalinity. Alkalinity was measured using an 

848 Tritino Plus devise.  

 

Phytoplankton and zooplankton endpoints 

Phytoplankton and zooplankton were sampled weekly. Phytoplankton samples (4 mL) were 

collected with a pipette after homogenization by gently stirring the microcosm. Samples were 

preserved with glutaraldehide (2% f.c.), frozen in liquid nitrogen and stored at - 80ºC until the 

evaluation of their abundance and size distribution with a BD- LSR Fortessa flow cytometer. 

The transformation of the forward scattering signal (FSC) of the flow cytometer to cell 

volume was carried out by means of a calibration curve. This function was obtained from the 

analysis of 5 sets of calibration beads ranging from 1 to 11 µm. Phytoplanktonic groups were 

established according to 4 size ranges <2 µm; 2-8 µm; 8-20 µm and >20 µm ESD (named as 

pico-, ultra- and nano -). Integrated zooplankton samples (500 mL) were taken with plankton 

net (mesh size of 60 μm) and preserved in situ with buffered formaldehyde (4% f.c.). The 

filtered water was returned to the microcosm. Zooplankton was identified into different 

Taxonomic Practical Levels (TPL) (Van Wijngaarden et al., 2005): Ostracoda, Copepoda, 

Cladocera and Rotifers. Moreover copepods were divided in two groups, nauplii (that include 

together calanoids and ciclopoids) and adults plus copepodites. The cladocera were integrated 

by Ceriodaphnia sp., Alona sp. and Macrotrix sp. The abundance and richness of each TPL 

and the biodiversity (modified Shannon-Wiener diversity index: H´ = ∑pi log2 pi, the 

modification refers to the use of TPL instead of genera of species) in all experiment were 

evaluated. 
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Data analysis 

GeneralizedLinear Models analysis (GLM) was used for test differences between treatment 

and controls for all physical-chemical variables and taxon levels.Prior to analysis, data were 

tested for normality and homoscedasticity using the test of Shapiro-Wilk and Levene 

respectively. Abundance data of zooplankton and phytoplankton were log (x+1) transformed. 

The analyses were carried out with the SPSS 19 computer program. 

Moreover, in order to evaluate the community response to treatments, a Principal Response 

Curve (PRC) analysis was done using CANOCO software package, version 4.5 (Van den 

Brink and ter Braak, 1999).PRC is a multivariate technique recommended to analyse complex 

changes in community structure over time under a treatment exposure in micro/mesocosms 

experiments (European Commission, 2002; Sanderson et al., 2009). It is based on the 

abundance response of TPL along the experiment in each treatment. The null hypothesis 

implies that the PRC analysis does not show the treatment effects on the community 

(Frampton et al., 2000). 

 

RESULTS 

Copper concentrations 

Average Exposure Concentrations (AEC) fit target nominal copper concentrations of 2.63 ± 

0.83 µg L-1 for L treatment, and 28.10 ± 2.46µg L-1for H treatment. 

 

Physical-chemicaldata 

Physical-chemical average values along the experiment were highly similar among all 

microcosms (Table 1). GLM (Univariate analysis) of physical-chemical parameters did not 
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showed significant differences between control and treatments and neither between treatments 

(p>0.05). 

Table 1. Physical and chemical measurements (mean ± SE) of controls and treatments along the 
experiment. 

 

Week 
 

W0 
 

W1 
 

W2 
 

W3 

Treatment/ 
Variable 

 
C 

 
L 
 

 
H 
 

 
C 

 
L 

 
H 

 
C 

 
L 

 
H 

 
C 

 
L 

 
H 

Te
m

pe
ra

tu
re

 
(ºC

) 

 
13.14 

±  
0.23 

 
12.93 

±  
0.39 

 
12.88 

± 
0.47 

 
15.78 

± 
 0.04 

 
15.72 

± 
0.07 

 
15.77 

± 
0.09 

 
16.23 

± 
0.07 

 
16.13 

± 
0.13 

 
16.32 

± 
 0.17 

 
16.02 

± 
0.14 

 
15.95 

± 
0.09 

 
15.95 

± 
0.11 

pH
 

 
7.84  

± 
 0.14 

 
8.04  

±  
0.13 

 
7.98 

± 
0.32 

 
7.74  

± 
0.29 

 
7.66  

± 
0.21 

 
7.80  

± 
0.21 

 
7.51  

± 
0.21 

 
7.21  

± 
0.16 

 
7.30  

± 
 0.20 

 
7.47  

± 
0.18 

 
7.79  

± 
0.45 

 
7.90  

± 
0.26 

%
 D

O
 

 
87.66 

±  
2.88 

 
87.73 

±  
2.64 

 
88.72 

± 
2.52 

 
71.94 

± 
4.71 

 
72.43 

± 
2.42 

 
72.42 

± 
1.65 

 
71.87 

± 
3.84 

 
72.43 

± 
2.42 

 
72.42 

± 
1.65 

 
81.62 

± 
3.34 

 
76.07 

± 
6.35 

 
84.58 

± 
3.33 

C
on

du
ct

iv
ity

 
(µ

S/
cm

) 
 

 
790.20 

± 
47.96 

 
747.83 

± 
36.55  

 
779.5  

± 
73.80 

 
902.40 

± 
27.81 

 
822.83 

± 
45.16 

 
848.83 

± 
81.95 

 
874.48 

± 
157.89 

 
889.33 

± 
117.97 

 
979.33 

± 
87.16 

 
849.33 

± 
32.54 

 
767.17 

± 
42.00. 

 
771.00 

± 
82.73 

A
lk

al
in

ity
 

(m
g 

Ca
C

O
3 

L-1
)  

 
265.60 

± 
190.11 

 
104.67 

± 
19.98 

 
93.00 

± 
14.24 

 
62.00 

± 
10.51 

 
67.00 

± 
4.64 

 
77.00 

± 
35.46 

 
81.00 

± 
6.81 

 
65.33 

± 
5.26 

 
70.33 

± 
13.06 

 
49.33 

± 
11.06 

 
26.00 

± 
11.84 

 
44.67 

± 
16.25 

 

 

Biological data 

Figure 1 shows the phytoplankton abundance dynamics along the experiment.GLM shows 

that there is a significant difference in the last week (D21) in terms of phytoplankton 

abundance means values between H, L and C treatments (F = 36.403, p< 0.001) (Figure 1, 

Table 2). A post hocTukey test denotes that the abundances of phytoplankton in L treatments 
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were different to controls and H treatments. However, no differences were detected in 

chlorophyll-a concentrations or in phytoplankton size classes (Figure 2). 

 

 

Figure 1. Phytoplankton abundance dynamics along the experiment.* Denotes statistically significant 
differences with the controls. The arrow indicates the chemical pulse. 
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Table 2. Phytoplankton abundance, Chla concentration,zooplankton abundance, taxa group 
abundance, richness and diversity measurements (mean ± SE) of controls and treatments by the end of 
the experiment (D21).Arrows indicate the negative or positive abundance change as the copper 
concentration increases respect to the controls and hyphen indicates that there was not a clear dose-
response. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Endpoints 

 
Control 

 
Low 

 
High 

Phytoplankton 
(ind mL-1) 

6756 ± 3413 70137 ± 45859 51668 ± 46456 

Picophytoplankton 
(ind mL-1) 

 

6525 ± 3414  67905 ± 45422 51281 ± 46192  

Ultraphytoplankton 
(ind mL-1) 

137 ± 54  1706 ± 783 356 ± 264 

Nanophytoplankton (ind 
mL-1) 

94 ± 51 525 ± 469 31 ± 13 

 
Chl a (µg L-1) 

 
4.76 ± 1.12 

 
2.70 ± 0.24 

 
5.89 ± 1.92 

 
Zooplankton (ind L-1) 

 
769 ± 191 

 
562 ± 106 

 
410 ± 85 

 
Rotifers (ind L-1) 

 
756± 190 

 
548  ± 108  

 
398± 83 

 
Cladocera(ind L-1) 

 
0.80 ± 0.37 

 
3.00 ± 2.05 

 
1.60 ± 0.81 

 
Copepoda(ind L-1) 

 
3.80 ± 1.24 

 
4.33 ± 1.33 

 
7.00 ± 3.21 

 
Nauplii(ind L-1) 

 
7.60 ± 2.71 

 
6.33 ± 1.41 

 
2.80 ± 1.02 

 
Ostracoda(ind L-1) 

 
0 

 
1.17 ± 0.65 

 
0.20 ± 0.20 

Modified 
Shannon-Wiener 

 
0.15 

 

 
0.24 

 
0.36 

 
 
 

 
TPL Richness 

 
3 
 

 
4 

 
4 
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Figure 2. Phytoplankton abundance of size classes (pico, ultra and nanoplytoplankton) at the end of 
the experiment (D21). 

 

Zooplankton abundance and community structure from the sediment did not present statistical 

significant differences on D0 before exposure so then any differences after the exposure 

would be related to the treatments. TPL Richness and diversity (modified Shannon-Wiener) 

values were not statistically different among controls and treatments neither along nor at the 

end of the experiment even though total abundance decreased as concentrations increases 

(Table 2). PRC diagram (Figure 3) shows the overall response of community structure and 

TPL abundance changes owing to each treatment along the experiment. 1D-plots represent the 

weight of the TPL in the overall response of the community: positive TPL weight mean that 

the TPL are likely to follow the PRC response, negative TPL weight show the opposite trend; 
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and, the response of TPL weight near cero is not related to the main response shown by PRC 

(Van den Brink and ter Braak, 1999). 

 

Figure 3. Principal Response Curve (PRC). On the left, ordination method represents the main 
community respond to the treatment effect over time respect to the controls. The graph summarizes the 
zooplankton community respond based on TPL (Rotifera, Copepoda, Nauplii, Cladocera and 
Ostracoda). On the right, the 1-D plot the species weights what represent the level of affinity that each 
taxa have with the main trend of the PRC. 

 

DISCUSSION 

The experimental design attending to expose microcosms to equal natural environmental 

variability with respect to outdoor environmental condition was achieve since there were not 

statistical significant differences in physical-chemical variables, consequently the copper 

treatments were the only discriminating factor. 

Phytoplankton and its size distribution are recognized as an important ecological attribute of 

aquatic ecosystems (Guerrero and Castro, 1997). The results obtained in this study showed 

that significant statistical differences were found in phytoplankton abundance at the end of the 
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experiment (D21), with an increase of phytoplankton abundance in L treatment, principally in 

the ultraphytoplankton size class. It is important also to note the quasi-extinction of the largest 

size class (nanoplankton) in H treatment (Figure 2). This is a typical characteristic of 

perturbed ecosystems, the general pattern of reduced size in stressed communities (Kerr, 

1974) that in our case is developed towards an increase in the pico and ultraphytoplankton 

size class and a reduction in the abundance of the nanoplankton. Similar results are obtained 

in the bibliography, indicating the effects of a wide range of abiotic factors on the relative 

contribution of nanoplankton (Reynolds, 1984; Rojo and Rodríguez, 1994). By contrast, 

chlorophyll-a concentrations do not showed statistical differences between control and 

treatments (p>0.05). It is well known the important role of the nanophytoplankton in the 

chlorophyll-a concentration in many aquatic systems, with values over 50% of the total 

chlorophyll-a concentration (Rodríguez and Guerrero, 1994). As nanophytoplankton is the 

size class that more variation presents in the experiment between treatments, it was expected 

to obtain statistical differences between them. However, there were not statistically significant 

differences despite the lower chlorophyll-a concentration in the L treatment respect to C and 

H treatments (Table 2). 

Zooplankton abundance and the community structure (Figure 4, PRC) do not showed 

significant statistical differences between control and treatments. Despite the absent of 

significant statistical differences of the PRC (F=2.259, p-value = 0.9620), it amplify the 

information that zooplankton abundance dynamics show because it gives information about 

TPL instead of total zooplankton abundance what can detect taxa shifts. Similar results were 

obtained by Hillis et al. (2007) when studied the effects of the antibiotic Monensin on 

zooplankton communities in aquatic microcosms. Even though the PRC was not significant, it 

was considered obvious a negative effect of the antibiotic at the greatest treatment 
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concentration. In the present study, the PRC analysis showed a tendency of the treatments 

towards a different community structure that is related with observed changes at TPL 

endpoints as abundance, richness and diversity (see Table 2). The abundance of rotifers and 

nauplii decreased as the copper treatment concentration increased; while copepods, cladocera 

and ostracoda increased (Table 2). Those three TPL mark the differences on community 

structure, richness and diversity (modified Shannon-Wiener) between controls and treatments. 

Surprisingly, both richness and diversity are higher in the treatment than in the controls at the 

end of the experiment (see Table 1). This kind of response agrees with the intermediate 

disturbance hypothesis (Connell, 1978; Menge and Sutherland, 1987; Hanazato, 2001) and 

with the fact that the exposure concentrations are within legal limits so then the impact is not 

drastic but still there is an effect of copper concentrations. This community shift could be 

related to food edibility. The above-mentioned reduction in the nanophytoplankton size class 

in H treatment coincides with the lower abundance of rotifers and nauplii compare to C and L 

treatment. It may indicate a community structure change related to grazing pressure 

disruption. Therefore, long term effect owing to indirect effect impacting trophic relationship 

could be discussed as the need to have prolonged the experiment to be able to catch such 

potential effects. Indirect grazing pressure disruptions have been found in previous 

mesocosms studies (Van den Brink et al., 2000; Stampfli, 2011). For instance, Van den Brink 

et al. (2000) studied carbendazim effect in zooplankton and phytoplankton communities and 

found an increase of phytoplankton owing to a reduced grazing pressure from zooplankton 

depletion by the fungicide. It indicates that the addition of one pollutant may cause indirect 

top-down effects (Baird and Burton, 2001) that cannot be detected in single species test and 

short-term studies. Changes in the abundance of rotifers and nauplii mark the decrease of 

zooplankton in the treatments, while cladocera and copepod abundance is higher in the 
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treatments. It contradicts the most common general order of sensitivity from lower to higher 

sensitivity of rotifers > copepods > cladocera (Hanazato, 1998; Relyea, 2005). It also leads to 

think in an indirect effect related to changes in phytoplankton structure and grazing pressure 

that may temporarily favor the most sensitive taxa to the toxicant. For instance, Gui and Grant 

(2008) studied the combined effect of food availability and chemical exposure on Drosophila 

melanogaster, and conclude that a release from competition on food resources could 

counterbalance the chemical impact. This community structure disruption may intensify over 

time. Therefore, a zooplankton decrease may follow two main paths in a long term: a) it may 

recover and get similar to control supporting that copper cause not effect as GLM and PRC 

suggested owing to its lack of significance, and b) it may keep a decreasing tendency 

suggesting copper long term effect related to community abundance and structure changes. A 

longer experimental period would have helped to discern among those two potential paths. A 

post-treatment of 21 days could not have been enough to capture the effect on the complete 

life cycle of the organisms; nevertheless it has been enough to warn about agrochemical 

induced changes.  

Taking into account the richness and diversity index, the slightly increase in the treatments 

highlighting the importance of direct and indirect effects. Increases of diversity after a 

chemical pulse have been previously observed. For instance, Hanazato (1997) reported a 

species richness increase in ponds treated with insecticides as a consequence of competition 

interactions alterations. In our experiment, the increase of diversity is mostly linked to the 

survival of ostracoda and the better performance of copepoda and cladocera potentially 

related to a release of competition pressure for the decrease of other dominant competitors 

taxa in the treatments as rotifers and nauplii. It may suggest that at taxa levels to face 

perturbations, apart from the initial diversity, also play an important role the indirect effects 
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(in this case, changes in phytoplankton size classes abundance), the intensity of perturbation 

and timing of population and ecosystem responses (Downing and Leibold, 2010). The 

diversity-stability debate complexity overcome our short-term data, however, it was 

considered important to include this thought. Such importance comes from the fact that all 

politic–science meeting end with the goal of preserves diversity (Joint EEA-JRC-WHO 

REPORT, 2008). Therefore, studies should attend to contribute to a better understanding of 

this ecological term to develop adequate policies and realistic data set of acceptable 

agrochemical thresholds.  

The results of the first experiment of this series of studies (Del Arco et al., in press) agree 

with the current results. In both experiments, concentrations within legal limits of 2 µg Cu L-1  

were explored. There are two main common changes: a) a zooplankton community change 

together with a decrease of abundance as copper concentration increases, and b) a 

phytoplankton community change towards small size classes. A direct comparison of both 

experiments is inappropriate owing to differences in seasonality and community structure. 

However, the identification of common patterns is a remarkable fact.  

Considering our hypotheses, even treatments within legal limits could negatively 

affect the aquatic community; that it is observed in phytoplankton community. The 

zooplankton community has been negativelyaffected at structural levels suffering a shift 

tendency in community composition and an abundance decrease was clearly visible in the H 

treatments. Impacts in L treatments are less detectable but raising concern about long term 

effects prevention capacity. In addition, as expected, indirect effect have taken place as 

phytoplankton community structure reflected;  phytoplankton abundance increased owing to 

low herbivore pressure what highlight the importance of more complex test than single 

species ones to be able to detect these indirect impacts on the community structural changes 
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CONCLUSIONS 

Legal concentrations of toxic substances in aquatic systems are establishes based on single 

species test using standard species, little information is known about how such legal 

concentrations will affect the rest of the taxa in more complex ecological scenarios. This 

study highlights that even a single copper sulfate pulse within WQC would have negative 

impactsupon plankton aquatic community.  
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ABSTRACT  

Intensive agriculture is the leading pertubation on freshwater systems due to 

agrochemical imputs that compromise biodiversity and ecosystem services. Agriculture 

importance cannot be neglected neither the fact that freshwater biodiversity is being 

depleted worlwide owing to anthropic pressures. Therefore, a balance between 

economic and environmental values must be achieved. The present experiment explores 

agrochemical (nitrate used as fertilizer) legal limits concentrations to investigate if even 

assumed safe limits impact freshwater ecosystems. The purpose is to assess direct and 

indirect effect of legal toxicant concentrations on the ecological integrity of plankton 

communities. This information seeks to assist policy makers with more ecological 

relevant results to establish legal limit concentrations that neither over- nor 

underestimated environmental risks. Microcosms experiments were set up outdoors 

with local assemblages of plankton for 8 weeks. Two nitrate treatments (n = 5) plus 

controls (C) were added: 1) Low treatment (L) of 25 mg l-1 of nitrate, 2) High treatment 

(H) of 50 mg l-1 of nitrate. In conclusion we detect first that zooplankton taxa shifted 

from a cladocera-dominated to a copepod-dominated community as an indirect response 

of phytoplankton abundance decrease as a result of nitrate exposure, and second, both L 

and H nitrate treatments had a negative effect on the plankton community despite of 

being within assumed safe legal limits.  

 

Keywords: legal limits, nitrate, local assemblages, microcosms 
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INTRODUCTION 

Nitrates are naturally present in aquatic systems. However, anthropic sources as 

fertilization in agriculture have substantially increased its natural concentrations leading 

to negative effects on aquatic ecosystems (Kratzer and Brezonik, 1981; Camargo and 

Alonso, 2006; Miracle et al., 2007). The Water Framework Directive (WFD) aims to 

achieve a good status of European water bodies throught a balance between 

environmental protection and agriculture (Directive 2000/60/CE).  

An increase of inorganic nitrogen generates adverse effects on aquatic organisms 

(Camargo and Alonso, 2006). Single species test are the widespread methods to assess 

Ecological Risk Assessment (ERA). Though, there are many studies that debate the lack 

of ecological realisms of the single species test used for ERA (Wootton, 2002; Brooks 

et al., 2009; Van den Brink, 2013). The main criticisms are related with the use of 

standard species that may not represent the sensibility of all taxa (Cuppen et al., 2000); 

the lack of ecological interactions (i.e. predation and competition) (De Laender and 

Janssen, 2013); and the absence of studies with agrochemical concentrations commonly 

found in aquatic ecosystems (LeBlanc et al., 2012). Accordingly with these critiscms, 

studies with local species have shown negative impacts of nitrate upon local 

freshwwater invertebrates and amphibians (Camargo and Ward, 1992; García-Muñoz et 

al., 2011 a, b, c). For instance, Camargo and Ward (1992) exposed non-standard 

freshwater invertebrates (Trichoptera: Hydropsychidae) to sodium nitrate finding 

behavioural alterations, physiological changes and lower LC50 than those reported for 

standard fish species used in ERA. In addition, sublethal effects are also important, 

García-Muñoz and co-workers (2011b) studied the larval escape behavior of three 
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anuran amphibians (Bufo bufo, Epidalea calamita and Pelodytes ibericus) and reported 

the adverse effect of nitrate on efficiency of escape.  

Another important question could be made about the current legal limits of 

agrochemical concentrations in aquatic ecosystems, raising the question if current legal 

limits are safe enough (Camargo et al., 2005; Del Arco et al., 2014). Within this context 

and focusing on nitrate, to our knowledge, there are no previous studies to this one 

assessing the effect at community levels using concentrations within legal limits of 

nitrates. So then, this study seeks to overcome the limitations of single species tests, 

through studying nitrate exposure effect on more complex systems to obtain a more 

holistic information about the effect into the ecosystem. The experiment was design to 

test the hypothesis that nitrate pulses under legal limits will have negative impact on the 

plankton community.  

 

MATERIALS AND METHODS 

Microcosms set up 

The response of plankton community to nitrate exposures whithin legal limits were 

explored experimentally using a simple-throphic community stablished in microcosms. 

Fithteen microcosms were stablished based on an adapted protocol from OECD (2006). 

Microcoms of 50 liters volume and filled with 45 liters of mineralized water were 

located outdoor in an experimental wetland infrastructure at the University of Jaén. 

Microcosms were inoculated with plankton species and sediment coming from a local 

wetland [Casillas wetland, UTM 30SVG1084 with a surface area of 2.2 ha. (Ortega et 

al. 2003)]. Plankton samples were collected with a vertical haul with a plankton net (53 

µm). Samples were homogenized and equally distributed among the microcosms. 
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Sediment was extracted from the superficial layer of the wetland, homogenized and 

distributed as a 5 cm layer for all microcosms. Rotifers, cladocerans (Alona sp., 

Ceriodaphnia reticulata, and Macrothrix hirsuticornis), calanoid copepod (Neolovenula 

alluaudi), cyclopoids copepods (Acanthocyclops sp. plus Metacyclops sp.) and 

ostracods were present in the plankton samples and/or developed from the sediment 

resistant eggs. Phytoplankton community was expected to develop from the water 

inoculation together with zooplankton and sediment. The use of local species naturally 

occuring in local aquatic systems was considered extremelly important to catch a wider 

range of sensitivity than standard species may not do.  

Microcosms were established in November 2012 and the experiment was finished in 

February 2013. There was a stabilization period of 7 weeks after the innoculation and 

before adding nitrate in order to favour the acclimatation and development of the 

plankton community. The experiment lasted 49 days, with a single fertilizer spike on 

day 0 There were 5 controls (C) and 2 treatments with 5 replicates as well. Ammoniun 

nitrate (NH4NO3) was added in order to achieve the following nominal nitrate 

concentrations in each treatment: Low (L) nitrate concentrations with 25 mg l-1 of 

nitrate, and High (H) nitrate concentrations with 50 mg l-1 of nitrate. Nitrate 

concentrations were selected based on legal limits established by the Council directive 

80/778/EEC (revised as Council Directive 98/83/EEC ) for nitrates and the Council 

Directive 91/676/EEC for nitrates. 

Physical chemical variables 

Physical-chemical variables, temperature, pH, dissolved oxygen and conductivity were 

weekly measured (D0, D7, D14, D21, D28, D35, D42, D49) using a field probe (YSI-
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556 MPS). In addition, water samples (100 ml) were taken and transported in cold and 

darkness conditions to the laboratory for the analysis of alkalinity (848 Titrino Plus 

devise). 

Nitrate stock solutions were prepared using ammoniun nitrate. The two nominal 

concentration of nitrate were aliquots of the stock solutions and spike on every 

treatment as a single pulse on D0 after the sampling by applying it to the water surface 

and gently stirring to ensure an homogeneous distribution over the water column. After 

stirring, 50 ml of water were taken to perform analysis of nitrate concentration to 

confirm the nominal concentrations. Lately, nitrate analysis was done weekly using a 

laboratory standart protocol based on ultraviolet methods (Standard method APHA, 

1995). 

 

Biological endpoints 

Water samples where also weekly taken to evaluated chlorophyll-a (Chl a) 

concentration and  phytoplankton community response to the toxicant using flow 

cytometry. Chlorophyll-a concentration was calculated using a previously obtained 

calibration curve determinate by fluorometry. Samples were filtered through Whatman 

GF/C glass microfibre filters, and extracted in 90% acetone for 24 h at 4 ºC. For 

cytometry analysis, water samples were preserved in glutaraldehide (2 %), frozen in 

liquid nitrogen and stored at -80 ºC until the analysis with a BD- LSR Fortessa flow 

cytometer. Calibration spheres were used to obtain a cell size regression curve: y = 

0.008 x – 3.93 (“x” =  the mean of the Forward Scatter (FSC), and “y” = cell size of the 

cells in μm3). Four cell size populations were established: picophytoplankton (0.4 – 2 

μm3), ultraphytoplankton (2 - 8 μm3), nanophytoplankton (8 – 20 μm3) and 
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microphytoplankton (> 20 μm3). Samples were analyzed and recorded during a time of 

180 s at a rate of 60 μl min-1. These data were analyzed with FACSDIVA software. The 

endpoints evaluated were abundance (cell l-1) and community size structure (pico-, 

ultra-, nano- and microphytoplankton cell size classes, PCA).  

Zooplankton integrated water samples (500 ml) were taken weekly from each 

microcosms, filtered with a plankton net of 60 μm and preserved in formaldehyde (4% 

f.c.). The filtered water was returned to the microcosm. Zooplankton was counted, 

identified and grouped to the following eight taxonomical practical level (TPL) (Van 

Wijngaarden et al., 2005; Del Arco et al., 2014): ostracoda order, calanoid copepod 

(Neolovenulla alluaudi), cyclopoid copepods (Acantocyclops sp. plus Metacyclops sp.), 

nauplii (calanoida plus cyclopoida), Ceriodaphnia reticulata, Alona sp., Macrothrix 

hirsuticornis and rotifers order. The endpoints assessed were abundance (ind l-1), 

community structure (PRC), diversity (Shannon-Wiener diversity index) and richness. 

All endpoints were calculated base on TPL. 

Oxygen production was estimated by diurnal oxygen fluctuations as a proxy of 

ecosystem productivity (Lind, 1979; Cole and Pace, 2000; Downing and Leibold, 2010; 

Del Arco et al., 2014). It was weekly measured at the start (8:00 am) and at the end 

(18:00 pm) of the autumn-winter photoperiod (10:14) using a field probe (YSI-556 

MPS). 

Litter decomposition was assessed incubating alder leaves (Alnus glutinosa) to compare 

the percentage of Ash Free Dry Mass (AFDM) by the end of the experiment. One litter 

bag for microcosms (initially containing 3 g dry weight of alder leaves) was incubated 

for the whole experimental period (49 days). Litter bags were 10 x10 cm and 1 cm mesh 

size. After retrieval, litter was rinsed with tap water, oven dried (105 ºC for 24h), 
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weighed, ignited (550 ºC for 4h) and reweighed to determine AFDM remaining 

(Gessner and Chauvet, 1994). 

 

Statistical analysis 

Nitrate effects on planktonic community based on comparison between controls and 

treatments were assessed through analysis of variance by general lineal model (GLM) 

followed by Tukey test, with SPSS software. Prior to analysis, plankton data were log (x 

+1) transformed to meet homocedasticity and normality asumptions. In addition, a 

Principal Component Analysis (PCA) for phytoplankton and a Principal Response 

Curves (PRC) for zooplankton were done by CANOCO v4.5 software to explore 

community response to the treatments. Both techniques are based on redundancy 

analysis ordination (Van den Brink and Ter Braak, 1999). Phytoplankton analysis with 

the PCA aimed at identifying phytoplankton community structure response to the 

treatments based on cell size changes respect to the controls. A phytoplankton PCA 

instead of a PRC was performed because cell size classes endpoints were only 4 classes 

what is too little for a PRC. PRC results in a diagram showing the principal response of 

the community (y- axis) for all sampling days (x-axis) by plotting the deviations in time 

of the treatments versus the controls. The species weights (1-D plot) indicated the 

affinity of the species with the principal community response: positive weight means a 

positive correlations with the main community response; negative weight display a 

negative correlation, and weight close to cero means no response or very dissimilar to 

the main response.  
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RESULTS  

Physical chemical variables 

Tha analysis of physico-chemical variables along the experiment showed no significant 

differences in temperature (p = 0.189), pH (p = 0.916) and alkalinity (p = 0.067) in all 

microcosms. These variables showed average values of 8.6 ºC, 7.6 and 11.9 mg CaCO3 

l-1 respectively. By contrast, conductivity (p < 0.001) and oxygen (p < 0.001) showed 

statistically significant differences between the controls and treatments along the 

experiment after nitrate addition. Conductivity was higher and statistically different 

between C (260.73 ± 9.88) and both treatments, L treatment (337.37 ± 15.24) and H 

treatment (408.10 ± 13.90) after the spiking of nitrates. Dissolved oxygen also differed 

between C and H treatment as well as between L and H treatments in the two last 

sampling days. The average oxygen concentrations along the experiment were: 8.41 ± 

0.09, 8.34 ± 0.09 and 7.88 ± 0.08 mg l-1 in C, L and H treatments respectively.  

Nitrate measurement after spiking reveals higher concentrations than target nominal 

concentration: 51.80 ± 7.88 mg l-1 in L treatments and 98.41 ± 38.19 mg l-1 in H 

treatments. However, Average Exposure Concentrations (AEC) were closer to intended 

nominal concentrations: 33.78 ± 2.90 mg l-1 in L treatments, and 60.39 ± 7.83 mg l-1 in 

H treatment. AEC were calculated along the experiment for each treatment as the 

average of the weekly measurement of nitrate.  

 

Biological endpoints 

Statistical analysis with GLM detected differences in phytoplankton abundance between 

controls and treatments (Table I). During the D21 and D28 experimental weeks, 

phytoplankton abundance in control was higher than in treatments (Figure 1). However, 
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at the end of the experiment both treatments showed higher abundance values than 

control (Figure 1). Considering the phytoplankton size classes, statistically significant 

differences were found from day 21 to 48 due to an increase of small size cells (pico-, 

ulta-, nano- and microzooplankton). However, those differences were not strong enough 

to discrimitate between controls and treatments in the PCA (Figure 2). In fact, PCA axis 

1 and 2 explained only 12% and 3% of the variance respectively being unable to 

discrimate phytoplankton community structurals changes as a result of the treatments. 

Moreover, no statistically significant differences in chlorophyll-a concentrations were 

found (Table I). 

 

Table I. Results of the GLM analysis showing the effects of the nitrate treatment on 
phytoplankton abundance along the experiment. Bold values indicate significant differences (p 
< 0.05). n.a. stand for no available 

Endpoint D0 D7 D14 D21 D28 D35 D42 D49 

Total phytoplankton 
(cell l-1) 

0.525 0.691 0.828  0.017  0.008  0.150 0.070 0.043 

Picophytoplankton 
(cell l-1) 

0.281 0.528 0.745 0.009  0.023  0.194 0.215 0.398 

Ultraphytoplankton 
(cell l-1) 

0.187  0.296 0.279  0.111 0.008 0.110 0.028 0.015 

Nanophytoplankton 
(cell l-1) 

0.122 0.488 0.359 0.644 0.338 0.734 0.043 0.200 

Microphytoplankton 
(cell l-1) 

0.387 0.205 0.184 0.950 0.822 0.480 0.271  0.129 

Chl a (μg l-1) 0.588 0.528 0.409 0.747 0.390  0.403  0.318  0.373  
Oxygen production       
(mg O2 hr) 

n.a.  0.035 0.204 0.129 0.442 n.a.  0.004 0.005 
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Figure 1. Phytoplankton abundance dynamics (cells l-1) along the experiment. The arrow on D0 
indicates the nitrate addition. a indicates statistically significant differences between controls vs. 
treatments. 

 

Figure 2. Phytoplankton cell size classes PCA ordination graph along the experiment. Arrows 
represent the lineal combination of phytoplankton variables with the first and second axes. C, L 
and H stand for control, low and high nitrate treatments respectively. 
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The zooplankton community was composed by rotifers, cladocerans, copepods and 

ostracods. The average of total zooplankton per treatment at the end of the experiment 

decreased: 132 ± 97 ind l-1 in C, 97 ± 30 ind l-1 in L treatment, and 62 ± 13 ind l-1 in H 

treatment what represents 145 % in C, 67 % in L treatment and 48 % in H treatments 

respect to initial zooplankton abundances on D0 (Figure 3). Statistical analysis with 

GLM detect differences in total abundance and individual abundance of some taxa in 

specific sampling days (Table II). These results are consistent with PRC (Figure 4), 

being significant (p = 0.002) and denoting differences between controls and treatmens at 

both abundance and community structure (PRC). In addition, Shannon-Wiener diversity 

index (1.2 ± 0.61, 1.1 ± 0.20 and 0.8 ± 0.03  bits in the C, L and H respectively) and 

TPL richness (5 ± 1.14, 4 ± 0.71 and 5 ± 0.89  in the C, L and H respectively) at the end 

of the experiment were lower in the treatments than in the controls. The TPL less 

abundance that even dissapear in some weeks in the controls were the cladocera 

Macrothrix hirsuticornis, ostracoda and rotifera; in the Low and High treatment were all 

taxa of cladocera (Ceriodaphnia reticulata, Alona sp., Macrothrix hirsuticornis) and 

ostracoda.  
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Table II. Results of the GLM analysis showing the effects of the nitrate treatment on 
zooplankton abundance along the experiment. Bold values indicate significant differences (p < 
0.05). Statistically significant differences when p < 0.05. n.p.: no present 

Endpoint D0 D7 D14 D21 D28 D35 D42 D49 
Total zooplankton 
(ind l-1) 

0.106 0.272 0.600 0.008 0.627 0.625 0.613 0.391 

Rotifera (ind l-1) 0.454 0.698 0.323 0.667 0.193 0.022  0.143 0.050 
 

Cyclopoida  
copepoda (ind l-1) 

0.131 0.805 0.874 0.305 0.553 0.039 0.969 0.440 

Calanoida  
copepoda (ind l-1) 

0.124 0.439 0.377 0.164 0.384 0.191 0.033 0.721 

Nauplii (ind l-1) 0.246 0.724 0.783 0.026 0.593 0.969 0.816 0.377 
 

Ceriodaphnia (ind l-1) 0.210 0.445 0.431 0.085 0.505 0.000 0.000 0.000 
 

Macrothrix (ind l-1) n.p. n.p. n.p. 0.605 0.512 0.081 0.000 n.p. 
 

Alona (ind l-1) n.p. n.p. n.p. 0.583 0.193 n.p.. 0.066 0.863 
 

Ostracoda (ind l-1) 0.021 n.p. 0.100 n.p. n.p. n.p. 0.848 n.p. 
 

 

 

Figure 3. Zooplankton abundance dynamics (cells l-1) along the experiment. The arrow on D0 
indicates the nitrate addition. b indicates statistically significant differences between L treatment 
vs.C and H treatment. 
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Figure 4. Principal Response Curve (PRC), on the right, ordination method represents the main 
community respond to the treatment effect over time respect to the controls (dotted line), L 
treatment (triangles and dotted lines) and H treatment (circles and continuous line). The graph 
summarizes the zooplankton community respond based on its structure. On the left, the 1-D plot 
represents the species weights what express the level of affinity that each taxa have with the 
main trend of the PRC. The arrow on D0 indicates the nitrate addition. 

 

Looking at functional indicators, oxygen production shows significant differences along 

the experiment but only between the treatments (Table I). Finally, leaf litter 

decomposition did not show statistical significant differences between control and 

treatments at the end of the experimental period (p = 0.465). 

 

DISCUSSION 

The experimental set up aimed to expose microcosms to the same environmental 

variability with respect to outdoor environmental condition. It was achieved since there 

were not statistical significant differences in physical-chemical variables before nitrate 

addition, consequently the nitrate treatments were the only discriminating factor. 
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The development of a similar plankton community in all microcosms after the 

estabilization period was also a critical factor to ensure that nitrate treatments were the 

only discriminating cause. Total abundance of plankton (both phyto- and zooplankton) 

on D0 (Figure 1 and Figure 2) did not present statistically significant differences (Table 

I and Table II) between control and treatments and neither between treatments. 

Abundance of TPL of zooplankton presented statistically significant differences only in 

one cathegory (Table II): ostracoda abundance was very low or even not detected in 

some microcosms what suggest that the differences responde to low detectability factors 

more than to relevant differences in community structure. Phytoplankton cell size 

classes did not show statistically significant differences on D0 before the treatments 

addition (Table I). Therefore, it corroborated initial comparable communities which 

later differences responded only to treatment effects on the community. 

Phytoplankton developed from initial inoculations what suggest no nutrients limitations. 

Therefore, a higher phytoplankton abundance was expected in the treatments owing to 

nitrate addition due to a direct effect of nutrients addition, and to an indirect effect 

through a decrease of grazing presure due to a potential negative effect of nitrate on 

zooplankton abundance (Ortega et al., 2006; Miracle et al., 2007). Surprisingly, this 

situation occurred just at the end of the experiment, while phytoplankton abundance was 

lower in the treatments than in the controls during most of the experimental period 

(Figure 1). Knight and Notestein (2007) have previously reported a negative 

relationship between nitrate concentrations and primary production and phytosynthetic 

activity. Their explanation is a community change from algae adapted to low to 

moderate nitrate concentrations to submersed aquatic plants as benthic and filamentous 

algae characterized by higher rates of net productivity but lower gross productivity. 
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Such phytoplankton community change could explain the lower disolved oxygen in the 

treatments respect to the controls. Therefore, nitrates effect on phytoplankton may have 

impact on plankton algae causing its decrease, and favoring the increase of benthic 

ones. However, nitrate impact did not have effect on the community structure based on 

both cell size classes of plankton algae measured by citometry and chlorophyll-a. 

Temporal statistically significant differences of size cell class (Table I) may suggest 

puntual phytoplankton community changes. Such changes could have been short but 

intense and missed by weekly sampling routine because phytoplankton life cycle is 

faster than in zooplankton. In the same way, Chl a relevant changes could have been 

undetected by weekly sampling. Therefore, weekely sampling could have missed those 

temporal phytoplankton community changes what could have influenced the 

zooplankton community change. Flow citometry is considered a convenient tool in 

ecotoxicological studies (see for example Adler et al., 2007; Jamers et al., 2009) 

because allows a rapid measurement of a high number of cell features (Olson et al., 

1993; Prado et al., 2012) what could be use to detect early signal of toxicant effects. 

However, our lack of results draw special attention on the importance of life cycles to 

design an appropriate sampling planning. In the same way, PCA and chlorophyll-a 

concentrations did not present statistical significant differences between control and 

treatments, therefore failing to discrimate phytoplankton community structurals changes 

as a consequence of the treatments. 

Zooplankton abundance in the treatments only present transient statistically significant 

differences respect to the controls on D21 (Table). Surprisingly, zooplankton abundance 

do not decrease as a result of phytoplankton decrease after treatment addtion what 

would have been interpreted as food limitation. For instance, Kasai and Hanazato 
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(1995) report the linked response of phytoplankton availability and zooplankton 

abundance changes. They studied the effect of herbicides on freshwater plankton 

communities and reported that zooplankton densities decrease as an indirect effect of 

phytoplankton decrease owing to direct toxic effects of the herbicides. Instead of a 

decrease of total zooplankton, PRC denotes a zooplankton community change after 

treatment addition compared to controls: cladocera-dominated communities in the 

controls changed to copepoda-dominated in the treatments. Community shifts based on 

an order of sensitivity that increase from copepoda to cladocera under insecticide 

exposured have been reported previously by Relyea and Hoverman (2006). To the 

author knowlegde there is not such a consensus about the nutrients effect on 

zooplankton community shifts. It could be because nutrients most likely have an effect 

on zooplankton communities owing to indirect effects of phytoplankton changes and not 

to direct effects as insecticides do. The 1-D plot of the PRC showed that Ceriodaphnia 

reticulata and cyclopoida copepods are the two TPL responding to the treatments. 

Therefore, L and H treatments are characterized for being richer in copepoda 

(cyclopoids) versus controls being richer in cladocera (Ceriodaphnia reticulata). This 

specific taxa community change could be the explanation of the no correlation on the 

total zooplankton and phytoplankton response as would have been expected. And, could 

indicate an indirect effect of phytoplankton community change from plankton algae to 

benthic algae impacting zooplankton communty structure. This resuls is in accordance 

with Hillis et al. (2007) that reported effects of nomensin (antibiotic) on zooplankton 

community structure and species richness as an indirect result on algae community 

changes. Nitrate treatment have a direct negative impact in phytoplankton abundance, 

however zooplankton abundance in the treatments do not decrease owing to a 
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compensatory increase of cyclopoida copepoda. The increase of cyclopoids is most 

likely and indirect effect of: a) a release of competition from more specialized filter-

feeder plankton groups (as Ceriodaphnia reticulata more present in the controls than in 

the treatments) being most likely affected by the decrease of phytoplankton as a result 

of the treatments impact; and, b) a wider food resources spectrum, cyclopoid copepods 

are mainly carnivorous of small microcrustacea (i.e. rotifers and nauplii) and also feed 

on organic and inorganic particles (Holyńska et al., 2003). An increase of cyclopoid 

copepods over calanoid copepods and cladocerans has been proposed as a bioindicator 

of trophy status of lakes (Gannon and Stemberger, 1978; Caramujo and Boavida, 1999; 

Parra et al., 2009). It hightlights, the importance of community structure changes as a 

potential bioindicator and to understand indirect effect that abundance endpoints may 

overlook.  

Nitrate addition altered zooplankton community structure based on Shannon-Wiener 

index and richness. Both values were lower in the controls compared to treatment at the 

end of the experiment. Diversity community changes can provoke drastic and long term 

effect at ecosystem levels. For instance, Miracle et al. (2007) established a relationship 

between nutrient addition and a shift to a turbid water state mediated by a zooplankton 

community change as a result of nutrient disrupting effect on the community. It is 

critical characterize the community shift because the magnitude of the effects is highly 

dependent on which species are changing (Cardinale et al., 2006). 

Oxygen production as a proxy of production did not detect nitrates effects in this 

experiment. However, it has been an usefull indicator of community response to 

disturbances in other studies (Lind, 1979; Cole and Pace, 2000; Downing and Leibold, 

2010; Del Arco et al., 2014). For instance, Downing and Leibold (2010) explored how 
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species richness facilitate ecosystem resilience in aquatic food webs under toxic 

pressures using productivity as one of the studied indicators; and productivity decreased 

across treatments noticing a negative impact of the toxicants.  

Litter decomposition aimed at obtain information of microbial activity through litter 

decomposition rates. No statistical differences were found by the end of the experiment. 

However, a shortcoming of the use of litter decomposition in this experiment could be 

related to a short incubation time for the kind of community under study or low 

sampling frecuency limited only at the end of the experiment, risking to miss variation 

in the decomposition rates along the experiment owing to the treatments. Pestana et al. 

(2009) have used leaf litter degradation as an ecotoxicological endpoint in an outdoor 

stream mesocosms experiment. The study aimed at assess structural and functional 

responses of benthic invertebrates and results showed that decompostion was a sensitive 

endpoint to detect pesticide contamination. 

In summary, the experiment aimed at determine if nitrate concentrations within legal 

limits have negative effect: a) at current nitrate maximun acceptable legal limits (50 mg 

l-1); and b) at even lower limits (25 mg l-1). It has been found that phytoplankton 

abundance and zooplankton community endpoints are adversaly affected by both nitrate 

concencentrations under legal limits. It is in accordance with previous studies as 

Camargo et al. (2005) that had proposed a 2 mg l-1 of nitrate as an appropiate limit for 

being within the range of more common nitrate concentrations routenily detected. In 

fact some countries have already lowered legal nitate limits, for instance United 

Kingdom (18 – 42 mg l-1) and Austria (45 mg l-1).  
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CONCLUSIONS 

Negative effects found at plankton biological endpoints raises the question of how 

appropiate current legal limits are to prevent environmental risks. These results are 

consistent with previous studies cited in the discussion claiming the need to lower 

nitrate concentration in aquatic systems. The authors support the consideration of the 

precautionary principle and would recommend lowering the nitrate legal limits as have 

already been done in other European countries. In this sense, more science-based 

decision should be make. Therefore, more ecological and exposure (mixtures and pulse 

frequency) realistic chemical assessments are needed.  
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ABSTRACT  

Freshwater ecosystems face multiple stressors human-induced as mixtures of agrochemicals. 

Chemicals do not occur alone in the environment. However, most ecotoxicological 

assessments have studied the effect of single chemicals on aquatic communities. Therefore, 

more environmental realistic scenarios should be considered. The present study explores how 

natural assemblages of plankton community respond to environmental relevant agrochemical 

mixtures within European legal limits. Specifically, the experiment assesses how plankton 

communities respond to a pulse of a single and mixture pulse of copper sulfate and 

ammonium nitrate which copper and nitrate concentrations fulfil legal limits. Twenty-five 

microcosms were used to assess the effects of 4 treatments (n = 5): 1) Nitrate Low treatment 

(L) of 25 mg l-1, 2) Nitrate High treatment (H) of 50 mg l-1, 3) Copper treatment (Cu) of 0.04 

mg l-1 of copper, 4) Interaction treatment (I) of 50 mg l-1 of nitrate applied together with 0.04 

mg l-1 of copper, and the controls (C). Plankton abundance, community structure, diversity 

and richness were used as structural endpoints; and, oxygen production and litter 

decomposition as functional indicators. Results show that plankton abundance and 

community structure are transient but adversely affected by both direct and indirect effects of 

agrochemical mixtures under legal limits. Concretely, interaction treatment (I) revels how a 

nutrient enhancement from ammonium nitrate addition counterbalance the toxic effect of 

copper sulfate most likely as a results of higher phytoplankton availability positively 

influencing the survival of zooplankters. It highlights the importance of study agrochemical 

mixtures effects to better understand community responses. 

 

Keywords: agrochemical, mixtures, legal limits, natural assemblages, plankton 
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INTRODUCTION 

Intensive agricultural practices are characterized by multiple applications of agrochemicals 

causing adverse effects on freshwater ecosystems through run-off events where mixtures 

occurs (Parra et al., 2005; García-Muñoz et al., 2010; Stendera et al., 2012). Microcosms 

experiments of single chemicals are commonly used to study toxicant effects in aquatic 

organisms. Despite of the important information of these experiments, they lack 

environmental realistic exposure scenarios because they disregard chemicals mixtures in the 

water bodies. It is well known that chemicals can interact resulting in additive (sum of the 

individual effects), antagonistic (less than additive) and synergistic (more than additive) 

effects (Lydy et al. 2004; Jonker et al., 2005). Therefore, there is a claim for the need for 

more assessments considering mixtures of chemicals to better understand direct and indirect 

effect of agrochemicals inputs on aquatic communities (Laskowski et al,. 2010; LeBlanc et 

al., 2012). 

Consumption of manufactured fertilizers based on nitrogen in Europe is translate into 1579 

kg ha-1 of nutrients; what is much higher than the use of others fertilizers based on 

phosphorus (139 kg ha-1) and potassium (317kg ha-1) (EUROSTAT, 2009). At the same time, 

fungicides accounts for 51% of Plan Protection Products (PPP) used in Europe (EUROSTAT, 

2007). Therefore, it seems realistic that fertilizers and fungicides co-occur in the 

environment. Hence, ammonium nitrate as fertilizer and copper sulfate as fungicide have 

been the selected agrochemicals for the experiment here presented. 

Ammonium nitrate is a broad-spectrum fertilizer used worldwide, for instance in crops, rape, 

beets or pastures. Ammonium quickly transform into nitrates by nitrification processes. Even 

though nitrates (NO3
-) naturally occur in aquatic systems, its natural concentrations have 

drastically increased owing to agricultural run-offs (Camargo et al., 2005). A major 
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consequence of nutrients increase is the eutrophication of aquatic ecosystems, what triggers 

phytoplankton blooms due to direct (nutrients availability) or indirect effects (zooplankton 

grazing pressures disruption) leading to water quality degradation (Miracle et al., 2007). 

Water quality degradation is the most social visible consequence of a web of direct and 

indirect effects across all trophic levels owing to toxicant exposures. For instance, a 

microcosm experiment assessing the adverse effects of an insecticide (Chlorpyrifos) in 

plankton communities showed that changes in grazing pressures owing to a decrease of 

microcrustacean populations resulted in eutrophication signs (increases of chlorophyll-a, 

algae abundances, dissolve oxygen and pH) what will have adverse effect on water quality 

parameters(Van Wijngaarden et al. 2005). In addition, nitrates effect on non- target aquatic 

organisms as invertebrate and amphibian have been previously reported (Camargo and Ward, 

1995; García-Muñoz et al,. 2011).  

Copper sulfate is used as fungicide, herbicide and algaecide worldwide (Kungolos et al., 

2009), therefore, it can reach aquatic systems both by direct application or run-offs.  In 

addition to the negative effect on environmental values, copper is a public concern as a heavy 

metal because of its impact on human health (Duruibe et al., 2007). Effects of copper on 

aquatic systems have been previously reported. For instance, Parra et al. (2005) found 

adverse effect on hatching rates and nauplii survival in copepod (Arctodiaptomus salinus) 

under copper exposures lower than expected field concentrations. Gama-Flores et al. (2007) 

reported a decrease of hatching egg in the rotifer Brachionus calyciflorus as low as 16 – 41 % 

depending on copper exposure concentration and experiment duration respect to the controls. 

In the same way, there is bibliographic data on the negative effects on amphibian 

communities (García-Muñoz et al., 2010; 2011). And, there is also data at community levels 
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in aquatic systems (Hedtke, 1984; Havens, 1994; Mastin and Rodgers, 2000; Del Arco et al., 

2014). 

In the best case scenario, agrochemicals concentrations leaking into aquatic systems would be 

under legal limits if agricultural good practices are implemented. Nevertheless, legal limits 

are established base on single test species considering only single chemical exposure and 

standard species. Even though safety factors are applied to counterbalance limitations of 

single species test, it may not be enough to prevent environmental risks. In this sense there is 

a lack of studies under routinely found chemicals concentrations (LeBlanc et al,. 2012) as 

concentrations within legal limits would be; what brings up the question if current legal limits 

are safe enough. 

Therefore, the aim of our study was to evaluate how agrochemicals mixtures pulses within 

European legal limits affect freshwater ecosystems focusing on the plankton community. The 

experiment seeks to detect both direct and indirect effect of the agrochemicals mixture and 

test the following hypothesis: a pulse of mixtures of agrochemical under current legal limits 

will have adverse effects on the plankton community.  

 

MATERIALS AND METHODS 

Microcosms set up 

Agrochemical mixtures effects on plankton community was assessed using microcosms with 

naturally occurring plankton communities from a local pond [Casillas wetland, UTM 

30SVG1084 with a surface area of 2.2 ha. (Ortega et al,. 2003)]. Microcosms (50 l volume) 

were filled with 45 l of mineralized water and located outdoor in an experimental wetland 

infrastructure at the University of Jaén. Vertical hauls with a plankton net (53 µm) were done 

in the local pond (Casillas wetland) to collect plankton samples which were homogenized and 
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equally distributed among the microcosms. At the same time, superficial sediment layers of 

the pond were extracted to set a 5 cm layer in all microcosms after its homogenization. 

Phytoplankton community developed from the inoculated water in the microcosms coming 

together with the zooplankton and sediment samples. A diverse zooplankton community was 

developed from the plankton samples and/or hatching from the sediment resistant eggs, with 

the presence of rotifers, cladocerans, copepods andostracods species.  

Plankton community and sediment was inoculated on March 2013 to allow its stabilization 

and development before the start of the experiment a month later on April 2013. The 

experiment lasted 49 days (from D0 until D49). The agrochemical mixtures were spiked on a 

single pulse on D0 after plankton samples were taken to capture initial community 

conditions. The treatments consisted of four different agrochemical perturbations and the 

controls (n = 5). The agrochemical perturbations treatments included two pulses of nitrate of 

25 mg l-1(low treatment, L) and 50 mg l-1 (high treatment, H), one pulse of copper of 0.04 mg 

l-1(copper treatment, Cu), and a mixture pulse with 50 mg l-1 of nitrate applied together with 

0.04 mg l-1 of copper (interaction treatment, I). The concentrations of nitrate and copper 

employed in the treatments were selected based on legal limits established by the Council 

directive 80/778/EEC (revised as Council Directive 98/83/EEC) for nitrates, Council 

directive 91/676/EEC for nitrates, Boletín Oficial del Estado (BOE, 2011) for copper 

following the Water Framework Directive (WFD) (Directive 2000/60/CE). 

 

Physical chemical variables 

The physical and chemical conditions of microcosms were weekly assessed in the morning 

(8:00 am). The environmental conditions measured in situ, using a field probe (YSI-556 

MPS), were temperature, pH, dissolved oxygen, and conductivity. Alkalinity was measure in 
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the laboratory so then, water samples (100 ml) were taken and transported in cold and 

darkness conditions for its analysis using a 848 Titrino Plus devise. 

Nitrate and copper stock solutions were prepared using ammonium nitrate (NH4NO3) and 

copper sulfate (CuSO4), respectively. A single agrochemical pulse (aliquots of the stock 

solutions) was spiked on its corresponding treatment on D0 in microcosm’s water surface 

after the first physical-chemical and biological sampling. Microcosms were gently stirred to 

ensure homogeneous agrochemical distribution on the water column. After the pulse, a 

sample of 50 ml of water was taken to corroborate if nominal concentrations were reached. A 

standard laboratory protocol was used to analyze nitrate concentrations (APHA, 1995); 

ammonia concentrations were measured by a photometric water analysis by a NANOCOLOR 

KIT (Amonio 3, range from 0.05 – 3.00 mg NH4
+ l-1); and, copper was analyzed by 

Inductively Coupled Plasma (ICP) Mass Spectrometry. 

 

Biological endpoints 

Phytoplankton community response to the toxicants based on abundance and community size 

structure endpoint was evaluated by chlorophyll-a (Chl-a) and flow cytometry measurements 

respectively. The endpoints were a proxy of phytoplankton abundance (cellular densities 

measured by cytometry and Chl-a concentration) and community size structure (pico-, ultra-, 

nano- and microphytoplankton cell size classes). Chl-a concentration was determinated by 

fluorometry. A calibration curve was calculated based on samples that were filtered through 

Whatman GF/C glass microfibre filters, and extracted in 90% acetone for 24 h at 4ºC. 

Cytometry analysis were performed on water samples preserved in glutaraldehide (2%), 

frozen in liquid nitrogen and stored at 80ºC until the analysis with a BD- LSR Fortessa flow 

cytometer. Calibration spheres were used to obtain a cell size regression curve: y = 0.008 x – 
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3.93 (“x” = the mean of the Forward Scatter (FSC), and “y” = cell size of the cells in μm3). 

Four cell size populations were studied: picophytoplankton (0.4 – 2 μm3), ultraphytoplankton 

(2 - 8 μm3), nanophytoplankton (8 – 20 μm3) and microphytoplankton (>20 μm3). An 

acquisition time of 180 s at a rate of 60 μl min-1 was a set parameter to measure population’s 

cells abundance. These data were analyzed with FACSDIVA software. 

Zooplankton community response to the toxicants was assessed weekly by abundance, 

community structure and diversity based on the lowest taxonomical practical levels (TPL) 

(Van Wijngaarden et al,. 2005; Del Arco et al., 2014). The endpoints assessed were 

abundance (ind l-1), community structure (PRC), diversity (Shannon-Wiener diversity index) 

and richness. Zooplankton integrated water samples (0.5 l, plankton net of 60 μm) were 

weekly taken from each microcosm and preserved in formaldehyde (4% f.c.). The filtered 

water was returned to the microcosm. Zooplankton was counted, identified and grouped to 

the following eight taxonomical practical levels (TPL): Ostracoda order, calanoid copepods 

(Neolovenulla aullaudi), cyclopoid copepods (Acanthocyclops sp. plus Metacyclops sp.), 

nauplii (calanoida plus cyclopoida), Ceriodaphnia reticulata, Alona sp., Macrothrix 

hirsuticornis and rotifers order.  

Oxygen production was estimated by diurnal oxygen fluctuations as a proxy of ecosystem 

productivity (Lund, 1979; Cole and Pace, 2000; Downing and Leibold, 2010). It was weekly 

measured at the start (8:00 am) and at the end (20:00 pm) of the spring-summer photoperiod 

(12:12) using a field probe (YSI-556 MPS). 

Litter decomposition was assessed incubating alder leaves (Alnus glutinosa) in order to 

compare the percentage of Ask Free Dry Mass (AFDM) between controls and treatments at 

the end of the experiment. One litter bag (10 x10 cm and 1 cm mesh size) for microcosms 

(initially containing 3 g dry weight of alder leaves) was incubated for the whole experimental 
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period (49 days). After retrieval, litter was rinsed with tap water, oven dried (105ºC for 24h), 

weighed, ignited (550ºC for 4h) and reweighed to calculate lasting ash free dry mass 

(AFDM) (Gessner and Chauvet, 1994). 

 

Statistical analysis 

Effects of single and mixture pulses of agrochemical in the planktonic community at both 

structural and functional levels were assess through analysis of variance by General Lineal 

Models (GLM) followed by a post hoc Tukey test (IBM SPSS statistic 19 software). Prior to 

GLM analysis plankton data were log (x +1) transformed to meet homoscedasticity and 

normality assumption. In addition, phytoplankton community structure (pico-, ultra-, nano- 

and microphytoplankton cell size classes) was studied with a Principal Correspondence 

Analysis (PCA, CANOCO v4.5 software). Zooplankton community structure was analyzed 

by Principal Response Curves (PRC, CANOCO v4.5 software). PRC is an ordination analysis 

based on redundancy analysis ordination (RDA) that allows a graphically observation of the 

overall community response to the treatments during the experiment compared to the controls 

(Van den Brink and Ter Braak, 1999; Roessink et al., 2005; Zafar et al,. 2012). In addition, 

the species weights are represented in a complementary graph (1-D plot) which inform about 

the affinity of the different species with the overall response showed by the PRC. Species can 

have a positive, negative or null value meaning that the species changes are directly, 

indirectly or not correlated to the main response trend respectively. Prior to Principal 

Response Curves, plankton data were ln (ax +1) transformed to counterbalance the influence 

of taxa no present versus low taxa abundance (Zafar et al., 2012): “a” represent the results of 

divide 2 by the lowest taxa abundance value of all treatments and “x” the taxa abundance 

value in each treatment 
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RESULTS  

Physical and chemical variables 

All experimental microcosms experienced similar physical and chemical conditions (aside 

from the agrochemical treatments) as indicated by the lack of any statistically significant 

differences in temperature (p = 1), pH (p = 0.56), alkalinity (p = 0.68) and percentage of 

dissolve oxygen (p = 0.56). Only conductivity was different in C versus H and I treatments 

on D7 (p = 0.002). Respectively, the average measurements during the experiment were 16.6 

± 3.0 ºC; 8.0 ± 0.1 pH;87.3 ± 45.1 bicarbonate mg l-1; 71.7 ± 13.7 % DO and 317.0 ± 77.3 

µS/cm. 

Nitrate and copper measurements were taken to corroborate intended nominal concentrations 

and calculated Average Exposure Concentrations (AEC) in each treatment (Table I). During 

the experiment the average percentage of nitrate concentrations were 51.6 ± 33.9 % (L 

treatment), 55.3 ± 30.4 % (H treatment) and 47.4 ± 34.5 % (I treatment) of the target nominal 

concentrations in each treatment. The percentages of nominal copper concentrations were 

38.9 ± 11.0 % (Cu treatment) and 46.0 ± 10.5 % (I treatment). Ammoniun levels were lower 

than 0.05 mg NH4
+ l-1 in all treatments. 

 

Table I. Average Exposure Concentration (AEC) in mg l-1 during the treatment period and 
concentrations measured after nitrate pulse (D0).  

Treatments Toxicant Nominal Target 
Concentration 
 (mg l-1) 

D0 ± S.D. AEC (mg l-1) 
 

L NO3
- 25 30.8 ±11.1 14.0 ± 5.5 

H NO3
- 50 41.0 ± 24.4 24.1 ± 14.4 

Cu Cu 0.04 0.051 ± 0.001 0.015 ± 0.044 
I Cu 0.04 0.058 ± 0.001 0.018 ± 0.042 

NO3
- 50 46.2 ± 28.9 14.0 ± 5.5 

 

133



 

Biological endpoints 

Statistical differences in total phytoplankton abundance and cell size classes’ abundance 

between controls and treatments were found in specific sampling days (Table II). Long term 

consequences were not detected in terms of cell size classes composition of phytoplankton 

communities based on the absent of discrimination of controls versus treatments in the PCA 

(Figure 1). The PCA axis 1 explained 63.7% of the variation and PCA axis 2 explained 

13.8% of the variation, explaining together 77.5% of the total variance related to the 

discrimination of treatments base on cell size classes of phytoplankton. However no groups 

of cell size classes were detected, therefore, PCA shows a main cluster grouping all the 

microcosms independently of the treatment. Phytoplankton abundance estimated by Chl-a 

showed more permanent statistically significant differences between controls and treatments 

during three sampling days (Table II, Figure 2). 

Table II. Results of the GLM analysis showing the effects of the nitrate treatment on phytoplankton 
abundance along the experiment. Bold values indicate significant (p<0.05) effects. Statistically 
significant differences when p < 0.05. n.m.: not measured 

Endpoint D0 D7 D14 D21 D28 D35 D42 D49 
Total phytoplankton 
(cell l-1) 

0.029 0.184 0.075 0.134 0.231 0.119 0.391 0.116 

Picophytoplankton 
(cell l-1) 

0.009 0.204 0.095 0.406 0.479 0.224 0.378 0.292 

Ultraphytoplankton 
(cell l-1) 

0.077 0.155 0.068 0.025 0.278 0.067 0.383 0.185 

Nanophytoplankton 
(cell l-1) 

0.244 0.161 0.217 0.149 0.071 0.028 0.180 0.259 

Microphytoplankton 
(cell l-1) 

0.117 0.117 0.144 0.317 0.154 0.048 0.214 0.357 

Chl-a (μg l-1) 0.652 0.719 0.262 0.001 0.000 0.046 0.082 0.065 
Oxygen production 
(mg 02 h-1) 

0.107 0.145 0.227 0.406 0.352 0.362 0.272 0.279 

Litter 
decomposition 

n.m. 0.244 
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Figure 1. PCA ordination graph. Symbols represent the microcosms ordination by treatment respect to 
the phytoplankton cell size classes. C, L, H, Cu and I stand for controls, low nitrate, high nitrate, 
copper and interaction of nitrate plus copper respectively. 

 

Figure 2. Chlorophyll-a mean values in each treatment. C, L, H, Cu and I stand for controls, low 
nitrate, high nitrate, copper and interaction of nitrate plus copper respectively. “a” and “b” denotes 
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statistically significant differences between controls and L treatments; and, between C and L and I 
treatments. “c” denotes statistically significant differences between H and Cu treatments. 

 

In relation to zooplankton, the average of total abundance per treatment at the end of the 

experiment showed two different patterns respect to the controls (251 ± 19 ind l-1): 1) an 

increase of zooplankton abundance in the treatments with nitrates being 850 ± 1 ind l-1; 583 ± 

456 ind l-1 and 663 ± 305 ind l-1 in L, H and I treatments, respectively; and, 2) a decrease in 

the Cu treatment, with 177 ± 112 ind l-1 (Figure 3). Statistical analysis with GLM detects 

statistical differences at total abundance and in the abundance of some taxa (Rotifera, 

Cyclopoida copepods, Calanoida copepods, Nauplii, Ceriodaphnia reticulate and Macrothrix 

hirsuticornis, Table III). PRC results are consistent with the total abundance results and the 

two community response patterns related to the treatments explained above.  

 

Figure 3. Zooplankton total abundance (ind l-1) values in each treatment. C, L, H, Cu and I stand for 
controls, low nitrate, high nitrate, copper and interaction of nitrate plus copper respectively. “a” and 
“b”denotes statistically significant differences between controls versus H and I treatments; and, 
between controls versus L, H and I treatments. 
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PRC was statistically significant (p = 0.002) and denoted differences between controls and 

treatments at both abundance and community structure (Figure 3). Shannon-Wiener diversity 

index (1.69 ± 0.25; 1.32 ± 0.63; 1.27 ± 0.60; 1.22 ± 0.60 and 1.82 ± 0.33 in the C, L, H, Cu 

and I treatments, respectively) and richness (5.0 ± 0.7; 5.6 ± 0.2; 5.4 ± 0.5; 4.8 ± 0.9 and 5.0 

± 0in the C, L, H, Cu and I treatments, respectively) based on TPL at the end of the 

experiment did not show statistically significant differences.  

Functional indicators, oxygen production and litter decomposition, did not show statistical 

differences between treatments and controls along the experiment (p > 0.05; Table II).  

 

Table III. Results of the GLM analysis showing the effects of the nitrate treatment on zooplankton 
abundance along the experiment.Bold valuesindicatesignificant (p<0.05) effects. Statistically 
significant differences when p < 0.05 n.d.: notdetected 

Endpoint D0 D7 D14 D21 D28 D35 D42 D49 
Total Zooplankton (ind l-1) 0.477 0.655 0.131 0.460 0.009 0.284 0.002 0.135 
Rotifera(ind l-1) 0.125 0.093 0.004 0.094 0.213 0.399 0.153 0.017 
Cyclopoida 
copepods(ind l-1) 

0.040 0.560 0.636 0.747 0.793 0.192 0.012 0.839 

Calanoida 
copepods(ind l-1) 

0.026 0.148 0.332 0.347 0.733 0.147 0.445 0.069 

Nauplii(ind l-1) 0.724 0.057 0.172 0.565 0.700 0.693 0.155 0.400 
Ceriodaphniareticulata(ind 
l-1) 

0.630 0.756 0.115 0.163 0.115 0.181 0.051 0.078 

Macrothrixhirsuticornis 
(ind l-1) 

0.101 n.d. n.d. n.d. n.d. n.d. 0.171 0.055 

Alonasp. (ind l-1) 0.103 0.182 n.d. n.d. n.d. 0.109 0.445 n.d. 
Ostracoda (ind l-1) 0.041 0.093 n.d. n.d. n.d. n.d. n.d. n.d. 
 

 

137



 

Figure 4. Principal Response Curve (PRC), on the left, ordination method represents the main 
community respond to the treatment effect over time with respect to the controls (dotted line in the 
middle of the graph represent the C and the lines with triangles, circles, stars and squares represent L, 
H, Cu and I treatments). The graph on the right summarizes the zooplankton community response 
based on its more influent taxa; it represents the species weights expressed as the level of affinity that 
each taxa had with the main trend of the PRC. 

 

DISCUSSION 

The experiment was intended to explore how plankton community of freshwater ecosystems 

will respond to disturbances caused by mixtures of commonly used agrochemicals within 

current legal limits. The responses presented in the results will be linked to the experimental 

treatments because nominal concentrations of individual and mixtures agrochemicals were 

achieved, and no long lasting physical-chemical differences between microcosms were 

detected. 

Phytoplankton abundance denotes transient effect at individual sampling days between 

controls and treatments both before (D0) and after the treatments (D7). It could mean that 

either the phytoplankton community develops differently in the microcosms, which seem 
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unlikely since all the inoculations of plankton, physical-chemical and environmental 

conditions were the same; or that the sampling procedure was not the most appropriated for 

the present microcosms experiment. In relation to the second aspect, 4 ml volume samples 

were taken to run the cytometric analysis. Although the homogenization of the microcosms 

was done before the sample, it is possible that could have been insufficient to capture 

phytoplankton community abundance and its response to the treatment. In fact, a more 

commonly used Chl-a measurement was able to detect differences on consecutive sampling 

days between controls and treatments (Table II, Figure 2). Cytometry has the potential to be a 

powerful tool in ecotoxicology because it allows a fast measurement of diverse cell features 

(Adler et al., 2007; Jamers et al., 2009; Prado et al., 2012). However, its use in microcosms 

experiments aiming at capture phytoplankton community response may require further 

adjustments to be able to detect large, colonies, phytoplankton. Changes in phytoplankton 

cell size could be an appropriated fast endpoint to complement the explanation of the changes 

registered in zooplankton abundance and community shifts in relation to indirect effects. 

Information about abundance of the diverse cell size classes could inform data about 

edibility. Edibility of phytoplankton modulates zooplankton grazing capacity (Miracle et al., 

2007; Holt, 2008; Scheffer et al., 2008; Cumming et al., 2013) what could influence 

zooplankton fitness and consequently its response to the toxicants. As mentioned above, the 

Chl-a concentration denoted an effect of treatments on the total abundance of the 

phytoplankton community, increasing in all treatments. An increase of phytoplankton in Cu 

treatments may be related to an indirect effect related to a decrease of zooplankton owing to 

copper toxicity (Parra et al., 2005), or as a result of more nutrients availability favoring 

phytoplankton growth. On the contrary, a negative effect of Cu treatments on phytoplankton 

would have been expected based on an adverse effect on algae growth (Koutsaftis and 
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Aoyama, 2006). Phytoplankton availability seems to have favored the increase of 

zooplankton, both growing together along the experiment. It could have been expected a 

decrease of phytoplankton under higher pressures of zooplankton growth. One possible 

explanation could be that treatments are dominated by rotifers, which grazing capacity would 

be too low to control phytoplankton development. In this sense, Miracle et al. (2007) studied, 

with mesocosms in a Mediterranean shallow pond, the effect of nutrients on rotifers and 

reported that their grazing capacity is much lower than macrozooplankton grazing activity. 

The most interesting effect came from the treatment I, suggesting that nitrate addition seems 

able to interfere the negative toxic effect of copper. This result could be explained by a 

compensation of the negative effects of copper as a consequence of major food availability 

due to nutrients addition favoring the phytoplankton growth. This modulation capacity does 

not mean the absence of negative effect respect to the controls, but it point out that the 

community response is highly more complex than expected under mixture of chemicals 

because the occurrence of indirect effects. This result is especially relevant because 

highlights the indirect effects as a result of agrochemical mixtures with highly diverse mode 

of action and targets. In this case, the interaction between a fertilizer and a fungicide show 

similar phytoplankton responses but mediated by different indirect effects. 

Zooplankton abundance denoted differences between controls and treatments. The total 

abundance of zooplankton (ind l-1) shows a zooplankton response by the end of the 

experiment with two different patterns. Total zooplankton abundance increase in the 

treatments with nitrates (L and H) even in the treatment I, where nitrates are added together 

with copper. By contrast, total zooplankton abundance decrease in the Cu treatment. It could 

indicate an indirect effect related to an influence on the individuals response to copper 

toxicity owing to higher food availability resulting in better individual fitness. Caramujo and 
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Boavida (1999) stated the importance of food quality for reproductive cycles and 

development stages of zooplankton taxa. In addition, Gui and Grant (2008) studied the 

influence of food availability combined with toxicants exposures on Drosophyla 

melanogaster and reported that specific food availability could modulate toxicant exposures 

under specific population densities and toxicant exposures. In accordance with this premise, 

Chl-a increases specially in the treatments with nitrate (L, H and I) in the last sampling days 

respect to the controls and the copper treatment (Cu). PRC also denotes two different 

response patterns in terms of community structure by the last sampling days. Treatments with 

nitrates (L, H and I) are similar to the controls being richer in rotifers by the end of the 

experiment; while Cu treatments differ from the controls being poorer in rotifers. Therefore, 

the PRC results support the hypothesis of an indirect effect related to phytoplankton 

abundance as previously discussed. Rotifers within this community could be the most 

sensitive individuals to copper. Therefore rotifers population decrease under Cu treatments; 

while, the decrease is softer in the I treatment owing to the addition of nitrate that could lead 

to an increase of phytoplankton resulting in more food availability for rotifers that 

compensate the toxic effect of copper. Copper exposure were 0.04 mg l-1 what is within legal 

limits, therefore, no effect on rotifers would have been previewed. In fact, other studies have 

reported acute test (48-h exposure) of neonate’s rotifer species (Lecane hamata and L. 

quadridentata) resulting in LC50 values of 0.06–0.33 mg l−1 (Pérez-Legaspi and Rico-

Martínez, 2001). However, other study has described a lower value of LC50 (24-h exposure) 

for Brachionus calyciflorus of 0.02 mg l-1 for copper sulfate (Snell and Persoone, 1989). 

Other potential sensitive taxon was Ceriodaphnia reticulata as the PRC denoted what is 

partially supported by the published LC50 (48-h exposure) of 0.003 mg l-1 for copper sulfate 

for other congeneric specie, Ceriodaphnia dubia (Suedel et al., 1996). Nevertheless, 
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Ceriodaphnia reticulata did not show a clear response to the treatments in this experiment. 

Broadly there is an order of sensitivity increasing from copepods to cladocerans in the 

literature (Hanazato 1998). Nonetheless, in our experiment copepods also do not respond to 

the treatments, possibly because they present an LC50 higher (Lalande and Pinel-Alloul, 

1989) than the copper concentration tested in this study. Consequently, rotifers could be the 

most sensitive taxa within this specific community because they showed the clearest response 

to the treatments. Additionally, the most relevant fact is that the mixture of agrochemical may 

modulate rotifers response. One interesting aspect is the possible influence of this result on 

the trophic web. These effects are known as bottom-up effects and suggest that small 

alterations in the base of the trophic web, that are usually ignored, may mean a community 

shift or processes rates changes, leading to impacts of higher magnitude (Scheffer et al., 

2008). In this respect, Hanazato (1998) and Zagarese (1991) described the consequences of 

zooplankton abundance and taxa shifts on the whole community structure influencing spring 

clear-water phase in lakes and fish larvae development.  

Shannon-Wiener diversity index, TPL richness as structural endpoints, and, oxygen 

production and litter decomposition, as functional endpoints did not detect any statistical 

significant difference. This is not unforeseen, no effect or transient effect of some endpoints 

were expected since the experiment was done using agrochemical concentrations under legal 

limits. However, those slight effects reflected by zooplankton (abundance and PRC) and 

phytoplankton (Chl-a) were indeed hypothesized. That is, current legal limits are based on 

single species test and even if security factors are applied the root of the studies may lack 

complexity to capture community responses (Van den Brink, 2013; De Laender and Janssen, 

2013). Therefore, that was the reason why even exposures within legal limits were 

hypothesized to have negative adverse effects. 
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In conclusion, results show that phytoplankton abundance, zooplankton abundance and 

zooplankton community structure are adversely affected by both direct and indirect effects of 

agrochemical mixtures under legal limits. It could be argued that recovery capacity could 

overcome such transient impacts; however, under a precautionary principle such adverse 

effects in assumed protected communities raise concerns about long-term impacts. 
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ABSTRACT 

Intensive agriculture is a leading perturbation of aquatic systems compromising 

biodiversity and ecosystem services. Predicting how freshwater systems will respond to 

complex agrochemical disturbances is difficult because of their repeated nature, the 

potential for chemicals interactions, and for both direct and indirect effects. This study 

explores how zooplankton communities respond to temporally repeated pulses of 

nutrients and insecticides, singly and in combination, in order to understand how 

agrochemical mixtures affect aquatic system integrity and biodiversity. We conducted 

an experiment to assess the ecotoxicological effects of a commonly used insecticide 

(chlorpyrifos) and nutrients (nitrogen and phosphorus) on plankton communities. 

Microcosms (300 L) were established outdoor for 10 weeks. The treatments consisted of 

controls and four different perturbations (insecticide, nutrients, insecticide and nutrients 

applied synchronously applied, and insecticide and nutrients asynchronously applied), 

each with 5 replicates. Zooplankton abundances, community structure and biodiversity 

were used as structural indicators. Chlorophyll a and ecosystem productivity were used 

as functional indicators. We found significant differences between treatments and 

controls at structural levels. Principle response curves of zooplankton communities 

showed a shift in composition towards copepod dominated communities in treatments 

that received insecticide. We did not find evidence for additive or synergistic effects of 

insecticides pulses and nutrient pulses together. In conclusion, the insecticide 

disturbance had strong direct and indirect effects on zooplankton community response 

but nutrient pulses alone and in combination with insecticides had little visible impact 

on aquatic communities.  

 

Key words: agrochemicals; mixtures; frequency; assessment; risk; plankton 
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INTRODUCTION 

Anthropic pressures are affecting ecosystems resulting in biodiversity losses worldwide, 

and this fact is especially dramatic in freshwater ecosystems (Sala et al., 2000). One of 

the most significant pressures facing the ecological integrity of freshwater ecosystems is 

intensive agriculture characterized by applications of pesticides and fertilizers (Parra et 

al., 2005; Stendera et al., 2012). As a result of repeated agrochemical application and 

run-off events, freshwater ecosystems often receive pulses of agrochemical mixtures at 

varying frequencies with consequences for aquatic ecosystem biodiversity, structure and 

function (Troncoso et al., 2000; Parra et al.,  2005). In order to understand the 

ecological relevance of pulsed toxicant mixtures for freshwater ecosystems, we need to 

not only understand the effects of single toxicants on single species but we must also 

evaluate the effects of pulses of toxicant mixtures within a context of complex 

ecological interactions (De Laender and Janssen, 2013). This approach will also result 

in more ecological realistic risk assessments (ERA) useful for science-based policy 

decisions.  

Two common agrochemical applications that have particularly strong effects in aquatic 

ecosystems are fertilizers and insecticides (Bronmark and Hansson, 2002). Fertilizers 

often enter aquatic ecosystems in repeated pulses, particularly in agricultural areas with 

diverse crops, complex agrochemical application timing and variable rainfall events 

(FAO, 2006; LeBlanc et al., 2012; Smith et al., 2001; Haygarth et al., 2012). Fertilizer 

run-off generates an overall increase in nutrient input into freshwater ecosystems, 

leading to many changes including enhanced productivity, a reduction in biodiversity 

(Porter et al., 2013), and altered planktonic structure (Miracle et al., 2007; Hall et al., 

2004). When nutrients enter ecosystems as repeated pulses, nutrients can have 

additional effects on community structure by altering species co-existence mechanisms 
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(Holt, 2008) and disrupting consumer-resource interactions which, for instance, can 

allow plants to escape top-down control (Scheffer et al., 2008; Cumming et al., 2013)  

Similar to nutrients, insecticides often enter ecosystems in repeated pulses depending on 

rainfall events and application schedules designed to maximize control of pests and 

disease (FAO, 2001; Reinert et al., 2002; Hoang et al., 2007; Earl and Witheman, 2009). 

Insecticides typically cause high mortality in the zooplankton community, especially for 

larger cladoceran species (Kreutzweiser et al., 2004; Hanazato, 1998; Van den Brink et 

al., 1996; Downing et al., 2008; Brock et al., 2006; Brausch and Salice, 2011). The 

reduction in zooplankton and the shift towards smaller zooplankton species such as 

rotifers and copepods has additional indirect effects on phytoplankton by reducing 

grazing pressure  (Hanazato, 1998). The pulse interval of insecticides is important 

because it may cause sublethal effects and can allow or prevent recovery of the 

community between pulses, resulting in pulses that are either independent or cumulative 

in nature (Hoang et al., 2007; Reinert et al., 2002). Additional work has shown that 

species and communities respond differently to single versus chronic pulses of 

contaminants (Van Wijngaarden et al.,2005) and to repeated exposure of a single type 

versus multiple types of contaminants (Tlili et al., 2011).  

In order to improve our understanding of the consequences of agricultural disturbances 

on aquatic ecosystems, we need to study them as they occur in natural ecosystems. 

Agricultural disturbances are often complex and involve multiple chemicals that may be 

pulsed repeatedly, either singly or in various combinations (LeBlanc et al., 2012; 

Borgert et al., 2004). Despite the complexity of human-induced disturbances in natural 

ecosystems, most toxicological evaluations have studied the effects of single pulses of a 

toxic substance on individual species that are well-known bioindicators (Hoang et al., 

2007; Earl and Whiteman, 2009; García-Muñoz et al., 2011). Some studies have 
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explored how mixtures of chemicals or disturbances affect taxa, but these studies still 

typically explore the response of single species rather than entire food webs or 

communities (Reinert et al., 2002; Hurd et al., 1996; Le Blanc et al., 2012; Brock et al., 

2000; Jonker et al., 2005). Chemicals in mixtures often behave differently than 

predicted based on their actions as single chemicals because chemicals in mixtures often 

interact and they may have different or similar effects on organisms, making it difficult 

to determine if the effects of multiple chemicals on organisms will be independent 

(Deener, 2000; Verbruggen and Van den Brink, 2010), antagonistic or synergistic (Lydy 

et al., 2004; Le Blanc et al., 2012). In marine systems, multiple stressors were most 

often synergistic, but varied with the focal level of response (e.g. population level vs 

community level), trophic level, and the particular combination of stressors (Crain et al., 

2008), suggesting a lack of general response of multiple stressors. 

The aim of our study was to evaluate how multiple stressors in freshwater systems, in 

the form of repeated insecticide (chlorpyrifos) and nutrients (nitrogen and phosphorus), 

affect the integrity and biodiversity of freshwater ecosystems with a particular focus on 

the zooplankton community. Nutrients and chlorpyrifos, a broad-spectrum 

organophosphate pesticide extensively used for agricultural purposes worldwide, were 

chosen because they represent common agrochemical contaminants that are frequently 

applied either alone or in combination. Agrochemicals are often applied repeatedly over 

a growing season which, in combination with run-off from sporadic rainfall events, can 

lead to pulsed and repeated inputs of nutrients and insecticides into aquatic ecosystems 

(Brock et al., 2000; Sala et al., 2000).  Additionally, insecticides like chlorpyrifos are 

likely to occur both synchronously and asynchronously with nutrients in runoff events 

(FAO, 2001; FAO, 2006; Reinert et al., 2002). Pulses of chlorpyrifos are predicted to 

temporarily reduce zooplankton abundance and increase phytoplankton abundance 
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through indirect effects, whereas pulses of nutrients are expected to temporarily increase 

abundance of phytoplankton and zooplankton may or may not be able to respond to 

variable amounts of productivity. Both are likely to have a negative effect on 

zooplankton diversity. 

We conducted the study using outdoor aquatic microcosms in order to explore 

community responses under complex and more realistic toxic scenarios (Shurin, 2001; 

Hall et al., 2004). Specifically, we seek to understand how the timing and combination 

of pulses of mixtures of agrochemicals affects planktonic food webs. To do this, we 

assembled diverse plankton communities collected from nearby natural ponds and then 

applied repeated pulses of nutrients and insecticides alone and in combination both 

synchronously and asynchronously. We expected pulses of nutrients and of chlorpyrifos 

to increase phytoplankton and decrease zooplankton, respectively, due to the known 

direct effects of each chemical. We further predicted that combinations of nutrient and 

chlorpyrifos pulses would have even stronger effects on the community due to both 

direct and indirect effects mediated through the food web, but that the community 

response may differ if pulses are synchronous versus asynchronous. 

 

METHODS 

The response of freshwater planktonic food webs to pulsed disturbances was explored 

experimentally using replicated pond ecosystems established in microcosms. 

Microcosms were maintained outdoors at Ohio Wesleyan University’s Kraus Nature 

Preserve, Delaware, OH USA. Twenty-five microcosms were established in plastic 

tanks of 87.6 cm diameter and 45 cm depth. They were filled with 270 liters of well 

water and covered with mesh lids to avoid immigration by larger organisms. The water 

was amended with nutrients to bring the concentrations up to 800 μg N / l and 57 μg P / 
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l which is the average concentration of local ponds. Previous work has shown that 

nitrogen and phosphorus are lost in these experimental microcosms at the rate of 

approximately 5% per day (Downing et al., 2008). In order to maintain these target 

concentrations all tanks received nutrient inputs over the experimental period to match 

the loss rate of 5% per day, but the size and frequency of inputs varied with treatment as 

described in more detail below. Microcosms were established in May 2012 and the 

experiment concluded in August 2012, with the experiment lasting a total of 10 weeks. 

Microcosms were first inoculated in early May with a naturally diverse assemblage of 

phytoplankton collected from 10 local ponds, strained through a 30 μm net to remove 

large zooplankton and macroinvertebrates. After two weeks, a diverse assemblage of 

zooplankton was collected from the same 10 ponds using 35 μm plankton net and added 

to the microcosms after macroinvertebrates were removed. The microcosms were 

exposed to natural environmental variability with respect to temperature and rainfall. 

The experiment consisted of 5 treatments including a control treatment (C) and four 

pulsed treatments of nutrients and/or insecticides. The pulses of nutrients and 

insecticides occurred every two weeks and were designed to represent possible 

scenarios in ecosystems that experience agrochemical inputs. The pulsed treatments 

included: insecticide pulse every 2 weeks (I), nutrient pulse of nitrogen and phosphorus 

every two weeks, (N), nutrients and insecticide pulsed simultaneously every two weeks 

(NI), and nutrients and insecticide pulsed in alternating weeks (N_I). Each treatment 

had five replicates. Control (C) and insecticide (I) treatments received small and 

frequent nutrient inputs consisting of additions of 93.3 µg N L-1 and 6.65 µg P L-1 three 

times per week for the duration of the experiment to maintain target water column 

concentrations based on the 5% loss rate known to occur in these experimental systems 

(Downin et al. 2008). Insecticide (I) pulses were delivered as 2 µg L-1 of chlorpyrifos 
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every two weeks, representing an environmentally realistic worst case scenario 

observed in water bodies given the fact that toxicant concentrations can rise up to 

several orders of magnitude after rainfall events (EPA, 2006; Poletika Woodburn and 

Henry, 2002; Rabiet et al., 2010). Nutrient (N) pulses were delivered as 560 µgL-1 of 

nitrogen and 39.9 ug L-1 of phosphorus every two weeks. This treatment regime resulted 

in microcosms that all had the same average amount of nutrients added over the course 

of the experiment. 

Nutrients were added in the form of Na2HPO4 and NaNO3. Nutrients were diluted in 

water and delivered via pipette in 5ml increments to the microcosms. Analytical grade 

Chlorpyrifos (Sigma Aldrich, Chlorpyrifos PESTANAL ®) was diluted in acetone. Two 

mls of the acetone/Chlorpyrifos mixture were added to the insecticide treatments and 2 

mls of pure acetone were added to all other microcosms to serve as a control for 

potential effects of acetone (applied at approximately a 0.0001% concentration). All 

microcosms including controls were gently stirred immediately after application of 

nutrients or insecticides to homogenize the concentrations in the water column.  

Microcosms were sampled weekly for 10 weeks. Physical-chemical measurements 

(temperature, pH, % dissolved oxygen and conductivity) were taken using field probes 

(YSI 550 Oxygen probe, YSI Sonde, Yellow Springs, Ohio, USA). Water samples (300 

mL) were taken, cold stored and transported to the laboratory to perform chlorophyll 

extractions. Zooplankton integrated water samples (16 L) were taken from each tank, 

filtered through a plankton net of 35 µm, handpicked to remove unwanted particulates 

(e.g. clumps of detritus, sand, etc.) and preserved in the lab with Lugols solution. The 

filtered water was returned to the microcosm. Zooplankton were identified to taxonomic 

practical levels (Ostracoda order, cyclopoid copepods, calanoid copepods, nauplii, 

copepodite, Bosmina sp., Scapholebris sp., Chydorus sp., Alona sp., Pleuroxus sp., 
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Simocephalus sp., Ceriodaphnia sp.) and abundances and Simpson biodiversity indices 

were estimated. Chlorophyll-a (Chl-a) concentration was measured via extraction 

(Welschmeyer 1994) and a flurometer (Turner Designs 700) to estimate the response of 

phytoplankton (Hedtke 1984). Ecosystem productivity was approximated by diurnal 

oxygen fluctuations (net productivity as gross productivity minus the respiration of all 

organisms) (Lund, 1979; Cole and Pace, 2000; Downing and Leibold, 2010). 

The response to disturbance of communities and ecosystems was explored by 

quantifying the degree to which pulsed treatments differed from controls by the end of 

the experiment. Eight weeks is considered enough time to capture initial signals of 

recovery in plankton communities due to short generation times and resistant structures 

such as resting eggs because these features are crucial factors controlling the community 

recovery (Van den Brink et al., 1996; Brock et al., 2000). 

Physical-chemical and biological response variables were compared among microcosms 

using univariate and multivariate analyses with SPSS 19 software. Univariate ANOVA 

and a post hoc Tukey test were used to determine the differences between controls and 

treatments. Zooplankton data were log transformed (log (x +1)) to meet normality 

assumption. Prior to analysis, data were tested for normality and homoscedasticity. 

Ordination analysis was performed to test the plankton community compositional 

responses. A Principal Response Curve (PRC) was done using CANOCO v4.5 software 

to analyze the zooplankton data set. PRC is a technique based on Redundancy Analysis 

(RDA) ordination techniques (Van den Brink and ter Braak, 1999). The PRC analysis 

results in a diagram displaying the principal response of the community (y-axis) for all 

sampling days (x-axis) by showing the deviations in time of the treatments compared to 

the controls. The species weights are presented in a different graph (1-D plot) which 

reveals the affinity of the different species with the principal community response. The 
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species with a high positive weight are the most correlated to the main response showed 

by the PRC, while the species with a negative weight show the contrary trend to the 

main one reflected by the PRC. Species with weight close to zero means no response or 

very dissimilar to the main response. In order to test differences among treatment for 

each week in the PRC, the following steps were done: first, abundance data of 

zooplankton was ln (ax +1) transformed in order to avoid confounding effects between 

low abundance and no presence of the taxa (“x” stands for zooplankton abundance 

value and “a” is calculated by dividing 2 by the lowest zooplankton abundance value 

higher than zero); second, PCA was calculated to obtain the first axes values; and third, 

statistically significant differences per week and treatment were test with Dunnet post 

hoc test using SPSS 19 software (Van den Brink et al. 1999; Roessink et al. 2005; Zafar 

et al. 2012). 

 

RESULTS   

All experimental microcosms experienced similar physical and chemical conditions 

throughout the experiment (aside from the chlorpyrifos, N and P) as indicated by the 

lack of any statistically significant differences in dissolved oxygen, pH, temperature and 

conductivity. Consequently, the treatments themselves did not introduce additional 

physical or chemical differences between treatments.  

The zooplankton community was predominantly composed of cladocera, copepoda and 

ostracoda. Nine different taxa were found: Bosmina sp., Scapholebris sp., Chydorus sp., 

Simocephalus sp., Alona sp., Ceriodaphnia sp., Pleuroxus sp., cyclopoida copepoda, 

calanoida copepoda and ostracoda. Copepodite and nauplii within the copepods were 

counted and used for the ordination analysis. Zooplankton abundance was statistically 
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different between the C and I, NI and N_I treatments (ANOVA, F = 10.756, p < 0.001, 

Tukey´s test) (Figure 1).  

 

Figure 1. Zooplankton mean (± SD) abundance (ind L-1) in each treatment. * An asterisk 
denotes statistically significant differences from the control. 

 

Zooplankton composition was also different between treatments as revealed PRC. The 

PRC was performed to characterize the degree of change and duration of the treatment 

effects upon the zooplankton community (Figure 2). PRC was significant (F=58.586, p-

value = 0.002), indicating that the disturbance treatments had detectable effects on the 

zooplankton. The variance explained by the first axis was 20.8 %, while the second axis 

expalined 3.2%. Results of Dunnet post hoc test based on the PRC agree with ANOVA 

results because statistically significant differences were found every week between C 

and treatment with insecticide (I, NI and N_I) but not with the N treatment. 1-D plots 

show the species weights (Figure 2) and indicate how different taxa are correlated to the 

main community response. 1-D plots show an increase in copepods in I, NI and N_I 

treatments and a decline in cladocerans and ostracods. Cladocera and ostracoda were 
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more abundant in the controls and N treatments communities. In summary, the two 

patterns that are most evident are 1) most of the C and N treatments are associated with 

cladocera-dominated communities, and 2) I, NI and N_I treatments are associated with 

copepod dominated communities.  

 

Figure 2. Principal Response Curve (PRC), on the left, ordination method represents the main 
community respond to the treatment effect over time with respect to the controls (dotted line, 
triangles, circles, stars and squares represent C, N, I, NI and N_I). The graph on the right 
summarizes the zooplankton community response based on its taxonomy; the 1-D plot 
represents the species weights expressed as the level of affinity that each taxa had with the main 
trend of the PRC. * An asterisk denotes statistically significant differences from the control. 
 

In addition to these compositional shifts, biodiversity (Simpson’s index) decreased 

significantly in the treatments treated with insecticide (ANOVA, F = 13.718, p < 0.001; 

Figure 3). 
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Figure 3. Simpson Biodiversity index mean (± SD) value in each treatment. * An asterisk 
denotes statistically significant differences from the control.  

 

Chl a was statistically different between C and N treatments versus I treatments (F = 

7.446, p < 0.001) (Figure 4), with chlorophyll generally highest in the I, NI and N_I 

treatments. Productivity average values were between 0.196 mg O2 per hour in controls 

and 0.203 mg O2 per hour in the N treatments. There were no significant differences (F 

= 1.452, p = 0.218) between the controls and the treatments (Figure 5). 
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Figure 4. Chlorophyll a mean (± SD) values in each treatment. * An asterisk denotes 
statistically significant differences from the control.  

 

Figure 5. Productivity mean (± SD) values in each treatment.  
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DISCUSSION 

The microcosm experiment was designed to explore how freshwater ecosystems will 

respond to complex agrochemical disturbances that are often pulsed and in combination 

in nature. The results obtained show that all measured biological indicators except for 

ecosystem productivity (expressed as O2 production) revealed significant responses to 

pulsed disturbance treatments. First, zooplankton abundance, biodiversity, community 

composition and Chl a showed differences between controls and N treatments versus 

treatments with insecticide (I, NI and N_I). Second, PRC revealed a community shift 

from a cladoceran-dominated to a copepod-dominated community in response to the 

insecticide treatment with corresponding changes observed in the Simpson diversity 

index. Third, indirect effects of insecticides were detected when analyzing Chl a 

changes; I, NI and N_I resulted in an increase in phytoplankton either by an increase in 

phytoplankton abundance or a shift in community structure in terms of increasing cells 

richer in Chl a due to a decrease in grazing pressure related to the negative effects of the 

insecticide on zooplankton populations (Figure 4). And fourth, the effects of insecticide 

on the response of organisms in wetland communities were drastic and they were not 

modulated by either its asynchronous or synchronous mixture with nutrient pulses. In 

summary, our hypothesis was partially supported since agrochemicals had direct and 

indirect effects on the community, and the community responded differently to 

insecticide and nutrient pulses. However agrochemical mixtures did not have a stronger 

impact than pulses of either nutrients or insecticides alone as predicted. Instead, the 

community response depended only on the presence or absence of insecticide pulses 

with no added or synergistic effect of nutrient pulses.  

Communities responded similarly in both controls and N treatments. This result, while 

not predicted, was also not particularly surprising because while the N treatments 
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received large pulses of nutrients, both treatments received the same environmentally 

realistic concentrations of nutrients over the course of the experiment. Experimental and 

theoretical work has shown that large pulses of nutrients can interfere with natural 

consumer-resource dynamics, for example by creating large fluctuations in 

phytoplankton abundance or shifts in phytoplankton edibility that could influence 

consumer effects on phytoplankton and allow plants to escape top-down control of 

herbivores  (Holt, 2008; Scheffer et al., 2008; Cumming et al., 2013). In our experiment, 

the difference in delivery of nutrients between a more steady supply of small and 

regular inputs versus large pulses every two weeks appeared to have no significant 

effect on biological indicators over the course of the experiment. Therefore, the 

frequency and size of nutrient pulses themselves do not appear to have significant 

effects on freshwater communities, at least when average concentrations remain within 

“natural” expectable limits of an agricultural drain basin. This result may be a 

consequence of the fact that systems exposed to chronic disturbances may have reached 

a new stable state (Paine et al., 1998)  

Communities that received insecticide pulses (I, NI, N_I), all showed similar responses 

that were significantly different from the control (C) and nutrient (N) treatments. The 

individual insecticide effects were independent of its application alone or in mixture 

with nutrients. This result agreed with studies that showed the effects of chlorpyrifos in 

nutrient enriched systems and it appeared to be independent of its mixture with nutrients 

(Van Donk et al., 1995). The same conclusion was reached by Cuppen et al. (1995) 

where chlorpyrifos caused an adverse direct effect on the zooplankton community under 

a combined exposure of insecticide with nutrients. 

Insecticide treatments negatively affected zooplankton community structure from the 

first application as reflected by all biological indicators. Zooplankton abundance 
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decreased under a chlorpyrifos concentration of 2 µg L-1  in our experiment, agreeing 

with previous observations that as little as 1 μg L-1 chlorpyrifos can have negative 

effects on zooplankton (Van Wijngaarden et al., 2005). In addition, there was a 

community shift from a cladoceran-dominated community in controls and N treatments 

to a copepod-dominated community in treatments with insecticide (I, NI, N_I). This 

general shift towards copepod-dominated communities has also been found in other 

studies (Hanazato, 1998, 2001; Relyea, 2005). Cladocera have been shown to be more 

sensitive to insecticides than copepods (Day et al., 1987; Hanazato, 2001). Additionally, 

this result was also expected since a model cladoceran species Daphnia magna has a 

documented LC50 of 1 µg L-1 for chlorpyrifos (Moore et al., 1998). The insecticide 

concentrations we used are within legal limits established to ensure no permanent 

environmental hazard and to allow for recovery, therefore recovery trends could have 

been expected in our experiment. We did not observe any trend of recovery of the 

zooplankton community between pulses of insecticide, suggesting that pulses every two 

weeks is frequent enough to prevent recovery. Our results agree with Brock et al. (2000) 

review on insecticides where a signal of recovery is only expected after two months of 

the last application if the exposure is lower than (0.1-1) x EC50 of the most sensitive 

standard test species.  

The focus of our study was to observe how pulses of agrochemical mixtures affect 

freshwater food webs through both direct effects on species and indirect effects 

mediated through trophic interactions. Understanding the direct toxic effects based on 

toxicity from single-species is crucial for predicting both potential interactions 

(addition, antagonisms and synergisms) and indirect effects. For example, in our 

experiment the difference in sensitivity to insecticides between cladoceran and 

copepods allows copepods to survive and exploit the empty niche. The enhanced 
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performance of copepods in the presence of insecticides is likely an indirect effect due 

to the release from food competition as cladocerans declined (Hanazato, 2001; Van 

Wijngaarden et al., 2005). The response of Chl a to treatments is also consistent with 

both direct and indirect effects. As expected, Chl a was highest in the treatments I , NI 

and N_I, suggesting that a release from grazing pressure from zooplankton affected by 

the insecticide was higher than the a priori positive effect of nutrients leading to an 

increase of phytoplankton. A similar pattern has been observed in other studies working 

with fungicides (Cuppen et al., 1995; Van den Brink et al., 2000) and biocides (Jak et 

al., 1998; Lin et al., 2012). These indirect effects of reduced grazing pressures, detected 

through significant increases of Chl a concentrations together with increases of 

dissolved oxygen and pH levels, are of extreme importance as warning signal of 

potential eutrophication impacts (Van Wijngaarden et al., 2005; Hanazato, 1998; 

Fleeger et al., 2003). In addition to phytoplankton abundance changing due to indirect 

effects of reduced grazing pressure, insecticides could also have caused phytoplankton 

shifts towards species that are inedible for specific taxa, such as cladocerans. It is 

known that the quality of food resources is important for reproductive cycles and 

development stages for zooplankton taxa (Caramujo and Boavida, 1999). 

These results highlight that apart from direct negative toxic effects, indirect effects 

occurs via trophic interactions and these indirect effects can be as important as the direct 

effects in determining the food web response to disturbances. Therefore, more 

ecologically realistic ecotoxicological studies should be developed what could be 

understand as we attempt to move towards high-tier risk assessments or a strategy of 

multiscale experiments combinations. Complex experimental designs can make 

mechanisms more difficult to determine and interpretations more challenging due to the 

complexity of both population and community structure and trophic relationships (De 
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Meester et al., 2005). However, these types of studies allow a more comprehensive 

study of the response of an aquatic community that can incorporate both direct and 

indirect effects (e.g. Downing et al., 2008; Relyea and Hoverman, 2006), and will 

ultimately be necessary to increase the ecological realisms of risk assessments resulting 

in an improvement to prevent impacts in natural ecosystems. 

 

CONCLUSIONS 

This study was designed to gain a deeper understanding about how diverse 

agrochemical mixtures and input patterns affect non-target organisms in wetlands 

communities at realistic environmental concentrations. This approach will be crucial to 

increase the ecological realisms of risk assessment, and will be needed to set appropriate 

regulations that can meet population and ecosystem protection goals. Our results show 

that the effects of mixtures of chlorpyrifos and nutrients under these concentrations 

mixtures were not additive, antagonistic or synergistic, perhaps due to the high 

insecticide concentrations chosen. Nevertheless, indirect effects were detected and 

highlight the need of more ecologically relevant risk assessments to understand complex 

scenarios.  
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ABSTRACT 

The Ecological Risk Assessment (ERA) of pesticides and other potentially toxic 

chemicals is generally based on toxicity data obtained from single-species laboratory 

experiments. In the field, however, contaminant effects are ubiquitously co-occurring 

with ecological interactions such as species competition and predation, which might 

influence the sensitivity of the exposed individuals to toxicants. The present study 

investigated how intra- and interspecific competition influence the response of sensitive 

aquatic organisms to a pesticide. For this, the effects of the fungicide carbendazim were 

assessed on the mortality and growth of the snail Bithynia tentaculata and the crustacean 

Gammarus pulex under different levels of intraspecific and interspecific competition for 

food, the latter being created by adding individuals of Radix peregra and Asellus 

aquaticus, respectively. The combination of competition and carbendazim exposure 

significantly influenced B. tentaculata growth, however, combined effects on survival 

and immobility were considered transient and were less easily demonstrated. Positive 

influence of competition on G. pulex survival was observed under low-medium 

carbendazim concentrations and under medium-high density pressures, being partly 

related to the enhancement of cannibalistic and predation compensation mechanisms 

under food limiting conditions. This study shows that intra- and interspecific competition 

pressure may influence the response of sensitive aquatic organisms in a more complex 

way (no, positive and negative effects were observed) than just increasing the sensitivity 

of the studied species, as has generally been hypothesised.  

Keywords: competition, pesticides, population ecotoxicology, ecological risk assessment, 

carbendazim 
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INTRODUCTION 

Pesticides used in agriculture production constitute one of the most important sources of 

anthropogenic pollution into aquatic ecosystems (Parra et al., 2005; Stendera et al., 

2012). Currently, the Ecological Risk Assessment (ERA) of pesticides is mostly based on 

data obtained from single-species toxicity tests. Such an approach does not take into 

account ecological interactions between aquatic populations such as competition or 

predation (Van den Brink, 2013; Wootton, 2002; Brooks et al., 2009) and may, therefore, 

underestimate or overestimate pesticide risks for sensitive species and for the structure of 

aquatic communities (Barata et al., 2002; Beketov and Liess, 2005, 2006; Pestana et al., 

2009; Foit et al., 2012; Knillmannet al., 2012; De Laender and Janssen 2013). For 

instance, Beketov and Liess (2006) studied the influence of simulated predation on 

Artemia sp. populations exposed to the insecticide esfenvalerate. They concluded that the 

vulnerability of Artemia sp. populations affected by predation is considerably higher as 

compared to the populations that were not affected by predation since the population 

regulation capacity, measured as an increase in the production of offspring at low 

densities, was significantly reduced. Gui and Grant (2008) explored the responses of 

Drosophila melanogaster populations to toxicants and different food availability 

treatments. Results of their study indicated synergistic food-toxicant effects, but also 

indicated that compensatory mechanisms produced by toxicant exposure can occur at 

specific high competition levels due to density-dependent population processes. To date, 

only a few studies have investigated the combined effects of toxicants and ecological 

interactions on the sensitivity of aquatic organisms. Such studies are crucial to design 

more ecologically relevant ERAs (Linke-Gamenick et al. 1999; Gui and Grant, 2008; 
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Foit et al., 2012; De Laender et al., 2013) as well as to decide on whether or not, and 

under which conditions, the data generated by these studies should be incorporated in the 

intermediate tiers of ERA (e.g. De Laender et al., 2008) and/or into ecological models 

used to underpin decisions during the risk assessment process (De Laender and Janssen, 

2013; Van den Brink, 2013). 

The main objective of the present study was to assess how intra- and interspecific 

competition affects the sensitivity of aquatic organisms to pesticide exposure under 

laboratory conditions. For this, two experiments were performed using the fungicide 

carbendazim and different levels of intra- and interspecific competition. These 

experiments represent an ecological scenario in which the studied species compete for a 

food resource while being exposed to a pesticide. The intraspecific experiments were 

performed by exposing different densities of the same species to a toxicant while the 

interspecific experiments were performed with two species, named as focal and 

competing species. The selected focal species were expected to show a higher sensitivity 

to carbendazim compared to the competing species, which allows to establish 

asymmetries on the food competition process and to better observe the combined effects 

of the pesticide and the competition stress on the focal species. The first experiment was 

performed using the snail Bithynia tentaculata as the focal species and the snail Radix 

peregra as the competing species. The second experiment was performed using the 

amphipod Gammarus pulex as the focal species, and the isopod Asellus aquaticus as the 

competing species. These aquatic taxa were selected because of their high abundance in 

aquatic ecosystems and their important ecological functions. For instance, snails account 

for up to 20%-60% of the biomass of macroinvertebrates in some freshwater ecosystems 
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(Habdija et al., 1995), and amphipods crustaceans such as Gammarus sp. are considered 

crucial for ecosystem functioning due to their contribution to leaf decomposition 

(Petersen and Cummins, 1974; Zubrod et al. 2010).  

 

MATERIAL AND METHODS 

Test organisms 

B. tentaculata and R. peregra were selected based on their difference in sensitivity to 

carbendazim. According to Cuppen et al. (2000) and the results of a preliminary test 

(results not shown), B. tentaculata was expected to be more sensitive than R. peregra. In 

addition, their co-occurrence in natural drainage ditches was also an important factor for 

the selection of this species combination. Snails were collected from Dutch drainage 

ditches and ponds and acclimatized to the same laboratory conditions as in the 

experimental set-up (see section 2.2). Only organisms in juvenile life stages and with 

similar length were selected (B. tentaculata: 5.4 ± 0.7 mm; R. peregra: 5.0 ± 0.7 mm).  

G. pulex and A. aquaticus were also chosen due to their differences in sensitivity to 

carbendazim, with G. pulex being more sensitive than A. aquaticus (Van Wijngaarden et 

al., 1998). Organisms were collected from a freshwater pond (Duno Pond, Renkum, The 

Netherlands, 51°58'9.31"N, 5°48'9.88"E) and acclimatized to laboratory conditions for 7 

days prior to the start of the experiment. Only young adults with similar length were 

selected for the experiment (G. pulex: 10.6 ± 0.5 mm; A. aquaticus: 7.7 ± 0.3 mm).  
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Experimental set-up 

Each experiment consisted of sixty glass jars of 1.5 L filled with 1 L of non-polluted 

pond water, previously filtered through a phytoplankton net (20 µm). The jars were 

placed in a water bath with a constant water temperature (20 ± 0.5 °C). High pressure 

metal halide lamps (Philips HPI-T, 400 W) were used to provide a daily photoperiod of 

12 h, with a light intensity of approximately 500 μE/m2· s at the jar’s water surface. In the 

experiment performed with G. pulex and A. aquaticus, a stainless mesh was added to 

each jar in order to increase the available surface and to serve as a refuge for the test 

organisms. 

Both experiments consisted of a pre-treatment period, in which intra- and interspecific 

competition was allowed to take place, and an steady state exposure period, in which the 

combined effects of food competition and carbendazim exposure were evaluated. The 

experiments were performed in triplicate (n = 3), with five levels of species competition 

(i.e., control, medium and high intraspecific competition, medium and high interspecific 

competition) and four carbendazim treatments (i.e., control, low, medium and high 

exposure concentrations). In both experiments, competition levels and carbendazim 

treatments were randomly assigned to the test jars.  

In the experiment performed with B. tentaculata, 0.59 ± 0.05 g of cucumber harvested 

from an organic farm was used as food resource. The amount of food provided to each jar 

was the amount consumed by 5 snails during one week in a preliminary feeding rate test. 

Cucumber was added weekly to the jars. Cucumber leftovers were removed from the jars 

before adding the next cucumber piece. In this experiment, the competition controls (C) 

consisted of jars stocked with 5 individuals of B. tentaculata. The jars corresponding to 
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the medium (intra-M) and high (intra-H) levels of intraspecific competition were stocked 

with 10 and 20 individuals of B. tentaculata, respectively. The medium (inter-M) and 

high (inter-H) interspecific competition treatments were established by adding 5 and 10 

individuals of R. peregra to jars containing 5 individuals of B. tentaculata, respectively. 

The competition was allowed to take place during 21 days (pre-treatment period) prior to 

the carbendazim exposure. Carbendazim was applied once a week for three weeks at a 

concentration of 400, 800 and 1200 µg/L to the low, medium and high exposure 

treatments, respectively. These exposure concentrations were selected based on the 

results of the microcosm study performed by Cuppen et al. (2000), who found a chronic 

NOEC (abundance) of 33 µg/L carbendazim for the focal species, B. tentaculata. 

In the experiment performed with G. pulex, 0.7 ± 0.1 mg of pre-dried poplar leaves 

(Populus sp.) were used as competing food resource. This amount was based on the 

results of a preliminary feeding rate test and represents the amount consumed by 5 

individuals of G. pulex per week. The competition controls (C) consisted of five 

individuals of G. pulex. The medium (intra-M) and high (intra-H) levels of intraspecific 

competition were established with a G. pulex density of 10 and 15 individuals per jar, 

respectively, and the medium (inter-M) and high (inter-H) levels of interspecific 

competition were set by adding 5 and 10 individuals of A. aquaticus to jars containing 5 

G. pulex individuals, respectively. In this experiment, the pre-treatment period had 

duration of 4 days, and the exposure period lasted for 21 days. Carbendazim was applied 

once at a concentration of 20, 40 and 80 µg/L to the low, medium and high exposure 

treatments, respectively. These exposure concentrations were expected to approximate 

the LC10-LC50 range of the dose-response curve for G. pulex, based on previously 
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published carbendazim toxicity data: acute (2d) LC10 and LC50 for juvenile G. pulex are 

27 and 77 µg/L, respectively, while the chronic (21d) values for adults are 10 and 16 

µg/L, respectively (Van Wijngaarden et al., 1998). In both experiments, the effects of 

competition and carbendazim exposure were assessed on the mortality and growth of the 

focal (B. tentaculata and G. pulex) and the competing species (R. peregra and A. 

aquaticus). Mortality was monitored weekly in both experiments. Mortality of snails was 

assumed when they did not react after providing tactile stimuli on the soft part of their 

body with a laboratory needle. Mortality of G. pulex and A. aquaticus was assumed when 

they did not respond to any tactile stimuli. In both experiments, dead individuals were 

removed from the experiment. Snail and crustacean growth was quantified by measuring 

the relative changes in their shell or body length over time, respectively. Growth was 

assessed weekly in the experiment performed with snails. In the experiment performed 

with crustaceans growth was only measured at the end of the experiment to prevent 

overstress. In both experiments, growth was measured by taking high resolution pictures 

of the organisms in each jar (Microsoft LifeCam Studio) and analysing them with 

AxioVision SE64 Rel. 4.8. After the growth measurements were taken, the organisms 

were returned to their original jar. Additionally, the immobility of the snails B. 

tentaculata and R. peregra was evaluated at the end of the exposure period (day 21). For 

this, the snails were individually placed in a circular area of 5 mm radius drawn on the 

surface of a Petri dish containing unpolluted water. Immobility was assumed when they 

did not move out of the drawn circle after a time span of 30 minutes.  

During the experiments, temperature, pH, dissolved oxygen concentration and 

conductivity were measured weekly at the start of the photoperiod. Temperature, pH and 
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dissolved oxygen concentration were measured with a WTW 340i multi-meter, and 

conductivity was measured with a WTW 315i meter. These data were used to rule out 

any potential effect of water quality differences on the evaluated biological endpoints. 

 

Carbendazim application and analysis 

Carbendazim stock solutions (100 mg ai/L) were prepared using Derosal (50% 

carbendazim, w/v). Aliquots of the carbendazim stock solution were applied to the water 

surface of the jars of the carbendazim treatments and gently stirred with a laboratory 

spoon to ensure an homogeneous distribution of the pesticide over the water column. In 

the experiment performed with B. tentaculata, the test medium was renewed once a week 

to avoid excessive water quality deterioration. In the experiment performed with G. 

pulex, carbendazim was applied only once at the start of the exposure period. Because of 

the high reported persistence of carbendazim in water under laboratory conditions (Van 

Wijngaarden et al., 1998), no additional carbendazim addition was deemed necessary to 

maintain the nominal concentration during the experimental period.  

Water samples of 2 mL were taken from the jars after carbendazim addition to verify the 

nominal exposure concentrations and also at the end of the week to assess its dissipation 

(see Table I). A Perkin Elmer LC-90 UV detector was used to perform a direct analysis 

of the carbendazim concentrations in these samples. The mobile phase used was 

methanol:water (70:30), pumped at a flow rate of 0.7 mL/min with a Waters M590 pump 

through a Waters Novapak C-18 column. This column was set in a Waters Temperature 

Control Module at 40°C and with a wavelength of 285 nm. The retention time for 
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carbendazim was 5 min. Calculation of the concentrations was based on external standard 

samples. According to this method, the limit of detection was 2 µg/L.  

Table I. Measured carbendazim concentrations in the experimental medium and calculated 
Average Exposure Concentration (AEC) during the whole exposure period. The reported 
concentrations for the experiment with B. tentaculata correspond to the measured concentrations 
after the first carbendazim addition (0d), before the second carbendazim pulse (7d), and seven 
days after the second pulse (14d). The reported concentrations for the experiment with G. pulex 
correspond to the measured concentrations after the carbendazim application (0d), and 7 (7d) and 
14 (14d) days after the application. Concentrations are expressed as mean ± standard deviation 
(µg/L). n.m.: not measured. 

Experiment 
Nominal 

concentration 

Measured concentrations AEC 

(Day 0 – 
14) 0d 7d 14d 21d 

B.tentaculata 

400 374 ± 2 379 ± 2 366 ± 5 n.m. 373 ± 2 

800 753 ± 2 734 ± 4 756 ± 2 n.m. 749 ± 2 

1200 1127 ± 6 1105 ± 
10 1122 ± 3 n.m. 1119 ± 4 

G. pulex 

20 22 ± 1 15 ± 1 n.a. n.m. 21 ± 1 

40 41 ± 1 37 ± 2 42 ± 1 n.m. 40 ± 1 

80 79 ± 1 72 ± 1 69 ± 1 n.m. 78 ± 1 

 

Statistical analyses 

The effects of the species competition treatments on the sensitivity of the focal species to 

carbendazim was assessed by (1) comparing the calculated LC50 or EC50’s between 

competition treatments for each sampling day, and (2) by using Generalized Linear 

Models (GLMs). The calculation of the EC50 and LC50 values was carried out by means 

of log-logistic regression using the software GenStat 11th (VSN International Ltd., 

Oxford, UK), as described by Rubach et al. (2011). EC50s were calculated for the growth 

of B. tentaculata at the end of the experiment (day 21) and LC50s were calculated for B. 
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tentaculata and G. pulex at each sampling day. The GLM analysis was performed for 

each measured endpoint at each sampling day using the same software (GenStat 11th). 

The model used for the GLM analysis was adapted to the data distribution of the different 

measured endpoints. Immobility and survival were assessed using a binomial distribution 

and logit as the link function, while growth was evaluated by using a Poisson distribution 

and logarithm as the link function. The statistical model was defined by a constant, the 

exposure concentration, the competition level and their interaction, introducing both, the 

nominal pesticide concentrations and the competition treatments, as groups. The effects 

of the pesticide concentration, the competition level or the combination of both on the 

evaluated biological endpoint were considered to be significant when the calculated p-

values were < 0.05, and were defined as moderately significant when they were between 

0.05 and 0.10. 

 

RESULTS AND DISCUSSION 

Carbendazim concentrations and water quality 

During the whole experiment the average measured carbendazim concentrations were 

91.3 ± 13.9 % and 100 ± 16.3 % of the nominal concentrations for the B. tentaculata and 

the G. pulex experiments, respectively. In line with previous studies (Van Wijngaarden et 

al., 1998; Slijkerman et al., 2004), carbendazim was found to be very stable during the 

experimental period, with an average 7-day dissipation rate of 1.8 ± 0.3 % in the B. 

tentaculata experiment, and 13.6 ± 1.6 % in the G. pulex experiment (average ± SD, 

Table I). There were no observable effects of the carbendazim exposure concentration or 

the organism density on the water quality parameters measured during the course of the 
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experiments. The average values of the measured water quality parameters were: 

temperature 20.9 ± 0.5 ºC, pH 8.0 ± 0.5, dissolved oxygen 7.9 ± 1.9 mg/L, and 

conductivity 781 ± 54 µS/cm (average ± SD). 

 

Toxic effects of carbendazim 

In the B. tentaculata experiment, significant differences in mortality between controls 

and the carbendazim treatments were only found on day 21 (Table II). However, the 

measured mortality rate on that sampling day was not high enough to fit a dose-response 

model and an LC50 could not be calculated. Carbendazim exposure resulted in 

significant effects on B. tentaculata mobility on day 21 (Table II). The calculated EC50-

21d (immobility) value was < 373 μg/L (Table III). In contrast, Van Wijngaarden et al. 

(1998) calculated a higher EC50-28d (immobility) of 1641 μg/L (1169 – 2303) μg/L. 

Discrepancies between our results and those reported by Wijngaarden et al. (1998) could 

be partially related to the differences in immobility definition and feeding regime; i.e., in 

the experiment of Wijngaarden et al. (1998) immobility was assess as the absent of 

response of any kind after 30 seconds as a result of tactile stimulation whereas in our 

experiment immobility was consider the absent of movement out of a drawn circle after a 

time span of 30 minutes; and, animals were fed ad libitum by Van Wijngaarden et al. 

(1998) whereas in our experiment they had severe food restrictions. Significant effects on 

growth could, however, not be demonstrated in none of both competition experiments 

(Table II, Fig 1b, 1d). Low energy input under toxic stress could affect important vital 

traits of snails such as mobility or feeding behaviour in an attempt to optimize the new 

energetic balance. For example, Tripathi and Singh (2002), found a decrease in the 
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glycogen concentration in snail tissues exposed to pesticides, which was attributed to the 

mobilization of this substance to meet the high energy demands required to mitigate toxic 

stress (Tripathi and Singh, 2002). No LC50 or EC50 which was within the tested 

concentration range could be calculated for the non-focal (R. peregra) species (Table A, 

supplementary material).  

 

Table A. Calculated LC50 and EC50 values for the competing species. The sampling days that 
are missing in the table did not show concentration-response or the LC50 could not be calculated. 
Inter-M: medium interspecific competition; inter-H: high interspecific competition. n.m.: not 
measured 

Species LC50 EC50 (immobility) 

 48h 21d 

Radix 
peregra Inter-M >373 > 373 

Inter-H > 373 
1482 

(300 – 7313) 

Asellus 
aquaticus Inter-M 

80 

( - ) 
n.m. 

Inter-H >80 n.m. 
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Significant effects of carbendazim on G. pulex mortality were observed on day 7, 14 and 

21 after the start of the exposure period (Table II, Figure 2a). LC50 values were 

calculated for all sampling days, except for day 2, for which mortality was not high 

enough to fit a dose-response model (Table III). The LC50-96h for G. pulex in the 

competition control, 71 (36-139) µg/L, was found to be similar to the LC50-96h value 

reported by Van Wijngaarden et al. (1998) for G. pulex juveniles: 55 (41 – 75) µg/L. The 

calculated LC50 values for the competition control on day 7, 14 and 21 (Table III) also 

fall within the LC50 95% confidence intervals reported by Van Wijngaarden et al. (1998) 

for the same exposure periods, confirming the previously reported sensitivity of this 

species to carbendazim. Analyses of carbendazim impacts on G. pulex growth on day 21 

could not be carried out due to the elevated mortality and the consequent insufficient 

amount of available data points. No LC50 or EC50 which was within the tested 

concentration range could be calculated for the non-focal (A. aquaticus) species (Table A, 

supplementary material).   
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Table II. Results of the GLM analysis (p-values) showing the effects of the carbendazim 
treatment, the competition level, and their combination on mortality, immobility and growth for 
B. tentaculata and G. pulex along the experiment. Bold values indicate significant (p<0.05) or 
marginally significant (0.05 ≤ p ≤ 0.1) effects. n.m.: not measured. n.c.: not calculated. Not 
enough mortality to fit the dose-response model. n.e.: not evaluated. Mortality was too high and 
effects on growth could not be evaluated. 

Experime
nt 

 

Independen
t variable 

Days/Endpoint (p – values) 

Mortality Immobil
ity Growth 

2 4 7 14 21 21 7 14 21 

B.
 te

nt
ac

ul
at

a 

In
tra

sp
ec

ifi
c 

co
m

pe
tit

io
n 

Carbendazi
m  0.99 0.47 0.44 0.30 0.00 

1 < 0.001 0.39 0.56 0.65 

Competitio
n 0.27 0.40 0.74 0.87 0.27 0.81 

< 
0.00
1 

0.01 0.01 

Combined 0.02 0.001 0.13 0.60 0.95 0.70 0.16 0.34 0.87 

In
te

rs
pe

ci
fic

 
co

m
pe

tit
io

n 

Carbendazi
m  0.01 0.23 0.44 0.20 0.03 < 0.001 0.64 0.72 0.28 

Competitio
n 0.05 1.00 0.01 0.12 0.31 0.29 0.08 0.02 0.02 

Combined 0.10 0.06 0.97 0.30 0.82 0.29 0.93 0.06 0.44 

G
. p

ul
ex

 

In
tra

sp
ec

ifi
c 

co
m

pe
tit

io
n 

Carbendazi
m  

n.c. n.c. < 
0.001 

< 
0.001 

< 
0.001 

n.m. n.m. n.m. n.e. 

Competitio
n 

n.c. n.c. 0.78 0.78 0.29 n.m. n.m. n.m. n.e. 

Combined n.c. n.c. 0.254 0.255 0.06 n.m. n.m. n.m. n.e. 

In
te

rs
pe

ci
fic

 
co

m
pe

tit
io

n 

Carbendazi
m  0.06 0.001 < 

0.001 
< 
0.001 

< 
0.001 

n.m. n.m. n.m. n.e. 

Competitio
n 0.97 0.83 0.09 0.01 0.01 n.m. n.m. n.m. n.e. 

Combined 0.29 0.55 0.89 0.47 0.47 n.m. n.m. n.m. n.e. 
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Table III. LC50 and EC50 values and their 95% confidence intervals for B. tentaculata and G. 
pulex calculated for each competition treatment level. Concentrations are expressed in µg/L. C: 
control; intra-M: medium intraspecific competition; intra-H: high intraspecific competition; inter-
M: medium interspecific competition; inter-H: high interspecific competition. a Due to the 
absence of a concentration having a partial effect, no EC50 could be calculated for the control 
treatment. n.c.: not calculated. Dose-response model could not be fitted. 

 

Single and combined effects of competition and carbendazim 

B. tentaculata experiment 

Significant effects of intraspecific competition on mortality and immobility were 

generally not detected (Table II, Figure 1a). However, intraspecific competition 

significantly affected growth rates of B. tentaculata, indicating that competition over 

resources was present (Table II, Figure 1c). Due to the low carbendazim effects on 

mortality observed in this experiment, LC50s could not be calculated for the different 

 

Experiment 

 

Endpoint 

 

Day 

 

Control 

(C) 

Intraspecific 
competition 

Interspecific 
competition 

intra-M intra-H inter-M inter-H 

B.
 te

nt
ac

ul
at

a  

EC50 
(immobility) 

 

21 < 373a 
342 

(233 – 
502) 

137 

(34 – 
551) 

391 

(192 – 
769) 

124 

(3 – 
5146) 

G
. p

ul
ex

 

 

 

 

LC50 

 

4 
71 

(36 – 
139) 

74 

(49 – 
110) 

 

n.c. 

 

n.c. 

115 

(27 – 
497) 

7 
30 

(22 – 41) 

 

n.c. 

 

n.c. 

38 

(37 – 39) 

25 

(19 – 33) 

14 
30 

(22 – 40) 

38 

(29 – 48) 

34 

(27 – 42) 

38 

(37 – 38) 

17 

(14 – 20) 

21 
22 

(17 - 30) 

31 

(22 - 44) 

22 

(17 - 29) 

37 

(36 - 37) 

18 

(17 - 19) 
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competition treatments (Figure 1a, Table III). However, the dose-response patterns on 

immobility showed that the EC50 values for the competition controls and for the 

intermediate intraspecific competition treatment were approximately two times higher 

than the ones calculated for the highest competition treatment, indicating that high 

competition under pesticide exposure could result in an increased snail immobility (Table 

III). Combined effects of intraspecific competition and carbendazim stress were only 

detected on the mortality endpoint at the start of the exposure period (Table II). Such 

effects were mainly appreciated at the low carbendazim treatment (400 µg/L) and did not 

show a consistent dose-response pattern (Figure 1a) as this interaction was not observed 

at the medium density treatment (Figure 1a).  This observation is consistent with the 

proposed theory of toxicant-induced reduction of intraspecific adverse effects (Liess 

2002). Liess (2002) studied the influence of intraspecific competition on a trichopteran 

(Limnephilus lunatus Curtis) population exposed to fenvalerate, and reported 

compensation of direct pesticide effects due to a reduction of indirect intraspecific 

pressure as compared to the competition controls. Such mechanism could explain the 

absence of increased mortality in the medium intraspecific competition treatment. Our 

results also suggest that after certain organism density threshold those effects are not 

compensated by low impact pesticide exposure and that the combined effects of pesticide 

and competition stress are better appreciated at low-medium individual density and 

exposure stress. In addition, an EC50 could not be calculated in the control treatment (C), 

although the observed response was very similar to the high intracompetition treatment 

(intra-H), and to a lesser, extent to the medium intracompetition (intra-M) (Table III). 
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Interspecific competition  slightly influenced B. tentaculata growth both positively and 

negatively (Table II, Figure 1d) and significantly increased mortality on day 2 and 7 after 

the start of the exposure period. Combined effects of competition and carbendazim 

exposure on mortality were only significant on day 4 (Table II), however a clear trend 

was observed towards higher mortality rates in the highest competition treatment during 

the whole experimental period (Figure 1b). Even though, mobility was not significantly 

affected by interspecific competition, nor by the combination of interspecific competition 

and carbendazim (Table II).  

 

G. pulex experiment 

Although significant intraspecific competition effects on mortality were not detected at 

any sampling day for G. pulex (Table II), a clear trend towards increased mortalities at 

higher densities was observed in the carbendazim controls (Figure 2a). This trend is most 

likely related to higher rates of cannibalisms in the controls at higher densities which was 

not observed in the carbendazim treatments due to immobilisation (immobility endpoints 

were not measured). Combined effects of intraspecific competition and carbendazim 

stress on G. pulex mortality were found to be moderately significant at the end of the 

exposure period (Table II). Although calculated LC50s for sampling days 14 and 21 were 

similar between competition treatments (Table III), a reduced lethal effect of 

carbendazim at the medium and high intraspecific competition treatments was observed, 

particularly at the high carbendazim exposure treatment (Figure 2a). This reduced lethal 

effect at medium-high densities could be related to the Gammarus sp. cannibalism 
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behaviour regulated by food scarcity pressure (Dick, 1995). Therefore, pre-treatment 

competition could have led to a decrease of the population abundance at both medium 

and high species density levels. Cannibalism at the intra-M competition levels seemed to 

compensate the effects of the toxicant on the surviving individuals, and could explain 

why mortality is lower than in the control and in the high density at the 20 and 80 µg/L 

treatment levels. On the other hand, at the intra-H competition level, the cannibalism did 

not seem to outweigh the combined effect of carbendazim exposure and competition 

based on the observation of equal rates of mortality between controls and intra-H 

competition levels.  

Interspecific competition between G. pulex and A. aquaticus significantly affected G. 

pulex survival, but no significant interaction between of interspecific competition and 

carbendazim exposure was observed on G. pulex mortality (Table II). The high 

interspecific competition treatment had a negative effect on the individuals survival at the 

20 and 40 µg/L exposure levels (Figure 2b), as shown by the slightly lower LC50 for the 

high competition level (17 µg/L) as compared to the controls (30 µg/L) and the 

intermediate competition level (38 µg/L) for day 14 (Table III). The toxic effects of 

carbendazim on the G. pulex mortality in the intermediate competition level was assumed 

to be alleviated by the presence of A. aquaticus, since G. pulex is known to strongly 

predate on A. aquaticus (Blockwell et al., 1998). This could be confirmed by the 

increased survival of A. aquaticus with increasing concentrations, probably because G. 

pulex predation rates were affected by the pesticide concentrations (Figure 4). This result 

demonstrated that competition stress combined with chemical exposures is able to 

influence species interactions. Our findings are in line with the study by Gui and Grant 
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(2008), who demonstrated that food availability could outweigh the toxic impact of 

chemicals on the dipteran Drosophila melanogaster.  

To sum up, the results of our experiments show the potential complexity of populations’ 

responses under combined effects of competition and chemical exposure since the 

interaction of both pressures can vary depending on competition and toxicant 

concentration pressure levels. It was observed that at high interspecies competition 

pressure, the depletion of food availability combined with toxic effect cannot be 

compensated by predation benefits for G. pulex due to the presence of A. aquaticus. This 

could be a result of the higher density at initial conditions, which probably overstressed 

the population for food availability (inter-H, 5 G. pulex vs. 10 A. aquaticus; inter-M, 5 G. 

pulex vs. 5 A. aquaticus). The interactions between different levels of ecological 

interactions and the levels of toxicant exposure have previously been reported. For 

example, Linke-Gamenick et al. (1999) studied density-dependent effects of polycyclic 

aromatic hydrocarbons (PAHs) and of a fluoranthene (FLU) on survival, growth rate and 

reproduction of a polycahete (Capitella sp.) and found that at low food limitations and 

low toxicant concentrations the toxic effects were marginal, whereas at high toxicant 

concentration, food limitation intensified the toxic impacts (synergistic effects). This also 

corresponds with the study by Barata et al. (2002), who found that at medium limiting 

food resources the negative toxic effects on population abundance drastically increase 

with increasing animal density, suggesting that compensation of toxicant impacts is 

related to mortality driven by competition stress. On the contrary, several studies report 

negative effects of food limitation on species sensitivity. For instance, Stamplfli et al. 

(2011) found that the abundance of zooplankton species was more affected by a pesticide 
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under food limited conditions. Foit et al. (2012) performed an experiment to test the 

competition effect on sensitivity and recovery capacity of two interacting populations 

(Daphnia magna and Culex pipiens molestus) and concluded that toxicant sensitivity was 

positively correlated to competition and delayed recovery. Therefore, there are evidences 

of both positive and negative combined effects of competition and toxicant effects. 

Effects of combined stressors (competition and pesticide) on mortality were expected 

since competition for food resources is one relevant ecological interaction acting at intra- 

and interspecific levels influencing mortality and development at individual and 

populations levels (Van Buskirk, 1987; Gordon, 2000). There are models and 

experimental evidence of the importance of competition on fitness responses under 

toxicant exposure, nevertheless such interactions have not been taken into account in 

ERA. For instance, Kooijman and Metz (1984) modelled toxicant effects on individual 

fitness (metabolism, feeding, survival) under different food competition pressures and 

showed larger impacts on species development under higher competition pressure levels. 

This agrees with the influence of competition (density-dependence factor base on food 

availability) detected on the survival response of both B. tentaculata and G. pulex under 

toxicant exposure.  
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Figure 1. Effects of carbendazim exposure and species competition on B. tentaculata survival and 
growth.  The carbendazim exposure is represented as: Control, Low: 400, Medium: 800, and 
High: 1200 μg/L); C: control; intra-M: medium intraspecific competition; intra-H: high 
intraspecific competition; inter-M: medium interspecific competition; inter-H: high interspecific 
competition. The dashed vertical line indicates the start of the carbendazim exposure period. 

1a) Survival: intraspecific competition 

 

1b) Survival: interspecific competition 

 

1c) Growth: intraspecific competition 
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1d) Growth: interspecific competition 

 

Figure 2. Effects of carbendazim exposure and species competition on G. pulex survival. The 
carbendazim exposure concentrations are represented as: Control, Low: 20, Medium: 40, and 
High: 80μg/L. C: control; intra-M: medium intraspecific competition; intra-H: high intraspecific 
competition; inter-M: medium interspecific competition; inter-H: high interspecific competition. 
The dashed vertical line indicates the start of the carbendazim exposure period. 

2a) Survival: Intraspecific competition 

 

2b) Survival: Interspecific competition 
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Figure 4. Probability of survival of A. aquaticus at the end (day 21) of the interspecific 
competition experiment with G. pulex.  

 

The importance of ecological interactions for risk assessment  

Ecological interactions such as competition and predation are highly relevant for 

population responses in the field, so excluding them from ERA may lead to inefficient 

(over or under protective) regulations at both economic and ecological levels. Although it 

has been generally assumed that competition enhances the negative effects of a toxicant 

(Foit et al., 2012; Stamplfli et al., 2011), some studies have shown that population-level 

effects of food limiting conditions under chemical stress could be outweighed under 

medium-high population densities and low toxicant concentrations (Gui and Grant 2008; 

Linke-Gamenick et al. 1999; Barata et al., 2002). The results of the G. pulex experiment 

are consistent with the latter hypothesis and indicate behavioural changes as the main 

drivers determining the effects of competition. Here we observed that G. pulex increased 

its cannibalistic habits and increased predation on its competitor (A. aquaticus) under low 
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toxicant exposure, thus outweighing the stress imposed by the food limiting conditions. 

Based on our results, we can conclude that the trend of the interaction effect (- or +) 

seems to depend on the ecology of the particular focal and competing species, the density 

of the focal and the competing species, and the toxicant pressure. The results of the 

experiments here presented support the need to include both ecological intra- and 

interspecific interactions in ERA to better understand the combined effect of ecological 

aspects and toxic disruption on aquatic communities by, for example, including them into 

food-web and meta-population models. They also show that, considering the high 

complexity in the observed responses, model developers should accumulate a greater 

amount of information to realistically introduce more ecology into ERA.  
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DISCUSSION 
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Human population is predicted to continue growing what implies a higher demand of 

agricultural needs worldwide increasingly dependent on agrochemicals. Consequently, 

an intensification of fertilizers and pesticides use is expected under current agricultural 

practices. Therefore, it will raise the stressed linked to agricultural activities on already 

threaten natural systems as wetlands. If this scenario is not tackled, there will be 

objectives asymmetry between European Union (EU) sustainable development policies 

and real practices implemented in the field. The EU seeks to achieve a “sustainable 

development that meets the needs of thepresent without compromising the ability of 

future generations to meet their own needs” since the Brundtland Commission in 1987 

(COM, 2001). It is the background for many directives with environmental protection 

goals and projects aiming to assess ecological risks, for instance, of agrochemicals as 

the topic we have targeted in this thesis. In this context of increasing pressures and 

wiliness to protect the environment, ecotoxicology has to face the challenge of increase 

its complexity in order to predict and reduce ecological risks. In fact, many voices claim 

the need of more complex and ecological relevant assessment of agrochemicals in order 

to achieve EU directive protection goals at ecosystem levels (De Laender et al., 2013). 

Under such complex framework, this thesis has focused on two main scenarios: 

agrochemical scenarios (mixture, pulses frequency and limits) and ecological 

scenarios (ecological interactions: competition and hierarchical levels).  

 

1. Legal limits and its protection capacity  

Legal limits are established based on results from single species test. Despite the 

important information provided by single species tests, they lack environmental and 

ecological realisms to extrapolate their results to community or ecosystem levels. 
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Consequently, it raises doubts about the effectiveness of current legal limits to prevent 

ecological risk.  

As expected, Chapter 1, 2, 3 and 4 showed negative effects of agrochemicals (copper 

sulfate and ammonium nitrate) on plankton community even if exposure concentrations 

were within legal limits. In Chapter 1 the community was exposed to copper 

concentration below and above legal limits. The community was adversely affected by 

both concentrations: phytoplankton community structure came out as an early signal 

endpoint owing to its fast response. Phytoplankton showed an abundance decrease and 

size structural changes towards small cell size classes what is identify as an impairment 

indicator; and, zooplankton community suffered an abundance decrease and taxa 

disappearance (copepods and rotifers). In chapter 2 the community was exposed to two 

copper concentrations within legal limits: phytoplankton presented two diverse 

responses based on copper concentrations, surprisingly the low treatment (2 µg Cu l-1) 

had a negative effect and the high treatment (20 µg Cu l-1) did not, what highlights the 

complexity of community responses and the occurrence of indirect effects; and, 

zooplankton response was not significant even though a tendency of community change 

could be observed (higher presence of cladocera, copepoda and ostracoda versus rotifera 

and nauplii). In chapter 3, plankton community was treated with nitrate within legal 

limits: phytoplankton abundance decreased owing to negative effects of nitrate addition 

and later, increased as a result of indirect effects related to zooplankton community 

changes; and, zooplankton community was negatively affected suffering a decrease of 

abundance and a community change from cladocera-dominated to copepoda-dominated 

community. In chapter 4, plankton community changes as result of mixture of copper 

and nitrate within legal limits were studied: phytoplankton abundance increased in the 

treatments; and, zooplankton abundance fluctuated in treatments with copper while 
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continuously increased in treatments with nitrate on the last sampling days. Community 

shifts are just observed in treatments with only copper resulting in an increase of 

Ceriodaphnia ssp. and rotifera. In summary, either permanent or transient adverse 

effects of agrochemical concentrations within legal limits have been observed in all 

experiments. These results support the need of moving from single species tests to more 

ecological realistic tests to establish legal limits of agrochemicals in field conditions. A 

complementary action could be a more conservative application of the precautionary 

principle. Inefficient legal limits consequences go far beyond direct ecological impacts. 

Ecosystems resilience is impaired by ecological impacts driven by routinely chemical 

exposures. Therefore, impacted ecosystems response capacity to local and global 

changes would decrease ecosystem services resulting on biodiversity losses which have 

social, economic and environmental negative consequences. 

Community complexity in terms of diversity at community structural levels was higher 

in chapter 3 and 4 than in 1 and 2. Based on the functional redundancy hypothesis and 

the resilience hypothesis (Walker et al., 1999), it means that if the dominant species are 

impaired by the chemical stress, the minor species would have been expected to 

substitute them and its functional role in the community. Therefore, the ecosystem 

resilience would be maintained being able to partially counterbalance the potential 

adverse chemical effects on the community. Communities’ shifts after disturbances 

would occur based on this hypothesis. In all four experiments (Chapter 1, 2, 3 and 4) 

zooplankton community structural changes have been observed as a result of different 

group sensitivities and indirect effects due to phytoplankton changes. In the long term, it 

could mean either a disrupted community or a community able to recover. From a 

conservative point of view, even if the community is resilient and able to function 

similarly to an undisturbed community, it can be considered impacted since it differs 
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from reference conditions. In addition, natural communities are exposed to routinely 

detected agrochemicals concentrations what could result on tolerance development to 

the stress though a) adaptation or acclimation responses at population-level, and b) 

shifts in species composition (Schmitt-Jansen et al., 2008). Neither single species tests 

nor overall abundance indicators are able to detect these changes. Ecosystem responses 

are intricate and Science seeks to understand them, therefore, the mention redundancy 

hypothesis, the resilience hypothesis or others as the biodiversity-stability debate are the 

engine of progress. The translation of Science results into management practices may 

have uncertainties cluttering policy makers and management decisions takers. However, 

each new scientific experiment contributes to lower those uncertainties and to make 

more science-based decisions. Regarding the mentioned chapters, it can be stated that it 

is extremely important to assess community structural changes owing to its role in 

ecosystem resilience and stability influencing recovery capacity which is useful 

information for the decision process when establishing legal limits. 

 

2. Mixtures and frequency of agrochemicals exposures: a step further into 

complexity. Dealing with uncertainty but gaining information. 

Realistic field chemical exposures should include mixtures of chemicals and repeated 

applications. Most of the studies on mixtures of chemicals or disturbances focus on 

single species rather than communities in most of the cases under an only chemical 

pulse (Hurd et al., 1996; Jonker et al., 2005; LeBlanc et al., 2012). Therefore, there is a 

lack of experiments assessing complex scenarios including mixtures and application 

timing at community levels. Such kind of experiments would allow detecting indirect 

effects that are missed in simple single species and chemical tests. In fact, it is known 

that mixtures effects differ from single effects owing to chemicals interactions leading 
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to independent, antagonistic or synergistic responses (Lydy et al., 2004; Deener, 2000; 

LeBlanc et al., 2012). In addition, community responses would vary depending on its 

dynamics; therefore, the timing of chemical events may have different effects at 

different periods (Hughes and Connell, 1999). 

The aim of chapter 4 and 5 was to contribute to the awareness of the need of new 

experimental design of scenarios providing data from varying mixtures and frequency 

exposures experiments. There are a nearly infinite set of possible mixtures and 

frequency scenarios, therefore, the selected ones were based on the most realistic 

exposures conditions in the areas where the experiments took place. In addition, these 

two chapters complement the claim of Chapter 1, 2 and 3 of the need of more complex 

experiment to establish agrochemical legal limits. In chapter 4, the mixture of 

fertilizers (ammonium nitrate) and fungicide (copper sulfate) shows interaction between 

effects. It seems than in the mixture treatments the nutrients can counterbalance the 

direct toxic effects of copper on zooplankton community. This compensation may be 

mediated by a transient increase of phytoplankton so then more food availability 

favoring zooplankton fitness to face toxic adverse effects. Therefore, the comparison of 

single versus mixtures exposures in this experiment denotes a higher effect of single 

agrochemical exposures than mixture exposures which effects are mediated and 

counterbalance for indirect effect across the trophic web. In chapter 5, a different 

response is observed in mixtures and frequency exposures of nutrients (nitrate and 

phosphorus) and insecticide (chlorpyrifos). In this experiment, no compensation effects 

were observed in mixture versus single exposures. The increase of phytoplankton was 

not enhanced by nutrients availability but by a decrease of grazing pressure owing to 

direct and drastic effect of the insecticide on zooplankton. The conclusions about the 

comparison of single versus mixtures exposures from this experiment is that nutrients 
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and insecticide toxic effects do not interact what is most likely owing to the drastic toxic 

effect of the insecticide. Nevertheless, the experiment allows identifying which of the 

toxic will be the harmful one when both co-occur. Frequency of treatments application 

was not relevant in this case because of the drastic effect of insecticide since the first 

pulse. However, frequency and timing of chemical application is a relevant factor 

because it would impact the community in different moments. Therefore, chemical 

exposures might disrupt different development and dynamic stages what would result in 

diverse community responses. This kind of information is crucial for managers to make 

science-based decision of agrochemical application periods. 

The microcosms studies here presented have allowed to detected compensation 

responses and indirect effects on plankton communities exposes to different mixtures of 

agrochemicals. In terms of frequency, no influence on the community response was 

found because of the drastic effect of the agrochemical used since the first application. 

In order to record pulse frequency effects, an agrochemical with lower toxicity should 

have been used. However, there are previous studies pointing out the importance of 

pulses and its frequency. Communities exposed to constant pulses may develop some 

degree of tolerance as a response to the subletal continuous previous exposures 

(Johansson et al., 2001; García-Muñoz et al., 2011); while, communities under less 

frequent but more intense pulses suffer from more stress owing to those drastic changes 

(Earl and Witheman, 2009; García-Muñoz et al., 2011). It highlights the complexity of 

communities’ responses and its dependence on mixtures composition and application 

frequency. Therefore, the development of agrochemical application policies and the 

establishment of legal limits will be more appropriate considering mixture and 

frequency factors what increase the environmental realisms of ecological risk 

assessments. Even though, it will also increase the uncertainties and make effects less 
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detectable compare to single agrochemical exposures when the possibility of interaction 

is given weight (European Commission 2006, project NoMiracle). It was the case in 

chapter 4 where the mixture of fertilizers (ammonium nitrate) and fungicide (copper 

sulfate) resulted in lower changes on zooplankton abundance owing to indirect effect of 

nutrients able to slightly counterbalance the direct copper toxic effect. In any case, the 

community was affected because it differed from the reference conditions. Therefore, 

the relevance of this result is the need to establish larger safety factors to face the higher 

complexity of more environmental realistic scenarios.  

 

3. Combined effect of ecological and chemical aspects 

Efforts pursuing to increase environmental realisms of Ecological Risk Assessment 

include the consideration of combined abiotic and biotic stressors. In fact, combined 

effect of ecological and chemical aspects is a hot topic in ecotoxicology nowadays (De 

Laender et al., 2013; Seeland et al., 2013; De Coninck et al., 2013). European Union 

supports the relevance of this topic financing projects as “Novel Methods for Integrated 

Risk Assessment of Cumulative stressors in Europe (NoMiracle)”. The main objective 

of NoMiracle is to better understand complex exposures including mixture of chemicals 

and physical/biological factors in risk assessment what is in line with these thesis 

objectives.  

In the previous five chapters, microcosms experiments were set up. Microcosms 

studies could be one appropriated experimental scale to assess complex pressures 

scenarios representing a compromise between uncertainty and ecological realisms. In 

order to face uncertainty, a strategy could be the use of multiple scales experiments. The 

combination of different scales and complexity experiments can help to understand the 

lower mechanisms controlling the higher scales responses. For instance, a shift in 
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community structure observed in microcosms experiments could be driving for food 

competition pressures affecting predation/cannibalism behaviours that can be recorded 

at lower scale experiments of two interacting species. This was the conceptual 

framework to set up the experiment in chapter 6. In that chapter, effects of intra- and 

interspecific competition were assessed on the sensitivity of aquatic macroinvertebrates 

to a fungicide (carbendazim). As expected, the results were complex showing how 

competition influences the response of organisms under chemical exposure depending 

on diverse factors asspecie, density and behavioral aspects. In the experiment with 

Bithynia tentaculata and Radix peregra, B. tentaculata growth was affected by 

combined effect of competition and carbendazim; however, survival and immobility 

were only transiently affected. The adverse effect detected on growth rear concern about 

fertility and new generation fitness to face chemical exposures. In the experiment with 

Gammarus pulex and Asellus aquaticus a surprisingly positive influence of competition 

was observed what is explained by behavioral changes (cannibalism and predation) able 

to modulate toxic effects under specific combinations of competition and chemical 

pressures. It points out the complexity of organisms responses under combined abiotic 

and biotic pressures, therefore, the challenging extrapolation of results to higher scales 

as community and ecosystems. Consequently, these experimental results support the 

need of more ecological realistic risk assessment. And, it contributes to the literature 

identifying diverse organisms’ responses to combined pressures: the negative 

competition influence detected that agree with previous studies; and, the unexpected 

positive competition influence what open a new discussion window. 
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4. Science-based decisions: scientists tools useful for decisions makers  

Science has the responsibility to transfer knowledge to society. The main barriers for 

this knowledge transfer are results interpretation and implementation. Therefore, apart 

from accurate environmental and ecological experimental designs; the way in which 

data are presented is extremely important.  

This thesis claims the need of more realistic scenarios for ecological risks assessments 

together with the need of appropriated tools to make that knowledge socially relevant. 

Hence, comprehensible knowledge will trigger managers and social awareness that is 

the engine of policy changes as could be the procedure to establish legal limits. Under 

this framework, Principal Response Curves (PRC) was used in all experiments because 

they could be a tool combining science accuracy and friendly interpretation for no-

scientist audiences. PRC is considered scientifically a more appropriated tool than 

analysis of variance to analyzed micro/mesocosms data. PRC couples complex changes 

in community structure and dynamics over time as a result of environmental changes 

(i.e., agrochemical exposures). Therefore, it adds the time dimension to the data analysis 

considering community dynamics what sum up to community structure information 

gives a global and integrate picture of the system resulting in a realistic ecological 

scenario. In addition, at social levels it could be a friendly method for data presentation 

to engage a general audience in a more based-science decisions owing to its visual and 

intuitive interpretation.  

 

5. Ecological meaning of experimental results on field conditions 

In accordance with the efforts to use scientist tools useful for policy makers, an attempt 

to translate experiment results into relevant field information has been also made. In 

order to do so, the Predicted No-Effect Concentration (PNEC) has been calculated with 
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some modifications. The PNEC is calculated using the quotient method comparing 

toxicity to environmental exposure by the relation of estimated environmental 

concentrations (EEC) and an effect level such as the LC50 based on single species test 

endpoints (survival, growth and reproduction). Toxic risks do not exists when the 

quotient is 1 or below; however, toxic risks exists when the quotient is higher than 1. 

The modification introduced here is to use the lower concentrations that trigger adverse 

effects at microcosm levels (it will be defined as Community Negative Effect 

Concentrations, CNEC, figure 1a) instead of the LC50. It aims to overcome the 

shortcomings of using LC50 from endpoints based on single species tests and its low 

environmental realistic experimental conditions. Hence, it pretends to use the lowest 

concentrations having effects on microcosms which experimental design are able to 

include diverse ecological (populations and community) and chemical scenarios 

(mixtures and frequency). Therefore, it is assumed that the information will be more 

realistic for make better field risk predictions. The PNEC will be calculated for 

Andalucía region where this thesis impact is more relevant and field agrochemical data 

are available (Table I). Therefore, nutrients and pesticides concentrations data in 

wetlands are taken from the Junta de Andalucía monitoring program from 2002 until 

2007 (Junta de Andalucia, 2002-2007). In addition, Robles-Molina et al. (2014) 

published data were considered for its higher detection limits of Chlorpyrifos. 

Carbendazim data were not available (Table I). We have decided to classify the PNEC 

risk values in three categories: no risk, risk and extreme risk (Figure 1b). It is 

considered “no risk” between 0 – 1 due to the own PNEC method defition; “risk” any 

value higher than 1 because it means that the exposure will have effects on the systems; 

and, “extreme risk” when it is an order of magnitude higher than the minimum risk 

scenario.    
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Figure 1.a) Quotient to calculate the Modified  
Predicted No-Effect Concentration (PNEC). 
b) Risk categories 
 

 

 

Table I. Results of the Predicted No-Effect Concentration (PNEC) based on field concentrations 
monitored by the Junta de Andalucía (Estimated Environmental concentrations, EEC) and this 
thesis microcosms experiment results (Community Negative Effect Concentrations, CNEC are 
in bold being the lowest concentrations having negative effects). Legal limits data are also 
included. 

 

 

 

 

 

 

 

*Above legal limits   **It is considered that more accuracy is needed; therefore, the worst case 
scenario of 1.38 x 10-5 mg l-1 from Robles-Molina et al. (2014) was used as EEC.  n. a.: stands 
for not available 

PNEC = (EEC / CNEC) 

 

 

Agrochemical  CNEC  EEC Legal limits PNEC  

Copper  0.2 mg l-1 * 0.06 mg l-1 

 

0.04 mg l-1 Risk (3) 
0.02 mg l-1 
0.002 mg l-1 
0.04 mg l-1 

Nitrate 25 mg l-1 1.98 mg l-1 50 mg l-1 No risk (0.1) 
50 mg l-1 

Chlorpyrifos 

 

0.002 mg l-1 **< 0.001 mg l-1 

(1.38 *10-5 mg l-1) 

 

0.0001 mg l-1 No risk (0.1) 

Carbendazim 0.4 mg l-1 n.a. n.a. n.a. 
0.8 mg l-1 
1.2 mg l-1 

 

a) 

b) 
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Monitored field data from the Junta de Andalucía compare to legal limits and the results 

of the PNEC revels that Andalucian wetlands are under risk of impairment for copper 

and no risk for nitrate and chlorpyrifos. Carbendazim data were not available in the 

Junta de Andalucía monitored program and was not detected by Robles-Molina et al. 

(2014). Field concentrations of copper are above legal limits; while, nitrates and 

chlorpyrifos are within legal limits based on the average monitored concentrations. And, 

the PNEC based on those average monitored field concentrations (EEC) and the 

Community Negative Effects Concentrations (CNE) from the microcosm’s experiments 

results on risk for copper and no risk for nitrates and chlorpyrifos. At first glance, 

copper seems the only priority issue. However, a precautionary aptitude raises some 

questions about the no risk of nitrates and chlorpyrifos. In the case of copper and 

nitrates, the average of the estimated environmental concentrations marks some 

concentrations peaks (Junta de Andalucía, 2002-2007). Nitrates peaks average is 37.6 

mg l-1 and the range (25.6 – 51.3) mg l-1, peaks mainly occurs on November and 

December.Olive groves are the main agricultural activity in our region, fertilizers are 

applied on autumn therefore peaks of nitrates on November and December could be 

linked to fertilizers mobilization by raining events. In the case of copper, peaks average 

is 0.122 mg l-1 and the range (0.05 – 0.46) mg l-1, peaks mainly occurs on April and 

November. Copper sulfate is used as a fungicide and is applied before the most humid 

months; therefore, peaks on April and November are consistent with such field 

application timing. It highlights the important of consider frequency aspect when 

studying agrochemical exposures scenarios as it has been pointed out in chapter 5. With 

respect to chlorpyrifos, its concentrations were lower than 1 µg l-1 (Junta de Andalucía, 

2002-2007), however, it seems that the detection limit may not be sensitive enough. 

Robles-Molina et al. (2014) monitored Jaén wetlands up to nanograms (ng l-1) and 
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reported the present of chlorpyrifos in 73% of the samples even having one of them 

slightly above (119 ng l-1, Guadalimar river) legal limits (100 ng l-1). In conclusion, the 

no risk detected based on the data available could be underweight owing to monitoring 

limitations. Monitored agrochemical concentrations is crucial to obtain realistic 

information about the importance of scales, spacial and temporal aspect of agrochemical 

pulses what is essential to better understand ecological consequences. For instance, 

Hanazato (1998) highlighted the consequences of zooplankton abundance and structure 

changes as a consequence of insecticides exposures on winter having effects on the 

spring communities by altering the clear-water phase and fish larvae development. 

Different insecticide timing exposures could have different consequences modulated by 

which species are present and its development stage, among other biotic and abiotic 

factors.  

 

6. Transfer to society: recommendations 

Society should seek to find the balance between agriculture development and 

environmental protection despite of its complexity. It should be notice that food supply 

is one of the ecosystem services society obtain from healthy ecosystems (EEM, 2012). 

Therefore, efforts to prevent ecological impacts come together with the need of 

agriculture. Simple but significant recommendations are enlisted below:  

 “Prevention is better than cure”. Therefore, a decrease of pesticide use will 

have economic and environmental benefits because it will decrease the expenses 

in the agricultural sector and reduce environmental risk saving restoration 

investments. It comes through a careful planning of agrochemical needs.  
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 Prevention of runoff. The most common entrance of agrochemicals in aquatic 

systems is through runoff. Therefore, apart from the use of adequate 

agrochemical concentrations also application techniques diminishing runoff 

probability should be consider: injection of pesticides, increase of vegetation 

around water bodies or establishment of buffer zones between application areas 

and aquatic ecosystems. 

 

 Investments on alternative agricultural practices as ecological agriculture. 

Enhance ecological agriculture could be an important strategy to solve the 

problem at its root cause. However, the safety of natural compounds used in 

ecological agriculture must be scientifically proven and not assumed. 

 

 Scientific results must be relevant, credible and legitimate for society in order to 

involve society in its application. Experiments designs with environmental 

realisms to target social issues are the key to implicate audiences to follow up 

with actions.  
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1. Copper current legal limits are not safe enough because impacts on aquatic 

community were detected and high environmental risk was calculated. Plankton 

community responses to environmentally relevant agrochemical concentrations 

within legal limits warn about adverse effect at structural levels. Even if such 

effects are transient, they raise concern about long term effects on plankton 

communities. 

 

2. Mixture of agrochemical exposures allows understanding how agrochemical 

interactions modulate indirect effects resulting in different community responses 

than those showed in single agrochemical exposures. Therefore, agrochemical 

mixture studies have been configured as essential in ecotoxicology. 

 

3. Phytoplankton abundance endpoint is essential to detect both direct and indirect 

effects of agrochemicals on the community. Direct effects show a decrease of 

phytoplankton abundance owing to a clear toxic effect on the species. While, 

indirect effects, leading to abundance decrease or increase, give information 

mainly related to changes of zooplankton grazing pressure resulting from its 

depletion or community shifts after agrochemical exposures. In addition,  

generally phytoplankton community response was faster than zooplankton one 

most likely owing to a shorter life cycle. 
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4. In terms of phytoplankton community structure based on cytometry analysis of 

cell size changes, no conclusive results were obtained. Probably phytoplankton 

sampling procedure must have been adapted to its shorter life cycle; therefore, 

weekly sampling was not the most appropriate timing to detect community 

structural changes.  

 

5. Zooplankton community structure gave more valuable information than 

phytoplankton abundance changes. Zooplankton taxa shifts are better indicators 

because it allows understanding zooplankton community responses and 

phytoplankton indirect effects.  

 

6. Functional endpoints (oxygen production and litter decomposition) did not help 

to identify agrochemicals’ effects on plankton community. Sampling procedure 

and methodology should be review and adapted to microcosms design and 

experiment duration. 

 

7. Microcosms community studies allow interpreting complex responses mediated 

by indirect effects and compensatory mechanisms. Considering this, two species 

competition experiments are an adequate scale to study combined effect of 

ecological and chemical aspects, which results may help to interpret responses at 

microcosm’s community levels. The influence of food availability (competition) 

on organisms and community responses to agrochemical exposure has been 

confirmed. Therefore, competition as other ecological interactions arises as an 

essential factor to be taken into account to increase the ecological realisms of 

risk assessment.  
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1. Los límites legales de cobre actuales no son suficientemente seguros para la 

comunidad acuática puesto que se han detectado impactos negativos y se ha 

calculado un alto riesgo ambiental. Las respuestas de la comunidad planctónica a 

concentraciones de agroquímicos medioambientalmente relevantes y dentro de 

los límites legales muestran efectos a niveles estructurales. A pesar de que 

dichos efectos pueden ser  pasajeros,  no deben despreciarse al considerar los 

efectos a largo plazo y su repercusión.  

 

2. La exposición a mezclas de agroquímicos ha permitido entender como dichas 

mezclas modulan los efectos indirectos que resultan de las respuestas de las 

comunidades expuesta y que difieren de las respuestas a la exposición de un 

único agroquímico. Por tanto, las mezclas de agroquímicos se destacan como un 

punto esencial en el incremento de realismo de los estudios de  ecotoxicología.  

 

3. La abundancia de fitoplancton como indicador de punto final o endpoint es 

esencial para detectar tanto efectos directos como indirectos de los agroquímicos 

sobre la comunidad planctónica. El descenso de la abundancia de fitoplancton es 

un claro efecto directo de los tóxicos sobre las especies. Mientras que los efectos 

indirectos ligados a un aumento o descenso de la abundancia, dan información 

principalmente relacionada con los cambios en la comunidad tras la exposición 

al tóxico como reflejo del cambio en la presión de herbivoría del zooplancton 

debido a su declive o a los cambios en la composición del mismo . Además, en 

238



general la respuesta de la comunidad fitoplanctónica fue más rápida que la del 

zooplancton debido al ciclo de vida más corto. 

4. No se han obtenido resultados concluyentes cuando se han analizado los 

cambios en la estructura de la comunidad fitoplanctónica basada en análisis del 

tamaño celular mediante citometría de flujo. Probablemente la metodología de 

muestreo del fitoplancton en las experiencias de microcosmos debería haber sido 

adaptada a su corto ciclo de vida; los muestreos semanales no han sido periodos 

adecuados para detectar los cambios estructurales basados en el tamaño celular 

en la comunidad.  

 

5. La estructura de la comunidad zooplanctónica proporcionó una información más 

valiosa que los cambios de abundancia del fitoplancton. Los cambios en taxones 

del zooplancton son mejores indicadores porque permiten entender las 

respuestas de la comunidad zooplanctónica y los efectos indirectos sobre el 

fitoplancton, relacionándolos con interacciones ecológicas.  

 
6. Los indicadores funcionales (la producción de oxígeno y la descomposición de 

hojarasca) no ayudaron a identificar los efectos de los agroquímicos sobre la 

comunidad planctónica. El procedimiento de muestreo y la metodología 

deberían ser revisados y adaptados a diseños con microcosmos y a la duración 

del experimento.  

 

7. Los estudios de microcosmos de la comunidad acuática permiten interpretar 

respuestas complejas mediadas por efectos indirectos y mecanismos de 

compensación. Tomando esto en consideración, los experimentos con dos 
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especies son una escala adecuada para estudiar los efectos combinados de 

aspectos ecológicos y químicos, cuyos resultados podrían ayudar a interpretar 

respuestas a niveles superiores de complejidad. La influencia de la 

disponibilidad de recursos (competencia) en la respuesta de los organismos y de 

la comunidad a la exposición de agroquímicos ha sido confirmada. Por tanto, la 

competencia, así como otras relaciones ecológicas, surgen como un factor 

esencial a ser considerado para aumentar el realismo ecológico en la evaluación 

del riesgo de los agroquímicos. 
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