Minimum number of distinct eigenvalues of graphs

Shahla Nasserasr

Nova Southeastern University November 15, 2016

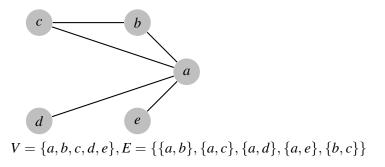
▲□▶▲□▶▲□▶▲□▶ □ のQで

joint work with Dr. Shaun Fallat and Dr. Karen Meagher (University of Regina)

Introduction

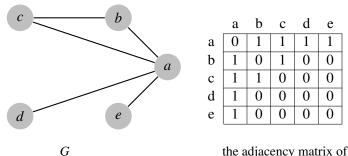
A graph is an ordered pair G = (V, E), where
V = {v₁, v₂,..., v_n} is the set of vertices,
E is the set of edges, and
every edge is a 2 element subset of V.

• Example:



• The Adjacency matrix of the graph G is an $n \times n$ matrix $A = [a_{ij}]$ where $a_{ii} = 1$ if and only if $\{i, j\}$ is an edge, and $a_{ij} = 0$ otherwise.

• Example:



the adjacency matrix of G

• A is symmetric.

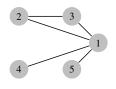
Compatible Matrices with G

An $n \times n$ symmetric matrix $A = [a_{ij}]$ is called *Compatible* with a graph *G* if

 $a_{ij} = \begin{cases} \text{nonzero,} & \text{if } ij \text{ is an edge} \\ \text{zero,} & \text{if } ij \text{ is not an edge} \end{cases}$

• S(G) is the set of all compatible matrices with G.

Example:



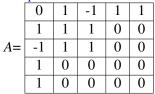
	1	2	3	4	5
1	<i>a</i> ₁₁	a_{12}	a_{13}	<i>a</i> ₁₄	a_{15}
2	<i>a</i> ₁₂	a_{22}	a_{23}	0	0
3	<i>a</i> ₁₃	a_{23}	<i>a</i> ₃₃	0	0
4	<i>a</i> ₁₄	0	0	<i>a</i> 44	0
5	<i>a</i> ₁₅	0	0	0	a_{55}

a compatible matrix with G

G

Minimum Number of Distinct Eigenvalues of graphs

- If A is an $n \times n$ matrix, q(A) denotes the number of distinct eigenvalues of A.
- *Example*:



$$\sigma(A) = \{-2, 0, 0, 2, 2\} \Rightarrow q(A) = 3$$

• The *Minimum Number of Distinct Eigenvalues* of a graph *G*, denoted by *q*(*G*), is

$$q(G) = \min\{q(A) \mid A \in S(G)\}.$$

The Minimum Rank Problem

• The *Minimum rank* of a graph G, denoted by mr(G), is

 $mr(G) = \min\{rank(A) \mid A \in S(G)\}.$

• *Example*:

	<i>a</i> ₁₁	a_{12}	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅			0	1	-1	1	1
	<i>a</i> ₁₂	a_{22}	<i>a</i> ₂₃	0	0			1	1	1	0	0
M =	<i>a</i> ₁₃	<i>a</i> ₂₃	<i>a</i> ₃₃	0	0	$\Rightarrow \operatorname{rank}(G) \ge 3$,	A=	-1	1	1	0	0
	<i>a</i> ₁₄	0	0	a_{44}	0			1	0	0	0	0
	<i>a</i> ₁₅	0	0	0	a55			1	0	0	0	0

 $\operatorname{rank}(A) = 3 \Rightarrow \operatorname{mr}(G) = 3.$

q(G): A Lower Bound for mr(G) + 1

Lemma

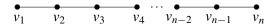
For any graph G,

 $q(G) \leq \operatorname{mr}(G) + 1.$

Proof. If q(A) = q(G), then

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

A *Path* on *n* vertices, denoted by P_n , is a graph with vertices v_1, v_2, \ldots, v_n and edge set $\{\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_{n-1}, v_n\}\}$.



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Theorem (Fonseca, 2010)

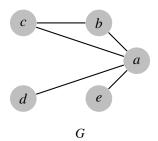
If there are vertices u, v in G at distance d and the path of length d from u to v is unique, then $q(G) \ge d + 1$.

Proof.

- For $A \in S(G)$, the entry (u, v) of A, A^2, \ldots, A^{d-1} equal 0
- The entry (u, v) of A^d is $\prod_{i=1}^d a_{v_i v_{i+1}} \neq 0$
- The matrices I, A, A^2, \ldots, A^d are linearly independent
- The minimal polynomial of A has degree at least d + 1

•
$$q(G) \ge d+1$$
.

Example:



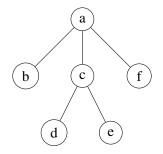
◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

•
$$d(e,c) = 2$$
,

- the path from e to c of length 2 is unique
- $q(G) \ge 2 + 1 = 3$
- Note: In this case q(G) = 3

Corollary

For any tree T it is the case that $q(T) \ge \operatorname{diam}(T) + 1$.



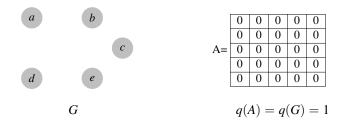
 $q(T) \ge diam(T) + 1 = 3 + 1 = 4$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Graphs with q(G)=1

Lemma

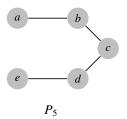
For a graph G, q(G) = 1 if and only if G is an empty graph.



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Lemma (Fiedler, 1969)

For a graph G on n vertices, q(G) = n if and only if $G = P_n$, a path on n vertices.



	*	a_{12}	0	0	0
	<i>a</i> ₁₂	*	<i>a</i> ₂₃	0	0
A=	0	<i>a</i> ₂₃	*	<i>a</i> ₃₄	0
	0	0	<i>a</i> ₃₄	*	<i>a</i> ₄₅
	0	0	0	a_{45}	*

q(A) = q(G) = 5

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Problem

For a given k, characterize graphs G with q(G) = k.

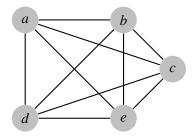
The answer is known for k = 1 and k = |V(G)|. What about k = 2?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

• A *Complete graph* is a graph, where there is an edge between every pairs of vertices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

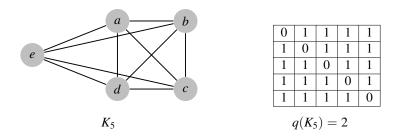
• *Example:* A complete graph on 5 vertices (*K*₅):



Graphs with
$$q(G) = 2$$

Theorem

For any
$$n \ge 2$$
, we have $q(K_n) = 2$



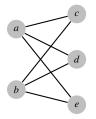
Theorem

If G is obtained from K_n by deleting a single edge, then q(G) = 2.

an

Graphs with q(G) = 2

- A *Bipartite graph* is a graph, where the vertices are partitioned into two sets *X* and *Y*, and the edges only connect a vertex from *X* to a vertex in *Y* (there are no edges from a vertex *X* to a vertex in *X*).
- *Example:* A complete bipartite graph *K*_{2,3}:



Lemma

For any $1 \le m \le n$ *we have*

$$q(K_{m,n}) = \begin{cases} 2, & \text{if } m = n; \\ 3, & \text{if } m < n. \end{cases}$$

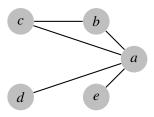
If $q(G) = 2, \ldots$

Theorem

If q(G) = 2, then for any independent set $\{v_1, v_2, \ldots, v_k\}$ of vertices

$$\left|\bigcup_{i\neq j} (N(v_i)\cap N(v_j))\right|\geq k.$$

Example:



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $\{e, c\}$ is an independent set $|N(e) \cap N(c)| = |\{a\}| \ge 2$ $q(G) \ne 2$.

Corollary

In a graph G with q(G) = 2, any two non-adjacent vertices have at least two common neighbours.

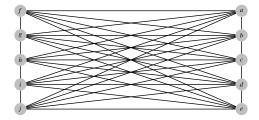
▲□▶▲□▶▲□▶▲□▶ □ のQで

Corollary

In a graph G with q(G) = 2, every vertex lies in a cycle.

Theorem

Let G be a connected graph, then $q(G \lor G) = 2$ *.*



 $q(P_5 \vee P_5) = 2$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Definition

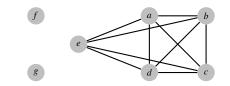
A graph *G* has *multiplicity bipartition* [k, n - k] if it has two distinct eigenvalues where one eigenvalue has multiplicity *k*.

Subproblem: Given $1 \le k \le \lfloor \frac{n}{2} \rfloor$, which graphs have multiplicity bipartition [k, n - k].

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Lemma

A graph G has a multiplicity bipartition [1, n - 1] if and only if G is a complete graphs with isolated vertices.



q(G) = 2 with multiplicity bipartition [1, n - 1]

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Theorem

Assume that G is a connected graph. The minimal multiplicity bipartition of G is [2, n-2] if and only if

$$G = (K_{a_1} \cup K_{b_1}) \vee (K_{a_2} \cup K_{b_2}) \vee \ldots \vee (K_{a_k} \cup K_{b_k})$$

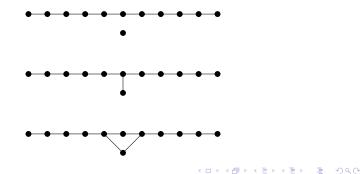
where k > 1, $a_i \ge 0$, $b_i \ge 0$, for i = 1, 2, ..., k, and G is not isomorphic to a complete graph, or to $(K_{a_1} \cup K_{b_1}) \lor K_1$.

Graphs with multiplicity bipartition [2, n - 2] are characterized in several separate papers.

Theorem (Barrett et al)

A graph G has q(G) = |G| - 1 if and only if G is of the following form:

- the union of a path and an isolated vertex,
- a path with one leaf attached to an interior vertex,
- a path with an extra edge joining two vertices of distance 2.



- Characterize graphs with q(G) = k for k = 2, 3, ..., n 2.
- Find forbidden subgraphs for graphs with multiplicity bipartition [k, n k].
- For given graphs G and H, find $q(G \vee H)$.
- Find the relationship between q(G) and other parameters of *G* such as independence number, degree of vertices, etc.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank You!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○