Minimum number of distinct eigenvalues of graphs

Shahla Nasserasr
Nova Southeastern University

November 15, 2016
joint work with Dr. Shaun Fallat and Dr. Karen Meagher (University of Regina)

Introduction

- A graph is an ordered pair $G=(V, E)$, where

$$
V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \text { is the set of vertices, }
$$

E is the set of edges, and every edge is a 2 element subset of V.

- Example:

- The Adjacency matrix of the graph G is an $n \times n$ matrix $A=\left[a_{i j}\right]$ where $a_{i j}=1$ if and only if $\{i, j\}$ is an edge, and $a_{i j}=0$ otherwise.
- Example:

G

		a b c d e			
a	0	1	1	1	1
b	1	0	1	0	0
c	1	1	0	0	0
d	1	0	0	0	0
e	1	0	0	0	0

the adjacency matrix of G

- A is symmetric.

Compatible Matrices with G

An $n \times n$ symmetric matrix $A=\left[a_{i j}\right]$ is called Compatible with a graph G if

$$
a_{i j}=\left\{\begin{array}{cc}
\text { nonzero }, & \text { if } i j \text { is an edge } \\
\text { zero, }, & \text { if } i j \text { is not an edge }
\end{array}\right.
$$

- $S(G)$ is the set of all compatible matrices with G.

Example:

	1				2		3		4	
1										
1	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}					
	a_{12}	a_{22}	a_{23}	0	0					
3	a_{13}	a_{23}	a_{33}	0	0					
	a_{14}	0	0	a_{44}	0					
5	a_{15}	0	0	0	a_{55}					

G

$$
\text { a compatible matrix with } G
$$

Minimum Number of Distinct Eigenvalues of graphs

- If A is an $n \times n$ matrix, $q(A)$ denotes the number of distinct eigenvalues of A.
- Example:

$A=$| 0 | 1 | -1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 |
| -1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 |$\quad \sigma(A)=\{-2,0,0,2,2\} \Rightarrow q(A)=3$

- The Minimum Number of Distinct Eigenvalues of a graph G, denoted by $q(G)$, is

$$
q(G)=\min \{q(A) \mid A \in S(G)\}
$$

- The Minimum rank of a graph G, denoted by $\operatorname{mr}(G)$, is

$$
\operatorname{mr}(G)=\min \{\operatorname{rank}(A) \mid A \in S(G)\}
$$

- Example:

$\mathbf{M}=$| a_{11} | a_{12} | a_{13} | a_{14} | a_{15} |
| :---: | :---: | :---: | :---: | :---: |
| a_{12} | a_{22} | a_{23} | 0 | 0 |
| a_{13} | a_{23} | a_{33} | 0 | 0 |
| a_{14} | 0 | 0 | a_{44} | 0 |
| a_{15} | 0 | 0 | 0 | a_{55} |$\quad \Rightarrow \operatorname{rank}(G) \geq 3$,

$\mathrm{A}=$| 0 | 1 | -1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 |
| -1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 |

$\operatorname{rank}(A)=3 \Rightarrow \operatorname{mr}(G)=3$.

$q(G)$: A Lower Bound for $\operatorname{mr}(G)+1$

Lemma

For any graph G,

$$
q(G) \leq \operatorname{mr}(G)+1
$$

Proof. If $q(A)=q(G)$, then

$$
A \sim\left[\begin{array}{ccccccc}
\lambda_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \ddots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda_{\operatorname{mr}(G)} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Paths

A Path on n vertices, denoted by P_{n}, is a graph with vertices $v_{1}, v_{2}, \ldots, v_{n}$ and edge set $\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{n-1}, v_{n}\right\}\right\}$.

Unique Paths

Theorem (Fonseca, 2010)

If there are vertices u, v in G at distance d and the path of length d from u to v is unique, then $q(G) \geq d+1$.

Proof.

- For $A \in S(G)$, the entry (u, v) of $A, A^{2}, \ldots, A^{d-1}$ equal 0
- The entry (u, v) of A^{d} is $\prod_{i=1}^{d} a_{v_{i} v_{i+1}} \neq 0$
- The matrices $I, A, A^{2}, \ldots, A^{d}$ are linearly independent
- The minimal polynomial of A has degree at least $d+1$
- $q(G) \geq d+1$.

Example:

G

- $d(e, c)=2$,
- the path from e to c of length 2 is unique
- $q(G) \geq 2+1=3$
- Note: In this case $q(G)=3$

Corollary

For any tree T it is the case that $q(T) \geq \operatorname{diam}(T)+1$.

Graphs with $\mathrm{q}(\mathrm{G})=1$

Lemma

For a graph $G, q(G)=1$ if and only if G is an empty graph.

G

$\mathrm{A}=$| 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

$$
q(A)=q(G)=1
$$

Graphs with $q(G)=|V(G)|$

Lemma (Fiedler, 1969)

For a graph G on n vertices, $q(G)=n$ if and only if $G=P_{n}$, a path on n vertices.

P_{5}

$\mathrm{A}=$| $*$ | a_{12} | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| a_{12} | $*$ | a_{23} | 0 | 0 |
| 0 | a_{23} | $*$ | a_{34} | 0 |
| 0 | 0 | a_{34} | $*$ | a_{45} |
| 0 | 0 | 0 | a_{45} | $*$ |

$q(A)=q(G)=5$

Open Problem

Problem

For a given k, characterize graphs G with $q(G)=k$.

The answer is known for $k=1$ and $k=|V(G)|$. What about $k=2$?

Complete Graphs

- A Complete graph is a graph, where there is an edge between every pairs of vertices.
- Example: A complete graph on 5 vertices (K_{5}):

Graphs with $q(G)=2$

Theorem

For any $n \geq 2$, we have $q\left(K_{n}\right)=2$

K_{5}

0	1	1	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

$q\left(K_{5}\right)=2$

Theorem

If G is obtained from K_{n} by deleting a single edge, then $q(G)=2$.

Graphs with $q(G)=2$

- A Bipartite graph is a graph, where the vertices are partitioned into two sets X and Y, and the edges only connect a vertex from X to a vertex in Y (there are no edges from a vertex X to a vertex in X).
- Example: A complete bipartite graph $K_{2,3}$:

Lemma

For any $1 \leq m \leq n$ we have

$$
q\left(K_{m, n}\right)= \begin{cases}2, & \text { if } m=n \\ 3, & \text { if } m<n .\end{cases}
$$

If $q(G)=2, \ldots$

Theorem

If $q(G)=2$, then for any independent set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of vertices

$$
\left|\bigcup_{i \neq j}\left(N\left(v_{i}\right) \cap N\left(v_{j}\right)\right)\right| \geq k
$$

Example:

$\{e, c\}$ is an independent set
$|N(e) \cap N(c)|=|\{a\}| \nsupseteq 2$
$q(G) \neq 2$.

If $q(G)=2, \ldots$

Corollary

In a graph G with $q(G)=2$, any two non-adjacent vertices have at least two common neighbours.

Corollary

In a graph G with $q(G)=2$, every vertex lies in a cycle.

$q(G \vee G)=2$

Theorem

Let G be a connected graph, then $q(G \vee G)=2$.

Bipartition

Definition

A graph G has multiplicity bipartition $[k, n-k]$ if it has two distinct eigenvalues where one eigenvalue has multiplicity k.

Subproblem: Given $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, which graphs have multiplicity bipartition $[k, n-k]$.

Bipartition $[1, n-1]$

Lemma

A graph G has a multiplicity bipartition $[1, n-1]$ if and only if G is a complete graphs with isolated vertices.

$$
q(G)=2 \text { with multiplicity bipartition }[1, n-1]
$$

Bipartition $[2, n-2]$

Theorem

Assume that G is a connected graph. The minimal multiplicity bipartition of G is $[2, n-2]$ if and only if

$$
G=\left(K_{a_{1}} \cup K_{b_{1}}\right) \vee\left(K_{a_{2}} \cup K_{b_{2}}\right) \vee \ldots \vee\left(K_{a_{k}} \cup K_{b_{k}}\right)
$$

where $k>1, a_{i} \geq 0, b_{i} \geq 0$, for $i=1,2, \ldots, k$, and G is not isomorphic to a complete graph, or to $\left(K_{a_{1}} \cup K_{b_{1}}\right) \vee K_{1}$.

Graphs with multiplicity bipartition $[2, n-2]$ are characterized in several separate papers.

Graphs with $q(G)=n-1$

Theorem (Barrett et al)

A graph G has $q(G)=|G|-1$ if and only if G is of the following form:

- the union of a path and an isolated vertex,
- a path with one leaf attached to an interior vertex,
- a path with an extra edge joining two vertices of distance 2.

open problems

- Characterize graphs with $q(G)=k$ for $k=2,3, \ldots, n-2$.
- Find forbidden subgraphs for graphs with multiplicity bipartition $[k, n-k]$.
- For given graphs G and H, find $q(G \vee H)$.
- Find the relationship between $q(G)$ and other parameters of G such as independence number, degree of vertices, etc.

Thank You!

