
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2008

Use and Analysis of Expected Similarity of
Semantic Web Ontological Annotations
Joe Lynn Look
Nova Southeastern University, look32080@gmail.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Joe Lynn Look. 2008. Use and Analysis of Expected Similarity of Semantic Web Ontological Annotations. Doctoral dissertation. Nova
Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (684)
http://nsuworks.nova.edu/gscis_etd/684.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Use and Analysis of Expected Similarity of Semantic Web Ontological Annotations

by

Joe Lynn Look

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computer Science

Graduate School of Computer and Information Sciences

Nova Southeastern University

June 2008

We hereby certify that this dissertation, submitted by Joe Lynn Look, conforms to

acceptable standards and is fully adequate in scope and quality to fulfill the dissertation

requirements for the degree of Doctor of Philosophy.

___ ________________

Junping Sun, Ph.D. Date

Chairperson of Dissertation Committee

___ ________________

James Cannady, Ph.D. Date

Dissertation Committee Member

___ ________________

Michael Laszlo, Ph.D. Date

Dissertation Committee Member

Approved:

___ ________________

Edward Lieblein, Ph.D. Date

Dean

Graduate School of Computer and Information Sciences

Nova Southeastern University

2008

An Abstract of the Dissertation Submitted to Nova Southeastern University in Partial

Fulfillment of the Requirements of the Degree of Doctor of Philosophy

Use and Analysis of Expected Similarity of Semantic Web Ontological Annotations

by

Joe Lynn Look

June 2008

This dissertation studied various means of calculating similarity in the annotations of web

pages compared to the similarity of the document text. A software tool, named Semantic

Web Analysis of Similarity (SWAS), was developed and utilized to perform the analysis

of similarity in annotated documents published from the first three years of the

International Semantic Web Conference. Rules concerning the ontological concepts of

the documents were specified and these rules as well as other parameters were varied to

determine the effect on overall similarity measures. Traditional measures of similarity as

well as enhanced measures of similarity proposed for this study were evaluated. A

proposal was made concerning use of similarity measures to evaluate the consistency of

semantic annotation for documents published through a Semantic Web portal.

Acknowledgments

First and foremost, I would like to acknowledge the contribution of my committee chair,

Dr. Junping Sun as well as the other members of the committee, Drs. James Cannady and

Michael Laszlo. The knowledge gained from their courses, as well as those of other

instructors in the doctoral program, prepared me to do this research. Without the advice,

support and patience of these people, this dissertation would not have been possible.

I would also like to acknowledge the contributions of those Semantic Web researchers

who have published their research in a spirit of scholarly learning. Special thanks go to

Dr. York Sure for his suggestion of using the data from the International Semantic Web

Conference, and to Dr. Prasanna Ganesan for his advice concerning application of the

generalized cosine similarity measure.

On a personal note, I would like to acknowledge the contribution of my husband, David

Look, whose encouragement and assistance with home responsibilities made it possible

for this research to be accomplished. I would also like to thank those fellow students at

Nova Southeastern University who provided encouragement throughout the doctoral

program.

v

Table of Contents

Abstract iii

List of Tables vi

List of Figures vii

Chapters

1. Introduction 1
 Problem Statement 1

 Relevance and Significance 3

 Barriers and Issues 6

 Limitations 7

 Summary 8

2. Review of the Literature 14
 Evolution of the Semantic Web 14

 Semantic Web Projects 23

 Ontology Research for the Semantic Web 29

 Semistructured Data Models 31

 KDD Research 38

 Document Selection 45

 Similarity Analysis 46

3. Methodology 63
 Approach 63

 Data 69

 Selection Algorithm 73

 Similarity Measures 81

 Overview of SWAS 88

 Example 97

4. Results 121
 Findings 121

 Summary of Results 129

5. Conclusions, Implications, Recommendations and Summary 138

 Conclusions 138

 Implications and Recommendations 139

 Summary 143

Appendices

A. Source Code of Sample Documents 144

B. Term Document Analysis of Sample Documents 148

C. Description of Input Files 151

D. Results of Correlation Analysis 155

E. ODBC Setup 168

F. Source Code of the SWAS System 175

Reference List 339

vi

List of Tables

Tables

1. Definitions used by Liu, Ma and Yu 41

2. Simple Match terms used by Losee 47

3. Sample Data for Music Listening vs. Purchases 61

4. Online Resources for Ontologies and Annotated Documents 70

5. Definitions of Terms used for Difference Computations 77

6. Sample Data for Selection Example 80

7. Definitions of Terms used in Similarity Calculations 84

8. Document Matrix for Sample Documents with Annotations 86

9. Document Matrix Including Parent Concepts 102

10. Difference values for Document Selection 104

11. Similarity Measures for Matrix Enhanced with Inferred Data 105

12. Common Terms and Unexpected Terms in Example Documents 115

13. Example Summary of Common Terms, Measures and Correlation 116

14. Example Ranking of Common Terms, Measures and Correlation 117

15. Similarity Measure Legend 123

16. Example SWAS Output 126

17. Sample Summary Analysis 128

18. Performance of All Measures 131

19. Point Values for M6 Using Various Groupings 133

20. Rule 2 Data Aggregated for Each Measure 135

21. Rule 2 Aggregated Data Based on DocRatio Selection 136

22. Rule 2 Aggregated Data Based on ParentRatio Selection 137

vii

List of Figures

Figures

1. Envisioned Layers of the Semantic Web 17

2. Tree representation of XML and semistructured data expressions 36

3. Classification of Music CDs 52

4. Steps of the Selection Algorithm 78

5. Sample Ontology 85

6. Overview of SWAS System 90

7. Major Steps of SWAS System 96

8. Relevant Portions of Ontology as Tree Structure 109

1

Chapter 1

Introduction

Problem Statement

The Semantic Web is a redesign of the World Wide Web (WWW) based on

standards proposed by the World Wide Web Consortium (W3C). Another web

development trend is Web 2.0, which is intended to increase efforts at collaboration to

deliver services designed to take advantage of the structure of WWW. A major focus of

Web 2.0 is the development of applications that combine various types of data that are

located in different places on the Web. This combination of data from data sources is

usually known as ―mash-ups‖ (O’Reilly, 2005). Many aspects of the Semantic Web also

involve data sharing, so the two trends complement each other in many aspects, but the

Semantic Web is based on a consistent model and tools for defining and using related

data (W3C, 2008). There are many facets to the Semantic Web, but one of the key

elements is the development of Semantic Web Documents (SWDs) created according to

those standards that contain ontological annotation, which will allow machine agents to

understand more about the meaning of documents.

The annotation needed for the Semantic Web is provided by inserting markup tags

that provide an understanding of the relationships of key concepts, rather than simply the

keyword tags in common use today. This semantic markup is intentional knowledge that

the author of the Web page is explicitly providing through annotation based on a specific

2

ontology to aid in searching for and extracting information from the Web. In addition to

the annotated documents, another feature of the Semantic Web is the creation of

enhanced web services being developed to utilize those annotations.

The term ontology has many meanings in various contexts. In the introductory

section of the requirements document defining use cases and requirements for the

Semantic Web, Heflin (2003) gives the following description of ontology as it is applied

to the Semantic Web:

An ontology defines the terms used to describe and represent an area of

knowledge. Ontologies are used by people, databases, and applications that need

to share domain information. Ontologies include computer-usable definitions of

basic concepts in the domain and the relationships among them. They encode

knowledge in a domain and knowledge that spans domains. In this way, they

make that knowledge reusable.

In addition to the components necessary to build a Web that is more navigable by

machine agents, much research and development have been done in the area of tools for

the Semantic Web. The W3C has standardized the basis for the Semantic Web to be the

Resource Description Framework (RDF). This framework brings together various

applications using Extensible Markup Language (XML) for syntax and universal resource

identifiers (URIs) for naming concepts and properties. Considerable research has been

done to determine the ontological features that should be present in a Semantic Web

language. Various languages have been developed to create Semantic Web ontologies

based on that research. The Web Ontology Language (OWL) is the latest one proposed

http://www.w3.org/RDF/

3

by W3C to define ontologies and implement semantic annotation of SWDs. Currently

there are tools that help knowledge engineers build Semantic Web ontologies and tools to

help web authors use those ontologies to annotate documents. These tools do not assist in

determining if those annotations are similar to other like documents already existing in

the Semantic Web. In order to be truly valuable, semantic annotations should be

consistent as well as syntactically correct. Some of the tools to evaluate the

appropriateness of annotations included in SWDs do not currently exist. The purpose of

this dissertation is to analyze measures of similarity for semantic annotation in hopes this

research could be applied to develop tools to assist web authors in validating the

appropriateness of the annotations. Valid similarity measures could be used as a basis for

a tool that would compare new web documents to an existing set of appropriately

marked-up documents to validate the proposed annotation.

Relevance and Significance

The popularity of search engines today is a testament to the importance of finding

information on the Web. Research projects have been devoted to finding better ways to

classify information so it can be found more readily. The Automatic Classifier for

Internet Resource Discovery (ACIRD) system utilizes a semantic approach to mining

term associations (Lin, Shih, Chen, Ho, Ko, & Huang, 1998). This system was developed

by manually classifying targeted documents and using this information as training data

for the information retrieval (IR) system that was developed to automatically classify a

larger set of documents. Based on the classifications, term associations are inferred.

Haustein and Pleumann (2002) show how the semantic inferences found using this

4

system can lead to increased knowledge about Web documents. Meaningful annotations

included in SWDs will serve to classify documents just as the ACIRD system did, but

only if those documents are annotated carefully and validly. Another established fact is

that for the Semantic Web to have true usefulness there must be a sufficient base of

accessible annotated pages (Haustein & Pleumann, 2002).

Up until now, there has not been widespread use of semantic annotation in Web

documents. One reason frequently mentioned for the lack of annotation is that many Web

authors do not fully understand the knowledge management concepts that must be

applied for the annotations to be useful. Another reason is that there is currently little

direct benefit to the Web author to enhance the page semantically (Haustein & Pleumann,

2002). Unless tools are designed that will simply and accurately assist with annotation of

Web pages and allow for verification of those annotations, the Semantic Web will not

garner the widespread use needed to make it beneficial, either academically or

commercially. For Semantic annotation to become more widely used there must be some

obvious reward for Web authors who include it in their documents. Many Web authors

today go to great lengths to design Web pages that will be recognized by search engines.

Web portals designed for a targeted group of users and which contain search tools that

recognize annotated documents would serve to make other users aware of those

documents. Web portals could provide a way to not only compare the annotation of new

documents to a set of valid annotations, but also to publicize the annotated documents to

the rest of the community utilizing that portal.

Research projects have resulted in the development of many ontologies that

contributed to the current proposed designs for the Semantic Web, but only a limited

5

number of documents containing semantic markups have been published. There is an

obvious need for ontology-management tools and a number of these have been developed

and are being enhanced to keep pace with changing standards. In addition, work is being

done to produce layered approaches on the server side to simplify the problem of

semantic markups. The lack of true Semantic Web annotated pages is seen as a major

drawback for many researchers. Haustein and Pleumann (2002) comment on the severity

of this problem and point out the need for more advanced Semantic Web tools that make

annotation a simple task for those unfamiliar with the underlying artificial intelligence

(AI) concepts. Tools have been developed to verify markups according to particular

syntactic rules, but this does not address the more fundamental problem of the semantic

quality of markups designed for the Semantic Web. This dissertation was designed to

simultaneously address the following two problems: create a way for novice Semantic

Web designers to evaluate the semantic quality of the markup within a specific ontology

and at the same time outline a method to find unexpected commonalities of terminology

used within that ontology.

The Semantic Web design is intended to provide knowledge about many kinds of

Web-based resources. A few examples of resources that could be semantically enhanced

are calendars, inventory systems, multimedia documents, and repositories of ongoing

research efforts. At least six use cases have been published for OWL and the latest

variations can be found through a search of the W3C site. At the time of this writing, the

use cases are published at http://www.w3.org/TR/webont-req/ on a page entitled ―OWL

Web Ontology Language Use Cases and Requirements.‖

6

The first of these cases describes how Web portals, which are Web sites that

provide content information on a common topic, can be enhanced with ontologies

(Heflin, 2003). Examples are given for existing Web portals. This dissertation developed

a further possible enhancement of these portals, not suggested by Heflin. That

enhancement was to define an algorithm to evaluate the similarity of new document

annotation effectiveness to a set of validly annotated documents housed within the portal

designed for the benefit of those new to semantic annotation to provide a means of

semantically evaluating the validity of the document annotation.

Barriers and Issues

The principal issue considered was that the Semantic Web is a project still under

development. Further refinements to the proposed design are to be expected. The

publication of requirements for OWL is one example of this (W3C, 2003). Incorporating

the design criteria, as it became available, added to the complexity of this study.

The amount of research in the area of knowledge discovery applied to

semistructured data is continually expanding. The evolving standards for knowledge

representation, and specifically for a Semantic Web, have developed over a short time

period. The relative newness of this field has precluded in-depth analysis of the effects of

this type of data structure on knowledge discovery, as full adaptation has not yet

occurred.

At the current time, the OWL language has been adopted by the W3C as a

semantic markup language designed to enable sharing and publishing ontologies on the

Web. The OWL language, an extension of RDF, has grown from previous work. It builds

7

on RDF and the RDF Schema (RDFS) by adding more vocabulary to describe classes,

properties and relations. Utilizing both OWL and its predecessor languages, work has

begun into researching how web pages can be annotated through the use of prototype

ontologies. Due to the newness of this field, there is not currently an extensive set of

publicly accessible Web pages based on a specific annotation scheme. One set of

documents that does exist and is publicly available is those abstracts of papers presented

at the International Semantic Web Conferences. The annotated conference documents

published for the years 2002-2004 were analyzed for this study. The analysis performed

for this dissertation encompassed data from the ontology developed for that conference

annotated according to two different formats as the techniques have developed over these

three years included in this dissertation.

Limitations

Although data currently available was valid in terms of analyzing algorithms, it

was not extensive enough to allow in-depth analysis of the scalability concerns associated

with these algorithms. The lack of available data for research studies has been noted by

many authors including Anyanwu, Maduko and Sheth (2005) and Haustein and Pleumann

(2002). For this reason, some aspects of the topic of scalability are suggested as an area

for future research. Modifications to the tool developed for this analysis designed to

address increased performance are also suggested for future research.

Current Semantic Web ontologies contain very broad categories of information

that can be annotated into the document. Different authors select different focal points

based on the intent of the document being produced. For that reason, not every document

8

annotated with the same ontology may have annotations designed for the same purpose.

Criteria were incorporated into the tool developed for this study to select those

documents deemed most appropriate to the similarity analysis being undertaken, based on

the ontological similarity as correlated with the text similarity.

W3C working groups continue to refine the OWL language and develop standards

for OWL-based web services. Since much of this work is still in development, this

dissertation provided an analysis of similarity measures in existing documents, but left

development of actual tools to use the results of that research to be done as the standards

are more fully developed. Due to the changing standards, documents using both OWL-

based annotations and annotations developed prior to the OWL standards were utilized.

Summary

Information is an important commodity in today’s marketplace. There has been

research into ways to glean information from other Web sites. Liu, Ma and Yu (2001)

show a method to discover terms on remote Web sites with a profile entered by the user.

Maedche and Staab (2000) show how to use ontological information contained in

relationships between concepts to aid in the processing of text. One aim of this

dissertation was to extend the concept of the work of those and other researchers in order

to present a method for discovery of unexpected common terms based on an the concepts

contained in an ontological profile as opposed to one entered by the user. Another goal

was to evaluate the correlation between the similarity measure and the common terms in

document pairs various based on measures of similarity. This involved parsing the

9

ontology to identify relationships that apply to the specified high-level concepts of the

ontology and querying the annotated documents to find the objects of those relationships.

Analysis of the effect of unexpected knowledge was accomplished by utilizing a

comparison of similarity to all terms and to only those terms flagged as unexpected.

Document selection was done by determining those documents with the best fit to the

overall analysis. A comparison was made of various measures of document text

similarity. Through a process of successive removal of word suffixes, terms were reduced

to roots and terms containing the same root are combined for the purpose of the analysis.

A stop-list, which is a list of common non-descriptive terms, was used to also eliminate

terminology not specific to that document. From the reduced list of terms in each

document, comparisons were done to find and determine if common terms are more

likely in documents with a higher degree of ontological similarity.

Part of the research for this dissertation involved parametric studies that analyzed

a set of documents annotated for the Semantic Web. The annotations in the documents

were compared to the text of the documents. A subset of the documents was selected for

use in the final similarity analysis, which consisted of those documents having the highest

correlation of common terms to a base similarity measure. The parameters that were

varied include the choice of which of the highest-level concepts in the ontology to

consider in the similarity analysis, whether the correlation will be based on common term

or common unexpected terms, whether or not those documents having no common terms

were considered, and the criteria for selecting the best subset of the documents to use in

the similarity analysis. A parameter involving the selection criteria was the threshold

value used to determine which documents should be deselected due to the value of the

10

difference between rankings of the common terms and the similarity estimate. Original

plans had been to vary the maximum number of times any particular document may be

deselected before it was removed from consideration with this set of parameters, but

actual analysis showed that a steady-state was quickly reached, where no further

improvement was possible, so this parameter remained constant for all data considered in

the final analysis. A method to determine which documents are most appropriate for use

in similarity comparisons was proposed. Various ways to measure the similarity of the

annotations were explored. Conventional measures of similarity were considered, which

include the simple match technique and the Jacquard measure (Losee, 1998), and the

vector space or cosine measure (Liu, Ma and Yu, 2001). Also considered were enhanced

measures that utilized the hierarchical relationship of ontological terms in the Semantic

Web as proposed by Ganesan, Garcia-Molina and Widom (2003) and two measures

proposed in this dissertation that combined both traditional and hierarchical measurement

techniques. Terms in the documents were grouped according to term roots, which were

derived by elimination of common suffixes from the words., and correlations were

calculated between common terms among document pairs and the various ontological

similarity measures. This was presented as the basis for future work to develop a tool to

provide semantic validation of ontological markups.

The use of portal-based tools for the Semantic Web has been previously addressed

in the OntoEdit project (Sure, Erdman, Angele, Staab, Studer, & Wenke, 2002), by

providing a collaborative environment for researchers to advance their work, as opposed

to novices to the Semantic Web environment. The algorithm presented in this dissertation

would follow the principles of collaborative development that were found to be effective

11

by those researchers, but would differ in that the targeted users would be less experienced

in design of SWDs. Despite the variety in the types of documents that exist, many

documents on today’s Web are primarily textual and intended to be understood by a

human reading the document. One aim of the Semantic Web effort is to define a way that

all Web resources can be enhanced to enable agent-based processing. The dissertation

focused on one specific class of documents (text-based documents) that are often

produced by novice Web authors. The analysis done in this simulation was designed to

lay the groundwork for development of a tool to be used on Web portals, which would

allow novice Semantic Web designers to compare a proposed ontological markup to a set

of documents that have been selected for the validity of the ontological annotation as

compared to the text of the document. This approach is particularly well suited to a web

portal environment, since the intent of a portal is for use by those with a common

identified interest such as those annotating documents using the same ontology. In

addition to providing access to the analysis software, the portal Web site could provide a

way to access both the ontology for that set of users and the set of validated annotated

documents.

As the transformation of all businesses to e-businesses continues, there will be a

continued demand for techniques to delve deeper and find more meaning in the data

available on the Web. An organized procedure to allow Web authors to determine if the

annotation they have provided defines their Web page in a way similar to other Web

authors using this annotation could be beneficial in producing semantically annotated

documents that can be confidently employed by a community of users. A possible first

step in this process is to define methods for similarity comparison and extraction of

12

unexpected common terms and to analyze the results of utilizing those methods with

actual data from publicly accessible semantically annotated documents. This will provide

a framework for comparison that can be applied as the syntactic definition of web

ontology languages continues to evolve.

The research of literature shows the existence of many methods of similarity

computation and that these methods have been applied to Web documents. Previous

research has been done to apply clustering techniques, analysis of vector spaces,

hierarchical structures, and profiles entered by the user. In most previous work, either the

documents themselves were analyzed to determine similarity, the Web page structure was

used to determine a measure of similarity, or the metadata in the page was used. The

research in this dissertation built on and combined several of these methods. Rather than

a simple comparison of keywords, the approach here combined selected keyword

metadata that could be extracted from the ontological markup with other data that could

be inferred from the structure of the ontology. The horizontal relationships that were

implied through the structure were used to extract the original metadata and the

hierarchical arrangement of that data within the ontology was used to infer additional

information. Various similarity measures were adapted for use in this context and these

measures were compared to determine which are most effective in measuring the

similarity based on the ontological annotation.

The primary goal of this dissertation was to determine a method of calculating

valid and appropriate measures of similarity of ontological notations. This was done by

an examination of annotated documents to determine if a correlation existed between the

ontological similarity and terms contained in the document pairs. Other goals were to

13

present an overview of the ontological development for the Semantic Web project and to

demonstrate a way to apply accepted techniques for discovery of common terms to

textual data (Web pages) based on the Semantic Web annotation. With the realization that

the Semantic Web is a work in progress, this dissertation aimed to show a rational basis

and feasibility of the tasks and defer the actual development of tools to accomplish this

on a large scale for future study as the Semantic Web syntax and constraints are further

defined. A software tool developed to calculate various measures of similarity, to extract

common terms in document pair and to calculate the correlation between similarity and

common unexpected terms was provided. This tool handled selection of those documents

most appropriate for this type of analysis from a larger set of annotated documents.

14

Chapter 2

Review of the Literature

Evolution of the Semantic Web

The current Semantic Web effort evolved from previous and current work at

many institutions and in many fields. The language of the World Wide Web (WWW),

Hypertext Markup Language (HTML), is a language designed for the visual presentation

of information for humans to view. The current proposals for a Semantic Web language

are based on a layering of languages built up from HTML. Extensible Markup Language

(XML) provides syntax to encode information about that viewable data into a Web page.

It gives a way to make the data available for other tasks. XML provides a foundation on

which prototype languages for the Semantic Web have been built. Goldman (2000)

showed how the research concerning semistructured data could be applied to XML to

create query tools for Web-based data. Heflin (2001) described an XML-based

ontological markup language for Web documents. Heflin’s work showed how the

Semantic Web proposals developed beyond the elements and document type definitions

(DTDs) of XML. Prototypical Semantic Web languages are based on the theoretical

foundations of knowledge representation (KR) including semantic networks, frame

systems, descriptive logics, predicate calculus or first-order logic or F-Logic (Kifer,

Lausen, & Wu, 1995), ontologies, context logic, deductive databases and distributed

databases.

15

In addition to developing languages for the Semantic Web, there has been much

collaborative work in other areas. Academic institutions, government-sponsored

institutions, and private industry have joined in many initiatives. Two government-

sponsored agencies have been especially active in the development of a markup language

to be utilized by Web agents. In October 2002, a joint committee was created to

coordinate the work of the Information Society Technologies Program (IST) of the

European Union and the Defense Advanced Research Projects Agency (DARPA) in the

United States. As one result of this joint committee, many research projects have been

jointly developed and published by those two agencies and universities and industrial

researchers supported by those agencies.

On a very simple plane, the current work concerning adding meaning to the data

presented on the Web can be viewed as a way of organizing metadata, or data about data.

Ontologies allow inferences beyond simple keyword metadata. Much of the research

done in developing standards for metadata has been applied to the development of

ontological standards. The Dublin Core Metadata Initiative (DCMI) is an

interdisciplinary, international group founded in 1994 dedicated to promoting the

widespread adoption of interoperable metadata standards and developing specialized

metadata vocabularies for describing resources that enable more intelligent information

discovery systems. The Dublin Core Metadata Element Set provided a set of fifteen

elements that are useful in describing almost any published data. On the Web, this could

be accomplished via the HTML <meta> tag. The problem with this type of metadata is

that it is ambiguous, since the meaning of a term can vary from one Web page to another.

XML provided a means to avoid this problem by using a specific namespace. The

16

concept of namespaces was core to the development of a truly unambiguous web

language, as terms have different meanings in different contexts. In addition, the

Resource Description Framework (RDF) provided a basic structure to link concepts

together to express meaning. In October 2002, DCMI issued a recommendation that is

explained in the document "Expressing Simple Dublin Core in RDF/XML" (Beckett,

Miller, & Brickley, 2002). DMCI plans to issue a series of recommendations, beginning

with this one, to encode Dublin Core metadata in a way that conforms to other

developing Web standards (Dublin Core Metadata Initiative, 2002).

In Web terminology, a resource is an address on the web. A Uniform Resource

Locator (URL) points to a specific web page address. A universal resource identifier

(URI) is more general and points to any resource on the web. One web page that can be

retrieved by a single URL may provide multiple URIs. Tim Berners-Lee (W3C, 2003)

envisioned the new Semantic Web to be a ―Web of Trust‖, with authorities to

authenticate the resources being referenced. This is to be accomplished through a

layering of existing technologies enhanced with authentication. An adaptation of the

building blocks he had envisioned for the Semantic Web is shown in -. Many depictions

of the layers of the Semantic Web show trust as an uppermost layer, and the components

of encryption and signatures as being pervasive throughout upper layers. An example of

this depiction can be seen at:

http://www.w3.org/2004/Talks/0412-RDF-functions/slide4-2.html.

http://www.w3.org/RDF/
http://dublincore.org/documents/2002/07/31/dcmes-xml/
http://www.w3.org/2004/Talks/0412-RDF-functions/slide4-2.html

17

Figure 1: Envisioned Layers of the Semantic Web

XML HTML

XHTML RDF

RDFS

DAML OIL

OWL

 T
 R
 U
 S
 T

Legend

DAML: DARPA Agent Markup Language
DARPA: Defense Advanced Research Projects Agency
HTML: Hypertext Markup Language
OIL: Ontology Inference Layer or Ontology Interchange
Language
OWL: Web Ontology Language
RDF: Resource Description Framework
RDFS: Resource Description Framework Schema
XHTML: Extensible Hypertext Markup Language
XML: Extensible Markup Language

18

HTML was designed as a way to present data on the Web. Tags for HTML are

meant to express how the data should be visually expressed, not the meaning of the data.

XML is meant to better define the meaning of data and can limit that meaning to a

specific namespace, thus allowing the same descriptor to have different meanings in

different contexts. XML allows the user to define tags to describe the data and optionally

to define a descriptor for the tags. According to the charter for the working group tasked

with development of a Web Ontology language, HTML and XML were the foundation on

which future Web enhancements must build (W3C, 2003).

RDF is another building block in the design of an ontology language for the

Semantic Web. RDF provides one methodology to design architecture for metadata. In

RDF, each concept is expressed as triple, or a combination of three basic ideas. Each

RDF triple has a resource (or subject), property (or predicate) and object (or value). The

resource is designated by a URI. RDF provided a means to link together metadata in a

way that can be understood by machine agents. While the basic idea of an RDF triple is

simple and straightforward, it can also be limiting in the expression of data. The English

language provides adverbs to modify the predicate in a sentence, but in RDF the

modification of the predicate of a triple is more complex. For example, the simple

statement ―Bill painted the fence‖ can be broken down as subject (Bill), predicate

(painted) and object (fence). However, if the statement is enhanced with how the fence

was painted, then the problem becomes more complex. The new statement ―Bill painted

the fence with a brush‖ does not directly translate into a single triple. In order to express

the full idea, it is necessary to change the predicate (painted) to become a new object (the

painting event). This process is known as reification. RDF can be viewed as an

19

expression of directed graphs, where the subject and object are nodes connected by the

predicate, which is represented as an arc. Reification can be defined as the translation of

an arc to a node in a graph. RDF allows modifiers for the nodes (subject, object) but not

the arcs (predicate). Providing a way to fully express the meaning of data and keeping

that expression within the confines of XML adds to the complexity of RDF.

Much research done by many different people has gone into the development of

tools to create and parse RDF documents. A compilation of many of these RDF tools was

developed by Dave Beckett and available online at http://planetrdf.com/guide/. Tools,

such as Protégé (Protégé Project, 2002), have been developed provide a graphical user

interface (GUI) to assist in the building of an ontology. Libraries of existing ontologies

have been compiled. Annotation tools have been developed to assist with using

ontologies to enhance documents. Visualization tools show the relationships between

classes, as well as the graphical depiction of the RDF nodes and arcs. One visualization

tool, called OntoKick, was developed as part of the OntoEdit project (Sure et al., 2002).

Validation tools include theorem provers, programs to check for class consistency and

applications to verify syntactic correctness. Inference engines deduce relationships

between the ontological definitions and are able to handle semantic queries. Several of

the major Semantic Web projects have compiled libraries of toolsets for RDF and

languages evolved from RDF. The the World Wide Web Consortium (W3C) has set up a

repository of various semantic web tools at http://esw.w3.org/topic/SemanticWebTools.

RDF lacks any type of data typing mechanism. This can be provided through the

Resource Description Framework Schema (RDFS). The schema extends RDF allowing

attributes to further describe the resources, and allows the definition of vocabularies,

20

structures and constraints through the extension of the modeling primitives in RDF.

Semantics can be defined through relationships such as class/subclass, which are not a

part of the RDF specification. The RDF Schema gives a way to provide information

concerning the meaning of the statements in an RDF data model, but does not limit the

syntax of the RDF specification (Broekstra, Klein, Decker, Fensel, van Harmeien, &

Horrocks, 2001).

Modeling primitives in RDFS contain core classes and properties. Collections are

supported in the schema. The original core classes were resources, properties and classes

and now include literals, data types and XML literals as well. Concepts in the schema are

of the class datatype, which is specified by rdfs:Class. An RDF statement, specified by

rdf:Statement, is the statement made by an RDF triple, which consists of a subject,

predicate and object. The subject and objects are usually identified by instances of an

rdfs:Resource, while the predicate of an RDF statement is the instance of rdfs:Property.

The current specification proposal is available online and review of that document

recently concluded (Brickley & Guha, 2003).

One major project of the European-sponsored IST was known as On-To-

Knowledge. One result of this project was the development of a proposed Ontology

Inference Layer, or Ontology Interchange Language (OIL). This was the first language

based on the proposals of World Wide Web Consortium (W3C) (Welcome to

Ontoknowledge, 2002). OIL was designed to bring together several theoretical premises

into a practical framework, combining the semantics and reasoning support from

Descriptive Logics (DL), the modeling primitives from frame-based systems and the Web

standards proposed by the W3C. According to Broekstra, Klein, Decker and Fensel

21

(2001), OIL implements a well-defined first-order semantics and provides automatic

reasoning support.

A similar project was American-sponsored DARPA Agent Markup Language

(DAML), which was funded by DARPA (Fensel 2000). DAML is an XML-based

semantic language and is intended to lead to the design of ontologies that are consistent

with Web standards, are reusable and can be easily extended. The project was designed to

not only define the language, but also provide a toolset for implementation of that

language.

Though similar in intent and design, there are some differences between DAML

and OIL (Fensel 2000). DAML actually inherits many aspects from OIL. Both languages:

support hierarchies of classes and properties; allow building of classes through the use of

intersections, unions and complements; allow restrictions of domains, ranges and

cardinality; support both transitive and inverse properties; and support data types such as

integers (Fensel 2000). DAML does not provide the degree of backward compatibility

with RDFS that OIL does. OIL can state conditions for a class that are necessary,

sufficient, or both. This allows for a degree of automatic classification of classes within

OIL.

DAML+OIL was a proposed Semantic markup language for Web resources that

combined features of both language specifications. It added more modeling primitives to

the existing specifications for RDF and RDFS, and provided primitives similar to those

found in frame-based languages. DAML+OIL enhanced the DAML semantics with the

OIL inferencing capabilities (Fensel 2000).

22

A new language for producing ontologies on the Web, known as OWL, has been

proposed by the W3C. OWL is a direct successor of the DAML+OIL project of the Joint

US/EU ad hoc Agent Markup Language Committee and much of the DAML+OIL was

derived from previous work on DAML and OIL. In February 2003, a working draft of the

abstract semantics and syntax of this new language was posted. A formal definition of the

language is provided through the proposed model-theoretic semantics. OWL is an

extension of the RDF model (W3C, 2003).

Three versions of the language are described. OWL FULL contains all OWL

language constructs and allows full use of RDF along with OWL. Two sublanguages are

proposed, OWL Descriptive Logic (OWL DL) and OWL Lite. OWL DL imposes

constraints on some of the language constructs. Classes, datatypes, data and object

properties are required to be distinct. Object properties are distinct from datatype

properties. This means that the same entity cannot be a class and an individual in OWL

DL. OWL DL requires that all classes and properties be explicitly defined in the same

OWL ontology. OWL Lite builds on the restrictions of OWL DL, adds further

restrictions to the syntax and attempts to provide a minimum set of useful language

features (W3C, 2003).

In addition to the working draft for OWL abstract syntax, a document outlining

the requirements and a set of use cases was also posted. The primary goals of OWL

include interoperability, detection of inconsistencies, standards compatibility,

internationalization, scalability and ease of use. Use cases depict how web portals,

multimedia collections, corporate web site management, design documentation, agents,

services, and ubiquitous computing can be improved through Web ontologies using

http://www.daml.org/committee/
http://www.daml.org/committee/
http://www.daml.org/committee/

23

OWL. Requirements for OWL include that the language should incorporate the

customized tagging scheme of XML and utilize the flexible approach of data

representation provided through RDF (Heflin, 2003).

As the languages of the Semantic Web continue to become more refined, there is

a need to insure that the languages can be understood in a consistent and logical way. The

RDF working group of the W3C has proposed that semantics be defined to create a ―base

language‖ of the languages developed for the Semantic Web. This language, tentatively

named Lbase, would provide a way to map from one language to another. In January

2003, the working notes for the group developing this language were posted online by

Guha and Hayes at http://www.w3.org/TR/lbase (W3C, 2003). At the time of this

writing, the 2003 document is the latest one concerning Lbase on the W3C site. This

document does mention limitations of Lbase, some of which are addressed in the OWL

language and was adopted after the Lbase posting. Research has continued into ways to

map ontologies together that were developed according to various standards.

Semantic Web Projects

An excellent explanation of the basic principles of ontological expression can be

found in the dissertation by Jeffrey Heflin (2001) while working on the Simple Hypertext

Ontology Extensions (SHOE). This document explained the dual development of web

ontologies from both the standpoint of first order logic and from frames. In addition, he

described the SHOE projects and the contributions the work documented by his

dissertation made to that project. Although the SHOE extensions do not conform to the

current RDF-standards, SHOE served as a prototype language for an ontological markup

24

language for the Web. This project, centered at the University of Maryland, has now

evolved into other research at that same university (Heflin, 2001). The new project is now

known as the Semantic Web Agents Project (SWAP), and is a part of the MindSwap

initiative at the University of Maryland. (http://www.mindswap.org, 2003).

Another series of projects that have had significant impact on the Semantic Web

effort have been centered at Stanford University. The Lightweight Object Repository

(LORE) project, which was completed in 2000, provided a foundation for semistructured

database management systems. This system was tailored for XML and led to the

development of query and search tools for XML databases. In his dissertation, Goldman

(2000) describes algorithms used in that system for effective searching of XML data and

combined querying of traditional and Web-based data.

Protégé is a tool developed at Stanford that allows users to construct and maintain

domain ontologies. The system provides a platform to allow access to other knowledge-

based systems. A recent addition to the Protégé project is a version that has a back-end

for DAML+OIL support (Protégé Project, 2002).

Another tool developed at Stanford is Chimaera (McGuinness, Fikes, Rice, &

Wilder, 2000). This is a software system designed to allow users to build and update

large ontologies in a distributed environment through the Web. This was a follow-on

project to Ontolingua (McGuinness, Fikes, Rice, & Wilder, 2000), which provided a

Web-based server for collaborative, distributive development of ontologies, authoring

tools and a library of reusable ontologies. Chimaera was designed as part of DARPA’s

High Performance Knowledge Base (HPKB) program to provide tools to support

merging of ontologies from various sources, evaluation of the correctness of ontologies

http://www.mindswap.org/

25

and the issues that arise from ontology maintenance. The project addressed constraint

violations that occurred when ontologies were merged, design of tools to maintain the

completeness of taxonomies from the merged ontologies and changes necessary to insure

ontologies are reusable. This project differed from some other ontology development

efforts in that the focus was on maintaining consistency rather than extending reasoning

capabilities (McGuinness, Fikes, Rice, & Wilder, 2000).

Members of the Stanford University Database Group, along with personnel from

the Framework for Distributed Organizational Memories (FRODO) project supported by

the German Ministry for Education and Research, were instrumental in the development

of Triple. This is an RDF query, inference and transformation language designed for the

Semantic Web. This language, based on Horn logic, contains Frame Logic, also known as

F-Logic (Kifer, Lausen, & Wu, 1995), which provides a logical framework for object-

orientated languages integration with databases and knowledge representation. The

FRODO language is designed for querying and transforming RDF models. The language

employs a layered approach feature definition for specific data models. One kind of layer

that is supported allows basic RDF constructs such as resources and statements to be

included. Another type of layer directly supports existing modules for semantic

expression, such as DAML+OIL (Sintek & Decker, 2002).

WWW was initially a creation of Tim Berners-Lee and was developed at the

European Council for Nuclear Research, which is the English translation of the French

name Conseil Européen pour la Recherche Nucléaire (CERN) in Switzerland. It has

continued to be a major focus of research at several European institutions. The IST-

sponsored On-To-Knowledge project was designed to make knowledge management

26

easier for those non-IT specialists working in the knowledge management field. The

focus was to develop processes and software applications that would assist those workers

in utilizing an ontological approach to manage the Web-based information that was their

responsibility. OIL was one of the early products of this project. Six companies based in

the Netherlands, Switzerland and Germany teamed with the University of Karlsruhe in

Germany and Free University in Amsterdam. Knowledge management techniques were

the focus of the research at the German university, while ontology based modeling was

the focus at Free University.

Strong links from previous collaborations already existed between these academic

and commercial partners. During the time the project was active, from 1999 until 2002,

over forty deliverable products were produced. These included the OIL language itself,

various ontology tools including those for interoperability and scalability and tools for

collaboration. This project led to a number of continuing follow-on endeavors sponsored

by IST that include Onto-Web, SWAD-Europe, WonderWeb and many others (Welcome

to Ontoknowledge, 2002).

OntoEdit, a part of the On-To-Knowledge project, was developed as an ontology

editor that brought together many different ontology engineering methods. OntoEdit was

one of the tools used in the collaborative development of an ontology to support

distributed research via a Web portal. Maedche (2002) described OntoEdit as an ontology

engineering workbench, providing an import wrapper, importer, merge tool, ontology

crawler, natural language processing system, document wrapper and transformation

module. Algorithms for ontology extraction and maintenance were stored in the library of

this project.

27

The SEmantic portAL (SEAL) project (Sure et al., 2002) provided a conceptual

framework for the portal development to support Semantic Web research at the

University of Karlsruhe. This project aimed at taking advantage of semantic structures to

present information to human and software agents. A knowledge warehouse and an

inferencing mechanism formed the backbone of the system. Within the knowledge

warehouse were the ontology, or general logical theory and the knowledge base that

described specific circumstances. The inferencing mechanism for SEAL was Ontobroker,

which functioned like a middleware run-time system. Software agents, community users

and general users made up the front end of the system and they interacted, via the web

server, with various applications such as the RDF generator, query module and

input/output applications that collected and dispersed data via forms and templates. One

component of this project was that of semantic ranking. In this project, similarity of two

knowledge bases was reduced to the similarity of concept pairs, based on F-Logic

(Maedche, Staab, Studer, Sure, & Volz, 2002).

Using SEAL, a collaborative ontology development project was undertaken at the

University of Karlsruhe via a Web portal to describe the institute doing this research.

During the requirements phase, the requirements specification for the ontology was set up

by the ontology engineers. Collaboration extended to other related research groups and

domain experts. Two tools were used in this phase. OntoKick (Sure et al., 2002) was used

to assist in the creation of the requirements specification document and to pull out the

structures needed to describe the ontology. OntoKick allowed interaction between the

team members when determining goals, guidelines, targeted users, use cases and other

top-level criteria. OntoKick provided a format for competency questions that defined

28

queries the ontology should be able to answer. The second tool, Mind2Onto (Sure et al.,

2002), supported brainstorming by creating mind maps of the discussion information. In

the refinement phase, a transaction management protocol was used to enforce locks

needed when multiple designers are working on the same database. In the evaluation

phase, OntoEdit (Sure et al, 2002) provided tools to edit instances and axioms to create

query test sets, graphical editors to assist with error location and avoidance and use

competency questions for evaluation.

Semantic Web Advanced Development in Europe (SWAD-Europe) was designed

to provide Semantic Web research, show ways that the Semantic Web could be used and

reach out to the larger community. The project is designed to assist those in the field of

networked computing to fully incorporate Semantic Web technologies. Brickley,

Buswell, Matthews, Miller, Reynolds and Wilson (2002) explained the aims of this

project, which grew from the On-To-Knowledge project. The project, which began in

May 2002 and was funded through 2004, had five major goals. Included in those goals

was implementation of example scenarios that demonstrate the integration of multiple

Semantic Web technologies as well as development of a technology integration strategy.

Also included among the goals was to ensure the European community was kept aware of

accountability, device independence and internationalization that the Semantic Web

could provide. Another goal was maintaining awareness of international best practices

and ensuring international awareness of European best practices. The undertaking of

research and development designed to support these objectives was the final goal. The

project concentrated on addressing the need for convergence of services for the Semantic

Web and integration of RDF and Web ontology languages with XML specifications.

29

Other areas addressed by the project were coordinating query language advances and

application program interfaces (APIs) to support them, researching the management of

trust and authentication issues, identification of commonalities and best features of

annotation tools, scalability and management of thesaurus systems. The five partners

were the W3C, the research team at the University of Bristol and three industry partners.

Ontology Research for the Semantic Web

Much work in recent years has been focused on the development of ontologies for

many areas of study that conform to the overall Semantic Web design. Most of these

ontologies, based on the RDFS standards, include some type of inferencing capability. In

most cases, the inference engine is provided using tools or languages employing DAML

+ OIL or subsequent languages.

One area where there have been several efforts to create a usable ontology is the

area of academic research. There are specific requirements in most peer-reviewed

publications and these requirements can be used to form a set of knowledge that can be

encoded into documents to facilitate information retrieval. Although this is an area of

current development, there are some examples of repositories of Web pages created with

a specific ontology. Lopatenko (2001) presents a comparison of several efforts at creating

research ontologies, as well as the specifics for the Current Research Information System

(CRIS). The International Semantic Web Conference (ISWC) 2002 (International

Semantic Web Conference 2002 Web Page, 2002) required all submitted papers to have

an abstract with annotations utilizing the iswc.daml ontology. Papers were also submitted

30

to the organization’s next two annual conferences with annotations from that ontology

and the subsequent one based on the OWL standards.

Semantic Web tools depend on the development of some type of standardized

classification scheme. Various working groups in the W3C have developed ontological

structures that can be used to annotate documents in a format consistent with the latest

proposals for the Semantic Web. One such group has developed ontology to be used with

research about the Semantic Web. This effort has become known as the ―Semantic Web

Research Community Ontology‖ (SWRC Ontology). It provides a way to encode

semantic information about researchers, sponsoring organizations and other bibliographic

metadata (Sure, 2001). The original Semantic Web working group has evolved into the

OntoWare Group, which provides project support and software products at no cost to

interested Semantic Web researchers. The Semantic Web working group has examples of

Web pages annotated with this ontology available on the OntoWare web site at

http://ontoware.org/projects/swrc/.

Another ontology was developed for academic research as part of the Scholarly

Ontologies (ScholOnto) project. This project augments Web documents with the readers’

assessments of the claims in the document. A claims server system, named ClaiMaker

(Li, Uren, Motta, Shum, & Domingue, 2002), is used to track the information. Query

tools allow interpretations across more than one document. This project provided another

example of another Web-based tool aimed directly as a specific community of Semantic

Web users.

31

Semistructured Data Models

It is important that the developing ontologies be able to incorporate previous work

in the fields of data modeling and knowledge discovery. The current work in the

Semantic Web can trace its roots in a number of directions. XML, one of the building

blocks of Semantic Web languages, can be seen as a language to enforce a semistructured

data model on the web. A brief explanation of semistructured data models is included

here to aid in understanding how some ontological development has come from this area.

Most database research in the last few decades has centered on relational database

management systems. These systems assume the data will conform to a rigid schema, but

this is not true for all sets of data. While some data is truly unstructured, a large class of

data can be fit into the category of semistructured data. Various authors define this term

differently. In their article, ―Discovering structural association of semistructured data‖

(2000), Wang and Liu give the following explanation:

Semistructured data arises when the source does not impose a rigid structure (such

as the Web) and when data is combined from several heterogeneous sources (such

as data warehousing). Unlike unstructured raw data (such as image and sound),

semistructured data does have some structure.

Peter Buneman, in his 1997 article ―Semistructured data‖, commented that

semistructured data is often described as being ―self-describing‖. He went on to say that

the data might be of a form that cannot be described by a schema, or it may conform to a

schema that only places loose constraints on the data. Since Web-based data fits in the

broader category of semistructured data, research on semistructured data has been useful

in developing algorithms for the Semantic Web.

32

The interest in semistructured data has risen dramatically in the last few years, as

XML has become a standard way to store semistructured data in Web documents. The

rise in data warehousing applications also created an interest in developing techniques to

organize data from various disparate schemas. There is current research into the

theoretical basis for processing of semistructured data, as well as developing working

systems to manage this type of data.

Various algorithms have been developed to assist with the management of

semistructured data. In addition, some database management engines have been written

expressly to deal with semistructured data. In order to understand the current

methodologies for processing semistructured data, it is necessary to understand how this

data is usually represented.

A structured database with null values replacing those not present in a specific

data item may be used to represent semistructured data, but other approaches have also

been suggested. Structured data can be represented in a two-dimensional table, but it can

also be represented as a tree, with each row of the table shown as one leaf from the root.

In the case of object-oriented data, the tree-model is not sufficient, as objects can point to

each other (Abiteboul, Buneman, & Suciu, 2000).

Much of the research in the field of semistructured data has utilized the Object

Exchange Model (OEM) as a way of representing the data description (Papakonstantinou,

Garcia-Molina & Widom, 1995). Another standard representation of data has been the

object-oriented data model specified by the Object Data Management Group (ODMG).

The outline of a structure that may be present in XML documents has also been important

to understand in this research field. In their book, Data on the Web: From Relations to

33

Semistructured Data and XML (2000), Abiteboul, Buneman and Suciu presented a

grammar for semistructured data and demonstrated how it compared to the XML

standard. A brief overview of these topics is a necessary preface to in-depth discussion of

current research.

OEM was originally designed to exchange data between heterogeneous sources in

the Stanford-IBM Manager of Multiple Information Sources (TSIMMIS) system

developed at Stanford University (Garcia-Molina et al., 1997). Another related project at

Stanford, the LORE system (Goldman, 2000), expanded this model to include edge-

labeled graphs. This version has become the standard for modeling semistructured data.

An OEM object contains a label, object id (oid), type and value. If the type is complex

rather than atomic, the value is a set or list of oids. If the value is not complex, then the

value is represented by an atomic value such as a numeric value or a string. The original

OEM model was a graph where the labels were attached to the nodes of the graph. A

variant of that model which has been widely used attaches the label to edges of the graph

rather than nodes (Abiteboul et al., 2000).

The ODMG specification formed the standard of object databases (Abiteboul et

al., 2000). An Object Definition Language (ODL) was used to express the schema.

Constructs common to most object database management systems, which are supported

by the ODMG model, include:

 Built-in tuple and collection types including set, list, multiset and array

types were supported.

 Persistent roots (or handles) to the objects in the database were provided.

34

 Language bindings determined the style of destruction of objects, either

explicit or through garbage collection techniques.

The standards provided adequate flexibility to allow description of both structured

and semistructured data. The standards included an informal specification for an Object

Interchange Format (OIF), which allowed a way to textually format the data (Abiteboul et

al., 2000).

In the dissertation A Semantic Paradigm for Intelligent Data Access, Vaschillo

(2000) discussed the use of the Open DataBase Connectivity (ODBC) Standard as a data

model to provide an interface to the WWW. In this model, Web documents were viewed

as semantic objects. Using this model, the author presented a semantic database

management system that could be used to process queries across the Web.

The W3C has adopted XML as a standard to complement HTML for data

exchange on the Web. While HMTL tags are designed to specify the presentation format

of a web page, XML is meant to describe the content. It differs from HTML in that new

tags may be defined at will, structures can be nested to any depth and the document can

contain a document type definition (DTD). Since the DTD is not required for XML

documents, it cannot be relied on exclusively as a schema-definition tool, but can be

exploited in documents where it is present. Each element in an XML document is

bounded by matching tags, which can surround raw text, other elements, or a

combination of the two. XML allows attributes (or properties) to be associated with

elements. Attributes are defined with name, value pairs. The same information could

usually be displayed as nested XML tags. Abiteboul, Buneman and Suciu (2000) give the

35

following example. Information about a person named Alan could be stored as nested

elements.

<person> <name> Alan </name>

 <age> 42 </age>

</person>

This same information could be conveyed as an attribute of the person.

 <person name = ―Alan‖ age= 42 />

This attribute form could easily be rewritten in a more common way to

specifically denote semistructured data expressions (ssd-expressions) as

 {person : {name: ―Alan‖, age: 42}}

Figure 2(a) shows the tree-representation of the expression for standard XML and

Figure 2(b) demonstrates the tree as a semistructured data expression.

36

 person person

 name age

name age

Alan 42 Alan 42

 (a) (b)

Figure 2: Tree representations XML and semistructured data expressions

37

There are currently at least two application programming interfaces (APIs) for

XML documents. The Simple API for XML (SAX) is a standard for parsing XML data. It

is syntax-driven. The interface reads the flow of the XML data, parses it and detects

events when interpreting the tags. The events are sent back to the application (Abiteboul

et al., 2000).

An alternative API is the Document Object Model (DOM). It provides an object-

oriented view of the XML data. DOM defines a Node interface, as well as Element,

Attribute and Character-Data subclasses. The DOM API has been adopted by the W3C as

the standard for XML data extraction (Abiteboul et al., 2000).

The Simple Object Access Protocol (SOAP) is a standard way to send information

in a decentralized distributed environment. The W3C has published a technical report

with a working draft of the protocol at http://www.w3.org/TR/soap12-part1/. SOAP is

designed to be platform-neutral. It is not dependent on products of any specific vendor.

The implementation is in XML and HyperText Transfer Protocol (HTTP). It is easy to

implement and messages can be passed across firewalls if the network protocol used is

HTTP (W3C, 2003).

Models for semistructured data have been used as a foundation to create metadata.

Ontologies, in turn, are based on metadata. Ontologies go far beyond simple metadata by

providing relationships and rules to incorporate a way to impart knowledge about the

metadata to users. These users could include both humans and machine agents.

Ontologies, particularly those that provide for constraints and inferencing, go far beyond

standard semistructured models. Ontologies allow rules to be built into systems and

provide a means for validation of those rules.

38

KDD Research

The field of knowledge discovery has become very broad. The design of the

Semantic Web is intended to make knowledge about Web resources more usable to

agents processing that data. There have been some recent projects aimed at discovering

knowledge in Web-based data.

It is important to build on the concepts of previous work. One example of this is

shown by Benetti, Beneventano, Bergamaschi, Guerra and Vincini (2002). These

researchers addressed the problem of creating a unified view of data from various sources

in the design of the Momis Project. Momis stands for Mediator envirOnment for Multiple

Information Sources. Momis is a mediator-based system for information extraction and

integration that works with both structured and semistructured data. It relies on the

metadata of the information sources. The data model used is based on the ODMG

specification. Communication is based on the Common Object Request Broker

Architecture (CORBA) standard (Object Management Group, 2005) including a common

data model, data wrappers and a mediator. Momis used a variation of the ODL language,

along with the object query language (OQL). This variation of ODL language could be

used to describe heterogeneous schemas of the data sources. Relationships expressing

knowledge within and between the schemas can be employed. Synonyms, broader terms

and related terms can be specified in this language. The developers of Momis saw this as

an answer to the problem faced by e-commerce companies of not having a common

ontological description to form the infrastructure that can overcome naming and

structural incompatibilities. In addition, the work of these authors provided an

39

understanding of the underlying structured and semistructured data models and languages

on which much of the Semantic Web is based (Benetti et al., 2002).

Lin and Pantel (2001) presented an algorithm for classification of text into

semantic classes, or concepts. The authors presented a system, which they call

Unsupervised Induction of Concepts (UNICON) that contained an algorithm that differs

from similarity matrices used in much previous work. Typically, similarity matrix-based

algorithms require the user to set a threshold value, focus on concepts rather than words

and do not depend on the similarity of words to determine features. The authors’

algorithm was based on previous work in automatic thesaurus construction. Words were

viewed in their context. The authors utilized a collocation database and a similarity

matrix that are available on the Internet at http://www.cs.ualberta.ca/~lindek/demos.htm.

These tools produced a binary relationship between words and their modifiers.

Collocation was defined by the authors to mean a dependency relationship between two

words that occurred more frequently than by assuming the two words were independent.

Words entered into the collocation database were viewed as feature vectors. The more

features shared by a word, the more likely that the words were similar. After the

collocation matrix had been created, the authors’ semantic class induction algorithm was

used. A clustering algorithm was used to determine groups of words that are most similar.

When a word was put in a particular cluster, it was removed from any others. The

algorithm computed the centroid of each cluster and merged clusters whose centroids are

very similar. The output was a list of clusters. Advantages of this algorithm were that the

output was a set of concepts, it could handle a large number of elements, classification

could be done on words with few features and previously unknown words could be

40

classified into previous clusters. The algorithm did not perform perfectly and was highly

dependent on having a very large set of data to work with.

As mentioned previously, research performed by Liu, Ma and Yu (2001) sought

to glean unexpected information from Web pages of competitors. This was done through

a comparison to other pages on the Web based on a user-defined profile. This process had

as one objective to find unexpected concepts on competitor sites with respect to the user’s

page. A word analysis was used, with words appearing in the same sentence defined to be

concepts. The authors defined a weighting scheme based on the vectors computed from a

specific collection of documents, utilizing the index terms or keyword list. Table 1 lists

the definitions provided by those authors that are key to understanding the weighting

algorithm.

41

Symbol Definition

P number of index terms in the collection of documents

ki ith index term

jd keyword vector representing document j

wi,j
weight of term associated with each term of ki of document dj, with 0 value

indicating term of ki that does not appear in document dj

q query vector

Sim (dj,q) similarity of q and
jd

fij frequency of term ki in document dj

tfij normalized term frequency of term ki in document dj

Table 1: Definitions used by Liu, Ma and Yu

42

The following equations were used by these authors. Equation 2.1 is a

representation of the similarity between the query vector and a specific document, as

calculated by the cosine measure. Equation 2.2 describes the weighting scheme used by

the authors, which is based on term frequency and inverse document frequency. This

equation comes from the work of Salton and Buckley (1988).

Equation 2.1: sim (dj,q) =

|||| qd

qd

j

j

p

i qi

p

i ji

p

i qjji

ww

ww

1

2

,1

2

,

1 ,,

Equation 2.2: tfij =
ji

ji

f

f

,

,

max
, where the value is 0 if the term does not appear in that

document

Each document was represented by a vector of keyword terms and their associated

weights. For each keyword in the document set, the vector contains has a positive value if

the keyword is present in that particular document and a zero value otherwise. The

authors utilized a weighting scheme proposed by Salton and Buckley (1988) based on the

normalized frequency of the terms in each document being compared. Any term that did

not appear in the document was assigned a weight of zero. The authors specified five

methods of comparing two web sites. Depending on which method was being

investigated, the query vector might be comprised of the index terms from the users’ web

site or from one of the competitor sites. Association rule mining was utilized to find

unexpected concepts in the two pages being compared. The Apriori algorithm (Agrawal

& Srikant, 1994) was used to discover the concepts in each page, based on the keywords

in each sentence. This was done through association miner software that is part of the

SMART (System for the Manipulation and Retrieval of Text) system (Salton & McGill,

1983). Keywords were mined from the user page and the competitor pages separately to

43

allow mining to focus on the specific topic of each page. In this analysis, the competitor

page is a Web page identified by the user as a page not developed by the user’s

organization, but containing relevant information. Often, these pages are part of

commercial sites engaging in business similar to that of the user. Examples of unexpected

information that might be found from competitor pages could be specific products and

services that others in the industry are offering. When considering the case of finding

unexpected terms in a competitor page ci with respect to a user page uj, the unexpected

value of each term k was calculated by comparing the normalized term frequencies where

unexpec Tr,i,j was unexpectedness value for term k. The subscripts r, j refer to the rth term

in the user’s page uj, and r, i refer to the rth term in the competitor’s page ci. The

unexpectedness was calculated as

Equation 2.3: unexp Tr,i,j =

otherwise

tf

tf

ir

jr

 0

1
,

,

where tfr,j / tfr,i 1

The unexpectedness values were computed and ranked according to these values

for each competitor page, enabling the analyst to determine a list of unexpected terms.

Those terms not in the user page had a value of 1 and terms not appearing in the

competitor page had a value of 0 for that page.

A dissertation written by Pluempitiwiriyawej (2001) suggested a slightly different

model than the vector space representation. A multi-dimensioned metric space containing

a tree-based heuristic algorithm was used to implement the data clustering. A data merge

engine, using a hierarchical clustering model, allowed combining similar and overlapping

data items from multiple information sources. XML was used as the data model to

represent heterogeneous data. Clustering trees were built containing objects that were

44

related. The relationship is determined by an automatic examination of the characteristics

of the data, the tree and the domain space.

The primary focus of the research done by Pluempitiwiriyawej (2001) was the

development of a data merge engine to be used in a system capable of integrating

semistructured data in an XML format from various sources. One aspect of that project

was to determine the degree of dissimilarity of two objects. Pluempitiwiriyawej discussed

various measures of similarity that can be applied to semistructured data, including

Euclidean distance functions and metric space distance functions. Metric-trees,

multivantage point trees (MVP-trees) and metric tree indexes (M-trees) were discussed as

appropriate structures for evaluation of objects in metric-space. These structures allow for

clustering of objects based on the degree of similarity. The trees were built based on a

similarity measure of the distance between two documents represented as vectors in n-

dimensional space.

This dissertation differed in several significant ways from that of published by

Pluempitiwiriyawej in 2001. The data examined by Pluempitiwiriyawej was from non-

heterogeneous sources necessitating the data clustering techniques to perform data

classification. The ontological structure of the Semantic Web provides a means to

accomplish that step, eliminating the need for the tree-based heuristics to cluster the data.

Pluempitiwiriyawej focused on the similarity of the data in the documents, while this

dissertation was focused on the similarity of the annotations of the document. Since there

is a binary evaluation of the annotation of each possible concept, the weighting for

frequency of terms in the document vector employed by Pluempitiwiriyawej was not

needed in this work.

45

Document Selection

In any set of data, it is important to filter the data to select those values that are

most relevant to the problem being considered. Irrelevant or outlier data is often excluded

from further analysis. In the field of information retrieval, documents to be retrieved are

often ranked according to their relevance to a specific query. Losee (1998) cited many

research studies that indicate the relevance judgments are one of the weakest aspects of

the development process. Chen and Karger (2006) pointed out that document relevance is

dependent on the needs of the user and that most traditional relevance models try to

maximize the number of relevant documents. Bot and Wu (2004) presented a method that

utilized a support measure to incrementally build a data set. The method these authors

suggested, known as the relevance feedback algorithm (RFA), was based on the

assumption that every document could best be characterized by a set of concept terms.

The authors defined a document concept as one that has reasonable support among all

queries from all relevance assessments of the document. The RFA algorithm began by

indexing documents according to a term frequency matrix, after applying stop lists and

stemming techniques to eliminate non-descriptive terms and cluster terms from similar

roots. The next step collected relevance feedback based on a search query, utilizing a

term-document matrix. In the third step, a weighted learning function was used to

calculate support values, as new documents were included. Terms were then reclassified

based on support values. The last three steps were repeated iteratively at preprogrammed

intervals. According to the research done by these authors, the incremental algorithm

improved retrieval effectiveness, as measured by standard measures such as precision,

recall and others.

46

Similarity Analysis

There are many ways to evaluate if two documents are similar to each other. The

measurement of document similarity has been an area of interest since the earliest

document retrieval systems. These may be simple statistical measures, complex

calculations based on solving multidimensional systems of equations, or estimates from

artificial intelligence tools. There is no one best measure of similarity. Zobel and Moffat

(1998) found in their investigation of various similarity metrics for six different

applications that the performance of best metric in one instance is worse than the other

metrics in another application. This was reiterated by the work of Ganesan, Garcia-

Molina and Widom (2003), who pointed out that various measures are more appropriate

depending on the situation where they will be used.

Losee (1998) explained a number of factors that must be taken into consideration

when evaluating a method of similarity calculation. One commonly used measure of

similarity is the Euclidean distance, which can be computed over many spaces or planes.

When comparing two documents, a simple match gives a measure of the Euclidean

distance between the documents. ―Characteristics‖ are determined for each of the

documents. A list of terms that are either present or not present in the document is the

usual means to determine characteristics. The simple match gives the ratio of those

characteristics present in both documents plus those absent in both documents to the total

number of characteristics. Table 2 lists the terms Losee (1998) used in describing the

simple match, computed as shown by Equation 2.4.

47

Term Description

a number of characteristics present in both vectors compared

b number of characteristics present in only first vector compared

c number of characteristics present in only second vector compared

d number of characteristics present in neither vector compared

T sum of a + b + c + d

Table 2: Simple Match Terms used by Losee

48

Equation 2.4 Simple Match =
2

))(()()(

T

cdbdcaba

A variation on that method that has been shown to be useful is the Jacquard

coefficient. Jacquard’s similarity measure eliminated terms that appear in neither

document from the overall calculation. In very simple terms, Jacquard’s measure can be

expressed as the intersection of the sets of characteristics divided by their union. Another

frequently used similarity measure is Dice’s coefficient, but it has been shown to yield

the same ranking as Jacquard’s coefficient (Losee, 1998). Jacquard’s coefficient can be

expressed as:

Equation 2.5 Jacquard measure of similarity =
cba

a

Another widely used measure of similarity is the vector space or cosine measure.

Losee (1998) described the measure that was first proposed by Bhattacharyya in 1946.

This approach looked at the characteristics of a document as a vector. The similarity

between two documents can be measured as the cosine of the angle between the vectors.

Computationally, this is a ratio of the inner product of the two vectors to a normalization

factor of the lengths of the vectors (Losee, 1998, Salton & McGill, 1983). If X

represents vector X with elements x1, x2, ..., xn and |X| is the length of X

 and Y

represents vector Y with elements y1, y2, ..., yn and |Y| is the length of Y

, and represents

the angle between the two vectors, the cosine of that angle can be computed as:

Equation 2.6 Cosine =
||||

1

YX

yx
n

i

ii

One of the early automatic document processing systems was the SMART

(System for the Manipulation and Retrieval of Text) retrieval system designed at Harvard

49

University in the 1960’s. Many retrieval and similarity algorithms were developed for the

SMART system as it evolved. One of these was the vector space analysis approach. In

this approach, each document is viewed as an n-dimensional vector with each unique

word in the document being a dimension. The magnitude in each dimension is the value

of the frequency of that term in the document. Two distinct measures can be used to

determine similarity in the vector space model. One approach uses the magnitude of the

difference of the normalized vectors, but this will result in short similarity queries being

shown at a long distance from long documents. Another more widely accepted approach

is to measure the similarity as the cosine of the angle of the vectors representing the

document and a query or another document. This could result in the opposite bias, with

short documents shown with lower similarity scores (Chakrabarti, 2003).

Latent semantic indexing was an enhancement to the vector space model, which

was also applied to the SMART system. Matrix transformations were used to project each

document into r-dimensional space, where r is the rank of the matrix. A system of

equations could be formed and the Eigenvectors that form the solution set of those

equations could be used to estimate the similarity of the documents. The problem with

this approach was that systems of equations that large require immense computational

resources to reach solution within an acceptable tolerance. Often, to reduce the number of

dimensions, key terms were selected rather than every term in the document. In other

words, a subset of the original ranking values was usually used to approximate the

original vector space. Latent semantic indexing is advantageous in that it provides a way

to incorporate semantics by grouping together vectors with similar terms, but there are

also drawbacks. The number of dimensions chosen can have a dramatic effect on the

50

result of this measure with this method (Salton & McGill, 1983). In addition, the

computational expense is currently prohibitive for large documents sets such as the

World Wide Web (Chakrabarti, 2003).

Haveliwala, Gionis, Klein and Indyk (2002) presented an overview of ways to

evaluate the similarity in Web-based documents. These authors showed the theoretical

derivation of their algorithm to determine how well a specific search strategy works

based on Web hierarchies rather than user-feedback. This was applied to content-based

approaches utilizing specific words, link-based approaches that used document identifiers

and anchor-based approaches that made use of words in or near a specific link to another

document. Distance functions were defined according to the distance between classes in a

specific hierarchy and an ordering within a family of documents was calculated based on

the compatibility of document pairs. The authors’ research indicated a Jacquard

coefficient was an adequate measure of document similarity for this evaluation.

A study by Ganesan, Garcia-Molina and Widom (2003) pointed out three ways of

looking at the similarity of data objects. If all terms in a document are considered a bag,

the intersection of the elements in the bag can provide one measure. This is the approach

used in simple match, Jacquard and Dice similarity measures. Another way to evaluate

similarity is by treating each object as a vector in n-dimensional space and calculating the

cosine of the vectors representing the objects. These authors propose enhancing those

models with the knowledge contained in a hierarchy describing the data. The approaches

suggested by these authors are analyzed to determine if variations of this approach are

useful in the specific case of calculating similarity of ontological annotations. These

51

authors suggest different possible measures for similarity of data when organized in a

hierarchical manner.

Ganesan, Garcia-Molina and Widom (2003) described their approach as being

intuitive and demonstrated it through a specific example. This approach required that the

data be organized into a hierarchical tree. No constraints were placed on the shape of the

tree, other than the fact that it fan out from a single root node. The actual data items

formed the leaves of the tree, while the interior nodes described the classification of those

items. The authors presented a simple example and defined two measures of similarity

based on those examples. An abbreviated form of those examples is given here and the

use of this methodology was demonstrated with semantically annotated documents in this

dissertation.

Ganesan, Garcia-Molina and Widom (2003) presented an example depicting

music CDs. From the root node, the music was classified as either rock or classical. At

the next level, the rock music was classified as Beatles or Stones, while the classical

music was classified as Mozart or Chopin. The leaf nodes were albums of that type music

by one of those musicians. This is depicted in Figure 3.

52

 root

 rock classical

Beatles Stones Mozart Chopin

 b1 b2 b3 b4 s1 s2 s3 s4 m1 m2 m3 m4 c1 c2 c3 c4

Figure 3: Classification of Music CDs

53

If the first customer purchased the first two Beatles’ albums and the second

customer purchased the second two Beatles’ albums, traditional similarity measures

would not show these two purchases as being similar, since there were no common

elements. Ganesan, Garcia-Molina and Widom (2003) proposed two measures that show

the similarity of these items. In the first measure, known as the Generalized Cosine-

Similarity Measure (GCSM), the similarity of these two purchases would be calculated at

0.8, rather than the zero that would be the result of the intersection-based calculations or

the vector-space calculation. The result is arrived at through the following computations.

The dot product of any two leaf nodes was defined as twice the depth of the

lowest common ancestor (LCA) divided by the product of depth of the two leaf nodes.

The dot product of the two vectors representing the purchases is the summation of the dot

products of the leaf nodes. The similarity is then computed based on the traditional cosine

measure of the dot product of the two vectors divided by the product of the dot product of

each vector multiplied by itself. Ganesan, Garcia-Molina and Widom (2003) used the

following formulas to express these computations. (Weighting factors were assumed to

be 1 for this example and were omitted to simplify the formula display):

Equation 2.7: 1l · 2l =
)()(

))((*2

21

21

ldepthldepth

llLCAdepth U , where l1 and l2 refer to the leaf

nodes, and LCAU(l1 l2) denotes the LCA of leaves l1 and l2. The

subscript U denotes that this is the point where the two branches

containing each leaf unite.

54

Equation 2.8: A

· B

 =
n

i 1

j

n

j

iba
1

il ·
jl , where ai and bj represent the weighted

count (and are 1 in this particular application) and n is the number of

leaf nodes

Equation 2.9: GCSM sim (A, B) =
BBAA

BA

According to this definition, 1l · 1l = 1. In the above example, 1l · 2l =
33

22
 =

3

2

A

 · B

 =
3

2
 +

3

2
 +

3

2
 +

3

2
 =

3

8
 and GCSM sim (A,B)=

1
3

2
3

21

3
8

 = .8

The authors, Ganesan, Garcia-Molina and Widom (2003), also defined another

similarity measure, known as the Optimized Genealogy Measure (OGM). This measure

compares two collections that have a common leaf node and defines a match for any leaf

node as being the LCA of that leaf. The leaf similarity is the depth of the match value

divided by the depth of the leaf node. The OGM similarity is the sum of all the leaf

similarities. If weighting factors were any value other than 1, the OGM similarity would

be the weighted average of sum of the products of leaf similarities multiplied by the

weighting factors. In this example, since the weighting factors are all 1, this can be

expressed through the following formulas:

Equation 2.10: match T1, T2 = LCA T1,T2 (l1), where T1 and T2 denote the tree

representation of each collection

The best match is the LCA of an element of T2 that is also an element of l1. If there are no

common ancestors, the value will be 0 and if l1 is an element of T2, the value will be 1.

The OGM measure is the weighted average of the individual leaf similarities in the

collection.

55

Equation 2.11: leafsimT1,T2(l1)=
)(

))((

1

12,1

ldepth

lLCAdepth TT

Equation 2.12: OGM sim(C1,C2) =

11

11

)(

)(*)(

1

112,1

Cl

Cl TT

lW

lWlleafsim
 where C1 and C2

denote the collections with a common leaf node

The OGM is an asymmetric measure, meaning that the similarity of C1, C2 is not

always the same as the similarity of C2, C1. According to the authors, an average of the

two values can be used to obtain a symmetric measure. In this example, in finding the

similarity between A and B, it is necessary to sum the leaf similarity values of l1 and l2.

Each of these values is 2/3, since the lowest ancestor (Beatles) is at a depth of 2 and the

individual nodes are each at a depth of 3. The average of the two measures is then 2/3 or

0.67.

Ganesan, Garcia-Molina and Widom (2003) also defined ―second generation‖

measures of similarity. These measures apply to situations where there are many-to-one

relationships (multiple occurrences of the same node), or multiple occurrences of nodes

at the same level of the tree. Two measures, known as balanced genealogy measure

(BGM) and recursive genealogy measure (RGM) were designed to handle the problem

that additional matches at the same level of the hierarchy may not mean that the

documents are more similar. The authors pointed out that the situation where the

measures will be used would dictate the most appropriate measure. In the case of

annotations from an ontology, each annotated term was important and therefore the ―first

generation‖ measures were more appropriate. There are no many-to-one relationships,

since each term of the ontology is either indicated or not.

56

Ehrig and Sure (2004) addressed similarity for ontologies in terms of mapping

concepts from one ontology to another one. Core to their work was presenting an

approach to defining a mapping function so that for each concept in a particular ontology,

the function would map to the corresponding concept in another ontology. Various

measures of similarity were calculated and evaluated. According to these authors, an

ontology consists of: concepts that are arranged in a hierarchy; relations that exist

between concepts; instances of the concepts are connected by property instances; and

axioms that can be defined to infer knowledge. The authors defined a specific set of rules

to use in mapping the concepts. The most basic rules deal with entities within the

ontology, denoted as eij. The entities are elements of the set of concepts, relations and

instances for the ith concept and j represents the entity index within that set. The first rule

stated that if two labels are the same, the entities represented by those labels are the same.

Higher rules are more dependent on descriptive logics. For example, the fifth rule stated

that if the super-concepts from two ontologies are the same, the actual concepts are

similar. The researchers proposed that a combination of rules leads to better mapping

results than any rule used individually. The combination of rules can be integrated

through a weighted similarity function:

Equation 2.13:),(2211 jiji eesim = wk),(2211

1

jijik

n

k

k eesimw where wk is the weight

for a specific method simk,

Ehrig and Sure (2004) stated that the weights could be assigned manually, or

could be discovered by maximizing a training set’s F-measure (Yang & Liu, 1999),

which quantifies the best number of mappings and is a combination of the precision and

recall measures explained below. Ehrig and Sure suggested the use of a neural network to

57

determine how to combine methods for similarity calculation. They also proposed a more

sophisticated approach, utilizing a sigmoid function that has the effect of giving more

weight to those methods with a high similarity value and a very low weight to those with

a low value. Metrics used by these researchers were defined by:

Equation 2.14: Recall r =
mappingsexistingpossible

mappingsfoundcorrect

__#

__#

Equation 2.15: Precision p =
mappingsfoundall

mappingsfoundcorrect

__#

__#

Equation 2.16: F-Measure f =
rpb

prb
2

2)1(
 where b is a factor to weight precision

and recall and b=1 (the value utilized by these authors) indicates that

equal weights are given to precision and recall measures.

The authors found that more advanced combination methods resulted in higher

precision and recall and that naïve combinations could sometimes make results worse.

While this study concentrated on mappings between ontologies, the general guidelines

could be applied to calculations of similarities of annotations from the same ontology.

Another approach is to rank the result of queries involving semantic associations

(Anyanwu et al., 2005). These authors have pointed out that relationships in the Semantic

Web become more important than individual objects. A method of ranking query results

that allowed users to effect the ordering of query results was presented that builds on the

idea of the importance of relationships. Many possible ranking schemes were presented.

Two terms defined by the authors are customizability (the ability for users to select an

appropriate ranking scheme) and flexibility (the ability for users to apply different ranking

schemes to the results). The ranking approach suggested by these authors is based on

measuring how much information the user would gain by a particular result. As part of

58

this ranking, a Semantic Match (S-Match) was defined to be the maximum of the

semantic match (SemMatch) values. The authors view the instances of RDF property

sequences as a labeled path in a knowledge base. The distance between any two

properties would be the length of the shortest path connecting those properties (minimum

number of nodes that must be visited to travel from one property to another along the

path). For a property sequence PS = p1, p2, p3, …, pn and a set of keywords K = {k1, k2, k3,

…, km}, the degree of the match between the between ki and pj was defined by

Anyanwwu, Maduko and Sheth (2005) to be:

Equation 2.17: SemMatch(ki, pj) = 0 < (2
d
)
-1

 ≤ 1, where d is the minimum distance

between two properties in a property hierarchy.

The maximum of the SemMatch values was used if two keywords matched the same

property. The S-Match value for a particular property sequence ps PS was calculated

by:

Equation 2.18: S_Match(ps) =
n

i

k

j
1

1
max {SemMatch(pi, kj)}

The authors presented calculations based on the S-Match that calculate the information

content based on a search mode value that varies from 0 to 1 depending on the user’s

assessment of whether the search is conventional or designed for discovery. This

calculation would result in higher rank values assigned to the most unpredictable paths in

a discovery mode and lower rank values for unpredictable paths in a conventional mode.

The authors developed a prototype system to calculate semantic ranking based on these

calculations. That system returned the top-k results utilizing an algorithm that computes

the top-k paths for nodes based on the top-k paths for its children. The author’s

conclusions were based on synthetically generated data, due to the limitations of existing

59

RDF data collections. This again points out the need for more advanced tools to facilitate

accurate annotation of documents.

In addition to similarity, it is also important to have measures for correlation. In

this dissertation, calculating the ontology similarity of document pairs was only one step

in the process. Another step was to determine if the document text could be used as an

indicator of ontological similarity, and vice-versa. In order to do this, the correlation

between common term roots, both expected and unexpected, and the similarity measures

was calculated. There are a number of ways of calculating correlation. Pearson’s

correlation coefficient (Rasmussen, 1992) is used to calculate how two variables are

related, assuming continuous normally distributed independent random variables.

Spearman’s coefficient (Rasmussen, 1992) is a common correlation measure to determine

how ranked lists are correlated. The square of the Spearman coefficient is a useful

estimate of the correlation confidence that can be assumed. In calculating the ranks for

the Spearman correlation coefficient, if two values were equal, the average of the

corresponding ranks may be used. The field of artificial intelligence has offered more

ways to estimate the correlation. Bayesian networks can be configured to determine if

one event is the cause (or is caused by) another event (Losee, 1998).

The following definitions are used by Rasmussen (1992) to describe these

common correlation formulas:

Equation 2.19: Sxx = 2

1
)(

n

i i xx , where x is the mean of the x values

Equation 2.20: Syy =
2

1
)(

n

i i yy , where y is the mean of the y values

Equation 2.21: Sxy =))((
1

yyxx
i

n

i i

60

Equation 2.22: Pearson’s correlation coefficient =
yyxx

xy

SS

S

Equation 2.23: Spearman’s rank coefficient =
nn

rankrank
n

i yixi

3

1

2)(6

As an example, suppose x represents the number of hours each week a person listens to

music, and y represents the number of times that person purchases musical recordings. A

sample of this type of data is shown in Table 3.

61

n X Y rankx ranky

1 6 8 4 4

2 4 5 3 3

3 1 3 1 1

4 3 4 2 2

Rankx is index of xn value when x-values were sorted in ascending order.

Ranky is index of yn value when y-values were sorted in ascending order.

Table 3: Sample Data for Music Listening vs. Purchases

62

The mean of the x values is 3.5 and the mean of the y-values is 5.0. Equations 2.20-2.22

are used to calculate each value for this data set.

Sxx = (6-3.5)
2
 + (4-3.5)

2
 + (1-3.5)

2
 + (3-3.5)

2
 = 6.25 + 0.25 + 6.25 + 0.25 = 13

Syy = (8-5)
2
 + (5-5)

2
 + (3-5)

2
 + (4-5)

2
 = 9 + 0 + 4 + 1 = 14

Sxy = (6-3.5) (8-5)+ (4-3.5) (5-5) + (1-3.5) + (3-5) + (3-3.5) (4-5)

 = 56.25 + 0 + 25 + 0.25 = 81.5

Pearson’s correlation coefficient =
yyxx

xy

SS

S
=

182

5.81
=0.48

Spearman’s rank coefficient = 1 -
nn

rankrank
n

i yixi

3

1

2)(6
 = 1 -

464

)0000(6
 = 1

This example illustrates the difference in the two measures of correlation. While the

rankings are perfectly correlated, the raw data correlation as measured by Pearson’s

correlation coefficient does not show a strong correlation.

63

Chapter 3

Methodology

Approach

This study investigated the correlation of various measures of similarity to the

number of common term roots in documents pairs, as well as the number of common

unexpected term roots. Documents included in the study were annotated Web pages

containing the abstracts of papers submitted to the International Semantic Web

Conference (ISWC) during the years 2002-2004. To facilitate the analysis, a software

tool known as Semantic Web Analysis of Similarity (SWAS) was developed.

Documents, which were created with Semantic Web annotation tools and posted

on the World Wide Web, were arranged into a structure for analysis. This was

accomplished by manually extracting the annotations from each document and parsing

those annotations into Resource Description Framework (RDF) triples utilizing an online

tool. A master spreadsheet was created with one worksheet for each document containing

the document text and the RDF triples for that document. Two similar spreadsheets were

also created to store the RDF triples of the ontology in both the DARPA Agent Markup

Language (DAML) and Web Ontology Language (OWL) versions. Some documents in

this study were annotated using each version.. Another document was created to store the

parametric values used for each individual SWAS run. These four documents comprise

http://www.w3.org/RDF/

64

the input for the SWAS system. A more detailed description of these input files is

contained in Appendix C.

The SWAS system utilized this input data to determine the relationship of the

ontological concepts, identify common terms in the documents and use semantic

knowledge provided by the markup of these documents as well as the relationships of the

ontological concepts provided through the ontology itself. The root of each term in the

document text and the annotations was determined by eliminating common suffixes from

each term. Based on whether or not the root of a specific term was present in the relevant

annotations for the document, the terms were classified as expected or unexpected. A

selection algorithm developed for the SWAS system was used to identify the documents

to be included in the analysis. This was done by selecting those documents that do not

exceed a user defined threshold for the average difference between the precision (Ehrig &

Sure, 2004) and the normalized ranking of common terms in the set of selected

documents, according to equations 3.3 - 3.4. An iterative scheme was employed to add

those candidate documents to a selection set with the minimum difference between the

precision ranking and the ranking of common terms. In the next step, the average

difference was calculated for each document in the selection set and those documents

whose average difference exceeds the user-defined threshold were deselected. The user

was able to define the maximum number of times a document may be deselected from the

set before it is eliminated from further consideration, but analysis showed that when the

selection set reached a steady state no further changes would happen. The number of

deselections was held constant for the data analyzed, allowing all conditions to be

reviewed after that steady state had been achieved. User input also defined the minimum

65

number of common terms needed for two documents before that pair would be

considered in the selection set. Data was analyzed to show the effect of no common terms

versus at least one term in common between selected document pairs. For the selected

documents, pair-wise calculations of similarity based on both common terms and

common unexpected terms were computed. Six different measures of similarity were

calculated in an attempt to define the one most appropriate to measure similarity in this

type of data, and the appropriateness of each similarity measure was evaluated through

the use of two different correlation calculations. The measures of similarity used were the

simple match and Jacquard measures described by Losee (1998), the vector-space or

cosine measure (Liu, Ma and Yu, 2001), the Generalized Cosine-Similarity Measure

(GCSM) tree-based method proposed by Ganesan, Garcia-Molina and Widom (2003),

and two measures proposed in this dissertation that combined both traditional and

hierarchical measurement techniques. These new measures are referred to as the

unweighted hierarchical measure (UHI) and the weighted hierarchical measure (WHI).

Rasmussen (1992) describes various ways of calculating correlation. The correlation

techniques used in this dissertation are Pearson’s correlation coefficient, which is used to

calculate how two variables are related, assuming continuous normally distributed

independent random variables, and Spearman’s coefficient, which compared the ranked

values of these measures for both the common terms and the common unexpected terms.

Analysis of the results was done to determine if the additional knowledge found in the

form of common terms not expected from the ontological annotation was useful.

Based on the analysis of the results provided by the SWAS system, suggestions

for further research were formulated. Recommendations include whether similarity

66

calculations based on all similar terms or the unexpected similar terms were shown to be

the more appropriate measure from this study, which measure of similarity for

semantically annotated web pages was shown to be the most useful and whether raw

values or ranked values were shown to be more appropriate for use. An attempt was made

to quantify how effectively similar annotations describe different documents. A proposal

was formulated for the development of a tool to be used on web portals to allow novice

users to compare semantic annotations to a standard body of annotated documents

developed and in use by the community of users utilizing that portal.

Prior to analysis done by the SWAS tool, data was extracted from the documents,

including both the semantic annotation and the text. A parsing tool was used to convert

the ontology itself as well as the document annotations to RDF triples. The resulting

triples, as well as the document text, were stored in spreadsheets. Three spreadsheets

were produced. One spreadsheet contained the triples generated from the annotations and

the other two contained the triples generated from the ontology itself, in both

DAML+OIL and OWL formats. These spreadsheets formed the input data for the SWAS

analysis. A fourth input file contained the user-defined input values for each data run.

Parametric studies were conducted on the data. The first variable analyzed was

the rules by which valid annotations were selected. In addition, the effect of considering

just the annotated terms or all those terms inferred from the annotation, the number of

common documents required, and the threshold used for document selection were also

analyzed. The ISWC ontology being used described concepts and properties concerning

many things about the documents. The only annotations of interest in this particular study

were those that described the text contained in the document text. For example, most of

67

the documents contained annotations concerning the university affiliation of the

document authors. While this is useful information in many contexts, it is not of interest

in this particular study. Other parameters varied were the thresholds to filter out all but

the data most pertinent to this study and the number of common terms needed to consider

a document pair in the analysis.

The SWAS analysis tool analyzed the documents and calculated ontotological

similarity measures. The text of the documents was examined to discover similar terms.

Terms were grouped according to the root word of the term by systematically deleting

common suffixes from the term. This allowed terms that are grammatically similar (such

as the singular and plural versions of the same noun) to be considered as parts of the

same root word. The inclusion of all terms having the same suffix was utilized by Fox

(1990) in development of a stop list for general text. Further refinements, such as more

complex methods of ways to determine the term roots and grouping terms that are

synonyms, were left for future exploration and suggested as a needed area for future

research. Results of the similarity analysis were evaluated for correlation. Based on

results of that correlation, suggestions were made for a Web portal tool to assist in

evaluation of the appropriateness of annotations of Semantic Web Documents (SWDs).

In the algorithm used in the SWAS tool, which is a modification of that designed

by Liu, Ma and Yu (2001), a set of concepts was generated from the semantic

annotations, rather than using a user page. The approach was to draw from a collection of

documents annotated according to the same ontology, allowing a comparison of similar

terms and concepts in the metadata. ―Concepts‖ in this ontological sense took on a

slightly different meaning than that used by Liu, Ma and Yu (2001). Those authors

68

defined concepts as terms co-occurring within the same sentence. In this ontological

meaning, concepts were defined by the relationships between terms, or statements in the

RDF vocabulary. In the semistructured person example previously presented, the person

―Alan‖ had an attribute of ―age‖ which is 42. In a more complete definition of any

person, many attributes would be specified and linked through the relationships. Alan

may be married to Jane and have children Cindy and Bill. The relationship between Alan

and Jane is different from that between Alan and Cindy and this information would be

specified through the ontology. Ontological markups based on the evolving standards

proposed by W3C provided a structured way that this knowledge could be embedded into

a Web page about a person, so that the entire concept could be captured. In defining

ontological similarity, the weighting scheme described by Liu, Ma and Yu (2001) was

not necessary, since each attribute is either present or not present in the ontology. The

scheme was expanded to allow consideration of the relationship between attributes, as

defined in the ontology. Further refinements were made to allow analysis of not only

concepts that are the same in different documents, but also concepts that have a similarity

based on the hierarchical structure of the ontology.

A matrix structure was utilized to represent the documents and associated term

roots. Each document was filtered to remove common non-descriptive terms (such as a,

the, one). The remaining terms in each document were translated into their root word

through suffix elimination. For example, the terms ontology, ontologies and ontological

were considered forms of the root term ontolog. The terms were organized into a matrix,

where each term formed a single row and each document formed the columns, with an

attribute specified for each term of each document. This attribute was a flag denoting if

69

this term is unexpected from the ontology. Those terms that appeared in the annotation

concepts or are subclasses in the ontology of the annotated concepts were considered

expected knowledge and other terms were designated as unexpected. This matrix was

called the term document matrix. Similarity measures of the ontology were compared to

the terms found common in each appropriate document pair, as well as to those common

terms that are not expected from the ontological information.

Data

The primary data set\ for this dissertation was the annotated abstracts of accepted

papers for the first three years of the International Semantic Web Conference (ISWC),

held in 2002-2004. Those submitting papers to be considered for acceptance were asked

to annotate the abstracts in the first year and some authors continued to annotate the

documents for the second and third years. Two RDF ontologies were published for use in

the annotations. The documents in the first two years were annotated according to the

DAML+OIL version of the ontology and in the third year, the documents were annotated

according to the OWL version. It was assumed that this group of authors had more

knowledge of semantic annotation than the average web user since they were all writing

about the Semantic Web. The authors were provided links to several annotation tools, as

well as detailed screen shots depicting use of these tools. The authors were encouraged

but not required to utilize the provided ontology. The links to the online publication of

these documents as of the time of this writing are given in Table 4. The primary

document set from the each year of the conference can be found through a search engine

using keywords ―International Semantic Web Conference annotated papers.‖

70

Document URL

ISWC

Ontology

DAML

Version

http://annotation.semanticweb.org/iswc/iswc.daml

ISWC

Ontology

OWL

Version

http://annotation.semanticweb.org/iswc/iswc.owl

2002

Annotated

Documents

http://annotation.semanticweb.org/iswc/documents.html

2003

Annotated

Documents

http://annotation.semanticweb.org/iswc2003/

2004

Annotated

Documents

http://annotation.semanticweb.org/iswc2004/annotated_docs/

Table 4: Online Resources for Ontologies and Annotated Documents

http://annotation.semanticweb.org/iswc/iswc.daml
http://annotation.semanticweb.org/iswc/iswc.owl
http://annotation.semanticweb.org/iswc/documents.html
http://annotation.semanticweb.org/iswc2004/annotated_docs/

71

Specific concepts in the ISWC ontology make it appropriate for this type of text

analysis. Concepts in this particular ontology were designed to describe the content of the

paper being summarized in the abstract. Specific objects were designed into the ontology

to provide a base of choices concerning the content from which the annotators may

choose. In the ontology, the objects were identified by both a universal resource identifier

(URI) and a string description of that URI. The string description was provided through

the literal data type in the Resource Description Framework (RDF).

The data set for this study was the set of those published annotated abstracts

whose annotations conform to the specified ontology, were syntactically correct enough

to be processed by an RDF-parser and specified information about the topic of the paper.

Each document was a Hypertext Markup Language (HTML) file marked up semantically.

The semantic annotations contained references to other Web resources including the

ontology itself and at least one resource document that contained the URIs for that Web

page. In most cases, the URI of the web page was housed on the server of the institution

where the research took place. This resource provided the semantic information about the

documents content, the authors of the document, the research and funding that enabled

the project to which the documents refers and other information not specific to the

content of the document.

The process used in this dissertation to analyze ontological similarity involved,

among other things, selection of the most appropriate documents from the data set,

determination of the similarity of the ontological annotations, grouping of terms to the

term root, identification of unexpected terms, and the correlation calculations between the

ontological similarity and the number of common terms and common unexpected terms.

http://www.w3.org/RDF/

72

Initially, the set of documents and terms to be considered from those documents had to be

identified and organized into some structure. In order to do this, both the ontology and

the documents were parsed and the relationships deemed relevant were identified. The

semantic annotation code in the documents was parsed using World Wide Web

Consortium (W3C) Online RDF Validation Service online tool at

http://www.w3.org/RDF/Validator/.

Documents and the ontologies are retrieved and stored prior to the analysis. The

ontologies and the annotations in the documents were parsed using the W3C tool. This

determined the subject, predicate and object of each triple. The resulting RDF triples

were stored in spreadsheets for further processing, which became one of the input data

files for the SWAS tool. Similarity comparisons were based only on those items whose

subject is the paper itself. This is an important distinction. A triple describing the topic

but having the subject as the author of the paper would mean that this was a topic of

interest for that author, but not necessarily the topic of this particular paper. Only those

classes in the annotation describing the content of the paper and containing specific

values for the object of that description were used. Rules were applied by the SWAS tool

to ignore those triples that are not of interest in this study. The ontology specified three

classes where the subject could be the title of the paper and also refer to the content of the

paper. These are ―topic‖, ―formal language‖ and ―tools‖. Specific values of the object of

the concept were specified in the ontology for the ―topic‖ and ―formal language‖

concepts, but not for the ―tools‖. Since the ontology did not specify a list of possible

tools, only the topic and formal language classes were used. Separate analysis was done

on the document set meeting each of these rules, and is described below:

73

Rule 1: (Subject = title of paper Predicate = formal language)

Rule 2: (Subject = title of paper Predicate = topic)

Rule 3: (Rule 1 Rule 2)

The ontology provided a choice of thirty-seven topics and ten formal languages,

all of which could be used as the object of the paper itself in an RDF statement. The

author also was given the option of defining a specific object not delineated in the

ontology. This can be done in both the OWL and DAML+OIL formats. Since those

author-supplied objects were not consistent across documents and are used very

infrequently in this document set, this data was not included in the analysis. Only those

concepts utilizing objects specified in the ontology were considered. In some cases, the

topic was a subclass of another topic. That information can be applied in two different

ways. The superclass topics could be considered as inferred knowledge in the similarity

analysis and those same terms could be flagged as expected terms in the knowledge

discovery phase.

Selection Algorithm

The ultimate goal of this research project was to propose a method to provide

validation of the annotation in candidate SWDs as compared to a set of documents

deemed appropriate for this use based on a specific ontology and accessed through a Web

portal. It is fully acknowledged that there are many goals of semantic annotation and not

every document is appropriate for every application. That in no way implies that the

document is not appropriately annotated for its purpose, but does mean that not every

document was appropriate for this particular application. Prior to performing a pair-wise

74

analysis of common terms in the document set and correlating that data with the

similarity measures between document pairs, the best documents for this specific

application were selected. Ganesan, Garcia-Molina and Widom (2002) suggest that a Top

K method be employed; that is, the top k number of matches were the only ones

considered in the analysis. The problem with applying that technique to this study is that

the primary focus of the study being undertaken is a comparison of various measures of

similarity and no one of these measures could be used to select the best matches.

Threshold values were varied to include all documents, and approximately each quartile

of the possible documents, as well as a smaller set of documents including the best

document set with ten to thirty documents. In all cases, no data was collected for sets

that contained less than ten documents.

Ehrig and Sure (2004) used the term precision to mean the ratio of correct

mappings to all found mappings. This same idea was used to measure the precision of the

various similarity measures. In some way, all measures considered in this study depended

either on the ratio of the number of annotated concepts present in both documents in a

document pair to the number present in either document or the ratio of the number of

lowest parents of those concepts present in both documents to the number of lowest

parents in either document. The following equations show how these values were

calculated when using documents a and b from the set of documents.

Equation 3.1: docRatioab =

eitherinsannotationnumber

bothinsannotationnumber

Equation 3.2: parentRatioab =

eitherinsameparentsannotationnumber

bothinsameparentsannotationnumber

75

One aim of this study was to determine if there is a correlation between the

similarity measures and the common terms between document pairs. This was

accomplished by ranking the common terms and the similarity measures, normalizing

these measures so they had a value between 0 and 1, and calculating a difference function

for each similarity measure to determine, for each document pair, the difference between

the ranking of similarity measures and that of the common terms or common unexpected

terms. Selecting those document pairs with the minimum difference produced the subset

of documents for this analysis. By using the docRatio and parentRatio measures rather

than any specific measure of similarity, a candidate set of documents was designated for

use in the measurement comparisons. In order to gain an overall measurement of the

appropriateness for this analysis, an average difference for each document as compared to

the others used was calculated. As new documents were added to the candidate set, the

two documents with the lowest difference may have had an extremely high difference

when compared to any other document in the data set, changing the average difference

measure for each document. For this reason, an iterative scheme was employed to

reevaluate the appropriateness as each new document is considered for the final set. It

was determined that all documents sets reached a state where no further improvement

could be made if the number of deselections was set to five. One of the parameters varied

in these studies was the use of the docRatio or parentRatio to calculate appropriateness.

The term ratio applied to either of those calculations. Another parameter was whether the

measures are compared against any common term, or against common unexpected terms.

The term in_common referred to the ranked value of either of these values. SWAS

evaluated cases separately to examine the effect of using common term roots or common

76

unexpected term roots. Separate data was collected allowing documents pairs with no

common terms and document pairs that were required to have at least one common term.

Table 5 lists the definitions that were used to calculate the differences. Figure 4

shows the major steps of the algorithm. Equations 3.3–3.5 (contained in Figure 4)

illustrate the calculations involved in the difference computations. Initially, S was an

empty set. The selection scheme then added any document pairs that had the minimum

value of Diffab. These documents were added to set S. The ASelDiffa value was then

calculated for all documents in the current candidate set. Any document whose average

difference exceeded a specified threshold was deselected from the set. A new minimum

value of Diffab was then calculated for those documents not in the candidate set. The

process continued until all documents are in set S or have been deselected nds times. The

maximum number of times any document may be deselected was defined by nds.

Similarity correlations were calculated for those documents in set S.

Using the definitions in Table 5, the computational time complexity of the major

loop in the algorithm is O(nd * nds), or the product of the number of valid documents

times the maximum number of times each document may be deselected. Within that loop,

the complexity of the m caluculation in line 4 and the Diffab calculation in line 8 are

O(nd
2
). The complexity of the ASelDifa calculation shown in line 11 is O(ns) which is

bounded by O(nd).

77

Term Definition

D
set of valid documents (those which have at least one

annotation of interest)

nd number of valid documents in D

S

set of documents that have been determined to be possible

appropriate candidates (those documents currently

selected)

ns
number of documents in S (number of selected

documents)

th threshold to denote the maximum value of Adiffa

nds
maximum number of times any document can be

deselected from D

nRatioab
normalized ratio (based on Equation 3.1 or 3.2, depending

on case being evaluated)

nIn_commonab normalized in_common between documents a and b

Table 5: Definitions of Terms used for Difference Computations

78

Equation 3.3 Diffab = | nRatioab – nIn_commonab |

Equation 3.4 ADiffa =
nd

Diff
j

i ai1

Equation 3.5 ASelDifa =
ns

SiDiff
j

i ai ,1

Initialization: Using equations 3.3, calculate Diffab for all document pairs ab.

Using equation 3.4, calculate ADiffa for each document a.

Initialize deselection counter to 0 for each document a.

 Process:

1. while there are more documents that can possibly be selected:

2. for all documents a D, where a S

3. for all documents b D, where b S

4. calculate m = minimum Diffab (Equation 3.3)

5. for all documents a D, where a S

6. for all documents b D, where b S

7. if document a has been deselected < nds times

8. if Diffab = m

9. add document a into S

10. for all documents a S

11. calculate ASelDifa (Equation 3.5)

12. for all documents a S

13. if ASelDifa > th

14. de-select document a (remove from S)

15. increment deselection counter for document a

Figure 4: Steps of the Selection Algorithm

79

A brief example is given below for four documents identified as A, B, C and D

using a threshold value of 0.45, a value of 3 for nds, no minimum number of common

terms and the data in table 6, which reflects the ranked data for the documents. This

example is expanded later in this chapter to show calculations of similarity measures as

well.

Based on the data shown in Table 6, documents A and C will be added to the

selection set, and ADiffA and ADiffC will each have a value of 0, which does not exceed

the threshold. Now the minimum difference value of the unselected document pairs is

0.25, which will result in documents B and D being added to the selection set. The

ASelDiff values are now calculated as:

ASelDiffA =
4

5.025.0
 = 0.19

ASelDiffB =
4

125.025.
 = 0.38

ASelDiffC =
4

25.025.0
= 0.13

ASelDiffD =
4

5.015.
= 0.5

Document D was deselected, since its average difference exceeds the threshold.

Since there is a value of 3 for the number of times a document may be deselected, and

there is document D is the only document not currently in the selection set, this document

was added back in and then eliminated from the selection set two more times. It was

determined that no changes in the document set occurred with nds values higher than

five, so this value was used for the analysis.

80

Doc Pair nRatioab nIn_Commonab Diffab

A, B 0.75 1.0 0.25

A, C 0.5 0.5 0.0

A, D 0.75 0.25 0.5

B, C 1.0 0.75 0.25

B, D 1.0 0.0 1.0

C, D 0.25 0.0 0.25

Table 6: Sample Data for Selection Example

81

Similarity Measures

The annotations are analyzed and compared for similarity using several different

methodologies. Calculations are done using the following techniques: simple match

similarity, Jacquard coefficient, cosine or vector-space analysis based on the research of

Liu, Ma and Yu (2001) and the GCSM tree-based method proposed by Ganesan, Garcia-

Molina and Widom (2003). It should be noted that while Dice’s coefficient is widely

accepted as a measure of document similarity, it has been shown to produce the same

ranking as the Jacquard coefficient (Losee, 1998) and therefore was omitted from this

analysis. In addition to those listed above, two new measures will be evaluated evolving

from the work of Liu , Ma and Yu (2001) and Ehrig and Sure (2004).

The calculations involved in the vector-space analysis proposed by Liu , Ma and

Yu (2001) were dependent on the cosine measure algorithm based on the vectors

representing the two documents being compared. The vectors contained a value for each

annotation concept as it relates to the document, with a value of zero denoting that the

concept is not present. It should be noted that there are many variations of the vector-

space model, especially when considering term weights as a part of the analysis. The

basic unweighted measures were used for this analysis and the effect of weighting was

evaluated in a measure based on the parent node of the concept in the ontology. Ganesan,

Garcia-Molina and Widom (2003) showed how the hierarchical knowledge could be

applied to produce a measure of similarity. Ehrig and Sure (2004) investigated the use of

combining similarity measures and showed that this process can be more useful than the

use of naïve measures.

82

The first new similarity measure analyzed in this study built on the results of that

research. This measure, referred to as the unweighted hierarchical measure (UHI),

combined terms according to the parent node and used the vector showing annotations

relating to the parent node to calculate the similarity measure utilizing the vector-space

analysis employed by Liu, Ma and Yu (2001). The second measure was similar, but was

weighted by the frequency measure (based on the number of annotations that relate back

to the same parent node) and was called the weighted hierarchical measure (WHI). For

the weighted measure, the weighting factor was the percentage of concepts with the same

parent node as compared to the total number of lowest parents of unique concepts in each

document. Equations 3.6 – 3.8 define the computations for these measures.

Equation 3.6 lwa,i =
a

ia

nc

lp ,

Equation 3.7 UHIsim(da , db) =
lp

i ib

lp

i ia

lp

i ibia

ll

ll

1

2

,1

2

,

1 ,,

Equation 3.8 WHIsim(da , db) =
lp

i ib

lp

i ia

lp

i ibia

lwlw

lwlw

1

2

,1

2

,

1 ,,

These new measures related to the similarity of the lowest parent in the

hierarchical representation of the ontology, or that parent node closest to the root node. In

the case of the class in the ontology known as ―formal language‖, the lowest parent was

the same as the concept of interest, since no subclasses were defined for the formal

languages. The ontology provided for a property ―has subtopic‖ that allowed subclasses

of the ―topic‖ class. In the case of topics, there did exist more than one lowest parent for

83

some concepts, since there were no cardinality rules providing that a concept have a

single superclass. The lowest parent was designed as a list of all parent nodes of a

particular concept of interest representing the topic classes that have no superclasses.

The simple match similarity measure considered all concepts of interest, while the

Jacquard measure eliminated those where there is a joint absence in which neither

document references that concept. For the purpose of this study, calculations for the

cosine measure were adapted to eliminate any weighting based on frequency of

occurrence of terms, since a term is either indicated in the ontology or not. The definition

of GCSM developed by Ganesan, Garcia-Molina and Widom (2003) was expressed using

the same terminology as the other measures to more clearly illustrate the relationships

between measurements. An expanded term-document matrix was used for calculations,

showing not only which terms were actually annotated for the documents, but also which

terms could be inferred from the hierarchical knowledge about the annotated terms

provided through the ontology. Measures were calculated utilizing ontological

annotations only as well as the inferred annotations. Table 7 lists the formal definitions of

terminology for the new measures of similarity between documents a and b adapted from

those specified by Liu, Ma and Yu (2001). Formulas for the simple match, Jacquard

measure, cosine measure, and GCSM based on these definitions are given in Equations

2.4, 2.5, 2.6 and 2.9.:

Figure 5 illustrates a sample ontology, and Table 8 illustrates sample document

annotations using this ontology. In Table 8, a value of 1 meant that document contains an

explicit annotation to the concept. In this example, lp = 3, since concepts 1, 2, and 3 did

not have a parent concept.

84

Term Definition

nc number of concepts of interest in the ontology

nca number of concepts annotated in document a

lp
number of lowest parents of concepts of interest in the

ontology

ci ith concept

lap number of lowest parents of concepts of interest in document a

lpa,I number of concepts in document a which have lowest parent li

li lowest parent of ci

lai

lowest parent indicator, value of 1 indicates some concept is

present which has lowest parent i in document a, 0 indicates no

concept is present in document a which has lowest parent i

lwa,I weighted value of la,I

UHIsima,b
similarity of documents a and b based on unweighted

hierarchical measure

WHIsim(da, db)
similarity of documents a and b based on weighted hierarchical

measure

Table 7: Definitions of Terms used in Similarity Calculations

85

Root

Figure 5: Sample Ontology

Concept 1 Concept 2 Concept 3

Concept 4 Concept 5 Concept 6

86

Lowest

Parent
Doc. A Doc. B Doc. C

Concept 1 1 0 0 1

Concept 2 2 1 1 0

Concept 3 3 1 1 1

Concept 4 1 0 0 1

Concept 5 2 0 0 1

Concept 6 1 1 0 0

Table 8: Document Matrix for Sample Documents with Annotations

87

By using Equation 3.6, the following weighted values of the parent indicators for

the lowest parent concepts could be calculated for each document.

lwa,1 = 1/3, since there is 1 annotated concept (concept 6), which has concept 1 as

lowest parent, and there are 3 concepts annotated in the document.

lwa,2 = 1/3, since there is 1 annotated concept (concept 2), which has concept 2 as

lowest parent, and there are 3 lowest parent concepts annotated in the

document.

lwa,3 = 1/3, since there is 1 annotated concept (concept 3), which has concept 3 as

lowest parent, and there are 3 concepts annotated in the document.

lwb,1 = 0/2 , since there is there are no annotated concepts which have concept 1 as

lowest parent, and there are 2 concepts annotated in the document.

lwb,2 = 1/2, since there is 1 annotated concept (concept 2), which has concept 2 as

lowest parent, and there are 2 concepts annotated in the document.

lwb,3 = 1/2, since there is 1 annotated concept (concept 3), which has concept 3 as

lowest parent, and there are 2 concepts annotated in the document.

lwc,1 = 2/5, since there are 2 annotated concept (concept 6), which has concept 1

as lowest parent, and there are 5 concepts annotated in the document.

lwc,2 = 1/5, since there is one annotated concept (concept 5), which has concept 2

as lowest parent, and there are 5 concepts annotated in the document.

lwc,3 = 1/5, since there is one annotated concept (concept 3), which has concept 3

as lowest parent, and there are 5 concepts annotated in the document.

Equation 3.7 can be used to find the unweighted hierarchical similarity between

documents, and equation 3.8 can be used to find the weighted hierarchical similarity. To

find this value for document B and document C, the following calculations would be

used:

UHIsim(db , dc) =
222222)1()1()1()1()1()0(

)11()11()10(
 =

32

2
 = 0.82

WHIsim(db , dc) =
222222)5/1()5/1()5/2()2/1()2/1()0(

)5/12/1()5/12/1()5/20(

88

=
25/62/1

10/2
 = 0.58

When evaluating the similarity between documents A and C, the unweighted

value was 1. This indicated that there was an annotation with each possible lowest parent

in each document. The weighted value of 0.94 indicated that there is some difference in

the number of annotations mapping back to each parent.

Overview of SWAS

The SWAS tool was developed in Java, with connections to the input

spreadsheets provided via a Java database connectivity / open database connectivity

(JDBC/ODBC) bridge. The ODBC connection to the file must be established in the

operating system prior to using the SWAS tool. Information concerning the setup of the

connection for a Microsoft XP operating system was organized, and is shown in

Appendix E. Prior to processing by the SWAS system, the ontology and document data

was extracted and RDF statements were parsed through the use of an online tool, as

described in the ―Data‖ section of this chapter. Two single worksheet spreadsheets were

used to store the ontology data in DAML+OIL and OWL formats. A multi-worksheet file

stored the data for each document as a separate worksheet in the spreadsheet, and a text

file contained the input parameters. Full explanations of the input is available in

Appendix C.

The SWAS tool was designed to produce data concerning the correlation of

common terms and common unexpected terms to that of the ontological similarity as

measured in various ways. The source code is provided in Appendix F, and is available

89

online at http://home.cfl.rr.com/lookhome/joelynn/SWASsource. A java archive file

(JAR) is at http://home.cfl.rr.com/lookhome/joelynn/SWASjar. Parameters varied

included the rules to be applied (examining topic concept, formal language concept, or

both), document selection method (based on annotated concepts, or lowest parents of

those concepts), the values for the threshold for appropriate documents, and the value for

the number of common terms needed for a document pair to be considered for selection.

Other data such as the specification of the file names for the ontological and document

text data and the maximum sizes for arrays was also included. Figure 6 gives an overview

of the SWAS tool.

http://home.cfl.rr.com/lookhome/joelynn/SWASjar

90

Figure 6: Overview of SWAS tool

91

Input data was processed by SWAS and four output files were produced for each

parametric run, which were imported into a spreadsheet to allow further analysis as input

parameters were varied. The data was organized into a summary spreadsheet. Highlights

of the findings are found in Appendix D. For each parametric run an output file was

produced to show the results if document selection was based on the ratio value as

calculated by equation 3.1 or equation 3.2; that is whether it was based on the ontological

concept, or the parent node of that concept in the ontology. In addition, for each run, the

similarity measures and correlations were calculated for both common term roots and

common unexpected term roots in the text of each document.

SWAS was developed as a system of Java classes. The main class, called SWAS,

served as the focal point from which all other processing was initiated. Several small

classes modeled portions of the system and performed specific tasks. The

InputParameters class included the module that reads the input data from a text file. The

RDFConceptArray class modeled the concept data, providing the arrays to store this data.

The class ConceptData modeled a concept derived from the ontology. The class DocText

modeled the text found in a document. Both ConceptData and DocText include data

items to store the full text and the root words of that text for the concepts and document

text. The RDFStmts class modeled each RDF triple in the ontology. The Root class

contained a method to determine the root word of a string through elimination of

specified suffixes. The Stop class removed terms in the stop list from the concept word

list or the document text. The Words class modeled a collection of words, and contained

modules to strip special characters from the words and sort the words.

92

The TermDocumentMatrix class modeled the grid that indicates term roots in

each document, contained methods to create and add data to the master grid for each

document, create and update a list of root terms for all documents and assign a status of

to each term. The status flag showed if the term is present in that document and if the

term is also part of the annotation, or if it can be expected from the annotation since it is a

part of a parent of an annotated concept.

The Ontology class modeled the ontology, and has modules to read each version

of the ontology using a structured query language (SQL) query to obtain the data from

the spreadsheet where it was stored after pre-processing. There was also a module in this

class to cull the RDF statements to only those of interest, according to the parameters

specified. Each RDF statement was examined, and those that have subconcepts were

indicated so the lowest parent of each concept can be identified. Another module

assigned a level number to each concept. The terms contained in the object of each

concept of interest are reduced to root words and stored in a list for that concept. Each

term is flagged as either directly annotated, inferred through the hierarchy or not

annotated. The Ontology class also contained modules to find the name of a concept

given the URI or the concept number and to find the literal identifier for a concept, as

specified in the ontology. There was also a method to calculate the similarity of annotated

terms using the data calculated in the Ancestors class.

The Ancestors class modeled the hierarchy for the ontology and relates concepts

to parents and lowest parent. There were methods to find common ancestors of two

concepts, find lowest common ancestors, and to find the dot product vector of leaf nodes

93

for the Generalized Cosine-Similarity Measure (GCSM) measure suggested by Ganesan,

Garcia-Molina and Widom (2003) as shown in equation 2.9.

The Annotations class contained the data representing the RDF triples found in

each document as well as matrices denoting which of the possible concepts contain

annotations in each document, and the parent concepts indicated through the ontology.

The instance of the Annotations class received an object of the Ontology class and an

object of the InputParameters class as input. The Annotations class contained methods

that read a spreadsheet containing the text and annotations from the documents with each

document having been stored as a separate worksheet in the spreadsheet. Data was

extracted from the file through a SQL query. The data in both the ontology and document

spreadsheets had been prepared via an offline process.

The Stats class modeled the statistics for the system. This class contained modules

to: select the best documents to use according to the calculations in equations 2.4-2.6;

calculate the different similarity measures as indicated in equations 2.4-2.6, 2.9, 3.7 and

3.8; correlate the ontological and textual similarity according to equations 2.22 and 2.23;

and write the output files. Separate processing was done for four cases to produce the

four output files. Figure 6 outlines the major steps accomplished by the SWAS system. In

this diagram, the class name precedes the module name, and these are separated by a dot.

SWAS read the input parameters which specified which option was used to

choose the concepts of interest, the thresholds and number of required common terms to

be used in the selection algorithm for each output case, the URI and various maximum

limits used to size arrays in the data structures. SWAS then read and stored the parsed

ontology data and determined superclass lists for each appropriate concept in the

94

ontology, based on the rules specified, as well as the level of that concept in the overall

hierarchy.

The next step was to read and store the data concerning each document. The RDF

triples describing the ontological annotation as well as the document text were examined,

and those document triples meeting the rules specified were stored. SWAS examined the

text of the documents, eliminating common non-descriptive terms through a stop list

based on the list generated by Fox (1990). Minor modifications were made to that stop

list to include common contractions of the terms and to omit those terms that were

meaningful to this study. For example, the term ―order‖ was included in Fox’s original

stop list, but that particular term could be meaningful in this set of documents, so it was

not included on the stop list. Each term was reduced to a root based on suffix elimination.

A term document matrix was developed to show which terms in the document text were

also in the annotations for that document and which can be inferred from those

annotations by use of the superclass list for each annotated concept.

SWAS then selected the appropriate document subset, by successively adding the

document pair with the lowest difference between the ranking of the ontological

similarity and the number of common terms. All documents in the candidate set were

then evaluated to find the average difference for each document. Documents with an

average difference higher than the threshold were deselected from the candidate set. This

process continued until all documents not included in the candidate set had been

deselected a proscribed number of times. In this way, the selection algorithm was used to

identify the subset of documents for the analysis. The ontological similarity of that

document subset was calculated, as was the correlation between similar documents and

95

the number of common terms for each document pair in the subset. Correlation between

similarity measures and common terms was calculated, and a data file containing the

results was produced. This file included the subset of selected documents, all of the

similarity measures for those documents, the number of common terms and common

unexpected terms for each pair of documents and the correlation of these measures.

Results were stored in a tab-delimited text file that was imported into standard

spreadsheet software applications. Major steps of the SWAS system are shown in Figure

7.

96

Figure 7: Major Steps of SWAS System

97

Example

In order to provide a simplified example of these measures, a mock version of the

ontology containing only eleven concepts was provided. Using the ISWC ontology, four

sample Web documents were created for this formal dissertation proposal to illustrate the

document selection and similarity analysis. The ontology developed for the annotation of

documents presented at the First International Semantic Web Conference and these

sample documents annotated from that ontology formed the sample data set used in the

example in this dissertation. Although the actual ontology was the basis for the

annotations, the sample annotated pages that formed the sample data set are entirely

fictitious, developed to illustrate the concepts being described in an overly simplified

manner. These sample documents served to exemplify the process that was employed and

any resemblance to any actual research paper from any source is unintentional and purely

coincidental. These sample documents used only a portion of the possible instances

proscribed in the conference ontology, so the relationships between the documents could

be easily visualized. In addition to the annotated abstract document, a resource document

providing needed URIs was also constructed for each of the documents. While this was

not nearly as extensive or semantically rich as the resource documents referred to in the

actual annotated abstracts, it did provide a simple foundation for the explanation of the

process that was later employed.

The following example demonstrated how the similarity and correlation measures

were calculated for the sample documents prepared for this proposal. The example

documents are found in Appendix A. In preparing these sample documents for analysis,

98

RDF triples were created by parsing both the ontology itself and the annotations within

the documents. The DAML+OIL version of the ontology was used for this example.

The annotation of a published SWD can be viewed by viewing the source code of

the document via the ―View Source‖ option available on most current browsers and is

shown in the document listing provided in Appendix A of this document and at

http://home.cfl.rr.com/lookhome/joelynn/OntologyExamples. The RDF triples formed

from the annotations can be found published online at

http://home.cfl.rr.com/lookhome/joelynn/OntologyExamples/Triples. The parsed graphs

of the annotations are also available online and can be found at

http://home.cfl.rr.com/lookhome/joelynn/OntologyExamples/Graphs. Based on the

concepts identified through the parsed ontology, the objects of those statements where the

subject is the article itself is used in narrowing the selection concepts. Rule 2, which

states that the subject must be the paper itself and the object must be topic, was used for

this example. These objects formed the set of concepts of interest. Although the ontology

contains 47 possible concepts, only 11 are used in this example, for the sake of

simplicity. In addition, the inference rule applied to augment the explicit annotation of

the document was identified. In this example, the inference rule applied was that if a

topic was the object of the “HasSubTopic” predicate, then the subject of that relationship

(the superclass) was included in the expanded matrix.

For the purpose of identification, the documents were labeled A, B, C and D.

Since these were created solely to demonstrate the proposed technique, each of the

documents contained some annotation for at least one of the concepts of interest. The

SWAS tool labeled any document that does not contain at least one annotation for a

http://home.cfl.rr.com/lookhome/joelynn/OntologyExamples/Triples

99

concept of interest as invalid, and that document is discounted from further analysis. In

some cases, the concept was a subclass of another interesting concept. The fact that this

concept could be inferred from the annotated concepts was flagged in the document

matrix via the status element, to investigate the effect of inferred knowledge (using the

superclass designations) on the document similarity measures. In the subsequent phase,

when searching for unexpected terms, any inferred common terminology was included in

the list of expected terms. Similarity measures were calculated based on actual

annotations and on inferred annotations for those measures where the inference was not a

part of the measure itself.

Initial calculations were done to determine similarity based on simple match,

Jacquard coefficient, modified vector-space analysis, GCSM, and two new measures.

Objects selected from the specified concepts form the initial concepts of interest. The

expanded concepts of interest also include those objects that are superclasses of the ones

explicitly specified in the ontological markups. An initial document matrix was created,

with the documents to be analyzed forming the columns of the matrix and the concepts of

interest forming the rows. Each column of the matrix formed a document vector that

represents the concepts of interest that were indicated through the ontology as present in

that document. The matrix was enhanced to show additional concepts of interest, which

could be inferred from the ontology through the specified inference rules. For each

document, the concepts explicitly specified through the annotation were indicated with a

value of 1, the inferred concepts were indicated with a value of 2, and other terms had a

value of 0.

100

The matrix was created to calculate the ontological similarity of the documents.

Similarity measures were calculated and used for this example, to determine which

measure best correlates to the common terms and common unexpected term roots (CURs)

found in the documents. The techniques for simple match, Jacquard coefficient and the

cosine measure found through analysis of the vector-space were applied to calculate three

measures of similarity for each document pair, as well as hierarchical measures, including

one of those suggested by Ganesan, Garcia-Molina and Widom (2003).

Document A indicated that the topics (concepts of interest) were ―Text Mining‖,

‖Semantic Web Languages‖, and ―Semantic Annotation.‖ Documents B and D indicated

the topics were ‖Semantic Web Languages‖ and ―Semantic Annotation.‖ Document C

indicated that the topics were ―Agents‖, ―Logic‖, ―Text Mining‖ and ―Semantic

Annotation‖. ―Text Mining‖ was a subtopic of ―Knowledge Discovery‖. ―Semantic Web

Languages‖ and ―Semantic Annotation‖ were subtopics of ―Semantic Web‖, which was a

subtopic of ―World Wide Web‖. ―Agents‖ was a subtopic of ―Artificial Intelligence‖, so

each of these terms was included in the expanded matrix. The ―Logic‖ resource is not a

subtopic of another topic. Two other topics, ―Network Infrastructure‖ and ―E-Business‖

were not indicated topics in any documents in this demonstration. None of the sample

documents was annotated with either of these resource topics.

Table 9 depicts the original document matrix, and shows those concepts and the

superparent concept indicated by each annotation, along with the flags denoting the

annotation of documents with those concepts. It should be noted that the ontology shows

the object of a relationship as an identifier with no blank spaces, but also denotes the

literal value of that field. For example, the first index ―Text mining‖ is actually denoted

101

as the object of the topic of the paper as ―text_mining‖, but is then related to the literal

value ―text mining‖. Only the literal values are shown in this chart and the literal values

were used in the text analysis.

102

Lowest

Parent
Doc. A Doc. B Doc. C Doc. D

Concept 1

Text mining

8 1 0 1 0

Concept 2

Semantic Web

Languages

9 1 1 0 1

Concept 3

Semantic Annotation
9 1 1 1 1

Concept 4

Agents
8 0 0 1 0

Concept 5

Logic
5 0 0 1 0

Concept 6

Knowledge

Discovery

8 2 0 2 0

Concept 7

Semantic Web
9 2 2 0 2

Concept 8

Artificial

Intelligence

8 2 0 2 0

Concept 9

World Wide Web
9 2 2 0 2

Concept 10

Network

Infrastructure

10 0 0 0 0

Concept 11

E-Business
11 0 0 0 0

Table 9: Document Matrix Including Parent Concepts

103

Table 10 shows the initial ratio calculations needed for document selection, along

with the difference values. Table 11 shows the similarity calculations including the

semantic inferences for the selected documents as well as the two measures of

correlation. It should be noted that these calculations assumed the inferred knowledge

from the ontology. The actual SWAS system calculated measures both utilizing and

ignoring that inferred knowledge. Appendix B shows the relationship of the term roots to

the documents.

104

Doc

Pair

Doc

Ratio

Ratio

Rank

Common

Terms

Rank

Common

Terms

Diff

A,B

4/7 .75 4 1.0 .25

A,C

4/9 .5 2 .5 0

A,D

4/7 .75 1 .25 .5

B,C

1/9 1.0 3 .75 .25

B,D

4/4 1.0 0 0 1.0

C,D

1/9 .25 0 0 .25

Table 10: Difference Values for Document Selection

105

Document

Pair

Ssim Jsim Vsim UHIsim WHIsim GCSM

A,B
9/11 =

.82
4/6 = .67

4/(7x4) =

4/28 =

.14

1/(2x1)

=1/2 = .5

(4/7)/

49/25

=.8

0.91

A,C
7/11 =

.64
5/9 = .56

5/(6x8)

=5/48 =

.10

2/(2x3)

=2/6 =

.33

(8/21)/

49/25

x 2/1

=.75

0.63

B,C
5/11 =

.45
3/9 = .33

3/(4x8)

=3/32 =

.09

1/(1x3)

=1/3 =

.33

(1/6)/

2/1

= .12

0.69

Table 11: Similarity Measures for Matrix Enhanced with Inferred Data

106

Parametric values used for this example were:

 Rule Selection: Rule 2 (Subject = title of paper Predicate = topic)

 Ratio: docRatio
eitherinsannotationnumber

bothinsannotationnumber

 Term Use: Common Terms

 Threshold: .5

 Maximum number of deselections: 2

 Minimum number of common terms: 0

The document pair initially selected was documents A and B.

Document selection algorithm steps are outlined as follows:

Candidate Pair A,C

ADiffA = 0.0 ADiffC = 0.0

No deselection

Candidate Pair A,B

ADiffA = 0.125 ADiffB = 0.25 ADiffC = 0.125

No deselection

Candidate Pair C,D

ADiffA = 0.25 ADiffB = 0.5 ADiffC = 0.183 ADiffD = 0.587

Deselect D Count = 1

Candidate Pair C,D

ADiffA = 0.25 ADiffB = 0.5 ADiffC = 0.183 ADiffD = 0.587

Deselect D Count = 2

107

The document selection algorithm results in Documents A, B and C remaining in

the set for further analysis. Annotated and inferred terms from the annotations were used

in the similarity calculations. It should be noted that the actual value of the ontological

similarity measure was not as important as is the relationship between the similarity

measures and the common term indicators of textual similarity.

To calculate the WHIsim measure, it was necessary to find the index of the lowest

parent of each concept. For example, Concept 1 ―Text Mining‖ has ―Artificial

Intelligence‖ as its lowest parent. There were 7 concepts indicated for Document A. Of

those seven, three had Concept 8 as the lowest parent and four had Concept 9. The weight

for the concepts with lowest parent 8 will be 4/7, and likewise the weight for those with

Concept 9 as lowest parent will be 3/7. Based on the definition of WHIsim and the

formula defined in Equation 3.8, the calculations for the document pair A, B was:

WHIsim(da db,) =
00)4/4(00(00)7/4()7/3(0(

)00()00())4/4()7/4(()0)7/3(()00(
222

 =
100)49/16()49/9(0(

7/4

 =
1)49/25(

7/4

 =
7/5

7/4
 = .8

In order to implement the similarity metrics suggested by Ganesan, Garcia-

Molina and Widom (2003), it is helpful to view the ontology in a tree form. Each of the

concepts of interest must be represented as a node in the tree. In the SWAS tool, a list

was maintained of the ancestors and children of each node. This enabled calculations to

108

be based on the node itself, or on the ancestors of the node as suggested by Ganesan,

Garcia-Molina and Widom (2003), or to group nodes with common children, as

suggested by Ehrig and Sure (2004). The example presented here uses only 11 of 47

possible concepts in the ontology. The structure specified by the authors requires that

those instances that will be considered in the similarity analysis (concepts of interest) be

modeled as leaf nodes of the tree. Many terms could be both specified instances as well

as superclasses for other instances, which placed those as interior nodes of the tree. For

the purpose of this analysis, each interior node was considered both a leaf and a

superclass. Computationally in the SWAS system, a list was maintained of the ancestors

and children of each node, as well as the level of the tree where the node appears. In

addition, the lowest ancestor of each node was stored. This information was used in the

new similarity measures that were proposed. Figure 8 shows the relevant terms from the

ontology as a tree structure. The node ―Artificial Intelligence‖ was be the lowest ancestor

of ―Text Mining‖, ―Knowledge Discovery‖ and ―Agents‖.

.

109

Root

Figure 8: Relevant Portion of Ontology as tree structure

Artificial

Intelligence

Network

Infrastructure

World Wide

Web
E-Business Logic

Agents Knowledge

Discovery

Semantic

Web

Semantic

Annotation

Semantic

Web Lang.

Text

Mining

110

The three documents contained the following concepts of interest:

A = (Text Mining (l1), Semantic Annotation(l2), Semantic Web Languages(l3))

B = (Semantic Annotation(l2), Semantic Web Languages(l3))

C = (Agents(l4), Logic(l5), Text Mining(l1), Semantic Annotation(l2))

Using the notation suggested by Ganesan, Garcia-Molina and Widom (2003), the

similarities were calculated as follows (note, the count of instances represented by ai bj

has been omitted, since it is a value of 1 which serves as a multiplier):

1l · 2l =
)()(

))((*2

21

21

ldepthldepth

llLCAdepth U =
44

1*2
 = 0.25

1l · 3l = =
44

1*2
 = 0.25

1l · 4l = =
34

2*2
 = 0.57

1l · 5l = =
24

1*2
 = 0.33

2l · 3l = =
44

3*2
 = 0.75

2l · 4l = =
34

1*2
 = 0.29

2l · 5l = =
24

1*2
 = 0.33

3l · 4l = =
34

1*2
 = 0.29

3l · 5l = =
24

1*2
 = 0.33

111

4l · 5l = =
23

1*2
 = 0.4

A

· B

 =
nA

i 1

nB

j 1

il ·
jl = 0.25 + 0.25 + 1 + 0.75 + 0.75 + 1 = 4.0

A

·C

= = 1 + 0.25 + 0.57 + 0.33 + 0.25 + 1 + 0.29 + 0.33

 + 0.25 + 0.75 + 0.29 + 0.33 = 4.02

B

·C

 = = 0.25 + 1 + 0.29 + 0.33 + 0.25 + 0.75 + 0.29

 + 0.33 = 3.49

A

· A

 = = 1 + 0.25 + 0.25 + 0.25 + 1 + 0.75 + 0.25 +0.75

 + 1 = 5.5

B

· B

 = = 1 + 0.75 + 0.75 + 1 = 3.5

C

·C

 = = 1 + 0.25 + 0.57 + 0.33 + 0.25 + 1 + 0.29 + 0.33

 + 0.57 + 0.29 + 1 + 0.4 + 0.33 + 0.33 + 0.4 + 1

 = 7.34

GCSM sim (A, B) =
BBAA

BA

= 0.91

GCSM sim (A, C)
CCAA

CA

= 0.63

GCSM sim (B, C) =
CCBB

CB

=0.69

Calculations for the second measure proposed by Ganesan, Garcia-Molina and

Widom (2003) were computed to demonstrate this method. This measure compared the

leaf similarity in each collection, assuming an induced tree was formed to show the leaf

nodes specified in each collection. The similarity measures were asymmetric and an

average of the similarity value for A and B would have to be computed to find a true

112

symmetric measure. This is illustrated below for the calculation of the symmetry between

document A and B.

The relevant leaf nodes could be identified as:

l1 = Text Mining

l2 = Semantic Annotation

l3 = Semantic Web Languages

l4 = Agents

l5 = Logic

First, the calculations to determine the similarity of Document A to Document B:

match TA, TB = LCA TA,TB (l1) = Topic.

leafsimTA,TB(l1)=
)(

))((

1

1,

ldepth

lLCAdepth TBTA
 = 1/3 = .33

match TA, TB = LCA TA,TB (l2) = Semantic Annotation

leafsimTA,TB(l2)=
)(

))((

2

2,

ldepth

lLCAdepth TBTA
 = 4/4 = 1

match TA, TB = LCA TA,TB (l3) = Semantic Web Languages

leafsimTA,TB(l3)=
)(

))((

3

3,

ldepth

lLCAdepth TBTA
 = 4/4 = 1

OGM sim(A,B) =
Al ilTleafsimT

1 21)(, /n = 2.33 / 3 = .78

Next, the calculations were repeated to find the similarity of Document B to

Document A:

match TB, TA = LCA TB,TA (l2) = Semantic Annotation

leafsimTB,TA(l2)=
)(

))(

2

2,

ldepth

lLCAdepth TATB
 = 4/4 = 1

113

match TB, TA = LCA TB,TA (l3) = Semantic Web Languages

leafsimTB,TA(l3)=
)(

))((

3

3,

ldepth

lLCAdepth TBTA
 = 4/4 = 1

OGM sim(B,A) =
Al ilTleafsimT

1 21)(, /n = 2 / 2 = 1

Using the average of the asymmetric measures, the symmetric measure of

similarity between A and B is 1.78 / 2 = .89. In a similar way, the symmetric measures

can be calculated for the similarity between documents A and C (.93) and documents B

and C (.51). Due to the asymmetric nature of this calculation, and the fact that the

subclass structure necessitates the assumption that interior nodes are considered as both

leaf nodes and interior nodes, a decision was made to not include this measure in the final

SWAS analysis.

As can be seen by the variety and results of similarity calculations, the meaning of

these values is dependent on the context in which they are viewed. In this case, document

annotation similarity measures were examined in conjunction with the common terms

and common unexpected terms (implicit knowledge) found in the text of the documents

themselves. Exploring the unexpected terms involves examination of the vocabulary of

each document. Reverse stemming techniques, implemented through suffix elimination,

was used to determine roots of the terms in the documents, and comparisons were made

to the root of the terms rather than the term itself. This type of term grouping had been

previously employed by Liu, Ma and Yu (2000) and others.

After the common term roots and common unexpected term roots were

determined, each of these sets of measurements was correlated to each similarity measure

to estimate the best measure of similarity. Table 12 shows the common term roots and

114

CURs found from the analysis. Table 13 shows the value of each similarity measure,

along with the number of common terms and CURs and the correlation as computed by

the Pearson correlation coefficient. Table 13 shows the same data based on rankings,

utilizing Spearman’s rank correlation coefficient.

115

Document

Pair

Common

Terms

(except

CURs)

CURs

A, B Semantic

Web

Designed

Documents

Enhanced

A, C Semantic

Web

Add

Communities

Use, Users

B, C Knowledge

Web

Enable

Table 12: Common Terms and Unexpected Terms in Example Documents

116

Doc. Pair Common

 Terms

Curs Ssim Jsim Vsim UHIsim WHIsim GCSM

A,B

5 3 .82 .67 .14 .5 .8 0.91

A,C

5 3 .64 .56 .10 .33 .75 0.63

B,C

3 1 .45 .33 .09 .33 .12 0.69

Common

Term Corr.
 0.87 0.95 0.65 0.50 1.0 0.31

CUR Corr.

 0.87 0.95 0.65 0.50 1.0 0.31

Table 13: Example Summary of Common Terms, Measures and Correlation

117

Doc.

Pair

Common

Terms
Curs

Rank

Ssim

Rank

Jsim

Rank

Vsim

Rank

UHIsim

Rank

WHIsim

Rank

GCSM

A,B

2.5 2.5 3 3 3 3 3 3

A,C

2.5 2.5 2 2 2 1.5 2 1

B,C

1 1 1 1 1 1.5 1 2

Common

Term

Corr.
 .13 .13 .13 .38 .13 .88

CUT

Corr.

 .13 .13 .13 .38 .13 .88

Table 14: Example Ranking of Common Terms, Measures and Correlation

118

In the particular example shown, the correlations for common terms and CURs

are the same, but this is coincidental and not expected to be the case when actual

documents are analyzed. The correlations in Table 12 were calculated by the Pearson

correlation coefficient, and those in Table 13 were calculated by the Spearman ranked

correlation coefficient, as shown in Equations 2.22 and 2.23. The actual data also showed

the effect of using the inferred concepts for the non-hierarchical measures, although those

results are not shown here to keep the example brief.

The approach used was based on the premise that terms indicated via the

annotation ontology were actually part of the document annotation. For example, ―Text

Mining‖ was the first concept specified in the ontological annotation to be considered in

the documents. In Document C, the third sample document created, the topic annotation

―Text Mining‖ was included. While neither word contained in ―text mining‖ was a part of

the document text, the ontology defines the concept ―Knowledge Discovery‖ as the

parent of text mining and since ―knowledge‖ was included in the document text, then the

data reflects that this term is inferred for the third document. In other words, the term

―knowledge‖ was inferred from the annotation ―Text Mining‖.

No conclusions were drawn from this sample data for two reasons. First, the

sample size of four documents was too small to yield any reliable results. In addition,

although an actual published ontology was used for the semantic markup, the documents

themselves were contrived to fit this example, rather than actual data already published

on the Web. This example pointed out one problem that would have to be addressed by

the Webmaster of a Web portal. If a tool to compare similarity of annotations and

document content were to be placed on the portal, it would be extremely important to

119

validate the reliability of the documents placed there that others in the community would

be measuring against. Algorithms such as the document selection technique used in this

study could be appropriate for this task.

In summary, the following steps were followed in this example:

1. Select the documents and ontology to be utilized. Specify the concepts that

will be included, as well as the inference rules that shall be applied for that

ontology. Further refine the set of selected documents according to the

threshold and deselection criteria.

2. Create the ontological similarity document term matrix and indicate

explicit and inferred terms.

3. Calculate the similarity of each document pair with various measures.

4. Relate all terms to a term root. Prune the text portion of the documents to

remove common non-descriptive terms using a stop-list. Create a

vocabulary matrix that includes all non-pruned terms for each document.

Enter the frequency of each term in each document, as well as a flag

indicating if this term is unexpected based on the ontological annotation

and inference.

5. For each document pair, identify the common term roots and the common

unexpected term roots.

6. Compare the various similarity values to the number of common

unexpected term roots and common term roots for each document pair.

Determine if there is a positive correlation between these two measures.

120

The same process of steps was carried out utilizing the SWAS tool to

examine actual documents with the full ontology. Multiple parameters were

varied, and the results analyzed according to those various criteria. Findings were

formulated, which led to suggestions for future research.

121

Chapter 4

Results

Findings

Utilizing the Semantic Web Analysis of Similarity (SWAS) tool, parametric

studies were conducted to evaluate the correlation of the various measures of similarity to

the number of common term roots and common unexpected term roots in the document

set. The correlation coefficients were then analyzed to determine if they were statistically

significant. A point value was assigned to the significant measures, with the highest

measure receiving the most points, and the non-significant measures receiving the least

points. Utilization of the point system, based on the ranking of each measure as compared

to the others, allowed comparison of the various measures grouped by the various

parametric criteria.

The online tool available at http://faculty.vassar.edu/lowry/ch4apx.html was used

to determine the statistical significance. Since only positive correlation was desired, a

one-tailed or directional test of significance was applied. Those values not reaching a 5%

level of significance were deemed insignificant, since this value is commonly used for

scientific research (Lowry, 2007). This minimum value was calculated for all the sample

sizes evaluated, and is shown as the ―minimum rho‖ value in the data tables.

http://faculty.vassar.edu/lowry/ch4apx.html

122

Eighteen measures of similarity were computed in the SWAS analysis. The

similarity measures are labeled M1 through M18 in the data tables. Table 15 shows the

meaning of each of these measures.

123

Label Measure

M1 Simple Match Measure

M2 Ranked Simple Match Measure

M3 Simple Match Measure using Inferred Concepts

M4 Ranked Simple Match Measure using Inferred Concepts

M5 Jacquard Measure

M6 Ranked Jacquard Measure

M7 Jacquard Measure using Inferred Concepts

M8 Ranked Jacquard Measure using Inferred Concepts

M9 Cosine Measure

M10 Ranked Cosine Measure

M11 Cosine Measure using Inferred Concepts

M12 Ranked Cosine Measure using Inferred Concepts

M13 GCSM Measure using Inferred Concepts

M14 Ranked GCSM Measure using Inferred Concepts

M15 UHI Measure using Inferred Concepts

M16 Ranked UHI Measure using Inferred Concepts

M17 WHI Measure using Inferred Concepts

M18 Ranked WHI Measure using Inferred Concepts

Table 15: Similarity Measure Legend

124

The measure with the highest significant positive correlation was assigned a value

of 18 points and the measure with the next highest significant positive correlation was

assigned a value of 17 points, and so on until all measures with significant positive

correlation were assigned a point value. Those measures with negative or insignificant

correlation received no point value. This allowed various parametric runs to be grouped

together and results compared.

The Generalized Cosine-Similarity Measure (GCSM), unweighted hierarchical

measure (UHI), and weighted hierarchical measure (WHI) made use of the hierarchical

structure of the ontology. and were built on the premise of inclusion of inferred concepts,

so these measures have little meaning without considering the inferences. Rule 1 (Formal

Language) must be considered in the context of the ontology. There are ten formal

languages specified, but there are no subclasses for any of them. Since each annotated

concept is at the same level of the ontology, and the GCSM measure was designed to

show the relationship based on the depth from a common ancestor, this measure was not

useful when considering this rule. For a similar reason, there was no difference in the

results when using docRatio or parentRatio if the validity of annotation was determined

by Rule 1 only. There was also no difference between the annotations and inferred

measures when Rule 1 was used (since there is no inferred data).

Valid annotations were determined based on the rules. Selection sets were based

on the docRatio and parentRatio separately. The number of deselections was held

constant at five, since this resulted in a selection set that could not be improved further by

more deselections. Correlation was measured for the common term roots and common

unexpected term roots. Five threshold values were examined for each of these cases,

125

corresponding to a sample size of approximately one to three percent of the total

documents, and one-quarter, one-half, three-quarters, and all of the documents. In some

cases, a minute difference in the threshold value caused a major change in the document

selection, and in other cases, a wider range of thresholds yielded no change in the

document selection. At least ten documents were included in the selection set for all cases

analyzed. The correlation required to be considered significant varied inversely with the

sample size. Small samples require a high correlation coefficient to be considered

significant, as compared to the value required for large sample sizes.

Table 16 shows an example of part of the comparison for the threshold value of

0.128 examined using Rule 2 when the selections were based on the docRatio and the

correlations were based on common term roots. Only document pairs with at least one

common term were considered for inclusion in the selection set. This threshold yielded

28 document pairs in the selection set, and those correlations with a value more than

0.317223 were considered significant.

126

 Rule 2 Topic MinCommon1 Thresh 0.128 for Doc CR

Doc1 Doc2

Com

Roots

Rank

CR M5 M6 M7 M8

6 7 3 12 0.27273 4.5 0.31429 6

6 10 4 18.5 0.6 19 0.55 15.5

6 14 3 12 0.23077 3 0.275 5

6 28 6 26.5 0.375 10.5 0.6 17

6 33 6 26.5 1 27 0.78571 18.5

6 61 2 5 0.75 23.5 0.88 24

6 62 4 18.5 0.66667 21 0.8 20.5

7 10 3 12 0.33333 7.5 0.18333 2

7 14 3 12 1 27 1 27.5

7 28 0 1 0.5 16 0.44 11.5

7 33 5 22.5 0.75 23.5 0.91667 25

7 61 3 12 0.42857 13.5 0.44 11.5

7 62 5 22.5 0.375 10.5 0.4 10

10 14 2 5 0.27273 4.5 0.15714 1

10 28 1 2 0 1.5 0.22 4

10 33 5 22.5 0.75 23.5 1 27.5

10 61 2 5 0.42857 13.5 0.48889 13

10 62 2 5 0 1.5 0.2 3

14 28 3 12 0.375 10.5 0.36667 8.5

14 33 6 26.5 0.6 19 0.78571 18.5

14 61 4 18.5 0.33333 7.5 0.36667 8.5

14 62 3 12 0.3 6 0.33846 7

28 33 5 22.5 0.5 16 0.55 15.5

28 61 2 5 0.75 23.5 0.94286 26

28 62 3 12 0.6 19 0.825 22.5

33 61 6 26.5 1 27 0.8 20.5

33 62 4 18.5 0.375 10.5 0.50769 14

61 62 3 12 0.5 16 0.825 22.5

Corr. 0.43546 0.38589

Rank Corr. 0.40476 0.3685

Number of pairs

selected= 28

Table 16: Example SWAS Output

127

The four measures associated with the Jacquard measure are shown in this table

(Measures M5-M8). From those four measures, all of the correlation values were

significant, and those are shown in bold in Table 16. Full results for all measures and all

parametric cases are available at http://home.cfl.rr.com/lookhome/joelynn/SWASoutput.

The summary data is also available at that location.

Table 17 shows a portion of the summary data for all thresholds for this same

case. Summaries of other cases are shown in Appendix D. The column in Table 17

labeled ―Min rho‖ refers to the smallest value of the correlation coefficient that was

considered significant based on a one-tailed or non-directional test of significance.

128

Correlation and Ranked Correlation Rule 2 MinCommon 1 Document Ratio Common Roots

(Significant Correlations Shown in Bold)

Threshold #PrsSel Min rho MaxVal MaxMeas M5 M6 M7 M8

0.128 28 0.317 0.435 JMatch 0.435 0.405 0.386 0.369

 Rank 1 4 8 9

 Points 18 15 11 10

0.155 561 0.070 0.340 RankJMatch 0.264 0.340 0.202 0.241

 Rank 4 1 9 5

 Points 15 18 10 14

0.175 1176 0.048 0.242 RankJMatch 0.183 0.242 0.141 0.148

 Rank 7 1 11 9

 Points 12 18 8 10

0.218 1770 0.039 0.163 RankJMatch 0.137 0.163 0.131 0.102

 Rank 6 1 7 11

 Points 13 18 12 8

1.000 2346 0.034 0.114 RankJMatch 0.069 0.114 0.059 0.041

 Rank 5 1 7 10

 Points 14 18 12 9

 Total Pts RankJMatch 72 87 53 51

 Rank TP 4 1 6 7

 Table 17: Sample Summary Analysis

129

The data was grouped in order to analyze not only the performance of the various

measures, but also the results of each parametric variation. The data was grouped

according to rule, ratio for selection, common term roots or common unexpected term

roots, and whether or not document pairs in the selection set have at least one common

term. The measures themselves denoted whether terms derived from knowledge that

could be inferred from the ontology were considered as annotated, and whether the

correlation was based on normed values or on the rankings of the values.

Summary of Results

The results from this experiment validated the results obtained from Haveliwala,

Gionis, Klein and Indyk in 2002. Over all the cases studied, the Jacquard measure

showed the highest correlation when compared to either the common term roots or the

common unexpected term roots. This measure, essentially the union of the common terms

divided by the intersection, not only best correlated to the common terms, but was

computationally simple and easy to understand. Since a primary aim of this study was to

build a foundation for tools for novices Semantic Web users, the appropriateness of a

common and widely understood measure was an added bonus. Four different cases were

analyzed for most of the measures, including the Jacquard measure. The similarity

measure was calculated based on the annotated ontological concepts and on all concepts

that could be inferred from the ontology. The correlation was calculated based on the

actual values and also on the relative ranking of those values. The measure that used the

130

rankings of values rather than the values themselves resulted in higher correlation for the

Jacard measure.

The results of the data remained reasonably consistent no matter which grouping

was used. Table 18 gives an overview of the results, showing the rankings of all measures

for a selection of the groupings. A ranking of 1 meant that the measure was ranked the

highest, and a ranking of 18 denoted the lowest ranking.

131

All

rules

Rule

2

Rule

1

Doc

Ratio

Parent

Ratio

Com

Roots
CUR

Min

Com

0

Min

Com

1
M1 18 17 13 17 15 17 18 18 18

M2 15 15 13 15 12 16 12 15 15

M3 17 18 13 17 14 15 17 17 17

M4 16 16 13 16 16 18 16 16 16

M5 3 5 7 3 3 3 3 3 3

M6 1 1 1 1 1 1 1 1 1

M7 6 6 7 7 7 6 6 6 6

M8 7 7 1 6 8 7 7 7 7

M9 4 4 9 4 5 5 4 5 4

M10 2 2 3 2 2 2 2 2 2

M11 11 10 9 12 10 10 13 10 12

M12 9 9 3 9 9 8 9 9 9

M13 13 12 13 14 17 13 15 13 14

M14 14 13 13 13 18 14 14 14 13

M15 8 8 9 10 6 9 8 8 8

M16 5 3 3 5 4 4 5 4 5

M17 12 11 12 11 11 11 11 11 11

M18 10 14 3 8 13 12 10 12 10

Table 18: Performance of all Measures

132

While there is little variance in the results, it is obvious that the least consistent

group is when Rule 1 is used alone. Because there were no superclass/subclass

designations in this portion of the ontology, this rule skewed the results. Rule 1 was

deemed inappropriate for comparison to the hierarchical results.

M6, the ranked Jacquard measure based on the annotations only, amassed the

highest point value in each grouping. When considering only Rules 2 and 3, the highest

point value for that measure was obtained using Rule 3, which included annotations that

were valid according to either the formal language or the topic criteria. Table 19 shows

the average value of M6 for various groupings using Rule 3.

133

Ranked Correlation Values for Jacquard Measure Rule 3

Grouping Points for M6

DocRatio 333

ParentRatio 345

Common Roots 338

Common Unexpected Roots 340

MinCom 0 326

MinCom 1 352

Table 19: Point Values for M6 for Various Groupings

134

Examination of this grouped data shows that a higher point value for this measure

is amassed when the parentRatio is used for document selection and when only those

documents with at least one common term are considered. The point value when

correlating to common unexpected term roots is higher than when the common terms are

used, but this difference is slight.

One further aggregation of the data for Rule 2 was done to show the overall effect

of each similarity measure. There were six basic measures considered (Simple Match,

Jacquard, Cosine, GCSM, UHI and WHI). For the first three of these measures, there

were four variations considered (measure based on value of correlation without inferred

concepts, measure based on ranking of correlation without inferred concepts, and the

value and ranking when inferred concepts were included). Since the three hierarchical

measures depended on the inferred concepts, only the value of correlation and the ranked

value were shown. All points for each measure were totaled, and those totals doubled for

the hierarchical measures, since only half as many variations were considered.

This data is shown in Table 20, and was grouped to show the cases where the

selection set was determined by the docRatio value in Table 21 and the parentRatio value

in Table 22. The final two tables show the effect of the selection criteria on the overall

performance of that measure. It was reasonable to assume that the hierarchical measures

would perform better when the document selection was based on parentRatio, since that

calculation took into effect the hierarchical structure of the ontology, and Table 22 does

show that the UHI hierarchical measure is the highest ranked one. Only rule 2 was used

for this portion of the analysis, since Rule 1 was based on a part of the ontology that had

no hierarchical structures, and Rule 3 included the results from Rule 1.

135

Points for Rule 2 Aggregated for Each Measure

Rule MinCom Case SimpleM Jacquard Cosine GCSM UHI WHI

2 1 DocCR 0 263 240 156 214 146

2 1 DocCUR 33 172 109 154 116 66

2 1 ParCR 0 263 255 12 284 150

2 1 ParCUR 111 155 152 0 138 0

2 0 DocCR 0 254 242 156 224 96

2 0 DocCUR 33 203 141 188 116 66

2 0 ParCR 0 263 255 12 284 150

2 0 ParCUR 111 155 152 0 138 0

 Total 288 1728 1546 678 1514 674

 Rank 6 1 2 4 3 5

Table 20: Rule 2 Data Aggregated for Each Measure

136

Points for Rule 2 Aggregated for Each Measure docRatio Selection

Rule MinCom Case SimpleM Jacquard Cosine GCSM UHI WHI

2 1 DocCR 0 263 240 156 214 146

2 1 DocCUR 33 172 109 154 116 66

2 0 DocCR 0 254 242 156 224 96

2 0 DocCUR 33 203 141 188 116 66

 Total 66 892 732 654 670 374

 Rank 6 1 2 4 3 5

Table 21: Rule 2 Aggregated Data Based on DocRatio Selection

137

Ranking Summary Rule 2

Aggregate SimpleM Jacquard Cosine GCSM UHI WHI

All Cases 6 1 2 4 3 5

DocRatio 6 1 2 4 3 5

ParentRatio 5 2 3 6 1 4

Table 22: Rule 2 Aggregated Data Based on ParentRatio Selection

138

Chapter 5

Conclusions, Implications, Recommendations and Summary

Conclusions

Based on the analysis performed, the best measure of similarity for this data set is

the Jacquard measure when the ranked values are compared to the common unexpected

terms documents selected using the parentRatio. Examination of this grouped data shows

that a higher point value for this measure is amassed when the parentRatio is used for

document selection and when only those documents with at least one common term are

considered. The point value when correlating to common unexpected term roots is higher

than when the common terms are used, but this difference is slight. It should be noted that

these conclusions are based on documents annotated from a single ontology, and any

generalization of these conclusions should not be made without further study.

The results demonstrate that the area of document selection is important. When

the data was aggregated into the six basic measures and compared by the method of

document selection, and when when the document selection was based on the parentRatio

calculation, the highest ranked measure became the unweighted hierarchical measure

(UHI). It would be expected that the hierarchical measures would perform better when

selection was based on parentRatio, since this took into account the hierarchical structure

of the ontology. Only one method of automated document selection with two variations

139

was presented in this study. Other studies are needed to compare this method to other

selection algorithms, as well as to selection by knowledge management experts.

While none of the hierarchical measures of similarity were the highest ranked for

the individual variations of the measures, this study did show some benefit of the

knowledge provided through the ontological knowledge. The use of the parentRatio to

implement the selection algorithm is only possible through the definition of the concept

tree provided in the ontology. Determination of which terms were unexpected was also

possible only because of the knowledge derived from the ontology. This study shows that

there is promise for the knowledge gained from the ontology in determination of

document similarity, but the quantification of its usefulness should be determined only

after further study with a broader range of ontologies and document sets.

Implications and Recommendations

Based on the results of this study, recommendations were formulated that fell into

three broad categories. These were improvement to the SWAS system, extended studied

of similarity measurements and document selection involving other ontologies or

document sets, and development of web portal tools to assist with semantic annotation.

The need for ongoing research has been shown through the development of the Semantic

Web to this point.

The current SWAS system was built as a prototype for preliminary studies of

similarity measures applied to SWDs. A significant amount of pre-processing and post-

processing was done off-line to prepare input and analyze output files. The

InputParamters file was designed as a text-based input file that required the user fully

140

understand the system implementation to correctly configure. This file required that the

user specify maximum numbers concerning the ontology and document set to work

properly. Incorporation of methods to extract the ontological markups and parse those

into RDF triples would eliminate much of the pre-processing work. Conversion of the

array-based implementation of the code to a vector-based implementation would

eliminate the need to specify maximum values. Development of a graphical user interface

would simplify the parametric input. Post-processing methods built into the system would

reduce the off-line analysis required. Source code has been uploaded to facilitate

enhancements to this system by interested researchers.

An analysis of the algorithms used for searching and sorting throughout the

SWAS system could lead to other implementations of the same tasks that improve

performance. Scalability concerns were not addressed in this initial implementation. This

remains an area for future research. Scalability should be studied if this tool is to be used

with large collections of documents. In addition, further statistical studies on the

similarity measures may prove to be of interest. Computationally complex models such

as those used by the SMART system were not included in this initial analysis.

Other ways the SWAS system could be improved include enhancing the text

analysis by incorporating more elaborate means of determining term roots, and

incorporation of synonyms for those roots and expansion into languages other than

English. Incorporation of online dictionary tools, such as WordNet, to determine term

roots would be a logical next step in the refinement of this tool. Incorporation of

synonyms of terms would also be a major refinement, as would incorporation of

141

translators that would allow implementation in other languages. It should be noted that

not only would data have to be translated, but the stop list as well.

Research conclusions cannot be based on a single study. The results of this study

did confirm results of the 2002 study performed by Haveliwala, Gionis, Klein and Indyk

investigating similarity measures in a different context. More research is needed to

analyze various ontologies and annotations before conclusions can be drawn. Reseach is

also needed to determine selection algorithms to narrow a document set to those most

appropriate for the analysis. Use of automated techniques such as the docRatio and

parentRatio methods utilized by SWAS should be compared to results of a knowledge

expert to determine the feasibility of automated selection. While the Jacquard measure

appeared to be appropriate for this ontology and document set, other measures would

likely be a better fit for different ontologies.

This study showed that automated systems could be used to select documents and

determine similarity to an ontology. This can be extended to provide validation tools for

semantic markup. One reason frequently attributed to the success of the World Wide Web

is that it is intuitive and simple for users. One problem cited with the Semantic Web is

that significant knowledge engineering background is needed to produce SWDs with true

meaning encoded in the annotations. The lack of tools to assist users with this process has

been cited as one reason the Semantic Web has not become more popular (Haustein &

Pleumann, 2002). One of the primary use cases suggested for the Semantic Web is that of

a portal for users of a common ontology. As such portals are developed, groups of users

will likely display documents in a general area of interest.

142

Currently, there is no real benefit to users who semantically enhance documents.

If portal tools were developed to search document databases based on semantic

annotations, users who produced documents with those annotations would have the

benefit of an additional way for others to find that document. Key to the idea of

communities of users is the idea that simple tools can be developed to assist users in

determining and validating semantic information added to the documents. Novice web

authors do not have the knowledge engineering background to discern most appropriate

annotations for a specific document. Semantic similarity could be used as a method for

validation of annotations. Once a set of appropriately annotated documents was selected,

automated tools could be developed to allow the novice user to submit either an

annotated document or the document text only.

If the user submitted the document text only, and there was a sufficient supply of

appropriately annotated documents available within the Web portal, the text of the

document could be compared to the text of those already deemed suitable. The similarity

measure shown to be most appropriate for this ontology could be utilized to determine

which document was most similar to this one. The annotations used for the most similar

document could be suggested to this user. The results of the text comparison could be

used to display to the user how several similar documents were annotated.

If the annotations were submitted, the system could supply a measure indicating

how this document compares to others with similar annotations. By utilizing the same

procedure that was applied in the document selection scheme in SWAS system and

outlined in the ―Selection Algorithm‖ of chapter 3 of this document, an average selected

difference could be calculated for the documents in the pre-determined set of

143

appropriately annotated documents, and this value recalculated to include the user’s

document. If the average difference of the document set including that document did not

significantly decrease, then the document would be considered appropriately annotated.

This information could be transmitted back to the user, along with annotation suggestions

based on the document text alone if the document were determined inappropriately

annotated for this community of users.

Summary

The SWAS tool has been developed to provide a means for comparison of

document text. Source code for the tool has be published online, allowing free use of this

tool for enhancements and future research. Detailed descriptions of the data

preprocessing and operating system setup have been provided. The data analysis showed

the Jacquard measure most appropriate for the overall data studied, and the unweighted

hierarchical measure a good choice if only the topic of the paper is used as the criteria for

concepts to be used from the ontology and the parentRatio method of document selection

employed. A suggestion has been presented for the development of a Web portal tool to

provide novice Semantic Web users with information concerning annotations from

documents with similar text.

144

Appendix A

Source Code Listing of Sample Documents

Document A:

<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">

<!-- NOTE: This is an example of an annotated document using the ISWC ontology

created to demonstrate computation of ontological similarity -->

<html>

<head>

<!--<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#‖

xmlns:daml=http://www.daml.org/2001/03/daml+oil#‖

xmlns="http://annotation.semanticweb.org/iswc/iswc.daml#">

<InProceedings

rdf:about="http://home.cfl.rr.com/lookhome/joelynn/pdp/ResourceC.html#

Overview of the Semantic Web">

<conference rdf:resource="http://annotation.semanticweb.org/iswc/iswc.daml#

ISWC_2002"/>

<title> Uses of Semantic Web Documents </title

<topic rdf:resource="http://annotation.semanticweb.org/iswc/iswc.daml#

Semantic_Annotation"/>

<topic rdf:resource="http://annotation.semanticweb.org/iswc/iswc.daml#

Semantic_Web_Languages"/>

<topic rdf:resource="http://annotation.semanticweb.org/iswc/iswc.daml#

Text_Mining"/>

<year> 2003 </year>

</InProceedings>

</rdf:RDF> -->

</head>

<body>

<h2> Uses of Semantic Web Documents </h2>

<p>Documents designed for the Semantic Web can be used to enhance the

performance of search engines, add more understanding to the data, and provide

information to communities of users on the Web. </p>

</body>

</html>

http://www.daml.org/2001/03/daml+oil

145

Document B:

<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">

<!-- NOTE: This is an example of an annotated document using the ISWC ontology

created to demonstrate computation of ontological similarity -->

<html>

<head>

<!-- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

xmlns="http://annotation.semanticweb.org/iswc/iswc.daml#">

<InProceedings

rdf:about="http://home.cfl.rr.com/lookho1me/joelynn/pdp/ResourceC.html#

Overview of the Semantic Web">

<conference rdf:resource="http://annotation.semanticweb.org/iswc/iswc.daml#

ISWC_2002"/>

<title> Languages of the Semantic Web </title>

<topic rdf:resource="http://annotation.semanticweb.org/iswc/iswc.daml#

Semantic_Web_Languages"/>

<topic rdf:resource="http://annotation.semanticweb.org/iswc/iswc.daml#

Semantic_Annotation"/>

<year> 2003 </year>

</InProceedings>

</rdf:RDF>

 -->

</head>

<body>

<h2> Languages of the Semantic Web </h2>

<p>A hierarchy of languages support the development of the Semantic Web

according to standards being developed by W3C. These languages, including

XML and RDF, enable the addition of knowledge which can be understood by

machines to documents on the Web. This is accomplished through the use of an

ontology which has been designed for that particular subject, and used to

enhance the Web documents. </p>

</body>

</html>

146

DocumentC :

<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">

<!-- NOTE: This is an example of an annotated document using the ISWC ontology

created to demonstrate computation of ontological similarity -->

<html>

<head>

<!-- <rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#

xmlns:daml=http://www.daml.org/2001/03/daml+oil#

xmlns="http://annotation.semanticweb.org/iswc/iswc.daml#">

<InProceedings

rdf:about="http://home.cfl.rr.com/lookho1me/joelynn/pdp/ResourceC.html#

Overview of the Semantic Web">

<conference rdf:resource="http://annotation.semanticweb.org/iswc/iswc.daml#

ISWC_2002"/>

<title> Overview of the Semantic Web </title>

<topic rdf:resource="http://annotation.semanticweb.org/iswc/iswc.daml#

Agents"/>

<topic rdf:resource="http://annotation.semanticweb.org/iswc/iswc.daml#

Logic"/>

<topic rdf:resource="http://annotation.semanticweb.org/iswc/iswc.daml#

Text_Mining"/>

<topic rdf:resource="http://annotation.semanticweb.org/iswc/iswc.daml#

Semantic_Annotation"/>

<year> 2003 </year>

</InProceedings>

</rdf:RDF>

 -->

</head>

<body>

<h2> Overview of the Semantic Web </h2>

<p>The Semantic Web is a project being worked on by Tim Berners-Lee. It will add

logic to the Web, and enable agents to infer knowledge and concepts that extend

beyond keywords for use by agents and communities of users. </p>

</body>

</html>

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.daml.org/2001/03/daml+oil

147

Document D:

<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">

<!-- NOTE: This is an example of an annotated document using the ISWC ontology

created to demonstrate computation of ontological similarity -->

<html>

<head>

<!-- <rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#

xmlns:daml=http://www.daml.org/2001/03/daml+oil#

xmlns="http://annotation.semanticweb.org/iswc/iswc.daml#">

<InProceedings

rdf:about="http://home.cfl.rr.com/lookho1me/joelynn/pdp/ResourceC.html#

Overview of the Semantic Web">

<conference rdf:resource="http://annotation.semanticweb.org/iswc/iswc.daml#

ISWC_2002"/>

<title> OIL </title>

<topic rdf:resource="http://annotation.semanticweb.org/iswc/iswc.daml#

Semantic_Web_Languages"/>

<topic rdf:resource="http://annotation.semanticweb.org/iswc/iswc.daml#

Semantic_Annotation"/>

<year> 2003 </year>

</InProceedings>

</rdf:RDF>

 -->

</head>

<body>

<h2> Languages of the Semantic Web </h2>

<p>OIL is a new method to encode data. The information provided allows

inferences to be made. </p>

</body>

</html>

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.daml.org/2001/03/daml+oil

148

Appendix B

Term Root Analysis of Sample Documents

Term Root Analysis

Root Term Stop Documents

a a YES B, C, D

accomplish accomplished B

accord according B

add add A, C

addi addition B

agent agents C

allow allows D

an an YES B

and and YES A,B,C,D

be be, been, being YES A,B,C,D

Berners-Lee Berners-Lee C

beyond beyond C

by by YES B, C

can can YES A

communit communities A,C

concept concepts C

data data A,D

design designed A, B

develop developed, development B

docu documents A,B

enable enable B,C

encode encode D

engin engines A

enhance enhance A,B

extend extend C

for for YES A,B,C

has has YES B

hierarchy hierarchy B

i is YES D

149

include including B

infer infer C

inferenc inferences D

Term Root Analysis (Continued)

Root Term Stop Documents

inform information A,D

is is YES B,C

it it YES C

keyword keywords C

knowledge knowledge B,C

language languages B

logic logic C

machine machines B

made made D

method method D

more more A

new new D

of of YES A, B, C

OIL OIL D

on on YES A. B. C

ontolog ontology B

particular particular B

perform performance A

project project C

provid provide, provided A,D

RDF RDF

B

search search A

Semant Semantic A, B, C

standard standards B

subject subject B

support support B

that that YES B, C

the the YES A, B, C, D

these these YES B

this this YES B

through through YES B

Tim Tim C

to to YES A, B, C, D

understand understanding A

150

understood understood B

us used, users, use YES A, B, C

W3C W3C B

Term Root Analysis (Continued)

Root Term Stop Documents

Web Web A, B, C

which which YES B, C

Term Root Analysis

will will YES C

work worked C

XML XML B

151

Appendix C

Description of Input Files

Four input files are required for the SWAS system:

1. RDF triples for DAML version of SWIC ontology

2. RDF triples for OWL version of SWIC ontology

3. RDF triples for annotations of documents published using SWIC ontology

4. Input Parameters for SWAS system

Samples of these files are available online at

http://home.cfl.rr.com/lookhome/joelynn/SWASinput.

RDF triples for DAML version of SWIC ontology: This is a spreadsheet containing

three columns representing the subject, predicate and object of the RDF triples for the

ontology using the DAML specification. There is one row for each statement in the

ontology. An ODBC connection must be set up for this file as outlined in Appendix E,

and the name of that connection should be specified as line 12 in the InputParameters.dat

file.

RDF triples for OWL version of SWIC ontology: This is a spreadsheet containing

three columns representing the subject, predicate and object of the RDF triples for the

ontology using the OWL specification. There is one row for each statement in the

152

ontology. An ODBC connection must be set up for this file as outlined in Appendix E,

and the name of that connection should be specified as line 13 in the InputParameters.dat

file.

RDF triples for annotations of documents published using SWIC ontology: This is a

multi-worksheet spreadsheet representing the text and RDF triples for the document set

being analyzed. The SWAS system assumes that the worksheets will have the default

Microsoft Excel names, beginning with ―Sheet1‖. Each worksheet contains 3 columns,

representing the subject, predicate and object of the RDF triples. Row 1 of each

spreadsheet contains the text of the document, which is an abstract of the actual paper.

The RDF triples begin at row 2. An ODBC connection must be set up for this file as

outlined in Appendix E, and the name of that connection should be specified as line 14 in

the InputParameters.dat file

Input Parameters for SWAS system: The file ―InputParameters.dat‖ is assumed to be

in the same directory as the SWAS executable file. This is a text file with each row

representing a specific input parameter as defined in the chart below.

InputParameters.dat Specification

Line Data

Type

Description

1 Integer

Number of branches from the root of the ontology tree to be

considered. In this analysis, ―formal language‖ and ―topic‖ are the

concepts to be considered from the ontology tree root.

2 Integer Maximum integer value to be used in finding minimum values.

3 Integer Maximum number of RDF statements in the ontology.

4 Integer Maximum number of unique words in any one document text. in

5 Integer Maximum number of superconcepts for any concept in the ontology.

153

InputParameters.dat Specification (Continued)

Line
Data

Type
Description

6 Integer
Maximum number of lowest parents from which other concepts are

derived.

7 Integer Maximum number of valid document annotation statements.

8 Integer Maximum number of unique term roots contained in all documents.

9 Integer
Originally, maximum number of concepts in one document. Not used

in latest version of software.

10 Integer Maximum number of documents to be analyzed.

11 Integer
Minimum number of common terms required for document pair to be

included in selection set.

12 Text
Parameter to specify database connection for DAML version of

ontology.

13 Text
Parameter to specify database connection for OWL version of

ontology.

14 Text
Parameter to specify database connection for document text and

annotations file.

15 Text RDF specifier in predicate field to denote subconcepts in ontology.

16 Text
RDF specifier in predicate field of document annotation to denote the

subject of this statement can be title of document.

17 Text
Alternate RDF specifier in predicate field of document annotation to

denote the subject of this statement can be title of document.

18 Text
RDF specifier in object field of document annotation to denote the

subject of this statement can be title of document.

19 Text
Alternate RDF specifier in object field of document annotation to

denote the subject of this statement can be title of document.

20 Text
RDF specifier in predicate field of document annotation to denote the

subject of this statement is concept of interest by rule 1.

21 Text
Alternate RDF specifier in predicate field of document annotation to

denote the subject of this statement is concept of interest by rule 1.

22 Text

Second alternate RDF specifier in predicate field of document

annotation to denote the subject of this statement is concept of

interest by rule 1.

23 Text
RDF specifier in predicate field of document annotation to denote the

subject of this statement is concept of interest by rule 2.

24 Text
Alternate RDF specifier in predicate field of document annotation to

denote the subject of this statement is concept of interest by rule 2.

25 Text

Second alternate RDF specifier in predicate field of document

annotation to denote the subject of this statement is concept of

interest by rule 2.

26 Text
RDF specifier in object field of document annotation to denote the

subject of this statement is document title.

27 Text Alternate RDF specifier in object field of document annotation to

denote the subject of this statement is document title.

154

InputParameters.dat Specification (Continued)

Line Data

Type

Description

28 Text
RDF specifier in predicate field of document annotation to denote the

subject of this statement is document title.

29 Text
Alternate RDF specifier in predicate field of document annotation to

denote the subject of this statement is document title.

30 Text
Second alternate RDF specifier in predicate field of document

annotation to denote the subject of this statement is document title.

31 Text
RDF specifier in predicate field to denote the subject of this

statement is literal name of ontology concept.

32 Text
Alternate RDF specifier in predicate field to denote the subject of this

statement is literal name of ontology concept.

33 Text
Second alternate RDF specifier in predicate field to denote the

subject of this statement is literal name of ontology concept.

34 Text
RDF specifier in predicate field of ontology to denote the subject of

this statement is concept of interest by rule 1.

35 Text
Alternate RDF specifier in predicate field of ontology to denote the

subject of this statement is concept of interest by rule 1.

36 Text
RDF specifier in predicate field of ontology to denote the subject of

this statement is concept of interest by rule 2.

37 Text
Alternate RDF specifier in predicate field of ontology to denote the

subject of this statement is concept of interest by rule 2.

38 Integer
Number of times a document can be deselected before it is no longer

considered for selection set.

39 Real Threshold for case 1 based on doc_ratio and common term roots.

40 Real
Threshold for case 2 based on doc_ratio and common unexpected

term roots.

41 Real Threshold for case 3 based on parent-ratio and common term roots.

42 Real
Threshold for case 4 based on parent_ratio and common unexpected

term roots.

43 Text Identifier to be included in output file designation

155

Appendix D

Results of Correlation Comparison

Selected portions of data are shown in tables below. Complete results are available

online at http://home.cfl.rr.com/lookhome/joelynn/SWASoutput.

Correlation and Ranked Correlation Rule 2 MinCommon 1 Document

Ratio Common Roots (Measures 1-4))

(Significant Correlations Shown in Bold)

Thres-

hold

#Prs

Sel

Min

rho

Max

Val MaxMeas M1 M2 M3 M4

0.12800

0 28 0.317 0.435 JMatch -0.280 -0.215 -0.627 -0.582

 Rank 16 15 18 17

 Pts 0 0 0 0

0.15500

0 561 0.070 0.340 RankJMatch -0.111 0.012 -0.116 -0.018

 Rank 17 15 18 16

 Pts 0 0 0 0

0.17500

0 1176 0.048 0.242 RankJMatch -0.167 -0.086 -0.160 -0.108

 Rank 18 15 17 16

 Pts 0 0 0 0

0.21775

0 1770 0.039 0.163 RankJMatch -0.198 -0.153 -0.226 -0.200

 Rank 16 15 18 17

 Pts 0 0 0 0

1.0000 2346 0.034 0.114 RankJMatch -0.088 -0.042 -0.118 -0.098

 Rank 16 15 18 17

 Pts 0 0 0 0

Total

Pts RankJMatch 0 0 0 0

 Rank 15 15 15 15

156

Correlation and Ranked Correlation Rule 2 MinCommon 1 Document

Ratio Common Roots (Measures 5-8)

(Significant Correlations Shown in Bold)

Thres-

hold

#Prs

Sel

Min

rho

Max

Val MaxMeas M5 M6 M7 M8

0.1280

00 28 0.317 0.435 JMatch 0.435 0.405 0.386 0.369

 Rank 1 4 8 9

 Pts 18 15 11 10

0.1550

00 561 0.070 0.340 RankJMatch 0.264 0.340 0.202 0.241

 Rank 4 1 9 5

 Pts 15 18 10 14

0.1750

00 1176 0.048 0.242 RankJMatch 0.183 0.242 0.141 0.148

 Rank 7 1 11 9

 Pts 12 18 8 10

0.2177

50 1770 0.039 0.163 RankJMatch 0.137 0.163 0.131 0.102

 Rank 6 1 7 11

 Pts 13 18 12 8

1.0000 2346 0.034 0.114 RankJMatch 0.069 0.114 0.059 0.041

 Rank 5 1 7 10

 Pts 14 18 12 9

Total

Pts RankJMatch 72 87 53 51

 Rank 4 1 6 7

157

Correlation and Ranked Correlation Rule 2 MinCommon 1 Document

Ratio Common Roots (Measures 9-12)

(Significant Correlations Shown in Bold)

Thres-

hold

#Prs

Sel

Min

rho

Max

Val MaxMeas M9 M10 M11 M12

0.1280

00 28 0.317 0.435 JMatch 0.435 0.404 0.398 0.389

 Rank 2 5 6 7

 Pts 17 14 13 12

0.1550

00 561 0.070 0.340 RankJMatch 0.270 0.321 0.133 0.184

 Rank 3 2 14 12

 Pts 16 17 5 7

0.1750

00 1176 0.048 0.242 RankJMatch 0.201 0.227 0.068 0.086

 Rank 4 2 14 13

 Pts 15 17 5 6

0.2177

50 1770 0.039 0.163 RankJMatch 0.142 0.147 0.078 0.073

 Rank 4 3 12 13

 Pts 15 16 7 6

1.0000 2346 0.034 0.114 RankJMatch 0.074 0.098 0.051 0.051

 Rank 4 3 9 8

 Pts 15 16 10 11

Total

Pts RankJMatch 78 80 40 42

 Rank 3 2 11 9

158

Correlation and Ranked Correlation Rule 2 MinCommon 1 Document

Ratio Common Roots (Measures 13-16)

(Significant Correlations Shown in Bold)

Thres-

hold

#Prs

Sel

Min

rho

Max

Val MaxMeas M13 M14 M15 M16

0.1280

00 28 0.317 0.435 Jmatch 0.274 0.256 0.221 0.355

 Rank 12 13 14 10

 Pts 0 0 0 9

0.1550

00 561 0.070 0.340 RankJMatch 0.208 0.218 0.144 0.211

 Rank 8 6 13 7

 Pts 11 13 6 12

0.1750

00 1176 0.048 0.242 RankJMatch 0.209 0.192 0.148 0.189

 Rank 3 5 10 6

 Pts 16 14 9 13

0.2177

50 1770 0.039 0.163 RankJMatch 0.141 0.116 0.131 0.156

 Rank 5 9 8 2

 Pts 14 10 11 17

1.0000 2346 0.034 0.114 RankJMatch 0.016 -0.010 0.061 0.101

 Rank 12 13 6 2

 Pts 0 0 13 17

Total

Pts RankJMatch 41 37 39 68

 Rank 10 13 12 5

159

Correlation and Ranked Correlation Rule 2 MinCommon 1

Document Ratio Common Roots (Measures 17-18)

(Significant Correlations Shown in Bold)

Thres-

hold

#Prs

Sel

Min

rho

Max

Val MaxMeas M17 M18

0.1280

00 28 0.317 0.435 JMatch 0.418 0.355

 Rank 3 11

 Pts 16 8

0.1550

00 561 0.070 0.340 RankJMatch 0.185 0.191

 Rank 11 10

 Pts 8 9

0.1750

00 1176 0.048 0.242 RankJMatch 0.156 0.119

 Rank 8 12

 Pts 11 7

0.2177

50 1770 0.039 0.163 RankJMatch 0.102 0.056

 Rank 10 14

 Pts 9 5

1.0000 2346 0.034 0.114 RankJMatch 0.023 -0.014

 Rank 11 14

 Pts 0 0

Total

Pts RankJMatch 44 29

 Rank 8 14

160

Points for All Cases Simple Match Portion

Rule MinCom Case MaxVal MaxMeas
Simple

Match

Ranked

Simple

Match

Simple

Match

Inferred

Ranked

Simple

Match

Inferred

2 1 DocCR 87 RankJMatch 0 0 0 0

2 1 DocCUR 69 RankJMatch 0 18 0 15

2 1 ParCR 80 RankJMatch 0 0 0 0

2 1 ParCUR 69 RankJMatch 15 56 13 27

2 0 DocCR 85 RankJMatch 0 0 0 0

2 0 DocCUR 84 RankJMatch 0 18 0 15

2 0 ParCR 80 RankJMatch 0 0 0 0

2 0 ParCUR 69 RankJMatch 15 56 13 27

1 1 DocCR 84 RankJMatch 0 0 0 0

1 1 DocCUR 88 RankJMatch 0 0 0 0

1 0 DocCR 88 RankJMatch 0 0 0 0

1 0 DocCUR 88 RankJMatch 0 0 0 0

3 1 DocCR 89 RankJMatch 0 3 0 0

3 1 DocCUR 85 RankJMatch 0 4 0 6

3 1 ParCR 89 RankJMatch 11 10 14 0

3 1 ParCUR 89 RankJMatch 11 10 14 0

3 0 DocCR 82 RankJMatch 0 0 0 0

3 0 DocCUR 86 JMatch 0 0 0 0

3 0 ParCR 78 RankJMatch 0 0 0 0

3 0 ParCUR 89 RankJMatch 11 10 14 0

 Total 1649 RankJMatch 63 185 68 90

 Rank 18 15 17 16

161

Points for All Cases – Jacquard Match Portion

Rule MinCom Case MaxVal MaxMeas
Jacqurd

Match

Ranked

Jacquard

Match

Jacquared

Match

Inferred

Ranked

Jacquared

Match

Inferred

2 1 DocCR 87 RankJMatch 72 87 53 51

2 1 DocCUR 69 RankJMatch 53 69 33 17

2 1 ParCR 80 RankJMatch 60 80 64 59

2 1 ParCUR 69 RankJMatch 46 69 20 20

2 0 DocCR 85 RankJMatch 54 85 59 56

2 0 DocCUR 84 RankJMatch 53 84 33 33

2 0 ParCR 80 RankJMatch 60 80 64 59

2 0 ParCUR 69 RankJMatch 46 69 20 20

1 1 DocCR 84 RankJMatch 66 84 66 84

1 1 DocCUR 88 RankJMatch 62 88 62 88

1 0 DocCR 88 RankJMatch 70 88 70 88

1 0 DocCUR 88 RankJMatch 62 88 62 88

3 1 DocCR 89 RankJMatch 69 89 43 39

3 1 DocCUR 85 RankJMatch 84 85 62 27

3 1 ParCR 89 RankJMatch 80 89 38 23

3 1 ParCUR 89 RankJMatch 80 89 38 23

3 0 DocCR 82 RankJMatch 73 82 59 54

3 0 DocCUR 86 Jmatch 86 77 46 29

3 0 ParCR 78 RankJMatch 65 78 68 62

3 0 ParCUR 89 RankJMatch 80 89 38 23

 Total 1649 RankJMatch 1321 1649 998 943

 Rank 3 1 6 7

162

Points for All Cases – Cosine Section

Rule MinCom Case MaxVal MaxMeas Cosine
Ranked

Cosine
Cosine

Inferred

Ranked

Cosine

Inferred

2 1 DocCR 87 RankJMatch 78 80 40 42

2 1 DocCUR 69 RankJMatch 47 62 0 0

2 1 ParCR 80 RankJMatch 56 72 57 70

2 1 ParCUR 69 RankJMatch 40 61 24 27

2 0 DocCR 85 RankJMatch 72 78 43 49

2 0 DocCUR 84 RankJMatch 61 80 0 0

2 0 ParCR 80 RankJMatch 56 72 57 70

2 0 ParCUR 69 RankJMatch 40 61 24 27

1 1 DocCR 84 RankJMatch 55 74 55 74

1 1 DocCUR 88 RankJMatch 41 80 41 80

1 0 DocCR 88 RankJMatch 60 66 60 66

1 0 DocCUR 88 RankJMatch 41 80 41 80

3 1 DocCR 89 RankJMatch 78 85 32 30

3 1 DocCUR 85 RankJMatch 80 78 11 15

3 1 ParCR 89 RankJMatch 61 82 10 11

3 1 ParCUR 89 RankJMatch 61 82 10 11

3 0 DocCR 82 RankJMatch 80 80 40 39

3 0 DocCUR 86 Jmatch 81 74 6 9

3 0 ParCR 78 RankJMatch 65 75 53 55

3 0 ParCUR 89 RankJMatch 61 82 10 11

 Total 1649 RankJMatch 1214 1504 614 766

 Rank 4 2 11 9

163

Points for All Cases- GCSM section

Rule MinCom Case MaxVal MaxMeas Gcsm
Ranked

Gcsm

2 1 DocCR 87 RankJMatch 41 37

2 1 DocCUR 69 RankJMatch 40 37

2 1 ParCR 80 RankJMatch 6 0

2 1 ParCUR 69 RankJMatch 0 0

2 0 DocCR 85 RankJMatch 41 37

2 0 DocCUR 84 RankJMatch 40 54

2 0 ParCR 80 RankJMatch 6 0

2 0 ParCUR 69 RankJMatch 0 0

1 1 DocCR 84 RankJMatch 0 0

1 1 DocCUR 88 RankJMatch 0 0

1 0 DocCR 88 RankJMatch 0 0

1 0 DocCUR 88 RankJMatch 0 0

3 1 DocCR 89 RankJMatch 28 23

3 1 DocCUR 85 RankJMatch 17 37

3 1 ParCR 89 RankJMatch 0 0

3 1 ParCUR 89 RankJMatch 0 0

3 0 DocCR 82 RankJMatch 35 26

3 0 DocCUR 86 Jmatch 28 30

3 0 ParCR 78 RankJMatch 6 5

3 0 ParCUR 89 RankJMatch 0 0

 Total 1649 RankJMatch 288 286

 Rank 13 14

164

Points for All Cases – UHI and WHI Section

Rule MinCom Case MaxVal MaxMeas UHI
Ranked

UHI WHI
Ranked

WHI

2 1 DocCR 87 RankJMatch 39 68 44 29

2 1 DocCUR 69 RankJMatch 19 39 16 17

2 1 ParCR 80 RankJMatch 63 79 39 36

2 1 ParCUR 69 RankJMatch 25 44 0 0

2 0 DocCR 85 RankJMatch 39 73 27 21

2 0 DocCUR 84 RankJMatch 19 39 16 17

2 0 ParCR 80 RankJMatch 63 79 39 36

2 0 ParCUR 69 RankJMatch 25 44 0 0

1 1 DocCR 84 RankJMatch 55 74 53 74

1 1 DocCUR 88 RankJMatch 41 80 42 80

1 0 DocCR 88 RankJMatch 60 66 57 66

1 0 DocCUR 88 RankJMatch 41 80 42 80

3 1 DocCR 89 RankJMatch 20 40 54 62

3 1 DocCUR 85 RankJMatch 47 58 25 20

3 1 ParCR 89 RankJMatch 37 43 7 8

3 1 ParCUR 89 RankJMatch 37 43 7 8

3 0 DocCR 82 RankJMatch 57 71 57 34

3 0 DocCUR 86 JMatch 42 60 29 23

3 0 ParCR 78 RankJMatch 68 69 52 33

3 0 ParCUR 89 RankJMatch 37 43 7 8

 Total 1649 RankJMatch 834 1192 613 652

 Rank 8 5 12 10

165

Points for Rule 2 Aggregated for Each Measure

Rule MinCom Case SimpleM Jacquard Cosine GCSM UHI WHI

2 1 DocCR 0 263 240 156 214 146

2 1 DocCUR 33 172 109 154 116 66

2 1 ParCR 0 263 255 12 284 150

2 1 ParCUR 111 155 152 0 138 0

2 0 DocCR 0 254 242 156 224 96

2 0 DocCUR 33 203 141 188 116 66

2 0 ParCR 0 263 255 12 284 150

2 0 ParCUR 111 155 152 0 138 0

 Total 288 1728 1546 678 1514 674

 Rank 6 1 2 4 3 5

166

Points for Rule 2 Aggregated for Each Measure DocRatio Selection

Rule MinCom Case SimpleM Jacquard Cosine GCSM UHI WHI

2 1 DocCR 0 263 240 156 214 146

2 1 DocCUR 33 172 109 154 116 66

2 0 DocCR 0 254 242 156 224 96

2 0 DocCUR 33 203 141 188 116 66

 Total 66 892 732 654 670 374

 Rank 6 1 2 4 3 5

167

Points for Rule 2 Aggregated for Each Measure ParentRatio Selection

Rule MinCom Case SimpleM Jacquard Cosine GCSM UHI WHI

2 1 ParCR 0 263 255 12 284 150

2 1 ParCUR 111 155 152 0 138 0

2 0 ParCR 0 263 255 12 284 150

2 0 ParCUR 111 155 152 0 138 0

 Total 222 836 814 24 844 300

 Rank 5 2 3 6 1 4

168

Appendix E

ODBC Setup

The following example demonstrates the steps to set up an object control database for a

Microsoft Excel file on a computer utilizing a Windows XP Operating System. The exact

setup steps will vary depending on the operating system.

From the Control Panel:

Choose Administrative Tools

169

From Administrative Tools screen:

Choose Data Sources (ODBC)

170

From Data Sources (ODBC):

Choose Excel Files

Choose Add

171

From Create New Data Source:

Choose Driver do Microsoft Excel

Click Finish

172

In the ―Datasource Name‖ box:

Specify name as entered in Input Parameters file

In the ―Description‖ box:

Enter description

Click ―Select Workbook‖

173

From ―Select Workbook‖ screen:

Navigate to folder where file is located

Select correct file

Click OK.

174

From ODBC Microsoft Excel Setup screen:

Click OK

The ODBC connection can now be integrated into required software. When using with

java programs, a JCBC/ODBC connection is required through the use of the Connection

class.

175

Appendix F

Source Code of the SWAS System

import java.io.*;

public class SWAS {

//This is the primary class for the SWAS system (utilize default constructor)

public static void main (String args[]){

//triggers execution of methods in other classes

 InputParameters ip = new InputParameters();

 System.out.println("Begin SWAS...read input for this run");

 ip.readInput();

 System.out.println("RunID is " + ip.runID+" and docUsed is " + ip.docUsed);

 System.out.println("Process ontology");

 RDFConceptArray araConcept = new RDFConceptArray(ip);

 Ontology onto = new Ontology(araConcept,ip);

 onto.readRDF();

 onto.findConcepts();

 onto.findLevels();

 onto.findSuperConcepts();

 onto.findConceptsLists();

 for (int i=0; i<onto.conceptCt; i++){

176

 if (onto.concepts.numSuperConcepts[i] == 0) {

 System.out.println(" Concept " + i + " " + onto.concepts.name[i] +

 " has no superConcepts:");

 }

 else {

 System.out.println(" Concept " + i + " " + onto.concepts.name[i] +

 " has superConcepts:");

 for (int j=0; j<onto.concepts.numSuperConcepts[i]; j++){

 System.out.print("\t"+onto.concepts.superList[i][j]);

 }

 System.out.println();

 }

 }

 Ancestors ancestors = new Ancestors(onto.conceptCt);

 ancestors.findCAs(onto.concepts, onto.conceptCt, ip.maxVal);

 ancestors.findVectors(onto.concepts, onto.conceptCt);

 System.out.println("Calculate ontology term similarity");

 onto.calcTermSim(ancestors);

 System.out.println("Process annotations and text in documents");

 Annotations annot = new Annotations(onto,ip, ancestors.numParents);

 annot.readAnnotStatements(ancestors, onto, araConcept, ip);

 Stop stop = new Stop();

 Words wt = new Words();

177

 TermDocumentMatrix tdm = new TermDocumentMatrix (ip.docUsed, ip.totWords);

 for (int nd=0; nd<ip.docUsed;nd++){

 DocText dt = new DocText(annot.text[nd]);

 Roots textRoot = new Roots();

 wt = dt.parseWords();

 wt.stripWords();

 wt.sortWords(0,wt.wordCt-1);

 wt.elimDups();

 stop.elimStops(wt);

 wt.findRoots(textRoot);

 wt.sortWords(0,wt.wordCt-1);

 wt.elimDups();

 tdm.addDoc(nd,wt);

 }

 tdm.createMaster(annot, ip.docUsed);

 System.out.println("Find roots in " + ip.docUsed+ " documents");

 tdm.findRoots(ip.runID, annot, ip.docUsed);

 tdm.assignStatus(annot, onto, ip.docUsed);

 annot.calcRelativity(onto, tdm, ip);

 System.out.println("Calculate statistics for "+ ip.docUsed+ " documents");

 Stats stats = new Stats (annot, ip);

 annot.calcCommon(tdm,stats,ip.docUsed);

 stats.calcSimilarity(annot, ancestors, onto, ip.runID, ip.docUsed, ip.selectThresh, tdm,

178

 ip.numDeSels, ip.minCommon);

 System.out.println("\nEnd of program");

}

}

class Ancestors{

//This class defines the heirarchical relationship of concepts

double [] [] lVector;

int [] [] commonAncestorArray;

int [] conceptToParent;

int [] hiParentArray;

int [] parentArray;

int numParents;

boolean hier;

Ancestors () {

 System.err.println("***Warning Default Ancestors Constructed with no max number

of

 docs");

 System.err.println("***Program will exit");

 System.exit(1);

}

179

Ancestors (int size) {

 commonAncestorArray = new int [size] [size];

 hiParentArray = new int [size];

 conceptToParent= new int[size];

 parentArray = new int [size];

 lVector = new double [size] [size];

 for (int rc=0;rc<size;rc++){

 for (int cc=0;cc<size;cc++){

 commonAncestorArray[rc][cc] = -1;

 if (rc== cc){

 lVector [rc] [cc] = 1;

 }

 else {

 lVector [rc] [cc] = 0;

 }

 }

 hiParentArray[rc] = -1;

 conceptToParent[rc] = -1;

 parentArray[rc] = -1;

 }

}

180

void findCAs(RDFConceptArray concepts, int numConcepts, int ancMax){

//finds level of least common ancestor and concept index of the first

//common ancestor (closest to root of concept tree) for each concept of interest

 int lca=-1;

 int hca=-1;

 for (int nr = 0; nr<numConcepts; nr++){

 for (int nc = 0; nc< nr; nc++){

 lca = findCommonAncestor(nr, nc, concepts, numConcepts);

 commonAncestorArray[nr][nc] = lca;

 commonAncestorArray[nc][nr] = lca;

 }

 hca = findLoParent(nr, concepts, numConcepts, ancMax);

 hiParentArray[nr] = hca;

 }

 numParents = createParentArray(numConcepts, ancMax);

 hier=(numConcepts>numParents);

 relateParents(numConcepts);

}

void findVectors (RDFConceptArray concepts, int numConcepts){

//find the dot product of elaf nodes for the Gcsm measure

 for (int nr = 0; nr<numConcepts; nr++){

 lVector[nr][nr]=1;

181

 for (int nc = nr+1; nc< numConcepts; nc++){

 double lVect = (double)(2*commonAncestorArray[nr][nc]) /

 (double)(concepts.lowestLevel[nr] +

concepts.lowestLevel[nc]);

 lVector[nr] [nc] = lVect;

 lVector[nc] [nr] = lVect;

 }

 }

}

int findCommonAncestor(int nr, int nc, RDFConceptArray concepts, int numconcepts) {

//determines the level of the common ancestor closest to root of tree

//and stores that value

 boolean common = true;

 boolean found=false;

 String checkconcept;

 int maxSoFar=0;

 int thisPair;

 if ((concepts.numSuperConcepts[nr]==0) || (concepts.numSuperConcepts[nc]==0))

 common=false;

 if (common){

 for (int tr=0;tr<concepts.numSuperConcepts[nr];tr++){

 found = false;

182

 checkconcept = concepts.superList[nr][tr];

 for (int tc=0;tc< concepts.numSuperConcepts[nc];tc++){

 if (checkconcept.equals(concepts.superList[nc][tc])){

 thisPair=concepts.lookUpLevel(checkconcept,numconcepts);

 if (thisPair>maxSoFar)

 maxSoFar=thisPair;

 }

 }

 }

 }

 if (maxSoFar==0)

 maxSoFar=checkBranch(nr,nc,concepts);

 return maxSoFar;

}

int findLoParent(int nr, RDFConceptArray concepts, int numconcepts, int ancMax) {

//finds the parent node closest to root of hierarchical tree

 boolean found=false;

 String checkconcept;

 int minSoFar=ancMax;

 int minLevel=ancMax;

 int thisLevel;

 if (concepts.numSuperConcepts[nr]!=0){

183

 for (int tr=0;tr<concepts.numSuperConcepts[nr];tr++){

 found = false;

 checkconcept = concepts.superList[nr][tr];

 thisLevel=concepts.lookUpLevel(checkconcept,numconcepts);

 if (thisLevel<minLevel){

 minLevel=thisLevel;

 minSoFar=concepts.lookUpIndex(checkconcept,numconcepts);

 }

 }

 }

 else{//no superConcepts, this is parent

 minSoFar = nr;

 }

 if (minSoFar==ancMax){ // no parent found, this node is parent

 minSoFar=nr;

 }

 return minSoFar;

}

int createParentArray (int num, int ancMax){

//assigns parent value to each concept

 int count=0;

 int min;

184

 int last = -1;

 for (int pa=0; pa<num; pa++){

 min = ancMax;

 for (int n=0; n<num; n++){

 if ((hiParentArray[n]<min) && (hiParentArray[n] > last)){

 min=hiParentArray[n];

 }

 }

 if (min<ancMax){

 parentArray[pa] = min;

 last = min;

 count++;

 }

 }

 return count;

}

void relateParents (int num){

//creates index to relate concepts to parent in parent array

 int val;

 int index;

 for (int nc=0; nc<num; nc++){

 val = hiParentArray[nc];//

185

 index = -1;

 int np = 0;

 while (np<numParents && index < 0) {

 if (val == parentArray[np]){

 index=np;

 }

 np++;

 }

 conceptToParent[nc] = index;

 }

}

int checkBranch(int nr,int nc, RDFConceptArray concepts){

//determines if concepts are derived from two main rules to identify

//concepts of interest

 if (concepts.branch[nr]== concepts.branch[nc])

 return 1;

 else

 return 0;

 }

}

186

import java.sql.*;

import java.io.*;

import sun.jdbc.odbc.*;

import java.text.*;

class Annotations {

//This class defines the properties of annotations found in documents

boolean [] selectedSheet;

boolean [] validSheet;

double [][] pWeight;

double [][] pInfWeight;

int [] countAnnotsInDoc;

int [] countInfersInDoc;

int [] [] countParentInfMatrix;

int [] [] countParentMatrix;

int [] [] docAnnotMatrix;

int [] [] docParentInfMatrix;

int [] [] docParentMatrix;

int [] docRemoved;

int [] numStmtsInDoc;

int numValidDocs;

String [] [] annotDocsObj;

String [] [] annotDocsPred;

String [] [] annotDocsSub;

187

String [] docTitles;

String [] text;

Annotations(){

 System.err.println("***Warning Default Annotations Constructed with 0

documents");

 System.err.println("***Program will exit");

 System.exit(1);

}

public Annotations (Ontology onto, InputParameters ip, int numParents) {

text = new String [ip.docUsed];

 pWeight = new double[ip.docUsed] [numParents];

 pInfWeight = new double[ip.docUsed] [numParents];

 annotDocsSub = new String[ip.docUsed] [ip.maxStmts];

 annotDocsPred = new String[ip.docUsed] [ip.maxStmts];

 annotDocsObj = new String[ip.docUsed] [ip.maxStmts];

 docAnnotMatrix = new int [ip.docUsed] [onto.conceptCt];

 countParentMatrix = new int[ip.docUsed][numParents];

 countParentInfMatrix = new int[ip.docUsed][numParents];

 docParentMatrix = new int[ip.docUsed] [numParents];

 docParentInfMatrix = new int[ip.docUsed] [numParents];

 countAnnotsInDoc = new int[ip.docUsed];

188

 countInfersInDoc = new int[ip.docUsed];

 docRemoved = new int[ip.docUsed];

 docTitles = new String[ip.docUsed];

 validSheet = new boolean[ip.docUsed];

 selectedSheet=new boolean[ip.docUsed];

 numStmtsInDoc = new int[ip.docUsed];

 String url= ip.urlUsed;

 String user = "";

 String password = "";

 initMatrix(ip.docUsed, onto.conceptCt, numParents);

}

void initMatrix(int size, int numConcepts, int numParents){

//declares arrays used to store annoations

 for (int rc = 0; rc < size; rc++){

 for (int cc = 0; cc < numConcepts; cc++) {

 docAnnotMatrix[rc][cc] = 0;

 }

 countAnnotsInDoc[rc] = 0;

 countInfersInDoc[rc] = 0;

 docRemoved[rc] = 0;

 validSheet[rc] = false;

 selectedSheet[rc] = false;

189

 }

}

public void readAnnotStatements(Ancestors ancestors, Ontology onto,

 RDFConceptArray

araConcept, InputParameters ip){

//reads multi-worksheet spreadsheet containing the text and annotations

//from documents and stores that data

 int validNum=0;

 String subject, object, predicate;

 Connection con=null;

 String url = ip.urlUsed;

 String user="";

 String password="";

 try{

 new JdbcOdbcDriver();

 con = DriverManager.getConnection(url,user,password);

 }

 catch(Exception ex) {

 System.err.print("JDBC Connection not established Exception: ");

 System.err.println(ex.getMessage());

 System.err.println("url = " + url + " user = " + user + " password = " + password);

190

 ex.printStackTrace();

 System.exit(1);

 }

 String query;

 ResultSet rs=null;

 Statement st=null;

 try{

 st = con.createStatement();

 }

 catch(Exception ex) {

 System.err.print("JDBC Connection Exception: ");

 System.err.println(ex.getMessage());

 ex.printStackTrace();

 System.exit(2);

 }

 RDFStmts rdfStmts = new RDFStmts(ip.maxStmts);

 String title;

 boolean storeDoc;

 int parentNdx;

 for (int sheetNum = 1; sheetNum <= ip.docUsed; sheetNum++){

 clearRuleArray(rdfStmts, ip);

 query = "SELECT * FROM [Sheet" + Integer.toString(sheetNum)+"$]";

 try{

191

 rs = st.executeQuery(query);

 }

 catch(Exception ex) {

 System.err.print("Query execution Exception: ");

 System.err.println(ex.getMessage());

 ex.printStackTrace();

 System.exit(2);

 }

 int numberStatements = 0;

 try{

 if (rs.next())

 text[sheetNum-1] = rs.getString(1);

 }

 catch(Exception ex) {

 System.err.print("Query cursor Exception: ");

 System.err.println(ex.getMessage());

 ex.printStackTrace();

 System.exit(2);

 }

 try {

 while (rs.next()){

 try {

 subject = rs.getString(1);

192

 }

 catch(Exception ex) {

 System.err.println("error Sheetnum=" + sheetNum);

 System.err.println("error numberStatements = " + numberStatements);

 System.err.print("Attempt to read null string INPUT ERROR

Exception: ");

 System.err.println(ex.getMessage());

 ex.printStackTrace();

 subject="";

 }

 predicate = rs.getString(2);

 object = rs.getString(3);

 rdfStmts.docSub[numberStatements] = subject;

 rdfStmts.docPrd[numberStatements] = predicate;

 rdfStmts.docObj[numberStatements] = object;

 numberStatements++;

 }

 }

 catch(Exception ex) {

 System.err.print("After subject has been read Exception: ");

 System.err.println(ex.getMessage());

 ex.printStackTrace();

 System.exit(2);

193

 }

 rdfStmts.numStmts = numberStatements-1;

 if (rdfStmts.numStmts>0)

 title = findURI(rdfStmts, sheetNum-1, ip);

 else

 title = "No stmts this document docNum="+(sheetNum-1);

 int parentConceptNum=-1;

 int annotConceptNum;

 int numRules = checkRules(rdfStmts,title,ip,onto);

 boolean validDoc= numRules>0;

 if (validDoc){

 validNum++;

 for (int stmt=0;stmt<rdfStmts.numStmts;stmt++){

 if (rdfStmts.meetsRule[stmt]) {

 annotConceptNum=findConcept(rdfStmts.docObj[stmt],sheetNum,onto);

 docAnnotMatrix[sheetNum-1][annotConceptNum]=1;

 parentConceptNum =

 ancestors.conceptToParent[ancestors.hiParentArray[annotConceptNum]];

 docParentMatrix[sheetNum-1][parentConceptNum] = 1;

 docParentInfMatrix[sheetNum-1][parentConceptNum] = 1;

 }

 }

194

 int countAnnot =0;

 int countInfer = 0;

 for (int aConcept=0;aConcept<onto.conceptCt;aConcept++){

 if (docAnnotMatrix[sheetNum-1][aConcept]==1){

 countAnnot++;

 for (int sc=0; sc<onto.conceptCt;sc++){

 if (araConcept.superMatrix[aConcept] [sc] == 1){

 if (docAnnotMatrix[sheetNum-1][sc] == 0) {

 docAnnotMatrix[sheetNum-1][sc] = 2;

 parentConceptNum =

 ancestors.conceptToParent[ancestors.hiParentArray[sc]];

 docParentInfMatrix[sheetNum-1][parentConceptNum] = 2;

 countInfer++;

 }

 }

 }

 }

 }

 storeDoc(sheetNum-1,rdfStmts,title);

 calcParentMatrix(sheetNum-1, onto.conceptCt, ancestors);

 validSheet[sheetNum-1] = validDoc;

 }

195

 }

 numValidDocs = validNum;

 calcParentWeights(ancestors);

 }

void calcParentWeights(Ancestors ancestors){

//calculates weight of parents based on how many annotations

//for this document are based on that parent as compared to

//total number of annotations for this document

 int total[] = new int [numValidDocs];

 int totalInf[] = new int[numValidDocs];

 for (int doc=0;doc<numValidDocs;doc++){

 total[doc]=0;

 totalInf[doc]=0;

 for (int parent=0; parent<ancestors.numParents; parent++){

 total[doc] = total[doc]+countParentMatrix[doc][parent];

 totalInf[doc] = totalInf[doc]+countParentInfMatrix[doc][parent];

 }

 for (int parent=0; parent<ancestors.numParents; parent++){

 pWeight[doc][parent] = (double)(countParentMatrix[doc][parent] /

 (double) total[doc]);

 pInfWeight[doc][parent] = (double)(countParentInfMatrix[doc][parent] /

 (double) totalInf[doc]);

196

 }

 }

}

void clearRuleArray(RDFStmts rdfStmts, InputParameters ip){

//initializes meets.Rule element to false for all statements

 for (int stmtNo=0; stmtNo<ip.maxStmts; stmtNo++){

 rdfStmts.meetsRule[stmtNo]=false;

 }

}

void storeDoc(int docNo, RDFStmts rdfStmts, String title){

//stores REF triple and title for all statements

 for (int st=0;st<rdfStmts.numStmts;st++) {

 annotDocsSub[docNo] [st] = rdfStmts.docSub[st];

 annotDocsPred[docNo] [st] = rdfStmts.docPrd[st];

 annotDocsObj[docNo] [st] = rdfStmts.docObj[st];

 docTitles[docNo] = title;

 }

}

int checkRules (RDFStmts rdfStmts, String title,InputParameters ip, Ontology onto){

//checks if RDF statement matches rules of interest

197

 int meetsCk = 0;

 for (int stmtNo=0; stmtNo<rdfStmts.numStmts; stmtNo++){

 if (rdfStmts.docSub[stmtNo] != null){

 if ((rdfStmts.docSub[stmtNo].equals(title))){

 if (checkPred(rdfStmts.docPrd[stmtNo],ip)

 && checkConcept(rdfStmts.docObj[stmtNo],onto)){

 meetsCk++;

 rdfStmts.meetsRule[stmtNo]=true;

 }

 }

 }

 else{

 rdfStmts.meetsRule[stmtNo] =false;

 }

 }

 return meetsCk;

}

String findURI(RDFStmts rdfStmts, int docNum, InputParameters ip){

//identifies URI (subject of triple where predicate matches criteria)

 String uri = "";

 String designateObj1 = ip.designateObj1;

 String designateObj2 = ip.designateObj2;

198

 String designatePred1 = ip.designatePred1;

 String designatePred2 = ip.designatePred2;

 String designatePred3 = ip.designatePred3;

 int stmt = 0;

 boolean found = false;

 while (stmt < rdfStmts.numStmts && !found){

 if ((rdfStmts.docPrd [stmt].equalsIgnoreCase(designatePred1)) ||

 (rdfStmts.docPrd [stmt].equalsIgnoreCase(designatePred2)) ||

 (rdfStmts.docPrd [stmt].equalsIgnoreCase(designatePred3))){

 found = true;

 uri = rdfStmts.docSub[stmt];

 }

 if ((rdfStmts.docObj[stmt].equalsIgnoreCase(designateObj1) ||

 rdfStmts.docObj[stmt].equalsIgnoreCase(designateObj2))){

 found = true;

 uri = rdfStmts.docSub[stmt];

 }

 stmt++;

 }

 return uri;

}

boolean checkPred(String conceptName, InputParameters ip){

199

//determines if predicate of triple matches criteria

 boolean retVal = (conceptName.equalsIgnoreCase(ip.pred1a) ||

 conceptName.equalsIgnoreCase(ip.pred1b) ||

 conceptName.equalsIgnoreCase(ip.pred1c) ||

 conceptName.equalsIgnoreCase(ip.pred2a) ||

 conceptName.equalsIgnoreCase(ip.pred2b)||

 conceptName.equalsIgnoreCase(ip.pred2c));

 return (retVal);

}

boolean checkConcept(String conceptName, Ontology onto){

//determines if the conceptName String is one of the concepts

//identified from parsed array

 int tc=0;

 boolean found = false;

 while (tc < onto.conceptCt && !found) {

 if ((onto.concepts.uri[tc].equals(conceptName)) ||

 (onto.concepts.altUri[tc].equals(conceptName)))

 found = true;

 tc++;

 }

 return found;

}

200

int findConcept (String conceptName, int sheetNum, Ontology onto) {

//returns the index of the slot in the ontology arrays that designated the document URI

 int tc=0;

 boolean found = false;

 while (tc < onto.conceptCt && !found) {

 if (onto.concepts.uri[tc].equals(conceptName)||

 onto.concepts.altUri[tc].equals(conceptName))

 found = true;

 tc++;

 }

 if (!found)

 return -1;

 else

 return tc-1;

 }

void calcCommon(TermDocumentMatrix tdm, Stats stats, int docUsed){

//calculates the number of common roots between documents

 boolean []annotFound = new boolean[tdm.numRoots];

 boolean []rootFound = new boolean[tdm.numRoots];

 for (int d = 0; d < stats.numUnique; d++) {

 stats.crAra[d] =0;

201

 stats.curAra[d] =0;

 }

 int d = 0;

 for (int d1 = 0; d1 < docUsed; d1++) {

 if (validSheet[d1]){

 for (int d2 = d1+1; d2 < docUsed; d2++){

 if (validSheet[d2]){

 for (int rootCt=0;rootCt<tdm.numRoots;rootCt++){

 rootFound[rootCt]=false;

 annotFound[rootCt]=false;

 }

 int dcnt = 0;

 int dcnt2 = 0;

 for (int nr=0; nr < tdm.numTerms; nr++) {

 int rootndx=tdm.rootIndex[nr];

 if (tdm.rootInDocument[d1][rootndx]>0 &&

 tdm.rootInDocument[d2][rootndx]>0 &&

 validSheet[d1] && validSheet[d2] &&

!rootFound[rootndx]){

 rootFound[rootndx]=true;

 dcnt++;

 }

 if (tdm.rootInDocument[d1][rootndx]==3 &&

202

 tdm.rootInDocument[d2][rootndx]==3 &&

 validSheet[d1] && validSheet[d2] &&

!annotFound[rootndx]) {

 annotFound[rootndx]=true;

 dcnt2++;

 }

 }

 stats.crAra[d]=dcnt;

 stats.curAra[d]=dcnt2;

 d++;

 }

 }

 }

 }

}

void calcRelativity(Ontology onto, TermDocumentMatrix tdm, InputParameters ip){

//calculates the how many of the annotations in the document are contained

//or inferred in the roots of the text

 int numDocUsed = ip.docUsed;

 int cnt = 0;

 int numAnnot=0;

 int numAnnotInfer=0;

203

 String termRoot="";

 int rootNdx;

 for (int dc=0;dc<numDocUsed;dc++){

 if (validSheet[dc]){

 numAnnot = 0;

 numAnnotInfer = 0;

 for (int tc = 0; tc < onto.conceptCt; tc++){

 if (docAnnotMatrix[dc][tc] == 1)

 numAnnot++;

 if (docAnnotMatrix[dc][tc]==2){

 numAnnotInfer++;

 }

 }

 countAnnotsInDoc[dc]=numAnnot;

 countInfersInDoc[dc]=numAnnotInfer;

 }

 }

}

int findStatus(int nt, int nd, Ontology onto, String termRoot){

//determines the status flag for each term in the document,

// 0 indicating the term is not present in the document,

// 1 indicating the term is expected from an annotated concept,

204

// 2 indicating the term is inferred from the ontology,

// 3 indicating the term is unexpected

 int status = 3;

 boolean found = false;

 int tc=0;

 while (tc < onto.conceptCt && ! found) {

 if (docAnnotMatrix[nd][tc] >0 && !found) {

 int numRootsInConcept= onto.concepts.conceptData[tc].numWords;

 int cw=0;

 while (cw<numRootsInConcept && !found) {

 if (docAnnotMatrix[nd][tc] == 1 &&

 onto.concepts.conceptData[tc].annotatedRoots[cw].

 equalsIgnoreCase(termRoot)){

 found=true;

 status = 1;

 }

 cw++;

 }

 }

 tc++;

 }

 tc=0;

 while (tc < onto.conceptCt && ! found) {

205

 if (docAnnotMatrix[nd][tc] >0 && !found) {

 int cw=0;

 while (cw<onto.concepts.conceptData[tc].numInferred && !found) {

 if

(onto.concepts.conceptData[tc].inferredRoots[cw].equalsIgnoreCase(termRoot)){

 found = true;

 status = 2;

 }

 cw++;

 }

 }

 tc++;

 }

 return status;

}

void calcParentMatrix(int docNum, int numConcepts, Ancestors ancestors){

//creates a matrix that shows which the parents of annotated concepts

//and the count of those concepts

 double sum = 0.0;

 int parentNum = 0;

 int parentNdx = -1;

 int parentInfNdx=-1;

206

 for (int pc = 0; pc<ancestors.numParents; pc++){

 countParentMatrix[docNum][pc] = 0;

 countParentInfMatrix[docNum][pc] = 0;

 }

 for (int tc = 0; tc<numConcepts;tc++){

 if (docAnnotMatrix[docNum][tc]==1){

 parentNdx = ancestors.conceptToParent[tc];

 countParentMatrix[docNum][parentNdx]++;

 }

 if (docAnnotMatrix[docNum][tc]>=1){

 parentInfNdx = ancestors.conceptToParent[tc];

 countParentInfMatrix[docNum][parentInfNdx]++;

 }

 }

}

}

class ConceptData {

//This class defines the properties for a specific concept

int numInferred;

int numWords;

String conceptText;

207

String[] annotatedRoots;

String [] inferredRoots;

ConceptData(){

 System.err.println("Warning--ConceptData instantiated with no size");

 System.err.println("Program will end");

 System.exit(1);

}

ConceptData(int nw, int ni) {

 numWords = nw;

 numInferred = ni;

 annotatedRoots = new String[nw];

 inferredRoots = new String[ni];

 for (int wct=0; wct<nw; wct++){

 annotatedRoots[wct]="";

 }

 for (int ict=0; ict<ni; ict++){

 inferredRoots[ict]="";

 }

}

}

208

import java.util.StringTokenizer;

class DocText {

//This class defines the properties of text for a document.

String theText;

DocText(){

 System.err.println("Warning--DocText instantiated with no string");

 System.err.println("Program will end");

 System.exit(1);

}

DocText(String s){

 theText=s.toLowerCase();

}

public Words parseWords (){

//stores the individual words in the text of the concept name in an object of type Words

 StringTokenizer wordstring = new StringTokenizer(theText," \t\n\r.,:/_",false);

 int numWords=wordstring.countTokens();

 int ct=0;

 Words wordList = new Words (numWords);

 while (wordstring.hasMoreTokens()){

209

 wordList.theWords[ct]=wordstring.nextToken();

 ct++;

 }

 return wordList;

}

}

import java.util.*;

import java.io.*;

class InputParameters{

//This class defines the input parameters file

BufferedReader br;

int maxRDFStmtInOntology;

int maxWordsInDocument;

int maxSuperConceptPerConcept;

int maxLoParent;

String runID;

int maxVal;

int docUsed;

double [] selectThresh = new double[4];

String urlUsed;

int numLevelOnes;

210

int totWords;

int maxStmts;

int max;

int conceptSize;

int minCommon;

int numDeSels;

String rdfConcept;

String rdfConcept2;

String designateTitle;

String designateTitle2;

String pred1a;

String pred1b;

String pred1c;

String pred2a;

String pred2b;

String pred2c;

String daml;

String owl;

String sub;

String designateObj1;

String designateObj2;

String designatePred1;

String designatePred2;

211

String designatePred3;

String predCond1;

String predCond2;

String owlPredCond;

String cond1;

String altCond1;

String cond2;

String altCond2;

InputParameters(){}

 void readInput(){

//reads the input file containing data concerning ontology

//and the parameters for this particular run

 try{

 br = new BufferedReader(new InputStreamReader

 (new FileInputStream(new

File("inputParams.dat"))));

 numLevelOnes = Integer.parseInt(br.readLine());

 maxVal = Integer.parseInt(br.readLine());

 maxRDFStmtInOntology = Integer.parseInt(br.readLine());

 maxWordsInDocument = Integer.parseInt(br.readLine());

 maxSuperConceptPerConcept = Integer.parseInt(br.readLine());

 maxLoParent = Integer.parseInt(br.readLine());

212

 maxStmts = Integer.parseInt(br.readLine());

 totWords = Integer.parseInt(br.readLine());

 conceptSize = Integer.parseInt(br.readLine());

 docUsed= Integer.parseInt(br.readLine());

 minCommon = Integer.parseInt(br.readLine());

 daml= br.readLine();

 owl=br.readLine();

 urlUsed=br.readLine();

 sub=br.readLine();

 rdfConcept=br.readLine();

 rdfConcept2=br.readLine();

 designateTitle=br.readLine();

 designateTitle2=br.readLine();

 pred1a=br.readLine();

 pred1b=br.readLine();

 pred1c=br.readLine();

 pred2a=br.readLine();

 pred2b=br.readLine();

 pred2c=br.readLine();

 designateObj1=br.readLine();

 designateObj2=br.readLine();

 designatePred1=br.readLine();

 designatePred2=br.readLine();

213

 designatePred3=br.readLine();

 predCond1=br.readLine();

 predCond2=br.readLine();

 owlPredCond=br.readLine();

 cond1=br.readLine();

 altCond1=br.readLine();

 cond2=br.readLine();

 altCond2=br.readLine();

 numDeSels=Integer.parseInt(br.readLine());

 selectThresh[0] = Double.parseDouble(br.readLine());

 selectThresh[1] = Double.parseDouble(br.readLine());

 selectThresh[2] = Double.parseDouble(br.readLine());

 selectThresh[3] = Double.parseDouble(br.readLine());

 String id = br.readLine();

 boolean r1,r2;

 r1 = (cond1.equals("null")) || (altCond1.equals("null"));

 r2 = (cond2.equals("null")) || (altCond2.equals("null"));

 String rule="";

 if (!r1 && r2)

 rule = "Rule 1 Formal Language";

 if (r1 && !r2)

 rule = "Rule 2 Topic";

 if (!r1 && !r2)

214

 rule = "Rule 3 Both";

 if (!((rule.equals("Rule 1 Formal Language")) || (rule.equals("Rule 2 Topic")) ||

 (rule.equals("Rule 3 Both")))){

 System.err.println("Error in rule calculation...program will end");

 System.exit(1);

 }

 runID = id + " "+rule+ " NumDeSels"+numDeSels+" MinCommon"+minCommon;

 }

 catch (Exception e){

 System.err.println("Error in reading Input Parameter File");

 System.err.println("Program will end");

 System.err.println(e.getMessage());

 e.printStackTrace();

 System.exit(1);

 }

}

}

import java.sql.*;

import java.io.*;

import sun.jdbc.odbc.*;

import java.text.*;

215

import java.util.StringTokenizer;

class Ontology{

//This class defines the properties of the ontology in various formats

Connection con;

double [] [] dotProduct;

int conceptCt;

int numLevelOnes;

int owlRow;

int rowCt;

int size;

String[] altObject;

String[] altPredicate;

String[] altSubject;

String[] object;

String[] predicate;

String[] subject;

String url;

String altCondition1;

String altCondition2;

String altUrl;

String condition1;

String condition2;

String password;

216

String subConcept;

String user;

String predCondition1;

String predCondition2;

String owlPredCondition;

RDFConceptArray concepts;

Ontology(){

 System.err.println("***Warning Default Ontology Constructed with no input

 parameters");

 System.err.println("***Program will exit");

 System.exit(1);

}

Ontology(RDFConceptArray conceptsRDF, InputParameters ip){

 size= ip.maxRDFStmtInOntology;

 numLevelOnes = ip.numLevelOnes;

 subject = new String[size];

 predicate = new String[size];

 object = new String[size];

 altSubject = new String[size];

 altPredicate = new String[size];

 altObject = new String[size];

217

 url=ip.daml;

 altUrl = ip.owl;

 subConcept = ip.sub;

 predCondition1 = ip.predCond1;

 predCondition2 = ip.predCond2;

 owlPredCondition = ip.owlPredCond;

 user = "";

 password = "";

 condition1 = ip.cond1;

 condition2 = ip.cond2;

 altCondition1=ip.altCond1;

 altCondition2=ip.altCond2;

 concepts = conceptsRDF;

}

void readRDF(){

//utilizes a JdbcOdbc connection to read the spreadsheet files containing

//the data for the DAML version of the ontology

 try{

 new JdbcOdbcDriver();

 Connection con = DriverManager.getConnection(url,user,password);

 Statement st = con.createStatement();

 String query = "SELECT * FROM [Sheet1$]";

218

 ResultSet rs = st.executeQuery(query);

 String subj;

 String pred;

 String obj;

 char quote = '\'';

 rowCt = 0;

 while (rs.next()){

 subj = rs.getString(1);

 pred = rs.getString(2);

 obj = rs.getString(3);

 subject[rowCt] = subj;

 predicate[rowCt] = pred;

 object[rowCt] = obj;

 rowCt++;

 }

 }

 catch(Exception ex) {

 System.err.print("Exception: ");

 System.err.println(ex.getMessage());

 ex.printStackTrace();

 System.err.println("Error reading Ontology file");

 System.exit(1);

 }

219

 readRDFowl();

}

void readRDFowl(){

//utilizes a JdbcOdbc connection to read the spreadsheet files containing

//the data for the OWL version of the ontology

 try{

 new JdbcOdbcDriver();

 Connection con = DriverManager.getConnection(altUrl,user,password);

 Statement st = con.createStatement();

 String query = "SELECT * FROM [Sheet1$]";

 ResultSet rs = st.executeQuery(query);

 owlRow=0;

 String subject;

 String predicate;

 String object;

 char quote = '\'';

 while (rs.next()){

 subject = rs.getString(1);

 predicate = rs.getString(2);

 object = rs.getString(3);

 altSubject[owlRow] = subject;

 altPredicate[owlRow] = predicate;

220

 altObject[owlRow] = object;

 owlRow++;

 }

 }

 catch(Exception ex) {

 System.err.print("Exception: ");

 System.err.println(ex.getMessage());

 ex.printStackTrace();

 System.exit(1);

 }

}

public void findConcepts(){

// identifies the DAML concepts based on the input conditions

//and calls method to identify OWL concepts.

 conceptCt = 0;

 String predCondition = "type";

 for (int rc=0; rc<rowCt; rc++) {

 if ((subject[rc] != null)&&(predicate[rc] != null) && (object[rc] != null) &&

 ((object[rc].equalsIgnoreCase (condition1)) ||

 (object[rc].equalsIgnoreCase (condition2))) &&

 (predicate[rc].endsWith (predCondition))){

 concepts.uri[conceptCt] = subject[rc];

221

 concepts.name[conceptCt]= findName(conceptCt);

 if (object[rc].equalsIgnoreCase(condition1))

 concepts.branch[conceptCt] = 1;

 else

 concepts.branch[conceptCt] =2;

 conceptCt++;

 }

 }

 findOwlConcepts();

}

void findOwlConcepts(){

// identifies the OWL concepts based on the input conditions

 String predCondition = "type";

 for (int rc=0; rc<owlRow; rc++) {

 if ((altSubject[rc] != null)&&(altPredicate[rc] != null) && (altObject[rc] != null)

&&

 ((altObject[rc].equalsIgnoreCase (altCondition1)) ||

 (altObject[rc].equalsIgnoreCase (altCondition2))) &&

 (altPredicate[rc].endsWith (predCondition))){

 String owlName = findName(altSubject[rc]);

 if (owlName.length() < 1){

 System.err.println("Name not found for altObject[rc]");

222

 System.exit(1);

 }

 boolean found=false;

 int damlCt=0;

 while (damlCt<conceptCt && !found){

 if (concepts.name[damlCt].equalsIgnoreCase(owlName)){

 found=true;

 concepts.altUri[damlCt] = altSubject[rc];

 }

 damlCt++;

 }

 if (!found) {

 System.err.println("ERROR IN NAME RESOLUTION");

 System.exit(1);

 }

 }

 }

}

void findConceptsLists() {

//transforms data in concept lists to Words objects representing the words actually

//annotated and additional words which can be inferred from ontology

 String theText, theWord;

223

 String inferredText="";

 Roots rootWord = new Roots();

 Words iRootsFullString;

 String [] infRootWords = new String [conceptCt*conceptCt];

 for (int tc=0; tc<conceptCt; tc++){

 theText= concepts.name[tc];

 StringTokenizer wordString = new StringTokenizer(theText," \t\n\r.,:/_#",false);

 int numWords=wordString.countTokens();

 Words rootsFullString = new Words(numWords);

 int ct=0;

 while (wordString.hasMoreTokens()){

 rootsFullString.theWords[ct]=wordString.nextToken();

 ct++;

 }

 Stop wordStop = new Stop();

 wordStop.elimStops(rootsFullString);

 for (int wc=0;wc<rootsFullString.wordCt;wc++){

 rootsFullString.theWords[wc]=rootWord.findRoot(rootsFullString.theWords[wc]);

 }

 rootsFullString.sortWords(0,rootsFullString.wordCt-1);

 rootsFullString.elimDups();

 String checkRoot="";

224

 int infCt = 0;

 if (concepts.numSuperConcepts[tc]>0){

 for (int stc=0; stc<concepts.numSuperConcepts[tc]; stc++){

 StringTokenizer infString =

 new StringTokenizer(concepts.superList[tc][stc],"

\t\n\r.,:/_#",false);

 while (infString.hasMoreTokens()){

 checkRoot=rootWord.findRoot(infString.nextToken());

 if (!rootExists(checkRoot,rootsFullString.theWords,

rootsFullString.wordCt)) {

 if (!rootExists(checkRoot,infRootWords,infCt)) {

 infRootWords[infCt]=checkRoot;

 infCt++;

 }

 }

 }

 }

 Words rootsInferred = new Words(infCt);

 rootsInferred.wordCt = infCt;

 rootsInferred.theWords=infRootWords;

 rootsInferred.sortWords(0,infCt-1);

 concepts.conceptData[tc] =

 new ConceptData(rootsFullString.wordCt,rootsInferred.wordCt);

225

 concepts.conceptData[tc].numWords=rootsFullString.wordCt;

 concepts.conceptData[tc].annotatedRoots=rootsFullString.theWords;

 concepts.conceptData[tc].numInferred = rootsInferred.wordCt;

 concepts.conceptData[tc].inferredRoots=rootsInferred.theWords;

 }

 else {

 concepts.conceptData[tc] = new ConceptData(rootsFullString.wordCt,0);

 concepts.conceptData[tc].numWords=rootsFullString.wordCt;

 concepts.conceptData[tc].annotatedRoots=rootsFullString.theWords;

 concepts.conceptData[tc].numInferred=0;

 }

 }

}

boolean rootExists(String root,String [] rootWords, int ct){

//determines if a root already exists in the Words object

 boolean found = false;

 int wc = 0;

 while (wc < ct) {

 if (rootWords[wc].equalsIgnoreCase(root))

 found = true;

 wc++;

 }

226

 return found;

}

String findName(int tc){

//determines the literal name associated with an ontology concept,

//based on the position of the concept the DAML ontology arrays

//name will default to the concept at the tc location in ontology URI array

//if no literal name is found

 String retVal="";

 boolean found=false;

 int rc = 0;

 while (rc<rowCt && ! found) {

 boolean b1=false;

 boolean b2a=false;

 boolean b2b=false;

 if (subject[rc]!=null)

 b1=subject[rc].equalsIgnoreCase (concepts.uri[tc]);

 int lpc=predCondition1.length() ;

 int predLen=predicate[rc].length();

 int start=predLen-lpc;

 String ending;

 if (predLen>=lpc){

 ending=predicate[rc].substring(start,predLen);

227

 }

 else

 ending="";

 ending=ending.toLowerCase();

 predCondition1=predCondition1.toLowerCase();

 predCondition2=predCondition2.toLowerCase();

 if (ending!=null){

 b2a=ending.equalsIgnoreCase(predCondition1);

 b2b=ending.equalsIgnoreCase(predCondition2);

 }

 boolean test1= ((subject[rc] != null)&&(predicate[rc] != null) &&

 (object[rc] != null) && (b1) && (b2a));

 boolean test2= ((subject[rc] != null)&&(predicate[rc] != null) &&

 (object[rc] != null) && (b1) && (b2b));

 boolean test = test1 || test2; //allow names from either DAML or OWL ontologies

 if (test){

 retVal=object[rc].substring(1,object[rc].length()-1);

 if (b2b)

 retVal = findLiteral(object[rc]);

 found = true;

 }

 rc++;

 }

228

 if (!(found)) retVal = concepts.uri[tc];

 return retVal;

}

String findName(String conceptUri){

//determines the literal name associated with an ontology concept,

//based on the String meeting the concept conditions in the OWL ontology

//name will default to the input String if no literal name is found

 String objCondition = "";

 String retVal="";

 boolean found=false;

 int rc = 0;

 while (rc<owlRow && ! found) {

 boolean b1 = false;

 boolean b2 = false;

 boolean test = false;

 if (altSubject[rc]!=null)

 b1=altSubject[rc].equalsIgnoreCase(conceptUri);

 if (altPredicate[rc]!=null)

 b2 = altPredicate[rc].endsWith (owlPredCondition);

 test = ((altSubject[rc] != null)&&(altPredicate[rc] != null) &&

 (altObject[rc] != null) && (b1) && (b2));

 if (test){

229

 retVal=findLiteral(altObject[rc]);

 found = true;

 }

 rc++;

 }

 if (!(found)) retVal = conceptUri;

 return retVal;

}

String findLiteral(String litObject){

//strips parentheses from the literal String to return the name specified

 char openParen='(';

 char closeParen=')';

 int startPos = litObject.indexOf(openParen)+1;

 String answer = litObject.substring(startPos,litObject.length()-1);

 return answer;

}

void findLevels (){

//finds the level number of concepts

//input conditions specified to target concepts of interest are designated

//level 1 and other level numbers are calculated based on distance from those concepts in

//the ontology tree by calculated the number of superconcepts between them

230

 int nc=1;

 int lvl;

 for (int tc = 0; tc<conceptCt; tc++){

 lvl = findLevelThisConcept (tc,nc);

 concepts.lowestLevel[tc] = lvl;

 }

}

int findLevelThisConcept(int conceptNdx, int level){

//finds the level number of a specific concepts

 int newNdx;

 int thisNdx= conceptNdx;

 while (hasSuperConcept(thisNdx)){

 level++;

 newNdx=findSuperConcept(thisNdx);

 thisNdx=newNdx;

 }

return level;

}

boolean hasSuperConcept(int ndx) {

//determines if the concept in the ontolgoy arrays at position

//ndx has a superConcept

231

 String name = concepts.uri[ndx];

 boolean answer = false;

 int tc = 0;

 while ((tc<rowCt-1) && !(answer)){

 if (((predicate[tc].endsWith(subConcept))) &&

 ((concepts.uri[ndx].equalsIgnoreCase(object[tc])))){

 answer = true;

 }

 tc++;

 }

return answer;

}

int findSuperConcept(int ndx) {

//returns the index number of the superConcept for the concept

//in the ontology arrays at position ndx

 String name = concepts.uri[ndx];

 boolean answer = false;

 int tc = 0;

 int ndxSuperConcept=-1;

 while ((tc<rowCt) && !(answer)){

 if ((concepts.uri[ndx].equalsIgnoreCase(object[tc])) &&

 (predicate[tc].endsWith(subConcept))) {

232

 ndxSuperConcept=findNdxSuperConcept(subject[tc]);

 answer = true;

 }

 tc++;

 }

 return ndxSuperConcept;

}

int findNdxSuperConcept(String sub) {

//returns the index number of the superConcept for the concept

//specified by the String sub

 int retVal = -1;

 int n = 0;

 boolean found = false;

 while ((n<conceptCt) && !(found)) {

 if (concepts.uri[n].equalsIgnoreCase(sub)) {

 retVal = n;

 found = true;

 }

 else n++;

 }

 return retVal;

}

233

int findNdxSuperConcept(String sub, int val) {

//returns the index number of the superConcept for the concept

//specified by the String sub and integer val

 int retVal = -1;

 int n=0;

 boolean found=false;

 while ((n<conceptCt) && !(found)) {

 if (concepts.name[n].equalsIgnoreCase(sub)) {

 retVal = n;

 found= true;

 }

 else n++;

 }

 return retVal;

}

void calcTermSim(Ancestors ancestors) {

//calculates the similarity of annotations for the concepts

 dotProduct = new double [conceptCt] [conceptCt];

 for (int rc = 0; rc < conceptCt; rc++)

 for (int cc = 0; cc < conceptCt; cc++){

 dotProduct[rc] [cc] = 0.0;

234

 }

 for (int rc = 0; rc < conceptCt; rc++)

 for (int cc = 0; cc <= rc; cc++){

 if (rc == cc)

 dotProduct [rc] [cc] = 1.0;

 else

 dotProduct[rc] [cc] = (2.0 * ancestors.commonAncestorArray[rc][cc]) /

 (double)(concepts.lowestLevel[rc] *

concepts.lowestLevel[cc]);

 }

}

void findSuperConcepts() {

//identifies the superConcepts of each concept and assigns the appropriate cells

//of the superMatrix to 1 to denote that a superConcept exists for that concept

 try{

 for (int tc = 0; tc< conceptCt; tc++){

 for (int rc = 0; rc< rowCt; rc++){

 if (object[rc] != null){

 if ((concepts.uri[tc].equalsIgnoreCase(object[rc]))

 && (predicate[rc].endsWith(subConcept))) {

 concepts.superList[tc][concepts.numSuperConcepts[tc]] =

 findSuperConceptName(subject[rc]);

235

 int ndx = findNdxSuperConcept(subject[rc]);

 concepts.superMatrix[tc][ndx]=1;

 concepts.numSuperConcepts[tc]++;

 }

 }

 }

 }

 completeSuperConceptList();

 createLowestLevelParentList();

 }

 catch(Exception e){

 System.err.println("exception " + e);

 e.printStackTrace();

 System.exit(1);

 }

}

void completeSuperConceptList(){

//adds the superConcept names to the SuperLists and

//calls method to add all Parents of that concept

 String name;

 int ndx;

 int index = -1;

236

 for (int tc = 0; tc< conceptCt; tc++){

 int lastDone = 0;

 int previousEnd =concepts.numSuperConcepts[tc];

 while (lastDone < previousEnd) {

 previousEnd =concepts.numSuperConcepts[tc];

 for (int st = lastDone; st<concepts.numSuperConcepts[tc]; st++){

 name = concepts.superList[tc][st];

 index = findNdxSuperConcept(name,0);

 if (hasSuperConcept(index))

 addAllParents(index,tc);

 }

 lastDone = previousEnd;

 }

 }

}

void createLowestLevelParentList(){

//declares a list of the lowest level of each parent of each concept

 String name="";

 int index;

 for (int tc = 0; tc< conceptCt; tc++){

 int parentNum = 0;

 boolean found;

237

 if (concepts.numSuperConcepts[tc] > 0) {

 for (int st = 0; st<concepts.numSuperConcepts[tc]; st++) {

 name = concepts.superList[tc][st];

 index = findNdxSuperConcept(name,0);

 found = false;

 while (hasSuperConcept(index))

 index=findSuperConcept(index);

 if (parentNum <1) {

 concepts.lowestParent[tc][parentNum]=index;

 parentNum++;

 }

 else{

 for (int prevParent=0;prevParent<parentNum;prevParent++){

 if (index==concepts.lowestParent[tc][prevParent])

 found = true;

 }

 if (!found){

 concepts.lowestParent[tc][parentNum]=index;

 parentNum++;

 }

 }

 }

 }

238

 else {

 concepts.lowestParent[tc][parentNum]=tc;

 }

 }

}

void addAllParents(int ndx, int tc){

//declares a list of all parents (superConcepts) of each concept

 for (int rc = 0; rc< rowCt; rc++){

 boolean answer = false;

 if (((predicate[rc].endsWith(subConcept))) &&

 ((concepts.uri[ndx].equalsIgnoreCase(object[rc])))){

 answer = true;

 int index = findNdxSuperConcept(subject[rc]);

 String name = concepts.name[index];

 if (!checkDupSuperList(tc,name)){

 concepts.numSuperConcepts[tc]++;

 concepts.superMatrix[tc] [index] = 1;

 concepts.superList[tc][concepts.numSuperConcepts[tc]-1]=name;

 }

 }

 }

}

239

boolean checkDupSuperList(int tc, String name) {

//checks for duplicate entries in the superList

 boolean found = false;

 int max = concepts.numSuperConcepts[tc];

 for (int rc=0; rc > max; rc++)

 if (name.equals(concepts.superList[tc][rc]))

 found = true;

 return found;

}

String findSuperConceptName(String uri){

//returns the String name of the superConcept given the URI

 String retVal = "";

 boolean found=false;

 int tc=0;

 while (tc<conceptCt && !found){

 if (concepts.uri[tc].equalsIgnoreCase(uri)){

 found=true;

 retVal = findName(tc);

 }

 tc++;

 }

240

 if (!found) {

 System.err.println("Warning--Did not find uri of SuperConcept--End Pgm");

 System.exit(1);

 }

 return retVal;

}

}

class RDFConceptArray {

//This class defines the concepts found in the ontology and their superconcepts

ConceptData [] conceptData;

int [] branch;

int [] lowestLevel;

int [] [] lowestParent;

int [] numSuperConcepts;

int [] [] superMatrix;

int [] [] superNdx;

int maxLowestParents;

int maxSuperConcepts;

int size;

String [] altUri;

String[] uri;

241

String [] [] firstSuperUri;

String[] name;

String [] [] superList;

RDFConceptArray () {

 System.err.println("RDFConceptArray default construction--no parameters

specified—

 Program will end");

 System.exit(1);

}

RDFConceptArray(InputParameters ip){

 size = ip.maxRDFStmtInOntology;

 maxSuperConcepts = ip.maxSuperConceptPerConcept;

 maxLowestParents = ip.maxLoParent;

 uri = new String [size];

 altUri = new String [size];

 name = new String[size];

 branch = new int [size];

 lowestLevel = new int [size];

 numSuperConcepts = new int [size];

 superNdx = new int [size] [size];

 superMatrix = new int [size] [size];

242

 lowestParent = new int [size] [maxLowestParents];

 conceptData = new ConceptData[size];

 firstSuperUri = new String[size] [size];

 superList = new String [size] [maxSuperConcepts];

 for (int concept = 0; concept < size; concept++){

 numSuperConcepts[concept] = 0;

 branch[concept] = 0;

 lowestLevel[concept] = 0;

 for (int rc=0; rc<size; rc++) {

 superMatrix[concept] [rc] = 0;

 superNdx[concept] [rc] = 0;

 }

 for (int sconcept = 0; sconcept < maxSuperConcepts; sconcept ++) {

 superList[concept][sconcept] = "";

 }

 for (int hPar=0;hPar<maxLowestParents;hPar++){

 lowestParent[concept][hPar]=-1;

 }

 }

}

int lookUpLevel(String s, int num){

//determines the level for a concept, given the URI

243

 int retVal = -1;

 for (int ln=0;ln<num;ln++){

 if (name[ln].equals(s))

 retVal=lowestLevel[ln];

 }

 return retVal;

}

int lookUpIndex(String s, int num){

//determines the index for a concept, given the URI

 int retVal = -1;

 for (int ln=0;ln<num;ln++){

 if (name[ln].equals(s))

 retVal=ln;

 }

 return retVal;

 }

}

class RDFStmts {

//This class defines the properties of specific RDF statements

boolean [] meetsRule;

244

int numStmts;

String [] docObj;

String [] docPrd;

String [] docSub;

RDFStmts(){

 System.err.println("***Warning Default RDFStmt Constructed without # of

 statements");

 System.err.println("***Program will exit");

 System.exit(1);

}

RDFStmts (int max) {

 docSub = new String [max];

 docObj = new String [max];

 docPrd = new String [max];

 meetsRule = new boolean [max];

 numStmts = 0;

}

}

class Roots{

245

//This class defines properities of word roots and their calculation

Roots() {}

String findRoot(String term){

//finds the root of a term by eliminating suffixes and final

//e, y or double letter

 String[] suffixList7 = {"ability","itional"};

 String[] suffixList6 = {"atings","ations","ically", "itions"};

 String[] suffixList5 =

 {"ables","ating","ation","ators","ences","ities",

 "ition","ments","tions"};

 String[] suffixList4 = {"able","ally","ator",

 "ings","ives","ment","tion"};

 String[] suffixList3 = {"ent","ers","ics","ied",

 "ies","ily","ing","ity","ive","ors"};

 String[] suffixList2 = {"ed", "er","es","ic","ly","or"};

 String[] suffixList1 = {"s","y"};

 char first=term.charAt(0);

 int val = Character.getNumericValue(first);

 String root = term;

 int ndx;

 String apos = "'";

246

 String hyphen = "-";

 char firstChar=root.charAt(0);

 while (Character.getNumericValue(firstChar)<0){

 root=root.substring(1,root.length());

 firstChar = root.charAt(0);

 }

 ndx = root.lastIndexOf(apos);

 if (ndx>-1)

 root=root.substring(0,ndx);

 ndx= root.indexOf(hyphen);

 int cnt = 0;

 boolean found = false;

 while (cnt<suffixList7.length && ! found && root.length()>8) {

 if (root.endsWith(suffixList7[cnt])) {

 root = root.substring(0,root.length()-7);

 found = true;

 }

 cnt++;

 }

 cnt = 0;

 found = false;

 while (cnt<suffixList6.length && ! found && root.length()>7) {

 if (root.endsWith(suffixList6[cnt])) {

247

 root = root.substring(0,root.length()-6);

 found = true;

 }

 cnt++;

 }

 cnt = 0;

 found = false;

 while (cnt<suffixList5.length && ! found && root.length()>6) {

 if (root.endsWith(suffixList5[cnt])) {

 root = root.substring(0,root.length()-5);

 found = true;

 }

 cnt++;

 }

 cnt = 0;

 found=false;

 while (cnt<suffixList4.length && ! found && root.length()>5) {

 if (root.endsWith(suffixList4[cnt])) {

 root = root.substring(0,root.length()-4);

 found = true;

 }

 cnt++;

 }

248

 cnt = 0;

 found = false;

 while (cnt<suffixList3.length && ! found && root.length()>4) {

 if (root.endsWith(suffixList3[cnt])) {

 root = root.substring(0,root.length()-3);

 found = true;

 }

 cnt++;

 }

 cnt = 0;

 found=false;

 while (cnt<suffixList2.length && ! found && root.length()>3) {

 if (root.endsWith(suffixList2[cnt])) {

 root = root.substring(0,root.length()-2);

 found = true;

 }

 cnt++;

 }

 cnt = 0;

 found = false;

 while (cnt<suffixList1.length && ! found && root.length()>2) {

 if (root.endsWith(suffixList1[cnt])) {

 root = root.substring(0,root.length()-1);

249

 found = true;

 }

 cnt++;

 }

 char last;

 char ntl = ' ';

 last = root.charAt(root.length()-1);

 if (root.length()>2)

 ntl = root.charAt(root.length()-2);

 while ((root.length() > 2) && ((last == 'e') || (last == 'y'))){

 root=root.substring(0,root.length()-1);

 last = root.charAt(root.length()-1);

 if (root.length()>2)

 ntl = root.charAt(root.length()-2);

 }

 while ((root.length() > 1) && (last == ntl)){

 root=root.substring(0,root.length()-1);

 last = root.charAt(root.length()-1);

 if (root.length()>1)

 ntl = root.charAt(root.length()-2);

 }

 return root;

}

250

}

import java.io.*;

class Stats{

//This class models the statistics needed to analyze

//similarity between annotations and text of documents

double [] whiCk = new double[4];

double [] whiInfCk = new double[4];

boolean [] selectPair;

double tol = 1.e-14;

double [] simAra;

double [] simInfAra;

double [] jacAra;

double [] jacInfAra;

double [] vecAra;

double [] vecInfAra;

double [] gcsmAra;

double [] uhiAra;

double [] whiAra;

double [] simRankAra;

double [] simInfRankAra;

double [] jacRankAra;

251

double [] jacInfRankAra;

double [] vecRankAra;

double [] vecInfRankAra;

double [] gcsmRankAra;

double [] uhiRankAra;

double [] whiRankAra;

double ratiobe [];

double ratiopbe [];

double normDiff[];

double avgDiff[];

double simCc;

double simInfCc;

double jacCc;

double jacInfCc;

double vecCc;

double vecInfCc;

double gcsmCc;

double uhiCc;

double whiCc;

double simRCc;

double simInfRCc;

double jacRCc;

double jacInfRCc;

252

double vecRCc;

double vecInfRCc;

double gcsmRCc;

double uhiRCc;

double whiRCc;

int [] crAra;

int [] curAra;

int [] ndx1CrAra;

int [] ndx2CrAra;

int [] ndx1CurAra;

int [] ndx2CurAra;

double [] rankCr;

double [] rankCUR;

int [] either;

int [] eitherInf;

int [] both;

int [] bothInf;

int [] numSameParentEither;

int [] numSameParentBoth;

int statMax;

int docCheck=2;

int maxDeSels=10;

int e;

253

int aNotb;

int bNota;

int neither;

int b;

int eInf;

int aNotbInf;

int bNotaInf;

int neitherInf;

int bInf;

int pe;

int numUnique;

int pb;

double dot;

double pDot;

double wpDot;

double sA;

double sB;

double psA;

double psB;

double wpsA;

double wpsB;

int ndxPair[] [];

254

Stats(){

 System.err.println("Stats default construction--no numUnique specified");

 System.exit(1);

}

Stats(Annotations annot, InputParameters ip) {

 statMax = ip.maxVal;

 numUnique = ip.docUsed * (ip.docUsed-1) / 2;

 int numDocs = ip.docUsed;

 ndxPair = new int[numDocs] [numDocs];

 selectPair = new boolean[numUnique];

 crAra = new int[numUnique];

 curAra = new int[numUnique];

 rankCr = new double[numUnique] ;

 rankCUR = new double[numUnique];

 simAra = new double [numUnique] ;

 simInfAra = new double [numUnique] ;

 simRankAra = new double [numUnique];

 simInfRankAra = new double [numUnique];

 jacAra = new double [numUnique] ;

 jacInfAra = new double [numUnique] ;

 jacRankAra = new double [numUnique] ;

 jacInfRankAra = new double [numUnique] ;

255

 vecAra = new double [numUnique];

 vecInfAra = new double [numUnique];

 vecRankAra = new double [numUnique];

 vecInfRankAra = new double [numUnique];

 gcsmAra = new double [numUnique];

 gcsmRankAra = new double [numUnique];

 uhiAra = new double [numUnique];

 uhiRankAra = new double [numUnique];

 whiAra = new double [numUnique];

 whiRankAra = new double [numUnique];

 either = new int [numUnique];

 eitherInf = new int [numUnique];

 both = new int [numUnique] ;

 bothInf = new int [numUnique] ;

 ratiobe = new double [numUnique];

 ratiopbe = new double [numUnique];

 numSameParentEither = new int [numUnique];

 numSameParentBoth = new int [numUnique] ;

 normDiff = new double[numUnique];

 avgDiff = new double[numDocs];

}

void calcSimilarity(Annotations annot, Ancestors ancestors,

256

 Ontology onto, String runID, int numDocs,

double [] th,

 TermDocumentMatrix tdm, int numDeSels, int

minCommon){

//calls other methods to calculate the various measures of similarity,

//calculate correlation and write output file for each case

 indexDocs(numDocs, annot);

 int caseNo;

 caseNo = 0;

 System.out.println("\n\nCase 0-based on common roots document ratio");

 calcRatios(annot, ancestors, onto, numDocs);

 selectBestDocs(ratiobe,crAra, annot.selectedSheet, numDocs, th[caseNo],

 annot.validSheet, caseNo, numDeSels, minCommon);

 calcMeasures(annot, ancestors, onto, numDocs, caseNo);

 initRanks(caseNo);

 calcRanks(caseNo,numDocs,annot);

 calcCorr(caseNo,numDocs,annot.selectedSheet);

 writeFile(runID, numDocs, annot, tdm, "DocCR", caseNo, th);

 if (ancestors.hier) {

 System.out.println("\nCase 1-based on common roots parent ratio");

 caseNo=1;

 calcRatios(annot, ancestors, onto, numDocs);

 selectBestDocs(ratiopbe,crAra, annot.selectedSheet, numDocs, th[caseNo],

257

 annot.validSheet, caseNo, numDeSels,

minCommon);

 calcMeasures(annot, ancestors, onto, numDocs, caseNo);

 initRanks(caseNo);

 calcRanks(caseNo,numDocs,annot);

 calcCorr(caseNo,numDocs,annot.selectedSheet);

 writeFile(runID, numDocs, annot, tdm, "ParentCR",caseNo,th);

 }

 System.out.println("\nCase 2-based on common unexpected roots document ratio");

 caseNo = 2;

 calcRatios(annot, ancestors, onto, numDocs);

 selectBestDocs(ratiobe,curAra, annot.selectedSheet, numDocs, th[caseNo],

 annot.validSheet, caseNo, numDeSels,

minCommon);

 calcMeasures(annot, ancestors, onto, numDocs, caseNo);

i nitRanks(caseNo);

 calcRanks(caseNo,numDocs,annot);

 calcCorr(caseNo,numDocs,annot.selectedSheet);

 writeFile(runID, numDocs, annot, tdm, "DocCUR",caseNo,th);

 if (ancestors.hier){

 System.out.println("\nCase 3-based on common unexpected roots parent ratio");

 caseNo = 3;

 calcRatios(annot, ancestors, onto, numDocs);

258

 selectBestDocs(ratiopbe,curAra, annot.selectedSheet, numDocs, th[caseNo],

 annot.validSheet, caseNo, numDeSels,

minCommon);

 int selCt=0;

 calcMeasures(annot, ancestors, onto, numDocs, caseNo);

 initRanks(caseNo);

 selCt=0;

 calcRanks(caseNo,numDocs,annot);

 calcCorr(caseNo,numDocs,annot.selectedSheet);

 writeFile(runID, numDocs, annot, tdm, "ParentCUR",caseNo,th);

 }

}

void indexDocs(int numDocs, Annotations annot){

//calculates the indices for the document pairs

 int docPair=0;

 for (int docA = 0; docA < numDocs; docA++){

 ndxPair[docA][docA]=-1;

 for (int docB = docA+1; docB<numDocs; docB++){

 if (annot.validSheet[docA] && annot.validSheet[docB]) {

 ndxPair[docA][docB] = docPair;

 ndxPair[docB][docA]=docPair;

 docPair++;

259

 }

 else{

 ndxPair[docA][docB] = -1;

 ndxPair[docB][docA] = -1;

 }

 }

 }

}

void calcRatios(Annotations annot, Ancestors ancestors, Ontology onto, int numDocs){

//calculates ratios of common annotations in both document pairs

//to annotions in either document

 int docPair=0;

 for (int docA = 0; docA < numDocs; docA++){

 for (int docB = docA+1; docB<numDocs; docB++){

 docPair = ndxPair[docA][docB];

 if (docPair>=0){

 if (annot.validSheet[docA] && annot.validSheet[docB]) {

 e = findCountInEither(docA,docB,annot,onto.conceptCt, false);

 b = findCountInBoth(docA, docB,annot,onto.conceptCt, false);

 pe = findParentCountInEither(docA,docB,annot,onto);

 pb = findParentCountInBoth(docA,docB,annot,onto);

 either[docPair] = e;

260

 both[docPair] = b;

 numSameParentEither[docPair]= pe;

 numSameParentBoth[docPair] = pb;

 if (e > 0)

 ratiobe [docPair] = (double)b/(double)e;

 else

 ratiobe[docPair] = -1;

 if (pe > 0) {

 ratiopbe [docPair] = (double)pb/(double)pe;

 }

 else {

 ratiopbe [docPair] = -1;

 }

 }

 }

 }

 }

}

void calcMeasures(Annotations annot, Ancestors ancestors, Ontology onto,

 int numDocs, int caseNo){

//calculates the various measures of similarity

 int docPair=0;

261

 for (int docA = 0; docA < numDocs; docA++){

 for (int docB = docA+1; docB<numDocs; docB++){

 docPair = ndxPair[docA][docB];

 if ((docPair>=0)&& (selectPair[docPair])){

 if (annot.selectedSheet[docA] && annot.selectedSheet[docB]) {

 boolean inferred=false;

 aNotb =

findCountIn1stDocNot2nd(docA,docB,annot,onto.conceptCt,inferred);

 bNota= findCountIn2ndDocNot1st(docA,docB,annot,onto.conceptCt,

inferred);

 neither = findCountInNeither(docA,docB,annot,onto.conceptCt, inferred);

 e = findCountInEither(docA,docB,annot,onto.conceptCt, inferred);

 b = findCountInBoth(docA, docB,annot,onto.conceptCt, inferred);

 pe = findParentCountInEither(docA,docB,annot,onto);

 pb = findParentCountInBoth(docA,docB,annot,onto);

 inferred=true;

 aNotbInf =

findCountIn1stDocNot2nd(docA,docB,annot,onto.conceptCt,inferred);

 bNotaInf = findCountIn2ndDocNot1st(docA,docB,annot,onto.conceptCt,

inferred);

 neitherInf = findCountInNeither(docA,docB,annot,onto.conceptCt, inferred);

 eInf = findCountInEither(docA,docB,annot,onto.conceptCt, inferred);

 bInf = findCountInBoth(docA, docB,annot,onto.conceptCt, inferred);

262

 either[docPair] = e;

 both[docPair] = b;

 eitherInf[docPair] = eInf;

 bothInf[docPair] = bInf;

 numSameParentEither[docPair]= pe;

 numSameParentBoth[docPair] = pb;

 if (e > 0)

 ratiobe [docPair] = (double)b/(double)e;

 else

 ratiobe[docPair] = -1;

 if (pe > 0)

 ratiopbe [docPair] = (double)pb/(double)pe;

 else

 ratiopbe [docPair] = -1;

 double vA=b;

 double vB=bNota;

 double vC=aNotb;

 double vD=neither;

 double t=vA+vB+vC+vD;

 if (t>0)

 simAra[docPair] = (((vA+vB)*(vA+vC))+((vD+vB)*(vD+vC)))/ (t*t);

 else

 simAra[docPair]= -1;

263

 vA=bInf;

 vB=bNotaInf;

 vC=aNotbInf;

 vD=neitherInf;

 t=vA+vB+vC+vD;

 if (t > 0)

 simInfAra[docPair] = (((vA+vB)*(vA+vC))+((vD+vB)*(vD+vC)))/ (t*t);

 else

 simInfAra[docPair] = -1;

 if (e > 0){

 jacAra [docPair] = (double) b/ (double)e;

 }

 else {

 jacAra [docPair] = -1;

 }

 if (eInf > 0){

 jacInfAra [docPair] = (double) bInf/ (double)eInf;

 }

 else {

 jacInfAra [docPair] = -1;

 }

 inferred=false;

 dot = findDotProd(docA, docB, annot, onto.conceptCt, inferred);

264

 sA = findSqrtSumSqr(docA, annot, onto.conceptCt,inferred);

 sB = findSqrtSumSqr(docB, annot, onto.conceptCt,inferred);

 if ((sA*sB) > 0)

 vecAra[docPair] = dot / (sA * sB);

 else

 vecAra[docPair] = -1;

 inferred=true;

 dot = findDotProd(docA, docB, annot, onto.conceptCt, inferred);

 sA = findSqrtSumSqr(docA, annot, onto.conceptCt,inferred);

 sB = findSqrtSumSqr(docB, annot, onto.conceptCt,inferred);

 if ((sA*sB) > 0)

 vecInfAra [docPair] = dot / (sA * sB);

 else

 vecInfAra [docPair] = -1;

 double g1 = calcGcsm(docA,docB,annot,ancestors,onto);

 double gA = calcGcsm(docA,docA,annot,ancestors,onto);

 double gB = calcGcsm(docB,docB,annot,ancestors,onto);

 double gAB = Math.sqrt(gA) * Math.sqrt(gB);

 if (gAB > 0){

 gcsmAra [docPair] = g1 / gAB;

 }

 else {

 gcsmAra [docPair] = -1;

265

 }

 pDot = findPDotProd(docA, docB, annot, ancestors);

 psA = findPSqrtSumSqr(docA, annot, ancestors);

 psB = findPSqrtSumSqr(docB, annot, ancestors);

 if ((psA*psB)>0)

 uhiAra [docPair] = pDot / (psA * psB);

 else

 uhiAra [docPair] = -1;

 inferred=true;

 wpDot = findWpDotProd(docA, docB, annot, ancestors, onto.conceptCt);

 wpsA = findWpSqrtSumSqr(docA, annot, ancestors);

 wpsB = findWpSqrtSumSqr(docB, annot, ancestors);

 if ((wpsA * wpsB)>0)

 whiAra [docPair] = wpDot / (wpsA * wpsB);

 else

 whiAra [docPair] = -1;

 }

 else { //one or both of the documents does not have annots of interest

 simAra [docPair] = -1;

 simInfAra [docPair] = -1;

 jacAra [docPair] = -1;

 jacInfAra [docPair] = -1;

 vecAra [docPair] = -1;

266

 vecInfAra [docPair] = -1;

 gcsmAra[docPair] = -1;

 uhiAra [docPair] = -1;

 whiAra [docPair] = -1;

 }

 }

 }

 }

 validate(ancestors.hier,numDocs,caseNo);

 normalize (simAra, numDocs);

 normalize (simInfAra, numDocs);

 normalize (jacAra, numDocs);

 normalize (jacInfAra, numDocs);

 normalize (vecAra, numDocs);

 normalize (vecInfAra, numDocs);

 normalize (gcsmAra, numDocs);

 normalize (uhiAra, numDocs);

 normalize (whiAra, numDocs);

}

void normalize (double valAra[], int num){

//normalizes valAra based on maximum value in array

 double maxVal = findMaxSel(valAra,num);

267

 int docPair;

 for (int dA=0;dA<num;dA++){

 for (int dB=dA+1;dB<num;dB++){

 docPair=ndxPair[dA][dB];

 if (docPair >=0){

 if (selectPair[docPair]){

 valAra[docPair]=valAra[docPair]/maxVal;

 }

 }

 }

 }

}

double findMinSel(double []valAra, int num){

//returns minimum value in valAra of those documents in selection set

double min=999999;

int docPair;

for (int dA=0;dA<num;dA++){

for (int dB=dA+1;dB<num;dB++){

docPair=ndxPair[dA][dB];

if (docPair >=0){

if (selectPair[docPair]){

if (valAra[docPair]<min){

268

min=valAra[docPair];

}

}

}

}

}

return min;

}

double findMaxSel(double []valAra, int num){

//returns maximum value in valAra of those documents in selection set

 double max=-999;

 int docPair;

 for (int dA=0;dA<num;dA++){

 for (int dB=dA+1;dB<num;dB++){

 docPair=ndxPair[dA][dB];

 if (docPair >=0){

 if (selectPair[docPair]){

 if (valAra[docPair]>max){

 max=valAra[docPair];

 }

 }

 }

269

 }

 }

return max;

}

double findMinSel(int []valAra, int num){

//returns integer minimum value in valAra of those documents in selection set

 double min=999999;

 int docPair;

 for (int dA=0;dA<num;dA++){

 for (int dB=dA+1;dB<num;dB++){

 docPair=ndxPair[dA][dB];

 if (docPair >=0){

 if (selectPair[docPair]){

 if (valAra[docPair]<min){

 min=valAra[docPair];

 }

 }

 }

 }

 }

 return min;

}

270

double findMaxSel(int []valAra, int num){

//returns integer maximum value in valAra of those documents in selection set

 double max=-999;

 int docPair;

 for (int dA=0;dA<num;dA++){

 for (int dB=dA+1;dB<num;dB++){

 docPair=ndxPair[dA][dB];

 if (docPair >=0){

 if (selectPair[docPair]){

 if (valAra[docPair]>max){

 max=valAra[docPair];

 }

 }

 }

 }

 }

 return max;

}

double findMinUnSelPairs(double [] diff, boolean [] selPossible, int numDocs,

 int minCommon, int [] crAra){

//find value of avg differnce of those documents which are still possible for selection

271

 double minVal=statMax;

 int doc=0;

 for (int docA=0;docA<numDocs;docA++){

 for (int docB=docA+1;docB<numDocs;docB++){

 doc = ndxPair[docA][docB];

 if (doc>=0){

 if ((selPossible[docA] || selPossible[docB]) && (diff[doc]< minVal) &&

 (crAra[doc]>=minCommon)){

 minVal = diff[doc];

 }

 }

 }

 }

 if (minVal > (statMax-tol)) {

 System.out.println("****Error in findMinUnSel minumum reset to "+minVal);

 System.out.println("****Program will end");

 System.exit(0);

 }

 return minVal;

}

boolean moreSel(boolean [] selectP, int numDocs){

272

//finds if there are more documents to be considered for selection

 boolean retVal = false;

 int doc=0;

 while(doc<numDocs&&!retVal){

 if (selectP[doc] == true){

 retVal=true;

 }

 doc++;

 }

 return retVal;

}

void calcAvgSelDiff(boolean [] valid, double [] avgSelDiff,boolean [] select,

 int numDocs) {

//calculates the average difference for those documents currently selected

 double [] sum = new double[numDocs];

 int [] num = new int[numDocs];

 int docPair;

 for (int docA=0;docA<numDocs;docA++){

 sum[docA] = 0;

 num[docA]=0;

 for (int docB=0;docB<numDocs;docB++){

 docPair = ndxPair[docA][docB];

273

 if (docPair>=0){

 if (select [docA] && select[docB] && docA != docB){

 sum[docA] = sum[docA]+normDiff[docPair];

 num[docA]++;

 }

 }

 }

 }

 for (int docA=0;docA<numDocs;docA++){

 if (num[docA]>0)

 avgSelDiff[docA] = sum[docA]/num[docA];

 else

 avgSelDiff[docA]=statMax;

 }

}

void addMinDocs(int numDocs, boolean []valid, boolean [] select,

 boolean [] selPossible, int minCommon, int[]

crAra){

//atempt to add those docs from pairs that have the miniumum normalized difference

//if none are eligible, add docs with minimum avgDiff

 double min = findMinUnSelPairs(normDiff,selPossible,numDocs,minCommon,

crAra);

274

 boolean docsAdded = false;

 int docPair=0;

 for (int docA=0;docA<numDocs;docA++){

 for (int docB=docA+1;docB<numDocs;docB++){

 if (valid[docA] && valid[docB]) {

 docPair = ndxPair[docA][docB];

 if ((docPair>=0) && (selPossible[docA] || selPossible[docB])){

 if ((normDiff[docPair] <= min) &&(crAra[docPair]>=minCommon)) {

 if (selPossible[docA]){

 docsAdded = true;

 select[docA] = true;

 selPossible[docA] = false;

 }

 if (selPossible[docB]){

 docsAdded = true;

 select[docB] = true;

 selPossible[docB] = false;

 }

 }

 }

 }

 }

 }

275

 if (!docsAdded) {

 double minVal=statMax;

 for (int d=0; d<numDocs; d++) {

 if ((avgDiff[d] < minVal) && selPossible[d])

 minVal = avgDiff[d];

 }

 for (int d=0; d<numDocs; d++) {

 if ((avgDiff[d] <= minVal) && selPossible[d]){

 docsAdded = true;

 selPossible[d] = false;

 select[d]=true;

 }

 }

 }

 if (!docsAdded) {

 System.out.println("Error --- selection possible but no docs added");

 System.exit(0);

 }

}

void selectBestDocs(double []ratioAra, int [] valAra, boolean [] select,

 int numDocs, double thresh,boolean [] valid, int caseNo,

int numDeSels,

276

 int minCommon) {

//selects those documents that have the minimum difference in the set of unselected

 documents and deselects documents whose difference exceeds the threshhold

 int deSelect[] = new int[numDocs];

 double avgSelDiff[] = new double[numDocs];

 boolean selPossible[] = new boolean[numDocs];

 for (int doc=0;doc<numDocs;doc++){

 selPossible[doc]=valid[doc];

 select[doc] = false;

 deSelect[doc] = 0;

 }

 ckPossible(crAra,valid,selPossible,minCommon,numDocs);

 calcNormDiff(ratioAra, valAra, numDocs);

 calcAvgDiff(valid, avgDiff, numDocs);

 int docPair=0;

 for (int docA = 0; docA < numDocs; docA++){

 for (int docB = docA+1; docB<numDocs; docB++){

 docPair = ndxPair[docA][docB];

 }

 }

 double min=statMax;

 while(moreSel(selPossible,numDocs)){

 addMinDocs(numDocs, valid, select, selPossible, minCommon,crAra);

277

 calcAvgSelDiff(valid, avgSelDiff, select, numDocs);

 for (int d=0;d<numDocs;d++){

 if (select[d] && (avgSelDiff[d] > thresh)){

 select[d] = false;

 deSelect[d]++;

 if (deSelect[d] < numDeSels) {

 selPossible[d] = true;

 }

 }

 }

 ckPossible(crAra,valid,selPossible,minCommon,numDocs);

 calcAvgSelDiff(valid,avgSelDiff,select, numDocs);

 }

 int selCnt=0;

 for (int docA=0;docA<numDocs;docA++){

 for (int docB=docA+1;docB<numDocs;docB++){

 int dPair = ndxPair[docA] [docB];

 if (dPair>=0){

 selectPair[dPair] = true;

 if (select[docA]==false || select[docB]==false)

 selectPair[dPair]=false;

 if (selectPair[dPair]){

 selCnt++;

278

 }

 }

 }

 }

 if (selCnt<2){

 System.out.println("***Error--less than 2 document Pairs selected. ― +

 ―\nProgram will exit. CaseNo="+caseNo);

 System.out.println("***Rerun with different parameters");

 System.exit(0);

 }

}

boolean checkMeasures(boolean h, int numDocs){

//flags runs where any measure is invalid

//noted by negative value when measurements calculated

 boolean measBad=false;

 int docPair;

 for (int docA = 0; docA < numDocs; docA++){

 for (int docB = docA+1; docB<numDocs; docB++){

 docPair = ndxPair[docA][docB];

 if (docPair>=0){

 if (simAra[docPair]<0)

 measBad=true;

279

 if (jacAra[docPair]<0)

 measBad=true;

 if (vecAra[docPair]<0)

 measBad=true;

 if (h) {

 if (simInfAra[docPair]<0)

 measBad=true;

 if (jacInfAra[docPair]<0)

 measBad=true;

 if (vecInfAra[docPair]<0)

 measBad=true;

 if (gcsmAra[docPair]<0)

 measBad=true;

 if (uhiAra[docPair]<0)

 measBad=true;

 if (whiAra[docPair]<0)

 measBad=true;

 }

 }

 }

 }

 return measBad;

}

280

boolean checkVariance(boolean h, int num, int caseNo) {

//flags runs where there is no variance

//in the data for a specific measurements

 double low, hi;

 boolean varBad=false;

 low=findMinSel(simAra,num);

 hi=findMaxSel(simAra,num);

 if (Math.abs(low-hi)<tol)

 varBad=true;

 low=findMinSel(jacAra,num);

 hi=findMaxSel(jacAra,num);

 if (Math.abs(low-hi)<tol)

 varBad=true;

 low=findMinSel(vecAra,num);

 hi=findMaxSel(vecAra,num);

 if (Math.abs(low-hi)<tol)

 varBad=true;

 if (caseNo<2){

 low=findMinSel(crAra,num);

 hi=findMaxSel(crAra,num);

 if (Math.abs(low-hi)<tol)

 varBad=true;

281

 }

 else{

 low=findMinSel(crAra,num);

 hi=findMaxSel(crAra,num);

 if (Math.abs(low-hi)<tol)

 varBad=true;

 }

 if (h){

 low=findMinSel(simInfAra,num);

 hi=findMaxSel(simInfAra,num);

 if (Math.abs(low-hi)<tol)

 varBad=true;

 low=findMinSel(jacInfAra,num);

 hi=findMaxSel(jacInfAra,num);

 if (Math.abs(low-hi)<tol)

 varBad=true;

 low=findMinSel(vecInfAra,num);

 hi=findMaxSel(vecInfAra,num);

 if (Math.abs(low-hi)<tol)

 varBad=true;

 low=findMinSel(gcsmAra,num);

 hi=findMaxSel(gcsmAra,num);

 if (Math.abs(low-hi)<tol)

282

 varBad=true;

 low=findMinSel(uhiAra,num);

 hi=findMaxSel(uhiAra,num);

 if (Math.abs(low-hi)<tol)

 varBad=true;

 low=findMinSel(whiAra,num);

 hi=findMaxSel(whiAra,num);

 if (Math.abs(low-hi)<tol)

 varBad=true;

 }

 return varBad;

}

void validate(boolean hierarchy, int numDocs, int caseNo) {

//end run if any measurement was invalid or if all measurements equal

 boolean badRun=false;

 badRun=checkMeasures(hierarchy, numDocs);

 if (!badRun)

 badRun=checkVariance(hierarchy, numDocs,caseNo);

 if (badRun){

 System.out.println("***Invalid measurements or no variance within measure in

case‖

 +caseNo);

283

 System.out.println("***Rerun with different parameters");

 System.exit(0);

 }

}

void ckPossible(int[] crAra, boolean[] valid, boolean []selPossible,

 int minCommon, int numDocs){

// see if there is any combination for this document that is possible

 int numPossible=0;

 for (int docA=0;docA<numDocs;docA++){

 if (selPossible[docA])

 numPossible++;

 }

 if (numPossible>1){

 int docPair=0;

 for (int docA=0;docA<numDocs;docA++){

 boolean posPair=false;

 if (selPossible[docA]){

 for (int docB=0;docB<numDocs;docB++){

 if (selPossible[docB]){

 docPair=ndxPair[docA][docB];

 if (docPair >= 0){

 if (crAra[docPair] >= minCommon) {

284

 posPair = true;

 }

 }

 }

 }

 }

 selPossible[docA]=posPair;

 }

 }

}

void calcNormDiff(double[] ratioAra, int[] valAra, int numDocs){

//calculates the normalized difference between the ratio array and the value array

// that is used to estimate the precision value for the document pair

 int docPair=0;

 double normCommon[] = new double[numUnique];

 double normRatio[] = new double[numUnique];

 double maxRatio = findMax(numDocs,ratioAra);

 double maxCommon = (double)findMax(numDocs,valAra);

 for (int docA=0;docA<numDocs;docA++){

 for (int docB=docA+1;docB<numDocs;docB++){

 docPair=ndxPair[docA][docB];

 if (docPair>=0){

285

 normRatio[docPair] = ratioAra[docPair]/maxRatio;

 normCommon[docPair] = valAra[docPair]/maxCommon;

 normDiff[docPair] = normRatio[docPair]-normCommon[docPair];

 if (normDiff[docPair] < 0)

 normDiff[docPair] = -1*normDiff[docPair];

 }

 }

 }

}

void calcAvgDiff(boolean [] valid, double[] avgDiff, int numDocs){

//calculates the average difference of each document for all the pairs

//using that document in the selection set

 double [] sum = new double[numDocs];

 int [] num = new int[numDocs];

 int docPair;

 for (int docA=0;docA<numDocs;docA++){

 sum[docA] = 0;

 num[docA]=0;

 for (int docB=0;docB<numDocs;docB++){

 docPair = ndxPair[docA][docB];

 if (docPair>=0){

 if (docA != docB) {

286

 sum[docA] = sum[docA]+normDiff[docPair];

 num[docA]++;

 }

 }

 }

 }

 for (int docA=0;docA<numDocs;docA++){

 if (num[docA]>0){

 avgDiff[docA] = sum[docA]/num[docA];

 }

 else { avgDiff[docA]=statMax;

 }

 }

}

double findMax(int num, double [] ara) {

//returns the maximum value in the array of n elements of type double

 double maxV = -1 * statMax;

 int docPair=0;

 for (int dA=0; dA<num; dA++) {

 for (int dB=dA+1;dB<num;dB++){

 docPair = ndxPair[dA][dB];

 if (docPair >= 0){

287

 if (ara[docPair] > (maxV-tol)){

 maxV = ara[docPair];

 }

 }

 }

 }

 return maxV;

}

int findMax(int num, int [] ara){

//returns the maximum value in the array of n elements of type integer

 int maxV = -1 * statMax;

 int docPair=0;

 for (int dA=0; dA<num; dA++) {

 for (int dB=dA+1;dB<num;dB++){

 docPair = ndxPair[dA][dB];

 if (docPair >= 0){

 if (ara[docPair] > maxV){

 maxV = ara[docPair];

 }

 }

 }

 }

288

 return maxV;

}

voidcalcCorr(intcaseNo,intnum,boolean[]sel){

//calculates the appropriate correlation value based on case number

//for each of the various simulation measures

 if (caseNo<2){

 simCc = findCorCoef(crAra,simAra,num);

 simInfCc = findCorCoef(crAra,simInfAra,num);

 jacCc = findCorCoef(crAra,jacAra,num);

 jacInfCc = findCorCoef(crAra,jacInfAra,num);

 vecCc = findCorCoef(crAra,vecAra,num);

 vecInfCc = findCorCoef(crAra,vecInfAra,num);

 gcsmCc = findCorCoef(crAra,gcsmAra,num);

 uhiCc = findCorCoef(crAra,uhiAra,num);

 whiCc = findCorCoef(crAra,whiAra,num);

 simRCc = findRankCorCoef(rankCr,simRankAra,num,sel);

 simInfRCc = findRankCorCoef(rankCr,simInfRankAra,num,sel);

 jacRCc = findRankCorCoef(rankCr,jacRankAra,num,sel);

 jacInfRCc = findRankCorCoef(rankCr,jacInfRankAra,num,sel);

 vecRCc = findRankCorCoef(rankCr,vecRankAra,num,sel);

 vecInfRCc = findRankCorCoef(rankCr,vecInfRankAra,num,sel);

 gcsmRCc = findRankCorCoef(rankCr,gcsmRankAra,num,sel);

289

 uhiRCc = findRankCorCoef(rankCr,uhiRankAra,num,sel);

 whiRCc = findRankCorCoef(rankCr,whiRankAra,num,sel);

 }

 else{

 simCc = findCorCoef(curAra,simAra,num);

 simInfCc = findCorCoef(curAra,simInfAra,num);

 jacCc = findCorCoef(curAra,jacAra,num);

 jacInfCc = findCorCoef(curAra,jacInfAra,num);

 vecCc = findCorCoef(curAra,vecAra,num);

 vecInfCc = findCorCoef(curAra,vecInfAra,num);

 gcsmCc = findCorCoef(curAra,gcsmAra,num);

 uhiCc = findCorCoef(curAra,uhiAra,num);

 whiCc = findCorCoef(curAra,whiAra,num);

 simRCc = findRankCorCoef(rankCUR,simRankAra,num,sel);

 simInfRCc = findRankCorCoef(rankCUR,simInfRankAra,num,sel);

 jacRCc = findRankCorCoef(rankCUR,jacRankAra,num,sel);

 jacInfRCc = findRankCorCoef(rankCUR,jacInfRankAra,num,sel);

 vecRCc = findRankCorCoef(rankCUR,vecRankAra,num,sel);

 vecInfRCc = findRankCorCoef(rankCUR,vecInfRankAra,num,sel);

 gcsmRCc = findRankCorCoef(rankCUR,gcsmRankAra,num,sel);

 uhiRCc = findRankCorCoef(rankCUR,uhiRankAra,num,sel);

 whiRCc = findRankCorCoef(rankCUR,whiRankAra,num,sel);

 }

290

}

double findCorCoef(int [] x, double [] y, int num) {

//calculates the correlation coefficient (Pearson's correlation coeffcient)

 double r;

 double minY=findMinSel(y,num);

 double maxY=findMaxSel(y,num);

 if (Math.abs(minY-maxY)<tol)

 r=-99.0;

 else{

 double sumX = 0;

 double sumXsq = 0;

 double sumY = 0;

 double sumYsq = 0;

 double sumXY = 0;

 double numSel=0;

 int docPair=0;

 for (int dA=0; dA<num; dA++){

 for (int dB=dA+1; dB<num; dB++) {

 docPair=ndxPair[dA][dB];

 if (docPair>=0){

 if (selectPair[docPair]){

 sumX += x[docPair];

291

 sumXsq += x[docPair]*x[docPair];

 sumY += y[docPair];

 sumYsq += y[docPair]*y[docPair];

 sumXY += x[docPair]*y[docPair];

 numSel++;

 }

 }

 }

 }

 double numer = (numSel*sumXY) - (sumX*sumY);

 double termX1 = numSel*sumXsq;

 double xVal=termX1-(sumX*sumX);

 double termY1 = numSel*sumYsq;

 double yVal=termY1-(sumY*sumY);

 double den =Math.sqrt(xVal*yVal);

 if (den>0){

 r = numer/den;

 }

 else

 r=-99;

 }

 return r;

}

292

double findRankCorCoef (double [] ara1, double [] ara2, int num, boolean[]sel) {

//calculates the ranked correlation coefficient (Spearman's correlation coeffcient)

 double rankCor;

 double min2=findMinSel (ara2,num);

 double max2=findMaxSel (ara2,num);

 if (Math.abs(min2-max2)<tol)

 rankCor=-99.0;

 else{

 double diffSq = 0;

 double diff = 0;

 double numS=0;

 int docPair=0;

 double sumDiffSq=0;

 for (int dA=0;dA<num;dA++){

 for (int dB=dA+1;dB<num;dB++){

 docPair=ndxPair[dA][dB];

 if (docPair>=0){

 if (sel[dA]&&sel[dB]&&selectPair[docPair]){

 diff = ara1[docPair]-ara2[docPair];

 diffSq = diff*diff;

 sumDiffSq = sumDiffSq + diffSq;

 numS=numS+1;

293

 }

 }

 }

 }

 double denom = (numS*numS*numS)-numS;

 if (denom>0)

 rankCor = 1 - ((6.0*sumDiffSq)/denom);

 else{

 rankCor=-99;

 System.out.println("***Error--Too few documents selected to ―+

 ‖calculate ranked correlation numS="+numS);

 System.out.println("***Rerun with different parameters.");

 System.exit(0);

 }

 }

 return rankCor;

}

int findCountIn1stDocNot2nd(int dA, int dB, Annotations annot,int numConcepts,

 boolean inferred){

//counts the number of document pairs that have a specific concept annotated

//(or inferred, based on boolean flag)in the first document but not both

 int count = 0;

294

 if (!inferred){

 for (int tc=0;tc<numConcepts;tc++) {

 if ((annot.docAnnotMatrix[dA][tc] ==1)

&&(annot.docAnnotMatrix[dB][tc]!=1)){

 count++;

 }

 }

 }

 else{

 for (int tc=0;tc<numConcepts;tc++) {

 if (((annot.docAnnotMatrix[dA][tc] ==1) ||(annot.docAnnotMatrix[dA][tc]

==2))

 &&((annot.docAnnotMatrix[dB][tc]<1) ||

(annot.docAnnotMatrix[dB][tc]>2))){

 count++;

 }

 }

 }

 return count;

}

int findCountIn2ndDocNot1st(int dA, int dB, Annotations annot, int numConcepts,

 boolean inferred){

295

//counts the number of document pairs that have a specific concept annotated

//(or inferred, ased on boolean flag)in the second document but not both

 int count = 0;

 if (!inferred){

 for (int tc=0;tc<numConcepts;tc++) {

 if ((annot.docAnnotMatrix[dA][tc] !=1)

&&(annot.docAnnotMatrix[dB][tc]==1)){

 count++;

 }

 }

 }

 else{

 for (int tc=0;tc<numConcepts;tc++) {

 if (((annot.docAnnotMatrix[dB][tc] ==1) ||(annot.docAnnotMatrix[dB][tc] ==2))

 &&((annot.docAnnotMatrix[dA][tc]<1) ||

(annot.docAnnotMatrix[dA][tc]>2))){

 count++;

 }

 }

 }

 return count;

}

296

int findCountInNeither(int dA, int dB, Annotations annot, int numConcepts,

 boolean inferred){

//counts the number of document pairs that do not have a specific concept annotated

//(or inferred, based on boolean flag)in either document

 int count = 0;

 if (!inferred){

 for (int tc=0;tc<numConcepts;tc++) {

 if ((annot.docAnnotMatrix[dA][tc] !=1) &&

 (annot.docAnnotMatrix[dB][tc]!=1)){

 count++;

 }

 }

 }

 else{

 for (int tc=0;tc<numConcepts;tc++) {

 if (((annot.docAnnotMatrix[dA][tc] < 1) || (annot.docAnnotMatrix[dA][tc] > 2))

&&

 ((annot.docAnnotMatrix[dB][tc] < 1) ||

(annot.docAnnotMatrix[dB][tc]> 2))){

 count++;

 }

 }

 }

297

 return count;

}

int findCountInEither(int dA, int dB, Annotations annot, int numConcepts,

 boolean inferred){

//counts the number of document pairs that have a specific concept annotated

//(or inferred, based on boolean flag)in the either document

 int count = 0;

 if (!inferred){

 for (int tc=0;tc<numConcepts;tc++) {

 if ((annot.docAnnotMatrix[dA][tc] ==1) ||

(annot.docAnnotMatrix[dB][tc]==1)){

 count++;

 }

 }

 }

 else{

 for (int tc=0;tc<numConcepts;tc++) {

 if ((annot.docAnnotMatrix[dA][tc] ==1) ||(annot.docAnnotMatrix[dA][tc] ==2)||

 (annot.docAnnotMatrix[dB][tc]==1) ||

(annot.docAnnotMatrix[dB][tc]==2)){

 count++;

 }

298

 }

 }

 return count;

}

int findCountInBoth (int dA, int dB, Annotations annot, int numConcepts,

 boolean inferred){

//counts the number of document pairs that have a specific concept annotated

//(or inferred, based on boolean flag)in the both documents

 int count = 0;

 if (!inferred){

 for (int tc=0;tc<numConcepts;tc++) {

 if ((annot.docAnnotMatrix[dA][tc] ==1)

&&(annot.docAnnotMatrix[dB][tc]==1)){

 count++;

 }

 }

 }

 else {

 for (int tc=0;tc<numConcepts;tc++) {

 if (((annot.docAnnotMatrix[dA][tc] ==1)|| (annot.docAnnotMatrix[dA][tc]

==2))

299

 && ((annot.docAnnotMatrix[dB][tc]==1) || (annot.docAnnotMatrix[dB][tc]

==2))){

 count++;

 }

 }

 }

 return count;

}

int findParentCountInEither(int dA, int dB, Annotations annot, Ontology onto){

//counts the number of document pairs that have the parent

//of a specific concept annotated (or inferred, based on boolean flag) in either document

 int count = 0;

 int [] parentAAra = new int [onto.conceptCt];

 int [] parentBAra = new int [onto.conceptCt];

 for (int tc=0;tc<onto.conceptCt;tc++) {

 parentAAra[tc] = 0;

 parentBAra[tc] = 0;

 }

 for (int tc=0;tc<onto.conceptCt;tc++) {

 for (int p1=0;p1<onto.concepts.maxLowestParents;p1++) {

 if ((annot.docAnnotMatrix[dA][tc]==1) &&

 (onto.concepts.lowestParent[tc][p1]>=0))

300

 parentAAra[onto.concepts.lowestParent[tc][p1]] = 1;

 if ((annot.docAnnotMatrix[dB][tc] ==1) &&

 (onto.concepts.lowestParent[tc][p1]>=0))

 parentBAra[onto.concepts.lowestParent[tc][p1]] = 1;

 }

 if ((parentAAra[tc] > 0) || (parentBAra[tc] > 0))

 count++;

 }

return count;

}

int findParentCountInBoth(int dA, int dB, Annotations annot, Ontology onto){

//counts the number of document pairs that have the parent

//of a specific concept annotated or inferred, based on boolean flag) in both documents

 int count = 0;

 int [] parentAAra = new int [onto.conceptCt];

 int [] parentBAra = new int [onto.conceptCt];

 for (int tc=0;tc<onto.conceptCt;tc++) {

 parentAAra[tc] = 0;

 parentBAra[tc] = 0;

 }

 for (int tc=0;tc<onto.conceptCt;tc++) {

 for (int p1=0;p1<onto.concepts.maxLowestParents;p1++) {

301

 if ((annot.docAnnotMatrix[dA][tc]==1) &&

 (onto.concepts.lowestParent[tc][p1]>=0))

 parentAAra[onto.concepts.lowestParent[tc][p1]] = 1;

 if ((annot.docAnnotMatrix[dB][tc] ==1) &&

 (onto.concepts.lowestParent[tc][p1]>=0))

 parentBAra[onto.concepts.lowestParent[tc][p1]] = 1;

 }

 if ((parentAAra[tc] >0) && (parentBAra[tc] > 0))

 count++;

 }

 return count;

}

double findDotProd (int dA, int dB, Annotations annot, int numConcepts,

 boolean inferred) {

//finds the dot product of the vectors representing documents docA and docB

 int annotA = 0;

 int annotB = 0;

 double sum = 0;

 if (!inferred){

 for (int tc=0;tc<numConcepts;tc++) {

 if (annot.docAnnotMatrix[dA][tc]==1)

 annotA = 1;

302

 else

 annotA = 0;

 if (annot.docAnnotMatrix[dB][tc]==1)

 annotB = 1;

 else

 annotB=0;

 sum = sum + (annotA * annotB);

 }

 }

 else{

 for (int tc=0;tc<numConcepts;tc++) {

 if ((annot.docAnnotMatrix[dA][tc]==1) || (annot.docAnnotMatrix[dA][tc]==2))

 annotA = 1;

 else

 annotA = 0;

 if ((annot.docAnnotMatrix[dB][tc]==1) || (annot.docAnnotMatrix[dB][tc]==2))

 annotB = 1;

 else

 annotB=0;

 sum = sum + (annotA * annotB);

 }

 }

 return sum;

303

}

double findPDotProd(int dA, int dB, Annotations annot, Ancestors ancestors) {

//finds the dot product of the parent vectors

//if there is more than one parent for any annotated concept, the concepet

//is considered to have a valid parent annotation if any of the parents are annotated

 int numParents = ancestors.numParents;

 int annotA=0;

 int annotB=0;

 double sum = 0;

 for (int pc =0;pc<numParents;pc++){

 if (annot.docParentMatrix[dA][pc]==1)

 annotA=1;

 else

 annotA=0;

 if (annot.docParentMatrix[dB][pc]==1)

 annotB=1;

 else

 annotB=0;

 sum=sum+(annotA*annotB);

 }

 return sum;

}

304

double findWpDotProd (int dA, int dB, Annotations annot, Ancestors ancestors,

 int numConcepts) {

//finds weighted dot product of the parent vectors

//weights of the parent vectors were calcuated in the Annotations method

 int parentNdx = 0;

 int parentNum = 0;

 int np=ancestors.numParents;

 double annotA = 0;

 double annotB = 0;

 double sumn = 0;

 double sumsqA = 0;

 double sumsqB=0;

 for (int pc=0;pc<np;pc++) {

 annotA = (double) annot.countParentMatrix[dA][pc] /

 (double)(annot.countAnnotsInDoc[dA]);

 sumsqA=sumsqA+annotA*annotA;

 annotB = (double) annot.countParentMatrix[dB][pc] /

 (double) (annot.countAnnotsInDoc[dB]);

 sumsqB=sumsqB+annotB*annotB;

 sumn = sumn + (annotA * annotB);

 }

return sumn;

305

}

double findSqrtSumSqr(int dA, Annotations annot, int numConcepts, boolean inferred) {

//calculates the square root of the sum values in the annotation vector

//equivalent to the sum of the squares of the values, since all values are either 0 or 1

 int annotValA;

 double sum = 0;

 if (!inferred){

 for (int tc=0;tc<numConcepts;tc++) {

 if (annot.docAnnotMatrix[dA][tc] == 1)

 annotValA = 1;

 else

 annotValA = 0;

 sum += annotValA;

 }

 }

 else {

 for (int tc=0;tc<numConcepts;tc++) {

 if ((annot.docAnnotMatrix[dA][tc] == 1)||(annot.docAnnotMatrix[dA][tc] == 1))

 annotValA = 1;

 else

 annotValA = 0;

 sum += annotValA;

306

 }

 }

 sum = Math.sqrt(sum);

 return sum;

}

double findPSqrtSumSqr(int dA, Annotations annot, Ancestors ancestors) {

//calculates the square root of the sum values of the parent nodes of the annotated terms

//equivalent to the sum of the squares of the values, since all values are either 0 or 1

 int num = ancestors.numParents;

 int annotValA;

 double sum = 0;

 for (int tc=0;tc<num;tc++) {

 if (annot.docParentMatrix[dA][tc] == 1)

 annotValA = 1;

 else

 annotValA = 0;

 sum += (annotValA* annotValA);

 }

 sum = Math.sqrt(sum);

 return sum;

}

307

double findWpSqrtSumSqr(int dA, Annotations annot, Ancestors ancestors) {

//calculates the weighted square root of the sum values

//of the parent nodes of the annotated terms

//equivalent to the sum of the squares of the values, since all values are either 0 or 1

 int num = ancestors.numParents;

 double annotValA;

 double sum = 0;

 for (int tc=0;tc<num;tc++) {

 annotValA =(double) annot.countParentMatrix[dA][tc] /

 (double)(annot.countAnnotsInDoc[dA]);

 sum = sum + (annotValA*annotValA);

 }

 sum = Math.sqrt(sum);

 return sum;

}

double calcGcsm(int docA, int docB, Annotations annot, Ancestors ancestors, Ontology

onto){

// calculates the gcsm similarity measure

 double retval = 0;

 for (int termA = 0; termA <onto.conceptCt;termA++) {

 if (annot.docAnnotMatrix[docA] [termA] ==1) {

 for (int termB = 0; termB <onto.conceptCt; termB++){

308

 if (annot.docAnnotMatrix[docB] [termB]==1) {

 retval+=ancestors.lVector[termA][termB];

 }

 }

 }

 }

 return retval;

}

void calcRanks(int caseNo, int numDocs, Annotations annot) {

//calls methods to rank results of similarity analysis based on number of commmon roots,

 common unexpected roots and the various similarity measures

 int num=numUnique;

 calcRanking(rankCr,crAra,numDocs,annot);

 calcRanking(rankCUR,curAra,numDocs,annot);

 calcSelRank(simRankAra, simAra,numDocs);

 calcSelRank(simInfRankAra, simInfAra,numDocs);

 calcSelRank(jacRankAra, jacAra,numDocs);

 calcSelRank(jacInfRankAra, jacInfAra,numDocs);

 calcSelRank(vecRankAra, vecAra,numDocs);

 calcSelRank(vecInfRankAra, vecInfAra,numDocs);

 calcSelRank(gcsmRankAra, gcsmAra,numDocs);

 calcSelRank(uhiRankAra, uhiAra,numDocs);

309

 calcSelRank(whiRankAra, whiAra,numDocs);

}

void calcRanking(double [] rankAra, int [] valAra, int num, Annotations annot){

//calculates the rankings of values in a value array

//and stores those values in the rank array

//in case of duplicate values, the average of the rankings is used

 int numThisRank = 0;

 int prevMin =-1;

 double currentRank = 1;

 int min = -999;

 int docPair=0;

 min = findMin(prevMin, valAra,num);

 while (min < statMax){

 numThisRank =0;

 for (int dA=0; dA<num; dA++){

 for (int dB=dA+1; dB < num; dB++){

 docPair = ndxPair[dA][dB];

 if (docPair>=0){

 if (selectPair[docPair]){

 if (valAra[docPair]== min) {

 rankAra[docPair] = currentRank;

 numThisRank++;

310

 }

 }

 }

 }

 }

 if (numThisRank>1)

 currentRank = resetRank(rankAra,(int)currentRank,numThisRank, num);

 else

 currentRank++;

 prevMin=min;

 min=findMin(prevMin, valAra,num);

 }

 for (int dA=0; dA<num; dA++){

 for (int dB=dA+1; dB < num; dB++){

 docPair = ndxPair[dA][dB];

 if (docPair>=0){

 if (selectPair[docPair]){

 if (valAra[docPair]== min) {

 rankAra[docPair] = currentRank;

 numThisRank++;

 }

 }

 }

311

 }

 }

}

void calcSelRank(double [] rankAra, double [] valAra, int num){

//calculates rank of values from those documents in selection set

 int selCt=0;

 int numThisRank = 0;

 double prevMin = -1;

 int currentRank = 1;

 double min = -999;

 int docPair = 0;

 while (rankMoreSel(rankAra,num)) {

 min = findMin(prevMin, valAra, num);

 numThisRank =0;

 for (int dA=0; dA<num; dA++){

 for (int dB=dA+1; dB<num; dB++){

 docPair=ndxPair[dA][dB];

 if (docPair>=0){

 if (selectPair[docPair]){

 if ((valAra[docPair] >= min-tol) && (valAra[docPair] <= min+tol)) {

 rankAra[docPair] = currentRank;

 numThisRank++;

312

 }

 }

 }

 }

 }

 if (numThisRank>1)

 currentRank = resetRank(rankAra, currentRank, numThisRank, num);

 else

 currentRank++;

 prevMin=min;

 }

}

int resetRank(double [] rankAra, int cur, int freq, int num){

//assigns an average value to all the rankings that are equal and resets the next rank value

 double hi = freq +cur -1;

 double rankNew = (cur+hi)/2.0;

 int docPair=0;

 for (int dA=0; dA<num; dA++){

 for (int dB=dA+1; dB<num; dB++){

 docPair = ndxPair[dA][dB];

 if (docPair >=0){

 if (selectPair[docPair]){

313

 if ((rankAra[docPair] > cur-tol) && (rankAra[docPair] < cur+tol)){

 rankAra[docPair]=rankNew;

 }

 }

 }

 }

 }

 return (int)(hi+1);

}

void initRanks(int caseNo){

//calls appropriate methods to initialize the ranking arrays

 if (caseNo<2){

 initSelRanks(rankCr);

 }

 else{

 initSelRanks(rankCUR);

 }

 initSelRanks(simRankAra);

 initSelRanks(simInfRankAra);

 initSelRanks(jacRankAra);

 initSelRanks(jacInfRankAra);

 initSelRanks(vecRankAra);

314

 initSelRanks(vecInfRankAra);

 initSelRanks(gcsmRankAra);

 initSelRanks(uhiRankAra);

 initSelRanks(whiRankAra);

}

void initSelRanks(double [] rankAra) {

//initializes rankAra to negative value

 for (int doc = 0; doc < numUnique; doc++){

 rankAra[doc] = -999;

 }

}

boolean rankMoreSel(double [] ara, int num) {

//returns a value to indicate if there are more values to be ranked

 int docPair=0;

 boolean retVal = false;

 for (int dA=0; dA<num; dA++){

 for (int dB=0; dB<num; dB++){

 docPair = ndxPair[dA][dB];

 if (docPair>=0){

 if (selectPair[docPair]){

315

 if (ara[docPair] <-1 && selectPair[docPair]) {

 retVal=true;

 }

 }

 }

 }

 }

 return retVal;

}

int findMin(int prevMin, int [] ara, int num){

//method finds the integer minimum value in the array

//which exceeds the previous minimum and returns that value

 int min = statMax;

 int docPair=0;

 for (int dA=0; dA<num; dA++){

 for (int dB=dA+1; dB<num; dB++){

 docPair = ndxPair[dA][dB];

 if (docPair >=0){

 if (selectPair[docPair]){

 if (ara[docPair] < min && ara[docPair] > prevMin){

 min = ara[docPair];

 }

316

 }

 }

 }

 }

 return min;

}

double findMin(double prevMin, double [] ara,int num){

//method finds the double minimum value in the array

//which exceeds the previous minimum and returns that value

 double startMin = 999;

 double min=startMin;

 int docPair=0;

 for (int dA=0; dA<num; dA++){

 for (int dB=dA+1;dB<num;dB++){

 docPair = ndxPair[dA][dB];

 if (docPair >=0){

 if (selectPair[docPair]){

 if (ara[docPair] < min && ara[docPair] > (prevMin+tol)) {

 min = ara[docPair];

 }

 }

 }

317

 }

 }

 if (min>=startMin)

 min=prevMin;

 return min;

}

void writeFile(String runID, int docUsed, Annotations annot,

 TermDocumentMatrix tdm, String docID, int caseNo,

double [] thresh){

//writes the output data results to a file that can be opened later

//by a spreadsheet application and also print the results to the screen

 runID=runID+" Thresh"+thresh[caseNo];

 File output = new File(docID+runID);

 if (output.exists())

 output.delete();

 try{

 BufferedWriter out = new BufferedWriter(new FileWriter(output.getPath(),true));

 int finalSel=0;

 out.write("ThisRunID = " +runID+"\t\t\tfor " + docID + "\n");

 out.write("\nDoc1\tDoc2"+

 "\tCommonRoots"+

 "\tRankCommonRoots"+

318

 "\tUnexpectedCommonRoots"+

 "\tRankUnexpectedCommonRoots"+

 "\tEither"+"\tBoth"+

 "\tSameParentEither"+"\tSameParentBoth"+

 "\tSimMatch\tRankSimMatch\tSimInfMatch\tRankSimInfMatch"+

 "\tJMatch\tRankJMatch\tJInfMatch\tRankJInfMatch"+

 "\tCosine\tRankCosine\tCosineInf\tRankCosineInf"+

 "\tGcsm\tRankGcsm\tUhi\tRankUhi\tWhi\tRankWhi\n");

 System.out.print("ThisRunID = " +runID+"\tfor " + docID + "\n");

 boolean []rootFound = new boolean[tdm.numRoots];

 boolean []annotFound = new boolean[tdm.numRoots];

 int dCtPair=0;

 for (int d1 = 0; d1<docUsed;d1++){

 for (int d2 = d1+1;d2<docUsed;d2++){

 dCtPair=ndxPair[d1][d2];

 if (dCtPair>=0){

 if (selectPair[dCtPair]){

 finalSel++;

 out.write(d1 + "\t " + d2+ "\t"+

 crAra[dCtPair] + "\t"+ rankCr[dCtPair] + "\t" + curAra[dCtPair] +

 "\t"+rankCUR[dCtPair]+"\t"+

 either[dCtPair] +"\t"+both[dCtPair]+"\t"+

319

 numSameParentEither[dCtPair]

+"\t"+numSameParentBoth[dCtPair]+"\t"+

 simAra[dCtPair] + "\t" +

 simRankAra[dCtPair] + "\t" +

 simInfAra[dCtPair] + "\t" +

 simInfRankAra[dCtPair] + "\t" +

 jacAra[dCtPair] + "\t" +

 jacRankAra[dCtPair] + "\t" +

 jacInfAra[dCtPair] + "\t" +

 jacInfRankAra[dCtPair] + "\t" +

 vecAra[dCtPair] + "\t" +

 vecRankAra[dCtPair] + "\t" +

 vecInfAra[dCtPair] + "\t" +

 vecInfRankAra[dCtPair] + "\t" +

 gcsmAra[dCtPair] + "\t" +

 gcsmRankAra[dCtPair] + "\t" +

 uhiAra[dCtPair] + "\t" +

 uhiRankAra[dCtPair] + "\t" +

 whiAra[dCtPair] + "\t" +

 whiRankAra[dCtPair]+"\n");

 }

 }

 }

320

 }

 out.write("Corr.\t\t\t\t\t\t\t\t\t\t"+simCc+"\t\t"+simInfCc+"\t\t"+jacCc+"\t\t"+

 jacInfCc+"\t\t"+vecCc+"\t\t"+vecInfCc+"\t\t"+gcsmCc+"\t\t"+uhiCc+"\t\t"+

 whiCc+"\n");

 out.write("Rank Corr.\t\t\t\t\t\t\t\t\t\t\t"+simRCc+"\t\t"+simInfRCc+"\t\t"+jacRCc+

 "\t\t"+jacInfRCc+"\t\t"+vecRCc+"\t\t"+vecInfRCc+"\t\t"+gcsmRCc+"\t\t"+

 uhiRCc+"\t\t"+whiRCc+"\n");

 out.write("Number of pairs selected=\t"+finalSel);

 System.out.print("Corr.\t\t\t\t\t\t\t\t\t\t"+simCc+"\t\t"+simInfCc+"\t\t"+

 jacCc+"\t\t"+jacInfCc+"\t\t"+vecCc+"\t\t"+vecInfCc+"\t\t"+gcsmCc+"\t\t"+

 uhiCc+"\t\t"+whiCc+"\n");

 System.out.print("Rank Corr.\t\t\t\t\t\t\t\t\t\t\t"+simRCc+"\t\t"+simInfRCc+"\t\t"+

 jacRCc+"\t\t"+jacInfRCc+"\t\t"+vecRCc+"\t\t"+vecInfRCc+"\t\t"+

 gcsmRCc+"\t\t"+uhiRCc+"\t\t"+whiRCc+"\n");

 System.out.println("Number of pairs selected=\t"+finalSel);

 out.close();

 }

 catch(Exception e){

 System.err.println("Error writing File Output in stats");

321

 System.err.println("Program will end");

 System.err.println("Error is " + e);

 e.printStackTrace();

 System.exit(1);

 }

}

}

class Stop{

//This class models the stop list used to eliminate common non-descriptive words

String [] stopList = {

"a","about","above","across","after","again","all","almost","alone","along","already",

"also","although","always","an","and","another","any","anybody","anyone","anything",

"anywhere","are","around","as","ask","asked","asking","asks","at","away",

"b","back","backed","backing","backs","be","because","become","becomes","became",

"been","before","began","begin","begun","behind","being","beings","best","better",

"big","both","but","by",

"c","came","can","cannot","can't","case","cases","certain", "certainly",

"clear","clearly","come","could",

"d","did","differ","different","differently","do","does","doesn't",

"done","down","downed","downing","during",

"e","each","early","either","end","ended","ending","ends","enough",

322

"even","evenly","ever", "every","everybody","everyone","everything","everywhere",

"f","face","faces","fact","facts","far","felt","few","find","finds",

"for","four","from","full","fully","further","furthered","furthering","furthers",

"g","gave","get","gets","give","given","gives", "go","goes","going",

"good","goods","got", "great","greater","greatest",

"h","had", "has","have","having","he","her","herself","here","high","higher","highest",

"him","himself","his","how","however",

"i","if", "in","into","is","it","its","it's","itself",

"j","just",

"k","keep","keeps","kind","knew","know","known","knows",

"l","large","largely","later","latest","least","less",

"let","lets","let's","like","likely","long","longer","longest",

"m","made","make","making","man","many","may","me","member", "members","men",

"might","more","most","mostly","mr","mrs","much","must","my","myself",

"n","necesary","need","needed","needing","needs","never","next","no","non",

"none","not","nobody","noone","nothing","now","nowhere","number","numbers",

"o","of","off","old","older","oldest","on","once","one",

"only","open","opened","opening","opens","or","other","others","our", "out",

"p","part","parted","parting", "parts","per","perhaps","place","places",

"point","pointed","pointing","points","possible","put","puts",

"q","quite",

"r","rather","really","right","room","rooms",

"s","said","same","saw","say","says","see","sees","seem","seemed","seeming","seems",

323

"several","shall","she","should","show","showed","showing","shows","side","sides",

"since","small","smaller","smallest","so","some","somebody","someone",

―something","somewhere",

"still","such","sure",

"t","take","taken","than","that","the","their","them","then","there","therefore",

"these","they","thing","things","think",

―thinks","this","those","though","thought","thoughts","three","through","thus","to",

"today","together","too","took","toward","turn","turned","turning","turns","two",

"u","under","until","up","upon","us","use","used","uses",

"v","very",

"w","want","wanted","wanting","wants","was","way","ways","we","well","wells",

"went","were","what","when","where","whether","which","while","who",

"whole","whose","why","will","with","within","without","would",

"y","year","years","yet","you","young","younger","youngest","your","yours",

"z"};

Stop(){ }

void elimStops(Words w){

//eliminates words in stop list and single character words

 boolean [] temp = new boolean[w.wordCt];

 String [] tempWord = new String[w.wordCt];

 for (int ct=0; ct<w.wordCt; ct++) {

324

 temp[ct]=true;

 tempWord[ct] = w.theWords[ct];

 }

 boolean done=false;

 int wc;

 int lastStop=0;

 boolean stopWord=false;

 try{

 for (wc=0; wc<w.wordCt; wc++){

 stopWord=false;

 int ndxStop=lastStop;

 while (ndxStop<stopList.length && !stopWord){

 stopWord = ((w.theWords[wc].equalsIgnoreCase(stopList[ndxStop])) ||

 (w.theWords[wc].length() <2));

 if (stopWord){

 temp[wc] = false;

 lastStop=ndxStop;

 }

 ndxStop++;

 }

 }

 int ndx=0;

 for (int ct=0;ct<w.wordCt;ct++){

325

 if (temp[ct]) {

 w.theWords[ndx] = tempWord[ct];

 ndx++;

 }

 }

 w.wordCt=ndx;

 }

 catch (Exception e) {

 System.err.println("\nerror in stop " + e);

 e.printStackTrace();

 System.exit(1);

 }

}

}

import java.io.*;

class TermDocumentMatrix{

//This class models the matrix used to store results

//depicting which terms are present in documents

String [] [] words;

int [] numWords;

boolean [] termsUsed;

int [] ndxNextTerm;

String [] termList;

326

int [] [] termDocGrid;

int [] rootIndex;

int numTerms;

String [] roots;

int [] [] rootInDocument;

int numRoots;

int [] rootInHowManyDocs;

TermDocumentMatrix(){

 System.err.println("***Warning Default TermDocumentMatrix Constructed‖ +

 ‖ with no number of docs");

 System.err.println("***Program will exit");

 System.exit(1);

}

TermDocumentMatrix(int nDocs, int maxWords){

 words = new String [nDocs] [maxWords];

 numWords = new int[nDocs];

 termsUsed = new boolean[nDocs];

 ndxNextTerm = new int[nDocs];

 for (int nd =0; nd < nDocs; nd++){

 numWords[nd] = 0;

 termsUsed[nd] = false;

327

 ndxNextTerm[nd] = 0;

 for (int nw = 0; nw<maxWords; nw++){

 words[nd] [nw] = "";

 }

 }

}

void createMaster(Annotations annot, int nDocs) {

//creates the master term / document matrix

 numTerms=0;

 for (int nd=0;nd<nDocs;nd++){

 numTerms=numTerms+numWords[nd];

 }

 termDocGrid = new int [numTerms] [nDocs] ;

 termList = new String [numTerms];

 rootIndex = new int [numTerms];

 roots = new String [numTerms];

 rootInDocument = new int [nDocs][numTerms] ;

 rootInHowManyDocs = new int[numTerms];

 numRoots = 0;

 for (int nt = 0; nt < numTerms; nt++) {

 for (int nd = 0; nd < nDocs; nd++){

 rootInDocument[nd] [nt] = 0;

328

 termDocGrid[nt] [nd] = 0;

 }

 rootInHowManyDocs[nt] = 0;

 }

 Words w = new Words(numTerms);

 int wc=0;

 for (int nd=0;nd<nDocs;nd++){

 for (int nw=0; nw<numWords[nd];nw++){

 w.theWords[wc] = words[nd][nw];

 wc++;

 }

 }

 w.sortWords(0,numTerms-1);

 w.elimDups();

 numTerms = w.wordCt;

 termList = w.theWords;

 for (int nt=0;nt<numTerms;nt++){

 for (int nd=0; nd < nDocs; nd++){

 if (termInDoc(termList[nt],nd)){

 termDocGrid[nt] [nd]= 1;

 }

 }

 }

329

 for (int nt=0;nt<numTerms;nt++){

 for (int nd=0; nd < nDocs; nd++){

 if (termInDoc(termList[nt],nd)){

 termDocGrid[nt] [nd]= 1;

 }

 }

 }

}

void addDoc(int docNum, Words wt){

//stores the words in the document text for document number docNum

 numWords[docNum] = wt.wordCt;

 words[docNum] = wt.theWords;

}

boolean termInDoc (String term, int nd) {

//determines if term is a part of the text of document nd

 boolean found = false;

 int tn=0;

 while (tn<numWords[nd] && !found) {

 if (words[nd][tn].equalsIgnoreCase(term))

 found=true;

 tn++;

330

 }

 return found;

}

void findRoots(String runID, Annotations annot, int nDocs) {

//finds the roots of all terms in the documents

 int numRoots = 0;

 String root;

 boolean found = false;

 for (int term = 0; term < numTerms; term++) {

 root=termList[term];

 updateRootList(root, term, nDocs);

 }

 int rootNdx=0;

 for (int term = 0; term < numTerms; term++) {

 rootNdx = rootIndex[term];

 int documentCt = 0;

 for (int docNum=0; docNum < nDocs; docNum++){

 if (termDocGrid[term][docNum] > 0)

 documentCt ++;

 rootInHowManyDocs[rootNdx] =

 rootInHowManyDocs[rootNdx] + documentCt;

331

 }

 }

}

void updateRootList(String root, int termNum, int nDocs){

// updates the rootList information for a specific root

 boolean found = false;

 int cnt = 0;

 int thisRoot = 0;

 while (cnt < numRoots && !found){

 if (roots[cnt].equalsIgnoreCase(root)) {

 found= true;

 thisRoot = cnt;

 }

 else

 cnt++;

 }

 if (!found) {

 roots[numRoots] = root;

 thisRoot = numRoots;

 numRoots++;

 }

 rootIndex[termNum] = thisRoot;

332

 for (int docNum = 0; docNum < nDocs; docNum++){

 if (termDocGrid[termNum][docNum] >0) {

 rootInDocument[docNum] [thisRoot] =1;

 }

 }

}

void assignStatus(Annotations annot, Ontology onto, int nDocs){

//assigns a status of 0 to terms not present in a document,

//1 if term is expected from annnotation,

//2 if term is inferred from annotations (part of superConcept)

//3 if term is unexpected

 for (int nd = 0; nd < nDocs; nd++) {

 int status=0;

 if (annot.validSheet[nd]){

 for (int nt = 0; nt < numTerms; nt++){

 if (rootInDocument[nd][rootIndex[nt]] > 0)

 status = annot.findStatus(nt,nd,onto,roots[rootIndex[nt]]);

 else

 status=0;

 rootInDocument[nd][rootIndex[nt]]=status;

 }

 }

333

 }

}

}

class Words {

//This class models the words for sections of text

String [] theWords;

int wordCt;

Words(){};

Words (int numwords){

 theWords = new String[numwords];

 wordCt=numwords;

}

void printWords () {

//prints words in object --used for checkout

 System.out.println("wordCt"+ wordCt);

 for (int num=0; num<wordCt; num++)

 System.out.print("\t"+theWords[num]);

 System.out.println(" ");

}

334

void stripWords(){

//eliminate leading or trailing special characters in words

//all characters after apostrophe will be eliminated

 for (int nw=0; nw<wordCt;nw++){

 String word = theWords[nw];

 char first, last;

 char apos = '\'';

 boolean hasApos = false;

 for (int ct=1;ct<word.length();ct++){

 if (word.charAt(ct) == apos) {

 word=word.substring(0,ct);

 }

 }

 first = word.charAt(0);

 if (word.length() > 0){

 while (strip(first,word)){

 word = word.substring(1);

 first = word.charAt(0);

 }

 }

 last = first;

 if (word.length() > 0) {

335

 last = word.charAt(word.length()-1);

 while (strip (last,word)) {

 word=word.substring(0,word.length()-1);

 last=word.charAt(word.length()-1);

 }

 theWords[nw] = word;

 }

 }

}

boolean strip (char ch, String s){

//returns TRUE value if ch is special character

//or if ch has ANSII value less than 0

 char [] special = {' ','<','>',',','.',':','"',';','[',']','"',

 '[',']','`','~','!','@','#','$','%','^','&',

 '*','(',')','-','_','+','=','/','\\','\''};

 int len = special.length;

 if (s.length()<=1)

 return false;

 else {

 for (int ct=0; ct<len; ct++){

 if (ch==special[ct])

 return true;

336

 }

 }

 if (Character.getNumericValue(ch)<0)

 return true;

 return false;

}

void sortWords(int start, int end) {

//performs a quick sort of data in theWords array

 if (start >= end)

 return;

 int ptn = split (start, end);

 sortWords (start, ptn);

 sortWords (ptn+1,end);

}

int split(int start, int end) {

//partitions the words array based and returns the pivot element

 String pivot = theWords[start];

 int low = start-1;

 int high = end + 1;

 while (low < high) {

 low++;

337

 while (theWords[low].compareTo(pivot)<0)

 low++;

 high--;

 while (theWords[high].compareTo(pivot)>0)

 high--;

 if (low < high)

 swapWords (low, high);

 }

 return high;

}

void swapWords(int low, int high){

//swaps theWords[low] and theWords[high]

 String temp= theWords[low];

 theWords[low] = theWords[high];

 theWords[high]= temp;

}

void elimDups(){

//eliminates duplicate words in theWords

 for (int wc =0; wc < wordCt-1; wc++) {

 if (theWords[wc].equals(theWords[wc+1])){

 for (int nw=wc+1;nw<wordCt-1;nw++)

338

 theWords[nw]=theWords[nw+1];

 wc--;

 wordCt--;

 }

 }

}

void findRoots(Roots textRoot){

//stores words from text root object in words object

 for (int wc =0; wc < wordCt-1; wc++) {

 theWords[wc]=textRoot.findRoot(theWords[wc]);

 }

}

}

339

Reference List

Abiteboul, S., Buneman, P., & Suciu, D. (2000). Data on the Web From Relations to

Semistructured Data and XML. San Francisco: Morgan Kaufmann Publishers.

Agrawal, R. & Srikant, R. (1994). Fast algorithms for mining data association rules.

Proceedings of the 20
th

 International Conference on Very Large Databases. 487-

499.

Anyanwu, K., Maduko, A., & Sheth, S. (2005). SemRank: ranking complexity

relationship search results on the Semantic Web. Proceedings of the 14
th

International World Wide Web Conference. 117-127.

Beckett, D., Miller, E., & Brickley, D. (2002). Expressing simple Dublin Core in

RDF/XML. Retrieved from http://dublincore.org/documents/2002/07/31/dcmes-

xml/ Jan 21, 2003.

Benetti, I., Beneventano, D., Bergamaschi, S., Guerra, F., & Maurizio, V. (2002) An

information integration framework for e-commerce. IEEE Intelligent Systems, 17,

(1). 18-25.

Bot, R. & Wu, Y. (2004). Improving document representations using relevance feedback:

the RFA algorithm. Proceedings of the Thirteenth ACM International Conference

on Information and Knowledge Management. 270-278.

Brickley, D., Buswell, S., Matthews, B., Miller, L., Reynolds, D., & Wilson, M. (2002).

SWAD-Europe: Semantic Web Advanced Development in Europe. Proceedings

of the First International Semantic Web Conference. 409-413.

Brickley, D. & Guha, R. (Ed.) (2003). RDF Vocabulary Description Language 1.0: RDF

SchemaW3C Working Draft 23 January 2003. W3C Working Draft 23 January,

2003. Retrieved February 6, 2003 from http://www.w3.org/TR/rdf-schema/.

Broekstra, J., Klein, M., Decker, S., Fensel, D., van Harmelen, F., & Horrocks, I. (2001).

Enabling knowledge representation on the Web by extending RDF schema.

Proceedings of the Tenth International World Wide Web Conference on the World

Wide Web. 467-478.

Buneman, P. (1997). Semistructured data. Proceedings of the Sixteenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems. 117-121.

Chakrabarti, S. (2003). Mining the Web Discovering Knowledge from Hypertext Data.

San Francisco: Morgan Kaufmann Publishers.

Chen, H. & Karger, D. (2006). Less is More: Probabilistic Models for Retrieving Fewer

Relevant Documents in an Information Retrieval System. Retrieved March 19,

2005 from http://people.csail.mit.edu/harr/papers/sigir2006.pdf

http://dublincore.org/documents/2002/07/31/dcmes-xml/
http://dublincore.org/documents/2002/07/31/dcmes-xml/
http://people.csail.mit.edu/harr/papers/sigir2006.pdf

340

Dublin Core Metadata Initiative. (2002). Retrieved January 15, 2003 from

http://www.dublincore.org

Ehrig, M. & Sure, Y. (2004). Ontology mapping – an integrated approach. The Semantic

Web:Research and Applications. Proceedings of the First European Semantic

Web Symposium 2004. 76-89.

Fensel, D. [ed]. (2000). The semantic web and its languages. IEEE Intelligent Systems,

15(6), 67-73.

Fox, C. (1990). A stop list for general text. SIGIR Forum. 24(12), 19-35.

Ganesan, P., Garcia-Molina, H., & Widom, J. (2003). Exploiting hierarchical domain

structure to compute similarity. ACM Transactions on Information Systems, 21,

(1). 64-93.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman,

J., Vassalos, V., & Widom, J. (1997). The TSIMMIS approach to mediation: data

models and languages. IEEE Intelligent Systems, 8(2), 117-132.

Goldman, R. (2000). Integrated query and search of databases, XML and the web. Digital

Dissertations. (UMI No. 9986100).

Haustein, S. & Pleumann, J. (2002). Is participating in the Semantic Web too Difficult?

Proceedings of the first International Semantic Web Conference. 448-453.

Haveliwala, T., Gionis, A., Klein, D., & Indyk, P. (2003). Evaluating strategies for

similarity search on the web. Proceedings of the Eleventh International

Conference on World Wide Web. 432-441.

Heflin, J. (2001). Towards the Semantic Web: Knowledge Representation in a Dynamic,

Distributed Environment. Digital Dissertations. (UMI No. 3024929).

Heflin, J. (Ed.) (2003). Web Ontology Language Use Cases and Requirements. W3C

Working Draft 3 February, 2003. Retrieved February 6, 2003 from

http://www.w3.org/TR/2003/WD-webont-req-20030203.

International Semantic Web Conference 2002 Web Page. (2002). Retrieved July 23, 2002

from http://iswc.semanticweb.org.

Kifer, M., Lausen, G., & Wu, J. Logical Foundations of Object-Oriented and Frame-

Based Languages. Journal of the Association for Computing Machinery, 42(4),

741-843.

Li, G., Oren, V., Motta, E., Shum, S., & Domingue, J. (2002). ClaiMaker: Weaving a

Semantic Web of Research Papers. Proceedings of the First International Semantic

Web Conference. 436-441.

341

Lin, D. & Pantel, P. (2001). Induction of semantic classes from natural language text.

Proceedings of the seventh ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. 317-322.

Lin, S.-H., Shih, C-S., Chen, M., Ho, J.-M., Ko, M.-T., & Huang, Y.-M. (1998).

Extracting classification knowledge of Internet documents with mining term

associations: a semantic approach. Proceedings of the 21
st
 Annual International

ACM SIGR Conference on Research and Development in Information Retrieval.

241-249.

Liu, B., Ma, Y., & Yu, P. (2001). Discovering unexpected information from your

competitors’ web sites. Proceedings of the seventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. 144-153.

Lopatenko, A. (2001). Information retrieval in current research information systems.

Position paper at Workshop on Knowledge Markup and Semantic Annotation at

K-Cap’2001. Retrieved July 5, 2002 from http://semannot2001.aifb.uni-

karlsruhe.de/positionpapers/Lopatenko.pdf

Losee, R. (1998). Text Retrieval and Filtering: Analytic Models of Performance. Boston:

Kluwer Academic Publishers.

Lowry, R. (Ed.) (2003). Concepts and Applications of Inferential Statistics. Retrieved

December 19, 2007 from http://faculty.vassar.edu/lowry/webtext.html.

Maedche, A. (2002). Ontology Learning for the Semantic Web. Boston: Kluwer

Academic Publishers.

Maedche, A. & Staab, S. (2000). SEAL – Discovering conceptual relationships from text.

Proceedings of ECAI-2000., Amsterdam: IOS Press, 2002. Retrieved from

http://www.aifb.uni-

karlsruhe.de/WBS/publications/2000/aifb400_amaetal_2000.pdf.

Maedche, A., Staab, S., Studer, R., Sure, Y., & Volz, R. (2000). SEAL – Tying up

information integration and web site management by ontologies. IEEE-CS Data

Engineering Bulletin, Special Issue on Organizing and Discovering the Semantic

Web, March, 2002.

McGuiness, D., Fikes, R., Rice, J., & Wilder, J. (2000). An environment for merging and

testing large ontologies. Proceedings of the Seventh International Conference on

Principles of Knowledge Representation and Reasoning. 132-146.

Object Management Group. (2005). Retrieved October 23, 2005 from

http://www.omg.org.

O’Reilly, T. (2005). What is Web 2.0? Retrieved August 15, 2007 from

http://oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html.

342

Papakonstantinou, Y., Garcia-Monila, H., & Widom, J. (1995). Object exchange across

heterogeneous information sources. Proceedings of the IEEE International

Conference on Data Engineering. 251-260.

Pluempitiwiriyawej, C. (2001). A new hierarchical clustering model for speeding up the

reconciliation of XML-based data in meditation systems. Digital Dissertations.

(UMI No. 3925123)

Protégé Project. (2002). Welcome to the Protégé Project. Retrieved May 15, 2002 from

http://protege.stanford.edu.

Rasmussen, S. (1992). An Introduction to Statistics with Data Analysis. Belmont, CA.

Wadsworth, Inc. 513-552.

Salton, G. & Buckley, C. (1988). Term-weight approaches in automatic retrieval.

Information Processing and Management. 24(5): 513-523.

Salton, G. & McGill, M. (1983). Introduction to Modern Information Retrieval. New

York: McGraw-Hill.

Sintek, M. & Decker, S. (2002). TRIPLE – A Query, Inference, and Transformation

Language for the Semantic Web. Proceedings of the First International Semantic

Web Conference. 364-378.

Sure, Y. (2001). SWRC The Semantic Web Research Community Ontology. Retrieved

July 31, 2002 from http://ontobroker.semanticweb.org/ontos/swrc.html.

Sure, Y., Erdman, M., Angele, J., Staab, S., Studer, R., & Wenke, D. (2002).

OntoEdit:Collaborative Ontology Development for the Semantic Web. Proceedings

of the First International Semantic Web Conference. 221-235.

Vaschillo, A. (2000). A semantic paradigm for intelligent data access. Digital

Dissertations. (UMI No. 9966108).

W3C (2003). Retrieved February 8, 2003 from http://www.w3c.org.

W3C (2008). Retrieved January 10, 2008 from http://www.w3c.org/2001/sw/SW-FAQ

Wang, K. & Liu, H. (2000). Discovering structural association of semistructured data.

IEEE Transactions on Knowledge and Data Engineering, 12, (3). 353-371.

Welcome to Ontoknowledge (2002). Retrieved December 15, 2002 from

http://www.ontoknowledge.org.

Yang, Y. & Liu, X. (1999). A re-examination of text categorization methods.

Proceedings of the 22nd Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval. 42-49.

343

Zobel, J. & Moffat, A. (1998). Exploring the Similarity Space. ACM SIGIR Forum, 32,

(1). 18-34.

	Nova Southeastern University
	NSUWorks
	2008

	Use and Analysis of Expected Similarity of Semantic Web Ontological Annotations
	Joe Lynn Look
	Share Feedback About This Item
	NSUWorks Citation

	Problem Statement and Goal

