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Fine-grained access control is a conceptual approach to addressing database security 

requirements. In relational database management systems, fine-grained access control 

refers to access restrictions enforced at the row, column, or cell level. While a number of 

commercial implementations of database fine-grained access control are available, there 

are presently no generalized approaches to implementing fine-grained access control for 

relational database management systems.  

Fine-grained access control is potentially a good solution for database professionals and 

system architects charged with designing database applications that implement granular 

security or privacy protection features. However, in the oral tradition of the database 

community, fine-grained access control is spoken of as imposing significant performance 

penalties, and is therefore best avoided. Regardless, there are current and emerging 

social, legal, and economic forces that mandate the need for efficient fine-grained access 

control in relational database management systems. 

In the study undertaken, the author was able to quantify the performance costs associated 

with four common implementations of fine-grained access control for relational database 

management systems. Security benchmarking was employed as the methodology to 

quantify performance costs. Synthetic data from the TPC-W benchmark as well as 

representative data from a real-world application were utilized in the benchmarking 

process. 

A simple graph-base performance model for Fine-grained Access Control Evaluation 

(FACE) was developed from benchmark data collected during the study. The FACE 

model is intended for use in predicting throughput and response times for relational 

database management systems that implement fine-grained access control using one of 

the common fine-grained access control mechanisms – authorization views, the 

Hippocratic Database, label-based access control, and transparent query rewrite. The 

author also addresses the issue of scalability for fine-grained access control mechanisms 

that were evaluated in the study.
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Chapter 1 

Introduction 
 

Controlling security in a relational database management system includes 

managing the confidentiality, integrity, and availability of stored data. Fine-grained 

access control can be employed with relational database management systems to ensure 

confidentiality of data at the column, row, and even at the cell level (Zhu, Shi, Wang, & 

Feng, 2008). However, current approaches to implementing fine-grained access control 

for relational database management systems incur significant challenges. These 

challenges can be summarized as follows: 

1. Fine-grained access control is a conceptual approach to providing enhanced 

security and privacy protection – it is not a specific technology. However, 

according to Wang et al. (2007), existing approaches to providing fine-grained 

access control for relational database management systems all have known 

problems. These problems include the return of incorrect query results, the 

return of incomplete query results, and leakage of information in 

contravention of fine-grained security policies (Wang et al.).   

2. Fine-grained access control has historically been implemented through custom 

applications external to the relational database management system. However, 

external fine-grained access control solutions are much less effective than 

fine-grained access control implemented directly within the database, as 
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internal solutions generally provide a significantly reduced attack surface 

(Roichman & Gudes, 2007). Moreover, security and privacy controls are 

much less likely to be bypassed if fine-grained access control is implemented 

within the database (Zhan, Li, Ye, & Wang, 2006). Recently, IBM
®

, Oracle
®

, 

and Sybase
® 

have begun to offer fine-grained access control capabilities 

integrated within their relational database management systems (Kabra, 

Ramamurthy, & Sudarshan, 2006). 

3. The use of fine-grained access control imposes performance penalties. 

Siegenthaler and Birman (2009) described this issue as the trade-off between 

the granularity of data protection and database performance. Still, some 

implementations of fine-grained access control can impose significant 

performance penalties. For example, Zhan et al. (2006) reported a 20-30% 

performance penalty when implementing a novel fine-grained access control 

solution within the PostgreSQL relational database management system. 

The access control mechanism provided natively in a relational database management 

system is known as “coarse-grained” access control (Wang et al., 2007). Coarse-grained 

access control for database objects is configured through Structured Query Language 

(SQL) using the statements GRANT and REVOKE to respectively permit or deny access 

to database objects (Majedi, Ghazinour, Chinaei, & Barker, 2009). However, Chaudhuri, 

Dutta, and Sudarshan (2007) characterized coarse-grained access control as all or 

nothing. Specifically, once coarse-grained access on a database table is granted to a 

database user, all rows in the table become accessible to that user, regardless of the 

sensitivity of the data in individual rows (Kabra et al., 2006).  
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In contrast to coarse-grained access control, fine-grained access control allows 

specific rows, columns, and even cells in a database table to be given different 

authorizations (Wang et al., 2007). Multiple factors motivate the need for fine-grained 

access control in relational database management systems. A key motivating factor is the 

requirement to provide secure access to relational database management systems from the 

Web (Roichman & Gudes, 2007). Increasing emphasis on data privacy and compliance 

with new, more encompassing privacy regulations are additional factors motivating the 

requirement for fine-grained access control (Bertino, Byun, & Li, 2005). The European 

Union Data Protection Directive and the Graham-Leach-Billey Act in the United States 

as are two examples of legislation driving the need for better privacy controls in database 

systems (Johnson & Grandison, 2007). However, the need to secure electronic healthcare 

data is often given as the leading example of privacy-sensitive information that could 

benefit significantly from the privacy preserving capabilities provided by fine-grained 

access control (Siegenthaler & Birman, 2009). In addition, considerable interest has been 

expressed in providing fine-grained authorizations for social networking applications in 

order to secure the privacy of personal data (Simpson, 2008; Majedi et al., 2009).  

Fine-grained access control enforces the rules specified in an access control 

policy (Wang et al., 2007). Access control policies may consist of both processes and 

structures utilized to document the rules for disclosure and use of data (Agrawal, 

Grandison, Johnson, & Kiernan, 2007). Thus, the definition of an access control policy 

can be broad and at times ambiguous. For example, Currim, Jung, Xiao, and Jo (2009) 

described access control policies as collections of rules with each rule being equivalent to 

a database view. Bruns, Dantas, and Huth (2007) described access control policies as 
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predicates that precisely specify access to data. Cho, Kim, Hong, and Cho (2009) 

provided yet another definition for access control policies – access control policies are 

lists of rules, which may exhibit a defined hierarchy and structure. 

Custom programming, using code embedded within individual applications, is the 

most widely adopted approach to providing fine-grained access control for applications 

that interface with relational database management systems (Kabra et al., 2006). 

Nevertheless, custom fine-grained access control solutions can be very difficult to 

maintain, particularly if a separate custom solution must be deployed for each single 

application (Wang et al., 2007). In addition, custom fine-grained access control solutions 

implemented at the application level can be easily bypassed (Rizvi, Mendelzon, 

Sudarshan, & Roy, 2004). Johnson and Grandison (2007) and Franzoni, Mazzoleni, 

Valtolina, and Bertino (2007) independently proposed conceptually similar approaches to 

fine-grained access control using a “middleware” layer. A middleware layer providing 

fine-grained access control may be shared by multiple applications without the need to 

modify the underlying application code (Johnson & Grandison, 2007). Still, middleware 

security solutions, as is the case with application-level security solutions, can be easily 

circumvented by connecting directly to the database. For example, reporting tools that 

connect directly to a relational database management system using an Open Database 

Connector (ODBC) provide a simple means to bypass fine-grained access controls 

implemented at the application or middleware layer (Santos & Bernardino, 2009).  

Implementing fine-grained access control within a relational database 

management system provides better security than either custom or middleware solutions 

(Roichman & Gudes, 2007). For example, Zhan et al. (2006) noted that fine-grained 
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access control implemented within a relational database management system is much 

more difficult to subvert than a fine-grained access control solution that is implemented 

outside the relational database management system. Moreover, fine-grained access 

control implemented at the database level ensures that security for both applications and 

ad hoc users is applied consistently (Wang et al., 2007). A number of commercial 

database vendors have responded to the need for fine-grained access control integrated 

within the database. As a case in point, IBM
®

, Oracle
®

, and Sybase
®

 now offer 

proprietary implementations of fine-grained access control within their respective 

relational database management products (Kabra et al., 2006). Microsoft
®

 also provides 

the capability to implement row and cell-level fine-grained access control in the SQL 

Server
® 

database, although the functionality is more loosely integrated than in the IBM
®

, 

Oracle
®

, or Sybase
®

 products  (Zhang, 2008). 

Over the last decade, there has been a significant increase in academic research 

pertaining to fine-grained access control for relational database management systems 

(Zhu et al., 2008). Still, Zhang (2008) acknowledges that little work has been done “…to 

address the performance issues of database systems with fine-grained access controls” (p. 

iii). Yet according to Kabra et al. (2006), performance is a key consideration when 

implementing fine-grained access control. Zhu and Lü (2007) summarized the current 

state of fine-grained access control for relational database management systems with the 

following statement, “Providing efficient and effective fine-grained access control for 

database management systems has long been an unresolved issue, however it is critically 

important for Internet-based data management systems” (p. 222). Zhu et al. (2008) 

cautioned that the integration of Web and database technology exposes large volumes of 
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valuable data to potential attacks from the Internet. Yu (2009) believes that fine-grained 

access controls are a critical requirement for Internet accessible Web-database 

applications “…to ensure the legal use of data and to prevent privacy breach” (p. 230).  

 

Statement of the Problem 

The problem that was studied in this dissertation concerns the performance 

penalties imposed by the use of fine-grained access control in relational database 

management systems. The work conducted addresses a significant problem that confronts 

database professionals and system architects when implementing fine-grained access 

control for relational database management systems. Specifically, which approach to 

providing fine-grained access control offers better performance? In the study conducted, 

the author undertook to quantify performance and scalability considerations associated 

with the use of fine-grained access control for relational database management systems. 

The results of author’s study provide empirical data concerning the performance and 

scalability for four fine-grained access control mechanisms. “Security in computing, as in 

anything else, comes with cost and overhead” (Benantar, 2005, p. 6). 

Performance penalties associated with the use of fine-grained access control in 

relational database management systems are known to be a significant concern. Johnson 

and Grandison (2007) in discussing privacy enforcement using fine-grained access 

control maintained that, “Effective privacy solutions must also be economically and 

computationally efficient…” (p. 256). However, much of the past research relating to the 

performance costs of fine-grained access control is narrowly focused – only the 

performance characteristics of novel solutions have been evaluated. For instance, 

LeFevre¸ Agrawal, Ercegovac, Ramakrishnan, Xu, and DeWitt (2004), Kabra et al. 
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(2006), Zhu and Lü (2007), and Zhu et al. (2008), all demonstrated statistically 

significant impacts to database performance when employing fine-grained access control 

within their specific research projects. In other cases, for example, Rizvi et al. (2004), 

Franzoni et al. (2007), and Pun, Chinaei, and Barker (2009), performance of fine-grained 

access control mechanisms was identified as an important research consideration, but was 

left as a task for future investigation.  

 

Dissertation Goal 

The goal of the study was to develop a simple generic model to address 

performance and scalability for fine-grained access control in relational database 

management systems. Melnik, Rahm, and Bernstein (2003) described the function of a 

generic model as providing a paradigm to illustrate concepts at a high level of abstraction 

using concise definitions. In the study conducted, the author employed a widely accepted 

benchmark to evaluate the performance and scalability of four implementation models of 

database fine-grained access control. According to Menascé and Almeida (2001), a 

benchmark must be relevant, understandable, scalable, and most importantly, widely 

accepted. The Transaction Processing Performance Council (TPC) has published a 

number of well-documented benchmarks (e.g., TPC-C, TPC-W) that are widely accepted 

(Menascé and Almeida). TPC benchmarks have been used in a number of previous 

studies to evaluate the performance impacts of fine-grained access control in relational 

database management systems (Kabra et al., 2006; Zhan et al., 2006; Zhu & Lü, 2007; 

Zhu et al., 2008). As well, TPC benchmarks continue to be used in research projects that 

involve evaluation of database performance and system scalability (Chaudhuri, 2009; He 
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& Veeraraghavan, 2009; Elnikety, Dropsho, Cecchet, & Zwaenepoel, 2009; Santos & 

Bernardino, 2009; Chakraborty, Majumdar, & Sural, 2010; Ahmad, Duan, Aboulnaga, & 

Babu, 2011). 

The fine-grained access control models evaluated by the author include 

authorization views, transparent query rewrite, the Hippocratic Database, and label-based 

access control (LBAC). Zhu et al. (2008) categorized these four implementation models 

as being representative of current approaches to providing fine-grained access control for 

relational database management systems. These four implementation models can be 

summarized as follows: 

1. Rizvi et al. (2004) and Roichman and Gudes (2007) discussed the use of 

parameterized authorization views for fine-grained access control. According 

to Kabra et al. (2006), authorization views may be implemented in any 

relational database management system using standard SQL.  

2. Transparent query rewrite provides the foundation for Oracle
® 

row-level 

security, now called Oracle
® 

Virtual Private Database (Bertino et al., 2005). In 

the Oracle
® 

Virtual Private Database (VPD), the SQL WHERE clause is 

rewritten to include predicates from a corresponding fine-grained access 

control policy (Shi, Zhu, Fu, & Jiang, 2009). Transparent query rewrite uses 

the database query rewriter (an internal relational database component) to 

modify user queries in order to return only authorized data (Hellerstein, 

Stonebraker, & Hamilton, 2007). 

3. The Hippocratic Database provides a generic approach to fine-grained access 

control that can be implemented in most relational database management 
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systems (Agrawal et al., 2007). The Hippocratic Database is primarily 

intended to provide enhanced privacy preservation, but also provides fine-

grained authorizations (Johnson & Grandison, 2007). An implementation of 

the Hippocratic Database by LeFevre et al. (2004) employed query 

modification explicitly specified in SQL statements to enforce privacy 

policies – the privacy policies themselves were specified in the database. Yu 

(2009) described the implementation by LeFevre et al. as “…a practical and 

efficient approach to incorporating privacy policy enforcement into an 

existing application and database environment…” (p. 330). 

4. LBAC is a feature available in commercial relational database products from 

Oracle
®

 and IBM
®

 and can be emulated in Microsoft’s SQL Server
®

 (Zhang, 

2008). In LBAC, each row in the database contains a security label (Bertino et 

al., 2005). LBAC is used in high security environments to secure classified 

data (Bishop, 2002). 

Vieira and Madeira (2005) proposed the use of standard benchmark suites as 

suitable instruments for evaluating the overhead imposed by database security 

mechanisms. Vieira and Madeira employed the TPC Benchmark™ W (TPC-W) to 

evaluate security overhead. Others, including Zhu et al. (2006), Manjhi, Ailamaki, 

Maggs, Mowry, Olston, and Tomasic (2006), and Zhu and Lü (2007), have employed the 

TPC-W benchmark to evaluate the performance of various security mechanisms in 

relational database management systems. However, much of the existing research on the 

topic of fine-grained access control utilizes benchmarking only as a means to validate 
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performance characteristics of novel solutions (Zhu & Lü, 2007; Olson, Gunter, & 

Madhusudan, 2008; Shi et al., 2009; Krishnamurthy, Mettler, & Wagner, 2010).   

Small-scale database systems can be used effectively to predict the performance 

and scalability of larger database systems. Elnikety et al. (2009) demonstrated the 

feasibility of using the TPC-W database benchmark on small-scale database servers to 

validate scalability predictions of analytical performance models. The approach taken by 

Elnikety et al. was to compare the goodness of the fit between predicted performance and 

actual results obtained from the TPC-W benchmark. The small-scale experimental 

configuration employed by Elnikety et al. utilized a readily available combination of 

commodity hardware and software – a single-core x86 architecture CPU, one gigabyte of 

server RAM, a single 120 GB disk drive, the Linux operating system, and the 

PostgreSQL open source database.  

Based upon the findings of this study, the author developed a simple generic 

model using benchmark results compiled from the PostgreSQL open source database. 

The proprietary fine-grained access control solutions marketed by Oracle
®

 and IBM
®

, 

respectively the Virtual Private Database and LBAC, were emulated within the 

PostgreSQL database. As well, authorization views and the Hippocratic Database, which 

can be implemented within any relational database management system, were also 

evaluated using the PostgreSQL database. The goal in developing the generic model was 

threefold:  

1. First, the generic model provides a reference viewpoint that encompasses 

current understanding of the performance issues attendant with the use of fine-

grained access control for relational database management systems.  
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2. Second, the generic model describes performance behavior that can be 

consistently reproduced using implementations of fine-grained access control 

mechanisms currently available for relational database management systems. 

3. Third, the generic model offers a research-based foundation for future 

scholarly work. The model that was developed provides performance 

comparisons of multiple implementation of fine-grained access control using 

the same server and database environment.  

 

Relevance and Significance 

 

The 2009 Claremont Report on Database Research identified data security and 

data privacy as among the leading issues facing database researchers today (Agrawal et 

al., 2009). To clarify, data security is concerned with ensuring the confidentiality, 

integrity, and availability of data (Bertino & Sandhu, 2005). On the other hand, data 

privacy is concerned with enforcing the rights of individuals to determine how and when 

personal information is released (Agrawal, Kiernan, Srikant, & Xu, 2002). According to 

Yu (2009), current research in the area of database security tends to treat data security 

and data privacy protection as two completely separate issues. However, Yu found this 

situation unsatisfactory given requirements “… to provide a mechanism which supports 

access control and privacy protection in [the] DBMS simultaneously…” (p. 330).  

Significantly, a number of existing implementations of fine-grained access control 

are capable of satisfying requirements for both data security and data privacy. Fine-

grained access control for relational database management systems can also provide 

enhanced data security (Zhu et al., 2008). Enhanced data privacy is possible using 
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implementations of fine-grained access control that employ privacy policies specified in 

metadata or privacy-policy tables (Bertino et al., 2005). Protection of electronic 

healthcare information is a leading example of data that could benefit from mechanisms 

providing both enhanced data security and enhanced privacy protection.  

In a 2004 report, the U.S. President’s Information Technology Advisory 

committee (PITAC) stated that the capability to ensure privacy of health care records is 

critical in transitioning from paper-based health care records to networked, electronic 

health care systems (Agrawal et al., 2007). Johnson and Grandison (2007) described the 

requirement to exchange health care data as an area where fine-grained access control can 

provide a suitable mechanism for enforcement of data privacy. However, privacy 

concerns for electronic healthcare systems continue to be a significant challenge to the 

present day (He & Yang, 2009; Siegenthaler & Birman, 2009) 

Fine-grained access control provides a viable mechanism for protecting Web 

accessible databases. Zhu and Lü (2007) characterized the need for fine-grained access 

control in large-scale database systems as the logical outcome of the integration between 

Internet-based technologies and enterprise relational database management systems. Zhu 

et al. (2008) described the capabilities provided by fine-grained access control as offering 

access control that is both flexible and effective in Web accessible databases. Pan (2009) 

stated that fine-grained access control provides a workable mechanism to protect Web 

accessible databases from malicious attacks. Yu (2009) perceived fine-grained access 

control for relational database management systems as a mechanism to ensure secure 

access to data, as well as providing an effective means to preventing privacy breaches. 



 

 

13 

The requirements for fine-grained access control are not restricted simply to 

relational database management systems. Franzoni et al. (2009) described the 

requirement for fine-grained access control in the Grid environment to support 

authorizations for flexible job scheduling. Aziz, Arenas, Martinelli, Matteucci, and Mori 

(2008) detailed the requirement for fine-grained access control in workflow systems in 

order to provide strong protection at the object level. Minami (2006) illustrated the need 

for fine-grained access control in order to provide flexible authorizations for mobile 

users. Steele, Gardner, and Dillon (2007) described the use of fine-grained access control 

to secure XML data stored in Web accessible repositories. Simpson (2008) discussed the 

emerging requirements for user-defined, fine-grained access control policies in social 

networks as a means to address privacy concerns. Cho et al. (2009) described an 

application of fine-grained access control that facilitates cloaking spatial data. Recently, 

Wang, Lui, and Wu (2010) and Zhao, Nishide and Sakuri (2011) described the use 

cryptography to implement fine-grained access control for cloud storage services. Wang, 

Xiang, Jing, and Zhang (2012) proposed the use of fine-grained access control as an 

approach to controlling security for Web browser extensions written in JavaScript. 

The capability to provide fine-grain access control is now available in a number 

of popular database products. In the commercial realm, Oracle
®

, IBM
®

, and Sybase
®

 

offer fine-grained access control as part of their respective database products (Kabra et 

al., 2006). The Oracle
®

 relational database management system provides fine-grained 

access control through a transparent query rewrite mechanism known as VPD. Version 9 

of the IBM
®

 DB2
®

 relational database product introduced a cell-level fine-grained access 

control mechanism known as LBAC (Bond et al., 2006). The Sybase EAServer database 
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system also offers a fine-grained access control capability based upon query rewrite, 

which is conceptually similar to the Oracle
®

 VPD (Kabra et al., 2006). 

Robbert and Ricardo (2003) found that undergraduate database courses typically 

allocate less than two hours per semester to the topic of database security. Thus, 

relatively few students are exposed to the theoretical foundations behind advanced 

security feature such as fine-grained access control. A further complicating factor is that 

fine-grained access control is a generic approach to providing enhanced database security 

and encompasses many disparate mechanisms. Significantly, oral tradition in the database 

community holds that the use of fine-grained access control in relational database 

management systems imposes significant performance penalties. This viewpoint appears 

to be supported by recent research. For example, Tolone, Ahn, Pai, and Hong (2005) 

described the use of role-based security in file-based collaborative systems as providing 

less overhead than fine-grained security at the user or object level. According to Tolone 

et al. (1992), the use of fine-grained access control adds complexity, is more difficult to 

manage, and is highly dependent upon contextual information encompassed within the 

data to be protected. However, Tolone et al. provided no supporting metrics for this 

generalization. Zhan et al. (2006) implemented a novel fine-grained access control model 

for one-variable queries under the PostgreSQL 7.4 relational database management 

system. Zhan et al. reported 20-30% degradation in query response time when employing 

a fine-grained access control mechanism based upon query modification. Zhu et al. 

(2008) evaluated a novel approach to fine-grained access control conceptually similar to 

the Hippocratic database implementation described by LeFevre et al. (2004). Zhu et al. 

measured performance degradation in excess of 25% for queries against large tables 
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using their approach to fine-grained access control termed the “Enforcing Rule”. In 

contrast, other studies, including LeFevre et al. (2004), Kabra et al. (2006), Zhu and Lü 

(2007), and Pan (2009), reported implementations of fine-grained access control for 

database systems with minimal performance impacts. 

According to LeFevre et al. (2004), query complexity is an important 

consideration in quantifying the performance of fine-grained access control. Both 

LeFevre et al. and Kabra et al. (2006) have identified query optimization (i.e., query 

simplification) as a factor that can significantly reduce the performance overhead 

inherent in fine-grained access control. In the study conducted by the author, an estimate 

of query complexity was employed as one of the independent variables during 

benchmarking trials. 

 

Barriers and Issues 

 

Rosenthal, Dittrich, Donahue, and Maimone (2001) described the general state of 

database security research as moribund. However, since 2001, there has been revived 

interest in database security research, motivated largely by privacy concerns and by the 

need to secure database systems accessed from the Internet (Zhu & Lü, 2007). Still, the 

total amount of research in this subject area of database security is somewhat sparse. 

Some of the most influential research papers on the topic of fine-grained access control, 

for example Agrawal et al. (2002), LeFevre et al. (2004), and Rizvi et al. (2004), 

originate from the early years of the previous decade. Nevertheless, the foundational 

work by these researchers continues to be relevant to current research, as seen for 

example in the work by Zhang (2008), Zhu et al. (2008), Siegenthaler and Birman (2009), 
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and Yu (2009). 

Agrawal et al. (2002) introduced the concept of the Hippocratic Database.  

LeFevre et al. (2004) in her seminal paper describing an implementation of the 

Hippocratic Database technology, focused not only on a pragmatic implementation of the 

technology, but also on the performance characteristics of Hippocratic Database 

technology. The work of LeFevre et al. received significant discussion and analysis in 

subsequent research work on fine-grained access control for database systems by Bertino 

et al. (2005), Kabra et al. (2006), Wang et al. (2007), Johnson and Grandison (2007), and 

Zhu et al. (2008). 

The seminal paper of Rizvi et al. (2004) was highly instrumental in generating 

renewed research interest in the area of fine-grained authorizations. Rizvi et al. proposed 

the Truman and Non-Truman models to describe the behavior of different approaches to 

fine-grained authorization. The concepts embodied in the Truman model have  influenced 

research in the area of fine-grained access control for database systems, as may be seen in 

the work of Purevjii, Aritsugi, Imai, and Kanamori (2007), Wang et al. (2007), Olson et 

al. (2008), Corcoran, Swamy, and Hicks (2009), and Zhang et al. (2009). As well, the 

concept of the Truman and Non-Truman models has influenced the development of fine-

grained authorizations for XML; this is reflected in the work of Kanza, Mendelzon, 

Miller, and Zhang (2006), Steele et al. (2007), and Currim et al. (2009). 

Although there is a considerable body of recent work focused on the issue of fine-

grained access control, the number of researchers pursuing topics in this field is relatively 

small. Thus, much of the literature referenced in the study was drawn from a relatively 

small group of researchers. Nevertheless, the research available on the topic of fine-
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grained access control is both relevant and important. Rosenthal and Winslett (2004) 

described concerns in the area of database security research as follows “…progress in 

data security has been slow, and (too) much security enforcement is in application code, 

or else is coarse grained and insensitive to data contents” (pp. 962).  

The study undertaken by the author provides new information concerning the 

performance and scalability of four common fine-grained access control mechanisms. 

This information should be of considerable benefits to database professionals and system 

architects looking to secure relational database management systems accessed from the 

Internet. In addition, information concerning the scalability of four common fine-grained 

access control systems should help address possible concerns about the use of this 

technology for real-world applications. The work undertaken in this study builds upon 

previous database security benchmarking as reported by LeFevre et al. (2004), Kabra et 

al. (2006), Zhu et al. (2006), and Zhu and Lü (2007). 

 

Limitations and Delimitations of the Study 

The study that was undertaken employed performance benchmarking as a 

mechanism for quantifying the performance cost imposed by database fine-grained access 

control. The intent was to measure the relative performance of relational database 

management systems that implemented fine-grained access control, compared against 

like configurations that did not employ fine-grained access control. According to Gray 

(1992), benchmarking is often employed as a methodology to quantify the performance 

of a computer system using just a single numerical value (e.g., transactions per second). 
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Metrics generated through the benchmarking process were the sole input used to 

formulate the generic performance model developed in the author’s study. 

Given that no generally accepted standard exists for the implementation of fine-

grained access control in relational database management systems, selection of the 

approaches to be evaluated were somewhat subjective. The four approaches selected for 

evaluation included authorization views, a Hippocratic Database, transparent query 

rewrite, and LBAC. These are the most commonly utilized approaches to fine-grained 

access control in database systems as described by Bertino et al. (2006), Wang et al., 

2007, and Zhu and Lü (2007).   

In the recent literature, a concept termed “correctness criteria” has been identified 

as an issue of significant importance (Rizvi et al, 2004; Bertino & Sandhu, 2005; Bertino 

et al, 2006; Wang et al., 2007). Correctness criteria pertain to the completeness of results 

retuned by database queries that are filtered by fine-grained access control. While the 

author recognizes the significance of correctness criteria, the generic model does not 

address this issue given that none of the approaches to fine-grained access control 

selected for evaluation currently satisfies the correctness criteria. Nor in fact are there any 

fine-grained access control mechanisms commonly in use today that satisfy the 

correctness criteria (Wang et al., 2007). 

A key question that was addressed in the author’s study concerns the issue of 

scalability. Do the performance characteristics of fine-grained access control 

implementations change significantly when load increases? Elnikety et al. (2009) 

demonstrated that it is possible to estimate database scalability using small-scale systems 

and the TPC-W benchmark. Others, including Vieira and Madeira (2005), Kabra et al. 
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(2006), and Zhu and Lü (2007) have evaluated TPC benchmarks on small-scale 

processors to measure the overhead imposed by security mechanisms. According to 

Menascé (2002), the TPC-W benchmark may also be used to estimate scalability, 

calculated as the ratio of concurrent sessions versus the cardinality of the ITEM table. 

The study undertaken utilized the TPC-W benchmark on a small-scale processor to derive 

metrics for use in formulation of a generic model. Benchmarking on large-scale systems 

is beyond the scope and resources of the current study.  

 

Definition of Terms 

The subject of database security employs a number of terms and phrases that have 

specific meanings within the field. Definitions for terms and phrases have been drawn 

primarily from textbooks and research papers. The classic textbook ‘Database Security’ 

(Castano, Fugini, Martella, & Samarati, 1994) provides an excellent general reference for 

many of the specific terms relating to database security. The following definitions are 

provided to clarify terms used in this document. 

Access Control The process of restricting access to data based upon 

a predefined access policy (Benantar, 2005). 

Authentication The process of uniquely identifying a system user 

(Castano et al., 1994) 

Authorization Also termed Access Authorization. Both terms are 

synonymous with Access Control (Benantar, 2005). 

Base Table A database structure created via the SQL CREATE 

TABLE statement and stored as an ordered file in 



 

 

20 

the Relational Database Management System is 

termed a base table. (Elmasri & Navathe, 2010). 

Benchmark The process of acquiring measurements for use in 

comparing performance between systems (Jain, 

1991). 

Cell In a relational table or spreadsheet, the intersection 

between a column and a row (cell, n.d.). 

Closed World An approach to database security that denies access 

to objects unless an authorization is explicitly 

specified (Bertino & Sandhu, 2005).  

Conditional Validity The concept that a query can be fully answered 

using data in a set of database views (Rizvi et al., 

2004). 

DBA Acronym for Database Administrator (Castano et 

al., 1994). 

Data Privacy Concerning the rights of individuals to determine 

how, when, and under what conditions personal 

information may be released (Agrawal et al., 2002). 

Data Security Data is said to be secure when the confidentiality, 

integrity, and availability of the data can be ensured 

(Bertino & Sandhu, 2005). 

Execution Plan Describes how a SQL query is to be executed 

including access methods for each database object 
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as well as references to the internal algorithms used 

to implement SQL operators (Elmasri & Navathe, 

2010). 

Fine-grained In access control, referring to the granularity of 

access to data, also known as low-level access under 

conditions where access to data is restricted at the 

row, column, or cell level (Wang et al., 2007). 

Generic Model A paradigm used to illustrate concepts at a high 

level of abstraction using concise definitions 

(Melnik et al., 2003). 

Hippocratic Database A conceptual database architecture or design that 

facilitates data privacy (Agrawal et al., 2002). 

Index-Scan Accessing rows in a database table using an index 

(Garcia-Molina, Ullman, & Widom, 2008). 

INGRES® A prototype relational database management system 

implemented at the University of California between 

1975 and 1977 (Stonebraker & Rowe, 1986). 

Join The SQL JOIN operation combines rows from two 

tables based upon a column or columns common to 

both tables (i.e., join-predicates). A JOIN operation 

returns only the rows satisfying the JOIN condition. 

(Elmasri & Navathe, 2010). 

Label Commonly used as a synonym for “access class” in 
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the MAC model (Bertino & Sandhu, 2005). 

Mechanism An implementation of a model, construct, or 

paradigm used to provide access control (Benantar, 

2005). 

Metadata Descriptive information about the database structure 

and database contents (Elmasri & Navathe, 2010). 

Middleware A shared application external to the database that 

provides database connectivity and related services 

(Elmasri & Navathe, 2010). 

Null A special data value employed to indicate that data 

contains no specific value (LeFevre et al., 2004). 

Performance A metric quantifying the work performed by a 

system – e.g., database transactions per second 

(Gray, 1992). 

Object A passive entity, for example, a table in a relational 

database management system (Benantar, 2005). 

ODBC An acronym for Open Data Base Connector – an 

industry standard for interfacing application 

software to relational database management systems 

(Elmasri & Navathe, 2010). 

Parse Tree A tree-like structure representing the lexical 

elements and syntactical categories of a SQL 

statement (Garcia-Molina et al., 2008). 



 

 

23 

Policy A rule used to control access (Castano et al., 1994). 

Query Optimization The assembly of a plan for executing a SQL query 

efficiently. The SQL query may be simplified as 

part of the assembly process. The term is a 

misnomer in that the optimized query is not 

necessarily optimal, merely adequately efficient 

(Elmasri & Navathe, 2010). 

Query Rewrite The process where the query parse tree is converted 

to an algebraic representation of the query (Garcia-

Molina et al., 2008). The primary function in query 

rewrite is to handle views, correctly eliminating 

duplicate statements, nested queries and NULLs 

(Hellerstein et al., 2007).  

Resource Encompasses both hardware and software (e.g., 

CPU, disks, program files). In terms of database 

access control, authorization for resources 

encompasses facilitating access to data and database 

stored procedures (Castano et al., 1994). 

Response Time The elapsed time between submission of the query 

and receipt of the query response (Elmasri & 

Navathe, 2010). 

Row-level security An approach to enforcing data access restrictions at 

the row level (Wang et al., 2007). Using row-level 
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enforcement, the entire row is prohibited from 

viewing even if only a single cell within the row 

contains confidential data (LeFevre et al., 2004). 

Scalable A solution that is equally applicable to small and 

large computer systems is said to be scalable (Gray, 

1992). 

SPEC An acronym for Standard Performance Evaluation 

Corporation. A nonprofit consortium of computer 

vendors that provides computer benchmark 

programs (Gray, 1992). 

SQL An acronym for Structured Query Language. SQL is 

the query language used in relational database 

management systems (Elmasri & Navathe, 2010). 

Subject A term to identify a program in execution that has 

both and identity and privilege (Benantar, 2005). 

Synthetic Workload A workload with characteristics similar to real world 

processing that can be executed multiple times in a 

controlled fashion (Jain, 1991). 

System A general term that encompasses hardware, software 

and firmware (Jain, 1991).  

System R A prototype relational database management system 

developed by IBM
®

 during the 1970's (Astrahan et 

al., 1976). 
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TCB Acronym for Trusted Computing Base; defined as 

the components that enforce the security policy of a 

system (Bishop, 2002). 

Truman Model Named after the artificial world of Truman Burbank 

in the movie ‘The Truman Show’, the model 

provides “…each user with a personal and restricted 

view of the complete database” (Rizvi et al., 2004, 

p. 553).  

TPC Acronym for the Transaction Processing 

Performance Council. The TPC defines and audits 

performance and database benchmarks for industry 

(Transaction Processing Performance Council, 

1998). 

TPC-W The TPC Benchmark™ W (TPC-W) is designed to 

model an on-line bookstore (Transaction Processing 

Performance Council, 2003). 

User Typically a human being. A user is often associated 

with a user account or profile which contains both 

authentication and authorization information for the 

specific user (Benantar, 2005). 

Views Queries stored in the database catalog, expanded at 

run-time by the query rewriter, providing dynamic, 

virtual tables (Hellerstein et al., 2007). 
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View Replacement An approach in which the base relations in a query 

submitted by a user are replaced by authorized 

views (Kabra et al., 2006). 

Wisconsin Benchmark Developed in 1983 at the University of Wisconsin, a 

benchmark that is widely used to test the 

performance of relational database management 

systems (Gray, 1992). 

Workload A user request made to the system. A user can be 

either a person or a software program (Jain, 1991). 

 

 

Summary 

 

The problem that was studied in this dissertation concerns the performance 

penalties associated with the use of fine-grained access control in relational database 

management systems. By 1976, fine-grained access control capabilities had been 

implemented for both the INGRES
®

 and System R prototype relational databases 

(Griffiths & Wade, 1976). Yet despite the fact that more than 30 years have passed, 

database fine-grained access is not widely used, although the associated benefits of the 

technology have been well documented (Rizvi et al., 2004; Agrawal et al., 2007; 

Roichman & Gudes, 2007; Simpson, 2008; Currim et al., 2009). To date, relatively little 

known effort has been directed toward the performance issues associated with the use of 

fine-grained access control (Zhang, 2008). Still, some researchers believe that fine-

grained access control solutions for relational database management systems can provide 
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enhanced security as well as improved privacy protection with only minimal performance 

penalties (Yu, 2009). 

The study undertaken by the author led to the development of a generic model to 

represent the performance aspects of four approaches to fine-grained access control 

implemented within a relational database management system. The formulation of a 

generic model that quantifies the performance penalties associated with the use of fine-

grained access control in database systems is intended to provide database administrators 

and system architects with a much better understanding of the performance implications 

attendant with the use of these technologies. 

 



 

 

28 

 

 

Chapter 2 

Review of the Literature 
 

Salkind (2006) described the literature review as a chronological investigation of 

the development of ideas in the subject field, providing an opportunity to examine ideas 

that were proven true and those that “…were left by the wayside because of lack of 

support…” (p.43). Boote and Beile (2005) described the literature review as providing 

the researcher with an understanding of the strengths and weaknesses of previous 

research, and an opportunity for critical analysis of past work. Sekaran (2003) described 

the objective of the literature review as the formulation of a research based foundation for 

the theoretical framework of the proposed study.  

The review of the literature is separated into six sections: the contribution of 

INGRES
®

 and System R, database access control concepts, relational query processing, 

fine-grained access control, performance benchmarking, and performance models. In the 

first section of the literature review, the author examines a number of the architectural 

decisions made in the INGRES
®

 and System R prototype databases that continue to have 

significant impact on modern relational database management systems. In the second 

section, the author reviews the technical concepts and paradigms that underlay database 

access control, focusing on concepts central to the implementation of fine-grained access 

control. In the third section, the author describes the processes behind relational query 
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processing, focusing in particular on the function of the database query rewriter, which is 

a critical component in determining the efficiency of fine-grained access control. In the 

fourth section of the literature review, the author reviews the current state of fine-grained 

access control for relational database management systems. In the fifth section of the 

literature review, the author examines the use of performance benchmarking for 

quantifying the efficiency of fine-grained access control implementations. In the sixth 

and final section of the literature review, the author examines the use of performance 

models as tools for quantifying database performance and scalability.  

  

The Contribution of INGRES
®
 and System R 

“Descendants of the early relational prototypes [INGRES
®

 and System R] have 

become the primary commercial relational DBMSs” (Stonebraker, 2008, p. 76). This is 

not to imply that there have been no technical advancements in relational database 

technology since the mid-1970s. Rather, three decades of database research and 

commercial software development have advanced relational database technology to the 

point where relational database management systems are now ubiquitous and often 

considered mission-critical (Hellerstein et al., 2007). Still, it is worthy to note that market 

forces have provided the primary motivation for database research over the past three 

decades (Stonebraker, 2008). While advances in relational database technology have 

provided greatly enhanced reliability, scalability and many new database features, 

relatively few changes have been made to the underlying architecture of relational 

database management systems since the INGRES
®

 and System R prototype databases 

(Hellerstein et al.).  
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Stonebraker and Wong (1974) described the capability to deploy fine-grained 

access control in the INGRES
®

 prototype database using query rewrite. According to 

Stonebraker and Wong, the objectives in defining the access control system for the 

INGRES
®

 database were that such a system was to be powerful, flexible and impose 

minimal overhead in terms of processing requirements. Query rewriting is performed at 

the query language level, allowing queries to be filtered in order to exclude any rows the 

query is not authorized to return (Bertino et al., 2005). This approach to fine-grained 

access control is also known as row-level security or content-based access control 

(Bertino & Sandhu, 2005). Stonebraker and Wong leveraged the database query rewriter, 

an internal database subsystem used primarily for view compilation, in order to modify 

query statements without the knowledge of the user, thereby providing effective row-

level security. However, this approach to transparent query rewrite suffers from a 

significant problem in that the results returned from a database query may contain fewer 

rows than the user is actually authorized to view (Rizvi et al., 2004). Even so, transparent 

query rewrite continues to be used today. Oracle
®

 VPD, an access control mechanism 

available in the enterprise version of the Oracle
®

 relational database management system, 

employs transparent query rewrite in order to provide fine-grained access control (Currim 

et al., 2009). 

Query processing is another area where modern database systems retain a strong 

link to the System R prototype database. According to Deshpande, Ives, and Raman 

(2007), cost-based query optimization developed for System R continues to be used 

extensively in modern relational database management systems. Selinger, Astrahan, 

Chamberlin, Lorie, and Price (1979) described the query optimizer in System R as 
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incorporating the use of three categories of metadata for optimizing queries: cardinality 

estimates, execution plan cost estimates, and searches for optimal execution plans. 

According to Chaudhuri (2009), in spite of 30 years of continuous improvements, cost-

based query optimization continues to be based upon the System R “…query in, plan out 

model” (p. 967). However, Hellerstein et al. (2007) states that the work by Selinger et al. 

(1979) was preliminary research and therefore, most modern relational database 

management systems contain some optimizations in the areas of selectivity, search 

algorithms, and parallelism to address known limitations in the System R query 

optimizer. Further, Deshpande et al. cautioned that the System R style of query 

optimization could break down when provided with insufficient statistical information 

resulting in generation of optimizer errors at a rate exponential to the size of the query. 

View replacement using authorization views is a technique frequently employed 

to implement fine-grained access control in relational database management systems. 

Kabra et al. (2006) described view replacement as an approach where user queries are 

redirected to authorization views rather than being permitted as queries against base 

tables. According to Kabra et al., fine-grained access control that employs a view 

replacement model depends heavily on query optimization for good performance. 

Views in System R were introduced primarily as a means of providing read-only 

authorizations on tables; however, System R also allowed updates on views referencing a 

single underlying base table (Astrahan et al., 1976). Conceptually, a view in System R 

was a stored query, providing access to a subset of rows and columns on one table or 

series of joined tables (Blasgen et al., 1981). System R also introduced parameter driven 

authorization views, thereby providing a filtering mechanism for content-based 
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authorizations (Bertino & Sandhu, 2005). Rizvi et al. (2004) described conventional 

authorization views, including authorization views incorporating dynamic parameter 

selection, as the “Truman Model” of fine-grained access control. Under the Truman 

Model, query results returned to the user may be incomplete. This condition is resolved in 

an alternate query model that Rizvi et al. described as the “Non-Truman Model”. 

Views were stored in the System R database in a format known as a pre-optimized 

package (Astrahan et al., 1976). The System R pre-optimized package was comprised of 

a SQL parse tree and a query execution plan (Astrahan et al.). For a query against a view 

in System R, the user-supplied query was merged with the stored parse tree using query 

rewrite (Blasgen et al., 1981). According to Bertino and Sandhu (2005), this approach, 

termed “view composition”, continues to be used in modern database systems. However, 

a side effect of view composition concerns inefficiencies that may be introduced when 

the SQL WHERE clause of the stored view and the SQL WHERE clause of the user 

query are combined (Bertino & Sandhu). Halevy (2001) indicated that the view 

composition approach works best when base tables referenced in the query fully intersect 

with a view referencing the same base tables. Otherwise, additional query rewriting may 

be required to eliminate redundant joins, thus resulting in increased query compilation 

and lengthy execution times (Kabra et al., 2006). 

The original user authorization subsystem in the System R database required that 

access to tables and views to be explicitly granted or revoked by the object owner or by a 

database administrator (Blasgen et al., 1981). Griffiths and Wade (1976) proposed an 

enhanced scheme of SQL based GRANT and REVOKE operations for tables and views 

in the System R database. The scheme proposed by Griffiths and Wade allowed access 
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privileges to be delegated to other users in order to streamline security management. This 

scheme of coarse-grained (e.g., table level authorizations) eventually evolved into what is 

now termed role-based access control (RBAC). According to Bertino and Sandhu (2005), 

by the mid-1990s, RBAC had become the standard for coarse-grained security in most 

relational database management systems. The use of roles provides flexible management 

of user authorizations. Under RBAC, object permissions are assigned to roles, and roles 

are assigned to users, thereby negating the onerous requirement that object permissions 

be assigned to individual database users (Bertino & Sandhu, 2005). 

Denning, Akl, Heckman, Lunt, Morgenstern, and Neumann (1987) described a 

hierarchical view implementation for the System R database allowing classification of 

data and the enforcement of mandatory security. The approach described by Denning et 

al. (1987) employed database views as objects to which authorizations were applied. The 

hierarchical or multilevel approach described by Denning et al. for System R employed 

three sets of views:  

1. A base set of views classified data by security level – top-secret, secret, 

confidential, and unclassified; 

2. An intermediate sets of views served to classify aggregations of data that had 

a higher security classification than the constituent elements;  

3. A tertiary set of views that removed (filtered) data classified at a higher level 

than the access level of the user querying the data. 

The INGRES
®

 and System R databases were highly influential in establishing 

relational databases as the primary database technology of today (Garcia-Molina et al., 

2008). According to Bertino and Sandhu (2005), the System R discretionary access 
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control model and its extensions provide the basis for coarse-grained access control in 

modern relational database management systems. As well, the work by Denning et al. 

(1987) using the System R prototype database demonstrated a successful proof of concept 

deployment of mandatory access control in a relational database management system. 

Zhang (2008) noted that today, all major database vendors, including Oracle
®

, IBM
®

, and 

Microsoft
®

, currently provide mandatory access control mechanisms for their respective 

database products using LBAC. 

  

Access Control Concepts 

The internal protection of database systems is provided by the combination of 

three subsystems – authentication, authorization, and auditing (Castano et al., 1994). 

Figure 1 illustrates the relationship of these three subsystems. The terms authorization 

and access control are considered synonymous, although the term authorization is much 

more widely used (Benantar, 2005). However, the term access control may also be 

employed in a broader context to describe the protection state of a system (Bishop, 2002). 

According to Bishop, “protection” describes the conditions “…under which a system is 

secure” (p. 31). Authentication is the first internal subsystem involved in protecting the 

database. In order to use services provided by a relational database management system, 

the user must first be authenticated (Castano et al., 1994). Bishop (2002) describes 

authentication as the process where an external entity, the user, must confirm their 

identity. In most cases, the term user is associated with a human being (Benantar, 2005). 
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Figure 1. Internal Protection of Database Systems (adapted from Benantar, 2005, p. 17) 

 

Authorization is the second internal subsystem involved in protecting the 

database. However, authorization cannot occur until authentication is successfully 

completed. According to Benantar (2005), authorization (also termed access control) is 

the process of granting user access to data based upon a security policy. By default, users 

should have no access to data until suitably authorized. This paradigm, where security 

policies only contain access condition but no prohibitions, is termed a closed world 

system or closed world model (Castano et al., 1994). Standard coarse-grained security in 

modern relational database management systems is implemented under a closed world 

model (Castano et al.). In contrast, fine-grained access-control supports the open world 

model, in which both access rights and access prohibitions may be explicitly specified in 

security policies (Bertino & Sandhu, 2005). It is worth noting however, that closed world 

systems are typically considered more secure than open world systems as the 

authorization state is more easily verified (Castano et al.). 
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Auditing is the third internal subsystem used to protect the database. Audit logs 

are useful in identifying unauthorized transactions if database tampering is suspected 

(Elmasri & Navathe, 2010). Audit logs can be used in database systems to record both 

read and write operations, although there are practical constraints on the granularity of 

event logging imposed by log storage considerations (Castano et al., 1994). According to 

Bishop (2002), auditing is often considered external to the database protection model as 

auditing provides accountability, but does not directly protect data. 

Access control models can be classified into three broad categories: discretionary 

access control (DAC) models, mandatory access control (MAC) models, and role-based 

access control (RBAC) models (Bishop, 2002). DAC models provide an identity-based 

approach to security where the object owner has complete discretion over who may 

access an object (Benantar, 2005). However, DAC also allows the object owner to 

delegate access control responsibility on an object to other database users. MAC models 

classify both data and users based on security classes (Elmasri & Navathe, 2010). MAC 

models restrict access of subjects to objects based on the use of hierarchical labels 

(Castano et al., 1994). RBAC models are employed to restrict access based upon job 

function (Bishop, 2002).  

Under DAC, an authorized user may grant or revoke access rights on objects to 

other system users (Elmasri & Navathe, 2010). DAC for relational database management 

systems also embodies the concept of delegated administration using the SQL GRANT 

option (Bertino & Sandhu, 2005). The flexibility inherent in the DAC model provides a 

de facto mechanism for decentralized administration of authorizations (Castano et al, 
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1994). However, this same flexibility is also an inherent weakness in the DAC model in 

that there are no controls on how access rights are propagated (Bertino & Sandhu, 2005).  

According to Castano et al. (1994), the underlying theoretical foundation of the 

DAC model is the access matrix model. Elmasri and Navathe (2010) describe the access 

matrix model as consisting of columns, which represent objects (e.g., base tables) and 

rows, which represent subjects (e.g., users). The intersection of a row and a column in the 

access matrix model, known as a cell, denotes the privileges of a subject with respect to 

an object (Bishop, 2002). The structure of the access matrix model can be logically 

extended to secure objects (e.g., tables and views) in a relational database (Castano et 

al.). Zhang (2008) provided the following description of the access matrix model applied 

to database security: “Each cell in the matrix has a flag indicating whether the user at that 

cell is able to read or update the corresponding data item” (p. 8). 

In contrast to the DAC model, the MAC model uses a mechanism termed the 

trusted computing base (TCB) for enforcement of access control (Benantar, 2005). The 

TCB encompasses all of the mechanisms, including hardware, software, and firmware, 

used to enforce security policies (Bishop, 2002). “Neither the subject, nor the owner of 

the object can determine whether access is granted” (Bishop, p. 104).  

The Bell-LaPadula model provides the theoretical foundation for the MAC model 

(Bertino & Sandhu, 2005). According to Castano et al., the combination of the simple 

security property and the star property in the Bell-LaPadula provides restrictions to 

ensure that data will never flow from a higher security level to a lower security level. 

MAC requires that objects be protected from unauthorized access as well as from 
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disclosure through unintended means such as flow violation and inference (Castano et al, 

1994).  

Under the MAC model, “…policies regulate access to data by subjects on the 

basis of predefined classification of subject and objects in the system” (Bertino & 

Sandhu, 2005, p. 9). MAC employs access classes, more commonly termed labels, as a 

mechanism for restricting access to data (Castano et al., 1994). The security label 

associated with the object is compared with the access class of the user in order to 

determine whether access to the object is permitted (Benantar, 2005). According to 

Bertino and Sandhu, fine-grained access control is supported in the MAC model with 

row-level labels. LBAC in Oracle
®

 and IBM
® 

conforms to the MAC model. 

Under RBAC, privileges are assigned to roles rather than to individuals (Elmasri 

& Navathe, 2010). A role is intended to be an abstract representation of a set of 

responsibilities, typically representing a job function (Bishop, 2002). Given that security 

policies are often formulated based on responsibilities or job functions, RBAC can be 

employed to generalize many real-world security requirements (Benantar, 2005).  

RBAC is the coarse-grained access control mechanism that is the default security 

provided by most modern relational database management systems (Elmasri & Navathe, 

2010). The strength of RBAC is that it can be employed to represent the hierarchical 

security requirement of real-world organizations (Bertino & Sandhu, 2005). However, 

RBAC can also support complex security implementations. According to Elmasri and 

Navathe, role-based access control can be used to represent both DAC and MAC models. 
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Relational Query Processing 

In order to be feasible, fine-grained access control requires efficient query 

processing, and in particular, requires efficient query optimization (Zhang, 2008). In 

Figure 2 the high-level architecture of a typical relational database management system is 

depicted, including the component sub-systems of the relational query processor. 

According to Garcia-Molina et al. (2008), the three major steps or phases of relational 

query processing include: 

1. Parsing – creating a parse tree representation of the SQL query;  

2. Query Rewrite – transforming the parse tree into a logical query plan; 

3. Plan Generation – converting the logical plan into a physical plan.  

In the parsing phase, the query is scanned, parsed, and validated. Elmasri and Navathe 

(2010) described scanning as the identification of SQL keywords, parsing as the process 

of checking the syntax of the SQL query, and validation as the process of confirming 

access to database objects referenced in the SQL query. Once the parse tree has been 

created, the query is optimized. According to Garcia-Molina et al., the query rewrite and 

physical plan generation phases of SQL query compilation are collectively known as 

query optimization. The process of query optimization is the most crucial and time-

consuming component of query processing in a relational database management system 

(Chaudhuri, 2009).  

Deshpande et al. (2007) stated that effective query optimization depends upon the 

presence of a stable execution environment and sufficient statistical information collected 
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Figure 2. Relational Database Architecture (adapted from Hellerstein et al., 2007, p. 14 

 

 

for base tables and indexes. During the optimization process, only data in the database 

catalog (i.e., metadata) is available to the query optimizer (Elmasri & Navathe, 2010). 

This metadata includes table size (cardinality), related indexes, data location on disk, and 

frequency of table attributes (Garcia-Molina et al., 2008).  

 

 
Figure 3. Example TPC-W Query Execution Plan 
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A query execution plan generated by the database optimizer provides a data-flow 

like representation of the database query as depicted in Figure 3. In Figure 3, the TPC-W 

“Subject-Search” SQL query is decomposed showing the two constitute tables, ITEM and 

AUTHOR. The “Nested Loop” symbol depicted in Figure 3 indicates that a join 

operation between ITEM and AUTHOR is effected with the ITEM table forming the 

outer loop and the AUTHOR table the inner loop (Elmasri & Navathe, 2010). Figure 3 

also indicates that the join of the AUTHOR table to ITEM utilizes the table primary key 

(i.e., author_pkkey). The query is limited to the first 50 rows returned as indicated by the 

“Limit” symbol in Figure 3. Although an ORDER BY clause is included in the SQL 

query, a separate sort operation is not required in this particular instance as the ITEM 

table is read in descending primary key (i.e., sorted) order. 

According to Hellerstein et al. (2007), each query block in the query execution 

plan is optimized separately. The calculated cost of each block in the query execution 

plan is used to determine the cost of the complete query (Hellerstein et al.). According to 

Elmasri and Navathe (2010), the efficiency of the execution strategy selected is based on 

the execution plan cost, which is an estimated value, not a measured value. Elmasri and 

Navathe noted that the query optimization strategy selected by the query optimizer is not 

necessarily the optimum execution strategy, merely one that is reasonably efficient, albeit 

suboptimal. However, Chaudhuri (2009) described the current generation of relational 

database query optimizers as producing a surprising large number of optimal query plans. 

Reddy and Harista (2005) noted that query plan efficiency (i.e., which plans are deemed 

optimal) is decided primarily based upon the estimated query response time. On the other 

hand, Chaudhuri noted that the use of parameterized queries, such as those employed in 



 

 

42 

some authorization views, could result in the constant regeneration of query execution 

plans due to changes in the underlying data. As well, Helerstein et al. (2007) noted that 

the run-time characteristics of parameterized queries could vary significantly depending 

upon whether parameter values at run-time are typical of the parameter values employed 

during the initial compilation of the parameterized authorization view. 

In addition to graphical query execution plans, a cost-based analysis can also be 

generated for individual queries in text format as depicted in Figure 4 for the TPC-W 

subject-search query. Kabra et al. (2006) employed query cost analysis to estimate

 

Figure 4. Cost analysis of TPC-W Query 

 

 

query complexity for implementations of fine-grained access control. Both Kabra et al. 

and LeFevre et al. (2004) manually simplified SQL queries to reduce complexity (i.e., 
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reduce the cost of query execution) as part of implementing efficient fine-grained access 

control mechanisms in their respective fine-grained access control implementations for 

SQL Server
®

 and DB2
®

. However, it was explicitly understood by both authors that the 

database query optimizer would further revise their simplified SQL statements prior to 

execution. 

 

Database Fine-Grained Access Control 

For maximum effectiveness, fine-grained access control should be an integral part 

of the database software, rather than custom code developed as part of an individual 

application (Rizvi et al., 2004). Providing fine-grained access control at the database 

level ensures that all access to the database is subject to the same access control regime 

(Wang et al., 2007). As well, fine-grained access control implemented within a relational 

database management system is far more difficult to subvert than fine-grained access 

control implemented externally through custom application code (Zhu & Lü, 2007). 

Further, if fine-grained control exists only at the application level or middleware level, 

the entire database may be subject to compromise (Kabra et al., 2006). 

Enforcement of fine-grained access control involves two components – a 

mechanism and a security policy (Siegenthaler & Birman, 2009). A mechanism is a 

process to enforce security policies (He & Yang, 2009). In more specific terms, “An 

access control mechanism refers to a particular method, tool, or procedure for 

implementing an access control policy” (Benantar, 2005, p. 26). In the context of access 

control, a security policy comprises a set of rules (Benantar, 2005). Using the information 

specified in a security policy, an access control mechanism either grants or denies user 
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access to data (Kocaturk & Gundem, 2008). However, the security policy must be 

sufficiently fine-grained to express all access control requirements (Fischer, Marino, 

Majumdar, & Millstein, 2009). On the other hand, Bell (2005) cautions that the 

granularity of a security policy can be no greater than the granularity supported by the 

algorithms underlying the access control mechanism.  

Zhang (2008) noted that the use of fine-grained access control in relational 

database management systems imposes performance issues. According to Kabra et al. 

(2006), most of the existing approaches to fine-grained access control, including existing 

commercial implementations, effectively replace a query on a base table with a query on 

a view of the base table in order to remove unauthorized data. This category of 

mechanism is termed a view-based or view replacement approach. According to Zhang, 

the view-based approach imposes additional overhead in query processing due to the 

requirement to rewrite user queries to enforce fine-grained access control.  

Zhang (2008) identified three areas in query compilation and query processing 

where the use of fine-grained access control imposes additional overhead:  

1. Query rewriting to enforce fine-grained access control changes the query 

semantic structure, producing a query plan that is potentially less optimal than 

the original; 

2. The view-based approach to removing unauthorized data imposes additional 

complexity on the user query. With the added complexity, the query optimizer 

needs to determine the cardinality of both the original query and the rewritten 

query with fine-grained access controls enforced. 
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3. At run-time, additional authorization checks are required due to the user query 

being rewritten to enforce fine-grained access control. 

Figure 5 depicts the query evaluation steps that take place when fine-grained access 

control is absent and when fine-grained access control is implemented. According to 

Zhang, cardinality is one of the most important factors affecting query performance when 

fine-grained access control is implemented. Zhang, Ilyas, and Salem (2009) describe 

Partitioned Sampling for Multiple users (PSALM), a technique that improves query  

 

 
Figure 5. Query Evaluation in Relational Databases (adapted from Zhang, 2008, p. 3) 

 

performance under systems that implement fine-grained access control. Zhang et al. 

(2009) demonstrated that query efficiency under fine-grained access control could be 
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improved if the cardinality of accessible rows can be estimated with a high degree of 

accuracy at the time the query is compiled. 

 Parameter driven authorization views conforming to the Truman model are useful 

in constructing dynamic views that can be embedded in Web applications (Rizvi et al., 

2004; Roichman & Gudes, 2007). However, authorization views may incur additional 

overhead at run-time as dynamic parameters provided through user input may contain 

values substantially different than the estimated values stored in the database at the time 

the authorization view was originally compiled (Hellerstein et al., 2007). As well, 

separate authorization views may be required for SQL SELECT, INSERT, UPDATE and 

DELETE operations (Bertino & Sandhu, 2005; Kabra et al., 2006). According to Bertino 

and Sandhu, providing sufficient fine-grained security within an application may require 

multiple versions of authorization views to be maintained, which thus limits the 

practicality of authorization views as a general approach to fine-grained access control. 

A common approach to enforcing privacy protection at the cell level involves 

replacing restricted attributes with a “null” value (Bertino et al., 2005). Null is a special 

value in standard SQL, generally assumed to indicate that the attribute has no defined 

value (Garcia-Molina et al., 2008). However, according to LeFevre et al. (2004), null 

may also be employed to indicate absence of an attribute; for example, a null might 

appear in a column containing phone numbers to indicate that no telephone was installed. 

Further, null cannot be used as a value in a primary key, an issue that may limit the 

applicability of nullification as a data masking technique (LeFevre et al.). According to 

Zhu et al., (2008), in nullifying cells containing sensitive data, the act of nullification 
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itself indicates that sensitive information exists in the original data, providing possible 

incentive for further attacks. 

Garcia-Molina et al. (2008) identified a number of considerations associated with 

the use of nulls in ANSI Standard SQL. According to Garcia-Molina et al., these 

considerations include: 

1. SQL operations using outer joins may return nulls where no values exist; 

2. Comparing a null value to any other value, including another null value, 

evaluates to unknown; 

3. The proper method to determine whether a cell contains a null value is to 

employ the IS NULL operator, which returns a Boolean TRUE or FALSE. 

Kabra et al. (2006) discussed the performance issues associated with the use of 

nullification when used for privacy enforcement. The key issue identified by Kabra et al. 

concerns the impact of query rewrite on the original query and the likelihood that 

redundant authorization checks will be appended to the rewritten query. However 

LeFevre et al. (2004) found that while outer joins used to implement nullification for 

privacy protection can be inefficient, the judicious use of secondary indexing could 

negate some performance concerns. In addition, LeFevre et al. found that for large I/O 

bound queries, for example queries executed against large tables, the privacy-checking 

component of the query is a CPU intensive process, and thus can be addressed effectively 

through processor scaling. Significantly, the process of query simplification, as for 

example in the tuning of authorization views, can sometimes result in better performance 

than provided by the query plan of the original query (LeFevre et al.; Kabra et al.). 



 

 

48 

Rizvi et al. (2004) introduced the concept of unconditional validity when dealing 

with authorization views. According to Rizvi et al., unconditional validity requires that 

data returned from an authorization view be identical to data returned from the same 

query executed directly on the base table or tables. Rizvi et al. proposed the Truman and 

Non-Truman models of fine-grained access control based upon validity of query results 

returned. According to Bertino et al. (2005), the Truman model may not always return 

complete results and is therefore conditionally valid, whereas the Non-Truman model is 

unconditionally valid as it always returns complete query results. 

Bertino et al. (2005) proposed that an algorithm used to enforce fine-grained 

access control should be sound, secure, and maximum. Wang et al. (2007) termed these 

three properties “correctness criteria” (p. 555). According to Bertino et al., fine-grained 

access control should always return information that is accurate (sound), should not 

contain unauthorized information (secure), and should return all authorized rows 

(maximum). Wang et al. argued that most query modification algorithms used to 

implement fine-grained access control fail to meet the correctness criteria. 

The topic of correctness criteria is an active area of research relating to the use of 

fine-grained access control. Zhu et al. (2008) demonstrated that inclusion of the SQL 

operators NOT IN and NOT EXISTS in a sub-query can cause additional (i.e., incorrect) 

information to be returned by the sub-query, resulting in information leakage, thus 

violating the soundness property. Shi et al. (2009) examined SQL queries used in fine-

grained access control and provided a generalization for the soundness property using a 

relational algebra based analysis technique. Rastogi, Suciu, and Welbourne (2008) 

examined the need for fine-grained access control in radio frequency identification 
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(RFID) data management, stating that in order to address the soundness property, fine-

grained support for both access and deny security policies is required. 

Authorization Views 

To enforce restricted access to data, authorization views are the most commonly 

employed alternative to allowing unrestricted access to base tables in the database. 

Authorization views can be constructed using conventional SQL view syntax and may 

include dynamic parameters that are resolved when the view is executed (Rizvi et al., 

2004). Using authorization views, user queries are written against a view rather than 

against the base table, so that the user query only returns data the user is authorized to 

view (Kabra et al., 2006). As noted by Kabra et al., authorization views may also include 

a mechanism for authorization checks, which can potentially introduce inefficiencies, 

thereby resulting in increased query optimization overhead and slower query execution. 

However, the most significant source of inefficiency when using authorization views 

relates to the process of view instantiation. Hellerstein et al. (2007) noted that compiled 

views are stored in the database catalog along with a query execution plan generated at 

the time of view compilation. However, the data underlying the view may change 

significantly over time, resulting in poor query performance. Significant data changes 

affecting query execution could include changes in table cardinality as well as changes in 

attribute frequency (Garcia-Molina et al., 2008).  

Another source of inefficiencies relates to the structure of the SQL statement in 

authorization views. Hellerstein et al. (2007) warned that although authorizations on 

views are verified at the time of view compilation, they must also be checked again at the 

time of query execution, adding additional overhead. According to Kabra et al. (2006), 
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even though authorization views are pre-compiled, they can incur significant 

performance penalties at execution time. 

 Kabra et al. (2006) also noted that authorization checks incorporated in 

authorization views might be re-written by the query optimizer to include the use of SQL 

semi-joins. A SQL semi-join between two table is constructed using either the EXISTS or 

IN comparison operator and a nested sub-query. A SQL semi-join can be quite efficient if 

the nested sub-query returns only a small number of rows (Elmasri & Navathe, 2010). 

However, Dietrich (2001) warned that SQL queries incorporating nested sub-queries 

generally incur more overhead than SQL queries constructed without nesting.  

 Bertino et al. (2005) commented that the use of authorization views for fine-grained 

access control is potentially a naïve solution in that a great many authorization views may 

be required to implement the desired level of granularity for access control. However, 

Rizvi et al. (2004) proposed the use of parameterized authorization views as a means of 

reducing the number of authorization views required to provide fine-grained access 

control for an application. An example of the SQL code for a parameter driven 

authorization view is depicted in Figure 6. The $user-id run-time parameter shown in the 

SQL statement in Figure 6 always contains the user-id of the user executing the database 

query (Astrahan et al., 1976). Roichman and Gudes (2007) proposed the use of parameter 

driven authorization views to provide fine-grained access control for Web applications.  

 
Figure 6. Parameterized View under the Truman Model (adapted from Rizvi et al., 2004) 
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Transparent Query Rewriting 

Stonebraker and Wong (1974) were the first to describe the use of transparent 

query rewrite for fine-grained access control based upon the following principles: 

1. The user interacts with the data through a high-level query language; 

2. The database engine transparently modifies the query without the knowledge 

of the user in order to eliminate unauthorized data; 

3. The modified query statements are simplified for execution by the database. 

Efficient query rewrite depends upon effective query optimization. According to 

Hellerstein et al. (2007), query optimization is among the most complex functions 

performed in modern day commercial databases. In modern relational database 

management systems, both Oracle
®

 and Sybase
®

 employ transparent query rewrite to 

provide fine-grained access control (Kabra et al., 2006). Oracle
®

 VPD is the most 

frequently cited example of fine-grained access control using transparent query rewrite 

(Zhang, 2008).  

Under Oracle
®

 VPD, when a user query is issued, the SQL WHERE clause of the 

query is modified through the addition of predicates. According to Shi et al. (2009), 

predicates selected are based upon security policies defined as part of the VPD 

configuration. Currim et al. (2009) described this combination of policy and enforcement 

mechanism as providing “…a query that is in effect evaluated on a user’s private view of 

the data” (p. 40). Hence Oracle
® 

describes this approach to fine-grained access control as 

a virtual private database (VPD). 

According to Oracle Corporation (2010), “To implement Oracle
®

 Virtual Private 

Database, you must create a function to generate the dynamic WHERE clause, and a 
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policy to attach this function to the objects that you want to protect” (p.7-4). Although 

only available in the Enterprise Edition of the Oracle
®

 relational database management 

system, VPD can be used to protect tables, views, and synonyms. Oracle Corporation 

describes the operation of VPD as follows: 

1. When the user connects to a VPD enabled database, a log-on trigger fires to 

load a security policy into the user memory space – this is the VPD security 

context, which can be examined through a database view; 

2. The security policy (security context) can be applied to SQL SELECT, 

INSERT, UPDATE, and DELETE operations on both tables and views; 

3. When the user issues a SQL command to access an object protected by VPD, 

a predicate is appended to the WHERE clause of the SQL statement; 

4. The predicate in the WHERE clause is tested against each row in the table 

before access is granted.  

Wang et al. (2007) noted that in Oracle
®

 VPD, sensitive attribute values returned 

in the query are masked with NULL values as opposed to simply excluding the entire row 

as would be the case in a conventional row-level security deployment. According to 

Zhang et al. (2008), a query under Oracle
®

 VPD is “…rewritten and answered under the 

Truman model” (p. 19). Bertino et al. (2005) indicated that the Oracle
®

 VPD is a more 

scalable technology than authorization views due to the dynamic nature of the VPD 

technology. Although Oracle
®

 VPD is primarily considered as a row-level security 

implementation, Bertino et al. (2005) indicated that VPD could also be employed for 

fine-grained column level security.  
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Hippocratic Databases 

Agrawal et al. (2002) introduced the concept of the Hippocratic Database. Just as 

the Hippocratic Oath directs physicians to preserve the privacy of patient information, 

privacy-preserving policies stored in the Hippocratic Database provide rules that are used 

to control access to personal information. The need for privacy preservation provided by 

Hippocratic Databases is motivated by the emergence of new and increasingly more 

stringent privacy legislation in the European Union, the United States, Canada, and 

Australia (Johnson & Grandison, 2007).  

The Hippocratic Database proposed by Agrawal et al. (2002) is primarily a 

conceptual approach to improving database security. Hippocratic Databases are 

configured using conventional relational database management systems with the addition 

of a SQL-based query modification mechanism that enforces security policies stored in 

database tables. In the Hippocratic Database, it is the implementation of the security 

policy store and relational joins to policy tables that are of the most concern in terms of 

quantifying query performance costs (LeFevre et al., 2004). According to Agrawal et al., 

the conceptual elements of the Hippocratic Database may also include such components 

as a policy editor, a data retention manager, a data collection analyzer, and a query 

intrusion detector. The provision of auditing to confirm privacy enforcement is also a 

feature of the Hippocratic Database (Agrawal et al., 2007). 

LeFevre et al. (2004) evaluated the performance of two implementations of a 

Hippocratic Database using the Wisconsin benchmark. In the work reported by LeFevre 

et al., the effect on query performance was measured for five variables: privacy 

enforcement mode, database size, query filtering, enforcement model, and query 
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structure. Experiments were performed using small-scale server hardware and the DB2
®

 

relational database management system. According to LeFevre et al., acceptable but 

statistically significant performance degradation was apparent when privacy protection 

was enforced using a Hippocratic Database.  

LeFevre et al. (2004) evaluated two separate approaches to SQL coding for 

implementing Hippocratic Database systems. In the first approach, a SQL CASE  

 
Figure 7. Query using CASE Statement (adapted from LeFevre et al., 2004, p. 113) 

 

 

statement containing a sub-select was used to filter results returned. In the example 

provided in Figure 7, if the value of the privacy flag is one, then the stored value for 

phone number is returned. If the value of the privacy flag is zero, then a NULL (i.e., no 

defined value) is returned, thereby masking the true value for the phone number. In the 

second approach described by LeFevre et al., and as depicted in Figure 8, a sub-select and  

 
Figure 8. Query using Outer JOIN (adapted from LeFevre et al., 2004, p. 114) 
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an outer join to a second data table are employed rather than an inline CASE statement. 

Based upon the value of the privacy flag, the LEFT OUTER JOIN returns either the 

stored value for the phone number or a NULL value. 

In addition, LeFevre et al. evaluated two separate configurations for storing 

privacy enforcement metadata. In one configuration, the privacy metadata was stored in 

base tables by appending privacy metadata columns to the base table. In the second 

configuration described by LeFevre et al., privacy metadata was stored in separate tables 

used only for metadata. According to LeFevre et al., use of a SQL CASE statement, 

combined with storage of privacy metadata in base tables, generally provides the best 

performance – however, to satisfy complex privacy requirements, queries employing 

complex joins to external metadata tables may be more efficient.  

Johnson and Grandison (2007) described an implementation of the Hippocratic 

Database technology using a middleware component dubbed “Active Enforcement”. The 

Active Enforcement middleware is not tied to a specific database technology and is thus 

intended to work with any relational database management system. According to Johnson 

and Grandison, the Active Enforcement approach moves coding of fine-grained access 

control out of the application and into a common middleware layer. The middleware 

approach also provides the capability to integrate other security tools such as audit and 

intrusion detection capability (Agrawal et al, 2007). However, Johnson and Grandison 

did not discuss performance costs related to deploying Active Enforcement. As well, 

Roichman and Gudes (2007) noted that fine-grained access control implemented through 

a middleware layer is typically less effective than fine-grained access control 

implemented directly within the database. 
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Label Based Access Control 

LBAC is a fine-grained access control implementation available in Oracle
®

, 

DB2
®

, and SQL Server
®

 (Zhang, 2008). Corcoran et al. (2009) described LBAC in 

Oracle
®

 and DB2
®

 as “…lattice-ordered labels for implementing row-level security” (p. 

280). LBAC is a mandatory access control implementation where security labels are 

employed to restrict the access of subjects to objects (Castano et al., 1994). LBAC is 

implemented within the database, providing a means to control access to sensitive data by 

tagging data with a data label (Oracle Corporation, 2009).  

LBAC in DB2
®

 enforces the policy that only a database security administrator 

may define a security policy (Bond et al., 2006). In DB2
®,

 the role of the database 

security administrator is completely separate from the role of the database administrator 

(DBA) – this approach enforces separation of duties. With DB2
®

, security labels may be 

stored as arrays (ordered elements), sets (unordered elements), or as trees, using a 

hierarchical structure. Where security label hierarchies exist, the database enforces the 

access order. 

Rask, Rubin, and Neumann (2005) described an LBAC implementation for the 

Microsoft SQL Server
® 

relational database management system. According to Rask et al. 

(2005), fine-grained access control for SQL Server
®

 is provided at the row-level using a 

view-based mechanism, which is implemented as follows:  

1. Labels are assigned  using standard role-based security;   

2. Five dedicated system tables are provided for label management;  

3. Views join base tables with system tables containing security labels;  

4. Users may only access views – direct access to base tables is denied.  
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Fine-grained access control at the cell level is implemented in SQL Server
®

 using 

encryption. According to Rask et al., a symmetric key is defined for each unique label; 

cells containing encrypted data must be accessed through a view that includes calls to 

decryption procedures stored in the database. As described by Rask et al., data in 

encrypted cells is only available to label holders with access to decryption keys. In SQL 

Server
®

, encryption and decryption is based upon the use of certificates and keys stored 

within the database. According to Rask et al., a thoroughly tested combination of views, 

database stored procedures, and triggers should be employed to manage the data 

encryption and decryption operations in order to ensure the security of user data. 

Other Approaches to Fine-Grained Access Control 

In addition to research that aligns with the view replacement model of fine-

grained access control, a number of novel approaches to fine-grained access control have 

recently been investigated. Current research in this area falls into three broad categories: 

extensions to role-based access control, extensions to standard SQL, and use of 

encryption for fine-grained access control. However, regardless of the approach, Yu 

(2009) warns that providing fine-grained access control for modern database systems 

must also provide good performance. 

Goyal, Pandey, Sahai, and Waters (2006) described a novel use of encryption to 

enforce fine-grained access control. In the scheme described by Goyal et al., data is 

stored in an encrypted form in conjunction with unencrypted security policies specifying 

the parties permitted to decrypt the data. However, in the work described by Goyal et al., 

only the performance implications of encryption/decryption methods are considered. 
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Performance considerations related to the complete end-to-end fine-grained access 

control solution were not evaluated. 

Manjhi et al. (2006) examined the issue of query invalidation where the data 

underlying the query is encrypted and stored remotely by a database scalability service 

provider (DSSP). Under high demand conditions, Web-based applications can redirect 

read-only queries from the database directly linked to the application, to a database 

operated by the DSSP. According to Manjhi et al., a typical DSSP may store data from 

multiple customers in a single database, using data encryption to ensure that individual 

customer data remains private. In the DSSP model, updates are applied only against the 

database directly linked to the application (i.e., the master database, not the DSSP 

database). Thus, when the master database is updated, the read-only data cached by the 

DSSP must be invalidated and refreshed from the master. Of particular interest in the 

work reported by Manjhi et al. was the use of the TPC-W benchmark to estimate database 

scalability in a DSSP environment. 

Tjan (2006) described an approach to database security that combined fine-

grained access control and role-based access control. The approach described by Tjan 

required storage of both identity and access rules as part of the user data in order to 

facilitate fine-grained access control. According to Tjan, when injecting fine-grained 

access control information into the role-based access control system, the granularity of 

role-based access control was improved. At the same time, the security context payload 

associated with each row in a table could be reduced. Conflicts between the two access 

control mechanisms were resolved through rule ordering. Although simulation was used 

by Tjan to evaluate the efficiency of combining fine-grained access control and role-
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based access control, results were presented in terms of complexity, and no specific 

performance metrics were provided. 

Olson et al. (2008) described a novel approach to database fine-grained access 

control termed Reflective Database Access Control (RDBAC). The approach described 

by Olson et al. employed an approach conceptually similar to VPD in an Oracle
®

 

database. According to Olson et al., leveraging contextual information stored as part of 

end-user data is superior to the coarse-grained security hierarchy provided through 

standard SQL in relational database management systems. Olson et al. implemented a 

prototype system written in Prolog on a small-scale server, and evaluated the 

performance cost of RDBAC using query execution times as the base metric.   

Chaudhuri et al., (2007) proposed an extension to SQL GRANT and REVOKE 

statements to allow predicates to be appended to the respective statements. For example, 

a WHERE clause appended to a SQL GRANT statement could provide a suitable 

mechanism for implementing row-level security. As well, the same SQL extensions 

proposed by Chaudhuri et al. could also provide attribute filtering at the column level, 

attribute filtering at the cell level, and fine-grained authorizations for database-stored 

procedures. The SQL extensions proposed by Chaudhuri et al. are conceptually similar to 

a strategy for fine-grained access control proposed by Agrawal et al., 2005. However, 

where Agrawal et al. proposed a novel approach, the proposal by Chaudhuri et al. was 

based upon simple extensions to standard SQL. Thus, the solution proposed by 

Chaudhuri et al. could be easily applied to both new and existing applications.  

Majedi et al. (2009) proposed extending the SQL GRANT and REVOKE 

statements to allow optional references to privacy policies that implement restrictions 
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such as purpose, generalization, visibility, and retention. The proposal by Majedi et al. is 

conceptually similar to the proposal of Chaudhuri et al. (2007) although the mechanism 

to provide fine-grained access control differs significantly between the two proposals. 

While, both proposals are based upon extensions to standard SQL, the proposal by 

Majedi et al. potentially provides better granularity for privacy protection because of the 

greater flexibility provided by policy-based grammar. According to Majedi et al., social 

networks along with e-Business, e-Government, and e-Health would benefit from 

relatively simple extensions to standard SQL. However, the proposal Majedi et al. was 

restricted to a conceptual model; a prototype was not constructed and the performance 

implications of extending standard SQL to include policy-based grammar were not 

examined. 

Pun et al. (2009) proposed extensions to standard SQL at the table level to support 

privacy policies in social networking applications. Similar to the proposal of Majedi et al. 

(2009), the extensions proposed by Pun et al. were based on privacy policy restrictions. 

However, Pun et al. proposed that the restrictions be implemented directly on physical 

tables rather than through SQL GRANT and REVOKE statements. Implementation at the 

table level would allow the same mechanism to be used for both DAC and MAC security 

models. According to Pun et al., most social networking sites, for example Facebook
®

, 

Flickr
®

, and MySpace
®

, delegate responsibility for enabling privacy controls to the user 

community, often resulting in minimal or inconsistent privacy protection. The approach 

suggested by Pun et al. is intended as a simple, cost-effective mechanism to enforce 

privacy policies at the system level. Pun et al. chose not evaluate the performance 

implications of their proposed extensions to standard SQL grammar. 
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Simpson (2008) examined the requirements for flexible fine-grained security in 

social networking environments like Facebook
®

 and LinkedIn
®

. According to Simpson, 

there are three key privacy principles for social networking sites: 

1. Data owners should be responsible for identifying privacy requirements; 

2. Fine-grained security is required because the privacy requirements of data 

owners are difficult to predict in advance and may change over time; 

3. Data owners should be provided with a listing of who has accessed their data.  

According to Simpson, lack of control over data sharing in social networks should be 

addressed by enhancing user-controlled authorizations. Simpson modeled privacy 

policies for social networks using the mathematical language Z, which employs SQL like 

syntax and predicates. Qamar, Ledru, and Idani (2011) validated Simpson’s approach, to 

security modeling by demonstrating the practicality of employing the Z language as a 

generalized tool for validating security models.  However, Simpson also recognized that 

social and legal solutions, in addition to technical solutions, might be required to ensure 

adequate data privacy for social networking sites. Simpson did not address performance 

issues associated with his proposed approach to fine-grained authorizations for social 

networks.  

Slaymaker, Power, Russell, and Simpson (2008), and He and Yang (2009) 

described policy-driven frameworks useful for secure collaboration in healthcare systems. 

Slaymaker et al., and He and Yang separately explored the use of Web services (i.e., a 

middleware approach) as a mechanism for enforcing fine-grained access control. 

However, their respective proposals were largely theoretical, and did not consider the 

performance characteristics of their respective approaches to fine-grained access control. 
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Abramov, Anson, Dahan, Shoval, and Sturm (2012) proposed the use of embedded 

security policies within the database for fine-grained access control. Abramov et al. 

(2012) employed model-based security patterns implementing RBAC but including fine-

grained constraints to provide row-level security at both the organizational and 

application level. Abramov et al. described a prototype implementation of the model 

employing the Oracle
®

 database and proprietary database stored procedures typically 

used to implement Oracle
®

 VPD. 

 

Benchmarking 

 

According to Kalibera and Tuma (2006), “One of the principal approaches to 

evaluating performance is benchmarking, where the system under test executes a model 

task, called benchmark, and the observed performance is used for the evaluation” (p. 63). 

Jain (1991) in the classic text “The Art of Computer Systems Performance Analysis” 

defined benchmarking as the commonly applied process of acquiring measurements for 

use in comparing performance between systems. Jain described the benchmarking 

process as encompassing the execution of one or more workloads (also termed 

benchmarks) in order to measure system performance. Gray (1992) introduced the 

concept of a domain-specific benchmark. According to Gray, a domain-specific 

benchmark “…specifies a synthetic workload characterizing typical applications in that 

problem domain” (p. 3). As described by Jain, synthetic workloads are comprised of 

fixed data sets containing elements that are representative of real-world data. However, 

synthetic data sets may also be used as an approach to anonymize real-world data in order 

to provide privacy protection (Wilson & Rosen, 2003).  
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Figure 9 depicts the concept of a benchmark hierarchy as described by Menascé and 

Almeida (2001). According to Menascé and Almeida, a benchmark hierarchy consists of 

benchmarks of varying complexity that range from basic benchmarks to very complex, 

domain-specific benchmarks. Jain (1991) described two well-defined categories of 

domain-specific benchmarks – the TPC business focused benchmarks and the Standard 

Performance Evaluation Corporation (SPEC) scientific and engineering application 

benchmarks. These domain-specific benchmarks continue to be widely used today, 

although individual benchmarks within these two domains have evolved significantly 

since they were introduced in the 1990’s. 

 

Figure 9. Benchmark Hierarchy (adapted from Menascé and Almeida, 2001, p. 266) 

 

Formal benchmarks like TPC and SPEC are executed in tightly controlled 

environments and the results are subject to audit and verification prior to publication 

(Transaction Processing Performance Council, 1998). Carefully controlled and audited 

benchmark statistics are useful for comparing competing vendor products in the 

commercial environment (Gray, 1992). However, most commercial software license 

agreements contain clauses prohibiting publication of benchmark results that are obtained 



 

 

64 

without the explicit permission of the respective software vendor (Reed, 2006). 

Therefore, many researchers opt to use open source database software when conducting 

performance benchmarking in order to avoid potential software copyright violations or 

conflicts with software license agreements (Gonzalez, 2006).  

A number of researchers have used the TPC benchmark to quantify the 

performance costs of fine-grained access control (Kabra et al., 2006; Zhu et al., 2006; 

Zhu & Lü, 2007; He & Veeraraghavan, 2009). However, the literature also contains a 

number of recent references to the legacy Wisconsin Benchmark (LeFevre et al., 2004; 

Wang et al., 2007; Zhu et al., 2008). Somewhat surprisingly, the Wisconsin Benchmark 

continues to be used in quantifying the performance aspects of fine-grained access 

control, in spite of the fact that it is does not adequately simulate a multi-user 

environment (Bitton, DeWitt, & Turbyfill, 1983). However, as noted by Elnikety et al. 

(2009), researchers frequently take advantage of readily available benchmarks like the 

TPC (or Wisconsin) benchmarks due to the ease of implementation and the 

generalizability of results. Figure 10 depicts a conceptual framework for benchmarking 

that encompasses three major components – a workload generator, the system under test 

(SUT), and a performance monitor (Menascé, 2002). The performance monitor depicted 

in Figure 10 is employed to measure the rate of arriving and completed requests 

processed by the SUT. According to Menascé, generated workloads may be classified 

according to two characteristics – type and intensity. In terms of generated database 

workloads, the classification of workload type refers to the nature of the database 

transaction – read, insert, update, or delete. In the database environment, workload 

intensity is typically expressed in terms of transactions per second (TPS). Kalibera and 
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Tuma (2006) discussed the effect of random fluctuations on benchmark results and 

identified four issues that may cause random fluctuations affecting benchmark 

performance: 

1. System/database start-up;  

2. Loading the benchmark into memory;  

3. Measuring benchmark performance; 

4. Caching in memory of benchmark intermediate results.  

Kalibera and Tuma indicated that statistical averaging could be applied to summarize the 

results of benchmark testing. However, to employ statistical averaging, each step in the 

benchmark experiment must be executed multiple times and results collected must be 

averaged for each discrete step in the benchmark experiment (Kalibera and Tuma).  

Figure 10. Conceptual Benchmarking Framework (adapted from Menascé, 2002, p. 84) 

 



 

 

66 

Kalibera, Bulej, and Tuma (2005) defined a statistic termed an “impact factor” 

that may affect benchmark results. According to Kalibera et al. (2005), it is not possible 

to define the initial state at the beginning of each benchmark experiment, thus subsequent 

benchmark runs are influenced to some degree by the presence of a random initial state. 

To address this problem, an impact factor may be calculated as “…the ratio of the 

standard deviation of samples from different benchmark runs compared to the standard 

deviation of samples from individual benchmark runs” (Kalibera et al., 2005, p. 855). 

According to Kalibera et al., an impact factor greater than one indicates a skewed 

benchmark result due to random perturbations affecting the initial state. 

Kalibera and Tuma (2006) discussed the potential impact of memory caching on 

compilation times for open source packages and the resultant random skewing of 

benchmark results based upon package compile times. Similar issues have been noted in 

database systems. Bitton et al. (1983) provided recommendations for running database 

benchmarks in order to avoid skewing effects introduced by memory caching, including: 

1. Table size should be five times greater than the physical size of the database 

buffer cache; 

2. Response times should be computed as the mean of repeated queries; 

3. Adjacent queries should be executed against separate tables to minimize the 

likelihood that the data requested resides in the database buffer cache; 

4. Performance statistics should be based upon elapsed times to minimize 

confounding variations imposed by hardware and operating systems. 
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TPC Benchmarks 

Research investigating the performance impacts of fine-grained access control 

frequently utilizes one of the TPC benchmarks for performance evaluations. A summary 

of three TPC benchmarks commonly used in quantifying fine-grained access control 

performance costs are provided in Table 1. The TPC benchmarks listed in Table 1 were 

developed to quantify the performance of specific workload types, specifically On-line 

Transaction Processing (OLTP), Decision Support Systems (DSS), and e-Commerce. The 

TPC-C (OLTP) benchmark was designed to measure performance characteristics 

associated with the insertion of new transactions (Transaction Processing Performance 

Council, 2010). According to Chakraborty, Majumdar, and Sural (2010), the TPC-C 

benchmark can be useful in security benchmarking as the transaction types and 

probability of occurrence are formally specified for the benchmark. The TPC-H (DSS) 

benchmark was designed to simulate ad hoc business queries against large, complex 

databases like data warehouses (Transaction Processing Performance Council). The TPC-

W benchmark, intended to simulate a business-to-consumer (B2C) Web site, was 

designed to be scalable using modest sized databases and a fixed ratio of read and write 

transactions (Menascé, 2002), According to  Menascé, the TPC-W benchmark “…tests 

many of the important elements of most e-commerce applications…” (p. 87). 

   Table 1. TPC Benchmarks (Transaction Performance Processing Council, 2003) 

Benchmark Type Application Emulation Initially Published 

TPC-C OLTP On-Line Warehouse July 1992 

TPC-H Decision Support Data Warehouse February 1999 

TPC-W Web e-Commerce On-line Store December 1999 

 

According to Keeton and Patterson (2000), it is not generally feasible for 

researchers to run full-scale database benchmarks. Full-scale benchmarks in the 
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commercial environment, like the TPC benchmarks, typically required servers and 

associated hardware costing millions of dollars and involving complex configuration and 

tuning challenges (Keeton & Patterson). Instead, researchers often adapt existing 

benchmarks like the TPC benchmarks to run on small-scale servers (Elnikety et al., 

2009). Alternatively, researcher may choose to use microbenchmarks, which are 

generally easier to implement and have modest hardware and software requirements 

(Keeton & Patterson). Microbenchmarks can also be used to investigate performance of 

isolated features of a system or application (Michiels, Manolescu, & Miachon, 2008). 

Vieira and Madeira (2005) proposed the use of a metric called “security 

requirement fulfillment” (SRF) as a method for estimating the overhead imposed by 

database security using a scale ranging from zero to 100. According to Vieira and 

Madeira, the SRF metric is a composite rating for the efficiency of multiple security 

mechanisms including authentication, authorization, fine-grained access control, and 

encryption. The SRF value proposed by Vieira and Madeira is calculated by measuring 

the elapsed time of execution for a series of predefined read and update statements 

executing against the TPC-W benchmark tables. The SRF was proposed as a conceptual 

model for quantifying database performance when the database is constrained by one or 

more security mechanisms. Vieira and Madeira did not provide any experimental data to 

validate the SRF model.  

Zhan et al. (2006) implemented an approach to fine-grained access control in the 

PostgreSQL 7.3 open source database. Performance of the approach chosen by Zhan et al. 

was evaluated using the TPC-C database benchmark. Results reported were based upon 

elapsed time of execution with a 90% confidence level. Zhan et al. reported 20-30% 
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degradation in performance using their novel fine-grained access control mechanism in 

the PostgreSQL 7.3 relational database management system. 

Kabra et al. (2006) evaluated the performance aspects of a novel approach to 

query simplification on a Microsoft SQL Server
®

 database using the TPC-H benchmark. 

Results reported were based upon elapsed time of execution. Kabra et al. reported that a 

10-15% performance penalty was associated with implementation of their query 

simplification mechanism. However, Kabra et al., also found that the overhead imposed 

by query simplification was offset by significant improvements in query throughput. 

According to Kabra et al., redundancy removal is a practical approach to improving the 

efficiency of fine-grained access control implemented using a view replacement model. 

Zhu and Lü (2007) described the use of security policies implemented as SQL 

statements to provide fine-grained access control in a relational database management 

system. The approach described by Zhu and Lü extends SQL capability in a manner that 

conceptually parallels the implementation of the Oracle
®

 VPD technology by using 

database stored procedures and constraints to filter query results returned to the user. The 

goal of the work described by Zhu and Lü was to define a flexible, efficient framework 

for administering authorizations. Zhu and Lü evaluated the performance of their model 

using the TPC-W database benchmark executed against the DM5 relational database 

management system. Zhu and Lü reported a 10-15% performance penalty using their 

novel approach to fine-grained access control.  

TPC-W Benchmark 

The TPC-W benchmark suite has been used extensively for performance and 

security benchmarking (Vieira & Madeira, 2005; Kabra et al., 2006; Zhu & Lü, 2007; 
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Elnikety et al., 2009). As well, the TPC-W benchmark is routinely employed as a 

capacity-planning tool for e-commerce Web sites (Mi, Casale, Cherkasova, & Smirni, 

2009). According to Menascé and Almeida (2001), the TPC-W benchmark is particularly 

useful in that it measures the performance of the whole system including CPU, network, 

I/O subsystem, operating system, and database. As well, source code for a number of 

TPC-W workload generators is freely available. For example, the University of 

Wisconsin distributes a Java-based TPC-W workload generator that is particularly useful 

to researchers (PHARM, n.d.). 

The TPC-W benchmark was introduced in December 1999 and was designed to 

emulate an on-line bookseller (Transaction Processing Performance Council, 2003). The 

TPC-W benchmark measures the throughput of database transactions generated by a 

series of emulated web browsers. The metric termed “Web Interactions per Second” 

(WIPS) is used to report results for the TPC-W benchmark. According to the Transaction 

Processing Performance Council, the size of the database containing the on-line store is 

scaled based upon the number of rows in the ITEM table, which can range in size from 

1,000 to 10,000,000 rows. The TPC-W benchmark is a popular choice for benchmark 

testing using small-scale systems given the simplicity of the benchmark structure and the 

small size of the base tables (Zhu & Lü, 2007; Elnikety et al., 2009; Mi et al., 2009).  

According to Menascé (2002), scalability in the TPC-W benchmark is maintained 

by adhering to a fixed ratio or “scale factor” between the number of Web clients, termed 

“Emulated Browser Sessions” or EBS, and the cardinality of the ITEM table. The 

Transaction Processing Performance Council (2003) specifies that a minimum of 2,880 

rows in the CUTOMER table must be configured for each EBS. Table 2 lists table 
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cardinalities for the TPC-W benchmark. According to the TPC-W benchmark guidelines 

published by the Transaction Processing Performance Council (2003), the cardinality of 

the ITEM table may range from 1,000 rows to 10,000,000 rows. The default cardinality 

for the ITEM table is 10,000 rows, which results in a database size of approximately 2.8 

GB. However, Keeton and Patterson (2000) recommended that tables used for 

Table 2. TPC-W Cardinalities (Transaction Performance Processing Council, 2003) 

Table Name Cardinality Row Length Table Size (MB) 

CUSTOMER 2880 * (number of EBS) 760 bytes 258 MB 

COUNTRY 92   70 bytes 0.006 MB 

ADDRESS 2 * CUSTOMER 154 bytes 866 MB 

ORDERS .9 * CUSTOMER 220 bytes 557 MB 

ORDER_LINE 3 * ORDERS 132 bytes 1002 MB 

AUTHOR .25 * ITEM 630 bytes 1.5 MB 

CC_XACTS 1 * ORDERS   80 bytes 202 MB 

ITEM 1K – 10M 860 bytes 8.3 MB 

 

benchmarking should be at least four times the size of the database buffer cache and 

Bitton et al. (1983) provided a similar recommendation, namely that tables should be 

sized approximately five times larger than the database buffer cache. According to both 

Keeton and Patterson, and Bitton et al., these recommendations should be followed to 

ensure that SQL benchmark queries generate disk I/O requests, rather than retrieving data 

already resident in the database buffer cache. Therefore, the number of rows in the TPC-

W ITEM table generally needs to be set higher than the default value of 10,000 rows in 

order to avoid the skewing effect sometimes evident when benchmark data is retrieved 

partially from the database buffer cache and partially from slower disk storage.  

Elnikety et al. (2009) described the composition of the workload mixes in the TPC-W 

benchmark as follows: 

 Browsing mix – 5% update transactions, 95% read-only transactions; 
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 Shopping mix – 20% update transactions, 80% read-only transactions; 

 Ordering mix – 50% update transactions, 50% read-only transactions.  

According to Elnikety et al., the shopping mix is the primary benchmark workload. The 

experimental design employed by Elnikety et al. demonstrated that the TPC-W workload 

mix scales linearly on small-scale database servers, due in part to the preponderance of 

read-only transactions in the combined workload mixes. Figure 11 depicts the logical 

 
Figure 11. TPC-W Logical Data Model (adapted from Menascé, 2002, p. 85) 
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data model for the eight tables that comprise the database component of the TPC-W 

benchmark. The cardinality of ADDRESS, ODERS, ORDER_LINE, and CC_XACT are 

determined as a fixed ratio to the cardinality of the CUSTOMER table. The COUNTRY 

table contains a fixed number of rows; the AUTHOR table must be populated as fixed 

multiple (25%) of the size of the ITEM table (Transaction Processing Performance 

Council, 2003). 

 

Performance Models 

 

Jain (1991) stated that, “Queuing theory is the key analytical modeling technique 

used for computer systems performance analysis” (p. 505). According to Jain, simple 

systems, such as those defined in the TPC-W benchmark specification, can be 

represented using a network of several queues. Thus, queuing theory provides the 

theoretical foundation underlying benchmarks such as the TPC-W benchmark. 

Queuing network models or systems are classified as open, mixed, or closed. In a 

closed queuing system, arrival of new jobs is constrained by the number of jobs currently 

being executed, whereas in an open system, arrival of new jobs is independent of the 

number of executing jobs (Schroeder, Wierman, & Harchol-Balter (2006). A mixed 

queuing network model combines elements of both open and closed system models. 

However, Schroeder et al. cautioned that open and closed systems could produce 

significantly different results using the identical benchmark executing against the same 

database. Thus, it is attendant upon researchers to both understand, and clearly describe 

the queuing model being employed when reporting experimental results derived from 

benchmarking. 



 

 

74 

The TPC-W database benchmark conforms to the closed network queuing model 

(Schroeder et al., 2006). According to Schroeder et al. (2006), the TPC-W benchmark 

specifies that a fixed number of database connections must be reserved for each Web 

client. Under the closed network queuing model, new connection requests are queued if 

free database connections are not available.  

Elnikety et al. (2009) described an approach for predicting database workload 

scalability using a closed queuing network model. The model proposed by Elnikety et al. 

utilized data collected from the TPC-W benchmark. According to Menascé (2002), the 

TPC-W benchmark is well suited for this task as it can be used to measure both 

throughput and scalability. Zhu et al. (2006) and Zhu and Lü (2007) effectively employed 

the TPC-W benchmark to evaluate the performance impacts of fine-grained access 

control implementations in relational database management systems by evaluating 

changes in throughput and scalability in the presence of fine-grained access control. 

Jin, Tan, Han, and Liu (2007) cautioned that the use of performance models such 

as queuing models and Marchov chain models are best suited for estimating the 

performance of new systems under design, and are potentially unsuited for modeling 

systems already in production. Specifically, Jin et al. (2007) stated that extrapolating 

performance of legacy relational database management systems, where database activity 

is projected to increase substantially, requires detailed knowledge of the application and 

the operating environment. According to Jin et al., “To make use of them [analytical 

models], one needs to understand and quantify the system’s actual performance 

characteristics and operating environment” (p. 540). 
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The Contribution This Study Will Make to the Field 

There is relatively little data in the literature quantifying the performance of 

database fine-grained access control (Zhang, 2008). Yet, in terms of real-world 

applications, there is a genuine and increasing need for the use of database fine-grained 

access control, particularly for Web-based applications (Zhu et al., 2008). This study was 

undertaken to address the question “Which approach to providing database fine-grained 

access control offers better performance?” As well, the study also examined the issue of 

scalability for database fine-grained access control. Four fine-grained access control 

mechanisms for relational database systems were evaluated using security benchmarking 

– authorization views, transparent query rewrite, a Hippocratic Database, and label-based 

access control. Using metrics derived from security benchmarking, a generic model was 

developed. The model can be used to understand the performance and scalability impacts 

of the four selected fine-grained access control mechanisms. The model provides a 

research-based tool that should help to dispel concerns about the performance and 

scalability of fine-grained access control for relational database management systems.  

 

Summary 

Roichman and Gudes (2007) and Zhu and Lü (2007) identified the integration of 

database systems with Internet technology as driving the requirement for database fine-

grained access control in order to ensure suitable data security. Johnson and Grandison 

(2007) identified fine-grained access as a suitable mechanism to address legislated 

requirements for data privacy and to cope with the complexities of cross-jurisdictional 

data privacy requirements. Yet, a standard approach to implementing fine-grained access 
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control for relational database management systems remains elusive. Wang et al. (2007) 

cited the technical difficulties as the most critical factor limiting the widespread 

deployment of fine-grained access control in relational database management systems. 

Further, Bertino and Sandhu (2005) noted that all of the current approaches to 

implementing fine-grained access control in relational database management systems are 

problematic, and new solutions are potentially required. Specifically, Bertino and Sandhu 

noted that most of the current approaches to fine-grained access control based upon view 

replacement and thus can return incorrect results or exhibit decidability problems. 

Nevertheless, commercial database products that support fine-grained access 

control are available from IBM
®

, Oracle
®

, Sybase
®

 and Microsoft
®

 (Kabra et al., 2006; 

Zhang, 2008). In addition, generic approaches to database fine-grained access control 

such as Hippocratic Databases and authorization views offer feasible and pragmatic 

alternatives to commercial products (Bertino et al., 2005). Agrawal et al. (2005) 

identified simplicity and ease of maintenance as two of the most important factors in 

selecting a fine-grained access control technology for relational database management 

systems. However, performance is also an important criterion in selecting an appropriate 

fine-grained access control mechanism, although performance is often treated as a 

secondary consideration (Kabra et al., 2006).  

The approach to database fine-grained access control described by Abramov et al. 

(2012) reflects a trend evident in recent research related to the use of fine-grained access 

control. Recent research in this area tends to focus upon the use of access control policies 

as a general mechanism for specification of fine-grained security, in both software 

systems and relational database management systems, without particular concern for the 
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efficiency of the mechanism. This trend towards generalization of fine-grained access 

control can be seen, for example, in the works of Krishnamurthy et al. (2010), Moore 

(2011), Abramov et al. (2012), and Wang et al. (2012). 

At present, there are no known references in the literature describing comparative 

performance data for database fine-grained access control. In practice, security 

benchmarking can be employed for individual implementations of database fine-grained 

access control to provide comparative performance data for queries both with and without 

fine-grained access control. However, benchmarking is a complex and time-consuming 

process and may require expert knowledge for correct interpretation (Keeton & Paterson, 

2000; Gunther, 2004). Analytical models, based upon data collected from benchmarking, 

provide a means to predict database performance and scalability using small-scale servers 

readily available to researchers and software developers. 
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Chapter 3 

Methodology 

 

 

Approach 

The purpose of the author’s study was to quantify the relationship between the use 

of database fine-grained access control and the resultant performance impact on database 

transaction throughput. Experiment is a research methodology employed to investigate 

causal relationships using controlled tests (Dawson, 2000). The cause-and-effect 

relationship between fine-grained access control and database performance was 

demonstrated through experiments conducted in the laboratory. Sekaran (2003) suggested 

that cause-and-effect relationships are best established through laboratory experiments. 

The study conducted confirmed a statistically significant cause-and-effect relationship 

between degradation in query performance and the use of fine-grained access control in a 

relational database management system.  

Benchmarking was employed as the primary tool to quantify database 

performance at the transactional level. Benchmarking provides a means to measure 

efficiencies while simultaneously executing workloads representative of real-world 

conditions (Santos & Bernardino, 2009). While primarily viewed as a tool for comparing 

the relative performance of different server hardware, benchmarking is also an effective 
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tool for comparing the performance of similar or competing software products (Gray, 

1992). Moreover, benchmarking provides a practical approach to compare database 

security mechanisms between different database products (Vieira & Madeira, 2005). 

The goal of the author’s study was to develop and validate a generic performance 

model for Fine-grained Access Control Evaluation (FACE). The FACE model is 

considered generic in the sense that it is not restricted to any specific database product or 

server architecture (Melnik et al., 2003). The FACE model provides a high-level, 

architecture independent viewpoint that quantifies the performance costs and scalability 

of database fine-grained access control. Metrics underlying the FACE model were 

derived from security performance benchmarking. 

Benchmarking as an approach to quantifying performance costs of database fine-

grained access control has been described in the literature in considerable detail by 

LeFevre et al., 2004,  Kabra et al., 2006, Wang et al., 2007, Zhu et al., 2008, and Shi et 

al., (2009). Using the Wisconsin Benchmark and tables of one million, five million, 10 

million, and 15 million rows, LeFevre et al. quantified query performance based upon 

elapsed time of execution for queries both with and without fine-grained access control. 

Kabra et al. evaluated the performance of selected TPC-H benchmark queries; those 

queries were re-written to remove redundancies introduced by the addition of fine-

grained access control predicates. Kabra et al. quantified the performance of modified 

and unmodified TPC-H queries by measuring query execution time. Wang et al. 

implemented a fine-grained access control scheme using SQL CASE statements against 

tables from the Wisconsin benchmark; performance was quantified by measuring query 

execution time for modified and unmodified queries against a table containing one 
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hundred thousand rows. Zhu et al. employed SQL CASE statements and the SQL 

MINUS operator to modify SQL queries in order to mask data and to implement security 

polices termed “enforcing rules”. Zhu et al. quantified the performance of unmodified 

queries, row-level access control enforcement, and cell-level enforcement through 

comparing the respective query execution times against a table in the Wisconsin 

benchmark containing one hundred thousand rows. In an approach conceptually similar 

to Zhu et al., Shi et al. used a combination of authorization views, SQL CASE statements, 

nullification, and the SQL MINUS operator to enforce row and cell-level access control. 

Shi et al. quantified query performance using elapsed time of execution against a table 

containing one hundred thousand rows derived from the Wisconsin benchmark.  

According to DeWitt (1992) in his seminal paper describing the history of the 

Wisconsin Benchmark, the elapsed time of execution is the best metric for measuring 

database transactional throughput. Dewitt also asserted that elapsed time of execution can 

be measured consistently between databases of different architectures, using disparate 

server hardware, and different operating systems. Modern database benchmarks continue 

to be based upon this approach to benchmarking. The FACE model quantifies the 

performance and scalability of four commonly employed fine-grained access control 

mechanisms – authorization views, the Hippocratic database, LBAC, and transparent 

query rewrite. The FACE model was derived using the following approach: 

 Evaluation of multiple fine-grained access control mechanisms using the same 

controlled hardware and software environment; 

 Evaluation of multiple fine-grained access control mechanisms using both 

synthetic and real-world data; 



 

 

81 

 Evaluation of fine-grained access control mechanisms using complex 

transactions based upon queries that differ by an order of magnitude in 

complexity (as determined by query cost analysis). 

The FACE model provides a simple visual model to represent the performance of 

multiple fine-grained access control mechanisms evaluated in the same controlled 

database environment. The objective in formulating the FACE model was to provide an 

answer to the question “Which fine-grained access control mechanism offers the better 

performance and scalability?” In many cases, database professionals and system 

architects have limited control or influence over the specific database technology used 

when developing a new application (Rosenthal, Sciore, and Doshi, 1999). However, they 

often do have a significant degree of control over database security decisions, including 

whether or not to implement database fine-grained access control. 

 

Data 

 

Two data sets were utilized in the derivation of the FACE model. One of the data 

sets contained synthetic data as defined by the Transaction Processing Performance 

Council (2003) for the TPC-W benchmark. The other data set contained real-world data 

extracted from a large wildlife habitat capability and suitability model. Each data set was 

evaluated independently, both with and without the use of database fine-grained access 

control. 

The TPC-W benchmark data was used as the basis for formulating the FACE 

model. Elnikety et al. (2009) demonstrated that the TPC-W benchmark is particularly 

well suited for use in evaluating database performance and scalability on small-scale 

database servers. As well, Mi et al. (2009) described the TPC-W as a credible benchmark 
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that is routinely used for evaluating both middle-tier and database performance. It should 

be noted however that the TPC-W benchmark was declared obsolete as a commercial 

benchmark as of April 28, 2005 (Transaction Processing Performance Council, n.d.). 

Nevertheless, the TPC-W benchmark continues to be widely used in academic research. 

The literature contains numerous references to the TPC-W benchmark methodology as 

well as a significant number of references citing database performance metrics derived 

from benchmarking using the TPC-W benchmark (Mi et al., 2009). 

The wildlife habitat capability and suitability data set was used to validate the 

FACE model using a series of custom benchmark queries; a sample of these queries is 

provided in Appendix F. Database performance and scalability were evaluated using this 

data set both with and without fine-grained access control. A Web application was 

developed in 2002 to access the wildlife habitat capability and suitability data as part of a 

project to make summary wildlife capability and suitability data accessible to the public. 

The Web application included a number of complex SQL queries that incorporated joins 

over the two largest tables – the capability table and the suitability table. The SQL code 

for these complex queries was extracted from the application code and was adapted to 

provide representative benchmarks. Given the processing intensive nature of these 

queries, they were considered good candidates for use in evaluating the performance 

overhead imposed by fine-grained access control.  

The wildlife habitat capability and suitability data set contains two large tables, 

each containing 32 million rows, and a small number of related support tables. A logical 

data model for the wildlife habitat capability and suitability application data is provided 

in Figure 12. In March 2009, the wildlife habitat capability and suitability Web 
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application was taken offline. The application was infrequently used and no further 

funding was available for application maintenance. Thus, the Web application is no 

longer available to the public. 

 
Figure 12. Habitat Capability-Suitability Logical Data Model 

  

The TPC-W database tables, and the wildlife habitat capability and suitability 

database tables were modified to add three additional columns that were used as the basis 
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of privacy enforcement in a Hippocratic Database configuration following the approach 

described by LeFevre et al. (2004). As well, a column containing a security label was 

added to each table to support evaluation of fine-grained access control mechanisms 

using authorization views, transparent query rewrite, and LBAC. Similar modifications 

were made to the structure of the TPC-W benchmark tables. LeFevre et al. evaluated the 

impact of modifying database tables to include privacy enforcement data and concluded 

that the impact on performance was minimal when the number of stored choices is kept 

to a minimum.  

 

Experimental Design 

The FACE model provides a simple means to quantify the performance costs of 

fine-grained access control. Past research has identified a number of variables that have 

the potential to constrain the performance of relational database management systems 

(DeWitt, 1992; Keeton & Patterson, 2000; LeFevre et al., 2004; Avritzerv& Weyuker, 

2004; Kabra et al., 2006; Chaudhuri, 2009; Zhang et al., 2009).  In the author’s study, the 

effect on database performance of three variables was measured through experimentation 

for the TPC-W data set. The three variables are described in Table 3. However, only the 

first two variables, fine-grained access control and query complexity were evaluated for 

the wildlife data set. The wildlife application, from which sample SELECT benchmark 

queries were extracted, contained no SQL INSERT or UPDATE statements.  

Table 3. Experiment Variables and Levels 

Symbol Variable Level -1 Level +1 

A Fine-grained Access Control Not Enabled Enabled 

B Query Complexity Simple Complex 

C SQL Operation Select Update 
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The procedure for measuring experimental effects was as follows: 

1. Independent Variable 

 The experimental design evaluated the effect of fine-grained access control on 

database performance;  

 The independent variable was evaluated at two levels – not enabled (-1), and 

enabled (+1). 

2. Dependent Variables 

 The experimental design evaluated the effect of two dependent variables, 

query complexity, and SQL operation, on the independent variable; 

 Each dependent variable had two levels, represented by (-1) and (+1); 

 Query complexity was estimated based upon cost analysis – simple queries 

were assigned a value of -1 and complex queries were assigned a value of +1;  

 Two SQL operations were evaluated – SELECT operations were assigned a 

value of -1 and UPDATE operations were assigned a value of +1. 

Zhu and Lü (2007) evaluated their fine-grained access control model using a 

subset of the TPC-W benchmark. Specifically, Zhu and Lü employed queries against the 

ORDER and ORDER_LINE tables to evaluate performance under load. In the 

experimental design employed by the author, a subset of the TPC-W benchmark, 

consisting of two SELECT queries and two UPDATE queries was used to quantify 

performance.  

Table 4 lists the queries employed in the evaluation. Representative queries were 

selected based on estimated query cost and the desire to avoid table access conflicts. 
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Table 4. Measures of complexity for selected TPC-W queries 

Query Name Estimated Cost SQL Operation Query Complexity 

getName 16.62 SELECT Simple 

getBook 33.23 SELECT Complex 

resetCartTime 6.65 UPDATE Simple 

refreshCartUpdate 33.30 UPDATE Complex 

 

Both LeFevre et al. (2004) and Kabra et al. (2006) warned that implementation of 

fine-grained access control in relational database management systems typically results in 

increased complexity of SQL queries. Kabra et al. and Chaudhuri (2009) documented that 

increased complexity of SQL queries leads to increased query optimization times and 

longer elapsed times for query execution. Thus, given the known relationship between 

query complexity and query performance, a metric representing query complexity was 

one of the independent variables employed in the author’s experimental design. 

Most of the current literature describes the performance implications of fine-

grained access control only as they relate to read-only transactions. Wang et al. (2007) 

stated that fine-grained authorizations are more likely to be applied to read-only (i.e., 

SQL SELECT) operations than to update or delete operations. Kocatürk and Gündem 

(2008) justified a focus on read-only operations on the basis that the majority of users 

accessing database tables are limited to read-only access. In addition, Corcoran et al. 

(2009) observed that update operations that occur simultaneously with the execution of 

read-only queries could inhibit effective query optimization. Zhang et al. (2009) noted 

that in a mixed transaction environment (i.e., including both read and insert/delete 

operations); periodic resampling of table cardinality is suggested if effective query 

optimization is to be achieved. To address the issues raised by Kocatürk and Gündem, 

and Corcoran et al., the experimental design employed by the author evaluated read and 
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update operations separately. To address the query optimization issue raised by Zhang et 

al., table cardinality remained fixed throughout the benchmarking process. 

A 2
k
 factorial design can be used to measure the effect of k variables, where each 

variable has two levels (Jain, 1991). A 2
k
r factorial design extends the 2

k
 factorial design 

by including r replications of each experiment to allow experimental error to be 

calculated. A 2
k
r factorial design was used to structure the experiments conducted by the 

author. Table 3 describes the variables that were measured in the experiments – each 

variable was evaluated at two levels. According to Jain, “The variation due to a factor 

[variable] must be compared with that due to errors before making a decision about its 

effect” (p. 278). 

 

Specific Procedures Employed 

The author evaluated four different implementation models of database fine-grained 

access control against three different databases, containing an ITEM table with one 

hundred thousand, one million, and 10 million rows respectively. According to Menascé 

(2002), scalability in the TPC-W benchmark can be established by varying the cardinality 

of the ITEM table. The implementation models evaluated by the author included: 

1. Simple parameterized authorization views based on user-id as described by Rizvi 

et al. (2004) and as shown in the SQL code listing in Appendix A; 

2. A prototype Hippocratic Database based upon the methodology described by 

LeFevre et al. (2004) and as shown in the SQL code listing in Appendix B; 

3. An implementation of LBAC similar to the approach described by Rask et al. 

(2005) for SQL Server
®

 and as shown in the SQL code listing in Appendix C; 
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4. An implementation of transparent query rewrite conceptually similar to Oracle
®

 

VPD. Transparent query rewrite was implemented under PostgreSQL using views 

and a database stored procedure to fetch the user security context from memory. 

SQL code for the views is provided in Appendix D. 

While the implementation models chosen for evaluation do not embody an 

exhaustive list of fine-grained access control mechanisms, they are considered 

representative of past research in the field (Zhang, 2008). In addition, the implementation 

models that were chosen all have a well-documented theoretical foundation (Bertino et 

al., 2005). Each of the chosen implementations of fine-grained access control was 

evaluated using the PostgreSQL open source database. PostgreSQL is a popular open 

source relational database management system that runs on multiple platforms including 

Windows, Linux, and UNIX. PostgreSQL is the successor to the INGRES
®

 database 

system, first used to demonstrate fine-grained access control through query rewriting 

(Stonebraker & Rowe, 1986).  

The experimental set-up as depicted in Figure 13 consisted of a workload 

generator and a dedicated database server. The workload generator and database server 

were interconnected using a dedicated Gigabit network isolated from Internet traffic. 

Query performance was measured based upon the elapsed time to completion for each 

transaction. The author’s experimental set-up was similar to experimental hardware and 

software configurations described by Zhu et al. (2006), Elnikety et al. (2009), and Mi et 

al. (2009). 
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Figure 13. Physical Framework for Benchmarking 

 

 

Generalizability was an important consideration in developing the FACE model. 

The model must be theoretically sound but must also be relevant in providing a basis to 

extrapolate the performance and scalability of real-world database implementations. 

According to Sekaran (2003), experimental results that can be verified through field-

testing are useful in establishing generalizability. Employing an open source database and 

the TPC-W benchmark in the development of the FACE model was intended to ensure 

that the model is generalizable and that other researchers can verify published results. 

Table 5. Benchmark Test Bed Environment 

Resource Client  Database Server 

OS Windows 2008 R2  CentOS 5.6 

Application Jmeter  PostgreSQL 9.0.4 

CPU 2 X 2.8 GHz AMD  1 X 2.13 GHz AMD 

Memory 8 GB RAM  2 GB RAM 

Disk 320 GB SATA  80 GB IDE/160 GB SATA 

Network 1 Gbit  1 Gbit 

 

Table 5 provides a summary of the hardware and software environment that 

comprised the benchmark test bed employed in the experimentation portion of the 
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author’s study. The Apache Jmeter open source test tool was used to manage the TPC-W 

queries and to record query execution times. According to the Apache Software 

Foundation (n.d.), the Jmeter tool provides the capability to simulate multiple user access 

by allowing multiple concurrent threads of execution to be managed through Jmeter. 

Keeton and Patterson (2000) noted that simulation using small-scale processors is 

a pragmatic approach to modeling performance of large-scale systems. According to 

Keeton and Patterson, large-scale systems may be comprised of multiple large 

processors, many gigabytes of physical memory, and hundreds of disk storage devices. 

Thus, only researchers with commercial ties are likely to undertake performance 

evaluations using large-scale systems (Keeton & Patterson).  

 

 
Figure 14. TPC-W Benchmark Scalability on a Small-Scale Processor 

 

Menascé (2002) described the TPC-W benchmark as a scalable benchmark. 

Scalability in the TPC-W benchmark may be demonstrated by varying either the 

cardinality of the ITEM table, the number of EBS’s, or both (Menascé). Figure 14 depicts 
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TPC-W benchmark results obtained by the author using the getBestSellers query 

evaluated against the ITEM table containing one hundred thousand, one million, and 10 

million rows respectively. As well, the number of EBSs was incremented from three 

hundred to 6000. Figure 14 depicts classical canonical throughput characteristics 

(throughput versus load) for each of the three respective workloads (Gunther, 2004).  

Phase 1 – Baseline Performance Evaluation using the TPC-W Benchmark  

In the first phase of the author’s experimentation, the test bed environment was 

configured and baseline results were collected. Specific procedures undertaken included:  

1. Configuring the servers and database software; 

2. Populating three shared PostgreSQL databases with the TPC-W benchmark data; 

Modifying the TPC-W base tables to include additional columns to be used in 

the implementation of fine-grained access control; 

3. Creating four additional database schemas per database, one for each 

implementation of fine-grained access control to be evaluated; access control 

mechanisms implemented within these schemas utilized data from the common 

(public) database schema through the use of views;  

4. Configuring the Jmeter test tool to launch and monitor TPC-W workloads; 

5. Executing three trials of each TPC-W workload without fine-grained access 

control (i.e., the null case) to validate the test bed configuration. The database 

was restarted before each trial to flush both the database and operating system 

buffer caches. According to Smith (2007), the PostgreSQL database has a limited 

internal buffer cache and thus relies heavily upon the much larger operating 

system file cache as an extension to the internal database buffer cache. 
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Phase 2 – Performance Evaluation using the TPC-W Benchmark 

In the second phase of the author’s experimental work, three experiments were 

conducted to evaluate the performance of the selected fine-grained access control 

mechanisms against three separate databases, scaled against one hundred thousand items, 

one million items, and 10 million items respectively. Within each of the three 

experiments, five separate workloads were evaluated, ranging from 800 to 4000 EBS’s. 

Each experiment employed a 2
k
r factorial design using the TPC-W benchmark data to 

evaluate performance. Specific procedures undertaken included: 

1. Three repetitions for each of the five TPC-W workloads executed against the 

authorization view schema; 

2. Three repetitions for each of the five TPC-W workloads executed against the 

Hippocratic Database schema; 

3. Three repetitions for each of the five TPC-W workloads against the LBAC 

schema; 

4. Three repetitions for each of the five TPC-W workloads executed against the 

transparent query rewrite schema.  

Phase 3 – Performance Evaluation of a Real-World Data Set 

In the third phase of the author’s experimental work, one additional experiment 

was conducted to evaluate the performance of the selected fine-grained access control 

mechanisms against the wildlife data set, which resided in a separate PostgreSQL 

database. Five separate workloads were evaluated, ranging from 800 to 4000 EBS’s. The 

experiment employed a 2
k
r factorial design using wildlife capability and suitability data 

to evaluate performance. Specific procedures undertaken included: 
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1. Populating a PostgreSQL databases with wildlife capability and suitability data;  

2. Modifying the capability and suitability base tables to include additional columns 

to be used in the implementation of fine-grained access control; 

3. Creating four additional database schemas, one for each implementation of fine-

grained access control that was evaluated; access control mechanisms 

implemented within separate schemas accessed data from a shared schema;  

4. Identifying SQL queries to be employed as workloads for evaluating each type of 

fine-grained access control against the wildlife data; the queries were derived 

from the legacy Web application used by the public to query wildlife data; 

5. Configuring the Jmeter test tool to launch and monitor wildlife workloads; 

6. Three repetitions for each of the five wildlife workloads executed against the 

shared schema containing the wildlife data base tables; 

7. Three repetitions for each of the five wildlife workloads executed against the 

authorization view schema; 

8. Three repetitions for each of the five wildlife workloads executed against the 

Hippocratic database schema; 

9. Three repetitions for each of the five wildlife workloads executed against the 

LBAC schema; 

10. Three repetitions for each of the five wildlife workloads executed against the 

transparent query rewrite schema.  

 

Formats for Presenting Results 

The results for each of the author’s experiments are presented using sign tables. 

Table 6 provides an example of a sign table for a 2
k
r experimental design employing 
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three repetitions (i.e., r=3). Jain (1991) describes the elements of a sign table for a 2
k
r 

experimental design with three replications as follows: 

 the columns A, B, and C represent variables in the experiment (i.e., k=3); 

 each variable has two levels, indicated by the values 1 or -1; 

 columns AB, AC, BC, and ABC represent the interaction between variables;   

 data collected for each repetition is recorded in the columns y1, y2,y3;  

 the column Mean ӯ is the mean value of  y1, y2,y3 for the respective  row; 

 the product of the column values for a row and the mean value for the row 

(i.e., Mean ӯ) and are summed to derive the value “Total”; 

 columns labeled “Total/8” contains the column totals divided by the number 

of rows in the table; these values are represented by q0, qA, qB,…qABC.  

Table 6. Sign Table for a 2
3
3 Experimental Design (Adapted from Jain, 1991). 

 
 

According to Jain (1991), the results from a sign table for a 2
3
r experimental 

design with three repetitions (r=3) can be analyzed using the following calculations: 

Equation 1.1  SSY = x1
2
 + y2

2
 + y3

2
…+yx

2 
(Sum of squares of the observations) 

Equation 1.2  SS0 = 2
k
rq0

2     
(Sum of squares of the mean) 

Equation 1.3  SST = SSY – SS0   (Sum of squares total) 

The variables and their interactions in a 2
3
3 experimental design are represented by A, B, 
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C, AB, AC, BC, and ABC. The respective sums of squares are SSA, SSB, SSC, SSAB, 

SSAC, SSBC, and SSABC. The sum of squares for variable A is calculated as: 

Equation 1.4   SSA = 2
k
rqA

2
   (Sum of squares for A)

 

The percentage of variation attributed to variable A is calculated as: 

Equation 1.5   SSA / SST * 100%  (Percentage of variation due to A)
 

The sum of squares errors (SSE) can be calculated as:
 

Equation 1.6  SSE = SSY – 2
3
r(q0

2
+qA

2
+qB

2
+qC

2
+q

2
AB+q

2
AC+q

2
BC+q

2
ABC) 

Equation 1.7  df = 2
3
(r-1)   (degrees of freedom for SSE) 

Equation 1.8  
)1(23 


r

SSE
se   (standard deviation of errors) 

Equation 1.9  
r

se
sqi

32
    (standard deviation of effects) 

Using the standard deviation of effects (sqi = 0.51) from Equation 1.9 (based upon the 

sample data in Table 6) and the t-value from a standard t-table for 16 degrees of freedom 

and 90% confidence (i.e., t(.10,16)=1.337), confidence intervals may be calculated as:  

Equation 1.10  337.1*51.0iq   (confidence intervals for qi) 

The value qi represents the confidence intervals for the effects as measured for a specific 

sign table. Using qi the confidence interval for the interaction between each of the 

experimental variables, A, B, C, AB, AC, BC, and ABC can be determined. For example, 

using the sample data in Table 6, the confidence intervals for qA = (7.94, 9.31). 

The most effective and recognized method to represent performance data is 

through derivation of a single numeric value or metric. Dewitt (1992) cautioned that 

performance data collected as part of academic research may be largely ignored unless it 

can be represented simply. The FACE model is presented as a simple series of line graphs 
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to allow easy interpretation. The novel aspect of the FACE model is that four different 

implementations of fine-grained access control are presented in the same graph based 

upon comparable measurements from a common test bed platform. Elnikety et al. (2009) 

used line graphs to depict performance and scalability separately – performance was 

depicted as a measure of transaction throughput and scalability was as a measure of 

transaction response time. The FACE model employs separate line graphs to depict 

performance and scalability following the methodology of Elnikety et al. 

 

Resource Requirements 

The resources required to conduct the author’s study were modest. A single small-

scale server was dedicated to hosting a PostgreSQL database. All of the application 

software required, CentOS Linux, the PostgreSQL database, and the Apache Jmeter test 

tool are freely available as open source software to any researcher. Response time metrics 

were collected using the Jmeter open source tool from the Apache Software Foundation. 

Experimental data was analyzed in Microsoft Excel following the sign table methodology 

for calculating multi-variable effects as described by Jain (1991). The TPC-W benchmark 

data was generated using the PHARM (n.d.) distribution from the University of 

Wisconsin. The British Columbia Ministry of Environment provided the real-world 

wildlife habitat capability and suitability data used in this project. While the wildlife 

habitat capability and suitability data are in the public domain, only response times for 

queries against the wildlife habitat capability and suitability data are presented for use in 

validating the FACE model. The wildlife habitat capability and suitability data was 
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formerly deployed in a publically accessible Web-based application that did not include 

any read-write transactions. 

 

Reliability and Validity 

According to Salkind (2006), reliability indicates the consistency, stability, and 

predictability of the measurements in an experiment. Sekaran (2003) describes two forms 

of validity of concern to experimental design – internal validity and external validity. 

According to Sekaran, internal validity is the degree of authenticity in a cause-and-effect 

relationship whereas external validity constitutes the degree to which results can be 

generalized to real-world situations. 

In the experiments conducted, reliability was addressed through the use of 

commodity hardware and open source software, thereby allowing the experimental set-up 

to be replicated by other researchers. The experimental set-up employed methodologies 

similar to those described by Keeton and Patterson (2000),  LeFevre et al., (2004), Zhu 

and Lü (2007), and Elnikety et al., (2009) for measuring database performance on small-

scale servers. Stability of measured results was addressed by employing the TPC-W 

benchmark, which embodies well-known workload characteristics (Menascé & Almeida, 

2001). Predictability of the measurements in the experiments conducted was addressed 

using an experimental design that included replication, thus allowing the calculation of 

experimental error (Jain, 1991). 

Internal validity in laboratory experiments describes the confidence with which a 

researcher may state that the independent variable A causes changes in the dependent 

variables B, and C (Sekaran, 2003). Validity in this context refers to the degree to which 
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the experimental measurements establish or refute relationships between variables 

(Salkind, 2006). A 2
k
r experimental design was chosen for the experiments conducted in 

order to allow the calculation of experimental error. Thus, results reported can be show to 

be statistically significant with a reasonably high degree of validity.  

External validity for the experimental work conducted was established by 

evaluating the FACE model against a real-world data set. According to Sekaran (2003), 

cause-and-effect relationships established in the laboratory should be evaluated in a field 

setting to establish external validity. However as noted by Keeton and Patterson (2000), 

availability of large-scale systems for field-testing is not feasible for most research 

projects. Instead, a natural model constructed using components of a real-world system 

provides a practical alternative to artificial models like the TPC-W benchmark (Menascé 

& Almeida, 2001). The wildlife habitat capability-suitability is viewed by the author as a 

good candidate for use in establishing the generalizability of the FACE model as it 

constitutes a natural model that is both simple and relatively compact. 

 

Summary  

The demand for secure Web-based computing provides the motivation for wider 

adoption of fine-grained access control (Zhu and Lü, 2007). The contribution of the 

author’s study is a generic model, termed the FACE model. The FACE model quantifies 

the performance overhead of four common implementations of fine-grained access 

control.  

The goal in undertaking the author’s study was to extend and consolidate work on 

the performance aspects of fine-grained access control previously reported in the 
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literature. According to Kabra et al. (2006), understanding the performance implications 

of fine-grained access control is essential to use of the technology. The author employed 

experiment as the methodology for the study. Sharp and Howard (as cited in Dawson, 

2000) describe the nature of this work as applied research. 
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Chapter 4 

Results 
 

 

Analysis 

 

In the author’s study, four experiments were conducted following the 

methodology described in Chapter 3. The first three experiments consisted of 150 trials, 

each with three repetitions. The first 75 trials evaluated a control and four different fine-

grained access control mechanisms using read-only queries based upon the TPC-W 

benchmark. The second 75 trials evaluated update transactions from the TPC-W 

benchmark. The fourth experiment consisted of 25 trials, each with three repetitions, 

employing a control and four different fine-grained access control mechanisms. In the 

fourth experiment, read-only queries against a large, real-world data set were evaluated. 

The queries employed for benchmarking in the fourth experiment were obtained from an 

online wildlife habitat capability/suitability application. The wildlife application, now 

defunct, did not contain any INSERT or UPDATE transactions.  

 

Validating the Experimental Configuration 

Zhu and Lü (2007) indicated that a TPC-W workload generated by four thousand 

EBS’s could be sustained on a small-scale server. To verify server capacity of the 

author’s experimental configuration, a complex TPC-W query was run against a 

dedicated server hosting a PostgreSQL database populated with 10 million rows in the 

ITEM table. Workload was managed using Jmeter to emulate 4000 EBS’s, which was the 
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largest TPC-W workload expected to be employed in the author’s study. Server 

performance data was collected using the Linux system activity reporter (SAR) utility. 

The SAR utility captures four statistics – percentage of time waiting on system processes 

(System), percentage of time waiting on user processes (User), percentage of time 

waiting on disk devices (Wait), and percentage of time the CPU is idle (Idle). As depicted 

in Figure 15, CPU time expended executing System (green) and User (red) processes 

never exceeded 60% while executing the test query, demonstrating that the small-scale 

server employed by the author provided sufficient capacity for the TPC-W workloads to 

be evaluated in the study.  

 
Figure 15. Server Load while Executing a TPC-W Workload with 4000 EBS 

 

Bitton et al. (1983), and Keeton and Patterson (2000)  observed that when 

benchmarking SQL queries, best results are obtained  when the SQL queries generate 

disk access requests rather than retrieving data already resident in the database buffer 

cache. Server activity statistics depicted in Figure 15 illustrates that the greatest 

proportion of server activity during execution of the author’s test query was spent waiting 
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for data to be read from disk. This test confirmed that for an ITEM table containing 10 

million rows, the TPC-W query evaluated was not able to satisfy the query using data 

residing in the buffer cache and was therefore required to fetch data from disk. 

Kalibera and Tuma (2006) indicated that fluctuations caused by data caching 

could distort benchmark performance measures. In order to minimize the influences of 

data caching on benchmark results, the database buffers and the operating system file 

cache were flushed prior to running each repetition of the author’s experiments. 

Figure 16 depicts the results when the same TPC-W query employed for 

evaluating server capacity was executed both with and without flushing the database 

buffers and operating system file caches between repetitions of the same experiment. 

Fluctuations due to caching were most pronounced when executing the selected query 

against an ITEM table containing one hundred thousand rows and to a lesser degree, 

against an ITEM table containing one million rows. As predicted by Bitton et al. (1983), 

the effects of caching are negligible when the query is executed against a table that is 

significantly larger than the capacity of the database buffer cache. When the selected 

TPC-W query was executed against an ITEM table containing 10 million rows, flushing 

the buffer cache between repetitions of the same experiment produced results similar to 

experiments performed without flushing the buffer cache. 
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Figure 16. Effect of Caching on TPC-W Query Throughput 

 

Findings 

The results obtained by the author during the experimentation phase of the study 

were recorded using the sign table methodology as described by Jain (1991). Detailed 

results are presented in tabular form in Appendix M through Appendix P. The sign table 

methodology also provides a simple means for calculating variation attributed to each 

experimental variable. The author extended the standard sign table format to include 

calculation of variation due to each experimental variable and calculation of standard 

error for each set of measurements. Microsoft Excel was used to automate the 

calculations for each sign table. The formulas described in Equations 1.1 through 1.10 in 

Chapter 3 are used as the basis of the calculations in the Excel spreadsheets used to 

generate the sign tables. Calculations of mean values are based upon the geometric mean 

in cases where the underlying data consists of normalized values. As discussed by Dixit 
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(1992), aggregated benchmark results based upon elapsed time of execution are to be 

averaged using the geometric mean rather than the arithmetic mean. 

The first experiment evaluated the performance of read-only (query) transactions 

and read-write (update) transactions against selected queries from the TPC-W benchmark 

populated with one hundred thousand items. There were three repetitions of each trial 

within the experiment for each of the access control mechanisms evaluated. Query 

durations reported are based upon the geometric mean of the three repetitions. The 

database and O/S buffers were flushed prior to the execution of each benchmark. 

Confidence intervals for the experiment are depicted in Table 7. With 95% confidence, 

the margin of error is less than ±5%. Results for this experiment are summarized in 

Figure 17, Figure 18, Figure 19, and Figure 20.  

Table 7. Confidence intervals for TPC-W benchmarks - 100,000 Items 

Items 

Fine-Grained Access Control 

Mechanism se sqi 90% 95% 

100,000 Authorization Views 75.97 15.51 ±20.73 ±27.08 

100,000 Hippocratic Database 62.36 12.73 ±17.02 ±22.23 

100,000 Label Based Access Control 65.25 13.32 ±17.81 ±23.26 

100,000 Transparent Query Rewrite 57.49 11.74 ±15.69 ±20.49 
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Figure 17. Average query duration for TPC-W simple queries - 100,000 Items 

 

 

   

  
Figure 18. Average query duration for TPC-W simple updates - 100,000 Items 
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Figure 19. Average query duration for TPC-W complex queries - 100,000 Items 

 

 

 
Figure 20. Average query duration for TPC-W complex updates - 100,000 Items 
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The second experiment evaluated the performance of read-only (query) 

transactions and read-write (update) transactions against selected queries from the TPC-

W benchmark populated with one million items. There were three repetitions of each trial 

within the experiment for each of the four access control mechanisms evaluated. Query 

durations reported are based upon the average of the three repetitions. The database and 

O/S buffers were flushed prior to the execution of each benchmark. Confidence intervals 

for the experiment are depicted in Table 8. With 95% confidence, the margin of error is 

less than ±5%. Results for this experiment are summarized in Figure 21, Figure 22, 

Figure 23, and Figure 24. 

Table 8. Confidence intervals for TPC-W benchmarks - One Million Items 

Items 

Fine-Grained Access Control 

Mechanism se sqi 90% 95% 

1M Authorization Views 68. 15.51 ±20.73 ±27.08 

1M Hippocratic Database 60.67 12.38 ±16.56 ±21.62 

1M Label Based Access Control 64.66 13.20 ±17.65 ±23.04 

1M Transparent Query Rewrite 64.97 13.26 ±17.73 ±23.16 
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Figure 21. Average query duration for TPC-W simple queries – One Million Items 

 

 
Figure 22. Average query duration for TPC-W simple updates – One Million Items 
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Figure 23. Average query duration for TPC-W complex queries – One Million Items 

 

 

Figure 24. Average query duration for TPC-W complex updates – One Million Items 
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The third experiment evaluated the performance of read-only (query) transactions 

and read-write (update) transactions against selected queries from the TPC-W benchmark 

populated with 10 million items. There were three repetitions of each trial within the 

experiment for each of the four access control mechanisms evaluated. Query durations 

reported are based upon the average of the three repetitions. The database and O/S 

buffers were flushed prior to the execution of each benchmark. Confidence intervals for 

the experiment are depicted in Table 9. With 95% confidence, the margin of error is less 

than ±5%. Results for this experiment are summarized in Figure 25, Figure 26, Figure 27, 

and Figure 28. 

Table 9. Confidence intervals for TPC-W benchmarks – 10 Million Items 

Items 

Fine-Grained Access Control 

Mechanism se sqi 90% 95% 

10M Authorization Views 75.97 15.51 ±20.73 ±27.08 

10M Hippocratic Database 50.02 10.21 ±13.65 ±17.83 

10M Label Based Access Control 55.93 11.42 ±15.26 ±19.93 

10M Transparent Query Rewrite 52.76 10.77 ±14.40 ±18.80 
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Figure 25. Average query duration for TPC-W simple queries – 10 Million Items 

 

 

 
Figure 26. Average query duration for TPC-W simple updates – 10 Million Items 
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Figure 27. Average query duration for TPC-W complex queries – 10 Million Items 

 

 
 

 
Figure 28. Average query duration for TPC-W complex updates – 10 Million Items 
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The fourth experiment evaluated the performance of read-only (query) 

transactions against data from the real-world wildlife application. There were three 

repetitions of each trial within the experiment for each of the four access control 

mechanisms that were evaluated. Query durations reported are based upon the average of 

the three repetitions. The database and O/S buffers were flushed prior to the execution of 

each benchmark. Confidence intervals for the experiment are depicted in Table 10. With 

95% confidence, the margin of error is less than ±5%. The results for this experiment are 

summarized in Figure 29 and Figure 30. The difference in query duration between the 

simple and complex queries against the wildlife data is approximately an order of 

magnitude. Therefore, the y-axis of the histograms depicted in Figure 29 and Figure 30 

have been formatted using a logarithmic scale to allow easier comparison between the 

two graphs.  

Table 10. Confidence intervals for Wildlife benchmarks 

Items 

Fine-Grained Access Control 

Mechanism se sqi 90% 95% 

Wildlife Authorization Views 224.65 64.85 ±90.598 ±120.62 

Wildlife Hippocratic Database 169.96 227.24 ±317.46 ±422.67 

Wildlife Label Based Access Control 153.96 205.85 ±287.57 ±382.87 

Wildlife Transparent Query Rewrite 121.03 161.82 ±226.06 ±300.99 
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Figure 29. Average query duration for Wildlife simple queries (log scale) 

 

 

 
Figure 30. Average query duration for Wildlife complex queries (log scale) 
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Scalability 

One of the goals of the author’s study was to determine scalability of the four 

fine-grained access control mechanisms evaluated. Figure 31 depicts the average 

response time for the control (i.e., no fine-grained access control) and four fine-grained 

access control mechanisms using a complex query from the TPC-W benchmark suite. 

The y-axis of the graph depicts the average response time in milliseconds (ms) and the x-

axis depicts the number of EBS’s (i.e., workload). Figure 32 provides a similar line-graph 

for the wildlife data where response times for complex queries are measured for the 

control and four fine-grained access control mechanisms. Note that the axes for Figure 31 

and Figure 32 have the same scale. Following the methodology of Elnikety et al. (2009)  

for visual analysis of response time versus load for TPC-W complex query (i.e., read- 

 

 
Figure 31. TPC-W response time for complex queries – 10 Million Items 
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Figure 32. Wildlife response times for complex queries 

 

 

only) transactions, it can be observed in Figure 31 that response time curves are nearly 

flat, which is indicative of excellent scalability for transaction processing that contains 

little or no update transactions. These findings confirm the statement by Menascé (2002) 

that the TPC-W benchmark exhibits excellent scalability. In contrast, the response time 

curves depicted in Figure 32 for the wildlife data, while similar for the control and each 

of the fine-grained access control mechanisms evaluated, indicate that scalability for the 

wildlife read-only transactions is linear. According to Gunther (2004), the linear response 

time curves observed in the wildlife benchmarks indicate that the workload is scaling as 

best as it can with the limited computing resources provided by the small-scale processor. 
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FACE Model 

The sign table methodology provides a simple means for calculating variation 

attributed to each experimental variable. Table 11 summarizes the percentage of variation 

for the TPC-W complex query scaled to an ITEM table of 10 million rows. Table 11 also 

summarizes the percentage of variation for a complex query against the wildlife data.  

Table 11. Overhead imposed by fine-grained access control  

Items 

Fine-Grained Access 

Control Mechanism 

Fine-Grained 

Access Control 

Query 

Complexity 

SQL 

Operation 

10 Million Authorization Views 3% 31% 33% 

10 Million Hippocratic Database 6% 27% 33% 

10 Million Label Based Access Control 69% 18% 5% 

10 Million Transparent Query Rewrite 5% 27% 27% 

Wildlife Authorization Views 1% 99% N/A 

Wildlife Hippocratic Database 7% 93% N/A 

Wildlife Label Based Access Control 7% 93% N/A 

Wildlife Transparent Query Rewrite 7% 93% N/A 

 

Figure 33 depicts a throughput graph for TPC-W complex queries scaled to 10 

million items. Figure 34 depicts a response time graph for TPC-W complex queries 

scaled to 10 million items. Figure 35 depicts a throughput graph for wildlife complex 

queries. Figure 36 depicts a response time graph for wildlife complex queries.  
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Figure 33. Throughput for TPC-W complex queries - 10 Million Items 

 

 

 
Figure 34. Overhead for TPC-W complex queries – 10 Million Items 
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Figure 35. Throughput for Wildlife complex queries 

 

 

 
Figure 36. Overhead for Wildlife complex queries 

 

 

  



 

 

120 

The slopes of the throughput line plots (Figure 33) for the TPC-W complex 

queries are relatively flat for workloads with more than  2400 EBS’s, indicating that the 

workload scales linearly. The corresponding response time graph (Figure 34) indicates 

that the percentage of processing overhead for the TPC-W complex queries due to fine-

grained access control is low (<6%) except for LBAC, where the overhead is nearly 70%. 

The slopes of throughput line plots (Figure 35) for the wildlife complex queries depict a 

gradual negative slope indicating that the small-scale processor has reached its maximum 

throughput (Menascé and Almeida, 2001). The corresponding response time graph 

(Figure 34) for the wildlife complex queries indicates that the percentage of processing 

overhead due to fine-grained access control remains constant (<7%) for all of the fine-

grained access control mechanisms evaluated. 

 

Summary of Results 

In the author’s study, queries from the TPC-W benchmark and queries from a 

real-world wildlife habitat capability/suitability application were used to quantify the 

overhead imposed by the use of fine-grained access control. Four fine-grained access 

control mechanisms were evaluated – authorizations views, the Hippocratic database, 

LBAC, and transparent query rewrite. Benchmark results were summarized using sign 

tables and graphed using histograms to provide a simple visual comparison of the 

mechanisms evaluated. In terms of average query duration, a simple database query 

against the wildlife data was demonstrated to be roughly equivalent to a complex query 

against the TPC-W data scaled to 10 million items. Complex queries against the wildlife 

data had an average query duration that was 10 times greater than the wildlife simple 
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queries. Based upon measurements of average query duration, there were approximately 

three orders of magnitude between the simplest TPC-W query evaluated and the most 

complex query executed against the wildlife data. Thus, the workload employed in the 

author’s study was demonstrated to provide good scalability. 

The test results from the first experiment revealed that for simple read-only 

transactions executed against a PostgreSQL database scaled to one hundred thousand 

TPC-W items, the overhead imposed by the use of authorization views, the Hippocratic 

database, and transparent query rewrite were roughly equivalent. In contrast, the use of 

LBAC for simple read-only transactions was observed to impose performance costs that 

were nearly 50% greater than the overhead imposed by the three other fine-grained 

access control mechanisms. In the case of simple read-write transactions executed against 

a PostgreSQL database scaled to one hundred thousand TPC-W items, the overhead 

imposed by the use of authorization views, the Hippocratic database, and transparent 

query rewrite were similar to the performance overhead observed for simple read-only 

transactions. However, the total overhead per transaction was marginally higher. As was 

the case for simple read-only transactions, the use of LBAC was observed to impose 

performance costs that were approximately 50% greater than the overhead imposed by 

the other three fine-grained access control mechanisms. 

Test results from the first experiment revealed that for complex read-only 

transactions executed against a PostgreSQL database scaled to one hundred thousand 

TPC-W items, the overhead imposed by the use of authorization views, the Hippocratic 

database, and transparent query rewrite were roughly equivalent. Complex read-write 

transactions executed against the same database exhibited similar characteristics although 
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the overhead per transaction was lower than for read-only transactions, which is the 

opposite behavior observed for simple transactions and updates. However as was the case 

with complex read-only and read-write transactions, the use of LBAC was observed to 

imposed performance costs nearly 50% greater than the overhead imposed by the other 

three fine-grained access control mechanisms. 

Test results from the second experiment revealed that for simple read-only 

transactions and simple read-write transactions executed against a PostgreSQL database 

scaled to one million TPC-W items, the overhead imposed by the use of authorization 

views, the Hippocratic database, and transparent query rewrite were roughly equivalent. 

The use of LBAC for simple read-only transactions and simple read-write transactions 

was observed to impose performance costs that were nearly 50% greater than the 

overhead imposed by the other three fine-grained access control mechanisms. In the case 

of complex read-only transactions and complex read-write transactions executed against a 

PostgreSQL database scaled to one million TPC-W items, performance costs associated 

with the use of fine-grained access control were similar to simple read-only and simple 

read-write transactions. However, the performance impacts were lower for the read-write 

transactions than for read-only transactions. 

Test results for the third experiment revealed that for simple read-only 

transactions and simple read-write transactions executed against a PostgreSQL database 

scaled to 10 million TPC-W items, the overhead imposed by the use of authorization 

views, the Hippocratic database, and transparent query rewrite were roughly equivalent. 

The use of LBAC for simple read-only transactions and simple read-write transactions 

was observed to impose performance costs that were nearly 50% greater than the 
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overhead imposed by the three other fine-grained access control mechanisms. In the case 

of complex read-only transactions and complex read-write transactions executed against a 

PostgreSQL database scaled to 10 million TPC-W items, performance costs associated 

with the use of fine-grained access control were similar to simple read-only and simple 

read-write transactions. However, the performance impacts were lower for the read-write 

transactions than for read-only transactions.  

Test results for the fourth experiment revealed that for simple read-only 

transactions executed against a PostgreSQL database containing data from the real-world 

wildlife application, the overhead imposed by the use of authorization views, the 

Hippocratic database, and transparent query rewrite were equivalent. The use of LBAC 

imposed only slightly greater performance costs than for the other fine-grained access 

control mechanisms. In the case of complex read-only transactions executed against a 

PostgreSQL database containing data from the real-world wildlife application, 

performance costs associated with the use of fine-grained access control were similar to 

simple read-only transactions. Significantly, there were no discernible differences in the 

performance overhead associated with authorization views, the Hippocratic database, 

LBAC, and transparent query rewrite. 

One of the goals of the study was to quantify the scalability of the four selected 

fine-grained access control mechanisms. Scalability was established by comparing 

average query duration versus workload as described by Elnikety et al. (2009). The query 

duration versus workload line graphs for the author’s TPC-W benchmarks were very 

similar to the research findings reported by Elnikety et al. for TPC-W benchmark 

workloads. The query duration versus workload graphs for the wildlife data benchmarked 



 

 

124 

by the author were linear, indicating that query processing that includes fine-grained 

access control mechanisms, are scalable within the processing capacity of the small-scale 

server used for benchmarking. 

The FACE model employs simple, line graphs to represent the scalability and 

overhead imposed by the four fine-grained access control mechanisms evaluated. The 

results presented indicate that the overhead for complex queries against large data sets is 

minimal, typically 7% or less. The slope of the response time curves indicate that under 

higher workload, specifically 2400 EBS’s or greater, that the fine-grained access control 

mechanisms are scalable. It should be noted however that in the sign tables presented in 

Appendix M and Appendix N for TPC-W benchmarks scaled to one hundred thousand 

items and one million items respectively, indicate that the proportion of overhead due to 

the use of fine-grained access control is significantly higher for data sets containing a 

modest number of rows. 
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Chapter 5 

Conclusions, Implications, Recommendations and Summary 
 

 

Conclusions 

The FACE model provides a simple approach to quantifying the scalability and 

performance of typical fine-grained access control mechanisms used with relational 

database management systems. The literature contains references to approaches that 

quantify the performance and scalability of individual fine-grained access control 

mechanisms used with relational database management systems. However, quantification 

of the performance overhead for multiple fine-grained access control mechanisms against 

the same data has not been previously described. 

A novel aspect of the author’s study was the evaluation of performance and 

scalability associated with read-write transactions where fine-grained access control was 

implemented. Most of the current literature describing fine-grained access control focuses 

solely upon read-only transactions. In the author’s study, it was demonstrated that in the 

case of SQL UPDATE transactions, where fine-grained access control was implemented, 

scalability and performance overhead were equivalent to read-only transactions. 

The existing research studies suggest that some fine-grained access control 

mechanisms are not scalable. For example, Bertino et al. (2006) suggest that 

authorization views are not scalable due to the associated overhead with managing a large 

number of views. However, this is quite different from scalability of authorization views 

from the standpoint of performance overhead. As demonstrated in Figure 31 and Figure 
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32, authorization views, the Hippocratic Database, LBAC, and transparent query rewrite 

are all scalable mechanisms from the standpoint of performance overhead versus 

workload. Contrary to widely held beliefs in the database community that the use of fine-

grained access control can impose onerous performance overhead, the simple visual 

model provided by FACE demonstrates that the performance impacts tend to be minimal, 

representing an acceptable compromise between enhanced security and reduced 

performance. 

 

 Implications  

Based upon the results of this study, a number of current approaches to 

implementing fine-grained access control for relational database management systems are 

deemed eminently practical for use in securing large Web-based applications. All of the 

fine-grained access control mechanisms evaluated in the author’s study, with the 

exception of LBAC, may be deployed without concern for the performance and 

scalability of these mechanisms. Even LBAC, when used with large complex queries, has 

been shown to impose minimal impact in terms of additional processing overhead. 

Nevertheless, concerns around manageability (Bertino & Sandhu, 2005) and 

completeness (Wang et al., 2007) should still be considered in the design of Web-based 

applications that connect to relational database management systems employing fine-

grained access control.  
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Recommendations 

The author’s experimental work was performed using small-scale servers with 

single-core processors that were manufactured nearly a decade ago. While this server 

architecture is well documented in the literature, particularly with reference to evaluation 

of fine-grained access control mechanisms, it represents a simplistic approximation of the 

multi-core, multi-processor servers currently used to host large relational database 

management systems. There is a need for future research that models performance of 

large-scale relational database management systems in a multi-core, multi-processor 

environment. Hill and Marty (2008) describe some of the challenges facing database 

professionals and system architects tasked with deploying applications to multi-core, 

multi-processor servers. Determining scalability is paramount among those concerns. 

A problem faced by the author was the significant effort required to configure, 

validate, and execute benchmarks to evaluate the performance overhead associated with 

fine-grained access control. Keeton and Patterson (2000) describe the benefits of using 

microbenchmarks for studying database workloads. Among the benefits of 

microbenchmarks are the requirements for less hardware, less configuration, and simpler 

database deployments. Properly configured microbenchmarks are particularly useful if 

they provide the same resource usage patterns as larger, better-documented workloads 

such as the TPC-W. Additional database performance research using microbenchmarks 

would be extremely useful, particularly if the methodology was well documented and the 

benchmark software developed through the research was packaged for reuse by other 

researchers. 
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Summary 

The FACE model was developed to provide a research based instrument to 

compare the relative scalability and performance of four common fine-grained access 

control mechanisms implemented within relational database management systems. A 

detailed description of the methodology employed in this study and the experimental data 

gathered has been provided. Analysis of data using sign tables provided a suitable 

approach for summarizing data and generating statistics to allow validation of 

experimental results. Recommendations have been advanced concerning future research 

that would make studies employing benchmarking easier to undertake, and easier to 

replicate, while at the same time being more generalizable to modern server 

environments. 
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Appendix A 

TPC-W Authorization Views 
 

CREATE VIEW authview.address AS 

SELECT * FROM public.address  

WHERE addr_user_role = CURRENT_USER; 

 

CREATE VIEW authview.author AS 

SELECT * FROM public.author  

WHERE a_user_role = CURRENT_USER; 

 

CREATE VIEW authview.cc_xacts AS 

SELECT * FROM public.cc_xacts  

WHERE cx_user_role = CURRENT_USER; 

 

CREATE VIEW authview.customer AS 

SELECT * FROM public.customer  

WHERE c_user_role = CURRENT_USER; 

 

CREATE VIEW authview.item AS 

SELECT * FROM public.item  

WHERE i_user_role = CURRENT_USER; 

 

CREATE VIEW authview.order_line AS 

SELECT * FROM public.order_line  

WHERE ol_user_role = CURRENT_USER; 

 

CREATE VIEW authview.orders AS 

SELECT * FROM public.orders  

WHERE o_user_role = CURRENT_USER; 

 

CREATE VIEW authview.shopping_cart AS 

SELECT * FROM public.shopping_cart  

WHERE sc_user_role = CURRENT_USER; 

 

CREATE VIEW authview.shopping_cart_line AS 

SELECT * FROM public.shopping_cart_line  

WHERE scl_user_role = CURRENT_USER; 
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Appendix B 

Sample TPC-W Hippocratic Database Views 
 

 

-- Author View 

CREATE VIEW hippo.author AS 

SELECT a_id,  

  (CASE WHEN a_p1=1  

               THEN a_fname ELSE NULL END) AS a_fname,  a_lname, 

  (CASE WHEN a_p2=1  

               THEN a_mname ELSE NULL END) AS a_mname, 

  (CASE WHEN a_p3=1  

               THEN a_dob ELSE NULL END) AS a_dob,  

     a_bio, a_p1, a_p2, a_p3, a_user_role, a_sec_label 

FROM author; 

 

-- Customer View 

CREATE VIEW hippo.customer AS 

SELECT c_id,  

  (CASE WHEN c_p1=1  

               THEN c_uname ELSE NULL END) AS c_uname,  

  (CASE WHEN c_p2=1  

               THEN c_passwd ELSE NULL END) AS c_passwd, 

     c_fname, c_lname, c_addr_id, c_phone, c_email, c_since, c_last_login,  

     c_login, c_expiration, c_discount, c_balance, c_ytd_pmt,  

  (CASE WHEN c_p3=1  

               THEN c_birthdate ELSE NULL END) AS c_birthdate,  

     c_data, c_p1, c_p2, c_p3, c_user_role, c_sec_label 

FROM customer; 
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Appendix C 

TPC-W Label Based Access Control Views 
 

CREATE VIEW lbac.address as 

SELECT * FROM public.address 

WHERE addr_sec_label IN (SELECT label FROM public.visiblelabels); 

 

CREATE VIEW lbac.author as 

SELECT * FROM public.author 

WHERE a_sec_label IN (SELECT label FROM public.visiblelabels); 

 

CREATE VIEW lbac.cc_xacts as 

SELECT * FROM public.cc_xacts 

WHERE cx_sec_label IN (SELECT label FROM public.visiblelabels); 

 

CREATE VIEW lbac.customer as 

SELECT * FROM public.customer 

WHERE c_sec_label IN (SELECT label FROM public.visiblelabels); 

 

CREATE VIEW lbac.item as 

SELECT * FROM public.item 

WHERE i_sec_label IN (SELECT label FROM public.visiblelabels); 

 

CREATE VIEW lbac.order_line as 

SELECT * FROM public.order_line 

WHERE ol_sec_label IN (SELECT label FROM public.visiblelabels); 

 

CREATE VIEW lbac.orders as 

SELECT * FROM public.orders 

WHERE o_sec_label IN (SELECT label FROM public.visiblelabels); 

 

CREATE VIEW lbac.shopping_cart as 

SELECT * FROM public.shopping_cart  

WHERE sc_sec_label IN (SELECT label FROM public.visiblelabels); 

 

CREATE VIEW lbac.shopping_cart_line as 

SELECT * FROM public.shopping_cart_line  

WHERE scl_sec_label IN (SELECT label FROM public.visiblelabels); 
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Appendix D 

TPC-W Transparent Query Rewrite Views 
 

CREATE OR REPLACE VIEW tqr.address AS  

SELECT * FROM public.address 

WHERE address.addr_tqr_ctx::text = app_context(); 

 

CREATE VIEW tqr.author AS 

SELECT * FROM public.author 

WHERE author.a_tqr_ctx::text = app_context(); 

 

CREATE VIEW tqr.cc_xacts AS 

SELECT * FROM public.cc_xacts 

WHERE cc_xacts.cx_tqr_ctx::text = app_context(); 

 

CREATE VIEW tqr.customer AS 

SELECT * FROM public.customer 

WHERE customer.c_tqr_ctx::text = app_context(); 

 

CREATE VIEW tqr.item AS 

SELECT * FROM public.item 

WHERE item.i_tqr_ctx::text = app_context(); 

 

CREATE VIEW tqr.order_line AS 

SELECT * FROM public.order_line 

WHERE order_line.ol_tqr_ctx::text = app_context(); 

 

CREATE VIEW tqr.orders AS 

SELECT * FROM public.orders 

WHERE orders.o_tqr_ctx::text = app_context(); 

 

CREATE VIEW tqr.shopping_cart AS 

SELECT * FROM public.shopping_cart  

WHERE shopping_cart.sc_tqr_ctx::text = app_context(); 

 

CREATE VIEW tqr.shopping_cart_line AS 

SELECT * FROM public.shopping_cart_line  

WHERE shopping_cart_line.scl_tqr_ctx::text = app_context(); 
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Appendix E 

Sample TPC-W Benchmark Queries 
 

 

   -- TPC-W benchmark simple query   

   SELECT c_fname,c_lname  

   FROM authview.customer WHERE c_id = ${100K_C_ID} 

   FOR SHARE OF customer  NOWAIT 

 

 

   -- TPC-W benchmark complex query 

   SELECT * 

   FROM authview.item, authview.author 

   WHERE item.i_a_id = author.a_id  

        AND item.i_id = ${100K_I_ID} 

   FOR SHARE OF item, author  NOWAIT 

 

 

   -- TPC-W benchmark simple update 

   UPDATE authview.shopping_cart  

            SET sc_date = current_date 

   WHERE sc_id = ${100K_SC_ID} 

 

 

   -- TPC-W benchmark complex update 

   UPDATE authview.shopping_cart_line  

            SET scl_qty = ${100K_RND_QTY} 

   WHERE scl_i_id = ${100K_SC_ID} 

        AND scl_sc_id IN  

                 (SELECT scl_sc_id  

                  FROM authview.shopping_cart_line 

                  WHERE scl_i_id = ${100K_SC_ID}) 
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Appendix F 

Sample Wildlife Benchmark Queries 
 

 

    

   -- Wildlife benchmark simple query 

   SELECT species_common_name AS "SPECIES",  

                   ecoprovince_description AS "ECOPROVINCE",  

                   season_code AS "SEASON",  

                   area AS "AREA" 

   FROM (authview.bei_capability_ecoprov_summry 

   LEFT JOIN authview.bei_ecoprovinces  

                 ON bei_capability_ecoprov_summry.ecoprovince_code =  

                       bei_ecoprovinces.ecoprovince_code) 

   LEFT JOIN authview.bei_species_codes  

                 ON bei_capability_ecoprov_summry.species_code =  

                       bei_species_codes.species_code 

   WHERE bei_capability_ecoprov_summry.ecoprovince_code =  

                 (SELECT ecoprovince_code FROM authview.bei_ecoprovinces 

                  ORDER BY RANDOM() LIMIT 1) 

        AND bei_capability_ecoprov_summry.caps_p1 = 1 

   FOR SHARE OF bei_capability_ecoprov_summry NOWAIT   

 

 

   -- Wildlife benchmark complex query 

   SELECT area AS "AREA",  

                  perimeter AS "PERIMETER",  

                 qbei_tag AS "ID",  

                 zone_code || subzone_code || variant_code || phase_code AS "BEC" 

   FROM  authview.bei_polygon_attributes 

   WHERE poly_id = ${RND_POLY_ID} 

        AND bei_polygon_attributes.poly_p1 = 1 

   FOR SHARE OF bei_polygon_attributes NOWAIT   
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Appendix G 

Transparent Query Rewrite Stored Procedure 
 

 

 

-- VPD-like procedural language policy function to set user security context 

-- Note: The variable class 'context' is defined in postgresql.conf 

 

DROP FUNCTION app_context(); 

 

CREATE OR REPLACE FUNCTION app_context() 

  RETURNS text AS $BODY$ 

  DECLARE usrctx text; 

BEGIN 

  -- Set value for variable class 'context' defined in postgresql.conf 

  IF CURRENT_SETTING('context.usr') = '' THEN 

    IF CURRENT_USER = 'postgres' THEN  

      SET context.usr = '%'; 

    ELSIF CURRENT_USER = 'tqr' THEN  

      SET context.usr = 'MANAGER' ; 

    ELSIF CURRENT_USER = 'benchmark' THEN  

      SET context.usr = 'CLERK'; 

    ELSE  

      SET context.usr = '-'; 

    END IF; 

  END IF; 

  -- User security context is memory resident after first iteration  

  -- of stored procedure 

  usrctx := CURRENT_SETTING('context.usr'); 

  RETURN usrctx; 

END; 

$BODY$ LANGUAGE plpgsql; 

 

ALTER FUNCTION app_context() 

  OWNER TO postgres; 
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Appendix H 

TPC-W Sample Query Implemented Under Apache Jmeter 
 

<?xml version="1.0" encoding="UTF-8"?> 

<jmeterTestPlan version="1.2" properties="2.1"> 

  <hashTree> 

    <TestPlan guiclass="TestPlanGui" testclass="TestPlan" testname="TPC-

W_AUTHVIEW_1M_SELECT_800" enabled="true"> 

      <elementProp name="TestPlan.user_defined_variables" elementType="Arguments" 

guiclass="ArgumentsPanel" testclass="Arguments" testname="User Defined Variables" 

enabled="true"> 

        <collectionProp name="Arguments.arguments"> 

          <elementProp name="EBS" elementType="Argument"> 

            <stringProp name="Argument.name">EBS</stringProp> 

            <stringProp name="Argument.value">800</stringProp> 

            <stringProp name="Argument.metadata">=</stringProp> 

          </elementProp> 

        </collectionProp> 

      </elementProp> 

      <stringProp name="TestPlan.user_define_classpath"></stringProp> 

      <boolProp name="TestPlan.serialize_threadgroups">true</boolProp> 

      <boolProp name="TestPlan.functional_mode">false</boolProp> 

      <stringProp name="TestPlan.comments"></stringProp> 

    </TestPlan> 

    <hashTree> 

      <ResultCollector guiclass="SummaryReport" testclass="ResultCollector" 

testname="Summary Report" enabled="true"> 

        <boolProp name="ResultCollector.error_logging">false</boolProp> 

        <objProp> 

          <name>saveConfig</name> 

          <value class="SampleSaveConfiguration"> 

            <time>true</time> 

            <latency>true</latency> 

            <timestamp>true</timestamp> 

            <success>true</success> 

            <label>true</label> 

            <code>true</code> 

            <message>true</message> 

            <threadName>true</threadName> 

            <dataType>true</dataType> 
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            <encoding>false</encoding> 

            <assertions>false</assertions> 

            <subresults>false</subresults> 

            <responseData>false</responseData> 

            <samplerData>false</samplerData> 

            <xml>false</xml> 

            <fieldNames>true</fieldNames> 

            <responseHeaders>false</responseHeaders> 

            <requestHeaders>false</requestHeaders> 

            <responseDataOnError>false</responseDataOnError>            

<saveAssertionResultsFailureMessage>false</saveAssertionResultsFailureMessage> 

            <assertionsResultsToSave>0</assertionsResultsToSave> 

            <bytes>true</bytes> 

            <threadCounts>true</threadCounts> 

            <sampleCount>true</sampleCount> 

          </value> 

        </objProp> 

        <stringProp name="filename"></stringProp> 

        <boolProp name="ResultCollector.success_only_logging">true</boolProp> 

      </ResultCollector> 

      <hashTree/> 

      <JDBCDataSource guiclass="TestBeanGUI" testclass="JDBCDataSource" 

testname="JDBC Connection - 1M" enabled="true"> 

        <stringProp name="password">benchmark</stringProp> 

        <stringProp name="timeout"></stringProp> 

        <stringProp name="checkQuery">Select 1</stringProp> 

        <stringProp name="trimInterval"></stringProp> 

        <boolProp name="autocommit">true</boolProp> 

        <stringProp name="poolMax"></stringProp> 

        <stringProp name="driver">org.postgresql.Driver</stringProp> 

        <stringProp name="connectionAge">5000</stringProp> 

        <stringProp name="dataSource">1M</stringProp> 

        <stringProp name="username">benchmark</stringProp> 

        <boolProp name="keepAlive">false</boolProp> 

        <stringProp 

name="dbUrl">jdbc:postgresql://192.168.255.204/tpcw1M</stringProp> 

        <stringProp name="TestPlan.comments">localhost</stringProp> 

      </JDBCDataSource> 

      <hashTree/> 

      <RandomVariableConfig guiclass="TestBeanGUI" 

testclass="RandomVariableConfig" testname="1M_C_ID" enabled="true"> 

        <stringProp name="maximumValue">864000</stringProp> 

        <stringProp name="minimumValue">1</stringProp> 

        <stringProp name="outputFormat"></stringProp> 

        <boolProp name="perThread">true</boolProp> 

        <stringProp name="randomSeed"></stringProp> 
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        <stringProp name="variableName">1M_C_ID</stringProp> 

      </RandomVariableConfig> 

      <hashTree/> 

      <RandomVariableConfig guiclass="TestBeanGUI" 

testclass="RandomVariableConfig" testname="1M_I_ID" enabled="true"> 

        <stringProp name="maximumValue">1000000</stringProp> 

        <stringProp name="minimumValue">1</stringProp> 

        <stringProp name="outputFormat"></stringProp> 

        <boolProp name="perThread">true</boolProp> 

        <stringProp name="randomSeed"></stringProp> 

        <stringProp name="variableName">1M_I_ID</stringProp> 

      </RandomVariableConfig> 

      <hashTree/> 

      <ThreadGroup guiclass="ThreadGroupGui" testclass="ThreadGroup" 

testname="Load Cache" enabled="true"> 

        <elementProp name="ThreadGroup.main_controller" 

elementType="LoopController" guiclass="LoopControlPanel" 

testclass="LoopController" testname="Loop Controller" enabled="true"> 

          <boolProp name="LoopController.continue_forever">false</boolProp> 

          <stringProp name="LoopController.loops">15</stringProp> 

        </elementProp> 

        <stringProp name="ThreadGroup.num_threads">1000</stringProp> 

        <stringProp name="ThreadGroup.ramp_time">0</stringProp> 

        <longProp name="ThreadGroup.start_time">1309579657000</longProp> 

        <longProp name="ThreadGroup.end_time">1309579657000</longProp> 

        <boolProp name="ThreadGroup.scheduler">false</boolProp> 

        <stringProp name="ThreadGroup.on_sample_error">continue</stringProp> 

        <stringProp name="ThreadGroup.duration"></stringProp> 

        <stringProp name="ThreadGroup.delay"></stringProp> 

      </ThreadGroup> 

      <hashTree> 

        <JDBCSampler guiclass="TestBeanGUI" testclass="JDBCSampler" 

testname="Dummy Request" enabled="true"> 

          <stringProp name="dataSource">1M</stringProp> 

          <stringProp name="queryType">Select Statement</stringProp> 

          <stringProp name="query">SELECT c_fname,c_lname  

FROM public.customer WHERE c_id = ${1M_C_ID} 

FOR SHARE OF customer  NOWAIT</stringProp> 

          <stringProp name="queryArguments"></stringProp> 

          <stringProp name="queryArgumentsTypes"></stringProp> 

          <stringProp name="variableNames"></stringProp> 

          <stringProp name="TestPlan.comments">Simple query</stringProp> 

          <stringProp name="resultVariable"></stringProp> 

        </JDBCSampler> 

        <hashTree/> 
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        <JDBCSampler guiclass="TestBeanGUI" testclass="JDBCSampler" 

testname="Dummy Request" enabled="true"> 

          <stringProp name="dataSource">1M</stringProp> 

          <stringProp name="queryType">Select Statement</stringProp> 

          <stringProp name="query">SELECT * 

FROM authview.item, authview.author 

WHERE item.i_a_id = author.a_id  

AND item.i_id = ${1M_I_ID} 

FOR SHARE OF item, author  NOWAIT 

</stringProp> 

          <stringProp name="queryArguments"></stringProp> 

          <stringProp name="queryArgumentsTypes"></stringProp> 

          <stringProp name="variableNames"></stringProp> 

          <stringProp name="TestPlan.comments">Complex query</stringProp> 

          <stringProp name="resultVariable"></stringProp> 

        </JDBCSampler> 

        <hashTree/> 

      </hashTree> 

      <ThreadGroup guiclass="ThreadGroupGui" testclass="ThreadGroup" 

testname="Restart PostgreSQL" enabled="true"> 

        <elementProp name="ThreadGroup.main_controller" 

elementType="LoopController" guiclass="LoopControlPanel" 

testclass="LoopController" testname="Loop Controller" enabled="true"> 

          <boolProp name="LoopController.continue_forever">false</boolProp> 

          <stringProp name="LoopController.loops">1</stringProp> 

        </elementProp> 

        <stringProp name="ThreadGroup.num_threads">1</stringProp> 

        <stringProp name="ThreadGroup.ramp_time">1</stringProp> 

        <longProp name="ThreadGroup.start_time">1310052990000</longProp> 

        <longProp name="ThreadGroup.end_time">1310052990000</longProp> 

        <boolProp name="ThreadGroup.scheduler">false</boolProp> 

        <stringProp name="ThreadGroup.on_sample_error">continue</stringProp> 

        <stringProp name="ThreadGroup.duration"></stringProp> 

        <stringProp name="ThreadGroup.delay"></stringProp> 

      </ThreadGroup> 

      <hashTree> 

        <org.apache.jmeter.protocol.ssh.sampler.SSHSampler guiclass="TestBeanGUI" 

testclass="org.apache.jmeter.protocol.ssh.sampler.SSHSampler" testname="SSH 

Command" enabled="true"> 

          <stringProp name="command">/root/pgrestart.sh</stringProp> 

          <stringProp name="hostname">192.168.255.204</stringProp> 

          <stringProp name="password">8is2much</stringProp> 

          <intProp name="port">22</intProp> 

          <stringProp name="username">root</stringProp> 

        </org.apache.jmeter.protocol.ssh.sampler.SSHSampler> 

        <hashTree/> 
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        <JDBCSampler guiclass="TestBeanGUI" testclass="JDBCSampler" 

testname="Dummy Request" enabled="true"> 

          <stringProp name="dataSource">1M</stringProp> 

          <stringProp name="queryType">Select Statement</stringProp> 

          <stringProp name="query">SELECT c_fname,c_lname  

FROM public.customer WHERE c_id = ${1M_C_ID} 

FOR SHARE OF customer  NOWAIT</stringProp> 

          <stringProp name="queryArguments"></stringProp> 

          <stringProp name="queryArgumentsTypes"></stringProp> 

          <stringProp name="variableNames"></stringProp> 

          <stringProp name="resultVariable"></stringProp> 

        </JDBCSampler> 

        <hashTree/> 

        <JDBCSampler guiclass="TestBeanGUI" testclass="JDBCSampler" 

testname="Dummy Request" enabled="true"> 

          <stringProp name="dataSource">1M</stringProp> 

          <stringProp name="queryType">Select Statement</stringProp> 

          <stringProp name="query">SELECT c_fname,c_lname  

FROM public.customer WHERE c_id = ${1M_C_ID} 

FOR SHARE OF customer  NOWAIT</stringProp> 

          <stringProp name="queryArguments"></stringProp> 

          <stringProp name="queryArgumentsTypes"></stringProp> 

          <stringProp name="variableNames"></stringProp> 

          <stringProp name="resultVariable"></stringProp> 

        </JDBCSampler> 

        <hashTree/> 

        <JDBCSampler guiclass="TestBeanGUI" testclass="JDBCSampler" 

testname="Dummy Request" enabled="true"> 

          <stringProp name="dataSource">1M</stringProp> 

          <stringProp name="queryType">Select Statement</stringProp> 

          <stringProp name="query">SELECT c_fname,c_lname  

FROM public.customer WHERE c_id = ${1M_C_ID} 

FOR SHARE OF customer  NOWAIT</stringProp> 

          <stringProp name="queryArguments"></stringProp> 

          <stringProp name="queryArgumentsTypes"></stringProp> 

          <stringProp name="variableNames"></stringProp> 

          <stringProp name="resultVariable"></stringProp> 

        </JDBCSampler> 

        <hashTree/> 

      </hashTree> 

      <ThreadGroup guiclass="ThreadGroupGui" testclass="ThreadGroup" testname="1a" 

enabled="true"> 

        <elementProp name="ThreadGroup.main_controller" 

elementType="LoopController" guiclass="LoopControlPanel" 

testclass="LoopController" testname="Loop Controller" enabled="true"> 

          <boolProp name="LoopController.continue_forever">false</boolProp> 
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          <stringProp name="LoopController.loops">1</stringProp> 

        </elementProp> 

        <stringProp name="ThreadGroup.num_threads">${EBS}</stringProp> 

        <stringProp name="ThreadGroup.ramp_time">0</stringProp> 

        <longProp name="ThreadGroup.start_time">1309579657000</longProp> 

        <longProp name="ThreadGroup.end_time">1309579657000</longProp> 

        <boolProp name="ThreadGroup.scheduler">false</boolProp> 

        <stringProp name="ThreadGroup.on_sample_error">continue</stringProp> 

        <stringProp name="ThreadGroup.duration"></stringProp> 

        <stringProp name="ThreadGroup.delay"></stringProp> 

      </ThreadGroup> 

      <hashTree> 

        <JDBCSampler guiclass="TestBeanGUI" testclass="JDBCSampler" testname="1M-

1a" enabled="true"> 

          <stringProp name="dataSource">1M</stringProp> 

          <stringProp name="queryType">Select Statement</stringProp> 

          <stringProp name="query">SELECT c_fname,c_lname  

FROM authview.customer WHERE c_id = ${1M_C_ID} 

FOR SHARE OF customer  NOWAIT</stringProp> 

          <stringProp name="queryArguments"></stringProp> 

          <stringProp name="queryArgumentsTypes"></stringProp> 

          <stringProp name="variableNames"></stringProp> 

          <stringProp name="TestPlan.comments">Simple query</stringProp> 

          <stringProp name="resultVariable"></stringProp> 

        </JDBCSampler> 

        <hashTree/> 

      </hashTree> 

      <ThreadGroup guiclass="ThreadGroupGui" testclass="ThreadGroup" testname="2a" 

enabled="true"> 

        <elementProp name="ThreadGroup.main_controller" 

elementType="LoopController" guiclass="LoopControlPanel" 

testclass="LoopController" testname="Loop Controller" enabled="true"> 

          <boolProp name="LoopController.continue_forever">false</boolProp> 

          <stringProp name="LoopController.loops">1</stringProp> 

        </elementProp> 

        <stringProp name="ThreadGroup.num_threads">${EBS}</stringProp> 

        <stringProp name="ThreadGroup.ramp_time">0</stringProp> 

        <longProp name="ThreadGroup.start_time">1309579657000</longProp> 

        <longProp name="ThreadGroup.end_time">1309579657000</longProp> 

        <boolProp name="ThreadGroup.scheduler">false</boolProp> 

        <stringProp name="ThreadGroup.on_sample_error">continue</stringProp> 

        <stringProp name="ThreadGroup.duration"></stringProp> 

        <stringProp name="ThreadGroup.delay"></stringProp> 

      </ThreadGroup> 

      <hashTree> 
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        <JDBCSampler guiclass="TestBeanGUI" testclass="JDBCSampler" testname="1M-

2a" enabled="true"> 

          <stringProp name="dataSource">1M</stringProp> 

          <stringProp name="queryType">Select Statement</stringProp> 

          <stringProp name="query">SELECT * 

FROM authview.item, authview.author 

WHERE item.i_a_id = author.a_id  

AND item.i_id = ${1M_I_ID} 

FOR SHARE OF item, author  NOWAIT 

</stringProp> 

          <stringProp name="queryArguments"></stringProp> 

          <stringProp name="queryArgumentsTypes"></stringProp> 

          <stringProp name="variableNames"></stringProp> 

          <stringProp name="TestPlan.comments">Complex query</stringProp> 

          <stringProp name="resultVariable"></stringProp> 

        </JDBCSampler> 

        <hashTree/> 

      </hashTree> 

    </hashTree> 

  </hashTree> 

</jmeterTestPlan>
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Appendix I 

TPC-W Benchmark Graphs for 100,000 Items 
 

 
Figure 37. TPC-W Authorization View Query Transactions - 100,000 Items 
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Figure 38. TPC-W Authorization View Update Transactions - 100,000 Items 

 

 

 

 
Figure 39. TPC-W Hippocratic Database Query Transactions - 100,000 Items 
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Figure 40. TPC-W Hippocratic Database Update Transactions - 100,000 Items 

 

 

 

 
Figure 41. TPC-W Label Based Access Control Query Transactions - 100,000 Items 
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Figure 42. TPC-W Label Based Access Control Update Transactions - 100,000 Items 

 

 

 

 
Figure 43. TPC-W Transparent Query Rewrite Query Transactions - 100,000 Items 
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Figure 44. TPC-W Transparent Query Rewrite Update Transactions - 100,000 Items 
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Appendix J 

TPC-W Benchmark Graphs for 1 Million Items 

 

 
Figure 45. TPC-W Authorization View Query Transactions – One Million Items 
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Figure 46. TPC-W Authorization View Update Transactions – One Million Items 

 

 

 

 
Figure 47. TPC-W Hippocratic Database Query Transactions – One Million Items 
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Figure 48. TPC-W Hippocratic Database Update Transactions – One Million Items 
 

 

 

 
Figure 49. TPC-W Label Based Access Control Query Transactions – One Million Items 
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Figure 50. TPC-W Label Based Access Control Update Transactions – One Million Items 

 

 
 

 
Figure 51. TPC-W Transparent Query Rewrite Query Transactions – One Million Items 
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Figure 52. TPC-W Transparent Query Rewrite Update Transactions – One Million Items 
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Appendix K 

TPC-W Benchmark Graphs for 10 Million Items 

  
Figure 53. TPC-W Authorization View Query Transactions – 10 Million Items 
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Figure 54. TPC-W Authorization View Update Transactions – 10 Million Items 

 

 

 

 
Figure 55. TPC-W Hippocratic Database Query Transactions – 10 Million Items 
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Figure 56. TPC-W Hippocratic Database Update Transactions – 10 Million Items 

 

 

 

 
Figure 57. TPC-W Label Based Access Control Query Transactions – 10 Million Items 
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Figure 58. TPC-W Label Based Access Control Update Transactions – 10 Million Items 

 

 

 

 
Figure 59. TPC-W Transparent Query Rewrite Query Transactions – 10 Million Items 
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Figure 60. TPC-W Transparent Query Rewrite Update Transactions – 10 Million Items 
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Appendix L 

Wildlife Data Benchmark Graphs 

 
Figure 61. Wildlife Data Authorization Views - Simple Query Transactions 
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Figure 62. Wildlife Data Authorization Views - Complex Query Transactions 

 

 

 

  
Figure 63. Wildlife Data Hippocratic Database - Simple Query Transactions 
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Figure 64. Wildlife Data Hippocratic Database - Complex Query Transactions 

 

 

 

 
Figure 65. Wildlife Data Label Based Access Control - Simple Query Transactions 
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Figure 66. Wildlife Data Label Based Access Control - Complex Query Transactions 

 

 

 

 
Figure 67. Wildlife Data Transparent Query Rewrite - Simple Query Transactions 
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Figure 68. Wildlife Data Transparent Query Rewrite - Complex Query Transactions 
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Appendix M 

TPC-W Benchmark Results for 100,000 Items 
 

 

Table 12. TPC-W Authorization View – 100,000 Items – 800 EBS’s 

 
 

 

Table 13. TPC-W Authorization View – 100,000 Items – 1600 EBS’s  

  
 

 

 

  

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 877 SST 7169266.92

1  1 -1 -1 -1 -1  1  1 1761 SSY 49964480.00

1 -1  1 -1 -1  1 -1  1 930 SS0 42795213.08

1  1  1 -1  1 -1 -1 -1 2207 Se 34.64

1 -1 -1  1 1 -1 -1  1 582 Sqi 7.07

1  1 -1  1 -1 1 -1 -1 1850

1 -1  1  1 -1 -1  1 -1 908

1  1  1  1  1  1  1  1 1567

10682.72 4087.597 541.956 -866.931 -216.924 -232.337 -455.299 -1002.38 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 1153 SST 22948905.21

1  1 -1 -1 -1 -1  1  1 2975 SSY 160284725.00

1 -1  1 -1 -1  1 -1  1 2216 SS0 137335819.79

1  1  1 -1  1 -1 -1 -1 3842 Se 57.23

1 -1 -1  1 1 -1 -1  1 1185 Sqi 11.68

1  1 -1  1 -1 1 -1 -1 3094

1 -1  1  1 -1 -1  1 -1 1423

1  1  1  1  1  1  1  1 3248

19137.11 7182.771 2323.486 -1235.89 -280.295 287.0689 -1538.1 111.4433 Totals
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Table 14. TPC-W Authorization View – 100,000 Items – 2400 EBS’s 

  
 

 

Table 15. TPC-W Authorization View – 100,000 Items – 3200 EBS’s 

  
 

 

Table 16. TPC-W Authorization View – 100,000 Items – 4000 EBS’s 

  
 

 

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 1651 SST 48708066.79

1  1 -1 -1 -1 -1  1  1 3995 SSY 324853556.00

1 -1  1 -1 -1  1 -1  1 3021 SS0 276145489.21

1  1  1 -1  1 -1 -1 -1 5852 Se 71.01

1 -1 -1  1 1 -1 -1  1 1556 Sqi 14.50

1  1 -1  1 -1 1 -1 -1 4298

1 -1  1  1 -1 -1  1 -1 2279

1  1  1  1  1  1  1  1 4485

27136.47 10123.27 4136.222 -1900.02 -49.79 -228.22 -2317.56 -1023.9 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 2349 SST 80923582.59

1  1 -1 -1 -1 -1  1  1 5531 SSY 597571422.00

1 -1  1 -1 -1  1 -1  1 4285 SS0 516647839.41

1  1  1 -1  1 -1 -1 -1 7803 Se 60.19

1 -1 -1  1 1 -1 -1  1 2274 Sqi 12.29

1  1 -1  1 -1 1 -1 -1 5713

1 -1  1  1 -1 -1  1 -1 3163

1  1  1  1  1  1  1  1 6000

37117.75 12976.85 5384.143 -2817.8 -265 -423.161 -3030.46 -938.592 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 2580 SST 132550926.86

1  1 -1 -1 -1 -1  1  1 6932 SSY 894058242.00

1 -1  1 -1 -1  1 -1  1 4986 SS0 761507315.14

1  1  1 -1  1 -1 -1 -1 9584 Se 75.97

1 -1 -1  1 1 -1 -1  1 2694 Sqi 15.51

1  1 -1  1 -1 1 -1 -1 7015

1 -1  1  1 -1 -1  1 -1 3824

1  1  1  1  1  1  1  1 7448

45063.14 16894.6 6622.579 -3100.83 -451.325 -1006.34 -3495.19 -942.825 Totals
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Table 17. TPC-W Hippocratic Database – 100,000 Items – 800 EBS’s   

 
 

 

Table 18. TPC-W Hippocratic Database – 100,000 Items – 1600 EBS’s   

 
 

 

Table 19. TPC-W Hippocratic Database – 100,000 Items – 2400 EBS’s  

  
 

 

 

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 877 SST 6070678.91

1  1 -1 -1 -1 -1  1  1 1613 SSY 46316346.33

1 -1  1 -1 -1  1 -1  1 930 SS0 40245667.42

1  1  1 -1  1 -1 -1 -1 2028 Se 34.38

1 -1 -1  1 1 -1 -1  1 582 Sqi 7.02

1  1 -1  1 -1 1 -1 -1 1894

1 -1  1  1 -1 -1  1 -1 908

1  1  1  1  1  1  1  1 1526

10359.62 3764.497 427.172 -538.739 -331.708 95.85499 -509.088 -1056.17 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 1153 SST 21620653.37

1  1 -1 -1 -1 -1  1  1 2860 SSY 154416176.00

1 -1  1 -1 -1  1 -1  1 2216 SS0 132795522.63

1  1  1 -1  1 -1 -1 -1 3812 Se 42.29

1 -1 -1  1 1 -1 -1  1 1185 Sqi 8.63

1  1 -1  1 -1 1 -1 -1 3249

1 -1  1  1 -1 -1  1 -1 1423

1  1  1  1  1  1  1  1 2921

18818.11 6863.777 1925.36 -1263.65 -678.421 259.3119 -2104.52 -454.976 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 1651 SST 46902982.62

1  1 -1 -1 -1 -1  1  1 4031 SSY 323133974.00

1 -1  1 -1 -1  1 -1  1 3021 SS0 276230991.38

1  1  1 -1  1 -1 -1 -1 5642 Se 50.37

1 -1 -1  1 1 -1 -1  1 1556 Sqi 10.28

1  1 -1  1 -1 1 -1 -1 4510

1 -1  1  1 -1 -1  1 -1 2279

1  1  1  1  1  1  1  1 4451

27140.67 10127.47 3645.373 -1548.19 -540.64 123.6049 -2315.77 -1022.11 Totals
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Table 20. TPC-W Hippocratic Database – 100,000 Items – 3200 EBS’s 

 

  
 

 

Table 21, TPC-W Hippocratic Database – 100,000 Items – 4000 EBS’s 

 

 

 

Table 22. TPC-W Label Based Access Control – 100,000 Items – 800 EBS’s 

  
 

 

 

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 2349 SST 64491625.64

1  1 -1 -1 -1 -1  1  1 5157 SSY 524342516.30

1 -1  1 -1 -1  1 -1  1 4285 SS0 459850890.66

1  1  1 -1  1 -1 -1 -1 7485 Se 33.73

1 -1 -1  1 1 -1 -1  1 2274 Sqi 6.88

1  1 -1  1 -1 1 -1 -1 5162

1 -1  1  1 -1 -1  1 -1 3163

1  1  1  1  1  1  1  1 5144

35018.12 10877.23 5134.472 -3533.91 -514.671 -1139.27 -3392.52 -1300.66 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 2580 SST 116141360.54

1  1 -1 -1 -1 -1  1  1 6785 SSY 809810975.00

1 -1  1 -1 -1  1 -1  1 4986 SS0 693669614.46

1  1  1 -1  1 -1 -1 -1 9548 Se 62.36

1 -1 -1  1 1 -1 -1  1 2694 Sqi 12.73

1  1 -1  1 -1 1 -1 -1 6154

1 -1  1  1 -1 -1  1 -1 3824

1  1  1  1  1  1  1  1 6438

43009.13 14840.6 6583.92 -4786.99 -489.984 -2692.5 -3755.18 -1202.82 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 877 SST 28639504.09

1  1 -1 -1 -1 -1  1  1 2824 SSY 114908075.00

1 -1  1 -1 -1  1 -1  1 930 SS0 86268570.91

1  1  1 -1  1 -1 -1 -1 3419 Se 29.53

1 -1 -1  1 1 -1 -1  1 582 Sqi 6.03

1  1 -1  1 -1 1 -1 -1 2864

1 -1  1  1 -1 -1  1 -1 908

1  1  1  1  1  1  1  1 2763

15167.38 8572.258 873.5342 -933.223 114.6539 -298.63 -421.178 -968.261 Totals
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Table 23. TPC-W Label Based Access Control – 100,000 Items – 1600 EBS’s 

  
 

 

Table 24. TPC-W Label Based Access Control – 100,000 Items – 2400 EBS’s 

  
 

 

Table 25. TPC-W Label Based Access Control – 100,000 Items – 3200 EBS’s 

  
 

 

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 1153 SST 133626515.24

1  1 -1 -1 -1 -1  1  1 5521 SSY 471981957.00

1 -1  1 -1 -1  1 -1  1 2216 SS0 338355441.76

1  1  1 -1  1 -1 -1 -1 6828 Se 40.05

1 -1 -1  1 1 -1 -1  1 1185 Sqi 8.17

1  1 -1  1 -1 1 -1 -1 4865

1 -1  1  1 -1 -1  1 -1 1423

1  1  1  1  1  1  1  1 6846

30038 18083.66 4589.587 -1399.11 1985.806 123.8519 -150.559 1498.987 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 1651 SST 229313142.69

1  1 -1 -1 -1 -1  1  1 7265 SSY 847369950.00

1 -1  1 -1 -1  1 -1  1 3021 SS0 618056807.31

1  1  1 -1  1 -1 -1 -1 9725 Se 50.59

1 -1 -1  1 1 -1 -1  1 1556 Sqi 10.33

1  1 -1  1 -1 1 -1 -1 6654

1 -1  1  1 -1 -1  1 -1 2279

1  1  1  1  1  1  1  1 8447

40597.43 23584.23 6344.707 -2724.95 2158.695 -1053.16 -1313.88 -20.2266 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 2349 SST 412561435.04

1  1 -1 -1 -1 -1  1  1 9347 SSY 1549254372.00

1 -1  1 -1 -1  1 -1  1 4285 SS0 1136692936.96

1  1  1 -1  1 -1 -1 -1 13833 Se 50.10

1 -1 -1  1 1 -1 -1  1 2274 Sqi 10.23

1  1 -1  1 -1 1 -1 -1 8784

1 -1  1  1 -1 -1  1 -1 3163

1  1  1  1  1  1  1  1 11022

55056.16 30915.26 9548.824 -4570.88 3899.681 -2176.24 -3293.01 -1201.15 Totals
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Table 26. TPC-W Label Based Access Control – 100,000 Items – 4000 EBS’s 

  
 

 

Table 27. TPC-W Transparent Query Rewrite – 100,000 Items – 800 EBS’s 

  
 

 

Table 28. TPC-W Transparent Query Rewrite – 100,000 Items – 1600 EBS’s  

  
 

 

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 2580 SST 666198516.09

1  1 -1 -1 -1 -1  1  1 13320 SSY 2424978684.00

1 -1  1 -1 -1  1 -1  1 4986 SS0 1758780167.91

1  1  1 -1  1 -1 -1 -1 16440 Se 65.25

1 -1 -1  1 1 -1 -1  1 2694 Sqi 13.32

1  1 -1  1 -1 1 -1 -1 10970

1 -1  1  1 -1 -1  1 -1 3824

1  1  1  1  1  1  1  1 13669

68484.16 40315.63 9356.271 -6167.95 2282.367 -4073.46 -1697.55 854.8184 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 877 SST 132233180.70

1  1 -1 -1 -1 -1  1  1 1960 SSY 177881808.00

1 -1  1 -1 -1  1 -1  1 930 SS0 45648627.30

1  1  1 -1  1 -1 -1 -1 2013 Se 33.50

1 -1 -1  1 1 -1 -1  1 582 Sqi 6.84

1  1 -1  1 -1 1 -1 -1 2057

1 -1  1  1 -1 -1  1 -1 908

1  1  1  1  1  1  1  1 1706

11033.12 4437.991 80.89547 -527.971 -677.985 106.6224 -129.256 -676.338 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 1153 SST 35329818.94

1  1 -1 -1 -1 -1  1  1 3732 SSY 196543248.00

1 -1  1 -1 -1  1 -1  1 2216 SS0 161213429.06

1  1  1 -1  1 -1 -1 -1 4613 Se 44.20

1 -1 -1  1 1 -1 -1  1 1185 Sqi 9.02

1  1 -1  1 -1 1 -1 -1 3392

1 -1  1  1 -1 -1  1 -1 1423

1  1  1  1  1  1  1  1 3020

20734.09 8779.754 1810.197 -2695.42 -793.583 -1172.46 -2077.44 -427.897 Totals
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Table 29. TPC-W Transparent Query Rewrite – 100,000 Items – 2400 EBS’s 

  
 

 

Table 30. TPC-W Transparent Query Rewrite – 100,000 Items – 3200 EBS’s 

  
 

 

Table 31. TPC-W Transparent Query Rewrite – 100,000 Items – 4000 EBS’s 

  
 

 

 

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 1651 SST 48745669.72

1  1 -1 -1 -1 -1  1  1 4218 SSY 333291238.00

1 -1  1 -1 -1  1 -1  1 3021 SS0 284545568.28

1  1  1 -1  1 -1 -1 -1 5575 Se 46.30

1 -1 -1  1 1 -1 -1  1 1556 Sqi 9.45

1  1 -1  1 -1 1 -1 -1 4638

1 -1  1  1 -1 -1  1 -1 2279

1  1  1  1  1  1  1  1 4609

27546.11 10532.91 3420.798 -1382.31 -765.214 289.4847 -2031.74 -738.089 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 2349 SST 71244520.41

1  1 -1 -1 -1 -1  1  1 5881 SSY 582817240.00

1 -1  1 -1 -1  1 -1  1 4285 SS0 511572719.59

1  1  1 -1  1 -1 -1 -1 6891 Se 33.16

1 -1 -1  1 1 -1 -1  1 2274 Sqi 6.77

1  1 -1  1 -1 1 -1 -1 5925

1 -1  1  1 -1 -1  1 -1 3163

1  1  1  1  1  1  1  1 6167

36935 12794.1 4076.639 -1876.6 -1572.5 518.0404 -1814 277.8694 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 2580 SST 136272394.03

1  1 -1 -1 -1 -1  1  1 7029 SSY 917010195.00

1 -1  1 -1 -1  1 -1  1 4986 SS0 780737800.97

1  1  1 -1  1 -1 -1 -1 9454 Se 57.49

1 -1 -1  1 1 -1 -1  1 2694 Sqi 11.74

1  1 -1  1 -1 1 -1 -1 7382

1 -1  1  1 -1 -1  1 -1 3824

1  1  1  1  1  1  1  1 7679

45628.58 17460.05 6259.298 -2469.57 -814.605 -375.081 -3404.53 -852.16 Totals
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Appendix N 

TPC-W Benchmark Results for One Million Items 
 

 

Table 32. TPC-W Authorization View – One Million Items – 800 EBS’s 

 

  

 

Table 33. TPC-W Authorization View – One Million  Items – 1600 EBS’s 

  

 

  

  

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 1629 SST 1563979

1  1 -1 -1 -1 -1  1  1 1784 SSY 80422008

1 -1  1 -1 -1  1 -1  1 2051 SS0 78858029

1  1  1 -1  1 -1 -1 -1 2235 Se 41.92

1 -1 -1  1 1 -1 -1  1 1394 Sqi 8.558

1  1 -1  1 -1 1 -1 -1 1860

1 -1  1  1 -1 -1  1 -1 1599

1  1  1  1  1  1  1  1 1950

14501.31 1157.018 1168.305 -895.147 -86.4755 478.6679 -577.175 -144.816 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 3082 SST 5160174

1  1 -1 -1 -1 -1  1  1 3093 SSY 262520791

1 -1  1 -1 -1  1 -1  1 3963 SS0 257360617

1  1  1 -1  1 -1 -1 -1 4138 Se 50.59

1 -1 -1  1 1 -1 -1  1 2774 Sqi 10.326

1  1 -1  1 -1 1 -1 -1 2968

1 -1  1  1 -1 -1  1 -1 3045

1  1  1  1  1  1  1  1 3135

26197.23 470.4182 2362.821 -2355.03 59.9126 99.04876 -1488.38 -268.765 Totals



 

 

171 

Table 34. TPC-W Authorization View – One Million Items – 2400 EBS’s  

 
 

 

Table 35. TPC-W Authorization View – One Million Items – 3200 EBS’s 

  

 

Table 36. TPC-W Authorization View – One Million Items – 4000 EBS’s  

  

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 3807 SST 18540123

1  1 -1 -1 -1 -1  1  1 4236 SSY 546341469

1 -1  1 -1 -1  1 -1  1 5901 SS0 527801346

1  1  1 -1  1 -1 -1 -1 5896 Se 68.65

1 -1 -1  1 1 -1 -1  1 3492 Sqi 14.014

1  1 -1  1 -1 1 -1 -1 4228

1 -1  1  1 -1 -1  1 -1 4513

1  1  1  1  1  1  1  1 5444

37516.27 2091.312 5991.098 -2162.66 -238.583 1241.933 -1516.75 628.826 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 4912 SST 29550838

1  1 -1 -1 -1 -1  1  1 5571 SSY 943321240

1 -1  1 -1 -1  1 -1  1 7577 SS0 913770402

1  1  1 -1  1 -1 -1 -1 8198 Se 60.43

1 -1 -1  1 1 -1 -1  1 4964 Sqi 12.336

1  1 -1  1 -1 1 -1 -1 5749

1 -1  1  1 -1 -1  1 -1 5913

1  1  1  1  1  1  1  1 6479

49363.16 2631.031 6972.907 -3153.17 -256.774 71.94694 -3613.32 -181.649 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 6231 SST 35092403

1  1 -1 -1 -1 -1  1  1 6706 SSY 1473006520

1 -1  1 -1 -1  1 -1  1 9579 SS0 1437914117

1  1  1 -1  1 -1 -1 -1 9600 Se 52.96

1 -1 -1  1 1 -1 -1  1 6868 Sqi 10.810

1  1 -1  1 -1 1 -1 -1 6962

1 -1  1  1 -1 -1  1 -1 8037

1  1  1  1  1  1  1  1 7941

61922.84 493.5343 8389.967 -2309.65 -645.18 -497.733 -4093.45 264.8428 Totals
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Table 37. TPC-W Hippocratic Database – One Million Items – 800 EBS’s 

  

 

Table 38. TPC-W Hippocratic Database – One Million Items – 1600 EBS’s 

  

 

Table 39. TPC-W Hippocratic Database – One Million Items – 2400 EBS’s 

  

 

 

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 1629 SST 1886683

1  1 -1 -1 -1 -1  1  1 1731 SSY 76657476

1 -1  1 -1 -1  1 -1  1 2051 SS0 74770793

1  1  1 -1  1 -1 -1 -1 2341 Se 43.52

1 -1 -1  1 1 -1 -1  1 1394 Sqi 8.884

1  1 -1  1 -1 1 -1 -1 1752

1 -1  1  1 -1 -1  1 -1 1599

1  1  1  1  1  1  1  1 1624

14120.51 776.2144 1109.939 -1383.32 -144.842 -9.50224 -953.659 -521.3 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 3082 SST 5555757

1  1 -1 -1 -1 -1  1  1 3115 SSY 264937966

1 -1  1 -1 -1  1 -1  1 3963 SS0 259382209

1  1  1 -1  1 -1 -1 -1 4219 Se 41.48

1 -1 -1  1 1 -1 -1  1 2774 Sqi 8.467

1  1 -1  1 -1 1 -1 -1 2970

1 -1  1  1 -1 -1  1 -1 3045

1  1  1  1  1  1  1  1 3133

26299.92 573.1078 2417.462 -2457.75 114.5539 -3.67162 -1551.08 -331.462 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 3807 SST 17456579

1  1 -1 -1 -1 -1  1  1 4249 SSY 532521434

1 -1  1 -1 -1  1 -1  1 5901 SS0 515064855

1  1  1 -1  1 -1 -1 -1 6031 Se 60.67

1 -1 -1  1 1 -1 -1  1 3492 Sqi 12.385

1  1 -1  1 -1 1 -1 -1 4345

1 -1  1  1 -1 -1  1 -1 4513

1  1  1  1  1  1  1  1 4723

37060.85 1635.892 5274.966 -2914.27 -954.715 490.3283 -2477.39 -331.812 Totals



 

 

173 

Table 40. TPC-W Hippocratic Database – One Million Items – 3200 EBS’s 

  

 

Table 41. TPC-W Hippocratic Database – One Million Items – 4000 EBS’s 

  

 

Table 42. TPC-W Label Based Access Control – One Million Items – 800 EBS’s 

  

 

 

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 4912 SST 27862284

1  1 -1 -1 -1 -1  1  1 5549 SSY 932684574

1 -1  1 -1 -1  1 -1  1 7577 SS0 904822290

1  1  1 -1  1 -1 -1 -1 8057 Se 46.37

1 -1 -1  1 1 -1 -1  1 4964 Sqi 9.465

1  1 -1  1 -1 1 -1 -1 5732

1 -1  1  1 -1 -1  1 -1 5913

1  1  1  1  1  1  1  1 6417

49120.87 2388.741 6807.192 -3069.43 -422.489 155.6931 -3539.49 -107.822 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 6231 SST 39201059

1  1 -1 -1 -1 -1  1  1 6754 SSY 1509066531

1 -1  1 -1 -1  1 -1  1 9579 SS0 1469865472

1  1  1 -1  1 -1 -1 -1 10057 Se 59.23

1 -1 -1  1 1 -1 -1  1 6868 Sqi 12.091

1  1 -1  1 -1 1 -1 -1 7242

1 -1  1  1 -1 -1  1 -1 8037

1  1  1  1  1  1  1  1 7840

62607.04 1177.736 8419.024 -2634.77 -616.122 -822.85 -4883.16 -524.866 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 1629 SST 15139957

1  1 -1 -1 -1 -1  1  1 2857 SSY 153580603

1 -1  1 -1 -1  1 -1  1 2051 SS0 138440646

1  1  1 -1  1 -1 -1 -1 3695 Se 39.09

1 -1 -1  1 1 -1 -1  1 1394 Sqi 7.978

1  1 -1  1 -1 1 -1 -1 2803

1 -1  1  1 -1 -1  1 -1 1599

1  1  1  1  1  1  1  1 3186

19213.93 5869.634 1848.702 -1249.52 593.9212 124.2952 -671.58 -239.221 Totals
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Table 43. . TPC-W Label Based Access Control – One Million Items – 1600 EBS’s 

  

 

Table 44. TPC-W Label Based Access Control – One Million Items – 2400 EBS’s 

  

 

Table 45. TPC-W Label Based Access Control – One Million Items – 3200 EBS’s 

  

 

 

 

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 3082 SST 48630622

1  1 -1 -1 -1 -1  1  1 5167 SSY 440133427

1 -1  1 -1 -1  1 -1  1 3963 SS0 391502805

1  1  1 -1  1 -1 -1 -1 7273 Se 59.57

1 -1 -1  1 1 -1 -1  1 2774 Sqi 12.159

1  1 -1  1 -1 1 -1 -1 3068

1 -1  1  1 -1 -1  1 -1 3045

1  1  1  1  1  1  1  1 3940

32311.1 6584.291 4129.036 -6658.2 1826.128 -4204.13 -1843.43 -623.813 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 3807 SST 142845245

1  1 -1 -1 -1 -1  1  1 7167 SSY 1149612762

1 -1  1 -1 -1  1 -1  1 5901 SS0 1006767517

1  1  1 -1  1 -1 -1 -1 10683 Se 64.66

1 -1 -1  1 1 -1 -1  1 3492 Sqi 13.199

1  1 -1  1 -1 1 -1 -1 6755

1 -1  1  1 -1 -1  1 -1 4513

1  1  1  1  1  1  1  1 9497

51814.22 16389.27 9372.868 -3300.46 3143.187 104.1331 -1846.84 298.7365 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 4912 SST 303396900

1  1 -1 -1 -1 -1  1  1 9847 SSY 2132259835

1 -1  1 -1 -1  1 -1  1 7577 SS0 1828862935

1  1  1 -1  1 -1 -1 -1 15649 Se 44.21

1 -1 -1  1 1 -1 -1  1 4964 Sqi 9.024

1  1 -1  1 -1 1 -1 -1 8511

1 -1  1  1 -1 -1  1 -1 5913

1  1  1  1  1  1  1  1 12462

69835.29 23103.17 13367.58 -6135.23 6137.897 -2910.11 -3567.15 -135.485 Totals
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Table 46. TPC-W Label Based Access Control – One Million Items – 4000 EBS’s 

  

 
Table 47. TPC-W Transparent Query Rewrite – One Million Items – 800 EBS’s 

  

 

Table 48. TPC-W Transparent Query Rewrite – One Million Items – 1600 EBS’s 

  

 

 

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 6231 SST 348819759

1  1 -1 -1 -1 -1  1  1 11088 SSY 3197112903

1 -1  1 -1 -1  1 -1  1 9579 SS0 2848293144

1  1  1 -1  1 -1 -1 -1 17612 Se 57.59

1 -1 -1  1 1 -1 -1  1 6868 Sqi 11.755

1  1 -1  1 -1 1 -1 -1 12205

1 -1  1  1 -1 -1  1 -1 8037

1  1  1  1  1  1  1  1 15533

87151.87 25722.57 14370.2 -1868.54 5335.051 -56.618 -5375.76 -1017.47 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 1629 SST 1658357

1  1 -1 -1 -1 -1  1  1 1967 SSY 81068792

1 -1  1 -1 -1  1 -1  1 2051 SS0 79410435

1  1  1 -1  1 -1 -1 -1 2236 Se 51.46

1 -1 -1  1 1 -1 -1  1 1394 Sqi 10.505

1  1 -1  1 -1 1 -1 -1 1945

1 -1  1  1 -1 -1  1 -1 1599

1  1  1  1  1  1  1  1 1732

14552.02 1207.721 682.8384 -1213.66 -571.942 160.1511 -698.473 -266.114 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 3082 SST 5329042

1  1 -1 -1 -1 -1  1  1 3400 SSY 274063588

1 -1  1 -1 -1  1 -1  1 3963 SS0 268734546

1  1  1 -1  1 -1 -1 -1 4242 Se 43.33

1 -1 -1  1 1 -1 -1  1 2774 Sqi 8.844

1  1 -1  1 -1 1 -1 -1 3116

1 -1  1  1 -1 -1  1 -1 3045

1  1  1  1  1  1  1  1 3149

26769.86 1043.047 2026.111 -2605.05 -276.797 -150.975 -1418.56 -198.95 Totals
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Table 49. TPC-W Transparent Query Rewrite – One Million Items – 2400 EBS’s 

  

 

Table 50. TPC-W Transparent Query Rewrite – One Million Items – 3200 EBS’s 

  

 

Table 51. TPC-W Transparent Query Rewrite – One Million Items – 4000 EBS’s 

  

 

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 3807 SST 16839544

1  1 -1 -1 -1 -1  1  1 4522 SSY 561100406

1 -1  1 -1 -1  1 -1  1 5901 SS0 544260862

1  1  1 -1  1 -1 -1 -1 6019 Se 64.97

1 -1 -1  1 1 -1 -1  1 3492 Sqi 13.263

1  1 -1  1 -1 1 -1 -1 4827

1 -1  1  1 -1 -1  1 -1 4513

1  1  1  1  1  1  1  1 5017

38096.75 2671.795 4801.995 -2400.15 -1427.69 1004.445 -2380.08 -234.501 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 4912 SST 29827959

1  1 -1 -1 -1 -1  1  1 6125 SSY 967974963

1 -1  1 -1 -1  1 -1  1 7577 SS0 938147004

1  1  1 -1  1 -1 -1 -1 8371 Se 43.60

1 -1 -1  1 1 -1 -1  1 4964 Sqi 8.901

1  1 -1  1 -1 1 -1 -1 5939

1 -1  1  1 -1 -1  1 -1 5913

1  1  1  1  1  1  1  1 6217

50017.25 3285.126 6139.513 -3952.57 -1090.17 -727.45 -3683.8 -252.135 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 6231 SST 35370069

1  1 -1 -1 -1 -1  1  1 7377 SSY 1563181275

1 -1  1 -1 -1  1 -1  1 9579 SS0 1527811206

1  1  1 -1  1 -1 -1 -1 10065 Se 53.57

1 -1 -1  1 1 -1 -1  1 6868 Sqi 10.935

1  1 -1  1 -1 1 -1 -1 7548

1 -1  1  1 -1 -1  1 -1 8037

1  1  1  1  1  1  1  1 8125

63829.17 2399.87 7782.279 -2674.64 -1252.87 -862.719 -4289.77 68.52138 Totals
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Appendix O 

TPC-W Benchmark Results for 10 Million Items 
 

 

Table 52. TPC-W Authorization View – 10 Million Items – 800 EBS’s 

  
 

 

Table 53. TPC-W Authorization View – 10 Million Items – 1600 EBS’s 

  
 

 

Table 54. TPC-W Authorization View – 10 Million Items – 2400 EBS’s 

  
 

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1 1 1 1 -1 1957 SST 23691323.40

1  1 -1 -1 -1 -1  1  1 2477 SSY 127591594.00

1 -1  1 -1 -1  1 -1  1 3149 SS0 103900270.60

1  1  1 -1  1 -1 -1 -1 3676 Se 46.01

1 -1 -1  1 1 -1 -1  1 533 Sqi 9.39

1  1 -1  1 -1 1 -1 -1 2068

1 -1  1  1 -1 -1  1 -1 808

1  1  1  1  1  1  1  1 1977

16645.34 3750.867 2574.525 -5874.01 -360.33 1657.485 -2206.42 -374.159 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 3570 SST -24690177.75

1  1 -1 -1 -1 -1  1  1 3805 SSY 373114808.53

1 -1  1 -1 -1  1 -1  1 5558 SS0 397804986.28

1  1  1 -1  1 -1 -1 -1 5512 Se 40.52

1 -1 -1  1 1 -1 -1  1 3264 Sqi 8.27

1  1 -1  1 -1 1 -1 -1 3449

1 -1  1  1 -1 -1  1 -1 3649

1  1  1  1  1  1  1  1 3763

32570.13 487.5022 4394.219 -4320.84 -350.54 109.3939 -2995.91 210.0333 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 4988 SST 34884966.46

1  1 -1 -1 -1 -1  1  1 5408 SSY 880997765.00

1 -1  1 -1 -1  1 -1  1 7829 SS0 846112798.54

1  1  1 -1  1 -1 -1 -1 8127 Se 43.43

1 -1 -1  1 1 -1 -1  1 4886 Sqi 8.87

1  1 -1  1 -1 1 -1 -1 5315

1 -1  1  1 -1 -1  1 -1 5210

1  1  1  1  1  1  1  1 5738

47500.53 1675.533 6307.201 -5203.66 -22.3987 240.2942 -4813.87 219.5486 Totals
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Table 55. TPC-W Authorization View – 10 Million Items – 3200 EBS’s 

  
 

 

Table 56. TPC-W Authorization View – 10 Million Items – 4000 EBS’s 

  
 

 

Table 57. TPC-W Hippocratic Database – 10 Million Items – 800 EBS’s 

   

 

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 6660 SST 53780380.66

1  1 -1 -1 -1 -1  1  1 7173 SSY 1486221413.00

1 -1  1 -1 -1  1 -1  1 10337 SS0 1432441032.34

1  1  1 -1  1 -1 -1 -1 10051 Se 65.58

1 -1 -1  1 1 -1 -1  1 5965 Sqi 13.39

1  1 -1  1 -1 1 -1 -1 7179

1 -1  1  1 -1 -1  1 -1 6819

1  1  1  1  1  1  1  1 7621

61804.88 2243.515 7851.309 -6638.31 -1210.75 1790.667 -5259.8 386.3932 Totals

I A B C AB AC BC ABC Mean ÿ
Variation Sum of Squares

1 -1 -1 -1  1  1  1 -1 7973 SST 76514326.77

1  1 -1 -1 -1 -1  1  1 8535 SSY 2176150235.00

1 -1  1 -1 -1  1 -1  1 12216 SS0 2099635908.23

1 1 1 -1  1 -1 -1 -1 12453 Se 47.70

1 -1 -1  1 1 -1 -1  1 7648 Sqi 9.74

1  1 -1  1 -1 1 -1 -1 8158

1 -1  1  1 -1 -1  1 -1 8469

1  1  1  1  1  1  1  1 9375

74826.66 2214.349 10198.88 -7525.87 71.51849 617.6432 -6121.82 720.2128 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1 1 1 1 -1 1957 SST 22559551.83

1  1 -1 -1 -1 -1  1  1 2344 SSY 128008921.00

1 -1  1 -1 -1  1 -1  1 3149 SS0 105449369.17

1  1  1 -1  1 -1 -1 -1 3547 Se 46.15

1 -1 -1  1 1 -1 -1  1 533 Sqi 9.42

1  1 -1  1 -1 1 -1 -1 2419

1 -1  1  1 -1 -1  1 -1 808

1  1  1  1  1  1  1  1 2012

16768.97 3874.495 2262.92 -5225.58 -671.936 2305.908 -2525.7 -693.432 Totals
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Table 58. TPC-W Hippocratic Database – 10 Million Items – 1600 EBS’s 

  

  

Table 59. TPC-W Hippocratic Database – 10 Million Items – 2400 EBS’s  

 
 

 

Table 60. TPC-W Hippocratic Database – 10 Million Items – 3200 EBS’s 

  

 

 

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 3570 SST -24361922.32

1  1 -1 -1 -1 -1  1  1 4527 SSY 413982279.00

1 -1  1 -1 -1  1 -1  1 5558 SS0 438344201.32

1  1  1 -1  1 -1 -1 -1 5938 Se 40.68

1 -1 -1  1 1 -1 -1  1 3264 Sqi 8.30

1  1 -1  1 -1 1 -1 -1 3824

1 -1  1  1 -1 -1  1 -1 3649

1  1  1  1  1  1  1  1 3859

34189.44 2106.814 3818.856 -4996.84 -925.902 -566.61 -2979.89 226.0518 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 4988 SST 34797521.68

1  1 -1 -1 -1 -1  1  1 5446 SSY 881887171.00

1 -1  1 -1 -1  1 -1  1 7829 SS0 847089649.32

1  1  1 -1  1 -1 -1 -1 8144 Se 41.30

1 -1 -1  1 1 -1 -1  1 4886 Sqi 8.43

1  1 -1  1 -1 1 -1 -1 5458

1 -1  1  1 -1 -1  1 -1 5210

1  1  1  1  1  1  1  1 5569

47527.95 1702.945 5973.752 -5284.95 -355.847 159.0077 -5103.66 -70.2384 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 6660 SST 66389767.01

1  1 -1 -1 -1 -1  1  1 7009 SSY 1511931194.00

1 -1  1 -1 -1  1 -1  1 10337 SS0 1445541426.99

1  1  1 -1  1 -1 -1 -1 10753 Se 50.02

1 -1 -1  1 1 -1 -1  1 5965 Sqi 10.21

1  1 -1  1 -1 1 -1 -1 6994

1 -1  1  1 -1 -1  1 -1 6819

1  1  1  1  1  1  1  1 7550

62086.85 2525.49 8830.675 -7432.92 -231.386 996.0552 -6012.14 -365.938 Totals
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Table 61. TPC-W Hippocratic Database – 10 Million Items – 4000 EBS’s 

   

 

Table 62. TPC-W Label Based Access Control – 10 Million Items – 800 EBS’s 

  

 

Table 63. TPC-W Label Based Access Control – 10 Million Items – 1600 EBS’s 

  

 

 

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 7973 SST 79259146.15

1  1 -1 -1 -1 -1  1  1 8337 SSY 2189738354.00

1 -1  1 -1 -1  1 -1  1 12216 SS0 2110479207.85

1 1 1 -1  1 -1 -1 -1 12659 Se 49.32

1 -1 -1  1 1 -1 -1  1 7648 Sqi 10.07

1  1 -1  1 -1 1 -1 -1 8561

1 -1  1  1 -1 -1  1 -1 8469

1  1  1  1  1  1  1  1 9157

75019.63 2407.317 9980.7 -7350.07 -146.663 793.4394 -7146.81 -304.782 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1 1 1 1 -1 1957 SST 51329835.91

1  1 -1 -1 -1 -1  1  1 3704 SSY 241429294.00

1 -1  1 -1 -1  1 -1  1 3149 SS0 190099458.09

1  1  1 -1  1 -1 -1 -1 4957 Se 54.46

1 -1 -1  1 1 -1 -1  1 533 Sqi 11.12

1  1 -1  1 -1 1 -1 -1 3540

1 -1  1  1 -1 -1  1 -1 808

1  1  1  1  1  1  1  1 3867

22515.15 9620.674 3046.435 -5020.09 111.5797 2511.397 -1842.24 -9.97863 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 3570 SST -81161470.44

1  1 -1 -1 -1 -1  1  1 6371 SSY 693276063.00

1 -1  1 -1 -1  1 -1  1 5558 SS0 774437533.44

1  1  1 -1  1 -1 -1 -1 9344 Se 47.41

1 -1 -1  1 1 -1 -1  1 3264 Sqi 9.68

1  1 -1  1 -1 1 -1 -1 5966

1 -1  1  1 -1 -1  1 -1 3649

1  1  1  1  1  1  1  1 7723

45444.11 13361.48 7102.525 -4240.89 2357.767 189.342 -2818.75 387.1921 Totals
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Table 64.TPC-W Label Based Access Control – 10 Million Items – 2400 EBS’s 

  

 

Table 65. TPC-W Label Based Access Control – 10 Million Items – 3200 EBS’s 

  

 

Table 66. TPC-W Label Based Access Control – 10 Million Items – 4000 EBS’s 

  

 

 

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 4988 SST 234640734.28

1  1 -1 -1 -1 -1  1  1 8671 SSY 1906151808.00

1 -1  1 -1 -1  1 -1  1 7829 SS0 1671511073.72

1  1  1 -1  1 -1 -1 -1 12929 Se 55.93

1 -1 -1  1 1 -1 -1  1 4886 Sqi 11.42

1  1 -1  1 -1 1 -1 -1 9090

1 -1  1  1 -1 -1  1 -1 5210

1  1  1  1  1  1  1  1 13161

66763.48 20938.48 11493.06 -2070.85 5163.458 3373.111 -2703.14 2330.28 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 6660 SST 392633865.42

1  1 -1 -1 -1 -1  1  1 11567 SSY 3124982748.00

1 -1  1 -1 -1  1 -1  1 10337 SS0 2732348882.58

1  1  1 -1  1 -1 -1 -1 18362 Se 46.40

1 -1 -1  1 1 -1 -1  1 5965 Sqi 9.47

1  1 -1  1 -1 1 -1 -1 10770

1 -1  1  1 -1 -1  1 -1 6819

1  1  1  1  1  1  1  1 14879

85359.61 25798.25 15434.76 -8494.85 6372.695 -65.8682 -5509.4 136.7946 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 7973 SST 583845493.41

1  1 -1 -1 -1 -1  1  1 13728 SSY 4646462431.00

1 -1  1 -1 -1  1 -1  1 12216 SS0 4062616937.59

1 1 1 -1  1 -1 -1 -1 22254 Se 37.53

1 -1 -1  1 1 -1 -1  1 7648 Sqi 7.66

1  1 -1  1 -1 1 -1 -1 13018

1 -1  1  1 -1 -1  1 -1 8469

1  1  1  1  1  1  1  1 18779

104084.8 31472.49 19349.68 -8256.44 9222.321 -112.927 -6186.35 655.6839 Totals
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Table 67. TPC-W Label Based Access Control  – 10 Million Items – 1600 EBS’s 

  

 

Table 68. TPC-W Label Based Access Control – 10 Million Items – 2400 EBS’s 

  

 

Table 69. TPC-W Label Based Access Control – 10 Million Items – 3200 EBS’s 

 
 

 

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 3570 SST -33661289.01

1  1 -1 -1 -1 -1  1  1 3873 SSY 378872768.00

1 -1  1 -1 -1  1 -1  1 5558 SS0 412534057.01

1  1  1 -1  1 -1 -1 -1 5439 Se 45.52

1 -1 -1  1 1 -1 -1  1 3264 Sqi 9.29

1  1 -1  1 -1 1 -1 -1 3754

1 -1  1  1 -1 -1  1 -1 3649

1  1  1  1  1  1  1  1 4060

33167.62 1084.99 4243.791 -3712.05 -500.968 718.1785 -2862.94 343.0022 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 4988 SST 30903987.63

1  1 -1 -1 -1 -1  1  1 5532 SSY 901634461.00

1 -1  1 -1 -1  1 -1  1 7829 SS0 870730473.37

1  1  1 -1  1 -1 -1 -1 7942 Se 42.57

1 -1 -1  1 1 -1 -1  1 4886 Sqi 8.69

1  1 -1  1 -1 1 -1 -1 5744

1 -1  1  1 -1 -1  1 -1 5210

1  1  1  1  1  1  1  1 6057

48186.59 2361.593 5888.46 -4395.57 -441.139 1048.389 -4614.31 419.1125 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 6660 SST 392633865.42

1  1 -1 -1 -1 -1  1  1 11567 SSY 3124982748.00

1 -1  1 -1 -1  1 -1  1 10337 SS0 2732348882.58

1  1  1 -1  1 -1 -1 -1 18362 Se 46.40

1 -1 -1  1 1 -1 -1  1 5965 Sqi 9.47

1  1 -1  1 -1 1 -1 -1 10770

1 -1  1  1 -1 -1  1 -1 6819

1  1  1  1  1  1  1  1 14879

85359.61 25798.25 15434.76 -8494.85 6372.695 -65.8682 -5509.4 136.7946 Totals
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Table 70. TPC-W Label Based Access Control – 10 Million Items – 4000 EBS’s 

 
 

 

Table 71. TPC-W Transparent Query Rewrite – 10 Million Items – 800 EBS’s 

  

 

Table 72. TPC-W Transparent Query Rewrite – 10 Million Items – 1600 EBS’s 

  

 

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 7973 SST 583845493.41

1  1 -1 -1 -1 -1  1  1 13728 SSY 4646462431.00

1 -1  1 -1 -1  1 -1  1 12216 SS0 4062616937.59

1 1 1 -1  1 -1 -1 -1 22254 Se 37.53

1 -1 -1  1 1 -1 -1  1 7648 Sqi 7.66

1  1 -1  1 -1 1 -1 -1 13018

1 -1  1  1 -1 -1  1 -1 8469

1  1  1  1  1  1  1  1 18779

104084.8 31472.49 19349.68 -8256.44 9222.321 -112.927 -6186.35 655.6839 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1 1 1 1 -1 1957 SST 20682600.09

1  1 -1 -1 -1 -1  1  1 2240 SSY 125073825.00

1 -1  1 -1 -1  1 -1  1 3149 SS0 104391224.91

1  1  1 -1  1 -1 -1 -1 3289 Se 52.76

1 -1 -1  1 1 -1 -1  1 533 Sqi 10.77

1  1 -1  1 -1 1 -1 -1 2544

1 -1  1  1 -1 -1  1 -1 808

1  1  1  1  1  1  1  1 2165

16684.62 3790.148 2136.979 -4586.22 -797.876 2945.266 -2344.36 -512.097 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 3570 SST -33661289.01

1  1 -1 -1 -1 -1  1  1 3873 SSY 378872768.00

1 -1  1 -1 -1  1 -1  1 5558 SS0 412534057.01

1  1  1 -1  1 -1 -1 -1 5439 Se 45.52

1 -1 -1  1 1 -1 -1  1 3264 Sqi 9.29

1  1 -1  1 -1 1 -1 -1 3754

1 -1  1  1 -1 -1  1 -1 3649

1  1  1  1  1  1  1  1 4060

33167.62 1084.99 4243.791 -3712.05 -500.968 718.1785 -2862.94 343.0022 Totals
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Table 73. TPC-W Transparent Query Rewrite – 10 Million Items – 2400 EBS’s 

  

 

Table 74. TPC-W Transparent Query Rewrite – 10 Million Items – 3200 EBS’s 

  

 

Table 75. TPC-W Transparent Query Rewrite – 10 Million Items – 4000 EBS’s 

 

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 4988 SST 30903987.63

1  1 -1 -1 -1 -1  1  1 5532 SSY 901634461.00

1 -1  1 -1 -1  1 -1  1 7829 SS0 870730473.37

1  1  1 -1  1 -1 -1 -1 7942 Se 42.57

1 -1 -1  1 1 -1 -1  1 4886 Sqi 8.69

1  1 -1  1 -1 1 -1 -1 5744

1 -1  1  1 -1 -1  1 -1 5210

1  1  1  1  1  1  1  1 6057

48186.59 2361.593 5888.46 -4395.57 -441.139 1048.389 -4614.31 419.1125 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 6660 SST 60621905.08

1  1 -1 -1 -1 -1  1  1 7254 SSY 1494730394.00

1 -1  1 -1 -1  1 -1  1 10337 SS0 1434108488.92

1  1  1 -1  1 -1 -1 -1 10427 Se 50.57

1 -1 -1  1 1 -1 -1  1 5965 Sqi 10.32

1  1 -1  1 -1 1 -1 -1 6857

1 -1  1  1 -1 -1  1 -1 6819

1  1  1  1  1  1  1  1 7522

61840.84 2279.477 8368.719 -7516.24 -693.342 912.7381 -5330.12 316.0727 Totals

I A B C AB AC BC ABC Mean ÿ
Variation

Sum of 

Squares

1 -1 -1 -1  1  1  1 -1 7973 SST 74743136.89

1  1 -1 -1 -1 -1  1  1 8849 SSY 2198354531.00

1 -1  1 -1 -1  1 -1  1 12216 SS0 2123611394.11

1 1 1 -1  1 -1 -1 -1 12461 Se 47.45

1 -1 -1  1 1 -1 -1  1 7648 Sqi 9.69

1  1 -1  1 -1 1 -1 -1 8246

1 -1  1  1 -1 -1  1 -1 8469

1  1  1  1  1  1  1  1 9391

75252.67 2640.355 9821.083 -7743.69 -306.281 399.8164 -5887.66 954.368 Totals
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Appendix P 

Wildlife Data Benchmark Results 
 

 

Table 76. Wildlife Data Authorization Views – 800 EBS’s 

 
 

 

Table 77. Wildlife Data Authorization Views – 1600 EBS’s 

 
 

 

Table 78. Wildlife Data Authorization Views – 2400 EBS’s 

 
 

 

Table 79. Wildlife Data Authorization Views – 3200 EBS’s 

 
 

 

Table 80. Wildlife Data Authorization Views – 4000 EBS’s 

 

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 1562 1544 1588 1565 SST 8833340320

1  1 -1 -1 1663 1625 1672 1653 SSY 18743828157

1 -1  1 -1 55363 55385 55386 55378 SS0 9910487837

1  1  1  1 56313 56386 56370 56356 Se 37.11

114952.09 1066.97 108516.55 889.68    Totals Sqi 10.71

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 2985 2990 2927 2967 SST 35383610236

1  1 -1 -1 3287 3275 3240 3267 SSY 74940625248

1 -1  1 -1 110881 110588 110900 110790 SS0 39557015011

1  1  1  1 112574 112537 112790 112634 Se 159.86

229657.76 2144.22 217188.61 1543.85    Totals Sqi 46.15

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 4016 4036 4023 4025 SST 79776359342

1  1 -1 -1 4845 4869 4817 4844 SSY 168454645778

1 -1  1 -1 166532 166123 166076 166244 SS0 88678286436

1  1  1  1 168628 168897 168710 168745 Se 203.32

343857.11 3320.05 326119.89 1682.79    Totals Sqi 58.69

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 5367 5362 5372 5367 SST 142396001745

1  1 -1 -1 5957 5907 5972 5945 SSY 299938324484

1 -1  1 -1 221561 221476 221625 221554 SS0 157542322739

1  1  1  1 225629 225609 225121 225453 Se 211.61

458319.14 4477.16 435694.60 3320.62    Totals Sqi 61.09

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 6530 6568 6528 6542 SST 222950772667

1  1 -1 -1 7229 7210 7259 7233 SSY 468937015267

1 -1  1 -1 276221 276247 276411 276293 SS0 245986242600

1  1  1  1 282829 282286 282773 282629 Se 224.65

572696.83 7026.91 545147.60 5645.58    Totals Sqi 64.85
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Table 81. Wildlife Data Hippocratic Database – 800 EBS’s 

 
 

 

Table 82. Wildlife Data Hippocratic Database – 1600 EBS’s 

 
 

 

Table 83. Wildlife Data Hippocratic Database – 2400 EBS’s 

 
 

 

Table 84. Wildlife Data Hippocratic Database – 3200 EBS’s 

 
 

 

Table 85. Wildlife Data Hippocratic Database – 4000 EBS’s 

 
 

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 1353 1349 1346 1349 SST 6360993393

1  1 -1 -1 1453 1416 1461 1443 SSY 12919565900

1 -1  1 -1 35660 35681 35695 35679 SS0 6558572506

1  1  1  1 55012 55040 55076 55042 Se 31.07

93513.44 19457.45 87928.38 19269.71    Totals Sqi 8.97

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 2917 2992 2915 2941 SST 25409782366

1  1 -1 -1 2887 2804 2806 2832 SSY 51680626161

1 -1  1 -1 71183 71150 71258 71197 SS0 26270843795

1  1  1  1 110268 110052 110241 110187 Se 102.65

187157.13 38880.93 175610.76 39099.02    Totals Sqi 29.63

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 4082 3961 3998 4013 SST 57455635210

1  1 -1 -1 4168 4151 4105 4141 SSY 116435872752

1 -1  1 -1 106753 106973 106913 106880 SS0 58980237542

1  1  1  1 165515 165164 165505 165395 Se 169.96

280428.81 58642.86 264119.62 58387.06    Totals Sqi 49.06

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 5664 5595 5582 5614 SST 102963337474

1  1 -1 -1 5404 5428 5421 5418 SSY 208868959816

1 -1  1 -1 143325 143317 143460 143367 SS0 105905622342

1  1  1  1 221392 221396 221344 221377 Se 68.50

375775.86 77814.12 353713.44 78205.91    Totals Sqi 19.77

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 6792 6649 6751 6730 SST 159892343556

1  1 -1 -1 6937 6927 6972 6945 SSY 324333309640

1 -1  1 -1 178666 178789 178966 178807 SS0 164440966084

1  1  1  1 275817 275741 275733 275764 Se 124.26

468246.33 97171.62 440894.92 96741.80    Totals Sqi 35.87
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Table 86. Wildlife Data Label Based Access Control – 800 EBS’s 

 
 

 

Table 87. Wildlife Data Label Based Access Control – 1600 EBS’s 

 
 
 

Table 88. Wildlife Data Label Based Access Control – 2400 EBS’s 

 
 
 

Table 89. Wildlife Data Label Based Access Control – 3200 EBS’s 

 
 
 

Table 90. Wildlife Data Label Based Access Control – 4000 EBS’s 

 
 

 

Table 91. Wildlife Data Transparent Query Rewrite – 800 EBS’s  

 
 

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 1353 1349 1346 1349 SST 6421471065

1  1 -1 -1 2332 2355 2315 2334 SSY 13236841340

1 -1  1 -1 35660 35681 35695 35679 SS0 6815370275

1  1  1  1 55983 55932 55979 55965 Se 27.66

95326.60 21270.61 87960.05 19301.39    Totals Sqi 7.98

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 2917 2992 2915 2941 SST 25572825288

1  1 -1 -1 4727 4781 4794 4767 SSY 52886612343

1 -1  1 -1 71183 71150 71258 71197 SS0 27313787055

1  1  1  1 111917 111969 111906 111931 Se 60.74

190836.01 42559.81 175419.29 38907.55    Totals Sqi 17.54

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 4082 3961 3998 4013 SST 57791203335

1  1 -1 -1 6860 6890 6800 6850 SSY 118951651370

1 -1  1 -1 106753 106973 106913 106880 SS0 61160448035

1  1  1  1 167637 167861 167968 167822 Se 153.96

285564.82 63778.87 263838.32 58105.77    Totals Sqi 44.44

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 5664 5595 5582 5614 SST 103969971218

1  1 -1 -1 9057 9062 9020 9046 SSY 214094653642

1 -1  1 -1 143325 143317 143460 143367 SS0 110124682424

1  1  1  1 225035 225293 225154 225161 Se 113.13

383187.83 85226.09 353868.09 78360.56    Totals Sqi 32.66

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 6792 6649 6751 6730 SST 161781209961

1  1 -1 -1 11347 11358 11334 11346 SSY 332868278384

1 -1  1 -1 178666 178789 178966 178807 SS0 171087068423

1  1  1  1 280710 280634 280850 280731 Se 141.99

477615.00 106540.29 441461.55 97308.43    Totals Sqi 40.99

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 1353 1349 1346 1349 SST 6362840864

1  1 -1 -1 1704 1795 1792 1763 SSY 12998794684

1 -1  1 -1 35660 35681 35695 35679 SS0 6635953820

1  1  1  1 55295 55261 55261 55272 Se 41.20

94063.48 20007.49 87838.51 19179.84    Totals Sqi 11.89
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Table 92. Wildlife Data Transparent Query Rewrite – 1600 EBS’s   

 
 

 

Table 93. Wildlife Data Transparent Query Rewrite – 2400 EBS’s  

 
 

Table 94. Wildlife Data Transparent Query Rewrite – 3200 EBS’s  

 
 

 

Table 95. Wildlife Data Transparent Query Rewrite – 4000 EBS’s 

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 2917 2992 2915 2941 SST 25406693137

1  1 -1 -1 3290 3246 3272 3269 SSY 51883226030

1 -1  1 -1 71183 71150 71258 71197 SS0 26476532893

1  1  1  1 110519 110477 110447 110481 Se 58.23

187888.38 39612.18 175467.58 38955.84    Totals Sqi 16.81

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 4082 3961 3998 4013 SST 57298911268

1  1 -1 -1 4994 5004 4995 4998 SSY 116773513182

1 -1  1 -1 106753 106973 106913 106880 SS0 59474601914

1  1  1  1 165618 165835 165680 165711 Se 121.03

281601.61 59815.66 263579.59 57847.03    Totals Sqi 34.94

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 5664 5595 5582 5614 SST 102842970354

1  1 -1 -1 6214 6272 6285 6257 SSY 209461652709

1 -1  1 -1 143325 143317 143460 143367 SS0 106618682355

1  1  1  1 221892 221795 221716 221801 Se 93.80

377038.78 79077.04 353297.83 77790.30    Totals Sqi 27.08

I A B AB yi1 yi2 yi3 Mean ÿ Variation Sum of Squares

1 -1 -1  1 6792 6649 6751 6730 SST 160511853941

1  1 -1 -1 7685 7609 7693 7662 SSY 326263178624

1 -1  1 -1 178666 178789 178966 178807 SS0 165751324683

1  1  1  1 276944 276985 276797 276909 Se 141.59

470108.25 99033.54 441322.98 97169.86    Totals Sqi 40.87
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