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This dissertation develops methods to minimize recommendation error costs when inputs 

to a rule-based expert system are prone to errors.  The problem often arises in web-based 

applications where data are inherently noisy or provided by users who perceive some 

benefit from falsifying inputs.  Prior studies proposed methods that attempted to 

minimize the probability of recommendation error, but did not take into account the 

relative costs of different types of errors.  In situations where these differences are 

significant, an approach that minimizes the expected misclassification error costs has 

advantages over extant methods that ignore these costs.   

Building on the existing literature, two new techniques – Cost-Based Input Modification 

(CBIM) and Cost-Based Knowledge-Base Modification (CBKM) were developed and 

evaluated.  Each method takes as inputs (1) the joint probability distribution of a set of 

rules, (2) the distortion matrix for input noise as characterized by the probability 

distribution of the observed input vectors conditioned on their true values, and (3) the 

misclassification cost for each type of recommendation error.  Under CBIM, for any 

observed input vector v, the recommendation is based on a modified input vector v’ such 

that the expected error costs are minimized.  Under CBKM the rule base itself is modified 

to minimize the expected cost of error. 

The proposed methods were investigated as follows: as a control, in the special case 

where the costs associated with different types of errors are identical, the 

recommendations under these methods were compared for consistency with those 

obtained under extant methods.  Next, the relative advantages of CBIM and CBKM were 

compared as (1) the noise level changed, and (2) the structure of the cost matrix varied. 

As expected, CBKM and CBIM outperformed the extant Knowledge Base Modification 

(KM) and Input Modification (IM) methods over a wide range of input distortion and cost 

matrices, with some restrictions.  Under the control, with constant misclassification costs, 

the new methods performed equally with the extant methods.  As misclassification costs 

increased, CBKM outperformed KM and CBIM outperformed IM.  Using different cost 

matrices to increase misclassification cost asymmetry and order, CBKM and CBIM 

performance increased.  At very low distortion levels, CBKM and CBIM underperformed 

as error probability became more significant in each method’s estimation.  Additionally, 

CBKM outperformed CBIM over a wide range of input distortion as its technique of 

modifying an original knowledge base outperformed the technique of modifying inputs to 

an unmodified decision tree.  
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Chapter 1 

Introduction 

 

Statement of the Problem to be Investigated 

Problem solving computer programs traditionally use well-structured algorithms, 

data structures, and detailed reasoning strategies to make decisions.  Such programs 

frequently use human expert knowledge in the form of rules, or stored data, to solve real-

world problems without the need for real-time human intelligence.  A rule-based expert 

system is defined as one whose knowledge base contains domain knowledge coded in the 

form of rules (Robin, 2010).  In these systems, the knowledge base contains expert 

acquired information, data, rules, cases, and relationships the system requires.  They 

employ an inference engine to seek information and relationships from the knowledge 

base and provide answers, predictions, and suggestions.  The inference engine finds the 

applicable data, interpretations and rules, and relates them correctly.  Because the 

knowledge base is separate from the inference engine, it is easier to update or modify for 

a new domain, as the data are not hard coded into the system.  A user interface, including 

several commercially available graphic packages, provides convenient system access for 

users, developers, and administrators.  Additional components include an explanation 

facility that provides information to the user about how the system arrived at its result, 

and a knowledge base acquisition facility that provides a convenient and efficient means 

for capturing and storing new or updated information (Abraham, 2005).  The basic 

components of a rule-based expert system are shown in Figure 1. 
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Some of the most important contributions of rule-based expert systems are:  

1. An ability to capture and preserve perishable human knowledge based on 

experience; 

2. An ability to provide greater consistency in decision making than by  humans; 

3. An ability to use knowledge in multiple distant locations simultaneously from 

multiple human experts with a minimal on-site human presence; and 

4. Faster response times than by humans. 

These significant contributions are instrumental in the many business applications 

that use expert systems because they are more efficient and reliable than human decision 

makers.  For example, expert systems are used in water quality control, automatic train 

operation systems, automatic container crane operation systems, elevator control, 

automobile transmission control, nuclear reactor control (Lee, 1990), fault diagnosis in 

semiconductor manufacturing, bank failure prediction (Mookerjee, Mannino, & Gibson, 

1995), object detection in computer vision (Viola & Jones, 2002), fraud analysis (Viaene, 

Derrig, & Dedene, 2004), and medical diagnosis (Park, Hwang, & Zhang, 2003).  

Knowledge base User interface 

Inference engine 

Knowledge base 
acquisition facility 

Explanation facility 

Expert knowledge User 

Figure 1:  A simple rule-based expert system 
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Rule-based systems are also used in web-based applications with decisions made 

based on user input on online forms.  These applications, however, are vulnerable to 

input noise or distortion coming from several sources, including deliberate falsification 

by the user.  Some popular columnists even recommend lying on online forms as a 

reasonable security measure (Bradley, 2011).  Some college admissions applicants have 

paid thousands of dollars hiring professionals to assist in fabricating or embellishing 

input data (Porter, 2007).  Another example is an online credit card application where an 

applicant intentionally enters false information for education level, employment status, 

bankruptcy history, and so on.  The problem of intentional data falsification has been 

known for many years.  In 1999, as many as 40% of Internet users admitted purposely 

falsifying such inputs as name, age, income, address, and gender to gain a perceived 

benefit (Tapscott, 1999).  Reasons for falsifying or omitting input data include a lack of 

trust in the information collector (63%), a belief that the benefits of revealing personal 

information do not outweigh the risks (65%), and uncertainty about how personal 

information might be used (69%) (Hoffman, Novak, & Peralta, 1999).  Additionally, 

characteristics including poor interface design and  inadequate typing skills cause 

random, unintentional mistakes.  In many cases, truthfulness is not easily checked using 

secondary sources.  Credit scores, for example, are manipulatable within the law to 

exaggerate an applicant’s credit worthiness (Boylu, Aytug, & Koehler, 2010).  These 

mistakes and falsifications then introduce errors into a system's decision-making process.   

Noise handling becomes necessary in the absence of any reasonable method to 

eliminate incorrect user input.  Further, a user’s level of online experience can influence 

their behavior with less experienced users showing more trust in online transactions than 
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others (Bewsell, 2008).  In the end, while a company may use a carrot-and-stick 

approach, offering incentives for accurate input, there is no way to guarantee total user 

motivation toward truthfulness or to guarantee mistake-free input.   

In their paper Lying on the Web: Implications for Expert Systems Redesign, Jiang, 

Mookerjee, and Sarkar (2005) developed two techniques for dealing with input noise 

called Knowledge Base Modification (KM) and Input Modification (IM).  KM modifies a 

knowledge base in the form of a decision tree to account for input noise.  Its inputs are an 

original knowledge base, the joint input probability distributions, and the distortion 

matrices for all variables.  IM modifies observed inputs to their most likely true value and 

feeds those into an unmodified knowledge base.  Its inputs are an unmodified knowledge 

base, and the marginal distributions and distortion matrices for all variables.  Both 

methods seek to minimize the probability of error in the output.   

In some cases, a decision-maker will have a different goal than simply 

minimizing decision error.  Specifically, when considering information acquisition costs, 

a focus on prediction error may be economically undesirable compared with maximizing 

expected utility through minimized overall cost (Boylu, Aytug, & Koehler, 2009).  In 

some cases, noise is expected, or even desirable, leading decision makers to seek lowest 

cost instead of most probable outcome.  Jiang et al. (2005) note the example of 

inventorying assets that require expensive physical inspection as a case where some noise 

is less expensive than no noise.  Given that there will be errors, the goal becomes to 

minimize the cost of those errors. 

In general, errors derive from output misclassification where a specified output is 

placed into the wrong category or class.  In an online credit card application example, a 
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high credit risk applicant might be misclassified as low or medium risk, while an 

otherwise creditworthy (low risk) applicant might be misclassified as a medium or high 

credit risk.  Each of these misclassification errors would carry a certain cost.  Instead of 

minimizing decision errors, a banking firm would be most interested in minimizing these 

costs. 

Considering the benefit of including error cost analysis in rule-based expert 

system design, this research expanded the prior work of Jiang et al. (2005) to include 

misclassification costs.  The general aim was to build on the KM and IM methods by 

developing and evaluating mechanisms to minimize misclassification error costs 

associated with noisy input data in rule-based expert systems.   

Goal 

This research expanded the research of Jiang et al. (2005) by developing new 

processes termed Cost-Based Knowledge Base Modification (CBKM) and Cost-Based 

Input Modification (CBIM) that take misclassification error costs into account.  

Specifically, this research addressed the following questions: 

1.  Are the recommendations based on the proposed methods consistent with 

those obtained using extant methods when the costs of the different types of 

errors are identical? 

2.  How does CBIM compare with CBKM as the structure of the cost matrix 

varies? 

3.  How does CBIM compare with CBKM as the level of input noise varies? 

This research provided the following contributions: 
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1.  It developed and evaluated a method for CBKM that minimizes expected 

misclassification error costs. 

2.  It developed and evaluated a method for CBIM that minimizes expected 

misclassification error costs. 

3.  It empirically compared the performance of CBIM and CBKM as the cost 

structure varied. 

4.  It empirically compared the performance of CBIM and CBKM as noise varied. 

Barriers and Issues 

In their KM and IM methodologies, Jiang et al. (2005) used sample data from the 

machine learning repository at the University of California at Irvine for their 

experimental process.  The same data are available today at 

http://archive.ics.uci.edu/ml/datasets/Credit+Approval.  This database has two classes, 15 

variables, and 500 usable instances.  In order to maintain consistency, 190 additional 

instances were excluded because they included duplicate, missing, or conflicting data.   

Resources 

This approach required a sample data set of real-world values, which was 

available from the University of California, Irvine.  True decision trees were constructed 

from these data using See5 (C5.0), available under the GNU General Public License for 

small datasets from Rulequest Research (2010).  Additionally, multiple randomly 

generated inputs were used for process testing.  These inputs were generated without 

special equipment and were tested on an already available AMD FX8120 eight core 

processor running Kubuntu Linux 12.04 with 32 GB of RAM. 
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Chapter 2 

Review of the Literature 

 

This section will begin with a general overview of rule-based expert systems, 

input noise or distortion, and misclassification costs before discussing the details of the 

established KM and IM noise handling methodologies. 

Rule-based Expert Systems 

Rule-based expert systems have been researched for many years.  According to 

Clancey in 1983, production rules were already considered “a popular representation for 

capturing heuristics, ‘rules of thumb,’ in expert systems” with a goal of  providing 

“expert-level consultative advice in scientific and medical problem solving.”  In 1981, 

McDermott referenced prior “10 or 12 years” of artificial intelligence (AI) research into 

techniques for using domain knowledge in computer-based problem solving.  In 1969, 

Newell (as cited in McDermott) discussed an emphasis of AI research in the 1950’s and 

60’s on “discovering heuristics that could be used in solving ill-structured problems” 

where a heuristic was defined as “a piece of knowledge that can be used to focus search 

and guide it along the most promising paths.” 

Much of the available research focuses on improving system performance.  For 

example, decision tree pruning has been researched for many years (Quinlan, 1986).  

Mookerjee et al. (1995) and Clark and Niblett (1989) demonstrated the advantage of 

modifying decision trees as part of an induction process.  Clark and Niblett further used 

more of Quinlan’s 1983 and 1987 work in dealing with efficiency and simplifying 

decision trees.   
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Rule Induction Based on Noisy Methods 

Input noise can come from a variety of sources including deliberate falsification, 

intrinsic system errors, transaction errors, and data entry errors (Morey, 1982, Parssian, 

Sarkar, & Jacob, 2009).  In some cases, such as with current address or telephone 

number, data are volatile and therefore deteriorate in quality over time (Parssian et al., 

2009).   

Several methods have been proposed to deal with noisy input data.  Hirsh (1994) 

showed that version space-based learning strategies can be adapted to work well with 

noisy data sets.  A version space is defined by Mitchell (1982) as the set of all classifiers 

in the language that correctly classify a given set of data.  Hirsh’s work was an 

improvement over traditional version spaces that were limited to consistent, noise-free 

training data.  More recently, Boylu et al. (2010) and Boylu (2006) proposed a system to 

anticipate data input modification in an inductive process.  Their approach sought to 

determine classification rules for intelligent, self-interested agents engaging in strategic 

behavior to achieve some perceived advantage.  In related research, Mannino and 

Koushik (2000) used a genetic algorithm to calculate the minimum cost of manipulating 

input data in order to reclassify decision output as a member of a different, preferred 

class.  Aytug, Boylu, and Koehler (2006) point out that most inductive systems assume 

no strategic behavior (distortion) in the development of training data sets.  Dalvi, 

Domingos, Mausam, Sanghai, and Verma (2004) addressed the case where noise varies 

as an agent attempts to preemptively distort input in anticipation of a decision maker’s 

strategy, as in the example of email spammers attempting to outwit ever-changing spam 

filter strategies. 
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Misclassification Costs 

More recently, researchers have recognized that decision makers not only focus 

on accuracy, but on the potential implications (cost) of particular decisions (Vadera, 

2010).  As an example, chemical engineers consider the risk of explosion when 

evaluating processing plant safety, medical consultants consider the potential 

consequences of patient misdiagnosis, and bank managers consider the cost of a high risk 

customer defaulting on a loan.  Some research looked at error costs in expert systems 

including early research by Nunez (1991), who looked at cost/benefit ratios dealing with 

measurement costs that may or may not be monetary.  They could, for example, be in 

terms of time, labor, energy, or level of danger, and so on, using quantifiable attributes 

such as distance, time, risk, or danger level.  Tan (1993) looked at execution costs in 

robotics and focused on both accuracy and efficiency during the inductive learning 

process.  In an alternative early approach, Turney (1995) used a genetic algorithm with a 

fitness function that calculated average classification costs for a decision tree, including 

both measurement and error costs.  Another approach used a data resampling process to 

generate multiple decision trees (Domingos, 1999; Vadera, 2010).  Decisions made by 

the alternative decision trees were combined to reach a decision that minimized 

classification costs and provided for a final cost-sensitive decision tree.  In other research, 

Ling, Sheng, and Yang (2006) looked at cost-sensitive learning by restructuring decision 

trees with known attributes in the higher nodes, depending on the attributes in a 

designated test example.  This process required decision tree generation for each test 

example.  Finally, Esmeir and Markovitch (2008) looked at a method they called ACT 
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(Anytime Cost-sensitive Tree learner) that traded inductive machine learning time for 

lower costs. 

Research into cost matrix utilization includes Elkan (2001) and Zadrozny, 

Langford, and Abe (2003) who studied cost matrix procedures and investigated the two-

class case where decisions were reached by modifying the proportion of negative 

examples in a training set.   

Methods to Deal with Input Noise in Rule-Based Systems 

Overview 

In their research paper on Lying on the Web: Implications for Expert Systems 

Redesign,  Jiang et al. (2005) addressed the problem of designing expert systems 

operating with noisy input data.  While their focus was on deliberate data falsification, 

their approach would work equally well with any input noise source.  Their goal was to 

increase expert system decision-making accuracy without accounting for 

misclassification cost. 

Assumptions 

Given noisy input data, the probability of true input values must be estimated.  In 

this context, “true” refers to “correct” or “accurate” input values, say on a credit card 

application, whereas “observed” refers to the actual input values entered into the system 

by the user.  Therefore, if an observed input vector (Observed) refers to one of the 

possible inputs for a particular problem or a subset of those possibilities, it must have an 

underlying true input vector (True).  The probability of the True vector given the 

Observed vector is then given in Equation 1 according to Bayes' theorem. 
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 (    |        )   
 (        |    )  (    )

 (        )
                                           (1) 

 

Given an Observed vector with many input possibilities, estimates become 

difficult for P(Observed|True) as a large number of input probability parameters must be 

estimated.  For example, given a simple case with n binary inputs, probability estimates 

would be needed for True vectors for each of the 2
n
 possible Observed vectors.  Because 

there are 2
n
 different True vector possibilities for each Observed vector, probability 

estimates would be needed for 2
2n

 different probability parameters to evaluate all possible 

P(Observed|True) observations.  With even a moderate number of inputs, it quickly 

becomes impossible for domain experts to provide all required estimates.  Consequently, 

two assumptions limit the otherwise prohibitively high number of required estimates: 

Assumption 1.   (        |    )   ∏  (         |    ) , where i is an 

index over the inputs.     

Assumption 2.  P(Observedi|True) = P(Observedi|Truei), for all i .                                  

Under Assumption 1, individual input observations are conditionally independent 

of other input observations given the set of true input values.  Put another way, the 

probability of each input observation is dependent on the true state of the inputs and not 

on the other noisy inputs.  In an online credit card application example, an applicant who 

lies about their education level, perhaps by claiming a bachelor’s degree they do not 

have, would not necessarily also lie about their current income.   

Under Assumption 2, an input’s observed state is conditionally independent of the 

true states of other inputs, given the true state of the input.  That is, noise in one input is 

not associated with noise in another input such that each input is independent of the 
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others and the distortion is at the individual input level, and not the aggregate input vector 

level.  In the credit card example, this means that an applicant who lies would do so for 

each application question individually, and not intuitively perceive an advantage to a 

future inaccurate answer based on a current question.  It implies that an applicant would 

answer questions one at a time, instead of viewing them all at once on a single form and 

adjusting ones they have already answered based on other questions on the form. 

Inputs 

The inputs to the KM technique include the original knowledge base in the form 

of a decision tree, the joint input probability distributions, and the distortion matrices for 

all variables.  The output is a modified knowledge base. 

The inputs to the IM technique include the original knowledge base, and the 

marginal distributions and distortion matrices for all variables.  The output is a modified 

input vector based on its most likely true state. 

Knowledge Base Modification 

Based on Assumptions 1 and 2, the term P(Observed|True) in Equation 1 can be 

simplified according to Equation 2. 

 

 (        |    )   ∏  (         |     )                                  (2) 

 

Therefore, Equation 1 can be expressed as in Equation 3: 

 

 (    |        )   
∏  (          |     )  (    )

 (        )
                                 (3) 
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Estimating the likelihood of a true vector given an observation 

(P(True|Observed)) is simpler as the required parameters are P(Observedi|Truei) for each 

i  and P(True).  To obtain the terms P(Observedi|Truei) for each i, Jiang, et al. (2005) 

used real world data from the University of California, Irvine.  The second term in the 

numerator P(True) is the joint probability of a true input vector, which is also obtained 

from available data.  Given this information, the probability that a vector is observed is: 

 

 (        )   ∑  (        |     ) (     )                              (4) 

 

where r is the index over all possible True vectors.  Additionally, the probability 

distributions for each input and their distortion matrices, showing the probability of an 

observed state given the true input state, are required. 

The KM process organizes the procedures into the following five steps. 

Step 1.  Determine the probabilities of all possible True input vectors given an 

Observed vector.  Using Equation 3, calculate the conditional probabilities of 

all True input vectors given an Observed vector.  Determine P(Observed) 

using Equation 4. 

Step 2.  Find the KM recommendation for the given Observed vector by adding 

the conditional probabilities of all True vectors that share the same 

recommendation.  The recommendation with the highest total probability 

becomes the KM recommendation. 

Step 3.  Construct a fully enumerated KM table by completing step 1 and step 2 

for all possible Observed vectors.   
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Step 4.  Compress the KM table to create a condensed KM table, thus removing 

redundant input.  Jiang et al. (2005) reference procedures established by 

Reinwald and Soland (1966) and Shwayder (1974) for condensing a fully 

enumerated decision table. 

Step 5.  Create the KM decision tree.  Using the condensed decision table and the 

probability distribution for Observed vectors, an optimum KM tree can be 

found using AO* search.  An informed optimal search algorithm, AO* uses a 

heuristic function  f  that estimates the cost of the best solution at a specified 

node and generates an optimal result so long as f underestimates the expected 

cost of the solution at every node (Fawcett, 2004).  The output of this final step 

is the KM tree. 

Input Modification 

Based on the Jiang et al. (2005) prior research, IM recommendations for observed 

input vectors are created using the original decision tree, a variable's marginal 

distribution, and the distortion matrices for all variables.  For each variable, most likely 

true input states are chosen using Bayes formula according to Equation 5. 

 

 (  |  )   
 (  |  ) (  )

 (  )
                                               (5) 

 

where X
O
 and X

T
 are the observed state and true state of a variable respectively.  The 

procedure continues in three steps. 

Step 1.  Determine the most likely true state from a variable’s observed value 

represented by the root node, and traverse the tree based on that state. 
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Step 2.  If this node is a decision node, it represents the IM recommendation for 

the observed inputs.  Otherwise, compute the most likely true state for the 

current variable, and traverse the tree again. 

Step 3.  Continue with step 2 until a decision node is reached, which will be the 

IM recommendation. 
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Chapter 3 

Methodology 

 

This section first discusses the extant KM and IM methods that form the basis for 

the new CBKM and CBIM methodologies.  Second, it introduces the cost matrix used by 

CBKM and CBIM for misclassification cost analysis.  Finally, it discusses the completed 

experimental design and analysis.  Throughout this chapter, a simple illustrative example 

is used, consisting of five binary inputs {A, B, C, D, E} into a system with three possible 

outcomes {X, Y, Z}. 

Inputs to the Proposed Methods 

The inputs to the extant KM method are an original knowledge base in the form 

of a decision tree, the joint input probability distributions, and the distortion matrices for 

all variables.  As in previous studies, the IM method uses the marginal distributions of the 

variables to compute the joint input probability distributions based on the assumption of 

independence.   

Example 

In the example system, the binary inputs form a five element input vector with a 

single output value (X, Y, or Z).  Each input vector represents the observed values 

submitted to the system that may include input distortion.  Distortion is the probability 

that an observed input deviates from its true, or correct, value.  Each Observed vector, 

therefore, has a corresponding True vector used to determine the true output of the 

system as if there were no distortion.  For example, an Observed input vector might be 

(A
O

 = 1, B
O

 = 0, C
O

 = 1, D
O

 = 0, E
O

 = 1) with a True vector of (A
T
 = 1, B

T
 = 0, C

T
 = 1, 
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D
T
 = 1, E

T
 = 1).  Notice the distortion in input D where the observed value (D

O
 = 0) 

differs from its true value (D
T
 = 1). 

Table 1 shows the rule set used with its binary inputs and three possible outputs.  

The table and its joint probabilities are condensed from the fully enumerated table shown 

in Appendix A.  Given five binary inputs, there are 2
5
 = 32 possible inputs.  Those inputs 

are condensed to the minimum possible rule set and the joint probabilities calculated 

from the marginal distribution table as shown in Table 2. 

 

Rule 
Inputs 

Output 
Joint 

Probability A B C D E 

1 0 0 0 - 0 Y 0.0144 

2 0 0 0 - 1 Z 0.0199 

3 0 0 1 0 0 X 0.0083 

4 0 0 1 0 1 Y 0.0114 

5 0 0 1 1 0 Y 0.0101 

6 0 - 1 1 1 X 0.0214 

7 0 1 0 0 - X 0.0083 

8 - 1 0 1 0 Y 0.0356 

9 0 1 0 1 1 Z 0.0059 

10 0 1 1 0 - Z 0.0106 

11 0 1 1 1 0 X 0.0054 

12 1 0 0 0 0 Z 0.0476 

13 1 0 - 0 1 X 0.1493 

14 1 0 - 1 0 X 0.1321 

15 1 0 0 1 1 Y 0.0803 

16 1 0 1 0 0 Y 0.0605 

17 1 0 1 1 1 X 0.1022 

18 1 1 - 0 0 X 0.0582 

19 1 1 - 0 1 Y 0.0804 

20 1 1 0 1 1 X 0.0432 

21 1 1 1 1 - Z 0.0949 

Table 1: Condensed True Table 
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In this case, 21 rules completely define all possible input vectors.  The input 

distortion matrix is shown in Table 3. 

 

 
Input 

 
A B C D E 

0 0.120 0.650 0.440 0.450 0.420 

1 0.880 0.350 0.560 0.550 0.580 

Table 2:  Marginal Distribution 

  Observed (Obs) 

  A B C D E 

  0 1 0 1 0 1 0 1 0 1 

T
ru

e 

In
p
u
ts

 

(T
ru

e)
 

0 0.710 0.290 0.980 0.020 0.960 0.040 0.840 0.160 0.750 0.250 

1 0.160 0.839 0.163 0.837 0.169 0.831 0.069 0.931 0.019 0.981 

Table 3:  Distortion Matrix 

Assumptions 1 and 2 apply as follows.  First, individual input observations are 

conditionally independent of other input observations given the set of true input values.  

In the example where there is distortion in one variable, say D, where the true input is ‘1’, 

but the observed (Obs) input is ‘0,’ the assumption implies that the user inputting the 

value for D would not necessarily distort another input, say B, given that they have 

already distorted D. 

Second, under Assumption 2, an input’s observed state is conditionally 

independent of the true states of other inputs, given the true state of the input.  In the 

same example, this means that while there is distortion in one of the inputs, that distortion 

is not based on the true state of past or future inputs.  For example, when a user inputs a 

value for D, he or she would not strategically say “It would be advantageous to distort my 



 19 

  

input for this variable because I may be required to provide related input in the future.”  

Similarly, when providing input for B, he or she would not say “Because I have already 

input a value for D, I should now distort my input for B.” 

The KM and IM processes are now explained using the binary input example 

discussed.  Given the five inputs, the goal of these techniques is to provide the most 

probable outcome in {X, Y, Z}. 

Returning to Equation 3, the distortion matrix and marginal distribution are used 

to determine P(True|Observed) for each True vector.  As an example, using the 

observed input vector Obs = (A
O

 = 1, B
O
 = 0, C

O
 = 1, D

O
 = 0, E

O
 = 1), the probability the 

True input vector is actually True = (AT
 = 1, BT

 = 0, CT
 = 1, DT

 = 1, ET
 = 1) is 

determined using Equation 4 as follows: 

P(AO
 = 1, BO

 = 0, CO
 = 1, DO

 = 0, EO
 = 1|AT

 = 1, BT
 = 0, CT

 = 1, DT
 = 1, ET

 = 1) 

= P(A
O
 = 1|A

T
 = 1) · P(B

O
 = 0|B

T
 = 0) · P(C

O
 = 1|C

T
 = 1) ·  

   P(DO
 = 0|DT

 = 1) · P(EO
 = 1|ET

 = 1) 

= 0.839 · 0.980 · 0.831 · 0.069 · 0.981 = 0.04625 

Based on the marginal distribution table (Table 2), the probability the True vector 

is as stated is: 

P(AT
 = 1, BT

 = 0, CT
 = 1, DT

 = 1, ET
 = 1)  

= 0.880 · 0.650 · 0.560 · 0.550 · 0.580 = 0.1022, and  

P(AO
 = 1, BO

 = 0, CO
 = 1, DO

 = 0, EO
 = 1)  

= [P(AO
 = 1|AT

 = 0) · P(AT
 = 0) + P(AO

 = 1|AT
 = 1) · P(AT

 = 1)] + 

   [P(BO
 = 0|BT

 = 0) · P(BT
 = 0) + P(BO

 = 0|BT
 = 1) · P(BT

 = 1)] + 

   [P(CO
 = 1|CT

 = 0) · P(CT
 = 0) + P(CO

 = 1|CT
 = 1) · P(CT

 = 1)] + 
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   [P(D
O
 = 0|D

T
 = 0) · P(D

T
 = 0) + P(D

O
 = 0|D

T
 = 1) · P(D

T
 = 1)] + 

   [P(EO
 = 1|ET

 = 0) · P(ET
 = 0) + P(EO

 = 1|ET
 = 1) · P(ET

 = 1)]  

= (0.290 · 0.120) + (0.839 · 0.880) · (0.980 · 0.650) + (0.163 · 0.350) · 

   (0.040 · 0.440) + (0.831 · 0.560) · (0.840 · 0.450) + (0.069 · 0.550) · 

   (0.250 · 0.420) + (0.981 · 0.580) = 0.07265 

From these, 

P(A
T
=1, B

T
=0, C

T
=1, D

T
=1, E

T
=1|A

O
=1, B

O
=0, C

O
=1, D

O
=0, E

O
=1)  = 

0.4625 × 0.1022 / 0.07265 = 0.6506 

All other True probabilities are calculated similarly.   

Knowledge Base Modification 

The observed input vector Obs = (A
O
=1, B

O
=0, C

O
=1, D

O
=0, E

O
=1), true input 

vector True = (AT
=1,BT

=0,CT
=1,DT

=1,ET
=1), and marginal distribution and distortion 

matrices in Tables 2 and 3 are used for the following KM and IM examples, proceeding 

through each step in turn.  The calculation results are rounded for display. 

Step 1.  The conditional probabilities for all True vectors are calculated given the 

vector Obs.  The results are shown in Table 4. 

Step 2.  The conditional probabilities are then added for all True vectors that 

result in the same output; that is, the sum of P(True|Obs) for all True vectors 

that recommend either X, Y, or Z.  After consolidating rows, the results are 

shown in Table 5, where the sum for all vectors with an output of X is 

0.770502, the sum for output Y is 0.213559, and the sum for output Z is 

0.015939.  The X output is then chosen as the KM recommendation because it 

has the highest probability of the three options (highlighted in Table 5). 
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Step 3.  Steps 1 and 2 are repeated for all possible Observed vectors to create the 

KM table as shown in Table 6. 

 

True Vector   
   

A B C D E Output P(O|T) P(T) P(O) P(T|O) 

0 0 0 0 0 Y 0.0024 0.0065 0.0727 0.000213 

0 0 0 0 1 Z 0.0094 0.0090 0.0727 0.001154 

0 0 0 1 0 Y 0.0002 0.0079 0.0727 0.000021 

0 0 0 1 1 Z 0.0008 0.0109 0.0727 0.000116 

0 0 1 0 0 X 0.0496 0.0083 0.0727 0.005632 

0 0 1 0 1 Y 0.1947 0.0114 0.0727 0.030520 

0 0 1 1 0 Y 0.0041 0.0101 0.0727 0.000566 

0 0 1 1 1 X 0.0160 0.0139 0.0727 0.003068 

0 1 0 0 0 X 0.0004 0.0035 0.0727 0.000019 

0 1 0 0 1 X 0.0016 0.0048 0.0727 0.000103 

0 1 0 1 0 Y 0.0000 0.0043 0.0727 0.000002 

0 1 0 1 1 Z 0.0001 0.0059 0.0727 0.000010 

0 1 1 0 0 Z 0.0082 0.0044 0.0727 0.000504 

0 1 1 0 1 Z 0.0324 0.0061 0.0727 0.002731 

0 1 1 1 0 X 0.0007 0.0054 0.0727 0.000051 

0 1 1 1 1 X 0.0027 0.0075 0.0727 0.000275 

1 0 0 0 0 Z 0.0069 0.0476 0.0727 0.004520 

1 0 0 0 1 X 0.0271 0.0657 0.0727 0.024492 

1 0 0 1 0 X 0.0006 0.0581 0.0727 0.000454 

1 0 0 1 1 Y 0.0022 0.0803 0.0727 0.002462 

1 0 1 0 0 Y 0.1437 0.0605 0.0727 0.119565 

1 0 1 0 1 X 0.5637 0.0836 0.0727 0.647929 

1 0 1 1 0 X 0.0118 0.0740 0.0727 0.012020 

1 0 1 1 1 X 0.0464 0.1022 0.0727 0.065136 

1 1 0 0 0 X 0.0011 0.0256 0.0727 0.000404 

1 1 0 0 1 Y 0.0045 0.0354 0.0727 0.002192 

1 1 0 1 0 Y 0.0001 0.0313 0.0727 0.000041 

1 1 0 1 1 X 0.0004 0.0432 0.0727 0.000220 

1 1 1 0 0 X 0.0239 0.0326 0.0727 0.010699 

1 1 1 0 1 Y 0.0937 0.0450 0.0727 0.057978 

1 1 1 1 0 Z 0.0020 0.0398 0.0727 0.001076 

1 1 1 1 1 Z 0.0077 0.0550 0.0727 0.005828 

Table 4: True vector conditional probabilities 
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True Vector   

A B C D E Output P(T|O) 

0 0 1 0 0 X 0.005632 

0 - 1 1 1 X 0.003343 

0 1 0 0 - X 0.000122 

0 1 1 1 0 X 0.000051 

1 0 - 0 1 X 0.672421 

1 0 - 1 0 X 0.012474 

1 0 1 1 1 X 0.065136 

1 1 - 0 0 X 0.011103 

1 1 0 1 1 X 0.000220 

Total:   0.770502 

0 0 0 - 0 Y 0.000234 

0 0 1 0 1 Y 0.030520 

0 0 1 1 0 Y 0.000566 

- 1 0 1 0 Y 0.000043 

1 0 0 1 1 Y 0.002462 

1 0 1 0 0 Y 0.119565 

1 1 - 0 1 Y 0.060170 

Total:   0.213559 

0 0 0 - 1 Z 0.001270 

0 1 0 1 1 Z 0.000010 

0 1 1 0 - Z 0.003235 

1 0 0 0 0 Z 0.004520 

1 1 1 1 - Z 0.006904 

Total:   0.015939 

Table 5:  Conditional probabilities by outcome 

Step 4.  In this step, the fully enumerated KM table is condensed as shown in 

Table 7. 

Step 5.  In the final step, the KM tree is created from the condensed KM table 

created in step 4.  The KM tree is shown in Figure 2.  For comparison, the 

corresponding True tree is shown in Figure 3.   
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Observed Input 
P(X|O) P(Y|O) P(Z|O) KM Output 

A B C D E 

0 0 0 0 0 0.1926 0.3810 0.4264 Z 

0 0 0 0 1 0.5031 0.1844 0.3125 X 

0 0 0 1 0 0.5152 0.4099 0.0749 X 

0 0 0 1 1 0.3031 0.4220 0.2749 Y 

0 0 1 0 0 0.4118 0.5379 0.0503 Y 

0 0 1 0 1 0.5737 0.3810 0.0452 X 

0 0 1 1 0 0.5855 0.3646 0.0499 X 

0 0 1 1 1 0.8274 0.1138 0.0588 X 

0 1 0 0 0 0.8052 0.1047 0.0901 X 

0 1 0 0 1 0.4175 0.4759 0.1066 Y 

0 1 0 1 0 0.2027 0.6818 0.1155 Y 

0 1 0 1 1 0.4789 0.1879 0.3332 X 

0 1 1 0 0 0.5848 0.0462 0.3690 X 

0 1 1 0 1 0.1559 0.4744 0.3697 Y 

0 1 1 1 0 0.4034 0.0488 0.5478 Z 

0 1 1 1 1 0.3706 0.0719 0.5575 Z 

1 0 0 0 0 0.1833 0.1846 0.6321 Z 

1 0 0 0 1 0.7177 0.1502 0.1321 X 

1 0 0 1 0 0.7643 0.1365 0.0992 X 

1 0 0 1 1 0.3851 0.5578 0.0571 Y 

1 0 1 0 0 0.2112 0.7505 0.0382 Y 

1 0 1 0 1 0.7705 0.2136 0.0159 X 

1 0 1 1 0 0.7897 0.1397 0.0706 X 

1 0 1 1 1 0.8731 0.0582 0.0687 X 

1 1 0 0 0 0.8430 0.1053 0.0517 X 

1 1 0 0 1 0.2521 0.7167 0.0311 Y 

1 1 0 1 0 0.1771 0.6705 0.1525 Y 

1 1 0 1 1 0.5975 0.2271 0.1754 X 

1 1 1 0 0 0.8148 0.0657 0.1195 X 

1 1 1 0 1 0.1723 0.7091 0.1186 Y 

1 1 1 1 0 0.1825 0.0397 0.7778 Z 

1 1 1 1 1 0.1189 0.1022 0.7789 Z 

Table 6:  Fully enumerated KM table 
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Observed Input KM 
Output A B C D E 

- 0 0 0 0 Z 

- 0 - 0 1 X 

- 0 - 1 0 X 

- 0 0 1 1 Y 

- 0 1 0 0 Y 

- 0 1 1 1 X 

- 1 - 0 0 X 

- 1 - 0 1 Y 

- 1 0 1 0 Y 

- 1 0 1 1 X 

- 1 1 1 - Z 

Table 7:  Condensed KM Table 

 

 

Figure 2: KM Tree 
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Figure 3: True Tree 
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Input Modification 

Continuing with the example, the same true tree is used from Figure 3 and the 

input vector remains Obs = (A
O
=1, B

O
=0, C

O
=1, D

O
=0, E

O
=1). 

Step 1.  Given the observed input of A
O
=1 for the True Tree root node variable, 

the conditional probabilities for the two possible true values for A are 

calculated using Equation 5.  The results are shown in Table 8. 

 

True Observed  ΣP(T|O) 

A 
0 1 0.0450 

1 1 0.9550 

 

Step 2.  Given that the conditional probability for P(AT
=1|AO

=1) = 0.9550 is the 

highest conditional probability (highlighted in Table 8), the IM process selects 

1 as the most likely true state for A. 

Step 3.  Repeating step 2 until a decision node is reached, the process moves 

according to the true tree in Figure 3 to the variable B.  Given the observed 

state of 0 for B, the conditional probabilities for P(BT
|BO

) are calculated as 

shown in Table 9. 

 

True Observed  ΣP(T|O) 

B 
0 0 0.9179 

1 0 0.0821 

Table 8:  Input Modification Input A conditional probabilities 

Table 9:  Input Modification Input B conditional probabilities 
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Since P(B
T
=0|B

O
=0) = 0.9179 is the higher value (highlighted in Table 9), the IM 

selected most likely true state for B is 0.  Repeating step 2 for the next variable in the true 

tree, the conditional probabilities for D are calculated as displayed in Table 10. 

 

True Observed  ΣP(T|O) 

D 
0 0 0.9087 

1 0 0.0913 

 

Since P(DT
=0|DO

=0) = 0.9087 is the higher value (highlighted in Table 10), the 

IM selected most likely true state for D is 0.  Repeating step 2 for the next variable in the 

true tree, the conditional probabilities for E are calculated as displayed in Table 11. 

 

True Observed  ΣP(T|O) 

E 
0 1 0.1558 

1 1 0.8442 

 

Since P(ET
=1|EO

=1) = 0.8442 is the higher value (highlighted in Table 11), the IM 

selected most likely true state for E is 1.  Since the 1 branch of the E node leads to a 

decision node in the true tree, the IM recommendation for the observed vector Obs = 

(AO
=1, BO

=0, CO
=1, DO

=0, EO
=1) is X.   

 

Table 10:  Input Modification Input D conditional probabilities 

Table 11:  Input Modification Input E conditional probabilities 
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Cost Matrix 

General 

In this research, the extant KM and IM methodologies were extended to 

misclassification cost analysis using a cost matrix.  The cost matrix records the 

misclassification error cost C(i, j) where decision i is the decision made given noisy input 

while decision j is the decision made given true input.  The cost matrix takes the format 

shown in Table 12.  By convention, rows correspond to alternative predicted classes, 

while columns correspond to true classes as shown (Elkan, 2001). 

 

 Actual: D1 Actual: D2 Actual: D3 

Decision Made: D1 C(0,0) C(0,1) C(0,2) 

Decision Made: D2 C(1,0) C(1,1) C(1,2) 

Decision Made: D3 C(2,0) C(2,1) C(2,2) 

Table 12:  General cost matrix format 

An element in the cost matrix C(i , j) represents the misclassification cost of 

making decision i given the true (actual) decision j.  In each case where the decision 

made (i) is the same as the decision made given true input (j), no error exists and the 

misclassification cost is zero.  In the case where all misclassification costs were equal, 

this research verified that classification methodologies using misclassification costs 

produced results identical to methodologies that do not take those costs into account. 

In this research, parameters α and β were used in the cost matrix as shown in 

Table 13.  There, α captures the relative importance of asymmetry in misclassification 

costs while β captures the relative costs based on the degree of difference between the 

true and the predicted values for a class (referred to in this context as class decision 
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order).  The assumption that a lesser misclassification error carries a smaller 

misclassification cost necessitates the restriction that β ≥ 1 while α > 0.  For the 

experiments, asymmetry is restricted to one side of the control value of 1 (0 < α ≤ 1) as 

testing on both sides would be duplicative.   

 

 Actual: D1 Actual: D2 Actual: D3 

Decision Made: D1 0 C βC 

Decision Made: D2 αC 0 C 

Decision Made: D3 αβC αC 0 

Table 13: Cost matrix format 

In some cases, misclassification costs are ordered so they consistently increase 

with the magnitude of the error.  That is, a “small” error is less expensive than a “large” 

error, given a true decision.  Looking at the cost matrix, this special case is expressed as 

in Equation 6. 

 

 (   )   (   )      |   |  |   |                                       (6) 

 

As an example, consider an online credit card application where a bank’s decision 

to grant or not grant credit to a particular applicant using actual (true) input places that 

applicant in a high risk class.  Equation 6 implies that the misclassification cost to the 

bank of deciding the applicant is of medium risk (small error) is always less than or equal 

to the cost of deciding that high risk applicant is of low risk (large error).  The parameter 
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β (restricted to β ≥ 1) permits testing of this case over a range of magnitudes of the 

difference between misclassification costs. 

Additionally, in some cases, misclassification costs are asymmetrical within the 

cost matrix.  This equates to the special case as shown in Equation 7. 

 

 (   )   (   )                                                            (7) 

 

Consider the case where a bank evaluates two credit card applicants where the 

first applicant is of high risk, but is misclassified as low risk, whereas the second 

applicant is of low risk, but is decided to be of high risk.  The first error might lead the 

bank to grant credit at a favorable interest rate to a customer who ultimately defaults on a 

loan, leaving the bank to cover the cost.  In the second case, the bank may fail to grant 

credit to an otherwise creditworthy customer, causing the bank to lose that customer and 

their potential future business.  In these two examples, the monetary costs to the bank are 

different.  The parameter α (restricted to 0 < α ≤ 1) permits testing of this case over a 

range of asymmetrical misclassification costs.  

Decision Making Using a Cost Matrix 

The cost matrix allows decision-making based on lowest expected 

misclassification cost instead of lowest probability of error as used by the KM and IM 

methodologies.  Following Elkan (2001), using a cost matrix with misclassification costs 

C(i, j), the lowest cost decision for an example x is the class i the minimizes Equation 8. 

 

 (   )   ∑  ( | ) (   )                                                 (8) 
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For each i,  (   ), is the sum over the alternative possibilities for the true class of 

x.   

Cost-Based Knowledge Base Modification (CBKM) 

General 

The original KM methodology modifies a knowledge base (decision tree) to 

account for user input distortion.  Its inputs include an original decision tree, the joint 

input probability distributions, and the distortion matrices for all variables.  The output is 

a modified decision tree referred to as a KM tree.  In the process, a fully enumerated KM 

table, including the KM recommendations for all possible Observed vectors, is 

computed.  The KM recommendation for a specific Observed input vector depends on 

the conditional probabilities of all True vectors, given the Observed vector.  The process 

proceeds in five steps as previously outlined. 

The CBKM method differs from the KM method in its selection of lowest-cost 

vectors over highest total True vector probability in step 2.  It does this by using a cost 

matrix and the conditional probability of each class given the Observed vector.  The 

CBKM steps proceed as follows. 

Step 1.  Determine the probabilities of all possible True input vectors given an 

Observed vector.  Using Equation 3, calculate the conditional probabilities of 

all True input vectors given an Observed vector.  Determine P(Observed) 

using Equation 4. 

Step 2.  Find the CBKM recommendation for the given Observed vector.  Given 

the probabilities in step 1 and error costs from the cost matrix, calculate the 

cost of each True vector given the Observed vector for all True vectors with 
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the same decision outcome.  The recommendation with the lowest predicted 

cost becomes the CBKM recommendation. 

Step 3.  Construct a fully enumerated CBKM table by completing step 1 and step 

2 for all possible Observed vectors. 

Step 4.  Compress the CBKM table to create a condensed CBKM table, thus 

removing redundant input. 

Step 5.  Create the CBKM decision tree.  Using the condensed decision table and 

the error costs for Observed vectors, an optimum CBKM tree can be found.  

The output of this final step is the CBKM tree. 

CBKM differs from KM first with its added requirement for the cost matrix as 

discussed.  In step 1, both CBKM and KM use the joint input probability distributions 

and distortion matrices to calculate the probabilities of all possible True input vectors.  

The methodologies differ in step 2 because both probabilities and expected costs are 

required to calculate lowest costs.  The goal of CBKM is to minimize the cost whereas 

the goal of KM is to maximize the sum of conditional probabilities for all True vectors.  

Given the CBKM recommendation from step 2, the final three steps are the same as for 

KM.  

Example 

Revisiting the KM example previously discussed, step 1 is the same for CBKM as 

for KM.  Step 2 differs with the introduction of the cost matrix and resulting calculation 

of lowest misclassification cost.  A cost matrix with example misclassification costs is 

shown in Table 14.  In this case, α  and β are selected such that α = 0.1 and β = 5.  

Possible outcomes (decisions) are X, Y, and Z.   



 33 

  

 

 Actual: X Actual: Y Actual: Z 

Decision Made: X 0 1 5 

Decision Made: Y 0.1 0 1 

Decision Made: Z 0.5 0.1 0 

Table 14: Cost matrix format 

In step 2, the conditional probabilities already calculated in Table 7 are used with 

the cost matrix to satisfy Equation 8.  Here,  (   ) must be evaluated for the three 

possible values of i, (X, Y, and Z), given the observed input vector Obs = (AO
=1, BO

=0, 

CO
=1, DO

=0, EO
= 1). 

 (     )   

=  ( |   ) (   )   ( |   ) (   )   ( |   ) (   ) 

= (0.7705 · 0.0) + (0.2136 · 1.0) + (0.0159 · 5.0) = 0.2931 

 (     )   

=  ( |   ) (   )   ( |   ) (   )   ( |   ) (   ) 

= (0.7705 · 0.1) + (0.2136 · 0.0) + (0.0159 · 1.0) = 0.0929 

 (     )   

=  ( |   ) (   )   ( |   ) (   )   ( |   ) (   ) 

= (0.7705 · 0.5) + (0.2136 · 0.1) + (0.0159 · 0.0) = 0.4066 

Because the Y class minimizes the overall cost, it becomes the CBKM 

recommendation for the given input vector. 

The CBKM process proceeds through the remaining steps using the values 

generated in step 2.  These remaining steps  are unchanged from the original KM process 
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with the CBKM condensed table as shown in Table 15 and the CBKM tree as shown in 

Figure 4. 

 

 

 

 

 

 

 

 

 

 

Table 15:  Condensed CBKM table 

Cost-Based Input Modification (CBIM) 

General 

The CBIM method similarly differs from the IM method in the selection of lowest 

misclassification error cost over most probable True vector.  The error cost matrix and 

true tree are used in three steps that proceed as follows.   

Step 1.  Using the cost matrix, determine the lowest cost True vector from a 

variable’s Observed vector represented by the true tree root node, and traverse 

the tree based on that state. 

Observed Input CBKM 
Output 

A B C D E 

0 0 0 0 - Z 

- 0 - 1 0 Y 

0 - 0 1 1 Z 

- 0 1 0 - Y 

- 0 1 1 1 Y 

- 1 0 0 - Y 

0 1 0 1 0 Y 

0 1 1 - - Z 

1 0 0 0 0 Z 

1 0 0 - 1 Y 

1 1 - 1 0 Z 

1 1 0 1 1 Y 

1 1 1 0 - Y 

1 1 1 1 1 Z 
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Figure 4: CBKM Tree 

Step 2.  If this node is a decision node, it represents the CBIM recommendation 

for the observed inputs.  Otherwise, compute the lowest cost true state for the 

current variable, and traverse the tree again. 
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Step 3.  Continue with step 2 until a decision node is reached, which will be the 

CBIM recommendation. 

Example 

Step 1 of the CBIM process uses the original, unaltered true tree as shown in 

Figure 3.  Given an initial A root node, the cost of each observed class is calculated using 

Equation 8.  Table 16 shows the required values for each potential Observed vector.  In 

the table, the 32 possible Observed vectors are listed on the left side from Obs = (A
O
=0, 

BO
=0, CO

=0, DO
=0, EO

=0) to Obs = (AO
=1, BO

=1, CO
=1, DO

=1, EO
=1).  Given the true 

tree from Figure 3, P(X|O), P(Y|O), and P(Z|O) are the same values already calculated 

for the CBKM process as previously discussed and displayed in Table 6.   

Additional required values are the costs C(X|O), C(Y|O), and C(Z|O).  Using the 

example Obs = (AO
=1, BO

=0, CO
=1, DO

=0, EO
=1) which is highlighted in Table 16 and 

the cost matrix in Table 14, the calculations are as follows using Equation 8 (note the 

calculations are rounded to 4 decimal places while the computer generated results in 

Table 16 are not): 

 

C(X|O) = P(X)C(XO|XT) + P(Y)C(XO|YT) + P(Z)C(XO|ZT) 

             = (0.7705)(0.0) + (0.2135)(1.0) + (0.0159)(5.0) = 0.2930 

C(Y|O) = P(X)C(YO|XT) + P(Y)C(YO|YT) + P(Z)C(YO|ZT) 

             = (0.7705)(0.1) + (0.2135)(0.0) + (0.0159)(1.0) = 0.0930 

C(Z|O) = P(X)C(ZO|XT) + P(Y)C(ZO|YT) + P(Z)C(ZO|ZT) 

             = (0.7705)(0.5) + (0.2135)(0.1) + (0.0159)(0.0) = 0.4066 
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Observed Input 
P(T|O) P(X|O) P(Y|O) P(Z|O) C(X|O) C(Y|O) C(Z|O) Cost 

A B C D E 

0 0 0 0 0 0.000213 0.1926 0.3810 0.4264 2.5130 0.4456 0.1344 3.0930 

0 0 0 0 1 0.001154 0.5031 0.1844 0.3125 1.7469 0.3628 0.2700 2.3797 

0 0 0 1 0 0.000021 0.5152 0.4099 0.0749 0.7844 0.1264 0.2986 1.2095 

0 0 0 1 1 0.000116 0.3031 0.4220 0.2749 1.7966 0.3052 0.1937 2.2956 

0 0 1 0 0 0.005632 0.4118 0.5379 0.0503 0.7895 0.0915 0.2597 1.1406 

0 0 1 0 1 0.030520 0.5737 0.3810 0.0452 0.6072 0.1026 0.3250 1.0348 

0 0 1 1 0 0.000566 0.5855 0.3646 0.0499 0.6140 0.1084 0.3292 1.0517 

0 0 1 1 1 0.003068 0.8274 0.1138 0.0588 0.4078 0.1415 0.4251 0.9744 

0 1 0 0 0 0.000019 0.8052 0.1047 0.0901 0.5553 0.1707 0.4131 1.1391 

0 1 0 0 1 0.000103 0.4175 0.4759 0.1066 1.0088 0.1483 0.2563 1.4135 

0 1 0 1 0 0.000002 0.2027 0.6818 0.1155 1.2592 0.1358 0.1695 1.5645 

0 1 0 1 1 0.000010 0.4789 0.1879 0.3332 1.8538 0.3811 0.2582 2.4931 

0 1 1 0 0 0.000504 0.5848 0.0462 0.3690 1.8910 0.4274 0.2970 2.6155 

0 1 1 0 1 0.002731 0.1559 0.4744 0.3697 2.3229 0.3853 0.1254 2.8336 

0 1 1 1 0 0.000051 0.4034 0.0488 0.5478 2.7878 0.5882 0.2066 3.5826 

0 1 1 1 1 0.000275 0.3706 0.0719 0.5575 2.8595 0.5946 0.1925 3.6465 

1 0 0 0 0 0.004520 0.1833 0.1846 0.6321 3.3452 0.6504 0.1101 4.1057 

1 0 0 0 1 0.024492 0.7177 0.1502 0.1321 0.8105 0.2038 0.3739 1.3882 

1 0 0 1 0 0.000454 0.7643 0.1365 0.0992 0.6326 0.1757 0.3958 1.2040 

1 0 0 1 1 0.002462 0.3851 0.5578 0.0571 0.8434 0.0956 0.2483 1.1874 

1 0 1 0 0 0.119565 0.2112 0.7505 0.0382 0.9417 0.0593 0.1807 1.1817 

1 0 1 0 1 0.647929 0.7705 0.2136 0.0159 0.2933 0.0930 0.4066 0.7928 

1 0 1 1 0 0.012020 0.7897 0.1397 0.0706 0.4925 0.1495 0.4088 1.0509 

1 0 1 1 1 0.065136 0.8731 0.0582 0.0687 0.4017 0.1560 0.4424 1.0000 

1 1 0 0 0 0.000404 0.8430 0.1053 0.0517 0.3637 0.1360 0.4320 0.9317 

1 1 0 0 1 0.002192 0.2521 0.7167 0.0311 0.8724 0.0563 0.1977 1.1265 

1 1 0 1 0 0.000041 0.1771 0.6705 0.1525 1.4327 0.1702 0.1556 1.7585 

1 1 0 1 1 0.000220 0.5975 0.2271 0.1754 1.1042 0.2352 0.3215 1.6608 

1 1 1 0 0 0.010699 0.8148 0.0657 0.1195 0.6633 0.2010 0.4140 1.2782 

1 1 1 0 1 0.057978 0.1723 0.7091 0.1186 1.3020 0.1358 0.1571 1.5949 

1 1 1 1 0 0.001076 0.1825 0.0397 0.7778 3.9289 0.7961 0.0952 4.8202 

1 1 1 1 1 0.005828 0.1189 0.1022 0.7789 3.9966 0.7908 0.0697 4.8570 

Table 16: CBIM required data 
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The cost of Obs is then C(X|O) + C(Y|O) + C(Z|O) = 0.2930 + 0.0930 + 0.4066 = 

0.7926.  The cost of each other Obs is calculated analogously and displayed in Table 16. 

In step 2, returning to the true tree in Figure 3, and its root node of A, the costs for 

A = 0 and A = 1 are derived from Table 16 using Equation 8.  For example, the first 16 

observed input entries correspond to all Observed vectors where AO
 = 0 and the last 16 

entries correspond to all Observed vectors where A
O
 = 1.  The sum of all P(T|O) for A

O
 = 

0 is then 0.0450, the sum of all P(T|O) for AO
 = 1 is 0.9950, the sum of all costs for AO

 = 

0 is 32.468, and the sum of all costs for A
O
 = 1 is 29.939. 

The calculation for the root node is then: 

C(A=0) = P(A=0)C(A=0| A=0) + P(A=1)C(A=0| A=1)  

             = (0.0450)(0.0) + (0.9950)(32.468) = 31.007 

C(A=1) = P(A=0)C(A=1| A=0) + P(A=1)C(A=1| A=1)  

             = (.0450)(29.939) + (0.9950)(0.0) = 1.3468 

Because C(A=1) < C(A=0), A = 1 is selected as the CBIM recommendation for 

this node and the process proceeds to the next node (B) accordingly repeating the step 

until a decision node is reached.  The results for each observed vector are shown in Table 

17.  From Table 17, for B, C(B=0) = 24.0242 and C(B=1) = 1.5853.  Therefore, B = 1 is 

selected as the lowest cost alternative, and the process advances to the next true tree node 

(C).  From Table 17, for C, C(C=0) = 27.8964 and C(C=1) = 1.2186.  Therefore, C = 1 is 

selected as the lowest cost alternative, and the process advances to the next true tree node 

(D).  From Table 17, for D, C(D=0) = 24.5915 and C(D=1) = 4.2358.  Therefore, D = 0 is 

selected as the lowest cost alternative. 
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Observed 
Cost     

A B C D E 
    

0 0 0 0 0 3.0930 
    

0 0 0 0 1 2.3797 
    

0 0 0 1 0 1.2095 
    

0 0 0 1 1 2.2956 
    

0 0 1 0 0 1.1406 
    

0 0 1 0 1 1.0348 
    

0 0 1 1 0 1.0517 
    

0 0 1 1 1 0.9744 
    

0 1 0 0 0 1.1391 
    

0 1 0 0 1 1.4135 
 

  C(0) C(1) 

0 1 0 1 0 1.5645 
 

A 31.0071 1.3468 

0 1 0 1 1 2.4931 
 

B 24.0242 1.5853 

0 1 1 0 0 2.6155 
 

C 27.8964 1.2186 

0 1 1 0 1 2.8336 
 

D 24.5915 4.2358 

0 1 1 1 0 3.5826 
    

0 1 1 1 1 3.6465 
    

1 0 0 0 0 4.1057 
    

1 0 0 0 1 1.3882 
    

1 0 0 1 0 1.2040 
    

1 0 0 1 1 1.1874 
    

1 0 1 0 0 1.1817 
    

1 0 1 0 1 0.7928 
    

1 0 1 1 0 1.0509 
    

1 0 1 1 1 1.0000 
    

1 1 0 0 0 0.9317 
    

1 1 0 0 1 1.1265 
    

1 1 0 1 0 1.7585 
    

1 1 0 1 1 1.6608 
    

1 1 1 0 0 1.2782 
    

1 1 1 0 1 1.5949 
    

1 1 1 1 0 4.8202 
 

   

1 1 1 1 1 4.8570 
    

Table 17: CBIM cost calculations 
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Referencing the true tree, because D is a decision node, in step 3 the CBIM 

recommendation is Z. 

Experimental Design 

General 

CBKM and CBIM performance were evaluated over varying degrees of distortion 

(noise), asymmetry (α) and class order (β).  The control case is a symmetrical, unordered 

cost matrix with equal misclassification costs for all class decisions.  That is, the control 

is the cost matrix where misclassification costs are (a) equal (C(i1,j1) = C(i2,j2) for all i 

and j), (b) symmetrical (α = 1), and (c) unordered (β = 1).  Selecting C = 1 for all 

(meeting the condition that C > 0), produces the control cost matrix shown in Table 18.  

This cost matrix implies that all “correct” decisions carry a zero misclassification cost 

while all incorrect decisions carry a non-zero, but equal cost regardless of the decision. 

 

 Actual: D1 Actual: D2 Actual: D3 

Decision Made: D1 0 1 1 

Decision Made: D2 1 0 1 

Decision Made: D3 1 1 0 

Table 18: Control case cost matrix  

The CBKM and KM methodologies both modify a knowledge base to achieve an 

optimal solution.  The difference is that KM does not take misclassification costs into 

account and consequently represents the CBKM case were those costs are consistently 

equal.  Similarly, CBIM and IM both use an original, unmodified knowledge base to 

achieve optimal performance and differ only in the inclusion of misclassification costs.  
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CBKM was therefore compared with KM and CBIM was compared with IM using the 

same control cost matrix. 

Both CBKM and CBIM were evaluated under varying degrees of input distortion 

(noise), asymmetry (0 < α ≤ 1), and degree of order in the decision classes (β ≥ 1) using 

this control. 

Distortion 

Distortion in an input variable (γ) is defined as the probability its observed state 

differs from its true state.  Distortion in any input is computed from a distortion matrix 

and marginal distribution for that input according to Equation 9 (Jiang et al., 2005).  

 

   ∑  (     )(   (         |     ))                                   (9) 

 

Given a sample distortion matrix and marginal distribution of a ternary variable as 

in Table 19, the calculation of γ is as shown in Equation 10. 

 

  Observed   

  X Y Z     Marginal Probability 

True 

X P11 P12 P13 P(X) 

Y P21 P22 P23 P(Y) 

Z P31 P32 P33 P(Z) 

 

 

     

Table 19:  Distortion matrix and marginal distribution of a ternary variable 

 

   ( )(      )   ( )(     )   ( )(     )                   (10) 
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In the experiments, the distortion level evaluated was set such that 0 < γ < 0.5 and 

the distortion matrices formed as follows:  First, the first (n – 1) diagonal elements in 

each (n × n) distortion matrix were generated randomly.  For a binary input, this equated 

to the single matrix element P11.  Element P12 was calculated as P12 = (1 - P11).  Given P11 

and the selected distortion level, P22 was calculated from Equation 10 as shown in 

Equation 11.     

 

       
   ( )(      )

 ( )
                                            (11) 

 

The final element P21 was calculated as P21 = (1 – P22).   

Asymmetry 

Asymmetry is defined as the degree to which class error type costs differ.  It 

captures the case where misclassification costs in the cost matrix vary by type such that 

C(i , j) ≠ C(j , i).  It is represented by α as shown in Table 13 and varies in the range 0 < α 

≤ 1.  In the experiments, it represented the case where the cost of making decision X, 

given that the true decision was Z, was different than making decision Z, given that the 

true decision was X.   

Order 

Ordered class decisions are those whose misclassification costs increase with the 

magnitude of the error.  In a cost matrix, an ordered class is one whose misclassification 

costs C(i , j) increase such that C(i , j) ≥  C(i – 1, j) and C(i , j) ≥  C(i , j + 1) where i > j, 

and C(i , j) ≥  C(i + 1, j) and C(i , j) ≥  C(i , j – 1) where i < j.  In the experiments, this 

meant that the cost of making decision X, given that the true decision was Z (a “large 
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error”) was greater than making decision Y, given that the true decision was Z (a “small 

error”). 

Procedure 

In the experiments, each simulated knowledge base contained five binary input 

variables with three possible outcomes.  Because the experimental inputs were binary, 

there was no added value from evaluating distortion levels above 0.5, so distortion levels 

were selected in the range [0, 0.5] and held equal for all inputs.    

A program was written to accomplish the following steps.  First, a true knowledge 

base was generated by randomly choosing one of the three possible decisions for all 

possible combinations of the five input variables.  The marginal distributions for the input 

vectors were determined by randomly setting some values and calculating the remainder.  

A true decision tree was generated from the true knowledge base.  Next, a distortion level 

was chosen from the interval [0, 0.5] and applied either to all variables equally, or to one 

variable while holding all others at a constant positive value, to simulate both even and 

uneven distortion across the inputs.  An asymmetry value (α) was chosen in the range 

[0.1, 1] at a 0.1 interval, and class order (β) was chosen in the range [1, 10].  For each 

experiment, one parameter was varied at a time within its range while the others were 

held constant in their range.  The generated true tree was used in the CBIM method and a 

CBKM tree was generated using the five steps already discussed.   

For each simulated test case, a True input vector was randomly generated.  The 

true outcome for the test case was determined by running the True vector through the 

generated true tree.  The Observed vector was generated by applying the selected 
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distortion and the process was repeated 10,000 times for each set of parameters to 

simulate 10,000 different knowledge bases and user experiences.   

The CBKM and CBIM methodologies were also evaluated using real world data 

taken from the University of California, Irvine machine learning repository.  The data 

were preprocessed to remove duplicate and conflicting instances in addition to all 

instances with missing values, leaving 500 instances for testing.  Continuous attributes 

were converted to ternary attributes and a true tree was generated using the data mining 

tool See5 (C5.0).  Using these data, CBKM and CBIM were evaluated with distortion 

levels varying in 0.1 intervals with α and β set to constant values.  Both techniques were 

similarly evaluated with α and β incrementally increased with other values remaining 

constant. 

Data Analysis 

The analysis first explored the performance difference between CBKM and KM.  

Because KM does not consider misclassification costs, it represents the case where the 

cost of making an incorrect decision is no different than the cost of making a correct 

decision.  In the analysis, CBKM was compared with KM using a cost matrix with 

nonzero constant costs for all off-diagonal elements while diagonal elements where i = j 

remained zero.  CBIM was similarly compared with IM to determine if that method 

improved performance with respect to misclassification costs.  Because neither KM nor 

IM incorporated any method for misclassification cost analysis, it was expected that 

CBKM would outperform KM over a wide range of misclassification cost parameters (α 

and β) and input distortion, and CBIM would similarly outperform IM.  The following 

hypotheses summarize these expectations with respect to various input distortion levels. 
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Hypothesis 1.  CBKM outperforms KM over a wide range of input distortion. 

Hypothesis 2.  CBKM outperforms the True Tree over a wide range of input 

distortion. 

Hypothesis 3.  CBIM outperforms IM over a wide range of input distortion. 

Hypothesis 4.  CBIM outperforms the True Tree over a wide range of input 

distortion. 

Similarly, CBKM and CBIM were expected to outperform KM and IM with 

respect to differing cost matrix parameters (α and β) where performance was measured 

against misclassification costs.  The follow hypotheses summarize these expectations. 

Hypothesis 5.  CBKM outperforms KM over a wide range of cost matrices. 

Hypothesis 6.  CBIM outperforms IM over a wide range of cost matrices. 

The analysis was additionally interested in the performance difference between 

CBKM and CBIM with respect to misclassification costs.  CBKM and CBIM were 

expected to respond differently because they handle input distortion differently.  CBIM 

uses an original knowledge base without modification, whereas CBKM is permitted to 

modify its knowledge base to its advantage.  In CBIM, a noisy input in the root node, or 

any node subsequently traversed, remains in the CBIM process.  CBKM, on the other 

hand, can eliminate an especially noisy input in its restructured knowledge base.  

Therefore, CBKM was expected to outperform CBIM as input distortion levels increased.  

This expectation with respect to noise is summarized in the final hypothesis. 

Hypothesis 7.  The performance of CBIM compared with CBKM will deteriorate 

with increases in noise. 
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Chapter 4 

Results 

 

General 

The experimental results from the CBKM and CBIM methods were compared 

with the same inputs to the extant KM and IM methods, and the True Tree.  As is to be 

expected, CBKM consistently outperformed KM and the True Tree over a wide range of 

input distortion and cost matrix α and β when the evaluation criterion was error cost.  The 

performance difference between CBIM, and IM and the True Tree was less pronounced.  

In this chapter, the cost matrix will be discussed first, followed by the CBKM and CBIM 

results using experimental data.  Results using real world data will follow before an 

explanation of the findings. 

Control Cost Matrix 

The control cost matrix is as shown in Table 18.  Using the control, the CBKM 

and CBIM methodologies produced the same results as the KM and IM implementations, 

because the control guarantees zero cost for correct classifications and a uniform cost for 

misclassifications.  From Equation 8, the CBKM and CBIM methodologies seek 

minimized misclassification costs through a summation of products of  ( | ) (   ).  

Where i = j, there are no misclassification costs and the product resolves to zero.  In the 

control, where i ≠ j, C(i, j) = 1 and the product resolves to include only probabilities.  

Using the control cost matrix, in attempting to minimize these errors (costs) CBKM and 

CBIM minimize the probability of an error, which is logically equivalent to the KM and 

IM goal of maximizing the probability of not making an error.  Experimental results with 
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varying levels of distortion in the range [0, 0.5] are shown in Table 20.  As indicated, 

there are no cost differences between KM and CBKM, and IM and CBIM.  

 

Distortion KM CBKM IM CBIM 

0.0 0.3761 0.3761 0.3093 0.3093 

0.1 0.4726 0.4726 0.4548 0.4548 

0.2 0.5420 0.5420 0.5505 0.5505 

0.3 0.5835 0.5835 0.5980 0.5980 

0.4 0.6187 0.6187 0.6380 0.6380 

0.5 0.6270 0.6270 0.6465 0.6465 

 

Table 20: Misclassification error costs ― control cost matrix result 

In the experiments, various cost matrices were used.  Starting from the control 

cost matrix where both α and β were equal to one, α and β were tested at varying degrees 

as they deviated from one.  The magnitude of β was increased from the control value of 

one in the sequence {1, 2, 3, …}, with larger values representing greater degrees of order.  

The magnitude of α was also increased from the control in the sequence {1.0, 0.9, 0.8, 

…} with a greater deviation from the control representing greater asymmetry.     

Experimental Data 

Hypothesis One 

The following t-test was conducted to test hypotheses one, that CBKM 

outperforms KM over a wide range of input distortion. 

     {
                
                

 

Here, ΔCKM-CBKM  is the misclassification cost difference between KM and 

CBKM.  That is, the null hypothesis (H0) claimed that the misclassification cost 
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difference between KM and CBKM was zero, while the research hypothesis (H1) claimed 

that the difference was not zero.  For this test, 10,000 iterations were recorded at each 

input distortion level, simulating that many users’ inputs to the expert system.  Distortion 

was varied in 0.1 increments in the range [0, 0.5] across all inputs with α constant at 0.1 

and β constant at 10.  The t-test was repeated at each input distortion level, providing an 

assessment of statistical significance at each input distortion level individually.  The 

experimental results are shown in Figure 5 and the t-test results are shown in Table 21.   

 

 

Distortion 0 0.1 0.2 0.3 0.4 0.5 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 10 10 10 10 10 10 

Sample Average ( ̅) 0.2215 0.2755 0.3108 0.3275 0.3433 0.3621 

Reference (  ) 0.8426 1.0516 1.2197 1.2625 1.3171 1.3964 

Standard Error (  ̅) 0.0222 0.0244 0.0261 0.0264 0.0269 0.0276 

t-statistic -27.96 -31.80 -34.77 -35.43 -36.24 -37.46 

Table 21: CBKM vs KM ― varying distortion, all inputs 

Figure 5:  CBKM vs KM — varying distortion, all inputs 
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In this case, H0 was strongly rejected with a p-value less than 0.001 (|t-statistic| > 

3.291―all t-statistic critical values provided in Siegel (1990)) for all distortion levels.  

As expected, CBKM outperformed KM over a wide range of input distortion.  

In the experiment, because distortion was set equal for each of the five binary 

inputs, it evaluated a system where no single input was more prone to errors than another.  

A separate experiment was conducted with all inputs but one held at a constant distortion 

level of 0.4.  The final input was varied in [0, 0.5] in 0.1 increments to simulate a system 

with uneven input distortion.  The experimental results are shown in Figure 6.  The t-test 

was repeated with the results shown in Table 22.  As expected, CBKM outperformed KM 

where distortion varied unevenly across the inputs and H0 was strongly rejected with a p-

value less than 0.001.   

  

 

 

 

Figure 6: CBKM vs KM — varying distortion, one input 
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Distortion 0 0.1 0.2 0.3 0.4 0.5 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 10 10 10 10 10 10 

Sample Average ( ̅) 0.3323 0.3268 0.3467 0.3421 0.3457 0.3553 

Reference (  ) 1.3174 1.2927 1.4049 1.3018 1.3299 1.3943 

Standard Error (  ̅) 0.0270 0.0267 0.0278 0.0266 0.0269 0.0277 

t-statistic -36.52 -36.22 -38.03 -36.08 -36.55 -37.56 

Table 22: CBKM vs KM ― varying distortion, one input 

Hypothesis Two 

The following t-test was conducted to test hypothesis two, that CBKM 

outperforms the True Tree over a wide range of input distortion. 

{
                  
                  

 

Here, ΔCTrue-CBKM  is the misclassification cost difference between the True Tree 

and CBKM.  The null hypothesis (H0) claimed that the difference in misclassification 

costs between CBKM and a True Tree was zero, while the research hypothesis (H1) 

claimed the difference was not zero.  As in the previous test, distortion was first varied in 

0.1 increments in the range [0. 0.5] across all inputs with α constant at 0.1 and β constant 

at 10.  Ten thousand iterations were recorded at each distortion level, with the 

misclassification cost summary shown in Figure 7 and the t-test results shown in Table 

23.  As expected, CBKM outperformed the True Tree for all distortion levels greater than 

zero and H0 was strongly rejected with a p-value less than 0.001 for all distortion levels.  

In each case, a negative t-statistic indicates CBKM outperforming KM ( (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

  (  )̅̅ ̅̅ ̅̅ ̅̅ ̅) while a positive t-statistic indicates underperformance. 
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Distortion 0 0.1 0.2 0.3 0.4 0.5 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 10 10 10 10 10 10 

Sample Average ( ̅) 0.2215 0.2755 0.3108 0.3275 0.3433 0.3621 

Reference (  ) 0.0000 0.6185 1.0078 1.2202 1.3171 1.4506 

Standard Error (  ̅) 0.0045 0.0207 0.0253 0.0272 0.0282 0.0293 

t-statistic 49.47 -16.54 -27.57 -32.77 -35.28 -37.20 

Table 23: CBKM vs True Tree — varying distortion, all inputs 

As shown in the graph, in the absence of distortion (zero distortion), there are no 

misclassification errors, so the True Tree produces correct results for every input and zero 

misclassification costs.   

CBKM was further compared with True Tree results with distortion held constant 

at 0.4 across all binary inputs except one.  The final input was varied in 0.1 increments in 

the range [0, 0.5] with α remaining at 0.1 and β at 10.  As expected, H0 was strongly 
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Figure 7: CBKM vs True Tree — varying distortion, all inputs 
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rejected (p < 0.001)  as CBKM outperformed the True Tree with uneven distortion across 

the inputs.  The results are summarized in the graph in Figure 8 and the t-test results are 

shown in Table 24. 

 

 

 

 

 

 

Distortion 0 0.1 0.2 0.3 0.4 0.5 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 10 10 10 10 10 10 

Sample Average ( ̅) 0.3323 0.3268 0.3467 0.3421 0.3458 0.3553 

Reference (  ) 1.2798 1.2658 1.3575 1.3589 1.3299 1.3977 

Standard Error (  ̅) 0.0278 0.0277 0.0286 0.0286 0.0285 0.0288 

t-statistic -34.13 -33.94 -35.34 -35.54 -35.57 -36.14 

Table 24: CBKM vs True Tree ― varying distortion, one input 
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Figure 8: CBKM vs True Tree — varying distortion, one input 
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Hypothesis Three 

The following t-test was conducted to test hypotheses three, that CBIM 

outperforms IM over a wide range of input distortion. 

{
                
                

 

Here, ΔCIM-CBIM  is the misclassification cost difference between IM and CBIM.  

The null hypothesis (H0) claimed that the misclassification cost difference between 

CBIM and IM was zero while the research hypothesis (H1) claimed the difference was 

not zero.  The same experiments were conducted as with hypotheses one and two, with 

varying distortion, α, and β, with varying results.  As before, 10,000 iterations were 

recorded at each step and t-tests conducted for each level of distortion, α, or β. 

In the first case, distortion for all inputs was varied in 0.1 increments in the range 

[0, 0.5] with α constant at 0.1 and β constant at 10.   

For hypothesis three, H0 was rejected for all distortion values (p < 0.05, |t-statistic| 

> 1.960) and strongly rejected for all values greater than zero (p < 0.001, |t-statistic| > 

3.291) as CBIM outperformed IM.  The results are shown in Figure 9 and the t-test 

results displayed in Table 25.   

As shown in Figure 9, the difference between CBIM and IM misclassification 

costs lessens as distortion approaches zero as both methodologies use the original true 

tree to produce similar results.  The greater the distortion, however, the greater the 

difference in misclassification costs.     

Hypothesis three was also tested using uneven distortion in the inputs.  For this 

test, distortion was held constant at 0.4 for all inputs except one, which was incremented 

in the range [0, 0.5] while α remained constant at 0.1 and β remained at 10.  For all 
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Distortion 0 0.1 0.2 0.3 0.4 0.5 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 10 10 10 10 10 10 

Sample Average ( ̅) 0.6566 0.9334 1.1295 1.1659 1.2555 1.2770 

Reference (  ) 0.6819 1.0035 1.2203 1.3099 1.3824 1.4197 

Standard Error (  ̅) 0.0121 0.0128 0.0136 0.0139 0.0137 0.0147 

t-statistic -2.10 -5.48 -6.69 -10.37 -9.26 -9.72 

Table 25: CBIM vs IM ― varying distortion, all inputs 

 

distortion levels, H0 was strongly rejected (p < 0.001) as CBIM outperformed IM.  The 

experimental results are shown in Figure 10 and the t-test results are shown in Table 26.  

As shown in Figure 10, the CBIM and IM estimations do not converge with 

uneven distortion because, with four inputs set at a distortion level of 0.4, total input 

distortion never approaches zero. 
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Figure 9: CBIM vs IM — varying distortion, all inputs 
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Hypothesis Four 

The following t-test was conducted to test hypothesis four, that CBIM 

outperforms a True Tree over a wide range of input distortion. 

{
                  
                  

 

Distortion 0 0.1 0.2 0.3 0.4 0.5 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 10 10 10 10 10 10 

Sample Average ( ̅) 1.2043 1.2016 1.2971 1.2680 1.2724 1.2975 

Reference (  ) 0.0000 1.3212 1.4170 1.3818 1.3849 1.4260 

Standard Error (  ̅) 0.0157 0.0143 0.0138 0.0141 0.0141 0.0136 

t-statistic -9.78 -8.37 -8.72 -8.07 -8.00 -9.44 

Table 26: CBIM vs IM ― varying distortion, one input 

Figure 10: CBIM vs IM — varying distortion, one input 
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Here, ΔCTrue-CBIM  is the misclassification cost difference between the True Tree 

and CBIM.  The null hypothesis (H0) claimed that the misclassification cost difference 

between CBIM and a True Tree was zero while the research hypothesis (H1) claimed the 

difference was not zero.  The same experiments were performed with varying distortion,  

α, and β, with 10,000 iterations recorded at each level.  The experimental results are 

summarized in Figure 11 and the t-test results are shown in Table 27.  In this case, H0 

was rejected for all distortion values (p < 0.05, |t-statistic| > 1.960) and strongly rejected 

for all values above and below 0.3 (p < 0.001, |t-statistic| > 3.291).  Looking at Figure 11, 

a distortion level of 0.3 is the level at which CBIM performance surpasses the True Tree, 

indicating CBIM consistently outperforms the True Tree only at higher distortion levels 

(distortion > 0.3).   

Figure 11: CBIM vs True — varying distortion, all inputs 
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Distortion 0 0.1 0.2 0.3 0.4 0.5 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 10 10 10 10 10 10 

Sample Average ( ̅) 0.6844 0.9334 1.1295 1.1659 1.2334 1.2770 

Reference (  ) 0.0000 0.6185 1.0078 1.2202 1.3408 1.4506 

Standard Error (  ̅) 0.0215 0.0241 0.0254 0.0254 0.0254 0.0269 

t-statistic 31.86 13.10 4.80 -2.14 -3.32 -6.46 

Table 27: CBIM vs True Tree — varying distortion, all inputs 

The t-test results indicate there is a statistically significant difference between 

CBIM and True Tree misclassification costs at each input distortion level in the range 

[0.1, 0.5].  Positive t-statistic values correspond to distortion levels where CBIM 

underperforms the True Tree while negative values indicate CBIM outperforms.  This 

result is explained in the Findings section below.   

Hypothesis Five 

CBKM was evaluated with varying levels of α and β in the cost matrix to test 

hypothesis five, that CBKM outperforms KM over a wide range of cost matrices.  The 

same t-tests were conducted as for hypothesis one.   

{
                
                

 

The null hypothesis (H0) claimed that the misclassification cost difference 

between CBKM and KM was zero in the case of varying α and β in the cost matrix.  The 

research hypothesis (H1) claimed the misclassification cost difference was not zero.  

Figure 12 shows the experimental results with 10,000 iterations at each step with α 

varying in increments of 0.1 in [0.1, 1.0].  Distortion was held constant across all inputs 

at 0.4 and β was held at 10.   
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H0 was strongly rejected with p < 0.001 for all values of α as CBKM 

outperformed KM, as shown in Table 28. 

 

 

Figure 12: CBKM vs KM — varying asymmetry 

 

Table 28: CBKM vs KM ― varying asymmetry 

 

Figure 13 shows the results with α held constant at 0.1 and β varied in increments 

of 1.0 in the range [1, 10].  As expected, H0 was strongly rejected for all levels of varying 
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Distortion 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Asymmetry (α) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Order (β) 10 10 10 10 10 10 10 10 10 10 

Sample Average ( ̅) 0.3400 0.4768 0.5685 0.6278 0.6985 0.7407 0.7758 0.8346 0.9090 0.9374 

Reference (  ) 1.3006 1.4461 1.6155 1.7404 1.8283 1.9586 2.0629 2.2013 2.3225 2.4776 

Standard Error (  ̅) 0.0266 0.0269 0.0277 0.0280 0.0281 0.0293 0.0302 0.0318 0.0330 0.0351 

t-statistic -36.12 -36.05 -37.85 -39.70 -40.18 -41.58 -42.65 -43.00 -42.89 -43.88 
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β (p < 0.001) as CBKM outperformed KM.  The results for the t-tests are shown in Table 

29. 

 

Figure 13: CBKM vs KM — varying order 

 

Table 29: CBKM vs KM ― varying order 

Hypothesis Six 

The following t-test was conducted to test hypothesis six, that CBIM outperforms 

IM over a wide range of cost matrices.   

{
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Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 1 2 3 4 5 6 7 8 9 10 

Sample Average ( ̅) 0.0945 0.1450 0.1787 0.2151 0.2402 0.2695 0.2919 0.3118 0.3331 0.3541 

Reference (  ) 0.3339 0.4466 0.5433 0.6728 0.7993 0.8787 1.0187 1.1367 1.2441 1.3722 

Standard Error (  ̅) 0.0045 0.0064 0.0086 0.0112 0.0139 0.0162 0.0190 0.0219 0.0245 0.0273 

t-statistic -53.72 -46.97 -42.48 -40.76 -40.33 -37.69 -38.18 -37.72 -37.19 -37.28 
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This is the same t-test as for hypothesis three where the null hypothesis (H0) 

claimed the misclassification cost difference between CBIM and IM was zero and the 

research hypothesis (H1) claimed the misclassification cost difference was not zero.  To 

test the hypothesis, α was varied in [0.1, 1.0] while β was held constant at 10.  The 

experimental results are shown in Figure 14 and the t-test results are in Table 30. 

 

Figure 14: CBIM vs IM — varying asymmetry 

 

Distortion 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Asymmetry (α) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Order (β) 10 10 10 10 10 10 10 10 10 10 

Sample Average ( ̅) 1.2357 1.4152 1.5808 1.7041 1.8289 1.9373 2.0721 2.1774 2.3253 2.4387 

Reference (  ) 1.3598 1.5041 1.6502 1.7915 1.8880 2.0090 2.1588 2.2643 2.4241 2.5396 

Standard Error (  ̅) 0.0141 0.0132 0.0136 0.0128 0.0126 0.0135 0.0130 0.0146 0.0150 0.0159 

t-statistic -8.78 -6.73 -5.11 -6.82 -4.68 -5.31 -6.67 -5.95 -6.58 -6.35 

Table 30:  CBIM vs IM — varying asymmetry 
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As expected, CBIM consistently outperforms IM with varying asymmetry in the 

cost matrix and H0 is strongly rejected (p < 0.001).  

Hypothesis six was further tested with β varied in [1, 10] and α held constant at 

0.1.  The experimental results are shown in Figure 15 and the t-test results are shown in 

Table 31. 

 

 

Figure 15: CBIM vs IM — varying order 

As expected, CBIM outperforms IM with varying order in the cost matrix, and H0 

was strongly rejected for all values. 

Hypothesis Seven 

 Hypothesis seven is concerned with the performance difference between the new 
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{
                  
                  

 

Here,             is the misclassification cost difference between the results of 

CBIM and CBKM.  The null hypothesis (H0) claimed that the misclassification cost 

difference between CBKM and CBIM as distortion varied was zero while the research 

hypothesis (H1) claimed that the misclassification cost difference was not zero.  An 

experiment was conducted with distortion varied across all inputs at 0.1 intervals in the 

range [0, 0.5], with α constant and 0.1 and β constant at 10.  The experimental results are 

shown in Figure 16 and the t-test results are shown in Table 32.  

As expected, CBKM outperformed CBIM over a wide range of input distortion 

with the most pronounced rate of change for smaller values.  As hypothesis seven deals 

with the rate of performance degradation as distortion increases, the misclassification cost 

difference between CBKM and CBIM at zero distortion are selected as a reference.  The  

percentage cost increase from the reference at each distortion level is shown in Table 33.   

 

Distortion 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 1 2 3 4 5 6 7 8 9 10 

Sample Average ( ̅) 0.3406 0.4440 0.5426 0.6468 0.7865 0.8187 0.9639 1.0600 1.1795 1.3160 

Reference (  ) 0.3483 0.4562 0.5685 0.6812 0.8390 0.8914 1.0339 1.1535 1.2673 1.4117 

Standard Error (  ̅) 0.0012 0.0019 0.0031 0.0044 0.0064 0.0081 0.0089 0.0112 0.0120 0.0138 

t-statistic -6.49 -6.38 -8.46 -7.75 -8.14 -9.00 -7.88 -8.36 -7.31 -6.96 

Table 31: CBIM vs IM — varying order 
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As indicated, CBIM performance deteriorated at a higher rate than CBKM over the input 

distortion range [0, 0.5] and H0 was strongly rejected (p < 0.001).   

 

 

 

 

Distortion 0 0.1 0.2 0.3 0.4 0.5 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 10 10 10 10 10 10 

Sample Average ( ̅) 0.6566 0.9334 1.1295 1.1659 1.2334 1.2770 

Reference (  ) 0.2167 0.2755 0.3108 0.3275 0.3313 0.3621 

Standard Error (  ̅) 0.0194 0.0230 0.0252 0.0253 0.0259 0.0264 

t-statistic -22.71 -28.56 -32.54 -33.12 -34.82 -34.70 

  Table 32: CBKM vs CBIM ― varying distortion, all inputs 

 

 

 

Figure 16: CBKM vs CBIM ― varying distortion, all inputs 
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Distortion 
CBKM 

Cost 
CBIM 
Cost 

CBKM % 
increase 

CBIM % 
increase 

0.0 0.2230 0.7242 0.00 0.00 

0.1 0.2656 0.9311 4.26 20.69 

0.2 0.3023 1.1033 7.92 37.91 

0.3 0.3238 1.1975 10.08 47.33 

0.4 0.3445 1.2609 12.14 53.67 

0.5 0.3581 1.3054 13.51 58.13 

Table 33: CBKM vs CBIM degradation 

Real World Data 

Real world data were provided from the University of California, Irvine Machine 

Learning Repository at http://archive.ics.uci.edu/ml/datasets/Credit+Approval.  The 

dataset was robust in that it offered discrete and continuous input variables, inputs with 

from two to 14 variables, missing values, and conflicting data.  For the purpose of these 

experiments, all continuous variables were categorized as ternary inputs and assigned 

values of H, M, or L based on the distribution of continuous values within the range of all 

values for that variable.  For example, an input dataset of the five values {1, 1, 1, 3, 5} 

would have mapped to the set {L, L, L, M, H}.  Duplicate, missing and conflicting 

(identical inputs with disparate results) were ignored.  With this preprocessing, the 

dataset resolved to 500 inputs.   

The True Tree and decision table were generated using the data mining tool See5, 

provided by Rulequest Research under the GNU General Public License.  This scaled 

down (non-commercial) version further limited the input dataset to 400 instances.  The 

generated True Tree is shown in Appendix B and the corresponding decision table is in 

Appendix C.  This True Tree/decision table provided results for 99.93% of the 
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10,450,944 possible inputs.  The 0.07% of inputs not solvable by the decision tree were 

ignored. 

The seven hypotheses were tested using the same experiments as for the 

experimental data.  In each case, 10,000 user inputs were randomly generated and fed to 

each of the methodologies for each of the selected variables and parameters, simulating 

that many users’ inputs to each system.  As before, t-tests were conducted at each 

evaluated variable or parameter level. 

Hypothesis One 

The null hypothesis (H0) claimed that the difference in misclassification costs 

between CBKM and KM with varying distortion was zero while the research hypothesis 

(H1) claimed that the difference was not zero.  The experimental results with varying 

input distortion in [0.1, 0.5], and constant α (0.1) and β (10) are shown in Figure 17 while 

the t-test results are shown in Table 34.  Consistent with the experimental data, H0 was 

strongly rejected (p < 0.001) at all distortion levels as CBKM outperformed KM. 

Hypothesis Two 

The null hypothesis (H0) claimed that the difference in misclassification costs 

between CBKM and a True Tree with varying distortion was zero while the research 

hypothesis (H1) claimed that the difference was not zero.  The experimental results with 

varying distortion are shown in Figure 18 and the results of the t-tests are in Table 35.  As 

expected, H0 was strongly rejected (p < 0.001) for all levels of input distortion above and 

below 0.1.  Identical to the experimental results and as expected, the real data True Tree 

produced zero errors and associated misclassification costs in the absence of distortion, 

so outperformed all other methods at that point.  The single distortion level (0.1) where  
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there was no statistically significant difference (|t-statistic| < 1.960) between CBKM and 

True Tree estimations was at the crossover point between CBKM underperformance and 

CBKM outperforming the True Tree. 

 

 

Distortion 0 0.1 0.2 0.3 0.4 0.5 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 10 10 10 10 10 10 

Sample Average ( ̅) 0.5800 0.5890 0.5710 0.5860 0.5680 0.5610 

Reference (  ) 1.1170 1.1420 1.2870 1.4440 1.7330 1.9310 

Standard Error (  ̅) 0.0936 0.0946 0.1006 0.1047 0.1155 0.1208 

t-statistic -5.74 -5.85 -7.12 -8.20 -10.09 -11.34 
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Figure 17:  CBKM vs KM — real world data, varying distortion 

Table 34: CBKM vs KM — real world data, varying distortion 
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. 

 

Distortion 0 0.1 0.2 0.3 0.4 0.5 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 10 10 10 10 10 10 

Sample Average ( ̅) 0.5800 0.5890 0.5710 0.5860 0.5680 0.5610 

Reference (  ) 0.0000 0.6100 1.0630 1.4690 1.7330 2.1780 

Standard Error (  ̅) 0.0156 0.0784 0.0997 0.1134 0.1275 0.1325 

t-statistic 37.14 -0.27 -4.93 -7.78 -10.71 -12.20 

Table 35: CBKM vs True Tree — real world data, varying distortion 

Hypothesis Three 

The null hypothesis (H0) claimed that the difference in misclassification costs 

between CBIM and IM given varying distortion was zero while the research hypothesis 

(H1) claimed that the difference was not zero.  The experimental results with varying 

input distortion in [0.1, 0.5], with constant α (0.1) and β (10) are shown in Figure 19 
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Figure 18: CBKM vs True Tree — real world data, varying distortion 
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while the t-test results are shown in Table 36.  Consistent with the experimental results, 

H0 was strongly rejected (p < 0.001) as CBIM outperformed IM at all distortion levels. 

Figure 19: CBIM vs IM — real world data, varying distortion 

 

 

 

 

 

Table 36: CBIM vs IM — real world data, varying distortion 

Hypothesis Four 

The null hypothesis (H0) claimed that the difference in misclassification costs 

between CBIM and a True Tree given varying distortion was zero while the research 

hypothesis (H1) claimed that the difference was not zero.  The experimental results with 

Distortion 0 0.1 0.2 0.3 0.4 0.5 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 10 10 10 10 10 10 

Sample Average ( ̅) 0.9060 0.8840 0.9820 1.1220 1.4000 1.5170 

Reference (  ) 1.5780 1.7280 1.6940 1.8220 1.9880 2.0190 

Standard Error (  ̅) 0.0865 0.0954 0.0917 0.0951 0.0888 0.0910 

t-statistic -7.77 -8.84 -7.77 -7.36 -6.62 -5.51 
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varying input distortion are shown in Figure 20 and the t-test results are shown in Table 

37.  Consistent with the experimental data, in the absence of input distortion, the True 

Tree produced correct results and zero misclassification costs. 

Figure 20: CBIM vs True Tree — real world data, varying distortion 

 

Distortion 0 0.1 0.2 0.3 0.4 0.5 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 10 10 10 10 10 10 

Sample Average ( ̅) 0.9060 0.8840 0.9820 0.7512 1.4000 1.5170 

Reference (  ) 0.0000 0.6100 1.0630 1.2072 1.7330 2.1780 

Standard Error (  ̅) 0.0704 0.0834 0.1034 0.0712 0.1154 0.1213 

t-statistic 12.88 3.29 -0.78 -6.40 -4.63 -5.45 

Table 37: CBIM vs True Tree — real world data, varying distortion 
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significant difference (p < 0.002) between CBIM and True Tree misclassification costs at 

all distortion levels except the crossover point, just as with the experimental data. 

Hypothesis Five 

The null hypothesis (H0) claimed that the misclassification cost difference 

between CBKM and KM was zero over a wide range of cost matrices while the research 

hypothesis (H1) claimed that the difference was not zero.  This hypothesis was tested for 

both varying α in the range [0.1, 1.0] with distortion held constant at 0.4 and β constant at 

10, and for varying β with distortion held constant at 0.4 and α constant at 0.1.  The 

experimental results are shown in Figures 21 and 22 while the t-test results are shown in 

Tables 38 and 39. 

As shown, the real world CBKM results were more pronounced with greater 

deviation from the control cost matrix α and β values of one.  H0 was rejected for all α 

values less than 0.6 (p < 0.001) and also for all values of β, all of which are greater than 

one.   

Hypothesis Six 

The null hypothesis (H0) claimed that the misclassification cost difference 

between CBIM and IM was zero over a wide range of cost matrices while the research 

hypothesis (H1) claimed that the difference was not zero.  This hypothesis was similarly 

tested for both varying α in the range [0.1, 1.0] with distortion held constant at 0.4 and β 

constant at 10, and for varying β with distortion held constant at 0.4 and α constant at 0.1.  

The experimental results are shown in Figures 23 and 24 while the t-test results are 

shown in Tables 40 and 41. 
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Figure 21: CBKM vs KM — real world data, varying asymmetry 

 

 

Figure 22: CBKM vs KM — real world data, varying order 
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Distortion 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Asymmetry (α) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Order (β) 10 10 10 10 10 10 10 10 10 10 

Sample Average ( ̅) 0.5694 1.1698 1.7348 2.2434 2.6500 3.0732 3.4044 3.8426 3.9560 4.3210 

Reference (  ) 1.6564 1.9876 2.3148 2.5764 2.8675 3.1038 3.3066 3.7500 3.9267 4.3210 

Standard Error (  ̅) 0.0358 0.0365 0.0357 0.0345 0.0343 0.0327 0.0313 0.0287 0.0211 0.0000 

t-statistic -30.41 -22.42 -16.26 -9.66 -6.35 -0.94 3.13 3.23 1.39 0.00 

Table 38: CBKM vs KM — real world data, varying asymmetry 

 

Distortion 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 1 2 3 4 5 6 7 8 9 10 

Sample Average ( ̅) 0.0570 0.1133 0.1716 0.2266 0.2866 0.3418 0.3938 0.4538 0.5107 0.5694 

Reference (  ) 0.1684 0.3360 0.4746 0.6592 0.8417 1.0218 1.1768 1.3367 1.4727 1.6564 

Standard Error (  ̅) 0.0036 0.0072 0.0105 0.0143 0.0181 0.0218 0.0252 0.0287 0.0320 0.0358 

t-statistic -30.91 -30.92 -28.92 -30.31 -30.72 -31.20 -31.06 -30.77 -30.08 -30.41 

Table 39: CBKM vs KM — real world data, varying order 

Figure 23: CBIM vs IM — real world data, varying asymmetry 
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Distortion 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Asymmetry (α) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Order (β) 10 10 10 10 10 10 10 10 10 10 

Sample Average ( ̅) 1.2716 1.7098 2.1863 2.5506 2.9115 3.2504 3.4913 4.0236 4.1764 4.6340 

Reference (  ) 1.9575 2.2284 2.6105 2.8076 3.1140 3.3808 3.5817 3.9736 4.1750 4.5430 

Standard Error (  ̅) 0.0295 0.0290 0.0299 0.0294 0.0309 0.0309 0.0322 0.0333 0.0337 0.0354 

t-statistic -23.26 -17.91 -14.17 -8.74 -6.56 -4.22 -2.80 1.50 0.04 2.57 

Table 40: CBIM vs IM — real world data, varying asymmetry 

 

Distortion 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 1 2 3 4 5 6 7 8 9 10 

Sample Average ( ̅) 0.1284 0.2549 0.3664 0.5068 0.6536 0.7671 0.8764 1.0044 1.1430 1.2716 

Reference (  ) 0.2020 0.3907 0.5659 0.7678 0.9688 1.1946 1.3927 1.5578 1.7482 1.9575 

Standard Error (  ̅) 0.0030 0.0059 0.0086 0.0116 0.0143 0.0179 0.0211 0.0236 0.0263 0.0295 

t-statistic -24.26 -22.92 -23.13 -22.51 -21.98 -23.94 -24.46 -23.42 -22.97 -23.26 

Table 41: CBIM vs IM — real world data, varying order 
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Figure 24: CBIM vs IM — real world data, varying order 
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As with the experimental data, the performance improvement using real world 

data was more pronounced the farther β deviated from the control value of one.  H0 was 

rejected for all α values less than 0.8 (p < 0.05) and for all values of β. 

Hypothesis Seven 

Finally, in hypothesis seven, the null hypothesis (H0) claimed that the difference 

in performance deterioration between CBKM and CBIM was zero as distortion increased 

while the research hypothesis claimed that the difference was not zero.  Distortion was 

varied in the range [0, 0.5] while α was held constant at 0.1 and β was held constant at 

10.  As expected, CBIM’s performance deteriorated at a higher rate than CBKM as 

distortion increased and H0 was strongly rejected (p < 0.001) for all levels of distortion.  

The results are shown in Figure 25 and the t-test results are shown in Table 42. 

 

 

Figure 25: CBKM vs CBIM — real world data, varying distortion 
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Distortion 0 0.1 0.2 0.3 0.4 0.5 

Asymmetry (α) 0.1 0.1 0.1 0.1 0.1 0.1 

Order (β) 10 10 10 10 10 10 

Sample Average ( ̅) 0.8416 0.9630 1.0365 1.2158 1.2616 1.3653 

Reference (  ) 0.2167 0.2755 0.3108 0.3275 0.3313 0.3621 

Standard Error (  ̅) 0.0227 0.0249 0.0248 0.0287 0.0291 0.0305 

t-statistic -11.62 -16.04 -18.72 -22.55 -23.36 -25.90 

Table 42: CBKM vs CBIM — real world data, varying distortion 

 

Findings 

General 

Three significant data input characteristics influence the new CBKM and CBIM 

techniques:  (a) distortion level, (b) joint input probability distribution, and (c) cost 

matrix structure.  Distortion level and cost matrix structure provide a threshold beyond 

which CBKM and CBIM either outperform or underperform the extant techniques.  In 

general, and as expected, CBKM is less susceptible to these characteristics than CBIM 

and outperforms all methodologies over a wide range of distortion, and variations in α 

and β. Because CBIM does not alter its original decision table, it outperforms IM, but 

over a different range of distortion, α, and β. 

Distortion 

With the new methodologies, distortion levels are constant and “unknown.”  That 

is, CBKM and CBIM seek lowest cost irrespective of distortion magnitude—the 

procedure is the same for distortion of 0.1, 0.4, or even 0.0.  Likewise, KM and IM seek 

most probable outcome regardless of inherent system distortion.  In contrast, the True 

Tree assumes perfect distortion knowledge.  That is, it assumes distortion of zero and 
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therefore seeks its solution by ignoring input variation.  Consequently, in the absence of 

distortion, the True Tree always produces perfect (lowest cost, correct) results.  Because 

CBKM and CBIM do not make this same zero distortion assumption, their selection of 

lowest cost solutions are never “perfect.”  The CBKM result displayed in Figure 7 

demonstrates this characteristic.  CBKM outperforms KM and the True Tree at all 

distortion levels, except zero, which is the only point where the True Tree produces 

perfect results.  The same effect is shown for CBIM in Figure 11.  The CBKM results 

differ in Figure 8 because only one input variable’s distortion level is varied.  Even when 

that one is at zero, the other inputs have some distortion.   

Even with perfect misclassification cost knowledge, CBKM and CBIM will not 

produce perfect results because joint input probabilities influence their estimation. 

Joint Input Probability Distribution 

Joint input probability distribution and cost matrix structure combine to influence 

CBKM and CBIM performance at very low misclassification cost levels.  This is 

because, from Equation 8, CBKM and CBIM seek minimized misclassification costs 

through a summation of products of cost and probability ( ( | ) (   )).  Even with 

perfect misclassification cost knowledge, CBKM and CBIM consider the estimated 

probability P(j|x) that a class j is the true class of x.  Because of this, the methodologies 

are sensitive to differences in the magnitudes of the costs and probabilities.  Given a set 

of probabilities, lower cost differences between classes have a lower influence on the 

result than do higher cost differences.  Further, the CBKM and KM methodologies create 

a new, modified decision tree taking costs (CBKM) and probabilities (CBKM/KM) into 

account, whereas CBIM and IM both use the same, unmodified decision tree.  Because of 



 77 

  

this, CBIM is more sensitive to cost magnitude differences than CBKM, and the 

performance difference is less between CBIM and IM (Figures 14 and 15), than between 

CBKM and KM (Figures 12 and 13).   

A CBIM example illustrates this phenomenon.  Returning to the True Tree 

example from Figure 3, and the previous example input vector Obs = (A
O
=1, B

O
=0, 

CO
=1, DO

=0, EO
=1), the calculations and results for CBIM and IM are shown in Figure 

26.  In the figure, the CBIM decision process is highlighted in red boxes and the IM 

process is highlighted in green boxes for comparison.  Estimations rejected by CBIM 

(higher costs) are shown in blue.  At each node, the probabilities used by IM and the 

additional cost figures used by CBIM are shown next to that node.  For both CBIM and 

IM, at each node, probabilities and costs are calculated for all possible values of the 

variable at that node, regardless of the node level.  That is, for the variable being 

evaluated, all calculated probabilities and costs are summed, even if that node is several 

levels down and the selected states of previous nodes are known.  Those summations are 

shown in Figure 26 in addition to the misclassification costs for each node’s decisions.  

Following the CBIM decision process, the selections are as shown in Table 43.  In this 

example, the lowest misclassification cost leads to a “1” decision at each node (as shown 

in red) and a final decision of “Z.” 

For comparison, following the IM decision process, the selections are as shown in 

Table 44.  The highest probabilities at each node lead to the same “1” decision at each 

node (as shown in green) and a final decision of “Z.”  

Table 45 provides a comparison of probability and cost values at each node.  As 

can be seen, the ratio of probabilities (P(1)/P(0)) and costs (C(1)/C(0)) show how  
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Figure 26: CBIM and IM Example 
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Node C(0) C(1) 

A 52.5688 2.2700 

B 39.6682 2.7223 

C 46.2004 2.0965 

D 40.6793 7.2873 

Decision Z 

 

Table 43: CBIM misclassification cost example 

 

 

 

 

 

 

 

 

 

 

Node P(0) P(1) C(0) C(1) P(1)/P(0) C(1)/C(0) 

A 0.0450 0.9550 55.0450 50.4625 21.2222 0.9167 

B 0.0425 0.9575 41.4282 64.0793 22.5294 1.5468 

C 0.0364 0.9636 47.9468 57.5607 26.4725 1.2005 

D 0.1233 0.8767 46.3998 59.1077 7.1103 1.2739 

Table 45: Probability and cost ratio comparison 

 

 

Node C(0) C(1) 

A 0.0450 0.9550 

B 0.0425 0.9575 

C 0.0364 0.9636 

D 0.1233 0.8767 

Decision Z 

Table 44: IM probability example 
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probabilities dominate the decision process over selecting lower cost.  This influence of 

probability over cost persists at all lower misclassification cost magnitudes. 

Cost Matrix Structure 

CBKM and CBIM performance are influenced by the cost matrix structure shown 

in Table 13.  Remembering that the control cost matrix sets both α and β equal to one, 

misclassification cost magnitude differences increase as α and β deviate from one.  Also, 

because Equation 6 requires that β remain greater than or equal to one, misclassification 

costs due to increasing β (increasing order) proportionally increase numerically from one 

(1, 2, 3, and so on).  It is also true that deviations from the control value increase in 

magnitude in the same manner for values between zero and one.  Because α is restricted 

to values greater than zero, its influence on misclassification costs increases as it gets 

numerically smaller than one (1.0, 0.9, 0.8, and so on).  Because of this, evaluations of α 

show misclassification costs between the new and extant methods converging to the right 

of the graphs, while evaluations of β show costs converging toward the left.  This is true 

both for experimental data (for example, Figures 12, 13, 14, and 15) and for real world 

data (for example, Figures 21, 22, 23 and  24).  In all cases, this indicates increasing 

misclassification costs as α and/or β magnitudes increase from the control.  

Additionally, within the specified limits placed on α and β by Equations 6 and 7, 

α and β were varied in the range 10
-1

 – 10
0
 (α) and 10

0
 – 10

1
 (β).  All graph scales and 

data generated for the t-tests were generated on a linear scale with 10 increments in the 

range [0.1, 1.0] (α) and [1, 10] (β).  While a quick look at the graphs might indicate 

CBIM is more sensitive to variations in α than in β, this is not the case, but the result of 

the selected scales for each variable. 
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CBKM  and CBIM vs Extant Methods 

Based on the experiments, one can conclude that, not only does CBKM 

outperform CBIM, but the degree to which CBKM outperforms KM exceeds the degree 

to which CBIM outperforms IM.  That is, CBKM provides a greater improvement over 

its extant model than does CBIM.  The difference is most pronounced using the 

experimental, as opposed to real world, data.  A summary of the experimental data for 

CBKM from Figure 5 and for CBIM from Figure 11 illustrate the point and are shown in 

Table 46. 

 

 Average Cost Cost Ratio Average Cost Cost Ratio 

Distortion KM CBKM CBKM/KM IM CBIM CBIM/IM 

0 0.8902 0.2230 0.2506 0.7331 0.7242 0.9878 

0.1 1.0524 0.2656 0.2524 1.0007 0.9311 0.9304 

0.2 1.1962 0.3023 0.2527 1.2045 1.1033 0.9160 

0.3 1.2769 0.3238 0.2536 1.3173 1.1975 0.9090 

0.4 1.3456 0.3445 0.2560 1.3806 1.2609 0.9133 

0.5 1.4030 0.3581 0.2552 1.4350 1.3054 0.9097 

Table 46: CBKM/CBIM improvement over extant methods 

As can be seen for these parameters (α = 0.1, β = 10), for various distortion levels, 

CBKM consistently reduces misclassification costs by about 75% over KM while CBIM 

reduces costs by about 10% when compared with IM.  This difference between CBKM 

and its reference methodology (KM) and CBIM and its reference methodology (IM) is 

similar to the differences between KM and IM compared with their reference 

methodology (a True Tree).  With respect to classification accuracy, Jiang et al. (2005) 

showed KM consistently outperformed IM and a True Tree while IM was no better than 

its reference True Tree for distortion values less than 0.5.  Figure 27 (reproduced from 
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Jiang et al.) shows the reported results for KM and IM as distortion increased using 

binary input experimental data, and Figure 28 shows their result using the same real 

world data used in this research. 
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Figure 27: Extant method experimental results ― performance vs reference True Tree 
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Figure 28: Extant method real world results ― performance vs reference True Tree 
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The reason CBIM more closely parallels IM than CBKM parallels KM derives 

from the way CBKM modifies its knowledge base while CBIM does not.  In step 2 of the 

CBKM process, given an Observed vector, misclassification costs for every possible 

True vector are estimated.  The CBKM recommendation comes from the lowest 

predicted cost True vector.  In contrast, CBIM traverses a True Tree developed without 

regard to misclassification costs.  In step 1, CBIM estimates a lowest cost True vector 

from a single variable’s Observed vector represented by the True Tree root node.  In step 

2, the True vector is estimate again based on a different single variable, without regard 

for the information available from step 1.  A CBIM recommendation is therefore limited 

by its individual estimation of single variables in sequence.  This research confirmed the 

expected result that CBIM’s results would more closely parallel IM’s results than 

CBKM’s results compared with KM, just as KM provided a greater improvement over 

the True Tree than IM.  

Further, within some parameters, CBIM performance appears similar to, though 

statistically different from, IM performance with respect to misclassification error costs.  

Figure 14, for example, seems to indicate that CBIM performance closely parallels IM 

performance for varying levels of α.  This is a result of CBIM’s lower improvement over 

IM (as compared with CBKM’s improvement over KM), and the selection of α in the 

range 0 < α ≤ 1.  As discussed, in general, α is restricted to α > 0 and increases in 

magnitude as it deviates from the control value of one.  For the experiments, α values 

were selected in the available range less than one.  Selection of the other available range 

for α, however, is useful in a further investigation of the performance difference between 

CBIM and IM because is allows for a wider range of α values.  For example, instead of 
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restricting α to the range 0 to 1, assigning values in the range 1 to 10 amplifies the 

significance of the difference in CBIM and IM performance in the results.  Figure 29 

shows the misclassification cost difference between CBIM and IM with α varied in the 

wider range. 

 

 

Using the increased range for α in this case highlights the performance difference 

between CBIM and IM as α increases. 

Summary of Results 

Experimental results using both computer generated and real world data indicate 

the new CBKM and CBIM methodologies outperform extant methods over a wide range 

of input distortion and cost matrices, with some restrictions.  As expected, the extant True 

Tree always outperforms in the total absence of distortion.  Likewise, in the absence of 

misclassification costs, or where all such costs are equal, there is no measurable 

difference  between the methodologies.  Because CBIM is restricted to using an 
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Figure 29: CBIM vs IM ― increased asymmetry range 
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unmodified, original True Tree, it underperforms CBKM, which does not have this 

restriction.  CBKM and CBIM performance increase as distortion, or the magnitude of α 

or β increase with CBKM recording the greatest difference.   

In conclusion, the new methodologies are most useful in the presence of 

measurable input distortion and misclassification costs. 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

Conclusions 

New methodologies can be used to improve performance of rule-based expert 

systems operating with noisy inputs.  The proposed CBKM and CBIM techniques 

improve performance, but only in the presence of distortion and misclassification costs.  

In the absence of distortion, a True Tree will produce perfect results and in the absence of 

misclassification costs, the new methods perform identically to the extant KM and IM 

methods.  The assumption, therefore, is that the new methods would be applied to 

systems with both distortion and misclassification costs.  Experiments conducted on real 

world data from the credit card application domain indicate there are real world systems 

that could benefit from the new techniques. 

The new techniques differ from previous methods that sought most probable 

outcomes in that misclassification costs are not calculated as strict cost values.  Under the 

extant KM and IM methods, probabilities are calculated from marginal distributions and 

input distortion matrices.  Even if estimated, one probability value can be numerically 

compared with another in the process of selecting most probable outcomes.  In contrast, 

lowest misclassification costs are calculated from a cost matrix and the misclassification 

probabilities according to Equation 8.  Consequently, while extant methods strictly 

evaluate probabilities, CBKM and CBIM decisions can be influenced by 

misclassification probabilities, particularly with small misclassification cost differences 

between classes.   
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One shortcoming of the available real world data is the relatively small number of 

instances, even though they vary greatly in terms including missing, duplicate, and 

conflicting data.  As structured, the fifteen inputs could provide 10,450,944 different 

input combinations.  Because See5 only allowed for 400 input instances, the generated 

True Tree and decision table were not perfect.  As many as 0.07% (7,776) possible inputs 

were unsolvable using the See5 output.  In contrast, the computer generated data for the 

experiments were produced from five binary variables totaling 2
5
 possible inputs.  This 

smaller number of inputs meant that every possible input combination could be tested 

using a disparate variety of marginal distributions, distortion matrices, and cost matrices.  

For this reason, the experimental data provided more conclusive evidence of the veracity 

of the proposed methods. 

Given the experimental and real world data results, the new methods work best 

with a combination of high distortion, high asymmetry, and high order. 

Implications 

This research contributed two new methodologies for rule-based expert systems 

operating with noisy input data.  To be useful, the techniques require domain knowledge 

sufficient for; (a) creating a decision table that produces correct results in the absence of 

input noise, and (b) an accuracy estimate for each possible input data element.  

The experiments indicate techniques that use an unmodified True Tree combined 

with a cost matrix underperform techniques that do not have the same restriction.  The 

new techniques also underperform in the absence of either input distortion or 

misclassification costs.  This observation is not surprising given that the new techniques 

are designed for distortion-ridden systems.  At the same time, the research did not attempt 
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to quantify the distortion or misclassification threshold costs required for any specific 

domain.  An interesting question for future research would be to devise techniques for 

quantifying breakeven points in various domains. 

Recommendations   

In the research, the new CBKM technique modified an original decision table 

while the CBIM technique did not.  In the experiments, the CBKM approach 

outperformed CBIM with respect to misclassification costs over a wide range of  input 

distortion.  However, in addition to not modifying an original decision tree, the CBIM 

technique limited its inputs at each node to misclassification costs associated with that 

node’s decision variable only.  This means that, for each node below the root node, 

CBIM ignores the decision knowledge for all higher nodes.  For example, referencing 

Figure 30, at the decision node “C,” CBIM will evaluate all misclassification costs for 

“C.”  Given that the “A” node has already been evaluated, there may be an advantage to 

evaluating only those costs for “C” where A=1.  This process is the same as for the most 

probable decision seeking IM technique.  The evaluation of this modification to both 

CBIM and IM, as well as its comparison with CBKM and KM performance, is left for 

future research.   

Figure 30: CBIM decision process example 
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Summary 

This dissertation developed methods to minimize recommendation error costs 

when inputs to rule-based expert systems are prone to errors.  Prior studies proposed 

methods that attempted to minimize the total probability of recommendation error, but 

did not take relative misclassification costs into account.  Given that many real world 

systems, including web-based applications, are prone to input errors, many organizations 

are incentivized to seek minimum overall decision cost instead of overall accuracy.  

Two techniques proposed by Jiang et al. (2005) are intended to improve decision 

making accuracy in the presence of deliberately false input data.  The first technique, 

termed Knowledge Based Modification (KM) improves accuracy by modifying a 

knowledge base in the form of a decision tree.  Its inputs are an original knowledge base, 

the joint input probability distributions, and the distortion matrices for all variables.  The 

second, termed Input Modification (IM), modifies observed inputs to their most likely 

true value and feeds those inputs into an unmodified knowledge base.  Its inputs are an 

unmodified knowledge base, and the marginal distributions, and distortion matrices for 

all variables.  Both techniques seek to minimize the probability of errors in the output. 

This research expanded the KM and IM techniques by adding a cost matrix, 

allowing new methods to seek minimized error cost.  The goal was to develop and 

empirically test these new methods to determine if minimized misclassification error 

costs are achievable, and under what input distortion and cost matrix parameters.   

The first new method, called Cost-Based Knowledge Base Modification (CBKM), 

modified an original knowledge base by taking into account the misclassification cost of 

different types of errors.  The second, called Cost-Based Input Modification (CBIM), 
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modified individual inputs to their lowest cost values and fed those into the original 

decision tree. 

The structure of the cost matrix allowed for comparison with the extant methods 

by providing inputs either with, or without, disparate misclassification costs.  By setting 

all correct decision (no error) misclassification costs equal to zero and all incorrect 

decision costs equal to one, the cost matrix allow for testing the case where minimized 

misclassification costs are equal, regardless of the decision.  In that special case, as 

expected, the new CBKM and CBIM techniques performed no better, and no worse, than 

KM and IM. 

As the disparity between different error types increased, however, CBKM 

outperformed KM with respect to misclassification error costs, as did CBIM when 

compared with IM.  The cost matrix structure provided for testing two different types of 

disparities.  First, by using an asymmetrical cost matrix wherein the misclassification 

costs for errors with one variable were higher (or lower) than similar errors with another 

variable, the experiments tested systems with uneven costs between different decision 

outcomes.  Second, by orderly increasing, or decreasing, misclassification costs 

diagonally across a cost matrix, the experiments tested the case where making “small” 

errors is always less than or equal to making “large” errors, given a particular output.  In 

both cases, the performance of CBKM and CBIM increased with increased asymmetry 

and order. 

This research also looked at CBKM and CBIM performance with varying levels 

of input distortion.  In general, where no input distortion exists, there is no need for a 

system seeking minimized misclassification costs as a True Tree that assumes correct 
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output, given any input, would produce correct (lowest cost) results every time.  The 

difficulty arises where real world systems have some level of unknown input distortion 

whether it be intentional, as in the case of falsified credit card applications, or accidental, 

as in the case of poor typing skills on online forms.  As expected, both CBKM and CBIM 

underperform at very low (near zero) distortion levels, but outperformed KM and IM as 

well as a True Tree, as distortion levels increased.  This was verified with distortion 

applied evenly and also unevenly across multiple inputs. 

Additionally, CBKM and CBIM performance were compared against each other 

with varying distortion levels.  As expected, CBKM outperformed CBIM over a wide 

range of input distortion.  Because the CBKM process modifies an existing knowledge 

base, taking misclassification costs into account, its process produces a cost-sensitive 

knowledge base.  In contrast, CBIM selects the lowest cost solution for each input 

variable, then applies those inputs to an unmodified knowledge base.  The CBIM process, 

therefore, is more likely to get “stuck” with a poor decision early in the decision process, 

unlike CBKM.   

The experiments indicate both new methodologies are susceptible to variations in 

input distortion, joint input probability distribution, and cost matrix structure.  As 

mentioned, at very low input distortion levels, the systems designed to account for such 

distortion do no better than a True Tree and can underperform where distortion is zero.   

Joint input probability distributions and cost matrix structure combine to influence 

outcomes where either estimated probabilities are high relative to estimated 

misclassification costs, or where the cost matrix structure provides little differentiation 

between the misclassification costs of different decisions.  In the first case, a problem 
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arises because cost estimates are calculated based on the misclassification costs indicated 

by the cost matrix, and the estimated probability that a selected class is a true class.  

Where the probability magnitudes dominate misclassification costs, those costs can be 

underrepresented in the ensuing estimation, resulting in class selection based more on 

probability than misclassification cost.  In the second case, where asymmetry and order 

are small relative to their control value of one, both CBKM and CBIM can underperform 

a True Tree that assumes zero input distortion in all cases. 

In addition, the improvement of CBKM over its reference methodology KM was 

greater than the improvement of CBIM over IM.  This resulted from CBKM’s ability to 

use estimated misclassification costs for all potential true input vectors while CBIM was 

limited to its original, unaltered decision tree.  These results were similar to those 

reported in the literature for the KM and IM methodologies when compared with their 

True Tree reference methodology. 

In conclusion, the new CBKM and CBIM methodologies outperform extant 

methods that do not take misclassification costs into account, where performance is 

measured as the ability to minimize misclassification costs, for most input levels of 

distortion, and cost matrix asymmetry and order.  At very low input distortion levels, a 

True Tree can outperform all other methods, which would work only if one could ensure 

zero input distortion.  Performance is also impacted by a cost matrix that has very little 

distinction in misclassification costs between decisions, whether that be caused by a low 

value for asymmetry or low value for order.  In both cases, low values are those that 

approach the control value of one. 
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Appendix A 

Fully Enumerated True Table Example 

Rule 
Inputs 

Output Distribution 
A B C D E 

1 0 0 0 0 0 Y 0.006486 

2 0 0 0 0 1 Z 0.008958 

3 0 0 0 1 0 Y 0.007928 

4 0 0 0 1 1 Z 0.010948 

5 0 0 1 0 0 X 0.008256 

6 0 0 1 0 1 Y 0.011400 

7 0 0 1 1 0 Y 0.010090 

8 0 0 1 1 1 X 0.013934 

9 0 1 0 0 0 X 0.003493 

10 0 1 0 0 1 X 0.004823 

11 0 1 0 1 0 Y 0.004269 

12 0 1 0 1 1 Z 0.005895 

13 0 1 1 0 0 Z 0.004445 

14 0 1 1 0 1 Z 0.006139 

15 0 1 1 1 0 X 0.005433 

16 0 1 1 1 1 X 0.007503 

17 1 0 0 0 0 Z 0.047568 

18 1 0 0 0 1 X 0.065688 

19 1 0 0 1 0 X 0.058138 

20 1 0 0 1 1 Y 0.080286 

21 1 0 1 0 0 Y 0.060540 

22 1 0 1 0 1 X 0.083604 

23 1 0 1 1 0 X 0.073994 

24 1 0 1 1 1 X 0.102182 

25 1 1 0 0 0 X 0.025613 

26 1 1 0 0 1 Y 0.035371 

27 1 1 0 1 0 Y 0.031305 

28 1 1 0 1 1 X 0.043231 

29 1 1 1 0 0 X 0.032599 

30 1 1 1 0 1 Y 0.045017 

31 1 1 1 1 0 Z 0.039843 

32 1 1 1 1 1 Z 0.055021 
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Appendix B 

See5 Generated True Tree – Real World Data 
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Appendix C 

See5 Generated Decision Table – Real World Data 
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