
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2015

Immunology Inspired Detection of Data Theft
from Autonomous Network Activity
Theodore O. Cochran
Nova Southeastern University, tc581@nova.edu

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Criminology Commons, and the Information Security Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Theodore O. Cochran. 2015. Immunology Inspired Detection of Data Theft from Autonomous Network Activity. Doctoral dissertation.
Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (42)
http://nsuworks.nova.edu/gscis_etd/42.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/417?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Immunology Inspired Detection of Data Theft
from Autonomous Network Activity

by

Theodore O. Cochran

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
Computer Information Systems

Graduate School of Computer and Information Sciences
Nova Southeastern University

2015

We hereby certify that this dissertation, submitted by Theodore Cochran, conforms to acceptable
standards and is fully adequate in scope and quality to fulfill the dissertation requirements for
the degree of Doctor of Philosophy.

___ ________________
James D. Cannady, Ph.D. Date
Chairperson of Dissertation Committee

___ ________________
Rita Barrios, Ph.D. Date
Dissertation Committee Member

___ ________________
Glyn T. Gowing, Ph.D. Date
Dissertation Committee Member

Approved:

___ ________________
Eric S. Ackerman, Ph.D. Date
Dean, Graduate School of Computer and Information Sciences

Graduate School of Computer and Information Sciences
Nova Southeastern University

2015

An Abstract of a Dissertation Submitted to Nova Southeastern University
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Immunology Inspired Detection of Data Theft
from Autonomous Network Activity

by
Theodore O. Cochran

2015

The threat of data theft posed by self-propagating, remotely controlled bot malware is
increasing. Cyber criminals are motivated to steal sensitive data, such as user names,
passwords, account numbers, and credit card numbers, because these items can be
parlayed into cash. For anonymity and economy of scale, bot networks have become the
cyber criminal’s weapon of choice. In 2010 a single botnet included over one million
compromised host computers, and one of the largest botnets in 2011 was specifically
designed to harvest financial data from its victims. Unfortunately, current intrusion
detection methods are unable to effectively detect data extraction techniques employed
by bot malware. The research described in this Dissertation Report addresses that
problem. This work builds on a foundation of research regarding artificial immune
systems (AIS) and botnet activity detection. This work is the first to isolate and assess
features derived from human computer interaction in the detection of data theft by bot
malware and is the first to report on a novel use of the HTTP protocol by a contemporary
variant of the Zeus bot.

Acknowledgements

 I would like to thank my advisor, James Cannady, and committee members, Rita
Barrios and Glyn Gowing, for their candid and valuable feedback and guidance. I’d also
like to thank the operators of Sandnet for the Zeus malware samples they so graciously
provided. Most of all, I’d like to thank my wife, Patricia, for her unwavering support of
this endeavor among the plethora of other demands on our time.

Table of Contents

Abstract ii
Acknowledgements iii
Table of Contents iv
List of Tables vi
List of Figures xiii

Chapters

1. Introduction 1
 Background 1
 Problem Statement 1
 Dissertation Goal 4
 Relevance and Significance 5
 Barriers and Issues 9
 Definition of Terms 11
 Summary 16

2. Review of the Literature 17
 Overview 17
 Malware for Data Theft 17
 Bot Malware Concepts and Trends 19
 Artificial Immune System Concepts 28
 AIS Applied to Information Security 30
 Machine Learning 43
 Detection of Zeus Malware 49
 Gaps in the Literature 53
 Summary 56

 3. Methodology 57
 Overview 57
 Data Collection Approach 59
 Analysis of Zeus Network Data Samples 63
 Packet Inspection Process 66
 Collection of Benign Network Data and User Interaction Data 70
 Data Preparation and Management 73
 Initial Feature Selection 75

 Classifier Comparison Approach 90
 Summary 92

4. Results 93
 Data Analysis 93
 Experiments 98
 Findings 146
 Assigning the Interaction Feature 146
 Impact of Changing Feature Type (Numeric/Nominal) 148
 Impact of Interaction Feature with Cross-Validation 149
 Impact of Interaction Feature with Separate Training and Testing Subsets 150
 Impact of Interaction Feature with Different Malicious Instances 151
 Impact of Interaction Feature with Cross-Validation in Large Data Sets 152
 Impact of Interaction Feature with Separate Subsets of Large Data Sets 152

5. Conclusions, Implications, Recommendations, and Summary 154
 Conclusions 154
 Implications 156
 Recommendations 158
 Summary 159

References 161

Appendices
A. Deep Packet Inspection of 2014 Zeus Malware Samples 172

List of Tables

Tables

Table 3-1. Files of Real-world Zeus Network Trace Data from 2014 65

Table 3-2. Real-world Zeus Network Trace Data from 2012 66

Table 3-3. Real-world Zeus Network Trace Data from 2010 66

Table 3-4. Steps for Batch Creation of Netflow Files 75

Table 3-5. Full Set of Candidate Netflow Features from Argus 76

Table 3-6. Procedure for Parsing Interaction Logs 81

Table 3-7. Volume of Benign TCP Netflows 83

Table 4-1. Malicious Servers in Selected 2014 Zeus Samples 94

Table 4-2. Summary of Selected 2014 Zeus Samples 95

Table 4-3. Zeus Samples Used in First Rounds of Experimentation 99

Table 4-4. Round 1-1 Results 100

Table 4-5. Round 1-2 Results 103

Table 4-6. Round 2-1 Results 104

Table 4-7. Round 2-2 Results 108

Table 4-8. Round 3-1 Results 109

Table 4-9. Round 3-2 Results 110

Table 4-10. Round 4-1 Results 110

Table 4-11. Round 4-2 Results 111

Table 4-12. Round 5-1 Results 112

Table 4-13. Round 5-2 Results 112

Table 4-14. Round 6-1 Results 113

Table 4-15. Round 6-2 Results 113

Table 4-16. Round 7-1 Results 114

Table 4-17. Round 7-2 Results 115

Table 4-18. Round 8-1 Results 115

Table 4-19. Round 8-2 Results 116

Table 4-20. Zeus Samples Used in Second Rounds of Experimentation 117

Table 4-21. Round 9-1 Results 118

Table 4-22. Round 9-2 Results 119

Table 4-23. Round 10-1 Results 119

Table 4-24. Round 10-2 Results 120

Table 4-25. Round 11-1 Results 121

Table 4-26. Round 11-2 Results 121

Table 4-27. Round 12-1 Results 122

Table 4-28. Round 12-2 Results 123

Table 4-29. Round 13-1 Results 124

Table 4-30. Round 13-2 Results 124

Table 4-31. Round 14-1 Results 125

Table 4-32. Round 14-2 Results 126

Table 4-33. Round 15-1 Results 126

Table 4-34. Round 15-2 Results 127

Table 4-35. Round 16-1 Results 128

Table 4-36. Round 16-2 Results 129

Table 4-37. Zeus Samples Used in Third Rounds of Experimentation 129

Table 4-38. Round 17-1 Results 131

Table 4-39. Round 17-2 Results 131

Table 4-40. Round 18-1 Results 132

Table 4-41. Round 18-2 Results 132

Table 4-42. Round 19-1 Results 133

Table 4-43. Round 19-2 Results 134

Table 4-44. Round 20-1 Results 134

Table 4-45. Round 20-2 Results 135

Table 4-46. Round 21-1 Results 136

Table 4-47. Round 21-2 Results 136

Table 4-48. Round 22-1 Results 138

Table 4-49. Round 22-2 Results 138

Table 4-50. Round 23-1 Results 139

Table 4-51. Round 23-2 Results 139

Table 4-52. Round 24-1 Results 140

Table 4-53. Round 24-2 Results 141

Table 4-54. Round 25-1 Results 142

Table 4-55. Round 25-2 Results 142

Table 4-56. Round 26-1 Results 143

Table 4-57. Round 26-2 Results 143

Table 4-58. Round 27-1 Results 144

Table 4-59. Round 27-2 Results 144

Table 4-60. Round 28-1 Results 145

Table 4-61. Round 28-2 Results 146

Table 4-62. Netflows Appearing Near April 2013 User Interactions 147

Table 4-63. Percentage of Interaction Related Flows in Five Primary Datasets 147

Table 4-64: Performance improvements upon converting numeric to nominal 148

Table A-1: Summary of Connections in File 32c 173

Table A-2: Flows from First Connection in File 32c 176

Table A-3: Flows from Second Connection in File 32c 179

Table A-4: Flows from Third Connection in File 32c 181

Table A-5: Flows from Fourth Connection in File 32c 182

Table A-6: Flows from Fifth Connection in File 32c 184

Table A-7: Flows from Sixth Connection in File 32c 185

Table A-8: Flows from Seventh Connection in File 32c 186

Table A-9: Flows from Eighth Connection in File 32c 188

Table A-10: Flows from Ninth Connection in File 32c 189

Table A-11: Flows from Tenth Connection in File 32c 190

Table A-12: Flows from Eleventh Connection in File 32c 192

Table A-13: Flows from Twelfth Connection in File 32c 193

Table A-14: Flows from Thirteenth Connection in File 32c 194

Table A-15: Flows from Fourteenth Connection in File 32c 196

Table A-16: Flows from Fifteenth Connection in File 32c 197

Table A-17: Flows from Sixteenth Connection in File 32c 199

Table A-18: Summary of Connections in File b8c 200

Table A-19: Flows from First Connection in File b8c 202

Table A-20: Flows from Second Connection in File b8c 203

Table A-21: Flows from Third Connection in File b8c 205

Table A-22: Flows from Fourth Connection in File b8c 206

Table A-23: Flows from Fifth Connection in File b8c 207

Table A-24: Flows from Sixth Connection in File b8c 208

Table A-25: Flows from Seventh Connection in File b8c 210

Table A-26: Flows from Eighth Connection in File b8c 211

Table A-27: Flows from Ninth Connection in File b8c 212

Table A-28: Flows from Tenth Connection in File b8c 213

Table A-29: Flows from Eleventh Connection in File b8c 214

Table A-30: Flows from Twelfth Connection in File b8c 216

Table A-31: Flows from Thirteenth Connection in File b8c 217

Table A-32: Flows from Fourteenth Connection in File b8c 218

Table A-33: Flows from Fifteenth Connection in File b8c 220

Table A-34: Summary of Connections in File 2d7 221

Table A-35: Flows from First Connection in File 2d7 224

Table A-36: Flows from Second Connection in File 2d7 225

Table A-37: Flows from Third Connection in File 2d7 227

Table A-38: Flows from Fourth Connection in File 2d7 230

Table A-39: Flows from Fifth Connection in File 2d7 231

Table A-40: Flows from Sixth Connection in File 2d7 233

Table A-41: Flows from Seventh Connection in File 2d7 234

Table A-42: Flows from Eighth Connection in File 2d7 238

Table A-43: Flows from Ninth Connection in File 2d7 239

Table A-44: Summary of Connections in File 9ca 241

Table A-45: Flows from First Connection in File 9ca 243

Table A-46: Flows from Second Connection in File 9ca 246

Table A-47: Flows from Third Connection in File 9ca 249

Table A-48: Flows from Fourth Connection in File 9ca 250

Table A-49: Flows from Fifth Connection in File 9ca 252

Table A-50: Flows from Sixth Connection in File 9ca 254

Table A-51: Flows from Seventh Connection in File 9ca 255

Table A-52: Flows from Eighth Connection in File 9ca 259

Table A-53: Flows from Ninth Connection in File 9ca 261

Table A-54: Summary of Connections in File 054 263

Table A-55: Flows from First Connection in File 054 269

Table A-56: Flows from Second Connection in File 054 271

Table A-57: Flows from Third Connection in File 054 273

Table A-58: Flows from Fourth Connection in File 054 275

Table A-59: Flows from Fifth Connection in File 054 277

Table A-60: Flows from Sixth Connection in File 054 279

Table A-61: Flows from Seventh Connection in File 054 280

Table A-62: Summary of Connections in File 3f9 281

Table A-63: Flows from First Connection in File 3f9 286

Table A-64: Flows from Second Connection in File 3f9 289

Table A-65: Flows from Third Connection in File 3f9 294

Table A-66: Flows from Fourth Connection in File 3f9 296

Table A-67: Flows from Fifth Connection in File 3f9 297

Table A-68: Flows from Sixth Connection in File 3f9 301

Table A-69: Flows from Seventh Connection in File 3f9 303

Table A-70: Summary of Connections in File 3b7 305

Table A-71: Flows from the First Connection in File 3b7 307

Table A-72: Flows from the Second Connection in File 3b7 308

Table A-73: Flows from the Third Connection in File 3b7 310

Table A-74: Flows from the Fourth Connection in File 3b7 312

Table A-75: Flows from the Fifth Connection in File 3b7 313

Table A-76: Flows from the Sixth Connection in File 3b7 314

Table A-77: Summary of Connections in File 058 315

Table A-78: Flows from the First Connection in File 058 317

Table A-79: Flows from the Second Connection in File 058 318

Table A-80: Flows from the Third Connection in File 058 319

List of Figures

Figures

Figure 2-1. Machine Learning Conventions (Guyon, 2007) 45

Figure 3-1. Methodology for Designing a Classifier (Duda, Hart, & Stork, 2001) 59

Figure 3-2. Plot of network sessions with remote servers over time 62

Figure 3-3. Wireshark time-ordered packet listing 67

Figure 3-4. Wireshark “Follow TCP Stream” “ASCII” View 68

Figure 3-5. Wireshark “Follow TCP Stream” “Hex Dump” View 69

Figure 3-6. Sample Entries from Interaction Log 72

Figure 3-7. Configuration File (rarc) Contents 74

Figure 3-8. Create Table for Netflow Features 82

Figure 3-9. Create Tables for Interaction Log Entries 83

Figure 3-10. Load Netflow Data into MySQL Table 84

Figure 3-11. Selecting a Data Sample from the Database with Unix Time Format 85

Figure 3-12. Script for Adding Interaction Feature 86

Figure 3-13. ARFF Header 87

Figure 3-14. Sample Results of Validating an ARFF Data File 89

Figure 3-15. Confusion Matrix in Results File 90

Figure 3-16. Commands to Compare Classifier Results – Cross Validation 91

Figure 3-17. Commands to Compare Classifier Results – Separate Training/Testing 91

Figure 3-18. Command to Remove an Attribute 92

Figure A-1. Positive ZeuS Tracker Results for 199.201.122.227 223

Figure A-2: Positive ZeuS Tracker Results for 200.98.246.214 243

Figure A-3: Positive ZeuS Tracker Results for 173.194.70.94 273

Figure A-4: Positive ZeuS Tracker Results for 184.22.237.213 286

Figure A-5: Positive ZeuS Tracker Results for bingbangtheory.ru 294

Figure A-6: Positive ZeuS Tracker Results for 173.194.70.94 310

Figure A-7: Positive ZeuS Tracker Results for 95.128.157.163 317

1

Chapter 1

Introduction

Background

 The work documented in this Dissertation Report addresses the information security

research problem domain of detecting covert malware network activity. A recent trend

for bot malware is to capture and transmit sensitive information from the infected host to

a remote server while remaining stealthy. This work focused on improving techniques

for detecting such surreptitious data extraction from a compromised host computer. The

techniques included classification methods from the field of machine learning, data from

network communications by an infected host, and data about user interaction on the

infected host. Network packet data was summarized into flow-level summaries, or

netflows, using an open source application designed for that purpose. Actual samples of

network traffic produced by the Zeus bot malware, sometimes referred to as the Zeus

Trojan malware, were analyzed at both the packet level and netflow level, and then

selectively used to train and test the classifiers. Previously unreported network behavior

by the Zeus malware was discovered and documented. Classification results in terms of

true and false positives were captured for multiple classification methods which revealed

the effects of changing independent variables through a sequence of experiments.

Problem Statement

 Current computer security and network security methods are unable to detect novel

data exfiltration techniques employed by malicious bot software. Data exfiltration, also

referred to as data extrusion, is the process of extracting sensitive data from a victim’s

2

computer without their permission or knowledge. Lee, Wang, and Dagon (2007)

reported that “new approaches are needed for botnet detection and response because

existing security mechanisms, e.g. anti-virus software and intrusion detection systems,

are inadequate” following a 2006 workshop on botnets that was jointly sponsored by the

U.S. Department of Homeland Security (DHS), Defense Advanced Research Projects

Agency (DARPA), and Army Research Office (ARO). These authors pointed out that

current methods do not adapt to the rapid and continuous changes made by the bot

malware developers. More recent research by Jacob, Hund, Kruegel, and Holz (2011)

and Zhang, Luo, Perdisci, Gu, Lee, and Feamster (2011) provides strong evidence that

malicious botnet activity detection using network data analysis techniques, foremost

among methods, has only become more difficult since that time. This difficulty stems

from the use of encryption, polymorphism, and other obfuscation techniques that mask

various aspects of the network communications.

 The nature of the problem is that malware writers continue to develop innovative

methods to achieve their malicious objectives by countering and avoiding measures

designed to prevent their success. Blacklist-based and signature-based approaches are

unable to keep up with the network fluxing techniques (Zhang, Yu, Wu, & Watters,

2011) and polymorphism (Porras, Saidi, & Yegneswaran, 2009) of modern botnets such

as Zeus, Torpig, and Conficker. One of the polymorphic features of Conficker that

challenges network analysis, for example, is the daily computation of new domains to

link with new relay points supporting command and control and data exfiltration (Porras,

Saidi, & Yegneswaran, 2009). Developers of methods to defeat malware are thus faced

with an ever-evolving threat, one that learns about each signature-based and anomaly-

3

based countermeasure and adapts to circumvent it. Lee, Wang, and Dagon (2007)

referred to this contest as an “arms race.” In many respects, this situation is akin to the

competitive behavior of biological systems in nature. The human immune system is of

particular interest in this case. The human immune system tries to protect its host from

invading pathogens by identifying them as threats and eliminating them before they can

cause harm. For their part, the pathogens change (mutate) in response to these defenses

and try again. Given these parallels, immunology has inspired the development of a

number of computer and network security techniques in recent years. A summary of

these approaches will be provided in Chapter 2.

 This research problem presents more than a purely physical or numerical modeling

and analysis challenge because of the human element. In other words, a person can

dynamically control and change the behavior of the bot malware in response to, or in

anticipation of, measures taken to detect it or to prevent it from operating. Nonetheless,

certain aspects of the data exfiltration problem can be considered invariant - they must

happen. First, the attacker must introduce the malware onto the target host from some

source. Second, the malware must capture the data of interest. Third, and finally, the

malware must move the data off the target host to some destination. In spite of efforts to

prevent bot malware from invading host computers, it is very likely to continue. That a

single botnet, Rustock, comprised over one million compromised hosts in 2010 serves as

evidence to support this claim, as does the fact that the botnets Grum and Cutwail had

hundreds of thousands of bots each (Symantec, 2011). The information security firm

McAfee reported a significant increase in botnet growth during the fourth quarter of

2011, with monthly infections approaching 3.5 million hosts (McAfee, 2012). This work

4

began with a bot-infected host and addressed the data exfiltration aspect of this problem.

This focus differentiates this work from methods that concentrate on the infection aspect.

Dissertation Goal

 The goal of this work was to reveal techniques for improving detection of data theft

from a computer host by bot malware. The innovative approach in this work was to

leverage knowledge about user interaction with the infected computer, for example,

running software applications and browsing the Internet. This approach tests the

assumption that network activity not directly caused by user interaction is more likely to

be the result of malware. This approach was also designed to accommodate legitimate

variations and changes over time to the host computer’s configuration and network usage.

In creating the network data, the host computer operating system was updated, software

applications were added, data files were added and removed, and user patterns were

changed. Experimentation consisted of comparing the performance of two classifiers in

terms of true and false positives across a range of controlled conditions, first without the

user interaction feature added, then with this feature added. The other controlled

variables included the following: number of benign instances (netflows), number of Zeus

instances (also netflows), number of features, type of features (numeric and nominal),

type of Zeus instance, size of training and testing data subsets, and ratio of Zeus instances

in training and testing subsets. This comparison required an environment where the

malware activities were known, therefore known bot malware activity was integrated

with benign network trace data. Observable parameters included a subset of those

features of a TCP connection that the Argus software creates to describe a netflow. An

5

analysis of that feature creation and selection process is provided in a later section.

Benign network traffic was generated on an isolated test network. Malicious network

traffic was injected from samples of actual Zeus bot activity captured in the wild. A

complete analysis of the Zeus network traffic samples is provided in Appendix A.

Relevance and Significance

 Protecting inter-networked computing devices from data theft is a significant problem

because 1) the foundational layers of the Internet, Internet Protocol (IP) and Transmission

Control Protocol (TCP), were designed and implemented without security mechanisms,

and 2) the motivations for stealing data are strong (Cooke, Jahanian, & McPherson,

2005). Moreover, the complexity of modern data processing and networking by a given

computing device has increased well beyond a human’s ability to comprehend all that’s

happening in real-time (Nunnery, 2011). Anyone who uses a personal computer on the

Internet to interact with sensitive data is therefore at risk. As such, this problem affects a

large and growing percentage of the world’s population (Kountz, 2009; Sumner, 2010).

 Malware was used for the majority of data theft in 2011, whereas physical attacks

were a distant second (Verizon, 2012). Furthermore, external entities, as opposed to

insiders, were responsible in most cases (Verizon, 2012). Botnets are one of the primary

vectors for external attackers to inject the malware necessary to capture and exfiltrate

sensitive data (Riccardi et al., 2013; Shin et al., 2011).

 While not openly attributed to bot malware, the impact of data theft can be seen

through the following high profile examples. In January 2012, the online retailer

Zappos.com reported the theft of personal information regarding 24 million of their

6

customers (Sullivan, 2012). The cost and impact of that breach remains to be

determined. In April 2011, Sony Corporation reported the theft of personal information,

to include logins, passwords, and security questions for 77 million users and was forced

to temporarily shut down its PlayStation Network (Baker & Finkle, 2011). In early May

2011, Sony revealed that an earlier breach exposed the personal information of 25 million

more customers of its Sony Online Entertainment network (Arthur, 2011). By late May

2011, Sony estimated that it had spent $171 million related to these data breaches

(Dignan, 2011). This amount is well below the average $214 cost per stolen record in

2010, however, as reported by the Ponemon Institute (2011) in their 2010 Annual Study:

U.S. Cost of a Data Breach. These examples highlight the most tangible impact of this

problem, financial loss, in this case the cost incurred by companies in response to data

breaches. The Ponemon Institute’s report also highlights how much this data theft

problem has grown, at least at the corporate level. One of the study’s top findings

underscores this point: “For the first time [2010], malicious or criminal attacks are the

most expensive cause of data breaches and not the least common one.”

 The extent of the networked computer data theft problem at the individual level is

more difficult to quantify. This is due in part to the fact that while the results can be

recognized, such as identity fraud or email spamming, the actual theft often cannot.

However, some percentage of identity fraud, the unauthorized use of another person’s

credentials for monetary gain, is very likely due to personal information theft by bot

malware (Symantec, 2011). According to a Javelin Strategy & Research report (2011), in

2010 over eight million people were victims of identity fraud in the United States. Even

a small percentage of that total rates as a significant problem. The Computer Intrusion

7

Section of the Federal Bureau of Investigation (FBI) in the United States recognizes this

as a pervasive problem and considers it one of their top priorities. On their web site, the

Computer Intrusion Section claims “specially trained cyber squads at FBI headquarters

and in each of our 56 field offices, staffed with agents and analysts who protect against

and investigate computer intrusions, theft of intellectual property and personal

information” among other dedicated resources. The Internet Crime Complaint Center

(IC3), sponsored in part by the FBI, publishes a report on Internet crime each year. In

its 2010 Internet Crime Report, the center reported receiving approximately 25,000

complaints per month in 2010, with identity theft among the most common complaints.

 Private security firms track computer and network security incidents very closely, and

on a global scale. Botnets, collections of compromised hosts that are remotely controlled

over the Internet, continue to evolve and pose a significant threat due to the sheer number

of co-opted computers. In its annual threat report, Symantec Corporation identified

Rustock as the largest botnet observed in 2010 with over one million bots (Symantec,

2011). The Symantec team also identified Grum and Cutwail as very large botnets that

year with hundreds of thousands of bots each. McAfee provided a similar assessment in

its quarterly report, indicating that Rustock surpassed Cutwail in botnet activity in the

fourth quarter of 2010, and listing Bobax, Grum, Lethic, and Maazben among the other

most active botnets around the world (McAfee, 2011).

 Symantec discussed five leading trends in its annual threat report for 2010 (Symantec,

2011): targeted attacks, social networks, attack toolkits, rootkits, and mobile threats.

Targeted attacks increased in sophistication and grew in number. The Stuxnet worm

garnered significant attention, not only from the media because of its goal of sabotaging

8

centrifuges at an Iranian uranium enrichment facility, but also from the cyber security

community because of its sophistication. Among other advanced features, Stuxnet

employed four zero-day vulnerability exploits, an unprecedented number. Zero-day

vulnerabilities are vulnerabilities that have never before been identified, and are thus not

likely to be protected against with current security measures. Spear phishing, targeting

specific individuals using inside knowledge about them, benefitted from the increased

popularity of social networking sites. These sites make it very easy for an attacker to

learn enough personal information about an individual to masquerade as a friend or

colleague and convince them to click on an embedded link or open an attachment. The

number of daily web-based attacks almost doubled in 2010, due in large part to the

proliferation of attack toolkits (Symantec, 2011). Rootkits continue to pose a serious

threat, with variants that modify the master boot record on Windows operating systems

being the most prevalent in 2010 (Symantec, 2011). A rootkit manipulates the operating

system in order to prevent detection of the malware and its activity. The longer a rootkit

can extend the duration of the compromise, the more opportunities the malware has for

information theft. The common theme across all these trends, with the notable exception

of Stuxnet, is the attacker’s motive of financial gain. Use these attack vectors to steal

information in order to steal money. As mobile computing devices proliferate, the efforts

to compromise them will increase.

 Examining the propagation methods of malware in general, and bot software in

particular, was not the focus of this work. However, understanding those methods, their

trends, and the underlying motives of their perpetrators serves to make a fundamental

point: computing devices will continue to be compromised by malware into the

9

foreseeable future. Moreover, the trends toward stealth, remote control, and data theft for

financial gain clearly indicate that more sophisticated countermeasures will be needed

(Shin, Gu, Reddy, & Lee, 2011; Zhang, Luo, Perdisci, Gu, Lee, & Feamster, 2011).

 Government agencies, private industry, security firms, and the research community

have been focusing resources on solutions to this growing problem, and a number of

approaches have been taken at multiple levels. One approach is to modify the

infrastructure of the Internet to make it more secure. Internet Protocol Security, or IPsec,

and DNS Security Extensions, or DNSSEC, are two examples of such changes. The

former provides for authentication and encryption at the network layer. The latter adds

new resource record types to the Domain name System to protect it against common

threats. Such changes take time to implement on a global scale and are likely to decrease

but not eliminate the problem.

Barriers and Issues

 Information security is inherently difficult due to the complexity of the computer and

network systems involved. Defending complex systems against attack is made even

more difficult by the dynamics and unpredictability of the human element. After all,

humans provide the real ingenuity behind the attacks. Detecting malicious bot activity on

a compromised host or network is particularly challenging because of these factors. The

number and diversity of approaches to solving this problem, as previously discussed,

bears testament to that fact. The notion of a Computer Immune System modeled on the

Human Immune System has a very strong appeal given the desire for robustness,

efficiency, and adaptivity through properties such as decentralized control, distributed

10

processing, self-organization, self-regulation, specificity and diversity, self-reparation,

learning, and evolution. In spite of this attraction and considerable research effort, the

development of a computer immune system with more than a few rudimentary facsimiles

of human immune system capabilities has proven to be very difficult.

 Researchers have made progress toward a computer immune system, but it has taken

many years. Initial efforts showed that static data then basic operating system processes

could be protected with artificial immune system (AIS) methods (Dasgupta & Forrest,

1995, 1996; Forrest, Hofmeyr, & Somayaji, 1997; Forrest, Perelson, Allen, & Cherukuri,

1994). Later efforts showed that some basic network traffic could also be protected and

that incorporating danger signal and dendritic cell metaphors could improve efficiency

(de Castro & Von Zuben, 2000, 2001, 2002; Greensmith, Aickelin, & Cayzer, 2005;

Timmis, 2000; Timmis & Neal 2001). At each step, however, the methods revealed

limitations worthy of additional research. In all cases, the selection of features and

fitness functions left room for improvement. One reason why these features are so

difficult to determine is because the networked computer system was not designed to

collaborate with an AIS. Signals and responses between the two were not negotiated or

coordinated in advance as is the case with natural immune systems.

11

Definition of Terms

activation function An activation function bounds the output of a weighted sum

between two values; also known as a “squashing” function;
commonly used with artificial neurons.

adaptive immunity In immunology, the adaptive immune system learns about new
types of foreign antigens in order to respond to them more quickly
in the future.

artificial immune
system

In computer science, software that has properties similar to a
biological immune system. An artificial immune system or AIS is
typically employed to detect foreign data structures or processes.

ARTIS Artificial Immune System - as initially coined by Hofmeyr and
Forrest (2000) to represent a general artificial immune system.
AIS later became the more common acronym.

antibody In immunology, antibodies are created as an immune response to
antigens in order to find and neutralize them.

antigen In immunology, antigens are foreign substances (pathogens) that
induce an immune response.

auto-reactivity In immunology, auto-reactivity occurs when antibodies react to
the host cells as if they were foreign antigens.

basis function In machine learning, a basis function replaces feature values with
measures of similarity

bot A bot is remotely controlled malware; it’s name was originally
derived from robot.

botmaster A botmaster or botherder controls the bots in a bot network.

botnet A botnet is a network of bot infected computers.

Danger Theory In immunology, Danger Theory suggests that signals from
unnatural cell death (necrosis) direct adaptive immune responses.

domain generation
algorithm

A mechanism used by certain malware to automatically generate
pseudorandom domain names. Often referred to as DGA in the
literature.

dendritic cells In immunology, dendritic cells sample the environment and

12

present antigens to other components of the immune system.

dot product In linear algebra, the dot product or inner product of two vectors is
the sum of the products of their corresponding elements.

entity In the HTTP Protocol, the entity is the payload and it consists of
entity-header fields and optionally an entity-body.

epitope In immunology, epitopes form recognizable patterns in antigens.

Euclidean distance Euclidean distance is the length of a straight line connecting two
points.

fast-flux Fast-flux is a technique for rapidly changing the domain name to
IP address mapping, typically used to prevent tracing a malicious
server.

fcapture fcapture is a network flow capture tool.

FIN In the Transmission Control Protocol (TCP) header, the FIN
(finish) flag is used to indicate no further data from the sender.

finite state machine A finite state machine can be a logical depiction of the set of states
and transitions of a process, or an actual device with a fixed
number of states and triggers that cause it to transition from one
state to another.

GET In the HTTP protocol, GET is a method. The GET method is used
to retrieve a requested resource.

Hamming distance Hamming distance measures the difference between two strings in
terms of the number of positions with different symbols.

honeynet A honeynet is a network of devices for attracting and capturing
malware.

honeypot A honeypot is a device for attracting and capturing malware.
Honeypots are commonly used by information security
researchers.

intrusion detection
system

In computer science, software to detect activity on a host or
network by unauthorized, external entitites. Commonly referred
to as IDS in the literature.

intrusion prevention
system

In computer science, software to prevent access to a host or
network by unauthorized, external entities. Intrusion prevention

13

 system software can be combined with intrusion detection system
software. Often referred to as IPS in the literature.

innate immunity In immunology, the innate immune system has knowledge of
certain foreign antigens and can respond very quickly to their
presence.

J48 J48 is a Java implementation of the C4.5 classifier.

JOIN In the Internet Relay Chat (IRC) protocol, the JOIN command is
used to connect to a named channel.

k-means In machine learning, k-means is a clustering technique where the
user specifies the number of clusters, the value of k.

key-logging Key-logging is a process designed for recording keystrokes.
Key-logging software is commonly used by attackers to steal
passwords and other sensitive data.

LISYS Lightweight Intrusion Detection System - coined by Hofmeyr and
Forrest (2000) as their proposed AIS-based network intrusion
detection system.

lpr lpr is a UNIX command for printing.

machine learning Machine learning is a branch of computer science concerned with
reproducing human learning using computer algorithms.

Mahalanobis The Mahalanobis distance is a similarity measure which considers
correlations in the data.

MODE In the Internet Relay Chat (IRC) protocol, the MODE command is
used to change the mode of usernames and channels.

multivariate In feature selection, multivariate methods consider subsets of
features together.

n-gram An n-gram is a continuous sequence of a number (n) of symbols.

ngrep ngrep is a utility for matching patterns (grep) in network packet
payloads.

negative selection In immunology, negative selection is the process of keeping only
antibodies that don’t react to the host.

netflow A summary record describing a network connection.

14

NICK In the Internet Relay Chat (IRC) protocol, the NICK command is

used to assign the user a nickname.

observation In machine learning, an observation refers to one input feature
vector and is often referred to as an example, a data point, or a
pattern.

octet An octet is an 8-bit sequence of data.

overfitting In machine learning, overfitting occurs when the classifier is fitted
so specifically to the training dataset that it doesn’t generalize to
unseen data.

pathogen Disease causing foreign microorganism such as virus or bacteria.

P2P Peer-to-peer. A network in which each node can serve as both
server and client.

PAMP In immunology, PAMP refers to Pathogen-Associated Molecular
Pattern.

PING In the Internet Relay Chat (IRC) protocol, the PING command is
used to detect whether a distant client is active.

PONG In the Internet Relay Chat (IRC) protocol, the PONG command is
used to respond to the initiating PING command.

POST In the HTTP protocol, POST is a method. The POST method is
used to submit an entity for acceptance by a server.

principal component
analysis

A dimensionality reduction technique by which an input vector is
transformed into an uncorrelated set of features ordered by
variance, thus the first features convey most information. Often
referred to as PCA in the literature.

QUIT In the Internet Relay Chat (IRC) protocol, the QUIT command is
used to terminate a client session.

r contiguous bits Refers to the number of contiguous bits to be identically matched,
e.g. the same bits in the same positions for two bit patterns.

resource In the HTTP protocol, a resource can be a data object or service on
the network.

RST In the Transmission Control Protocol (TCP) header, the RST

15

(reset) flag is designed to allow a host to abort the connection.

sensitivity In a classification function, sensitivity measures the proportion of
true positives.

SPAN Switched Port Analyzer. A technique for mirroring network
traffic from one port to another for monitoring purposes.

specificity In a classification function, specificity measures the proportion of
true negatives.

SYN In the Transmission Control Protocol (TCP) header, the SYN
(synchronize) flag is used to initiate a connection.

token In the HTTP protocol, a token is a sequence of characters between
delimiters that conveys a value.

tolerization In an immunology, tolerization is the process by which
lymphocytes learn to become tolerant of self and bind only to
non-self structures.

time to live Internet Protocol (IP) includes a time to live (TTL) field in the
header. TTL is used to remove undeliverable datagrams from the
network.

univariate In feature selection, univariate methods consider one variable at a
time.

USERS In the Internet Relay Chat (IRC) protocol, the USERS command is
used to determine which users are logged into an IRC server.

vaccine In immunology, a vaccine is a substance resembling an active
pathogen that is used to train the immune system to recognize and
neutralize it in the future.

x-means In machine learning, an x-means clustering algorithm is equivalent
to running k-means clustering multiple times to learn the value of
k (number of clusters).

16

Summary

 This Dissertation Report addresses the problem of detecting malware attempts to

exfiltrate sensitive data from a networked computer. This chapter provided an

introduction to this research problem and to the innovative approach to solving the

problem represented by this work. Context was provided in order to highlight the

relevance and significance of this problem, namely that the fundamental communication

structure of the Internet makes detecting data theft a difficult problem to solve and that

the motivation of thieves makes it a persistent and growing problem. The concept of an

artificial immune system for a computer, modeled after a biological immune system, was

also introduced as one of approaches to detecting malware activity on an infected host.

17

Chapter 2

Review of the Literature

Overview

 This chapter provides a review of research associated with bot malware detection and

with the application of artificial immune systems (AIS) and related anomaly detection

methods to information security. The choice of papers selected for this review was based

on the similarity of the associated research problems and the diversity in their choice of

detection methods and feature selection processes. The research discussed in this chapter

begins with some general concepts regarding malware that has been designed to steal

data, then proceeds with methods for detection of bot malware activity. The bot malware

portion steps through the evolution of bot malware and describes the corresponding

detection approaches at various stages in this evolution. The literature review continues

with a discussion of artificial immune systems applied to computer and network security.

This section focuses on AIS-based methods for virus detection and intrusion detection,

and is arranged both chronologically and topically. The discussion of artificial immune

systems culminates with research dedicated to bot malware detection.

Malware for Data Theft

 One of the more striking trends in the evolution of malware was the move away from

techniques designed to overtly damage resources toward techniques designed to covertly

steal resources. Rootkits and Banking Trojans serve as illustrative examples of malware

designed for stealth and data theft. Rootkits provide root level access to the attacker

18

which not only enables the attacker to manipulate any data on the host, but also to

remove the evidence. The designation “root kit” first appeared in the information

security literature during the 1990s, but it wasn’t until the early 2000s that rootkits began

attracting broader attention from researchers. Boulanger (1998) describes how an

attacker uses the ‘root kit’ package to ‘patch’ processes on the target system in order to

ensure “continued, unlogged, and undetected access” to the compromised host. The

paper by Levine, Grizzard, Hutto, and Owen (2004) was the first to use the term “rootkit”

(one word) in the title of any ACM or IEEE Computer Society publication. The authors

describe kernel level rootkits and approaches to detecting their presence, namely using

signature analysis techniques that compare a known clean system’s files and directories

with the current system’s. Banking Trojans are malware designed specifically to gain

access to a victim’s banking credentials and accounts. Banking Trojans can employ a

variety of methods, such as keylogging and screen captures, to achieve their goals. They

also commonly use web injection methods to dupe the victim into providing additional

information into what appears to be the bank’s online form. The designation “banking

trojan” did not appear in the information security literature until the mid-2000s. The U.S.

Army Training and Doctrine Command issued a report in August of 2006 titled “Critical

Infrastructure Threats and Terrorism” which identified banking Trojans as a threat to the

banking infrastructure. Stahlberg (2007) applied for a U.S. Patent in June of 2007 on a

method for detecting banking Trojans specifically. This method essentially checked

system memory for Universal Resource Locators (URL) from known banking sites to

detect when a banking Trojan was active and required that a current list of banking sites

be maintained. Goring, Rabaiotti, and Jones (2007) demonstrated how anti-keylogging

19

methods designed to prevent banking Trojans from logging keystrokes on certain banking

web sites could be bypassed if not properly configured. The book “Botnets: The Killer

Web Applications” (Schiller & Binkley, 2007) provided examples of banking Trojans

used by botnets.

Bot Malware Concepts and Trends

 Researchers have taken a number of approaches to the problem of detecting bot

malware activity. In general, researchers have attempted a variety of methods for

modeling bot activity and using classifiers to differentiate bot activity from normal

activity. Modeling the activity is based on a number of observable static or dynamic

features. Examples include the volume of communications between the bot and the

botmaster, the command data strings associated with Internet Relay Chat (IRC) botnet

command and control, the nicknaming conventions used by IRC botnet command and

control, or the sequence of events related to infection by bot malware. These approaches

typically use a supervised learning approach where known bot activity provides a labeled

training set for the chosen classifier. Unsupervised learning techniques have also been

employed by researchers. These typically consist of clustering techniques where the

same type of features such as Internet Relay Chat (IRC) communications are clustered

based on a similarity metric. Features derived from the Domain Name System (DNS)

lookup process have also been used in clustering techniques.

 Remotely controlled (bot) malware has become very popular as a mechanism for

cyber criminals to achieve anonymity and economy of scale. Spam email campaigns,

click fraud, malware propagation, and distributed denial of service (DDoS) attacks are

20

among the better-known activities where botnets have proven their effectiveness (Gu,

2008; Nunnery, 2011; Shin, Xu, & Gu, 2012). Key-logging, screen capturing, file

scanning, and associated data theft are perhaps lesser-known, but also made possible and

attractive when conducted on a large number of compromised hosts (Binsalleeh,

Ormerod, Boukhtouta, Sinha, Youssef, Debbabi, & Wang, 2010; Grégio, Fernandes,

Afonso, de Geus, Martins, & Jino, 2013; Mohaisen & Alrawi, 2013; Riccardi, Di Pietro,

Palanques, & Vila, 2013; Stone-Gross et al., 2009). Strayer, Lapsely, Walsh, and

Livadas (2007) claimed it was for both their “brute-force” and “subtle” attack capabilities

that botnets were so dangerous. The economy of scale concept has important

implications for bot malware and bot networks. First of all, size matters. The larger the

number of compromised hosts, the more powerful the botnet will be. Thus, propagating

itself and infecting more hosts is an important function of bot malware. Bot command

and control communications are also necessary to achieve economy of scale. For spam

campaigns and distributed denial of service attacks in particular, the botmaster must be

able to synchronize the effort. This orchestration requires a timely, if not synchronous,

command and control mechanism. For key-logging, screen capturing, and other data

theft, the communications need not be synchronous.

 Given that bots must self-propagate, receive commands, and transmit responses or

collected data in order to achieve economy of scale, several detection approaches based

on activity modeling have been investigated. The research challenge is to understand and

model the bot activity in sufficient detail to distinguish it from normal activity that

otherwise looks very similar (Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef,

Debbabi, & Wang, 2010; Gu, 2008; Grégio, Fernandes, Afonso, de Geus, Martins, &

21

Jino, 2013; Haq, Ahmed, & Syed, 2014; Mohaisen & Alrawi, 2013; Riccardi, Di Pietro,

Palanques, & Vila, 2013; Rieck, 2011; Shin, Xu, & Gu, 2012). While not often stated

explicitly by the researchers, signal detection theory, discerning signals from noise,

serves as one of the theoretical foundations for these detection approaches. Machine

learning theory, alternatively known as computational learning theory, serves as another

theoretical basis for many of the detection methods employed by bot researchers.

Machine learning approaches applied to bot detection include Bayesian belief networks,

support vector machines, artificial neural networks, evolutionary algorithms, and other

statistical and biologically-inspired algorithms.

 Many researchers recognized that in order for a botnet to achieve economy of scale,

the same or very similar communications would have to occur between a controller and a

large number of bots. Early botnets used Internet Relay Chat (IRC) for their synchronous

command and control. Binkley and Singh (2006) looked for IRC hosts sending unusually

high numbers of SYN, FIN, and RST packets to detect bots. Their detection approach

was limited to IRC bots and assumed these bots had a higher “work weight” than human

participants in a chat channel where work weight was calculated as a percent of SYNs,

FINs, and RSTs from the total number of TCP packets. They monitored these packets as

well as the number of Source IP Addresses, Joins, Pings, Pongs, and PrivMsgs to identify

potential IRC channels with bot activity. They calculated work weight every 30 seconds

and generated hourly reports thresholding the number of hosts and work weight. They

found that this statistical approach could “easily reveal bot servers” and decided it should

also include spam and denial of service attack indicators. Although the researchers called

this an anomaly-based approach, from a machine learning perspective it resembles a two-

22

class classifier using the difference between two distributions (e.g. mean and standard

deviation) as a threshold. The constructed feature called work weight, the number of

control packets per total packets, formed the distributions. This appears to be a semi-

supervised approach with routine human expert validation though the researchers did not

report on training or validation in this context.

 Livadas, Walsh, Lapsley, and Strayer (2006) used archive network traces and captured

their own network traffic to compare the ability of three classifiers to distinguish between

IRC and non-IRC traffic, and between botnet IRC traffic and non-botnet IRC traffic.

They extracted features describing the TCP network sessions heuristically in order to

reduce computational intensity. They chose J48, Naive Bayes, and Bayesian network

classifiers from the WEKA workbench and tested them against both real and synthetic

trace data. The real data came from Dartmouth University’s repository and was

anonymized. They generated synthetic data on a testbed network which they managed

and used to run an instance of the Kaiten botnet. This team used the botnet traces only

for testing the trained classifiers. They evaluated the classifiers based on false positive

and false negative rates and determined that the naive Bayes classifiers performed best at

distinguishing between IRC and non-IRC traffic. With respect to distinguishing between

botnet IRC traffic from benign IRC traffic, they reported that only the naive Bayes

classifiers succeeded and that they suspected overfitting of the J48 and Bayesian network

classifiers to the training set was responsible for the poor performance of those

classifiers. This team described their work in machine learning terms. During the first

phase they employed a supervised learning approach with labeled data to train multi-class

classifiers. The second phase represented a one-class classification problem where they

23

did not train the classifiers further with labeled data for the botnet activity. These

researchers selected and constructed features heuristically based on domain knowledge

but did not report evaluating features independently of the classifiers.

 Goebel and Holz (2007) used IRC command strings to isolate IRC traffic and then

used nickname similarity scoring to identify bots from among the IRC participants. They

used ngrep to find the following IRC strings: JOIN, NICK, MODE, USER, and QUIT.

Once an IRC channel was identified, its nicknames were scored for similarity. More

similar names were deemed more likely to be bots than human chat participants. They

based this assumption on prior knowledge of bot nicknaming conventions which often

included some combination of malware name, country abbreviation, operating system,

special characters, or many digits. They tested their approach with real network trace

data from a SPAN port on a university router. While achieving some success against

older bots, this team determined that their approach could be defeated by a botnet that

utilized a large pool of unique nicknames, such as Zapchast. They also recognized that

many botnets were moving from IRC to HTTP for command and control and that more

sophisticated methods would be required. From a machine learning perspective this

approach, named Rishi, resembles a two-class classifier using the difference between two

distributions as a threshold. The extracted features, sub-strings (n-grams) of the IRC

nickname, were used to form the distributions. This was a semi-supervised approach

with human expert validation when the scoring threshold was met.

 Karasaridis, Rexroad, and Hoeflin (2007) looked for similar nicknames and for pong

response messages from bots awaiting commands to identify candidates, then they

monitored the traffic from those hosts for scanning and spamming behaviors. They also

24

used network flow summaries to reduce computational intensity and to provide some

level of anonymity. Their approach modeled normal IRC traffic and computed a

Euclidean distance between observed traffic and normal traffic. They tested with real

data from a Tier 1 Internet Service Provider (ISP) and reported discovering one million

new bots per month. They found botnets to be very dynamic, staying with the same

botnet controller for only 2-3 days. This research team described both their bot detection

and bot characterization approaches in common machine learning terms. For bot

detection they trained a two-class linear classifier with labeled data, a supervised learning

approach. Constructed features, the aggregate flows per address, packets per flow, and

bytes per packets, were heuristically chosen. They used Euclidean distance for their

similarity test. Their bot characterization approach also uses a multi-class linear

classifier and Euclidean distance metric for similarity, but based on a different set of

heuristically derived features.

 Other researchers investigated the infection and propagation related network traffic.

Gu, Porras, Yegneswaran, Fong, and Lee (2007) modeled the bot infection sequence as a

series of dialog flows between internal and external network assets. They used the

Snort® open source IDS with network flow data and added their statistical anomaly

detection components. Their infection model consisted of five steps: 1) external to

internal inbound scan, 2) external to internal inbound exploit, 3) internal to external

binary acquisition, 4) internal to external command and control (C&C) communication,

and 5) internal to external outbound infection scanning. Their approach assumed that the

order of transactions could change and that some transactions may not be observed. This

team captured bots with a honeynet then created a testbed network to experiment with

25

them. They tested their approach with real data from a university egress border switch

and found that it could reliably observe inbound exploits and binary acquisitions, and

therefore support overall bot detection. From a machine learning perspective, the two

anomaly detection methods described here could be either one-class or multi-class

classifiers. They used supervised learning but it was not clear from the description

whether just benign data was labeled for training or whether malicious data was also.

The SCADE component, their Statistical Scan Anomaly Detection Engine, performed

weighted scoring with a given threshold, followed by a voting scheme. The SLADE

component, their Statistical Payload Anomaly Detection Engine, tested the

(Mahalanobis) distance between the byte distribution of a new observation (packet) and a

previously determined normal distribution for that particular protocol (e.g. HTTP), based

on the work of Wang and Stolfo (2004). Features were chosen heuristically based on

domain knowledge.

 As botnet command and control evolved away from IRC toward HTTP and P2P

protocols, the corresponding research efforts shifted to more general models of bot

behavior. Gu, Perdisci, Zhang, and Lee (2008) used clustering techniques to find and

cross-correlate command and control communications and malicious activity. Their

method used network flows captured using the fcapture tool and removed all but TCP

and UDP flows. C&C communications were clustered in one “plane” and malicious

activity in another, then the two were cross-correlated using a hierarchical clustering

algorithm. Their technique assumed that bots will communicate with C&C servers or

peers, perform malicious activity, and that they will do both in a similar fashion to one

another. The team reported a high detection rate and low false positive rate against real-

26

world traces of IRC, HTTP, and P2P-based botnet traffic. Detection rates in the literature

are often given in these subjective terms; however, a high detection rate typically refers

to a true positive rate in excess of 90% and a low false alarm or false positive rate refers

to one less than 10%. From a machine learning perspective, this team employed an

unsupervised learning approach in their clustering algorithms. The input to the clustering

algorithm for communication flows was a vector which included heuristically constructed

features: flows per hour, packets per flow, average bytes per packet, and average bytes

per second. They converted these continuous variables into discrete values for clustering

in two stages with an x-means clustering algorithm. They performed dimensionality

reduction for the first phase of clustering by computing the mean and variance of these

four features, thus using eight values as opposed to the full set from the 52 available

features. For the second phase, they used the full feature set but only clustered within

those clusters produced by the first phase. The input to their clustering algorithm for

activity came from Snort® logs as categorical data. They used a two-level hierarchical

clustering algorithm for this data and then cross correlated the results of the two

clustering methods.

 Yen and Reiter (2008) applied Principal Component Analysis (PCA) for

dimensionality reduction and k-means for clustering of network flows exhibiting

common communication characteristics. Their technique used flow records generated

with the open source ARGUS software. Their approach assumed that communications

from multiple infected hosts in relatively close temporal proximity should be observable

and should have the common characteristics of destination, payload, and host platform.

They tested with real data collected at a university edge router and reported that the

27

combination of techniques proved very powerful. Their clustering techniques employed

unsupervised learning using constructed features formed by aggregating observed

features. The k-means clustering algorithm they described was similar to the x-means

method described previously by Gu, Perdisci, Zhang, and Lee (2008) in that the number

of clusters was learned rather than pre-specified. Feature construction for payload data

was based on a similarity metric called string edit distance, basically an enumeration of

changes required to convert one string into another. Feature construction for platform

data was heuristically derived from initial TTL values and other operating system specific

communications (e.g. connecting to the Microsoft® time server).

 Villamarín-Salomón and Brustoloni (2009) looked for patterns in DNS traffic using a

Bayesian network detection approach. They were addressing the countermeasure by bot

malware producers to obfuscate their command and control communications by using

peer-to-peer or fast-flux techniques in response to earlier IRC detection methods. This

research team found that using DNS queries to known, blacklisted command and control

servers as the basis for their prior probabilities produced a good detection rate. The

inspiration for techniques that detect Bot reconnaissance of DNS blacklists was credited

to Ramachandran, Feamster, and Dagon (2006). From a machine learning perspective

they employed a supervised learning approach with a multi-class classifier. They training

the classifier with labeled DNS data for both the benign and infected classes. They

heuristically chose all features based on domain knowledge.

 Choi, Lee, and Kim (2009) also focused on similarities among DNS queries with a

method that classified them into groups and evaluated their similarity, periodicity, and

intensity over time. They evaluated their method with network trace data including real-

28

world bot traces. From a machine learning perspective this research team’s approach

resembled a multi-class classifier with a threshold between the benign and infected

classes though training details are not provided. Feature construction included well-

described similarity and distance metrics, however. Group uniformity was an average of

three similarity coefficients per time unit: Kulczynski, Cosine, and Jaccard. Periodicity

was measured by Euclidean distance.

Artificial Immune System Concepts

 Quite simply, an artificial immune system or AIS, is computer software that attempts

to apply principles from biological immune systems to a protection or detection problem

(Floreano & Mattiussi, 2008). Artificial immune systems typically model both innate and

adaptive components of natural immune systems, where the innate component knows

about existing threats and the adaptive component learns about new threats. Threats are

the equivalent of foreign antigens. Antigens in nature are comprised of multiple epitopes,

where these epitopes are patterns recognizable by the immune system. The innate

immune system recognizes foreign antigens by their epitopes called pathogen-associated

molecular patterns or PAMPs (Beers, et al., 2003). An AIS will generally implement the

concept of detectors and effectors in the form of centralized or distributed processes.

Detectors find the threats and effectors act on them, functions that may be implemented

within a single component. Actions range from alerting on threats to actually eliminating

them. These detector-effectors are the equivalent of antibodies.

 One of the challenges in designing the adaptive component of an AIS is determining

how to dynamically generate and manage the detectors and effectors. One approach is to

29

mimic the negative selection process of the natural immune system. First, randomly or

pseudo-randomly generate a diverse set of antibodies, then remove those that are auto-

reactive and those that are not relevant. Include a mutation process that favors the better

performing ones remaining (somatic hypermutation). Since antibodies that react to the

host (auto-reactive) are eliminated, this a negative selection process.

 Another challenge is how to direct the adaptive component to the novel threats.

Danger Theory (Matzinger, 1994) suggests that since the adaptive immune system has no

recognizable patterns for new types of antigens, it must receive signals from other

processes to guide it. These so-called danger signals could come from the innate immune

system or directly from dying host cells. During unexpected cell death (necrosis),

internal structures are exposed, thus forming these danger signals. During natural cell

death (apoptosis), these internal structure are modified to prevent the emission of danger

signals. Danger signals thus direct the adaptive immune response to the precise location

of the damage. Unknown patterns in that area are essentially considered guilty by

association.

 Learning from adaptive immune responses is another concept that artificial immune

systems would like emulate. After the adaptive immune system has responded to an

attack by generating new, tailored antibodies through a selection and mutation process, it

then retains knowledge of the most effective antibodies in an immune memory. This

memory facilitates a much quicker response to this type of attack in the future.

30

AIS Applied to Information Security

 While not initially directed at bot malware in particular, a parallel line of research into

artificial immune systems for information security eventually led to that point. Dasgupta

(1999) credits the seminal work toward developing an artificial immune system for a

computer to Forrest, Perelson, Allen, and Cherukuri (1994). This research team modeled

and applied the negative selection process that the vertebrate immune system uses to

minimize auto-reactivity to the challenge of detecting computer viruses. The goal of this

negative selection process was to retain as detectors only those agents that did not match

host (self) structures. In the biological immune system this equates to retaining as

pathogen detectors only those cells that recognize foreign molecular structures and ignore

host molecular structures. This team’s approach generated a set of string matching

detectors that would match foreign strings but not strings in the protected data. Central to

their approach was the “contiguous matches” notion for sequences of symbols from a

given alphabet. This approach is often referred to as “r contiguous bits” when the

alphabet consists of only the binary digits [0,1]. Their key insight was a method for

determining the number of initial strings that would be necessary before censoring

(negative selection) in order to detect a random change within a computer file. Because

their matching approach was probabilistic, they determined that the initial detector

population could be computed as a function of the number of equal-length strings to be

protected, the probability of detection, and the matching rule. They further determined

that the probability of detection could be computed as a function of the number of

possible symbols (alphabet), the number of symbols in the string, and the number of

contiguous matches required. Forrest et al. (1994) demonstrated that a relatively small

31

collection of detectors could identify random changes to the protected data with a high

probability. They reported that the one major limitation of this approach was the

computational complexity of randomly generating the detectors, a process which grew

exponentially with the size of the data to be protected.

 From a machine learning perspective, this negative selection or negative detection

approach does not seem intuitive. In fact, it appears to be just the opposite of the one-

class classifier approach where a model of self (a class) forms the basis of the pattern

match. The negative selection approach does include the equivalent of classifier training,

however, in that the detectors that matched self sequences were eliminated in a censoring

process.

 D’haeseleer, Forrest, and Helman (1996) extended the work of Forrest, Perelson,

Allen, and Cherukuri (1994) by focusing on techniques for more efficiently generating

detectors. Here they proposed an algorithm that performed r contiguous bits matching in

two phases, the first using a template matching scheme to count recurrence and the

second to generate unmatched strings. This method ran in linear time as opposed to

exponential time, addressing that limitation of the earlier exhaustive approach. While

this method was able to generate a complete set of detectors more efficiently than the

previous method, neither method was able to avoid holes. Holes describe those areas of

the non-self, represented as strings in this case, which overlap with the self based on the

use of fixed distance matching rules such as this r contiguous bits approach or a

Hamming distance approach. Hamming distance measures the number of positions

where the symbols in two strings are different. This team suggested that use of a

Hamming distance matching rule be an area of future research as it might prove more

32

effective with larger data structures. They also pointed out the need for additional

research comparing this negative detection approach with the more traditional positive

detection approaches from the machine learning literature.

 Dasgupta and Forrest (1995, 1996, 1999) and Forrest, Hofmeyr, and Somayaji (1997)

extended the negative selection for anomaly detection approach to address dynamic data

patterns in addition to static ones. In particular, the self to be protected was a collection

of computer processes as opposed to data files. Again an r contiguous position matching

method was used. However, more efficient pseudo-random algorithms were used to

generate the initial population of detectors. Dealing with dynamic processes introduced

new challenges, namely, determining how much time series data would be needed to

represent normal self behavior and determining how to encode the time series data. The

process of selecting “suitable” values was heuristic. Dasgupta and Forrest (1995, 1996)

chose non-overlapping time windows and tested their method with simulated data for

both a milling tool breakage detection scenario and a signal processing noise detection

scenario. Note that while the data were simulated as time series, both were otherwise

steady-state systems, meaning that the parameters of interest remained within prescribed

tolerances. They reported detection results comparable with positive detection methods,

namely, neural networks.

 Like a typical back propagation neural network, their method was trained on a large

set of data labeled as normal. Unlike a neural net, their method retained only detectors

that did not match the normal time series data. Based on promising results, they offered

suggestions for improving feature selection, window size determination, and time series

data encoding. They also suggested trying a monitoring approach that used multiple time

33

scales simultaneously. This research team also acknowledged that negative detection

approaches need to be compared with positive approaches, and suggested Adaptive

Resonance Theory (ART) neural networks as an appropriate candidate for the positive

detection approach. They postulated that their negative detection approach, when

implemented in a distributed fashion with local decisions, would outperform a positive

detection approach that make a global decision across the entire normal (self) model.

They also concluded that their approach could made adaptable to changes in the normal

environment by generating a new detector set under the appropriate conditions.

 Kephart, Sorkin, Arnold, Chess, Tesauro, and White (1995) came up with a different

approach to the detector generation problem. Instead of randomly generating detectors

that may be relevant in the future, they generated detectors based on properties of known

viruses. Their approach included negative selection to prevent the detectors from

recognizing self sequences, where the n-grams chosen to model self sequences were

trigrams. The researchers suggested that implementing immune memory could be trivial.

Once a virus pattern was learned, its signature could simply be added to the known-virus

database for conventional, signature-based detection efforts. This assumed that both

were being employed to protect the system in a layered approach. Issues associated with

managing the growth of a virus signature database were not addressed. In addition to this

approach for emulating the adaptive human immune system, this team also presented an

approach for virus detection that modeled the innate immune system. Their innate AIS

component was a generic classifier using an artificial neural network for multi-class

classification. It was trained with data that included both the benign and infected classes.

The adaptive component included the notion of decoys. Decoys were programs designed

34

to attract potential new viruses in order to examine them more closely and verify whether

they were in fact malicious.

 Forrest, Hofmeyr, Somayaji, and Longstaff (1996) and Forrest, Hofmeyr, and

Somayaji (1997) extended Forrest’s negative selection line of investigation toward the

protection of a Unix operating system, where they defined self behavior in terms of Unix

system calls. In particular, they postulated that only short sequences of system calls

would be necessary to model normalcy. These normal sequences could then be compared

over a sliding time window with new sequences to look for mismatches. Their

experiments with sendmail and lpr showed positive results. Moreover, they revealed

empirically the significant challenge of selecting the features necessary to model

normalcy in a complex, dynamic system.

 Kosoresow and Hofmeyr (1997) extended this line of research by seeking more

compact representations of the system call parameters. They proposed a method that

substituted “macros” for fixed numeric sequences in the system call traces. While they

achieved a significant reduction in the amount of space needed to represent the data, their

procedure required a human to manually create the substitution code for each set of

system calls. As such, they only tested their approach on the two system calls, sendmail

and lpr, of the previous work and recommended investigating automated methods as

future work.

 Warrender, Forrest, and Pearlmutter (1999) also focused on how to effectively model

patterns of system calls. They investigated and compared four modeling approaches:

enumeration of observed sequences, relative frequencies of sequences, rule induction

(RIPPER), and Hidden Markov Model (HMM). RIPPER is an acronym for Repeated

35

Incremental Pruning to Produce Error Reduction (Cohen, 1995). They determined that

no single method performed best on all traces. The HMM performed best overall but at a

training cost much higher than the other three methods. Based on their experiments, this

research team concluded that the data stream - the features selected from the system calls

- was more important than the analysis method.

 Hofmeyr and Forrest (2000) continued this system call, host-based intrusion detection

line of research toward the development of a network intrusion detection system. In this

work the research team introduced the acronym ARTIS to denote Artificial Immune

Systems in general, independent of application, and the acronym LISYS (Lightweight

Intrusion Detection System) to represent their experimental system in particular. They

recommended that artificial immune systems employ a negative selection process that is

both distributed and asynchronous, and that they include a memory function for retaining

information about non-self structures in order to expedite future detection. For their

experimental system, LISYS, they chose to use network traffic to represent the self. In

particular, they represented each TCP network connection as a 49-bit string. These

strings encoded the source IP address, the destination IP address, and the TCP service.

Their challenge then was to model self as the “normally occurring” connections over time

and use that model to detect unusual connections which might indicate intrusions. Each

of the 50 hosts on their local area network served as a detection node. The research team

logged 2.3 million connections as their initial, unfiltered dataset. They reduced that

number to 1.5 million connections by filtering out external web and FTP servers which

they considered noise “because these are continually communicating with new hosts and

so have no stable definition of normal in terms of datapaths.” They merged in nonself

36

trace data from logs of seven actual intrusion incidents: one address probing, one large

scale port scanning, three limited port scanning, and two single port scanning examples.

Results were reported based on an average from multiple off-line, faster-than-real-time

simulations. The system was presented with 30 days of normal traffic before each of the

intrusion incidents was introduced one after another, each separated by one day of normal

traffic. The research team reported that LISYS corrected detected all intrusion incidents

(true positives) with a very low false positive rate averaging 1.7 per day. They pointed

out that the tolerization period variable had a considerable effect on the number of false

positives. Specifically, a reduction in the tolerization period from 4 days to 0.5 days

produced an increase in false positives from 1.7 to 15. This suggests that methods for

optimizing this parameter, effectively the time window for training, would be helpful. It

would seem that among the nine paraemters that were identified, the tolerization period

most affected the sensitivity-specificity trade-off of the LISYS system.

 Research into the negative selection property of immune systems continued through

the 2000s by these researchers and others. Anchor, Zydallis, Gunsch, and Lamont (2002)

proposed a negative selection based approach to creating detectors which could identify

modified or stealthy versions of existing network intrusion techniques. Attacks were

modeled as finite state machines and a fitness function was employed that considered the

percentage match to the modeled attack string. They reported inconclusive results and

the need to use real network data traces in future tests. Dasgupta, Krishnakumar, Wong,

and Berry (2004) developed and tested an immunity based approach to aircraft fault

detection. They employed a negative selection approach to generate detectors, in this

case using a real-valued matching algorithm as opposed to a binary one. Candidate

37

detectors were generated randomly and then iteratively matured to fill the nonself space.

Each detector had a center and radius. Detector position and size were iteratively

adjusted in an attempt to minimize overlap with self and maximize coverage of the

nonself space. This process included cloning of the better-fitting detectors and randomly

generating new ones. Ultimately a mature detector set was produced and then employed

against new samples. The samples were normalized real-valued data represented as

strings. This research team found that increasing the number of detectors effectively

reduced the false positive rate without increasing false negatives. Stibor, Timmis, and

Eckert (2005) compared a real-valued negative selection algorithm to statistical anomaly

detection. The Association for Computing Machinery (ACM) Knowledge Discovery and

Data Mining (KDD) competition web site provided the high-dimensional data and results

from other approaches. The authors reported inconclusive results. However, their

experiments revealed a sensitivity to the estimated detector coverage. Zhang, Zhai, Du,

and Liu (2007) presented a method based primarily on negative selection. They also

included a vaccine operator, where vaccination meant adding detectors to a library. This

vaccine approach is essentially a signature-based method in which new measurements are

compared to a library of known signatures. They did this a priori and during runtime.

The runtime method was not well-described other than the fact that it used a binary r-

contiguous matching rule. The authors reported good results testing their approach on

both a virus detection case and an intrusion detection case. Dal, Abraham, Abraham,

Sanyal, and Sanglikar (2008) also experimented with negative selection and developed a

hybrid AIS approach for intrusion detection that employed a genetic algorithm for

creating new memory cells. Detectors begin as randomly generated binary strings, then

38

are trained with a negative selection based on r-contiguous bit pattern matching. The

number of matches (fitness) determines the affinity. They determined the detection

threshold to be when three or more detectors matched 13 or more contiguous locations.

Those detectors were then cloned and added to a pool of “winner detectors” to be

maintained and evolved into memory cells. Using this approach, the researchers found

that the fitness function, number of contiguous matching bits of the strings, performed

best between two thresholds. If the threshold was less than 12, then even the self data

matched the detectors. If the threshold was greater than 14, then the nonself data failed to

match. Thus they used a single value, 13, for detection. They also found holes - cases

during training when three detectors failed to detect the nonself anomaly. To work

around this problem they randomly generated additional detectors until at least three

matched. Zhengbing, Ji, and Ping (2008) developed and tested a negative selection

approach with variable sized detectors and real-value matching. They attempted to vary

the size of the detectors to provide better coverage with fewer detectors. Like earlier

methods, they randomly generated a set of detectors and evolved them using an distance

matching algorithm. In this case, however, they used the Euclidean distance to adjust the

detector radius in order to fill gaps in coverage with the largest possible detectors. They

reported a high true positive rate with corresponding low false positive rate using this

method against simulated two-dimensional data.

 The network property of biological immune systems also served as the basis for

research into applying artificial immune systems to information security. The immune

network model proposed by Jerne (1974) is credited as the foundation of this line of

research (Kim, et al., 2007). Jerne suggested that the host’s adaptive immune detectors

39

communicate with one another to form a network. When the equilibrium of this network

of detectors is upset by invading pathogens, the immune response is activated. While not

as popular as negative selection, the decentralized and distributed detection properties of

immune networks also proved attractive to information security researchers. Timmis

(2000) addressed a fundamental challenge of implementing an artificial network immune

system, ensuring coverage while controlling detector population, with the artificial

recognition ball (ARB) approach. Artificial recognition balls serve as an aggregate,

multi-dimensional representation of data, as opposed to the contiguous bits approach.

Timmis and Neal (2001) used the affinity between ARBs to establish network

equilibrium where affinity was calculated with a Euclidean distance function. They

controlled the detector population by limiting the network to a fixed set of ARBs. The

process of using affinity to create (clone) additional detectors was also addressed by de

Castro and Von Zuben (2000). These researchers implemented a competitive,

unsupervised learning algorithm to construct the immune network. This method, called

aiNet by its authors, was inspired by clonal selection theory, itself a basis for network

immune theory. For aiNet the authors combined hierarchical clustering with graph

theoretical techniques. More specifically, their hierarchical clustering method was based

on a nearest neighbor calculation (de Castro & Von Zuben, 2001). Clonal selection is

similar to evolutionary algorithms based on mutation, in this case where the most

appropriate detectors for a given pathogen are reproduced on demand. de Castro and

Von Zuben (2002) and de Castro and Timmis (2002) extended this approach by seeking

methods to optimize the clonal selection process. Their Clonal Selection Algorithm

(CLONALG) produced candidate detectors based on affinity to the antigen pattern. Each

40

generation, or iteration, the candidates would compete with existing detectors for

membership. They found the choice of threshold for node deletion to be a significant

challenge. If the threshold was too low, the population would grow to an unmanageable

level. If the threshold was too high, valid detectors would be lost. The CLONALG

approach featured management of multiple local optima and a stopping criterion. Timmis

(2007) suggests that clonal selection is the only principal unifying the immune network

algorithms to date and that complexity and computational intensity have limited their

application.

 Other researchers considered methods to incorporate the Danger Theory proposed by

Matzinger (1994). Danger Theory suggests that the unnatural death of a cell (necrosis)

results in the emission of danger signals which alert and focus the immune response. The

origin of the emission is known and used to concentrate the response. Aickelin and

Cayzer (2002) and Aickelin, Bentley, Cayzer, Kim, and McLeod (2003) proposed a

Danger Theory model for intrusion detection and suggested features to serve as danger

signals. Their approach was to map such features, e.g. unusual process termination,

unauthorized file access, or unusual network connections, to one of two categories

equating to normal (apoptotic) or abnormal (necrotic) cell death in a biological immune

system. One of their goals was to address the IDS alert correlation problem using danger

signals that communicated the location of the attack. Greensmith, Aickelin, and Cayzer

(2005) considered the Danger Theory and modeled the behavior of immune system

dendritic cells for anomaly detection. Dendritic cells are a class of antigen presenting

cells in the biological immune system which are believed to be responsive to danger

signals and to influence the differentiation of T cells (Steinman, 2004). This research

41

team proposed four categories of signals for input to these dendritic cells: safe signals,

danger signals, PAMP signals (known bad), and amplifying signals. Greensmith and

Aickelin (2007) implemented a dendritic cell based algorithm for detecting port scans.

They found the approach to be promising, it succeeded in detecting SYN scans over a

long duration but had difficulty when other ad hoc processes were running concurrently.

This Dendritic Cell Algorithm (DCA) was further extended by Greensmith, Aickelin, and

Tedesco (2010) and applied to the detection of outgoing port scans, a common feature of

bot malware. This anomaly detection approach again relied on pathogen associated

molecular patterns (PAMP) from the innate immune system construct and leveraged

danger signals from the adaptive immune system construct. The authors found feature

selection and mapping to be very important, particularly for the safe signals. Safe

signals, according to these researchers, have a greater influence on the detectors than do

the danger signals. Fanelli (2008) proposed a hybrid approach to network intrusion

detection that combined conventional methods with artificial immune system methods

based on the Danger Model. In this approach, danger signals influenced the maturation

of dendritic cells in an innate layer after filtering by a traditional misuse-based network

intrusion detection system. Mature cells migrate to an adaptive layer to support a self-

nonself discrimination process. Fanelli’s danger signals consisted of three elements: a

feature value to classify the danger, a signal value to specify the degree of danger, and a

source identifier to track the source of the danger. The author reported that this hybrid

approach achieved a superior “positive predictive value (PPV)” than a misuse-based

NIDS alone, where the true positive detection rates were equivalent and the new

approach’s false positive rate was much lower. Fanelli used the IDEVAL 99 benchmark

42

dataset1 and reported a total of 30 false positives with this approach compared to 98 false

positives reported as the baseline performance of Snort®, a misuse-based network

intrusion detection system (NIDS).

 The research most relevant to this work would be the early efforts by Hofmeyr and

Forrest (2000) to develop an artificial immune system for network intrusion detection and

the more recent efforts by Cui, Katz, and Tan (2005) and Shin, Xu, and Gu (2012)

investigating host-based detection of malware that considers outbound network

connections in addition to inbound connections. Cui, Katz, and Tan pointed out that most

network activities on a personal computer are initiated either directly or indirectly by a

user. They developed a technique that would look for network connections not correlated

to user interaction. Shin, Xu, and Gu also attempt what they term “human-process-

network correlation” to identify suspicious processes in their approach that combines

host-based and network-based intrusion detection methods.

 Also relevant is the recent work by Al-Hammadi, Aickelin, and Greensmith (2008,

2010) to apply the Dendritic Cell Algorithm (DCA) to bot detection. While Zeidanloo,

Hosseinpur, and Boraziani (2010) only suggested using an artificial immune system with

network flows to detect P2P bots based on common activity patterns, Al-Hammadi,

Aickelin, and Greensmith actually implemented and tested their approach. They

monitored key-logging activity, outgoing network activity, specifically SYN and UDP

flooding, anomalous file accesses, and potential bot-related command and control

communications. They collected these data with a function call interception program and

analyzed them with a modified DCA. This algorithm considered PAMP, danger, and safe

1 IDEVAL 99 is an Intrusion Detection Evaluation dataset created in 1999 by the Defense Advanced
Research Projects Agency (DARPA) and made available for research.

43

signals. The team used an IRC application across virtual Win32 hosts along with both

SpyBot and SdBot botnet executables to generate network trace data containing botnet

activity. They reported that their DCA could discriminate between bot and normal

activity. They found that the signals weights had a significant effect on the results. More

specifically, safe signals needed to be weighted more heavily than danger signals in order

to minimize false positives without generating false negatives. Al-Hammadi, Aickelin,

and Greensmith (2010) extended this DCA and compared its bot detection performance

with an anomaly detection approach based on Spearman’s Rank Correlation (SRC).

Modifications included the following temporal considerations: time delta between

consecutive outgoing communications, time delta between receiving and sending related

network data, and the change rate of select keyboard calls. They reported their DCA to

be more effective at detecting SpyBot and SdBot activity than Spearman’s Rank

Correlation, based on a lower false alarm rate.

Machine Learning

 The field of machine learning, also known as computational learning, is generally

divided into classification applications and regression applications (Bishop, 2006; Duda,

Hart, & Stork, 2001). These applications are further partitioned into supervised,

unsupervised, and reinforcement learning methods where the learning process minimizes

some cost function or maximizes some objective function (Guyon, 2007; Murray, 2010).

Domingos (2012) describes machine learning as a function of representation, evaluation,

and optimization where classifiers are represented in the hypothesis space of the problem

domain, an objective or scoring function evaluates the classifiers, and an optimization

44

process selects the best one. Of paramount importance is the learned classifier’s ability

to generalize beyond the data used to create it in order to accurately classify new

examples.

 Mitchell (1997) offers perhaps a more general definition for machine learning:

 “A computer program is said to learn from experience E with respect to some

 class of tasks T and performance measure P, if its performance at tasks in T, as

 measured by P, improves with experience E.”

As such, Mitchell suggests that each of these three elements, task, performance, and

experience must be defined for any machine learning problem.

 The following machine learning conventions are commonly used in the literature (see

Figure 2-1). Data is represented as a matrix X or xij where each row xi is a vector

representing one observation and each column represents a feature. Observations are also

commonly referred to as examples, data points, or patterns in the literature. Features are

also commonly referred to as input variables or attributes. y or yj is a column vector

representing the class labels for the data matrix X. y is the quantity to be determined

through classification or regression. The quantities alpha and w represent weighting of

the matrix rows and columns, respectively. Weighting is often used by machine learning

methods to determine an appropriate decision function (Guyon, 2007; Murray, 2010).

The simplest linear approach, based on the artificial neuron (McCulloch and Pitts, 1943),

is to evaluate the dot product of the input feature vector and corresponding vector of

coefficients that represent the "voting power" of each feature (Guyon, 2007). When the

weighted features are not linearly separable, transformation functions are used to create a

linear combination, as originally described by Rosenblatt (1957) for the perceptron. In

45

some cases, such as with kernel methods, basis functions are used to make data linearly

separable. A basis function replaces feature values with measures of similarity.

Figure 2-1. Machine Learning Conventions (Guyon, 2007)

 Machine learning classification methods are further categorized as multi-class or one-

class. Determining which of n classes a new observation belongs to is the realm of multi-

class techniques. Determining whether a new observation belongs to the known class or

not is the realm of one-class classifiers. The latter is also the focus of novelty detection

and anomaly detection research.

 Supervised learning techniques require training data containing class labels (y). In

cases where data is plentiful, the datasets for validation and testing are kept separate from

training datasets (Domingos, 2012; Guyon, 2007; Murray, 2010). This approach

mitigates the risk of overfitting, which can occur when the classifier is validated

exclusively with data from the training set. When large amounts of data are not readily

available, techniques for validation with a subset of the training data must be used.

Cross-validation is one of the more common techniques, where a different portion of the

46

data is iteratively withheld from training and used for testing, producing an average

across the iterations (Domingos, 2012; Guyon, 2007).

 When class labels are not available in the data, unsupervised learning techniques can

be employed. The most common type of unsupervised learning is clustering (Bishop,

2006; Duda, Hart, & Stork, 2001). Clustering methods attempt to allocate data into

groups and determine the number of groups. For example k-means clustering (Coates,

Lee, & Ng, 2011), one of the most popular techniques, attempts to minimize the sum of

the Euclidean squared distances between points and their associated cluster centers.

Dimensionality reduction is often employed to reduce the number of variables or features

necessary for clustering. Principle Component Analysis (PCA) is one technique for

dimensionality reduction. PCA transforms an input vector into an uncorrelated set of

features ordered by variance, with the first features then conveying the most information

(Jolliffe, 2002). While clustering methods are more common in the unsupervised

learning literature, autoencoders (Bengio, 2009; Le, Ranzato, Monga, Devin, Chen,

Corrado, Dean, & Ng, 2012) and Restricted Boltzmann Machines (Bengio, 2009; Hinton,

Osindero, & Teh, 2006) have also proven successful at unsupervised feature learning.

 Feature selection forms a key aspect of machine learning. Guyon (2007) and Guyon

and Elisseeff (2003) suggest that the main goal of feature selection is to rank subsets of

useful features. They categorize feature selection methods as either univariate, those that

consider one feature at a time, or multivariate, those that consider subsets of features

together. Feature selection methods can also be categorized as to whether they function

within the classifier or independently of the classifier. The former are called wrapper or

embedded methods and the latter are called filter methods. These authors describe

47

methods for determining whether features that appear redundant can actually support

each other, and for determining whether features that contribute little by themselves can

become more useful with others. Guyon (2007) also points out that the area under the

ROC curve can be used to estimate feature relevance because each feature is like a mini-

classifier. When approaching the feature selection process for a new problem, Guyon

recommends trying univariate ranking with a linear classifier first. Proceed to more

complex multivariate methods only when the univariate methods don’t provide

satisfactory results. The results of the NIPS 2003 Feature Selection Challenge revealed

that using multivariate methods was often unnecessary (Guyon, 2007).

 Anomaly detection, as previously noted, is concerned with determining whether a new

observation belongs to a known class or not. In other words, anomaly detection describes

the process of detecting patterns in the data that are different than the normal patterns.

One of the key aspects of anomaly detection is the notion of interestingness, or how

interesting the anomaly is to some observer. What typically makes an anomaly

interesting is whether some action or decision will be made on its basis. Anomaly

detection should be distinguished from novelty detection, although the two terms are

often used interchangeably. In novelty detection, the resulting novel pattern is often

merged into the model of normalcy, allowing the model to adapt to change. This leads to

one of the more difficult challenges faced by anomaly detection researchers, the fact that

what defines normal can change and evolve over time. A model of normalcy at one point

in time will not necessarily reflect normalcy at a future time for the same problem

domain.

48

 Anomaly detection is closely related to machine learning. In fact, anomaly detection

is often considered a subset of machine learning. Supervised, unsupervised, and semi-

supervised anomaly detection techniques have been described in the literature. One of

the properties that distinguishs anomaly detection from some of the more common

machine learning techniques is the lack of training data for all but the normal class. In

this respect, anomaly detection is equivalent to one-class classification. Furthermore, this

property limits the number of supervised methods that can be effectively employed for

anomaly detection. In a survey of anomaly detection techniques by Chandola (2009), the

researchers found that semi-supervised and unsupervised techniques were most common.

In a semi-supervised approach, a model of normal behavior is created and used to isolate

anomalies in the test data, and then a human expert verifies or labels the anomaly.

 Chandola (2009) first divides anomalies into two broad classes, simple and complex,

then further subdivides complex anomalies into contextual anomalies and collective

anomalies. Simple anomalies are also called point anomalies as they often manifest

themselves as an outlier point in low dimensional space. A contextual anomaly, as the

name implies, requires some form of context such as a sequence. In this case the position

in the sequence could represent an anomaly. Techniques for detecting contextual

anomalies have also been extended to events, where each event has an associated time of

occurrence. Collective anomalies are described as requiring combinations of

observations where the individual observations alone are not anomalous. Chandola

(2009) determined that there were two primary approaches to contextual anomaly

detection. The first is to reduce the problem so that it can be solved as a point anomaly

49

detection problem. The second is to model the context and use that model for detection

as you would a one-class classifier.

Detection of Zeus Malware

 In addition to the research previously discussed for bot malware detection, research on

methods that focused on detection of the Zeus bot malware has also been conducted. The

work by Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, Debbabi, and Wang (2010)

analyzed Zeus network traffic patterns by utilizing the Zeus crimeware toolkit to create a

functioning instance of the malware within a controlled network. They captured the

resulting network traffic and analyzed the contents of the packets that comprised the

HTTP communications between the Zeus bot malware and the command and control

server. The goal of their research was to learn and model this communications pattern for

subsequent use in detection techniques. They reported the following as the HTTP

communications pattern for Zeus:

1. the infected host sends an HTTP GET method requesting the file

/config.bin;

2. the C&C server responds by providing that encrypted file;

3. the infected host decrypts and installs the file;

4. the infected host may make a request to a predetermined server in order to

determine its own Internet facing IP address; and

5. the infected host sends HTTP POST methods with the resource /gate.php

which include status reports or stolen data.

50

Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, Debbabi, and Wang also reported that

the payload content of the POST messages (Step 5) from the infected host were encrypted

using the RC4 algorithm. This group did not report experimentation with classification

techniques using the communications pattern information they learned.

 Alserhani, Akhlaq, Awan, and Cullen (2010) also created an instance of Zeus and

captured its network traffic in order to refine the signature files of a custom method that

they compare with Snort®. They reported that the victim host sent an HTTP GET request

for an encrypted configuration file upon being infected. The infected host then sent

HTTP POST requests with encrypted payloads to request PHP files. This is consistent

with the network communications pattern described by Binsalleeh, Ormerod, Boukhtouta,

Sinha, Youssef, Debbabi, and Wang (2010).

 Oro, Luna, Felguera, Vilanova, and Serna (2010) experimented with using blacklists

to detect Zeus bots and C&C servers. Their research focused on the process of

integrating IP blacklists from multiple providers and providing near real time responses

to queries about IP reputation. This research group also did not report experimentation

with classification techniques for Zeus detection.

 Riccardi, Di Pietro, and Vila (2011) and Riccardi, Di Pietro, Palanques, and Vila

(2012) also analyzed the network traffic patterns of Zeus by creating instances and

capturing the resulting data from running them. These researchers reported using the

2.0.8.9 version of Zeus that had previously been made public. Much of their work

focused on cryptanalysis techniques against the RC4 with a goal of deciphering Zeus

configuration files. They reported a communcations pattern between the infected host

and command and control server that was very similar to the one previously reported by

51

Alserhani, Akhlaq, Awan, and Cullen (2010), and Binsalleeh, Ormerod, Boukhtouta,

Sinha, Youssef, Debbabi, and Wang (2010). First, the infected host makes an HTTP GET

request for /config.bin to the C&C server. Once the configuration file is received

and installed, the infected host makes two types of HTTP POST requests for

/gate.php to the C&C server. The two types were identified as logs and reports, and

they differed in size. Their work employed a custom detection technique working at the

packet level.

 The research of Mohaisen and Alrawi (2013) focused on comparing the detection

performance of machine learning techniques using flow level features from Zeus network

traffic. In this respect, it was similar to the work presented in this report. Mohaisen and

Alrawi, however, chose to evaluate five classifiers: one support vector machine (SVM),

two logistic regression methods, one decision trees method, and one nearest neighbor

method. They did not provide a classifier selection rationale. They considered only

seven flow level features from the network traffic: destination IP, destination port,

protocol, HTTP request type, HTTP response type, flow size, and DNS type. However,

their technique also included six features captured from the file system and four features

from the registry of the infected host. They found that the SVM produced the best results

in terms of false positives and false negatives. They also reported that the false negative

rate of the decision trees method changed significantly when the training and testing sets

were reversed, an inspiration for adding that step to the methodology in this work.

 Haddadi, Runkel, Zincir-Heywood, and Heywood (2014) also evaluated the detection

performance of multiple classifiers against bot malware network traffic. They chose to

evaluate two classifiers, the first was the C4.5 decision tree algorithm and the second was

52

the Symbiotic Bid-Based (SBB) algorithm, a form of genetic algorithm. They considered

14 flow level features that were produced using the Softflowd open source software.

They trained the classifiers with labeled data, a supervised learning approach. They used

real network traces of Zeus, Conficker, and Torpig. They found that these classifiers

performed well using flow level features, which was their primary objective. They also

reported that the results were sensitive to the type of encoding used for certain attributes,

an inspiration for adding that step to the methodology in this work.

 Haq, Ahmed, and Syed (2014) focused on generating what they called faithful

fingerprints of bot network activity, where faithful suggested comprehensive across

possible variations due to network and host configurations and user activity. They

created a Zeus botnet and used its network traffic to validate their fingerprinting method.

This research group did not report experimentation with classification techniques for

Zeus detection.

 Lu and Brooks (2012) describe how the inter-packet delays captured in Zeus network

traffic were used successfully in a Hidden Markov Model detection approach. Kocak,

Miller, and Kesidis (2014) experimented with an unsupervised classification approach

that considered a feature vector based on the sizes of the first 10 packets after the TCP

flow three-way handshake. Venkatesh and Nadarajan (2012) demonstrated how their

neural network trained with labeled Zeus and Spyeye samples outperformed three

competing classifiers, a C4.5 Decision Tree, a Random Forest, and a Radial Basis

Function, in terms of true and false positives. Alazab, Venkatraman, Watters, Alazab,

and Alazab (2012) provide a general description of Zeus and describe how it sends stolen

data to a command and control server via encrypted HTTP POST requests. Dietrich,

53

Rossow, and Pholmann (2013) experimented with an unsupervised learning approach to

detection of Zeus and other bot malware using network traffic features to include

message length, protocol, and HTTP encoding. Using their hierarchical clustering they

found that Zeus P2P, among others, did not have a distinctive message length.

Gaps in the Literature

 The following gaps noted in the literature are based on a synthesis of the reported

approaches from multiple perspectives, namely, machine learning, problem domain, and

theoretical perspectives. These gaps are grouped into those resulting from the bot

detection literature and those resulting from the AIS literature.

 Using Mitchell’s definition of machine learning as a guide (Mitchell, 1997), the

review of bot detection literature revealed a noticeable lack of techniques that benefitted

from new experience. The human expert validation provided to the methods of Binkley

and Singh (2006) and Goebel and Holz (2007) were a manual step in that direction, but

automated techniques were not reported. Prior knowledge, on the other hand, was used

extensively by the methods presented. In fact, this revealed another key gap in the bot

detection literature: techniques for independently validating selected and constructed

features. Most of the researchers reported the use of heuristically derived (constructed)

features for model development and validation, but not for feature subset validation. The

reasons for choosing their features were based on domain knowledge and likely the

success of previously reported results from other researchers. However, the more formal

approach to feature selection as a separate process (Guyon, 2007) and its benefits were

54

not reported by many of these researchers, with the notable exception of Livadas, Walsh,

Lapsley, and Strayer (2006).

 While a number of the bot detection methods presented in this chapter were described

as anomaly detection techniques, few of them (Shin, Xu, & Gu, 2012) made explicit

reference to the one-class classification methods described in the machine learning

literature (Duda, Hart, & Stork, 2001; Hempstalk, 2009; Mitchell, 1997). As a result,

these anomaly detection methods were generally not compared with multi-class

classifiers. Perhaps comparing these anomaly detection (one-class classifier) methods

with multi-class classifiers that had been trained with labeled anomalies might have led

more researchers toward techniques that incorporated learning from new experience.

 Filtering of network traffic to reduce computational intensity was a common theme

among the bot detection researchers, even those not focusing exclusively on the IRC

protocol (Gu, Perdisci, Zhang, & Lee, 2008; Gu, Porras, Yegneswaran, Fong, & Lee,

2007; Villamarín-Salomón & Brustoloni, 2009; Yen & Reiter, 2008). Most authors

pointed out the information loss trade-off that resulted from filtering whole categories of

network traffic. However, most of the reported filtering was done heuristically without

first evaluating all of the available features for relevance.

 The AIS literature also left a gap regarding independent validation of selected and

constructed features. In immunology, epitopes represent the patterns of interest to the

antibodies. It follows that the fewest number of features to uniquely differentiate

antigens from the host cells would be desirable, thus the epitopes are equivalent to feature

vectors in machine learning.

55

 The challenge of managing immune system memory in an AIS was another area not

fully investigated. Kephart, Sorkin, Arnold, Chess, Tesauro, and White (2009) provided

one very simple and direct approach, but many others did not address the issue.

 The challenge of providing adequate coverage of the non-self space with negative

selection approaches was addressed by several of the AIS researchers, but not from a

theoretical perspective. Each approach seemed to impose limits on the non-self space

that may not be realistic for a real world dynamic threat environment. Intuition suggests

that it would be easier to define a finite self than an infinite non-self, and thus positive

selection and traditional anomaly detection approaches would be more efficient.

Researchers demonstrated a tractable negative selection approach based on a finite

alphabet and a fixed string length, but those self strings had to remain stable over time.

The same was not demonstrated for more complex relationships across dynamic data.

This leaves the theoretical question of when to use positive selection versus negative

selection open.

 Few of the AIS methods explicitly referenced one-class classification methods either.

AIS approaches designed to detect non-self activity based on a model of self created with

self-only training data could be described as either an anomaly detection or a one-class

classification problem. Framing the problem as a one-class classification problem might

help close the research gap between contemporary machine learning methods and

artificial immune systems.

56

Summary

 This chapter provided a review and analysis of research associated with bot activity

detection and with the application of artificial immune systems and related anomaly

detection methods to information security. Fundamental to the analysis of the literature

were concepts from Machine Learning, which were also presented. A review of research

specifically applied to the detection of Zeus bot malware was presented. This body of

research highlighted the previously reported patterns of Zeus network behavior. Review

of the literature revealed gaps from a machine learning perspective, from a problem

domain perspective, and from a theoretical perspective. These gaps were identified and

discussed, and served as a guide for the research presented here.

57

Chapter 3

Methodology

Overview

 The problem of detecting data theft from a networked computer was treated as a

pattern classification problem. The independent variables under consideration were the

bot exfiltration activities and the dependent variables were the detection methods (Al-

Bataineh & White, 2012; Brezo, Santos, Bringas, & del Val, 2011; Zhang, Yu, Wu, &

Watters, 2011). In this work the detection methods took the form of classifiers with

varying feature sets. The impact of adding a novel feature, based on user interaction with

the host, was the primary objective. Another objective was to find the combination of

classifier and feature set with the best performance, measured in terms of highest true

positive rate with lowest false positive rate. A constraint was imposed on the set of

features available from the benign and malicious network traffic to reduce the compute

intensity. Only summary level features resulting from software that produced network

flows, or netflows, was used. Celik, Raghuram, Kesidis, and Miller (2011), Gu, Perdisci,

Zhang, and Lee (2008), Gu, Porras, Yegneswaran, Fong, and Lee (2007), Haddadi,

Runkel, Zincir-Heywood, and Heywood (2014), Yen and Reiter (2008, 2010) and

Zeidanloo, Hosseinpur, and Boraziani (2010) used the network flow approach to simplify

the feature selection process and reduce the computational intensity of their respective

bot activity detection methods which were goals in this work. This approach has a

potential drawback, however. Namely, these flow records do not provide full details

58

about individual packets or their payloads, thus limiting the number of observed features

available. The innovation in this approach was the integration of a feature derived from

an independent process for monitoring user interaction with the infected host.

 The methodology included steps to determine the most discriminating features that

could be derived from the data through feature selection and feature construction, and

steps to determine the best performing classifier under increasingly complex conditions.

The first set of conditions was designed to evaluate the classifiers against a relatively

small dataset after being trained with examples of both classes, benign and malicious.

The final set of conditions was designed to evaluate the classifiers against relatively large

datasets divided into separate training and testing subsets, where the testing subsets

consisted entirely of flows the classifiers had never seen. The nature of the underlying

network data in the datasets was also significant, consisting of some repeating patterns of

application network activity and some novel patterns introduced through user interaction.

 The traditional approach to solving classification problems involves iteration over a

series of steps (Bishop, 2007; Duda, Hart, & Stork, 2001; Guyon, 2007; Mitchell, 1997),

as depicted in Figure 3-1. Prior knowledge about the problem domain can be used to

bootstrap the feature and model selection steps, particularly in cases where the number or

dimensionality of the features is high or where training data is sparse (Guyon, 2007).

59

Figure 3-1. Methodology for Designing a Classifier (Duda, Hart, & Stork, 2001)

 The number of available features for this work was over one hundred, thus the use of

domain knowledge in the feature selection process was appropriate. Note also that this

methodology employed a supervised learning approach that included a training step. The

training step required data labeled with the proper classes. In multi-class classification

problems, the training set requires labeled instances of each category. Data representing

known malicious bot activity was used to validate and test the classifiers in the evaluation

step.

Data Collection Approach

 This work required generating both the host interaction data and the benign network

data that would subsequently be integrated with malicious network data to train and test

60

the classifiers. Most of the data was produced on an isolated network segment comprised

of physical hosts. Benign data was collected when this segment was connected to the

Internet. Malicious bot activity samples were then merged with the higher volume

benign samples. Al-Bataineh and White (2012), Celik, Raghuram, Kesidis, and Miller

(2011), Hofmeyr and Forrest (2000), Strayer, Walsh, Livadas, and Lapsley (2006), and

Zhang, Luo, Perdisci, and Gu (2011) employed similar methods of integrating malicious

samples with benign network traces. This approach has a number of merits. First, it

avoids the dangers and potential legal and ethical issues of dealing with bot malware in

the wild which come with the use of honeypots on the Internet. For example, allowing a

host to be compromised and remotely controlled could inadvertently result in its use for

illegal purposes such as a contributor to a distributed denial of service attack (Sadasivam,

Samudrala, and Yang, 2005). Next, it allows for control over relevant host and network

activity, which is essential from an experimental perspective. This approach also allows

for faster-than-real-time processing and repeatability for the evaluation steps (Hofmeyr

and Forrest, 2000). Unfortunately, this approach limits the ability to directly compare

results with those from other researchers, since unique data sets are created and used.

However, the comparison of true and false positive rates from independent data sets is a

commonly accepted research practice and was used for this work.

 The first step in the data collection process was to configure a local area network with

hosts for generating and collecting network traffic. This network consisted of two

physical hosts for generating network traffic and one physical host for capturing it. The

two hosts for generating data were equipped with software to monitor and record user

interaction. Both were laptop personal computers running Microsoft Windows operating

61

systems, one Windows XP and the other Windows 7. The host for capturing data was

desktop personal computer running a Linux operating system, CentOS. A network hub

as opposed to a switch was used to connect the hosts. This allowed the Linux host, which

was responsible for capturing data, to see all network traffic to and from the three hosts

connected to the hub. Thus data could be captured from two vantage points, the network

interface and the operating system of the host to be protected. From the network

interface perspective, all network traffic to and from the host was captured using the

tcpdump command on the Linux workstation. From the host operating system

perspective, all user interaction with application software and within a browser was

captured using a software application designed for recording such information.

 The next step was to generate benign network traffic. This step consisted of

connecting the local network to the Internet, allowing network-enabled software

applications to communicate with remote hosts, and interacting with network-enabled

software to generate dynamic network traffic. In order to ensure that the patterns of

network behavior changed over time, a variety of user interaction scenarios were

executed while the data is being captured. One of the scenarios was user configuration of

system software to automatically communicate with remote hosts, namely operating

system software performing periodic updates. Another scenario was user installation of

new software onto the system which would then independently communicate with remote

hosts, namely an email client. Another scenario was user interaction with web browser

software to read news articles and watch news videos from a news aggregator web site,

namely Google News.

62

 Figure 3-2 provides a graphic example of the resulting data when the destination

addresses (remote servers) of the benign netflows are plotted over time. In this view, the

points that appear to fall along a horizontal line represent repeated sessions with the same

remote server. Points that appear to fall along a vertical line represent sessions with

many different remote servers at nearly the same time and correspond to periods of user

interaction. On April 9th, the Mozilla Thunderbird email client was installed, configured

for a Microsoft email account, and activated on the host. What appears in the plot to be a

solid horizontal line is actually four parallel streams of frequent netflows (TCP sessions)

with corresponding Microsoft email servers.

Figure 3-2. Plot of network sessions with remote servers over time

63

 The plot in Figure 3-2 consists of 487,490 netflows to 3,700 unique destination

addresses during the month of April 2013 and highlights the steady increase in the

cumulative number of remote servers a typical host communicates with over time and the

corresponding challenge of whitelisting approaches to monitoring network activity. The

number of unique destination addresses increased to 4,440 by the end of May 2013 and to

5,576 by the end of June 2013 in the benign dataset.

 The final step in the data collection process was to acquire samples of actual network

traffic from the Zeus botnet. Acquiring samples of Zeus traffic was accomplished by

searching and retrieving files from the Internet and by requesting and receiving samples

via email from honeypot operators. The first samples of Zeus network traffic were found

on a Sourcefire VRT Labs web site associated with the Snort® open source intrusion

detection system. Three packet capture files were provided as links within an undated

online report titled Analysis of the Zeus Trojan by Alex Kirk. The internal packet

timestamps reveal that the network activity occurred on the 25th and 26th of February

2010. These samples will be referred to as the 2010 Zeus in subsequent sections. Two

additional samples of Zeus network traffic were found on a web site called Contagio

Malware Dump. One was classified as Zeus and the other as Game-Over Zeus and they

were captured in March and February of 2012, respectively. These samples will be

referred to as the 2012 Zeus in subsequent sections. The final, and largest, set of Zeus

samples was received from a research group that operates a honeynet for the purpose of

capturing samples of malware in the wild. This dataset is described in the next section

and in Appendix A.

64

Analysis of Zeus Network Data Samples

 Samples of network traffic from the Zeus botnet were evaluated through manual deep

packet inspection using the Wireshark network protocol analyzer. Table 3-1 summarizes

fifteen files containing network traffic samples of Zeus that were received from the

operators of Sandnet, an environment for analyzing the network behavior of malware

implemented at the Institute for Internet Security, University of Applied Sciences in

Gelsenkirchen, Germany (Rossow et al., 2011). These samples were captured in the wild

in March and April 2014. In the table, filenames are truncated to the last three characters

of their original form. The Total Connections column provides the number of unique

TCP connections in the file. The Suspicious Connections column provides the number of

connections to other than well-known Google or Microsoft servers. The 30 sessions with

Google servers contained only HTTP GET methods, as did the single session with a

Microsoft Windows Update server. The remaining sessions with suspicious servers

contained HTTP GET, HTTP POST, or both, as enumerated in the Suspicious GET and

Suspicious POST columns. Note that some connections contained multiple HTTP

request methods. The Domain Generation column indicates whether or not an automatic

domain generation algorithm (DGA) was observed in that sample file. Note that the first

eight files in the table each included POST requests but did not use a DGA for domain

names. Conversely, the next seven files did use a DGA but did not include any POST

requests. Since the HTTP POST method is known to be used by Zeus to transfer stolen

data from the infected client (Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef,

Debbabi, & Wang, 2010; Riccardi, Di Pietro, Palanques, & Vila, 2013) and none of the

HTTP GET methods in the seven DGA files included a payload, only the first eight files

65

are detailed here. These eight files provided the samples for testing and comparing

detection rates.

Table 3-1. Files of Real-world Zeus Network Trace Data from 2014

Filename
(last-3)

Total
Connections

Suspicious
Connections

Suspicious
GET

Suspicious
POST

Domain
Generation?

32c 16 16 10 11 No
b8c 15 11 0 11 No
2d7 9 7 0 14 No
9ca 9 7 1 15 No
054 7 3 8 2 No
3f9 7 5 0 20 No
3b7 6 3 1 2 No
058 3 3 0 3 No
d61 14 12 12 0 Yes
390 8 6 6 0 Yes
6a5 6 4 4 0 Yes
766 6 4 4 0 Yes
102 5 3 3 0 Yes
a87 4 2 2 0 Yes
b21 4 2 2 0 Yes

 The analysis of these samples provides new evidence that Zeus uses the HTTP

protocol to load malware on a victim host and to transmit data from the compromised

host to a remote server. These examples demonstrate that the GET and POST methods

were used to retrieve malware files from a remote server and that the GET and POST

methods were used to send encrypted data to a remote server. Use of the POST method

to retrieve malware files was not reported by Al-Bataineh and White (2012), Binsalleeh,

Ormerod, Boukhtouta, Sinha, Youssef, Debbabi, and Wang (2010), Kirk (2010), or

Riccardi, Di Pietro, Palanques, and Vila (2013).

66

 By way of comparison, the example in Table 3-2 of 2012 Zeus also provided evidence

of a Zeus instance using both the GET and POST methods to retrieve malware files from

a remote server. However, the payload was not encrypted in either of the file requests

using the POST method in contrast to the 2014 Zeus examples.

Table 3-2. Real-world Zeus Network Trace Data from 2012

Filename
(last-3)

Total
Connections

Suspicious
Connections

Suspicious
GET

Suspicious
POST

Domain
Generation?

2cc 11 10 2 8 No

 The examples in Table 3-3 of 2010 Zeus provide evidence of Zeus instances using

only the GET method to retrieve malware files from a remote server. The POST method

was used only to send encrypted data, likely status messages. Note that some

connections in the third file contained multiple HTTP request methods.

Table 3-3. Real-world Zeus Network Trace Data from 2010

Filename
(last-3)

Total
Connections

Suspicious
Connections

Suspicious
GET

Suspicious
POST

Domain
Generation?

e-1 71 15 2 13 No
e-2 5 5 2 3 No
e-3 5 5 3 4 No

Packet Inspection Process

 The first step in the packet inspection process is to open the packet capture trace file in

Wireshark. By default Wireshark displays three panes: Packet List, Packet Details, and

Packet Bytes. Figure 3-3 illustrates the first lines of the Packet List window pane from

which a TCP connection can be chosen from one of its packets.

67

Figure 3-3. Wireshark time-ordered packet listing

 The next step is to use the “Follow TCP Stream” function of Wireshark which

displays a summary of the information from all packets comprising that TCP connection

between the client and remote server. Figure 3-4 illustrates how Wireshark presents the

contents of the connection in ASCII format for inspection. HTTP header information

plus any message content from the local client is shown first and highlighted in one color,

header plus any message content from the remote server is shown next and highlighted in

a second color. A given TCP connection, defined by the traffic over a unique source and

destination IP and port combination, may contain multiple exchanges of HTTP messages.

68

Figure 3-4. Wireshark “Follow TCP Stream” “ASCII” View

 The “Follow TCP Stream” function of Wireshark offers additional formats for

viewing. The “Hex Dump” view, as shown in Figure 3-5, provides a running count in its

left-most column which is convenient for determining byte totals of the HTTP messages.

69

Figure 3-5. Wireshark “Follow TCP Stream” “Hex Dump” View

Using these views within Wireshark, the contents of the HTTP messages can be

evaluated for peculiarities in the use of headers and body.

 Part of the evaluation process is to look up the destination IP address and any

hostname provided in the HTTP Host header. The whois command provides a query

service for IP address and domain name registration information. The Zeus Tracker web

site provides a query service for information on previously identified Zeus command and

control (C&C) and supporting servers.

 The final step in the inspection process is to compare features derived from the TCP

connections using Wireshark with features derived automatically using Argus to generate

net flows. This step reveals how Argus partitions a single TCP connection into one or

more net flows and how much packet overhead from IP and TCP wrappers is included.

70

 Appendix A is organized into sections for each of the sample files examined, with

subsections for each TCP connection. In most of the subsections the HTTP headers are

shown but the message bodies are removed. This is to reduce the amount of non-readable

text in the appendix. The local client IP address within the honeynet is not relevant to

the analysis and therefore not explicitly stated. The destination port value is always 80

and therefore not explicitly stated.

Collection of Benign Network Data and User Interaction Data

 A network consisting of three hosts, one hub, and one router connected to the Internet

formed the experimentation environment. Two hosts were used for generating network

traffic and one for capturing and analyzing the network data. The primary producer host

was configured with Windows XP Service Pack 2 as its operating system and 10.0.1.101

as its IP address. The secondary producer host was configured with Windows 7 as its

operating system and 10.0.1.110 as its IP address. The monitor host was configured with

CentOS 6.3 Linux as its operating system and 10.0.1.100 as its IP address. The router

was configured with 10.0.1.1 as its IP address. The monitor and producer hosts were

configured to use Network Time Protocol (NTP) and connect to the same NTP server for

updates so their clocks would remain synchronized. The hub device was used to enable

the monitor host to see and capture the network traffic to and from all hosts.

 The primary producer host, henceforth called host 101 for its abbreviated IP address,

was used to generate network traffic both automatically and interactively through

software applications that establish remote network connections. For example, its

Windows XP operating system was configured to automatically check for updates from

71

remote Microsoft servers. An email client was loaded and configured to automatically

check for new mail. NTP was enabled. A web browser application was periodically left

connected to a web site hosting resources that automatically refreshed. A user interacted

with host 101 on an aperiodic basis, starting and stopping applications, loading new

applications, checking email, and browsing the web. The secondary producer host was

used in the same fashion, though with less frequent user interaction. Traffic from the

secondary producer host was envisioned to serve as a back-up source of data. Since it

was not needed, data collected from that host will be retained for future work.

 The tcpdump command was used to capture all packets on the local network and

store them in files with a date and time stamp as part of the filename. This data provided

samples of benign network traffic, under varying conditions, that was subsequently

merged with malicious network traffic for the experimentation. The packet capture

process ran continuously on the Linux monitor host. The tcpdump command was used

with the following parameters:

 tcpdump -tttt -G 7200 -Z root -w ‘out-%Y%m%d-%H%M’

This command produced an uninterrupted series of packet capture files, each two hours

long (7200 seconds), for the period 01 March through 18 July 2013. The capture files

were stored in subdirectories named 2013-03, 2013-04, 2013-05, 2013-06, and 2013-07.

The resulting file type for each was "tcpdump capture file (little-endian) - version 2.4

(Ethernet, capture length 65535)" which can be obtained by issuing the file command

(Unix) with any of the individual filenames as a parameter. The Wireshark network

protocol analyzer reads this format natively.

72

 To capture data about user interaction with host 101, a third party application was

used. This application, KidLogger, kept a record of keystrokes made, applications

launched, and web sites visited in the form of HTML log files. This application was

chosen from among several competing offerings because of its logging function and

format, and because of its apparent robustness to changes in the host configuration. The

user interaction capture process ran continuously on host 101 from 31 March through 18

July 2013 and produced a log for each day of user interaction. Since the logs were

created in HTML format they were both human readable and relatively easy to parse.

Figure 3-6 illustrates an example of two interaction log entries.

<p class="app" time="11:53" name="chrome">11:53 Google - Google

Chrome </p>

<p class="keystrokes" name="www.google.com" dur="0"

time="11:53">scrapple</p>

Figure 3-6. Sample Entries from Interaction Log

In this example, the user selected the Chrome browser application (first log entry) and

then entered the word “scrapple” on the www.google.com web page (second log entry) at

a time of 11:53. This highlights that the relevant features, action and time, are in quotes

and therefore easy to parse. It also highlights one of the deficiencies of using this

particular software: poor fidelity of the timestamp. Stated more specifically, the event

time is only recorded to the minute with the seconds truncated. This lack of higher

fidelity time information was accommodated, as described in a later section.

 To collect samples of malicious Zeus network activity, the Internet was scoured for

network trace files and email requests were sent to honeynet operators. Searching the

73

Internet produced a small set of sample files that served as the basis for developing and

refining the experimentation methodology. The email requests for data resulted in a more

current and comprehensive set of sample botnet packet capture files that were used for

the experimentation. These samples were collected in March and April of 2014. The

detailed analysis of these contemporary Zeus network traffic samples is provided in

Appendix A.

Data Preparation and Management

 This work focused on the features available from network traffic summaries as

opposed to individual packets. The aggregation of packets into meaningful summaries

before classification reduces the amount of processing required and therefore increases

speed, an important consideration for network intrusion detection systems. Commercial

routers, such as those produced by Cisco, include the generation of flow records in their

operating systems. Open Source tools, such as Argus, are also available to provide

similar functionality at the network interface or from packet capture files. Argus was

used for this research. Converting packet capture files to transaction-level summaries,

henceforth called netflows, with the open source application Argus was a two-step

process. The first step created netflows from the capture files using the argus

command, and the second step created readable text files for viewing and subsequent

parsing using the ra command. The argus command was used with the following

parameters:

 argus -A -J -R -r <pkt-in-file> -w <argus-out-file>

where

74

-A generated application byte metrics in each audit record,

-J generated packet performance data in each audit record,

-R generated records such that response time can be derived,

-r was the packet file to read, and

-w was the Argus file to write.

The ra command was used with the following parameters:

 ra -nn –F rarc -r <argus-out-file> > <outfile>

where

-nn suppressed lookups for port to service and protocol to name,

-F specified a configuration file with additional parameters, and

-r was the Argus file to read.

Note that fields (features) were specified in the configuration file (rarc). The ra

command was first used to produce all supported features for evaluation. Once the

relevant features were chosen, as described in a subsequent section, the ra command was

then used with the chosen subset of features listed in its configuration file, as seen with

the RA_FIELD_SPECIFIER in Figure 3-7.

RA_TIME_FORMAT="%FT%T"

RA_FIELD_DELIMITER=','

RA_PRINT_NAMES=proto

RA_FIELD_SPECIFIER= stime proto saddr sport daddr dport dur

sbytes dbytes stos dtos sttl dttl spkts dpkts sappbytes dappbytes

sload dload srate drate sloss dloss sintpkt dintpkt sjit djit

state stcpb dtcpb tcprtt synack ackdat inode offset flgs tcpopt

dir rate ltime

Figure 3-7. Configuration File (rarc) Contents

75

 In order to facilitate the process of converting the large collection of packet capture

files to netflow files, scripts were used to run the argus and ra commands against a list

of the capture files. Table 3-4 describes this process.

Table 3-4. Steps for Batch Creation of Netflow Files

1. Create a list of argus

input files (file-list)

ll out-* | awk '{ print $9 }' >> file-list

2. Run argus against

each file in list (script

batchArgus)

#!/bin/bash

use with file of filenames called file-list

for i in $(cat file-list); do argus -A -J -R -r $i

-w $i.argus; done

3. Create a list of argus

output files (file-list-

argus)

ll *.argus | awk '{ print $9 }' >> file-list-argus

4. Run ra against each

file in new list (script

batchRa)

#!/bin/bash

use with file of filenames called file-list-

argus

for i in $(cat file-list-argus); do ra -nn -F rarc

-r $i > $i.ra; done

Initial Feature Selection

 An analysis of all features produced by Argus (version 3.0.6) on the experimental data

revealed that many Argus flow features were not likely to be useful. They had zero, null,

or fixed values, or they repeated the values of another feature. Table 3-5 summarizes the

results of this analysis and includes a column labeled “Useful” to distinguish between

those 63 features that were initially considered and those 40 that were not. After further

analysis, 23 of the 63 initial candidates were also deemed unnecessary. The predominant

reason for this further reduction was feature independence. For example, the feature

named packets (pkts) was not necessary since it was simply a sum of source packets

76

(spkts) and destination packets (dpkts). Other features were removed because their

observed values were inconsistent with samples of the benign trace data. The 40 features

that remained equate to those specified in the configuration file (rarc) in Figure 3-7.

Table 3-5. Full Set of Candidate Netflow Features from Argus

Feature Description Sample Results Useful

stime record start time hh:mm:ss.SSSSSS Y

ltime record last time hh:mm:ss.SSSSSS Y

flgs flow state flags seen in transaction in fixed positions Y

seq argus sequence number incrementing int Y N

dur record total duration 0.000000s Y

smac source MAC address of local h/w (argus -m) Y N

dmac destination MAC address of local h/w (argus -m) Y N

soui oui portion of the source MAC address of local h/w (argus -m) Y N

doui oui portion of the source MAC address of local h/w (argus -m) Y N

saddr source IP address IPv4 address Y

daddr destination IP address IPv4 address Y

proto transaction protocol tcp, udp, etc. Y

sport source port number use -n for number Y

dport destination port number use -n for number Y

stos source TOS byte value discreet values or blank Y

dtos destination TOS byte value discreet values or blank Y

sdsb source diff serve byte value cs0, cs1, etc. or blank Y N

ddsb destination diff serve byte value cs0, cs1, etc. or blank Y N

sttl src -> dst TTL value discreet values or blank Y

dttl dst -> src TTL value discreet values or blank Y

sipid source IP identifier hex value or blank Y N

dipid destination IP identifier hex value or blank Y N

77

Feature Description Sample Results Useful

pkts total transaction packet count discreet values not blank Y N

spkts src -> dst packet count discreet values not blank Y

dpkts dst -> src packet count discreet values not blank Y

bytes total transaction bytes discreet values not blank Y N

sbytes src -> dst transaction bytes discreet values not blank Y

dbytes dst -> src transaction bytes discreet values not blank Y

appbytes total application bytes discreet values not blank (
argus -A)

Y N

sappbytes src -> dst application bytes discreet values not blank (
argus -A)

Y

dappbytes dst -> src application bytes discreet values not blank (
argus -A)

Y

load bits per second float with asterisk or
0.000000

Y N

sload source bits per second float with asterisk or
0.000000

Y

dload destination bits per second float with asterisk or
0.000000

Y

loss pkts retransmitted or dropped 0, 1, 2, etc. Y N

sloss source pkts retransmitted or dropped 0, 1, 2, etc. Y

dloss destination pkts retransmitted or dropped 0, 1, 2, etc. Y

ploss percent pkts retransmitted or dropped float with asterisk or
0.000000

Y N

rate pkts per second float without asterisk Y

srate source pkts per second float without asterisk Y

drate destination pkts per second float without asterisk Y

dir direction of transaction ->, <->, <-, <?>, or 'who' Y

sintpkt source interpacket arrival time (mSec) float without asterisk (
argus -J)

Y

78

Feature Description Sample Results Useful

sintpktact source active interpacket arrival time
(mSec)

float without asterisk (
argus -J)

Y N

sintpktidl source idle interpacket arrival time (mSec) float without asterisk (
argus -J)

Y N

dintpkt destination interpacket arrival time (mSec) float without asterisk (
argus -J)

Y

dintpktact destination active interpacket arrival time
(mSec)

float without asterisk (
argus -J)

Y N

dintpktidl destination idle interpacket arrival time
(mSec)

float without asterisk (
argus -J)

Y N

sjit source jitter (mSec) float without asterisk or
blank (argus -J)

Y

sjitact source active jitter (mSec) float without asterisk or
blank (argus -J)

Y N

djit destination jitter (mSec) float without asterisk or
blank (argus -J)

Y

djitact destination active jitter (mSec) float without asterisk or
blank (argus -J)

Y N

state transaction state CON, INT, FIN, etc. Y

swin source TCP window advertisement int (some w/asterisk) or
blank

Y N

dwin destination TCP window advertisement int (some w/asterisk) or
blank

Y N

stcpb source TCP base sequence number int or blank Y

dtcpb destination TCP base sequence number int or blank Y

tcprtt TCP connection setup round-trip time -
sum of ’synack’ and ’ackdat’

float without asterisk Y

synack TCP connection setup time - time between
SYN and SYN_ACK packets

float without asterisk Y

ackdat TCP connection setup time - time between
SYN_ACK and ACK packets

float without asterisk Y

tcpopt The TCP connection options seen at in fixed positions Y

79

Feature Description Sample Results Useful

initiation

inode ICMP intermediate node IPv4 address Y

offset record byte offset in file or stream incrementing int Y

srcid argus source identifier Always 0.0.0.0 N

trans aggregation record count Always 1 N

runtime total active flow run time same as dur N

mean average duration of aggregated records same as dur N

stddev standard deviation of aggregated duration
times

Always 0.000000 N

sum total accumulated durations of aggregated
records

same as dur N

min minimum duration of aggregated records same as dur N

max maximum duration of aggregated records same as dur N

sco source IP address country code blank N

dco destination IP address country code blank N

smpls source MPLS identifier blank N

dmpls destination MPLS identifier blank N

psloss percent source pkts retransmitted or
dropped

does not work N

pdloss percent destination pkts retransmitted or
dropped

does not work N

sgap source bytes missing in data stream.
Available after argus-3.0.4

zero or blank N

dgap destination bytes missing in data stream.
Available after argus-3.0.4

zero or blank N

sintdist source interpacket arrival time distribution blank N

sintdistact source active interpacket arrival time
(mSec)

blank N

sintdistidl source idle interpacket arrival time (mSec) blank N

80

Feature Description Sample Results Useful

dintdist destination interpacket arrival time
distribution

blank N

dintdistact destination active interpacket arrival time
distribution (mSec)

blank N

dintdistidl destination idle interpacket arrival time
distribution

blank N

sjitidle source idle jitter (mSec) does not work N

djitidle destination idle jitter (mSec) does not work N

suser source user data buffer blank N

duser destination user data buffer blank N

svlan source VLAN identifier blank N

dvlan destination VLAN identifier blank N

svid source VLAN identifier blank N

dvid destination VLAN identifier blank N

svpri source VLAN priority blank N

dvpri destination VLAN priority blank N

srng start time for the filter timerange blank N

erng end time for the filter timerange blank N

spktsz histogram for src packet size distribution blank N

smaxsz maximum packet size for traffic
transmitted by the src

blank N

dpktsz histogram for dst packet size distribution blank N

dmaxsz maximum packet size for traffic
transmitted by the dst

blank N

sminsz minimum packet size for traffic
transmitted by the src

blank N

dminsz minimum packet size for traffic
transmitted by the dst

blank N

81

 This process resulted in the conversion of all files of packets into files of netflows

consisting of 40 features. The next step was to parse relevant information from the

interaction logs, namely the time and type of interaction. Parsing the interaction logs

required multiple steps which are described in Table 3-6. Again scripts were used to

iteratively process lists of files.

Table 3-6. Procedure for Parsing Interaction Logs

1. Rename daily log files to

YYYY-MM-DD (for datetime)

mv “1 July,Monday.htm” 2013-07-01

2. Create a list of log files ll 2013-* | awk '{ print $9 }' >>

loglist

3. Extract URL and APP

entries, maintaining sequence,

output to subdirectory since

names collide

#!/bin/bash

use with list of filenames

for i in $(cat loglist); do grep

'class="url"\|class="app"' $i > out/$i ;

done

4. In subdirectory, parse

relevant fields to new files,

adding date from filename

#!/bin/bash

for i in $(cat ../loglist); do awk -F'"'

'{print FILENAME "T" $4 "," $2 "," $6 }'

$i > $i.parsed ; done

5. Combine results into single

file

cat *.parsed >> allParsed1

6. Keep only domain portion of

URL field

cat allParsed1 | awk -F'/' '{ print $1}'

> parsedLogs

 Step 3 in Table 3-6 illustrates that only those log entries resulting from the use of a

browser or software application, signified by the classes “url” and “app” respectively,

were considered. These interactions were most likely to generate network traffic. Step 5

82

in Table 3-6 illustrates that all entries selected from the individual interaction log files

were concatenated into a single file for subsequent use.

 The next phase of the data preparation process was to create tables in a relational

database and load the respective data types into these tables. The goal was to simplify

the process of creating integrated data sets for training and testing the classifiers. The

MySQL software was used for this purpose. Once MySQL was properly installed and

configured for use, the first step was to create a table for the benign netflows. Figure 3-8

illustrates the SQL command for creating a table called “normflows” with the 40 features

equating to those previously selected and used in the Argus configuration file.

mysql> create table normflows

(time datetime, proto varchar(5),

saddr varchar(16), sport varchar(6),

daddr varchar(16), dport varchar(6),

dur decimal(12,6), sbytes int, dbytes int, stos int, dtos int,

sttl int, dttl int, spkts int, dpkts int, sappbytes int,

dappbytes int, sload decimal(12,6), dload decimal(12,6),

srate decimal(12,6), drate decimal(12,6), sloss int, dloss int,

sintpkt decimal(12,6), dintpkt decimal(12,6),

sjit decimal(12,6), djit decimal(12,6), state varchar(4),

stcpb bigint, dtcpb bigint, tcprtt decimal(12,6),

synack decimal(12,6), ackdat decimal(12,6), inode varchar(16),

offset int, flgs tinytext, tcpopt tinytext, dir tinytext,

rate decimal(12,6), ltime datetime,

id int not null auto_increment primary key);

Figure 3-8. Create Table for Netflow Features

 Figure 3-8 highlights the choices made regarding the format for storing each feature.

For example, times were stored in “datetime” format (YYYY-MM-DD HH:MM:SS) with

83

resolution to the second. Fixed position strings, such as flgs, tcpopt, and dir, were stored

in tinytext format to enable string functions such as field() to be used on them. IP

addresses were stored in “varchar” format which enabled retrieval as the common dot-

value string or as a numeric value using the inet_aton() function.

 The same procedure was used to create tables for the Zeus samples, one table named

“oldzeus” and one named “newzeus” for the 2010 and 2014 Zeus data respectively. The

table for the interaction log data was much simpler, consisting of only three features.

Figure 3-9 illustrates the command for creating the table “interlogs” for the interaction

log data. The time was again stored in “datetime” format with resolution to the second.

However, the event times were captured with resolution only to the minute.

mysql> create table interlogs (time datetime, event varchar(4),

ampl varchar(64), id int not null auto_increment primary key);

Figure 3-9. Create Tables for Interaction Log Entries

 Loading data into the database tables included a preprocessing step to select only

netflows of TCP connections. First, all of the netflow files were combined into aggregate

files for each month (April, May, June, and July) using the cat command. Then the

TCP entries were selected using the grep command. This resulted in the numbers of

lines seen in Table 3-7. The files of TCP netflows for each month were then combined

into a single file, again using the cat command, in preparation for loading into the

database table.

Table 3-7. Volume of Benign TCP Netflows

Input File # Total Lines Output File # TCP Lines

ra-all-04 793,891 all-tcp-apr 487,490

84

ra-all-05 799,754 all-tcp-may 461,306

ra-all-06 940,800 all-tcp-jun 570,442

ra-all-07 426,424 all-tcp-jul 240,457

Total 2,960,869 Total 1,759,695

 The command for loading the benign TCP netflows into the database is illustrated in

Figure 3-10. The same procedure was used to load the Zeus netflows and interaction log

entries into their respective database tables. This resulted in 151 TCP netflows of “old”

Zeus (2010 samples) and 269 TCP netflows of “new” Zeus (2014 samples).

mysql> load data local infile '/home/theo/work/all-tcp-flows'

into table normflows fields terminated by ',';

Figure 3-10. Load Netflow Data into MySQL Table

 At this point, creating integrated data files for use with the classifiers in the Weka

toolkit required exporting the desired data from the database tables, merging the

malicious data with the benign data, labeling the data as normal (norm) or Zeus, and

appending the ARFF (Attribute Relation File Format) header. Adding the interaction

feature to the integrated data files required an additional step that compared the netflow

times with the event log times. Figure 3-11 illustrates a MySQL command to select the

40 predetermined features from the table of benign netflows (normflows) for a specific

time period and export the results to a comma-separated-value (CSV) file.

85

mysql> select unix_timestamp(time), proto, inet_aton(saddr),

sport, inet_aton(daddr), dport, dur, sbytes, dbytes, stos, dtos,

sttl, dttl, spkts, dpkts, sappbytes, dappbytes, sload, dload,

srate, drate, sloss, dloss, sintpkt, dintpkt, sjit, djit, state,

stcpb, dtcpb, tcprtt, synack, ackdat, flgs, tcpopt, dir, rate

from normflows where time > "2013-04-02 05:00:00" and time <

"2013-04-02 07:00:00" into outfile '2hr.txt' fields terminated by

',' enclosed by '"' lines terminated by '\n';

Figure 3-11. Selecting a Data Sample from the Database with Unix Time Format

Note that the function unix_timestamp() was used to return the timestamp as a

numeric value, and the function inet_aton() was used to return the source and

destination IP addresses as numeric values. Removing spaces from the fixed field values

and appending the class value was accomplished with the following awk command:

awk '{print $1 $2 $3 $4 $5 $6 $7 ",norm"}' 2hr.txt > 2hr.csv.

This process of selecting from the database table, formatting, and appending the class

value was repeated for the Zeus flows. The appropriate Zeus table name, output

filename, and class label were substituted in the select and awk commands.

 The next step was to merge the resulting files of normal and Zeus netflows into a

single file and append the ARFF header for use with the classifiers in Weka. When the

time feature was to be considered by the classifiers, the Zeus netflows were inserted at

appropriate temporal points in the normal netflow file and time values adjusted

accordingly. When the times were not to be considered by the classifiers, the Zeus

netflows were simply appended to the end of the normal netflow file.

86

 For the companion data files with the interaction feature added, an additional

procedure was required. An awk script was used to compare netflow times from the

integrated the trace file with event times from the interaction log and append a positive

field-value (yy) to the netflow entry upon a successful match or a negative value (nn) for

those entries that did not match. The matching criteria consisted of numbers of seconds

before and after the time to be compared. Since the resolution of the timestamps for the

interaction log was only recorded to the nearest minute, those times were used in the awk

script as the basis. An example of the awk script is provided in Figure 3-12. The

command to run the script against a single file is as follows:

awk -f match30.awk infile > outfile

where “infile” is the file of integrated normal and Zeus netflows and “outfile” is that same

file with the interaction feature appended to each line based on the criteria in the script.

Name: match30.awk

Desc: awk script using first field of log file (timestamp)
as matching criteria for first field of trace file
Usage: awk -f match30.awk <file>
Comments: Expects time-to-second from unix_timestamp
Currently set to plus or minus 30 seconds
T.O.Cochran

BEGIN { while ("cat appLog1" | getline)

 tts[++i]=$1
 FS=","
}

{ printf $0

 for (i in tts)
 if($1 <= (tts[i] + 30) && $1 >= (tts[i] -30)) {
 print ",yy"

87

 next
 }
 print ",nn"
}

Figure 3-12. Script for Adding Interaction Feature

 The ARFF header defined the type of value for each attribute, numeric or nominal

(categorical). Figure 3-13 illustrates the content of the ARFF header. The possible

values for each nominal attribute were provided within braces and separated by commas

following the attribute name. For example, the nominal attribute “proto” had two

possible values, “tcp” and “udp.”

@relation 2hr
@attribute time numeric
@attribute proto {tcp,udp}
@attribute saddr numeric
@attribute sport numeric
@attribute daddr numeric
@attribute dport numeric
@attribute dur numeric
@attribute sbytes numeric
@attribute dbytes numeric
@attribute stos {0,16,32}
@attribute dtos {0,16,32,33,34,128}
@attribute sttl
{36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,5
7,64,80,81,84,86,108,109,110,111,112,113,116,117,121,128,233,234,
235,236,237,238,239,240,241,242,243,244,245}
@attribute dttl
{0,28,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49
,50,51,52,53,54,55,56,57,58,62,63,64,80,81,82,83,84,85,86,96,102,
103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,1
21,128,183,185,187,188,189,190,231,232,233,234,235,236,237,238,23
9,240,241,242,243,244,245,255}
@attribute spkts numeric
@attribute dpkts numeric

88

@attribute sappbytes numeric
@attribute dappbytes numeric
@attribute sload numeric
@attribute dload numeric
@attribute srate numeric
@attribute drate numeric
@attribute sloss
{0,1,2,3,4,5,6,7,8,10,12,14,15,16,17,18,21,23,26,29,35,36,38,41,4
4,46,88,171,327}
@attribute dloss
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24
,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,4
6,47,48,49,50,51,53,54,55,56,57,58,61,62,63,67,69,71,74,75,76,77,
79,80,81,83,87,90,94,95,102,103,124,141,144,146,152,155,157,176,1
88,226}
@attribute sintpkt numeric
@attribute dintpkt numeric
@attribute sjit numeric
@attribute djit numeric
@attribute state {ACC,CON,FIN,INT,RST,REQ,RSP}
@attribute stcpb numeric
@attribute dtcpb numeric
@attribute tcprtt numeric
@attribute synack numeric
@attribute ackdat numeric
@attribute flgs
{"",e,ed,ei,er,es,e&,erD,eS,eU,e*,edS,eD,eUs,erS,eTs,eg,e&S,esS,e
&D,eiS,edD,egS}
@attribute tcpopt {"",Ms,MsS,Mws,MwsS,MwsT,MwsST,T,S,ST}
@attribute dir {"",->,<-,<->,<?>,?>,<?}
@attribute rate numeric
@attribute class {norm,zeus}
@attribute interaction {yy,nn}
@data
// outfile records go here

Figure 3-13. ARFF Header

 The Weka tool kit includes a utility for validating the format of an ARFF data file

prior to use with classifiers and other utilities. The command line version of this utility is

as follows: java weka.core.Instances file.arff where “file.arff” is the data

89

file with ARFF header. In addition to identifying any formatting errors, this utility also

summarizes the attribute values within the data file. Figure 3-14 provides an example of

the output of this utility.

Relation Name: 2hr-i-all
Num Instances: 4328
Num Attributes: 39

 Name Type Nom Int Real Missing Unique Dist
 1 time Num 0% 100% 0% 0 / 0% 285 / 7% 745
 2 proto Nom 100% 0% 0% 0 / 0% 0 / 0% 1
 3 saddr Num 0% 99% 1% 0 / 0% 1 / 0% 13
 4 sport Num 0% 100% 0% 0 / 0% 235 / 5% 1205
 5 daddr Num 0% 88% 12% 0 / 0% 17 / 0% 284
 6 dport Num 0% 100% 0% 0 / 0% 18 / 0% 28
 7 dur Num 0% 19% 81% 0 / 0% 3392 / 78% 3446
 8 sbytes Num 0% 100% 0% 0 / 0% 491 / 11% 626
 9 dbytes Num 0% 100% 0% 0 / 0% 642 / 15% 741
 10 stos Nom 100% 0% 0% 0 / 0% 0 / 0% 2
 11 dtos Nom 100% 0% 0% 0 / 0% 0 / 0% 4
 12 sttl Nom 100% 0% 0% 0 / 0% 1 / 0% 9
 13 dttl Nom 100% 0% 0% 0 / 0% 0 / 0% 43
 14 spkts Num 0% 100% 0% 0 / 0% 22 / 1% 57
 15 dpkts Num 0% 100% 0% 0 / 0% 39 / 1% 75
 16 sappbytes Num 0% 100% 0% 0 / 0% 439 / 10% 564
 17 dappbytes Num 0% 100% 0% 0 / 0% 619 / 14% 702
 18 sload Num 0% 55% 45% 0 / 0% 1913 / 44% 1927
 19 dload Num 0% 74% 26% 0 / 0% 1116 / 26% 1118
 20 srate Num 0% 55% 45% 0 / 0% 1853 / 43% 1888
 21 drate Num 0% 74% 26% 0 / 0% 1124 / 26% 1126
 22 sloss Nom 100% 0% 0% 0 / 0% 0 / 0% 4
 23 dloss Nom 100% 0% 0% 0 / 0% 1 / 0% 4
 24 sintpkt Num 0% 43% 57% 0 / 0% 2412 / 56% 2447
 25 dintpkt Num 0% 67% 33% 0 / 0% 1432 / 33% 1438
 26 sjit Num 0% 77% 23% 0 / 0% 1009 / 23% 1012
 27 djit Num 0% 80% 20% 0 / 0% 883 / 20% 884
 28 state Nom 100% 0% 0% 0 / 0% 0 / 0% 4
 29 stcpb Num 0% 51% 49% 0 / 0% 1010 / 23% 1934
 30 dtcpb Num 0% 45% 55% 0 / 0% 1000 / 23% 1731
 31 tcprtt Num 0% 12% 88% 0 / 0% 254 / 6% 1034
 32 synack Num 0% 12% 88% 0 / 0% 252 / 6% 1018
 33 ackdat Num 0% 12% 88% 0 / 0% 129 / 3% 704
 34 flgs Nom 100% 0% 0% 0 / 0% 0 / 0% 9
 35 tcpopt Nom 100% 0% 0% 0 / 0% 0 / 0% 7
 36 dir Nom 100% 0% 0% 0 / 0% 1 / 0% 4
 37 rate Num 0% 19% 81% 0 / 0% 3325 / 77% 3398

90

 38 class Nom 100% 0% 0% 0 / 0% 0 / 0% 2
 39 interaction Nom 100% 0% 0% 0 / 0% 0 / 0% 2

Figure 3-14. Sample Results of Validating an ARFF Data File

Classifier Comparison Approach

 The approach to comparing classifier results was to use the Weka command line

interface with the data files of integrated normal and Zeus netflows described in the

previous section. The goal was to compare the performance of the classifiers in terms of

true and false positive rates across a range of conditions, first without the interaction

feature added, then with the interaction feature added. The results of each classification

attempt were sent to a file for subsequent visual inspection and comparative analysis.

The final entry in each file of results was a confusion matrix which enumerated the true

and false positives for each class. Figure 3-15 illustrates this confusion matrix.

=== Confusion Matrix ===

 a b <-- classified as
 17052 0 | a = norm
 2 1 | b = zeus

Figure 3-15. Confusion Matrix in Results File

 The command line interface of Weka made it easy to perform classification using

cross validation within a data set and classification using separate training and testing

data sets. The former required the switch –t followed by the name of the single data set,

and the latter required two switches, –t followed by the name of the training data set and

–T followed by the name of the testing data set. The switch –c followed by a number

identified the position of the class attribute in the ARFF file. Since the classifiers default

to using the last attribute, this parameter was required for files with the interaction feature

91

added after the class attribute. Figure 3-16 illustrates two commands, the first for

classification of a single data file named “all.arff” using a Naïve Bayes classifier and ten-

fold stratified cross validation, and the second for classification of that same file using a

Random Forest classifier with ten-fold stratified cross validation. Figure 3-17 illustrates

two commands, the first for classification using a Naïve Bayes classifier trained with the

contents of “trn.arff” and tested with the contents of “tst.arff,” and the second for

classification using a Random Forest classifier trained with the contents of “trn.arff” and

tested with the contents of “tst.arff.”

prompt$ java -Xmx2G weka.classifiers.bayes.NaiveBayes -t all.arff

–c 38 > out1a

prompt$ java -Xmx2G weka.classifiers.trees.RandomForest -t

all.arff –c 38 > out1b

Figure 3-16. Commands to Compare Classifier Results – Cross Validation

prompt$ java -Xmx2G weka.classifiers.bayes.NaiveBayes -t trn.arff

–c 38 -T tst.arff > out1a

prompt$ java -Xmx2G weka.classifiers.trees.RandomForest -t

trn.arff –c 38 –T tst.arff > out1b

Figure 3-17. Commands to Compare Classifier Results – Separate Training/Testing

 Another important element of the approach to comparing the results of the different

classifiers was the ability to selectively remove attributes from consideration. The Weka

tool kit provided another utility for this purpose. This utility took an input ARFF file,

removed attributes identified by their ordered position, and produced an output ARFF

92

file. The resulting ARFF file of fewer features was used in the same manner as the

original. Figure 3-18 shows an example of this utility being invoked from the command

line and removing the first attribute with the –R switch followed by the number 1.

prompt$ java weka.filters.unsupervised.attribute.Remove -R

1 -i test1both.arff -o test1nodate.arff

Figure 3-18. Command to Remove an Attribute

Summary

 The research approach presented in this chapter described all the steps needed in order

to prepare relevant data for classification and then to actually perform the classification.

Preparing relevant data included steps for generating and acquiring data from multiple

sources, steps for integrating data, and steps for constructing and selecting features from

the data. The content of the data was described as were changes to the content over time.

The use of Argus, MySQL, and Weka to support data preparation was discussed, as was

the use of Weka to perform classification.

93

Chapter 4

Results

Data Analysis

 The detailed analysis presented in Appendix A revealed new knowledge about the

network behavior of contemporary variants of the Zeus botnet from samples captured in

the wild during March and April of 2014. This analysis also served to determine which

of the network communications contained in the samples were most appropriate for the

training and testing of detection techniques. A total of fifteen sample network trace files

were examined. Seven of the samples, all those that employed the domain generation

algorithm (DGA), were found to contain no HTTP POST requests and therefore deferred

for publication elsewhere. The infected clients in those samples did not send any content

to the malicious servers, detection of which was the focus of this research. Eight of the

samples were found to contain POST requests with encrypted content, consistent with the

communications behavior reported for Zeus by other researchers (Al-Bataineh & White,

2012; Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, Debbabi, & Wang, 2010;

Riccardi, Di Pietro, Palanques, & Vila, 2013). The HTTP requests and responses in each

of these samples were thoroughly analyzed at the inter-packet level to gain deeper insight

into their observable network behavior and to determine which corresponding netflows

would be most appropriate for training and testing the detection techniques in this

research.

94

 Discovering Zeus servers that were not previously reported was an expected outcome

of this analysis given that these were new sample traces provided by the operators of

Sandnet and that criminal operators of Zeus servers dynamically change hostnames and

IP addresses to avoid detection. After a thorough search of the Internet for information

about the Zeus botnet, the ZeuS Tracker web site (https://zeustracker.abuse.ch/) was

found to be the most comprehensive and authoritative reference for previously observed

Zeus servers and therefore used in this research. Table 4-1 lists the servers determined to

be associated with Zeus network activity in these samples and highlights which Zeus

servers were previously identified. Six of the IP addresses and four of the domain names

were new discoveries.

Table 4-1. Malicious Servers in Selected 2014 Zeus Samples

Sample
File

Server IP Address Previously
Known?

Server Domain Name Previously
Known?

32c 173.255.227.44 No tandembikesoftware.com No
32c 92.51.171.104 No moneytrax.de No
b8c 37.0.123.150 No n/a n/a
2d7 199.201.122.227 Yes ad-amirsarvi.ir Yes
9ca 200.98.246.214 Yes saudeodontos.com.br Yes
9ca 85.158.181.11 No www.two-of-us.at No
054 92.63.98.3 No n/a n/a
3f9 184.22.237.213 Yes crayolabank.ru Yes
3f9 184.22.237.213 Yes bingbangtheory.ru Yes
3b7 188.226.212.147 No delapotalcopa.pw No
058 95.128.157.163 Yes www.decoagua.com Yes

 Discovering new resource names and filenames was also an expected outcome of this

analysis, since these are under the criminal operator’s control and would seem obvious

items to change in order to elude detection techniques that rely on fixed strings.

Discovering variations in the request intervals was also expected since this parameter is

https://zeustracker.abuse.ch/

95

also under the operator’s control and is enabled by the Zeus crimeware toolkit (Al-

Bataineh & White, 2012; Riccardi, Di Pietro, Palanques, & Vila, 2013). An unexpected

discovery was the use of the HTTP POST method by infected clients to request file

updates. None of the previous research teams (Al-Bataineh & White, 2012; Alserhani,

Akhlaq, Awan, & Cullen, 2010; Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef,

Debbabi, & Wang, 2010; Riccardi, Di Pietro, Palanques, & Vila, 2013) reported this

technique in their findings. The use of the POST method with an encrypted payload to

request configuration files was observed in a majority of these 2014 samples as

summarized in Table 4-2.

Table 4-2. Summary of Selected 2014 Zeus Samples

 9ca 2d7 3f9
Config File Request Server 200.98.246.214 199.201.122.227 184.22.237.213
Config File Request Method POST POST POST
Config File Request Resource file.php file.php file.php
Config File Request Interval 4 minutes 4 minutes 4 minutes
Config File Response Filename config.dll

cit_video_module
cit_ffcookie_module

config.dll
cit_video_module
cit_ffcookie_module

config.dll

Send Info Request Server 200.98.246.214 199.201.122.227 184.22.237.213
Send Info Request Method POST POST POST
Send Info Request Resource gate.php gate.php gate.php
Send Info Request Interval 3 minutes 3 minutes 3 minutes
Other File Request Server 85.158.181.11 Not observed Not observed
Other File Request Method GET Not observed Not observed
Other File Request Resource file.exe Not observed Not observed

 058 b8c 3b7
Config File Request Server 95.128.157.163 37.0.123.150 188.226.212.147
Config File Request Method POST POST Not observed
Config File Request Resource index.php o.bin Not observed
Config File Request Interval Not observed 2 minutes Not observed
Config File Response Filename deco.bin - Not observed
Send Info Request Server 95.128.157.163 37.0.123.150 188.226.212.147
Send Info Request Method POST POST POST
Send Info Request Resource gate.php t.php post2host.php
Send Info Request Interval Not observed 2 minutes Not observed
Other File Request Server Not observed Not observed 188.226.212.147

96

Other File Request Method Not observed Not observed GET
Other File Request Resource Not observed Not observed res.exe

 054 32c Literature
Config File Request Server 92.63.98.3 92.51.171.104
Config File Request Method GET GET GET
Config File Request Resource config.bin

mod1.bin
mod2.bin
mod3.bin

file.php config.bin

Config File Request Interval 4 minutes Not observed
Config File Response Filename - Not observed
Send Info Request Server 92.63.98.3 92.51.171.104

173.255.227.44

Send Info Request Method POST POST POST
Send Info Request Resource cde.php file.php gate.php
Send Info Request Interval 3 minutes Not observed 2 minutes
Other File Request Server Not observed Not observed
Other File Request Method Not observed Not observed
Other File Request Resource Not observed Not observed

Only one of the eight sample files, file 054, included successful requests by the infected

client for configuration file updates using the GET method as reported in the literature.

File 32c, included requests by the infected client using the GET method which appeared

to be for configuration file updates, but none of the requests resulted in a successful

response. File 3b7 did not include a request for configuration file updates using either

method but did include a request using the GET method for a supplemental file. This

followed an apparent command from the server in response to the previous request using

the POST method. This use of the GET method was also observed in file 9ca.

 The use of the POST method with encrypted payload to request configuration file

updates is significant for multiple reasons. It represents a more sophisticated technique

than the use of GET with no payload because it allows additional information to be sent

along with the request. This capability could be leveraged to reduce the frequency of

network connections and reduce the malware’s overall footprint, for example. This new

97

technique also alters the reported, and therefore expected, network behavior of a host

infected with Zeus that some intrusion detection techniques may depend on.

 Each of the eight sample files analyzed here were found to include TCP connections

with Zeus HTTP requests and responses that were suitable for training and testing

detection methods. Only two of the files were missing primary elements of the Zeus

communications pattern described as requesting and receiving updated configuration files

and sending status updates and stolen data (Al-Bataineh & White, 2012; Alserhani,

Akhlaq, Awan, & Cullen, 2010; Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef,

Debbabi, & Wang, 2010; Kirk, 2010; Riccardi, Di Pietro, Palanques, & Vila, 2013). In

aggregate, the files presented a reasonably complete and diverse set of samples for this

research. Some previous researchers reported using a larger number of Zeus samples, but

none reported using Zeus datasets with as much variety. Mohaisen and Alrawi (2013)

reported using a dataset of 1,980 Zeus samples but did not elaborate on the relative

homogeneity of the data. Al-Bataineh and White (2012) reported that 239 examples in

their dataset established connections with C&C servers. They did not comment on the

number of Zeus variants, but their findings suggested a homogeneous set. Because the

focus of their research was different, Alserhani, Akhlaq, Awan, and Cullen (2010),

Binsalleeh et al. (2010) and Riccardi et al. (2013) used the Zeus crimeware toolkit to

create a single variant of Zeus for their respective network analyses. The sample files

likely here represent at least five variants of Zeus, as depicted in Table 4-2, providing

both a contemporary and a diverse set of netflows for the experimentation.

98

Experiments

 Experimentation consisted of comparing the performance of two classifiers in terms of

true and false positives across a range of controlled conditions, first without the user

interaction feature added, then with this feature added. The other controlled variables

included the number of benign instances (netflows), the number of Zeus instances (also

netflows), the number of features, the type of features (numeric and nominal), the type of

Zeus instance, the size of the training and testing subsets, and the ratio of malicious

instances in the training and testing subsets. This comparison required an environment

where the malware activities were known, therefore known bot malware activity was

integrated with benign network trace data. Observable parameters included a subset of

those features of a TCP connection that the Argus software creates to describe a netflow.

Benign network traffic was generated on an isolated test network. Malicious network

traffic was injected from samples of actual Zeus bot activity captured in the wild.

 Experimentation with the netflow data was divided into separate rounds for each

variation of instances or features. The first phase of each round did not include the

interaction feature, the second phase did. A single data set was used for both training and

testing in the odd numbered rounds. From that single data set, ten folds (internal subsets)

were used for cross validation. Separate data sets were used for training and testing in

the even numbered rounds. When separate training and testing sets were used, their roles

were reversed and the process repeated in order to reveal sensitivity to any particular

training data. Mohaisen and Alrawi (2013) employed this technique in their assessment

of five classifiers and found that training set selection significantly affected the

99

performance of their Decision Trees classifier (similar to a Random Forest). Regarding

the type of features, Haddadi, Runkel, Zincir-Heywood, and Heywood (2014) found that

encoding certain flag features from netflows had a significant impact on classifier

performance against Torpig and Zeus.

Establish the performance of the classifiers across data sets of different sizes using

only a small, homogeneous set of malicious samples for training and testing

 The initial data sets consisted of two hours, 24 hours, and two weeks’ worth of benign

network trace data, respectively. The trace data was converted to netflows using the

Argus software, as previously described. Similarly, the samples of actual Zeus network

traffic were also converted to netflows and then selectively added to the three data sets.

The two-hour data set consisted of 4,313 benign flows and 15 Zeus flows, the 24-hour

data set consisted of 7,800 benign flows and 15 Zeus flows, and the two-week data set

consisted of 280,423 benign flows with 15 Zeus flows. The Zeus netflows were drawn

from multiple trace files and partitioned into subsets of eight and seven for rounds with

separate training and testing, as depicted in Table 4-3. These netflows represent (new)

2014 Zeus examples of data being sent from the infected host to a remote server.

Table 4-3. Zeus Samples Used in First Rounds of Experimentation

daddr inet_aton(daddr) sport sbytes
199.201.122.227 3351870179 1033 4123
199.201.122.227 3351870179 1033 120
199.201.122.227 3351870179 1036 894
199.201.122.227 3351870179 1036 120
184.22.237.213 3088510421 1032 968
184.22.237.213 3088510421 1032 846
184.22.237.213 3088510421 1032 698
184.22.237.213 3088510421 1032 60
200.98.246.214 3361928918 1032 3353

100

200.98.246.214 3361928918 1032 585
200.98.246.214 3361928918 1032 60
200.98.246.214 3361928918 1035 1712
200.98.246.214 3361928918 1035 60
200.98.246.214 3361928918 1040 8788
200.98.246.214 3361928918 1040 60

 For this set of experiments, the time feature was removed so the sequencing of the

Zeus flows was not relevant. In total, six features were removed from the base set of 38

features using Weka’s Remove command. Those six features, numbering 1, 2, 3, 4, 29,

and 30 correspond to time, proto, saddr, sport, stcpb, and dtcpb, respectively. Time was

removed in order to allow processing by the Naïve Bayes classifier. Protocol was

removed because it had only the single value TCP. Source Port and Source Address were

removed because they were not relevant and because arbitrary changes would have to be

made to the Zeus samples to synchronize the numbering schemes properly. The Source

and Destination TCP Base numbers were removed for the same reason. They were

produced on a different host than the benign traffic. Preliminary experiments quickly

revealed that the saddr, sport, stcpb, and dtcpb features artificially improved the

performance of the Naïve Bayes classifier because the differences in values from the

different source networks, home for benign and honeynet for Zeus, were statistically

significant. Celik, Raghuram, Kesidis, and Miller (2011) reported a similar condition for

timing-based features, namely round-trip time (RTT), when ‘salting’ benign network

traces with malicious samples obtained from a different network. In Round 7 of this

work, RTT is among the features removed for comparison.

Table 4-4. Round 1-1 Results

No interaction feature; 10-fold cross-validation

101

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2hr NB 4313 15 15 1 505 .117

2hr RF 4313 15 14 .933 0 0

24hr NB 7800 15 14 .933 1480 .190

24hr RF 7800 15 11 .733 0 0

2wk NB 280423 15 14 .933 50604 .180

2wk RF 280423 15 9 .600 0 0

 Results using the two hour data set, the first two rows of Table 4-4, revealed what

would become a clear trend: the Naïve Bayes classifier achieves a higher true positive

rate at the expense of false positives, whereas the Random Forest classifier achieves a

lower false positive rate at the expense of true positives. The Naïve Bayes classifier

detected all 15 of the Zeus flows but with 505 false positives for a false positive rate of

12%. The Random Forest classifier detected 14 of the 15 Zeus flows but with no false

positives. Results using the 24 hour data set show a decrease in the true positive rate and

a slight increase in the false positive rate of the Naïve Bayes classifier which correctly

classified 14 of the 15 Zeus netflows, but with 1,480 false positives. Results using the 24

hour data set show a decrease in the true positive rate of the Random Forest Classifier

which correctly classified 11 of the 15 Zeus netflows, but with no false positives. Results

using the two week data set revealed a similar performance decline for the two classifiers

over the two hour data set, and for the Random Forest classifier over the 24 hour data set.

The performance of the Naïve Bayes classifier was nearly equivalent across the 24 hour

and two week data sets. The Naïve Bayes classifier again correctly classified 14 of the

15 Zeus netflows, so its true positive rate remained the same as with the 24 hour data set,

and with 50,604 false positives for a false positive rate of 18% compared with 19% for

102

the 24 hour data set and 12% for the two hour data set. The Random Forest classifier

correctly classified only nine of the 15 Zeus netflows, but again with no false positives.

In summary, the performance of both classifiers was best with the smallest data set and

declined with the larger data sets when using 10-fold stratified cross validation within

each data set. The true positive rate of the Naïve Bayes classifier was consistently better

than the true positive rate of the Random Forest classifier, and the false positive rate of

the Random Forest classifier was consistently better than the false positive rate of the

Naïve Bayes classifier across these three data sets.

Compare the results when a new interaction feature is added.

 For the next set of experiments, the same three data sets were used with the same

feature sets. However, a new “interaction” feature was added. The interaction feature had

two possible values, yes (yy) or no (nn), which was assigned to each benign netflow

based on its proximity in time to human interaction with the host. For the two-hour, 24-

hour, and two-week data sets here, the proximity in time to human interaction ranged

from 45 seconds before to 75 seconds after a corresponding event in the interaction log.

The time range was necessary to accommodate the difference in time resolution between

the times assigned to the netflows using Argus and the timestamps on the interaction log

entries using KidLogger. This particular time range was determined through preliminary

experiments and is described in more detail later in this chapter. All of the Zeus netflows

were assigned a value of no (nn) for the interaction feature. These netflows represent the

bot autonomously sending information to the controller after infection which was

independent of human interaction. The objective was to determine whether this feature

made a difference in the performance of the classifiers.

103

Table 4-5. Round 1-2 Results

Added interaction feature; 10-fold cross-validation

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2hr NB 4313 15 15 1 454 .105

2hr RF 4313 15 13 .867 0 0

24hr NB 7800 15 14 .933 1435 .184

24hr RF 7800 15 11 .733 0 0

2wk NB 280423 15 14 .933 50348 .180

2wk RF 280423 15 10 .667 0 0

 Results using the two hour data set with the interaction feature added, the first two

rows of Table 4-5, revealed that the true positive rate of the Naïve Bayes classifier

remained unchanged at 15 of 15 but the number of false positives decreased from 505 of

4,313 to 454 of 4,313. The true positive rate of the Random Forest classifier declined

slightly, detecting 13 of 15 Zeus netflows compared with 14 of 15 without the interaction

feature. The Random Forest classifier produced no false positives in either case. Results

using the 24-hour data set revealed a similar improvement to the false positive rate of the

Naïve Bayes classifier, which produced 1435 of 7800 possible false positives (18%)

compared with 1480 (19%) previously. Its true positive rate remained the same at 14 of

15. The true positive rate of the Random Forest classifier also remained the same at 11 of

15 with the 24-hour data set, as did its zero false positive rate. Results from the larger,

two-week data set also showed a decrease in the number of false positives produced by

the Naïve Bayes classifier, 50,348 comparted with 50,604 previously, while the number

of true positives remained constant at 14 of 15. The true positive rate of the Random

Forest classifier, however, improved with this data set. It detected 10 of 15 Zeus

104

netflows compared with nine of 15 without the interaction feature while maintaining a

zero false positive rate. These results indicate that the introduction of the interaction

feature made a measurable improvement to the performance of the Naïve Bayes classifier

across all three data sets in terms of false positives. The introduction of the interaction

feature made a measurable improvement to the performance of the Random Forest

classifier in terms of true positives in only the largest of the three data sets. In the

smallest data set, the number of true positives decreased.

 For the next comparisons, each of the three data sets was divided into separate training

and testing subsets. The first 80% of the flows were used to form the training set and the

remaining 20% of the flows were used to form the testing set. The Zeus samples were

split evenly across the training and testing subsets, keeping flows to the same destination

address (daddr) together as depicted by the shading in Table 4-3. After the classifiers

were trained and tested using this partitioning of the data set, the training and testing roles

were reversed and the classifiers were then trained with the smaller subset (20%) and

tested with the larger (80%). The results are listed in Table 4-6.

Table 4-6. Round 2-1 Results

No Interaction Feature; Separate Training/Testing Subsets

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2hr train/test NB 863 7 4 .571 2 .002

2hr train/test RF 863 7 1 .167 0 0

2hr test/train NB 3450 8 6 .750 246 .071

2hr test/train RF 3450 8 0 0 0 0

24hr train/test NB 1560 7 5 .714 106 .068

24hr train/test RF 1560 7 1 .167 0 0

24hr test/train NB 6240 8 7 .875 360 .058

105

24hr test/train RF 6240 8 0 0 0 0

2wk train/test NB 56085 7 5 .714 1291 .023

2wk train/test RF 56085 7 0 0 0 0

2wk test/train NB 224338 8 8 1 12178 .054

2wk test/train RF 224338 8 0 0 0 0

 Results using the two hour data set partitioned into separate training and test subsets

were significantly less accurate than the results using stratified cross validation across 10

folds of the same data set. The results of this round were also quite different when the

training and testing roles were reversed. In the first run of this phase, shown as the first

two rows for each data set in Table n., the larger subset with eight Zeus netflows was

used to train the classifiers and the smaller subset with seven Zeus netflows was used to

test them. The Naïve Bayes classifier detected four of the seven the Zeus netflows with

two false positives. The Random Forest classifier detected one of the seven with no false

positives. In the second run of this phase, the smaller subset with seven Zeus netflows

was used to train the classifiers and the larger subset with eight Zeus netflows was used

to test them. This time the Naïve Bayes classifier detected six of the eight Zeus netflows

but with more false positives, 246 compared with 2 previously. The Random Forest

classifier detected none of the eight Zeus netflows but again with no false positives.

 Results using the 24 hour data set partitioned into separate training and test subsets

also revealed significant differences from the cross-validation results and when the

training and testing roles were reversed. In the first run, the larger subset with eight Zeus

netflows was used to train the classifiers and the smaller subset with seven Zeus netflows

was used to test them. The Naïve Bayes classifier detected five of the seven Zeus

netflows with 106 false positives. The Random Forest classifier detected only one of

106

seven, but with no false positives. In the second run, the smaller subset with seven Zeus

netflows was used to train the classifiers and the larger subset with eight Zeus netflows

was used to test them. The Naïve Bayes classifier detected seven of eight Zeus netflows

but with more false positives than before, 360 compared with 106 previously. The

Random Forest classifier did not detect any of the eight Zeus netflows but generated no

false positives.

 Results using the two-week data set partitioned into separate training and test subsets

again revealed differences from the cross validation results and when the training and

testing roles were reversed. In the first run, the larger subset with eight Zeus netflows

was used to train the classifiers and the smaller subset with seven Zeus netflows was used

to test them. The Naïve Bayes classifier detected five of the seven Zeus netflows; the

Random Forest classifier detected none. The Naïve Bayes classifier generated 1,291

false positives; the Random Forest classifier generated none. In the second run, the

smaller subset with seven Zeus netflows was used to train the classifiers and the larger

subset with eight Zeus netflows was used to test them. The Naïve Bayes classifier

detected all eight of the Zeus netflows, but with 12,178 false positives. The Random

Forest classifier detected none, but again with no false positives.

 In summary, the results of both classifiers were influenced by which subset was used

for training and which was used for testing. The false positive rate of the Random Forest

classifier was zero for each data set, regardless of whether the larger or smaller subset

was used for training. This was better than the false positive rate of the Naïve Bayes

classifier in every case. The true positive rate of the Naïve Bayes classifier was better

than the true positive rate of the Random Forest classifier in every case. The

107

performance of both classifiers was better when using 10-fold cross-validation across the

single data sets than when using separate training and testing subsets. The detection rate

of the Random Forest classifier decreased slightly with the larger data sets whereas the

detection rate of the Naïve Bayes classifier improved slightly.

 For the next phase, the three data sets were again partitioned into separate training and

testing subsets, this time with the interaction feature added. The cycle of first training

with the larger of the subsets and testing with the smaller, followed by then training with

the smaller subset and testing with the larger was repeated. The results listed in Table 4-

7 revealed 10 cases of improved performance and six cases of worsened performance.

The number of true positives and true positive rates for both classifiers increased using

the two-hour data set with added interaction feature when trained with the larger subset

and tested with the smaller. The number of false positives and false positive rate

increased for the Naïve Bayes classifier when the testing and training roles were reversed

for the subsets of the two-hour data set. Results using the 24-hour data set divided into

training and testing subsets with the interaction feature added revealed a decrease in the

number of false positives and false positive rate for the Naïve Bayes classifier and a

decrease in the number of true positives and true positive rate for the Random Forest

classifier. When the training and testing roles were reversed, the Naïve Bayes classifier

achieved more true positives and a higher true positive rate but with a corresponding

increase in false positives and false positive rate. Using the two-week data set partitioned

into training and testing subsets with the interaction feature added, the number of false

positives produced by the Naïve Bayes classifier decreased in both training and testing

108

subset combinations. The performance of the Random Forest classifier did not change; it

did not detect any of the Zeus instances and did not produce any false positives.

Table 4-7. Round 2-2 Results

Added Interaction Feature; Separate Training/Testing Subsets

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2hr train/test NB 863 7 5 .714 2 .002

2hr train/test RF 863 7 5 .714 0 0

2hr test/train NB 3450 8 6 .750 264 .077

2hr test/train RF 3450 8 0 0 0 0

24hr train/test NB 1560 7 5 .714 101 .065

24hr train/test RF 1560 7 0 0 0 0

24hr test/train NB 6240 8 8 1 371 .059

24hr test/train RF 6240 8 0 0 0 0

2wk train/test NB 56085 7 5 .714 1279 .023

2wk train/test RF 56085 7 0 0 0 0

2wk test/train NB 224338 8 8 1 12137 .054

2wk test/train RF 224338 8 0 0 0 0

 In general, the performance of the Naïve Bayes classifier was better than expected for

such a small number of training examples, though the difference in true positives when

the training and testing subsets were reversed was noticeable. The Random Forest

classifier had trouble detecting any of the Zeus netflows in the three data sets when

trained with the smaller subset and tested with the larger. In order to determine how

sensitive the classifier performance was to the chosen feature set, different features were

removed for the next set of experiments.

109

Compare the performance of the classifiers with difference feature sets.

 For this set of experiments, only the two-week data set was used. It was split in the

same proportion as before for the separate training and testing subsets. The Destination

Address (daddr) feature was removed from the previous feature set to form the first

reduced feature subset. The two-week data set contains 2886 distinct values for

Destination Address (daddr); however, the 15 Zeus netflows have only three. This

feature removal resulted in slightly different results from both classifiers using the 10-

fold cross-validation approach (Table 4-8). The Naïve Bayes classifier again detected 14

of 15 Zeus netflows, but with a higher number of false positives, 54,785 compared with

50,604 previously. The detection rate of the Random Forest classifier declined slightly. It

detected seven of 15 Zeus netflows compared with nine of 15 previously.

Table 4-8. Round 3-1 Results

No Interaction Feature; cross-validation; feature (daddr) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk NB 280423 15 14 .933 54785 .195

2wk RF 280423 15 7 .467 0 0

 When the interaction feature was added in for the next run (Table 4-9), the true

positive rate of the Naïve Bayes classifier remained constant, 14 of 15 Zeus netflows or

93%, but the number of false positives decreased slightly from 54,785 to 54,597. The

true positive rate of the Random Forest classifier improved from 47% to 60%, and it did

so without generating any false positives.

110

Table 4-9. Round 3-2 Results

Added Interaction Feature; cross-validation; feature (daddr) Removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk NB 280423 15 14 .933 54597 .195

2wk RF 280423 15 9 .600 0 0

 Results from this feature subset when the two-week data set was split into separate

subsets for training and testing revealed changes in the performance of the Naïve Bayes

classifier but not the Random Forest classifier (Table 4-10). The Naïve Bayes classifier

detected six of seven Zeus netflows compared with five of seven previously. However, it

did so with considerably more false positives, 5,489 compared with 1,291 previously.

When the training and testing roles were reversed, only the number of false positives

from the Naïve Bayes classifier changed, 12,685 compared with 12,178 previously.

Table 4-10. Round 4-1 Results

No interaction feature; separate training/testing subsets; feature (daddr) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 7 6 .857 5489 .098

2wk train/test RF 56085 7 0 0 0 0

2wk test/train NB 224338 8 8 1 12685 .057

2wk test/train RF 224338 8 0 0 0 0

 Results from this feature subset and training split when the interaction feature was

added revealed a similar change in the performance of the Naïve Bayes classifier over the

original feature set, better true positive rate and worse false positive rate (Table 4-11).

The Naïve Bayes classifier detected six of seven Zeus netflows compared with five of

111

seven previously, and with 5,463 false positives compared with 1,279 previously. When

compared with the results using this same feature set with without the interaction feature

added, the true positive rates remained the same but the number of false positives and

false positive rates decreased for the Naïve Bayes classifier for both training and testing

combinations.

Table 4-11. Round 4-2 Results

Added interaction feature; separate training/testing subsets; feature (daddr)
removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 7 6 .857 5463 .097

2wk train/test RF 56085 7 0 0 0 0

2wk test/train NB 224338 8 8 1 12652 .056

2wk test/train RF 224338 8 0 0 0 0

 For the next feature subset, the Source Type of Service (stos) and Destination Type of

Service (dtos) features were removed from the original feature set. The two-week data

set contains only three distinct values for stos and only five for destination dtos. The 15

Zeus netflows contain only one value for stos and two values for dtos, likely making

these more powerful features, at least for the Random Forest classifier. This feature

subset produced the results in Table 4-12. The Naïve Bayes classifier again detected 14

of 15 Zeus netflows, but this came at the cost of more false positives, 53,683 compared

with 50,604 in Round 1-1. The Random Forest classifier detected fewer Zeus netflows,

four of 15 compared with nine of 15 in Round 1-1, but maintained a zero false positive

rate.

112

Table 4-12. Round 5-1 Results

No Interaction Feature; cross-validation; features (stos & dtos) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk NB 280423 15 14 .933 53683 .191

2wk RF 280423 15 4 .267 0 0

 Adding the interaction feature to this feature subset produced the results shown in

Table 4-13 below. The Naïve Bayes classifier again detected 14 of the 15 Zeus netflows

but with a slightly higher false positive rate than with the original feature set and slightly

lower false positive rate than without the interaction feature. The Random Forest

classifier detected fewer Zeus netflows, three of 15 compared with 10 of 15 using the full

feature set, but maintained a zero false positive rate. Removal of these nominal valued

features impacted the Random Forest classifier more than the Naïve Bayes classifier, and

the impact was negative compared with the full feature set. Even adding the interaction

feature did not improve the true positive rate of the Random Forest classifier in this case.

Table 4-13. Round 5-2 Results

Added interaction feature; cross-validation; features (stos & dtos) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk NB 280423 15 14 .933 53495 .191

2wk RF 280423 15 3 .200 0 0

 Splitting this reduced feature data set into subsets for training and testing produced the

results in Table 4-14 below. Only the results of the Naïve Bayes classifier differed from

the results with the full feature set, and only by a small number of false positives, 1,375

113

compared with 1,291 in Round 1-1. When the training and testing roles were reversed,

the Naïve Bayes classifier again detected all eight Zeus netflows but with a higher

number of false positives, 13,357 compared with 12,178 previously. Again the Random

Forest classifier failed to detect any of the Zeus netflows and produced no false positives.

Table 4-14. Round 6-1 Results

No interaction feature; separate training/testing subsets; features (stos & dtos)
removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 7 5 .714 1375 .025

2wk train/test RF 56085 7 0 0 0 0

2wk test/train NB 224338 8 8 1 13357 .060

2wk test/train RF 224338 8 0 0 0 0

 Adding the interaction feature to this feature subset and splitting the data set into

separate training and testing subsets produced the results in Table 4-15 below. Again

only the performance of the Naïve Bayes classifier changed from Round 2-2; the Random

Forest classifier failed to detect any of the Zeus netflows. The Naïve Bayes classifier

produced more false positives than with the full feature set in both training and testing

combinations, but fewer false positives in both combinations than using this reduced

feature set without the interaction feature.

Table 4-15. Round 6-2 Results

Added interaction feature; separate training/testing subsets; features (stos & dtos)
removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 7 5 .714 1372 .024

114

2wk train/test RF 56085 7 0 0 0 0

2wk test/train NB 224338 8 8 1 13333 .059

2wk test/train RF 224338 8 0 0 0 0

 Finally, the (tcprtt, synack, ackdat) features were removed. Results are listed in Table

4-16. This reduced feature set resulted in performance declines for both classifiers. The

Naïve Bayes classifier achieved the same number of detections, 14 of 15, as in Round 1-

1, but with a much larger number of false positives, 69,342 compared with 50,604. The

Random Forest classifier detected fewer Zeus netflows, seven of 15 compared with nine

of 15 in Round 1-1. The Random Forest classifier again produced no false positives.

Table 4-16. Round 7-1 Results

No interaction feature; cross-validation; features (tcprtt, synack, ackdat) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk NB 280423 15 14 .933 69342 .247

2wk RF 280423 15 7 .467 0 0

 When the interaction feature was added to this reduced feature set, the classifiers

produced the results in Table 4-17 below. The Naïve Bayes classifier again detected 14

of 15 Zeus netflows, same as with the full feature set and as with the reduced set without

the interaction features. Again it produced significantly more false positives than with

the full feature set, but fewer than with the reduced feature set without the interaction

feature. The Random Forest classifier detected 10 of 15 Zeus netflows, an improvement

over the results with the reduced feature set without the interaction features.

115

Table 4-17. Round 7-2 Results

Added interaction feature; cross-validation; features (tcprtt, synack, ackdat)
removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk NB 280423 15 14 .933 68929 .246

2wk RF 280423 15 10 .667 0 0

 Next, the data set was split into separate training and testing subsets (Table 4-18).

Again the true positive rate was the same and the false positive rate was higher for the

Naïve Bayes classifier in both training and testing combinations. The Random Forest

classifier again detected none of the Zeus netflows in the first combination. However,

when the training roles were reversed the Random Forest classifier did detect one of the

eight Zeus netflows compared with none using the full feature set in Round 2-1.

Table 4-18. Round 8-1 Results

No interaction feature; separate training/testing subsets; features (tcprtt, synack,
ackdat) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 7 5 .714 2342 .042

2wk train/test RF 56085 7 0 0 0 0

2wk test/train NB 224338 8 8 1 61834 .276

2wk test/train RF 224338 8 1 .125 0 0

 Adding the interaction feature to this feature subset and splitting the data set into

separate training and testing subsets produced the results in Table 4-19 below. Again the

Naïve Bayes classifier detected five of the seven Zeus netflows, but with a higher number

116

of false positives than with the full feature set in Round 2-2, and a slightly lower number

of false positives than without the interaction feature in Round 8-1. The Random Forest

classifier failed to detect any of the Zeus netflows, the same as with the full feature set in

Round 2-2 and with the reduced feature set without the interaction feature in Round 8-1.

When the training and testing roles were reversed, the results were similar for the Naïve

Bayes classifier, same detection rate with fewer false positives. The Random Forest

classifier failed to detect any of the Zeus netflows, which was the same as with the full

feature set in Round 2-2, but one less than with the reduced feature set without the

interaction feature in Round 8-1.

Table 4-19. Round 8-2 Results

Added interaction feature; separate training/testing subsets; features (tcprtt,
synack, ackdat) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 7 5 .714 2338 .042

2wk train/test RF 56085 7 0 0 0 0

2wk test/train NB 224338 8 8 1 61565 .274

2wk test/train RF 224338 8 0 0 0 0

117

Compare the performance of the classifiers with a larger set of malicious samples

for training and testing.

 For the next set of experiments, the size of the malicious data sample was increased

from 15 instances to 30 instances, as depicted in Table 4-20. The subsets included

netflows from multiple Destination Addresses (daddr), whereas only one of the subsets

did for the previous rounds (Table 4-3).

Table 4-20. Zeus Samples Used in Second Rounds of Experimentation

daddr inet_aton(daddr) sport sbytes
200.98.246.214 3361928918 1032 3353
200.98.246.214 3361928918 1032 585
200.98.246.214 3361928918 1032 60
200.98.246.214 3361928918 1035 1712
200.98.246.214 3361928918 1035 60
200.98.246.214 3361928918 1040 8788
200.98.246.214 3361928918 1040 60
199.201.122.227 3351870179 1033 4123
199.201.122.227 3351870179 1033 120
199.201.122.227 3351870179 1036 894
199.201.122.227 3351870179 1036 120
199.201.122.227 3351870179 1040 922
199.201.122.227 3351870179 1040 7827
199.201.122.227 3351870179 1040 220
199.201.122.227 3351870179 1040 186
184.22.237.213 3088510421 1032 968
184.22.237.213 3088510421 1032 846
184.22.237.213 3088510421 1032 698
184.22.237.213 3088510421 1032 60
184.22.237.213 3088510421 1038 8742
184.22.237.213 3088510421 1038 60
95.128.157.163 1602264483 1031 804
95.128.157.163 1602264483 1032 904

37.0.123.150 620788630 1034 901
37.0.123.150 620788630 1043 1047
37.0.123.150 620788630 1044 1792
37.0.123.150 620788630 1045 1060
37.0.123.150 620788630 1046 1060
37.0.123.150 620788630 1049 4900

118

37.0.123.150 620788630 1050 901

 The next rounds of experimentation again used the larger, two-week data set

containing 280,423 benign netflows. The results of Round 9-1 using 10-fold cross-

validation within the data set, no interaction feature, and the original feature set are

depicted in Table 4-21 for comparison with the last two rows of Table 4-4 for Round 1-1.

Comparing the number of true positives is no longer relevant, given the change in total

Zeus netflows from 15 to 30, but comparing the true positive rate remains relevant. With

the larger set of Zeus netflows for cross-validation, the Naïve Bayes classifier produced a

higher true positive rate, 97% compared with 93% in Round 1-1. However, it did so at

the expense of a much higher number of false positives, 116,964 compared with 50,604

previously. The Random Forest classifier produced a higher true positive rate, 80%

compared with 60% in Round 1-1, while maintaining a zero false positive rate.

Table 4-21. Round 9-1 Results

No interaction feature; cross-validation, full feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk NB 280423 30 29 .967 116964 .417

2wk RF 280423 30 24 .800 0 0

 Adding the interaction feature for Round 9-2 produced the results in Table 4-22. The

Naïve Bayes classifier produced the same true positive rate improvement over the initial

Round 1-2 results, 97% compared with 93%, but again with a much higher number of

false positives, 116,633 compared with 50,348. However, the number of false positives

was less than without the interaction feature added in Round 9-1. The Random Forest

119

classifier again produced a higher true positive rate over the initial Round 1-2 results,

83% compared with 67%. This was also a higher true positive rate than the 80% without

the interaction feature in Round 9-1 and without any false positives.

Table 4-22. Round 9-2 Results

Added interaction feature; cross-validation; full feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk NB 280423 30 29 .967 116633 .416

2wk RF 280423 30 25 .833 0 0

 Dividing the data set into subsets for training and testing in Round 10-1 produced the

results in Table 4-23 for comparison with the results of Round 2-1 in the last four rows of

Table 4-6. When trained with the larger subset and tested with the smaller, neither

classifier detected any of the 15 Zeus netflows. This represents no change to the zero

true positive rate for the Random Forest classifier in Round 2-1 but represents a

significant decrease in the true positive rate for the Naïve Bayes classifier, from 71% to

0%. The number of false positives produced by the Naïve Bayes classifier decreased

from 1,291 to 118, however. The Random Forest again produced no false positives.

When the training and testing roles were reversed, the Naïve Bayes classifier produced a

true positive rate of 80% compared with 100% in Round 2-2. It produced a much higher

number of false positives, 86,685 compared with 12,137. The Random Forest classifier

produced no true positives and no false positives, same as in Round 2-2.

Table 4-23. Round 10-1 Results

No interaction feature; separate training/testing subsets, full feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

120

2wk train/test NB 56085 15 0 0 118 .002

2wk train/test RF 56085 15 0 0 0 0

2wk test/train NB 224338 15 12 .800 86685 .386

2wk test/train RF 224338 15 0 0 0 0

 Adding the interaction feature for Round 10-2 produced the results in Table 4-24.

This produced the exact same results as Round 10-1 for the first combination of training

and testing subsets. However, when the training and testing roles were reversed, the

Naïve Bayes classifier again produced an 80% true positive rate, but this time with

86,624 false positives which is significantly more than in Round 2-2 but less than without

the interaction feature in Round 10-1. The Random Forest classifier produced a true

positive rate of 15%, higher than the rate of zero from both Round 2-2 and Round 10-1.

It did so while maintaining a false positive rate of zero.

Table 4-24. Round 10-2 Results

Added interaction feature; separate training/testing subsets; full feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 15 0 0 118 .002

2wk train/test RF 56085 15 0 0 0 0

2wk test/train NB 224338 15 12 .800 86624 .386

2wk test/train RF 224338 15 2 .154 0 0

 For Round 11-1 (Table 4-25), the Destination Address (daddr) feature was removed

from the full feature set and 10-fold cross-validation was used within the two-week data

set for comparison with the results of Round 1-1 and Round 3-1. The Naïve Bayes

classifier produced a true positive rate of 97%, which was an improvement over the 93%

121

from both Round 1-1 and Round 3-1. However, it produced 119,574 false positives

which was significantly more than the 50,604 in Round 1-1 and 54,785 in Round 3-1.

The Random Forest classifier produced a true positive rate of 57% which was lower than

the 60% true positive rate of Round 1-1and higher than the 47% true positive rate of

Round 3-1. The Random Forest classifier maintained a false positive rate of zero.

Table 4-25. Round 11-1 Results

No interaction feature; cross-validation; feature (daddr) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk NB 280423 30 29 .967 119574 .426

2wk RF 280423 30 17 .567 0 0

 The interaction feature was added for Round 11-2 and the results are listed in Table 4-

26. The Naïve Bayes classifier produced a true positive rate of 97%, same as without the

interaction feature in Round 11-1 and higher than the 93% rate in Round 1-2 and Round

3-2. It produced 119,328 false positives which was significantly more than the 50,348 of

Round 1-2and the 54,597 of Round 3-2 but less than the 119,574 in Round 11-1 without

the interaction feature. The Random Forest classifier produced a true positive rate of

67% which was the same as in Round 1-2, an improvement over the 60% in round 3-2,

and an improvement over the 57% true positive rate in Round 11-1 without the

interaction feature. The Random Forest classifier again produced no false positives.

Table 4-26. Round 11-2 Results

Added interaction feature; cross-validation; feature (daddr) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk NB 280423 30 29 .967 119328 .426

122

2wk RF 280423 30 20 .667 0 0

 For Round 12-1 (Table 4-27), the reduced feature set was divided into separate

training and testing subsets for comparison with the results of Round 2-1 and Round 4-1.

The Naïve Bayes classifier produced a true positive rate of 60% compared with 71% in

Round 1-1 and 86% in Round 4-1 using the first combination of training and testing

subsets. It did so while producing 13,346 false positives compared with 1,291 in Round

2-1 and 5,489 in Round 4-1. When the training and testing subsets were reversed, the

Naïve Bayes classifier produced a true positive rate of 80% compared with 100% in both

Round 2-1 and Round 4-1. It produced 88,210 false positives compared with 12,178 in

Round 2-1 and 12,685 in Round 4-1. The Random Forest classifier produced no true

positives and no false positives with either combination of training and testing subsets.

This represented no change over the results of Round 2-1 or Round 4-2.

Table 4-27. Round 12-1 Results

No interaction feature; separate training/testing subsets; feature (daddr) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 15 9 .600 13346 .238

2wk train/test RF 56085 15 0 0 0 0

2wk test/train NB 224338 15 12 .800 88210 .393

2wk test/train RF 224338 15 0 0 0 0

 For Round 12-2 of experimentation (Table 4-28), the interaction feature was added for

comparison with the results of Round 2-2, Round 4-2, and Round 12-1. The Naïve Bayes

classifier produced a true positive rate of 60% compared with 71% in Round 2-2, 86% in

Round 4-2, and the same 60% in Round 12-1 without the interaction feature. The Naïve

123

Bayes classifier produced 13,323 false positives, considerably more than the 1,279 in

Round 2-2 and the 5,463 in Round 4-2, but less than the 13,346 of Round 12-1 without

the interaction feature. When the training and testing roles were reversed, the Naïve

Bayes classifier produced a true positive rate of 80% compared with 100% in both Round

2-2 and Round 4-2. It produced 88,039 false positives, again a significant increase over

the 12,137 of Round 2-2 and 12,652 of Round 4-2, but less than the 88,210 of Round 12-

1 without the interaction feature. The Random Forest classifier again produced no true or

false positives for either combination of training and testing data subsets.

Table 4-28. Round 12-2 Results

Added interaction feature; separate training/testing subsets; feature (daddr)
removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 15 9 .600 13323 .238

2wk train/test RF 56085 15 0 0 0 0

2wk test/train NB 224338 15 12 .800 88039 .392

2wk test/train RF 224338 15 0 0 0 0

 For Round 13-1 (Table 4-29), the Source and Destination Type of Service (stos &

dtos) features were removed from the full feature set and 10-fold cross-validation was

used within the two-week data set for comparison with the results of Round 1-1 and

Round 5-1. The Naïve Bayes classifier produced a true positive rate of 97% compared

with 93% in both Round 1-1 and Round 5-1. It produced 125,694 false positives

compared with 50,604 in Round 1-1 and 53,683 in Round 5-1. The Random Forest

124

classifier produced a true positive rate of 53% compared with 60% in Round 1-1 and

27% in Round 5-1, again with no false positives.

Table 4-29. Round 13-1 Results

No interaction feature; cross-validation; features (stos & dtos) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk NB 280423 30 29 .967 125694 .448

2wk RF 280423 30 16 .533 0 0

 The interaction feature was added for Round 13-2 for comparison with Round 1-2,

Round 5-2, and Round 13-1. Figure 4-30 depicts the results. The Naïve Bayes classifier

produced a true positive rate of 97% compared with 93% in both Round 1-1 and Round

5-1 and the same 97% in Round 13-1 without the interaction feature. It produced

125,531 false positives, significantly more than the 50,348 in Round 1-2 and 53,495 in

Round 5-2, but less than the 125,694 in Round 13-1 without the interaction feature. The

Random Forest classifier produced a true positive rate of 43% compared with 67% in

Round 1-2, 20% in Round 5-2, and 53% in Round 13-1 without the interaction feature.

The Random Forest classifier again produced no false positives.

Table 4-30. Round 13-2 Results

Added interaction feature; cross-validation; features (stos & dtos) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk NB 280423 30 29 .967 125531 .448

2wk RF 280423 30 13 .433 0 0

 For Round 13-1, the reduced feature set was divided into separate training and testing

subsets for comparison with the results of Round 2-1 and Round 6-1. Results are

125

presented in Table 4-31. The Naïve Bayes classifier produced a true positive rate of zero

compared with 71% in both Round 2-1 and Round 6-1. It produced 123 false positives

compared with 1,291 in Round 2-1 and 1,375 in Round 6-1. When the training and

testing roles were reversed, the Naïve Bayes classifier produced a true positive rate of

73% compared with 100% in both Round 2-1 and Round 6-1. It produced 95,224 false

positives compared with 12,178 in Round 2-1 and 13,357 in Round 6-1. The Random

Forest classifier produced no true positives and no false positives with either combination

of training and testing data subsets.

Table 4-31. Round 14-1 Results

No interaction feature; separate training/testing subsets; features (stos & dtos)
removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 15 0 0 123 .002

2wk train/test RF 56085 15 0 0 0 0

2wk test/train NB 224338 15 11 .733 95224 .424

2wk test/train RF 224338 15 0 0 0 0

 The interaction feature was added for Round 14-2 for comparison with Round 2-2,

Round 6-2, and Round 14-1. Results are presented in Table 4-32. Again the Naïve

Bayes classifier produced a true positive rate of zero compared with 71% in Round 2-2

and Round 6-2. It produced 121 false positives compared with 12,137 in Round 2-2 and

13,333 in Round 6-2, and 123 in Round 14-1 without the interaction feature. When the

training and testing roles were reversed, the Naïve Bayes classifier produced a true

positive rate of 80% compared with 100% in both Round 2-2 and Round 6-2 and 73% in

126

Round 14-1 without the interaction feature. It produced 95,172 false positives,

significantly more than the 12,137 in Round 2-2 and the 13,333 in Round 6-2, but less

than the 95,224 in Round 14-1 without the interaction feature.

Table 4-32. Round 14-2 Results

Added interaction feature; separate training/testing subsets; features (stos & dtos)
removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 15 0 0 121 .002

2wk train/test RF 56085 15 0 0 0 0

2wk test/train NB 224338 15 12 .800 95172 .424

2wk test/train RF 224338 15 0 0 0 0

 For Round 15-1 (Table 4-33), three features (tcprtt, synack, ackdat) were removed

from the full feature set and 10-fold cross-validation was used within the two-week data

set for comparison with the results of Round 1-1 and Round 7-1. The Naïve Bayes

classifier produced a true positive rate of 97% compared with 93% in both Round 1-1 and

Round 7-1. It produced 144,355 false positives, significantly more than the 50,604 in

Round 1-1 and the 69,342 in Round 7-1. The Random Forest classifier produced a true

positive rate of 80% compared with 60% in Round 1-1 and 47% in Round 7-1. The

Random Forest classifier again produced no false positives.

Table 4-33. Round 15-1 Results

No interaction feature; cross-validation; features (tcprtt, synack, ackdat) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk NB 280423 30 29 .967 144355 .515

127

2wk RF 280423 30 24 .800 0 0

 The interaction feature was added for Round 15-2 for comparison with Round 1-2,

Round 7-2, and Round 15-1. Results are presented in Table 4-34. The Naïve Bayes

classifier produced a true positive rate of 97% compared with 93% in both Round 1-2 and

Round 7-2 and the same 97% in Round 15-1 without the interaction feature. It produced

143,771 false positives, considerably more than the 50,348 in Round 1-2 and 68,929 in

Round 7-2, but less than the 144,355 in Round 15-1. The Random Forest classifier

produced a true positive rate of 80% compared with 67% in both Round 1-2 and Round

7-2, and the same 80% in Round 15-1 without the interaction feature. The Random

Forest classifier again produced no false positives.

Table 4-34. Round 15-2 Results

Added interaction feature; cross-validation; features (tcprtt, synack, ackdat)
removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk NB 280423 30 29 .967 143771 .513

2wk RF 280423 30 24 .800 0 0

 For Round 16-1 the reduced feature set was divided into separate training and testing

subsets for comparison with the results of Round 2-1 and Round 8-1. Results are

presented in Table 4-35. The Naïve Bayes classifier produced a true positive rate of zero

compared with 71% in both Round 2-1 and Round 8-1. It produced 173 false positives

compared with 1,291 in Round 2-1 and 2,342 in Round 8-1. When the training and

testing roles were reversed, the Naïve Bayes classifier produced a true positive rate of

80% compared with 100% in both Round 2-1 and Round 8-1. It did so while producing

128

106,270 false positives compared with 12,178 in Round 2-1 and 61,834 in Round 8-1.

The Random Forest classifier produced no true positives and no false positives for either

combination of training and testing data subsets.

Table 4-35. Round 16-1 Results

No interaction feature; separate training/testing subsets; features (tcprtt, synack,
ackdat) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 15 0 0 173 .003

2wk train/test RF 56085 15 0 0 0 0

2wk test/train NB 224338 15 12 .800 106270 .474

2wk test/train RF 224338 15 0 0 0 0

 The interaction feature was added for Round 16-2 for comparison with Round 2-2,

Round 8-2, and Round 16-1. Results are presented in Table 4-36. The Naïve Bayes

classifier produced a true positive rate of zero compared with 100% in both Round 2-2

and Round 8-2, and the same zero rate in Round 16-1. It produced 169 false positives,

significantly less than the 1,279 in Round 2-2 and 2,338 in Round 8-2, and slightly less

than the 173 in Round 16-1. When the training and testing roles were reversed, the Naïve

Bayes classifier produced a true positive rate of 80% compared with 100% in both Round

2-2 and Round 8-2, and the same 80% in Round 16-1 without the interaction feature. It

produced 108,108 false positives which was significantly more than the 12,137 in Round

2-2 and the 61,565 in Round 8-2, and also more than the 106,270 in Round 16-1 without

the interaction feature.

129

Table 4-36. Round 16-2 Results

Added interaction feature; separate training/testing subsets; features (tcprtt,
synack, ackdat) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 15 0 0 169 .003

2wk train/test RF 56085 15 0 0 0 0

2wk test/train NB 224338 15 12 .800 108108 .482

2wk test/train RF 224338 15 0 0 0 0

Change the ratio of training to testing instances

 For the next rounds of experiments, the number of Zeus instances in the training and

testing subsets was changed, as depicted by the shading in Table 4-37. The purpose was

to compare results of varying the size and content of the training and test subsets,

therefore the cross-validation rounds were not repeated.

Table 4-37. Zeus Samples Used in Third Rounds of Experimentation

daddr inet_aton(daddr) sport sbytes
200.98.246.214 3361928918 1032 3353
200.98.246.214 3361928918 1032 585
200.98.246.214 3361928918 1032 60
200.98.246.214 3361928918 1035 1712
200.98.246.214 3361928918 1035 60
200.98.246.214 3361928918 1040 8788
200.98.246.214 3361928918 1040 60
199.201.122.227 3351870179 1033 4123
199.201.122.227 3351870179 1033 120
199.201.122.227 3351870179 1036 894
199.201.122.227 3351870179 1036 120
199.201.122.227 3351870179 1040 922
199.201.122.227 3351870179 1040 7827
199.201.122.227 3351870179 1040 220

130

199.201.122.227 3351870179 1040 186
184.22.237.213 3088510421 1032 968
184.22.237.213 3088510421 1032 846
184.22.237.213 3088510421 1032 698
184.22.237.213 3088510421 1032 60
184.22.237.213 3088510421 1038 8742
184.22.237.213 3088510421 1038 60
95.128.157.163 1602264483 1031 804
95.128.157.163 1602264483 1032 904

37.0.123.150 620788630 1034 901
37.0.123.150 620788630 1043 1047
37.0.123.150 620788630 1044 1792
37.0.123.150 620788630 1045 1060
37.0.123.150 620788630 1046 1060
37.0.123.150 620788630 1049 4900
37.0.123.150 620788630 1050 901

 For Round 17-1 the full feature set was used. Resulted are presented in Table 4-38.

The two-week data set was divided into training and testing subsets in the same

proportion of benign netflows as before, but the number of Zeus netflows was split at 21

and nine, compared with 15 and 15 in Round 10-1. When training with the larger subset

containing the larger number of Zeus netflows, the Naïve Bayes classifier produced a

zero true positive rate, just as it had in Round 10-1. However, it produced 2,428 false

positives compared to only 118 before. When the training and testing roles were reversed,

the Naïve Bayes classifier again produced a zero true positive rate, compared with the

80% true positive rate it produced in Round 10-1. It did so with 6,839 false positives

compared with 86,685 in Round 10-1. The Random Forest classifier produced no true

positives and no false positives for either combination of training and testing subsets, just

as it had in Round 10-1.

131

Table 4-38. Round 17-1 Results

No interaction feature; separate training/testing subsets

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 9 0 0 2428 .043

2wk train/test RF 56085 9 0 0 0 0

2wk test/train NB 224338 21 0 0 6839 .030

2wk test/train RF 224338 21 0 0 0 0

 For Round 17-2 (Table 4-39), the interaction feature was added. This resulted in very

little change for either combination of training and testing subsets. The Naïve Bayes

classifier again produced a zero true positive rate for both combinations, but with fewer

false positives, 2,408 compared with 2,428 and 6,766 compared with 6,839. The

Random Forest classifier again produced no true positives and no false positives.

Table 4-39. Round 17-2 Results

Added interaction feature; separate training/testing subsets

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 9 0 0 2408 .043

2wk train/test RF 56085 9 0 0 0 0

2wk test/train NB 224338 21 0 0 6766 .030

2wk test/train RF 224338 21 0 0 0 0

 For Round 18-1 (Table 4-40), the Destination Address (daddr) feature was removed

and the two-week data set was divided into training and testing subsets in the same

proportion of benign netflows as before, but the number of Zeus netflows was split at 21

and nine, compared with 15 and 15 in Round 12-1. When trained with the larger subset,

132

the Naïve Bayes classifier produced a true positive rate of 44% compared with 60% in

Round 12-1. It did so with 13,224 false positives compared with 13,346 in Round 12-1.

When trained with the smaller subset, the Naïve Bayes classifier produced a zero true

positive rate compared with 80% in Round 12-1, and it produced 7,423 false positives

compared with 88,210. The Random Forest classifier produced no true positives and no

false positives with either combination of training and testing data subsets.

Table 4-40. Round 18-1 Results

No interaction feature; separate training/testing subsets; feature (daddr) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 9 4 .444 13224 .236

2wk train/test RF 56085 9 0 0 0 0

2wk test/train NB 224338 21 0 0 7423 .033

2wk test/train RF 224338 21 0 0 0 0

 The interaction feature was added for Round 18-2. Results are presented in Table 4-

41. This resulted in no change to the true positive rates of either classifier for either

combination of training and testing data subsets. However, the Naïve Bayes classifier

produced fewer false positives than in Round 18-1 without the interaction feature for both

combinations, 13,143 compared with 13,224 and 7,352 compared with 7,423.

Table 4-41. Round 18-2 Results

Added interaction feature; separate training/testing subsets; feature (daddr)
removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 9 4 .444 13143 .234

133

2wk train/test RF 56085 9 0 0 0 0

2wk test/train NB 224338 21 0 0 7352 .033

2wk test/train RF 224338 21 0 0 0 0

 For Round 19-1 (Table 4-42), the Source Type of Service (stos) and Destination Type

of Service (dtos) features were removed and the two-week data set was divided into

training and testing subsets in the same proportion of benign netflows as before. The

number of Zeus netflows was split at 21 and nine, compared with 15 and 15 in Round 14-

1. Neither classifier detected any true positives for either combination of training and

testing data subsets. The Naïve Bayes classifier produced 2,520 false positives for the

first combination compared with only 123 in Round 14-1 and 7,586 for the second

combination compared with 95,224. The Random Forest classifier produced no false

positives for either combination of training and testing data subsets.

Table 4-42. Round 19-1 Results

No interaction feature; separate training/testing subsets; features (stos & dtos)
removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 9 0 0 2520 .045

2wk train/test RF 56085 9 0 0 0 0

2wk test/train NB 224338 21 0 0 7586 .034

2wk test/train RF 224338 21 0 0 0 0

 The interaction feature was added for Round 19-2. Results are presented in Table 4-

43. This resulted in no change to the zero true positive rates of either classifier. The

Naïve Bayes classifier produced fewer false positives for both combinations of training

134

and testing data subsets, 2,486 compared with 2,520 and 7,477 compared with 7,586 in

Round 19-1 without the interaction feature.

Table 4-43. Round 19-2 Results

Added interaction feature; separate training/testing subsets; features (stos & dtos)
removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 9 0 0 2486 .044

2wk train/test RF 56085 9 0 0 0 0

2wk test/train NB 224338 21 0 0 7477 .033

2wk test/train RF 224338 21 0 0 0 0

 For Round 20-1 (Table 4-44), three features (tcprtt, synack, ackdat) were removed and

the two-week data set was divided into training and testing subsets in the same proportion

of benign netflows as before. The number of Zeus netflows was split at 21 and nine,

compared with 15 and 15 in Round 16-1. Neither classifier detected any true positives

for either combination of training and testing data subsets. The Naïve Bayes classifier

produced 3,355 false positives compared with 173 in Round 16-1 for the first

combination and 9,323 compared with 106,270 for the second combination. The

Random Forest classifier produced no false positives.

Table 4-44. Round 20-1 Results

No interaction feature; separate training/testing subsets; features (tcprtt, synack,
ackdat) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 9 0 0 3355 .060

2wk train/test RF 56085 9 0 0 0 0

135

2wk test/train NB 224338 21 0 0 9323 .042

2wk test/train RF 224338 21 0 0 0 0

 The interaction feature was added for Round 20-2. Results are presented in Table 4-

45. This resulted in no change to the zero true positive rate for either classifier for either

combination of training and testing data subsets. The Naïve Bayes classifier produced

fewer false positives in both combinations, 3,337 compared with 3,355 and 9,260

compared with 9,323, than without the interaction feature in Round 20-1.

Table 4-45. Round 20-2 Results

Added interaction feature; separate training/testing subsets; features (tcprtt,
synack, ackdat) removed

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 9 0 0 3337 .059

2wk train/test RF 56085 9 0 0 0 0

2wk test/train NB 224338 21 0 0 9260 .041

2wk test/train RF 224338 21 0 0 0 0

More Compact Feature Set

 For the next sequence of experiments, a more compact, feature set was chosen. The

two-week data set was divided into training and testing subsets in the same proportion as

before, and the two previous splits of Zeus netflows were used, 21-9 and 15-15, in turn.

The compact feature set consisted of the following 16 features: dport, stos, dtos, sttl, dttl,

spkts, dpkts, sloss, dloss, state, tcprtt, synack, ackdat, flgs, tcpopt, dir. Note that with the

21-9 split of Zeus netflows across the 80%-20% split of benign samples in Rounds 17-1

136

through 20-2, only one feature set and data subset combination resulted in a true positive

rate above zero. The Naïve Bayes classified achieved a 44% true positive rate in Round

18-1 and 18-2 when trained with the larger subset and tested with the smaller. The

results of Round 21-1 reveal a similar outcome, as presented in Table 4-46. The Naïve

Bayes classifier produced a 67% true positive rate when trained with the larger and tested

with the smaller subsets. It produced this higher true positive rate with only 258 false

positives compared with 13,224 in Round 18-1 and 13,143 in Round 18-2.

Table 4-46. Round 21-1 Results

No interaction feature; separate training/testing subsets; compact feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 9 6 .667 258 .005

2wk train/test RF 56085 9 0 0 0 0

2wk test/train NB 224338 21 0 0 532 .002

2wk test/train RF 224338 21 0 0 0 0

 When the interaction feature was added to the compact feature set with this split

(Table 4-47), again only the false positive rates of the Naïve Bayes classifier changed.

For both combinations of training and testing data subsets, the number of false positives

decreased, 192 compared with 258 and 529 compared with 532 in Round 21-1 without

the interaction feature.

Table 4-47. Round 21-2 Results

Added interaction feature; separate training/testing subsets; compact feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

137

2wk train/test NB 56085 9 6 .667 192 .003

2wk train/test RF 56085 9 0 0 0 0

2wk test/train NB 224338 21 0 0 529 .002

2wk test/train RF 224338 21 0 0 0 0

 Round 22-1 again uses the 15-15 split of Zeus netflows across the 80%-20% split of

benign netflows for comparison with the results of even Rounds 10-1 through 16-2 which

used the full feature set. Results are presented in Table 4-48. The Naïve Bayes classifier

produced a true positive rate of 73% with only 200 false positives when trained with the

larger subset and tested with the smaller. This represents a higher true positive rate than

all previous rounds using this number (30) and split (15-15) of Zeus netflows with this

combination. It also represents a much lower number of false positives than the only

previous round to achieve a true positive rate above zero, Round 12-1, in which the Naïve

Bayes classifier achieved a 60% true positive rate but with 13,346 false positives. When

the training and testing roles were reversed, the Naïve Bayes classifier produced an 80%

true positive rate with 1,211 false positives. This true positive rate is equal to, or greater

than, the true positive rate of the earlier rounds using this combination. The number of

false positives, however, is more than a factor of 10 lower than all those previous rounds.

The Random Forest classifier produced no true or false positives for the first combination

of training and testing data, but did produce a true positive rate of 40% for the second

combination. This also represents an improvement over all previous rounds, only one of

which (10-2) resulted in a true positive rate above zero. Again, it did so without

producing any false positives.

138

Table 4-48. Round 22-1 Results

No interaction feature; separate training/testing subsets; compact feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 15 11 .733 200 .004

2wk train/test RF 56085 15 0 0 0 0

2wk test/train NB 224338 15 12 .800 1211 .005

2wk test/train RF 224338 15 6 .400 0 0

 When the interaction feature was added (Table 4-49), the true positive rates for the

Naïve Bayes classifier remained the same but the number of false positives decreased,

151 compared with 200 and 1,073 compared with 1,211. Interestingly, the true positive

rate of the Random Forest classifier when trained with the smaller and tested with the

larger data subset went back to zero and a false positive was generated.

Table 4-49. Round 22-2 Results

Added interaction feature; separate training/testing subsets; compact feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk train/test NB 56085 15 11 .733 151 .003

2wk train/test RF 56085 15 0 0 0 0

2wk test/train NB 224338 15 12 .800 1073 .005

2wk test/train RF 224338 15 0 0 1 .000

One-month data sets

 The next set of experiments used larger, one-month data sets with the same 30 Zeus

netflows and compact feature set as the previous rounds. Results for both cross-

validation and separate training and testing subsets are provided for comparison with

139

earlier rounds using the smaller, two-week data set. Three separate one-month data sets

are used from the benign data captured in April, May, and June of 2013, respectively.

The number of false positives remains relevant for comparison across the data sets using

the same number of Zeus samples.

 The results of cross-validation using the April data set are presented in Table 4-50.

The Naïve Bayes classifier produced a 100% true positive rate and a 1% false positive

rate. The Random Forest classifier produced an 83% true positive rate with no false

positives. This represents an improvement by both classifiers over the results of Round

9-1 which used the two-week data set and same 30 Zeus netflows. The true positive rate

of the Naïve Bayes classifier improved from 97% to 100% and the false positive rate

improved from 42% down to 1%. The true positive rate of the Random Forest classifier

improved from 80% to 83% while maintaining the error-free, zero false positive rate.

Table 4-50. Round 23-1 Results

No interaction feature; cross-validation; compact feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

apr NB 487347 30 30 1 4302 .009

apr RF 487347 30 25 .833 0 0

 When the interaction feature was added (Table 4-51), the true positive rate for the

Naïve Bayes classifier remained the same but the number of false positives decreased

over Round 23-1 without the interaction feature. The true positive rate for the Random

Forest classifier improved from 83% to 93% with no false positives.

Table 4-51. Round 23-2 Results

Added interaction feature; cross-validation; compact feature set

140

Data Set Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

apr NB 487347 30 30 1 3337 .001

apr RF 487347 30 28 .933 0 0

 For the next rounds, the April data set was divided into separate training and testing

subsets using the same 80%/20% split of benign netflows as in the earlier rounds using

the two-week data set. The Zeus netflows were split 15-15 across the training subsets.

Results are provided in Table 4-52. When trained with the larger subset and tested with

the smaller, the Naïve Bayes classifier produced a 73% true positive rate with 0.3% false

positive rate. This represents a significant increase over the zero true positive rate in

Round 10-1 using the two-week data set. The Random Forest classifier produced no true

positives or false positives, no change from Round 10-1. When trained with the smaller

subset and tested with the larger, the Naïve Bayes classifier produced an 80% true

positive rate with 0.1% false positive rate. This is the same true positive rate achieved in

Round 10-1 but with a much improved false positive rate, 0.1% down from 38%. The

Random Forest classifier produced a 20% true positive rate, up from zero in Round 10-1,

but with one false positive.

Table 4-52. Round 24-1 Results

No interaction feature; separate training/testing subsets; compact feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

apr train/test NB 97469 15 11 .733 336 .003

apr train/test RF 97469 15 0 0 0 0

apr test/train NB 389878 15 12 .800 366 .001

apr test/train RF 389878 15 3 .200 1 .000

141

 When the interaction feature was added (Table 4-53), the true positive rates for the

Naïve Bayes classifier remained the same but the numbers of false positives decreased

for both combinations of training and testing data subsets. The true positive rate for the

Random Forest classifier remained at zero when trained with the larger subset and tested

with the smaller, but it improved from 20% to 60% when the roles were reversed. It also

did so without any false positives, an improvement over the single false positive in

Round 24-1 without the interaction feature.

Table 4-53. Round 24-2 Results

Added interaction feature; separate training/testing subsets; compact feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

apr train/test NB 97469 15 11 .733 291 .003

apr train/test RF 97469 15 0 0 0 0

apr test/train NB 389878 15 12 .800 318 .001

apr test/train RF 389878 15 9 .600 0 0

 The results of cross-validation using the May data set are presented in Table 4-54.

The Naïve Bayes classifier produced a 97% true positive rate and a 1% false positive rate.

The Random Forest classifier produced an 93% true positive rate with no false positives.

This represents an improvement by both classifiers over the results of Round 9-1 which

used the two-week data set and same 30 Zeus netflows. The improvement by the Naïve

Bayes classifier was in terms of a lower false positive rate, 1% down from 42%, since its

true positive rate was 97% in both cases. The improvement by the Random Forest

classifier was in terms of a higher true positive rate, 93% up from 80% in Round 9-1,

since its false positive rate remained at zero.

142

Table 4-54. Round 25-1 Results

No interaction feature; cross-validation; compact feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

may NB 461036 30 29 .967 3043 .007

may RF 461036 30 28 .933 0 0

 When the interaction feature was added (Table 4-55), the true positive rate for the

Naïve Bayes classifier remained the same but the number of false positives improved,

2,880 down from 3,043. The true positive rate for the Random Forest classifier improved

from 93% to 97% with no false positives.

Table 4-55. Round 25-2 Results

Added interaction feature; cross-validation; compact feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

may NB 461036 30 29 .967 2880 .006

may RF 461036 30 29 .967 0 0

 For the next rounds, the May data set was divided into separate training and testing

subsets using the same split of benign and Zeus netflows. Again, using this one-month

data set (May) resulted in improvements by both classifiers over the results with the two-

week data set in Round 10-1. Results are presented in Table 4-56. When trained with the

larger subset and tested with the smaller, the Naïve Bayes classifier produced an 80%

true positive rate with a 0.3% false positive rate. This is an improvement over the zero

true positive rate in Round 10-1. The Random Forest classifier produced no true

positives or false positives, which is the same as in Round 10-1. When trained with the

smaller and tested with the larger data subset, The Naïve Bayes classifier produced a

143

100% true positive rate, up from 80% in Round 10-1, and with a 0.5% false positive rate

compared with 39% in Round 10-1. The Random Forest classifier produced a 53% true

positive rate, up from zero in Round 10-1, and again with no false positives.

Table 4-56. Round 26-1 Results

No interaction feature; separate training/testing subsets; compact feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

may train/test NB 92207 15 12 .800 304 .003

may train/test RF 92207 15 0 0 0 0

may test/train NB 368829 15 15 1 1929 .005

may test/train RF 368829 15 8 .533 0 0

 When the interaction feature was added (Table 4-57), the true positive rates for the

Naïve Bayes classifier remained the same but the number of false positives decreased for

the second combination of training and testing data subsets, 1,888 down from 1,929. The

true positive rate for the Random Forest classifier decreased from 53% to zero when

trained with the smaller subset and tested with the larger.

Table 4-57. Round 26-2 Results

Added interaction feature; separate training/testing subsets; compact feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

may train/test NB 92207 15 12 .800 304 .003

may train/test RF 92207 15 0 0 0 0

may test/train NB 368829 15 15 1 1888 .005

may test/train RF 368829 15 0 0 0 0

144

 The results of cross-validation using the June data set are presented in Table 4-58.

The Naïve Bayes classifier produced a 100% true positive rate and a 1% false positive

rate. The Random Forest classifier produced a 93% true positive rate with no false

positives. Again this represents an improvement by both classifiers using a one-month

data set over the results of Round 9-1 which used the two-week data set and same 30

Zeus netflows.

Table 4-58. Round 27-1 Results

No interaction feature; cross-validation; compact feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

jun NB 570236 30 30 1 4713 .008

jun RF 570236 30 28 .933 0 0

 When the interaction feature was added (Table 4-59), the Naïve Bayes classifier again

produced a 100% true positive rate. It also produced fewer false positives, 4,343 down

from 4,713, than without the interaction feature in Round 27-1. The Random Forest

classifier produced a 97% true positive rate, up from 93% without the interaction feature,

and again without any false positives.

Table 4-59. Round 27-2 Results

Added interaction feature; cross-validation; compact feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

jun NB 570236 30 30 1 4343 .008

jun RF 570236 30 29 .967 0 0

145

 For the next rounds, the June data set was divided into separate training and testing

subsets using the same split of benign and Zeus netflows. Again, using this one-month

data set (June) resulted in improvements by both classifiers over the results with the two-

week data set in Round 10-1. Results are presented in Table 4-60. When trained with the

larger and tested with the smaller subset, the Naïve Bayes classifier produced an 80%

true positive rate, up from zero in Round 10-1 with the two-week data set, and did so

with a 1% false positive rate. The Random Forest classifier produced a 13% true positive

rate, up from zero in Round 10-1, and again without false positives. When the training

and testing roles were reversed, the Naïve Bayes classifier produced an 87% true positive

rate, up from 80% in Round 10-1, and with a false positive rate less than 1%, down from

39% in Round 10-1. The Random Forest classifier produced a 60% true positive rate, up

from zero in Round 10-1 with the two-week data set, and again without false positives.

Table 4-60. Round 28-1 Results

No interaction feature; separate training/testing subsets; compact feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

jun train/test NB 114047 15 12 .800 1184 .010

jun train/test RF 114047 15 2 .133 0 0

jun test/train NB 456189 15 13 .867 196 .000

jun test/train RF 456189 15 9 .600 0 0

 When the interaction feature was added (Table 4-61), the true positive rates for the

Naïve Bayes classifier remained the same but the numbers of false positives decreased

for both combinations of training and testing data subsets, 1,162 down from 1,184 and

146

182 down from 196. In both combinations, the true positive rate of the Random Forest

classifier decreased to zero.

Table 4-61. Round 28-2 Results

Added interaction feature; separate training/testing subsets; compact feature set
Data Set Classifier Benign

Instances
Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

jun train/test NB 114047 15 12 .800 1162 .010

jun train/test RF 114047 15 0 0 0 0

jun test/train NB 456189 15 13 .867 182 .000

jun test/train RF 456189 15 0 0 0 0

Findings

 The first two findings presented here resulted from the feature selection process and

were instrumental to subsequent experimentation. The remainder of the findings

presented here resulted from the experiments presented in the previous section. Under

most of the experimental conditions, the addition of the interaction feature resulted in

performance improvements by one or both of the classifiers. These conditions included

changing the number of benign instances, changing the number of malicious instances,

changing the number of features, changing the type of features, changing the type of

malicious instances, changing the sizes of training and testing subsets, and changing the

ratio of malicious instances in the training and testing subsets.

Assigning the Interaction Feature

 Determining which netflows to attribute to interaction was a heuristic process

informed by experimentation with a range of time values. Intuition suggests that a large

147

percentage of network transactions would result from human interaction with network

enabled applications, such as browsers. Since the time resolution of the interaction

feature was only to the minute, some portion of network transactions that resulted from

interaction would appear up to one minute before the timestamp of the interaction feature.

This limit would not apply to user initiated network transactions occurring after the

interaction, so periods of time up to three minutes were considered. Table 4-62 presents

the results of applying various time ranges around the interaction feature timestamps

using the 646,702 netflows of the April dataset. Table 4-63 contrasts the results of

applying the heuristic value of plus through minus 30 seconds to the five primary datasets

with the statistical value of plus 75 seconds through minus 45 seconds. The higher

percentages for the latter were expected given the larger total time interval. The higher

percentages in the smaller datasets (2hr, 24hr) compared with the larger datasets (2wk,

1mon, 3mos) was also expected, given the selection of the smaller datasets from periods

of significant user interaction.

Table 4-62. Netflows Appearing Near April 2013 User Interactions

Time Delta 0s 3s 30s 60s 90s 120s 150s 180s

Plus or Minus 1438 10148 84581 107988 123148 135119 139604 141458

Plus 1438 6296 45727 83657 92414 99973 104095 108707

Minus 1438 5290 41151 81517 95636 110183 117773 123405

Table 4-63. Percentage of Interaction Related Flows in Five Primary Datasets

Data
Set

Benign
Flows

Interaction
(+30s -30s)

Interaction
Percentage

Interaction
(+75s -45s)

Interaction
Percentage

2hr 4,313 2,311 53.6% 3,114 72.2%

148

24hr 7,800 3,089 39.6% 3,581 45.9%

2wk 280,423 46,740 16.7% 61,803 22.0%

1mon 487,347 73,963 15.2% 97,020 19.9%

3mos 1,518,623 138,155 9.0% 187,184 12.3%

Impact of Changing Feature Type (Numeric/Nominal)

 Table 4-64 provides the results of incrementally converting relevant attribute types

from numeric to nominal on the performance of the Naïve Bayes and Random Forest

classifiers using cross-validation against the two-week benign data set with 30 Zeus

instances. As the number of features converted from numeric to nominal grew from four

to ten, the number of false positives produced by the Naïve Bayes classifier consistently

declined, a performance improvement, without any detrimental impact on the true

positive rate. As the number of features converted from numeric to nominal grew from

four to ten, the number of true positives produced by the Random Forest classifier

consistently increased, also a performance improvement, without any detrimental impact

on the false positive rate.

Table 4-64: Performance improvements upon converting numeric to nominal

Data
Set

Nominal
Features

Classifier Benign
Instances

Zeus
Instances

True
Positives

TP
Rate

False
Positives

FP
Rate

2wk 4 of 31 NB 280423 30 29 .967 140610 .501

2wk 4 of 31 RF 280423 30 17 .567 0 0

2wk 6 of 31 NB 280423 30 29 .967 135130 .482

2wk 6 of 31 RF 280423 30 22 .733 0 0

2wk 8 of 31 NB 280423 30 29 .967 124779 .445

149

2wk 8 of 31 RF 280423 30 24 .800 0 0

2wk 10 of 31 NB 280423 30 29 .967 116964 .417

2wk 10 of 31 RF 280423 30 24 .800 0 0

Impact of Interaction Feature with Cross-Validation

 The addition of the interaction feature frequently improved the performance of the

Naïve Bayes classifier in terms of fewer false positives without negatively impacting the

number of true positives. This was true for ten-fold cross-validation of the full feature set

across all three benign data sets tested (2hr, 24hr, 2wk) when using only 15 malicious

instances (Table 4-5) and for the only benign sample set (2wk) tested when using 30

malicious instances (Table 4-22). The addition of the interaction feature improved the

ten-fold cross-validation performance of the Random Forest classifier in terms of more

true positives without negatively impacting false positives for largest of these data sets

(2wk) when using 15 malicious instances (Table 4-5) and when using 30 malicious

instances (Table 4-22). The percentage of improvement to the Naïve Bayes’ false

positive rate was generally less than one percent. However, the percentage improvement

to the Random Forest’s true positive rate was over six percent when using the smaller set

(15) of malicious instances and over three percent when using the larger set (30).

 A similar decrease in the Naïve Bayes classifier’s false positives and increase in the

Random Forest classifier’s true positives were observed when the feature sets were

modified and 15 malicious instances used (Tables 4-9, 4-13, 4-17), and when the feature

sets were modified and 30 malicious instances used (Tables 4-26, 4-30, 4-34).

150

Impact of Interaction Feature with Separate Training and Testing Subsets

 Again, the addition of the interaction feature frequently improved the performance of

the Naïve Bayes classifier in terms of fewer false positives, but when using separate

training and test sets it also increased the number of true positives for some of the benign

sample sets when using 15 malicious instances (Table 4-7). However, in two cases the

addition of the interaction feature resulted in more false positives for the Naïve Bayes

classifier. This occurred after switching the training and testing subsets of the two-hour

and 24-hour benign instances and training with the smaller subsets (Table 4-7).

 The addition of the interaction feature again improved the performance of the Random

Forest classifier in terms of true positives, once using the two-hour benign data set with

seven malicious instances in the testing subset (Table 4-7) and once using the two-week

benign data set with 15 malicious instances in the testing subset (Table 4-24). The

percentage improvements were over 54 and over 15, respectively. However, in one case

when training with the larger subset of the 24-hour benign data set, the addition of the

interaction feature resulted in one fewer true positive for a greater than 16 percent

performance decline (Table 4-7).

 Similar frequent decreases in the Naïve Bayes classifier’s false positives and one

increase in true positives were observed when the feature sets were modified and 15

malicious instances were used (Tables 4-11, 4-15, 4-19), and when the feature sets were

modified and 30 malicious instances were used (Tables 4-28, 4-32, 4-36). One increase

in false positives was noted for the Naïve Bayes classifier when trained with the smaller

(20%) subset of benign instances (Table 4-36). The addition of the interaction feature did

not result in any changes to the performance of the Random Forest classifier when the

151

feature sets were modified (Tables 4-11, 4-15, 4-19, 4-28, 4-32, 4-36). In all of these

cases, the Random Forest classifier failed to detect any of the malicious instances (zero

TP) and made no mistakes (zero FP), with or without the interaction feature added.

 The four occasions of declining performance highlighted the sensitivity of the

classifiers to the data sets chosen for training and testing, particularly with the smaller

numbers of benign and malicious samples. Three declines were noted with the two-hour

and 24-hour benign samples combined with 15 malicious samples. One was noted with

the two-week benign data set combined with 30 malicious instances and three features

removed.

Impact of Interaction Feature with Different Malicious Instances

 The most notable impact of selecting different malicious instances and changing the

ratio of training and testing instances to 21/9 was the zero true positive rates for both

classifiers. This was true when using the full feature set (Table 4-38) and all but one

(Table 4-40) of the previously used reduced feature sets. Nonetheless, the addition of the

interaction feature still resulted in a reduction of the number of false positives for the

Naïve Bayes classifier every time (Tables 4-39, 4-41, 4-43, 4-45). This was also true

when using a new compact feature set (Table 4-47).

 When the ratio of the different malicious instances was changed from 21/9 to 15/15,

however, both classifiers produced true positives. The Naïve Bayes classifier’s false

positive rate again improved with the addition of the interaction feature. However, the

true positive rate of the Random Forest classifier declined and one false positive was

152

generated. This very uncommon result again highlighted the sensitivity of the classifiers

to the training and testing subsets.

Impact of Interaction Feature with Cross-Validation in Large Data Sets

 Experiments with the larger, one-month (apr, may, jun) data sets were conducted

using only the new (different) malicious instances and the compact feature set. Again the

addition of the interaction feature resulted in improvements to the performance of both

classifiers. The number of false positives decreased for the Naïve Bayes classifier with

no decrease in true positives for all three one-month data sets (Tables 4-51, 4-55, 4-59).

The true positive rate of the Random Forest classifier increased with no false positives for

all three one-month data sets (Tables 4-51, 4-55, 4-59). The average increase in true

positive rate for the Random Forest classifier was over five percent across these three

data sets, with performance approaching (apr,jun) or equaling (may) that of the Naïve

Bayes classifier in terms of true positive rate and exceeding that of the Naïve Bayes

classifier in terms of false positive rate.

Impact of Interaction Feature with Separate Subsets of Large Data Sets

 Experiments with the larger, one-month data sets partitioned into training and testing

subsets again revealed that the addition of the interaction feature impacted the

performance of the classifiers in a manner consistent with the earlier experiments. The

number of false positives was reduced five out of six times for the Naïve Bayes classifier

without a decrease in true positives (Tables 4-53, 4-57, 4-61). The true positive rate of

the Random Forest classifier increased along with a corresponding decrease in false

153

positives for the April data set (Table 4-53). However, that performance improvement

was overshadowed by declines in the true positive rate for both the May and June data

sets (Tables 4-57, 4-61), again highlighting this classifier’s sensitivity to the training and

testing subsets.

154

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

 The experiments conducted in this research provide empirical evidence that two

leading machine learning methods, a Naive Bayes classifier and a Random Forest

classifier, generally achieved better performance results when using network flow level

features supplemented with an interaction feature to detect autonomous data exfiltration

by the Zeus bot malware. These are the first known experiments conducted to test

whether detection of autonomous network traffic between the Zeus bot malware on an

infected host and its remote command and control server can be improved by capturing

and considering information about user interaction on that infected host. These positive

results contribute to the body of knowledge regarding malware detection in general and

Zeus bot network activity in particular and represent the primary scientific contribution of

this work.

 The inter-packet analysis of contemporary samples of actual Zeus bot network activity

in the wild revealed examples of HTTP communications behavior that differed from the

patterns reported by earlier researchers (Al-Bataineh & White, 2012; Alserhani, Akhlaq,

Awan, & Cullen, 2010; Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, Debbabi, &

Wang, 2010; Riccardi, Di Pietro, Palanques, & Vila, 2013). This new behavior was the

use of the HTTP POST method with an encrypted payload instead of the GET method

with no payload by infected clients to request file updates (Table 4-2). This is the first

155

known analysis of these Zeus malware samples. This discovery contributes to the body of

knowledge regarding Zeus bot network activity for detection and countermeasures. The

examples provided of this behavior represent the next significant contribution of this

work.

 Both classifiers were sensitive to the choice of training and testing sets. The purpose

of partitioning the benign data sets into separate subsets for training and testing the

classifiers was to ensure that the testing would be done using only instances that the

classifier had not previously seen. This is a recognized technique in the literature to

prevent over fitting of the learned model to the training data, and is commonly used when

large data sets are available. Training with 80 percent of the examples and testing with

the other 20 percent is a rule of thumb applied by some researchers (Guyon). The

purpose of switching the training and testing subsets in this work was to produce results

from both an 80/20 split and a 20/80 split for comparison. In many cases, the results

differed. The purpose of changing the number of malicious instances in the training and

testing sets was also to produce results for comparison. Again the results differed in

many cases. The purpose of using cross-validation and then separate training and

(holdout) testing approaches was also to produce results for comparison. As one

example, both classifiers performed well in terms of true and false positives when trained

with a relatively small set of malicious instances within the largest, one-month benign

data sets. True positive rates were above 90 percent and false positive rates were less than

one percent when the interaction feature was added. However, this was only true when

using 10-fold cross-validation. The true positive rates for both classifiers dropped below

90 percent for each of the three, one-month data sets when the data was partitioned into

156

separate training and testing subsets. The purpose of incrementally converting more

numeric features to nominal features for the same data set was also to produce results for

comparison. The results of both classifiers improved, in terms of fewer false positive for

the Naïve Bayes and more true positives for the Random Forest, as the number of

converted features was increased from four to ten in increments of two. These results

contribute empirical evidence to the body of knowledge regarding machine learning and

represent the next significant contribution of this work.

Implications

 The Naïve Bayes and Random Forest classifiers performed better on flow level

features when supplemented with an interaction feature. This suggests that classifiers

would also perform better on packet level features when supplemented with an

interaction feature. Intuition suggests that the features within the HTTP protocol

messages, namely the resource request methods, would likely improve the performance

of both classifiers over the use of only flow level features. Correlating HTTP GET and

POST methods with user interaction would likely improve results even further.

 This work provided evidence that detecting of Zeus bot network behavior in netflows

can be improved with external context, in this case a feature representing human

interaction with software on the infected host. This finding suggests that other context

could produce similar improvements and should be considered. This was not uncommon

in the literature, where additional context was provided from file system and registry

monitoring, for example.

157

 The use of the HTTP POST method instead of the HTTP GET method by the infected

host to request files from the C&C server was first noted in the 2012 Zeus network

sample. This implies that the technique has been in use since at least February 2012. The

previously reported technique of using the GET method was also noted in that sample,

however. Also, neither of the POST method requests in that sample included an

encrypted payload. These observations suggest that this period was early in what appears

to be a trend toward the use of the POST method instead of the GET method, as noted in

the 2014 Zeus samples. None of these samples are very large, however, so suggesting

this may be a trend comes with that caveat.

 The use of the HTTP POST method with an encrypted payload to request

configuration file updates is significant for multiple reasons. It represents a more

sophisticated technique than the use of the GET method with no payload because it

allows additional information to be sent along with the request, a capability that could be

leveraged to reduce the frequency of network connections and reduce the malware’s

overall activity fingerprint. This new technique also alters the expected network behavior

of a host infected with Zeus that signature-based intrusion detection systems such as

Snort® depend on (Alserhani, Akhlaq, Awan, & Cullen, 2010). The implication is that

recent Zeus activity using this technique may have gone undetected by intrusion detection

systems that had been successful at detecting earlier variants that used the GET method to

retrieve configuration files at the beginning of the infection sequence.

 The sensitivity of the classifiers to the training and testing data suggests that the

results of previous research that did not carefully consider these factors may not hold for

158

different variations within the same data, let alone for different data. This could result in

unexpected results when applying these methods to new data.

 The results of this work offer potential for generalization and for application in

network intrusion detection systems. Machine learning methods have been successfully

applied across a number of domains such as character recognition, image recognition,

speech recognition, natural language processing, medical diagnosis, and robotics (Rieck,

2011). This work supplements the machine learning theoretical and engineering

repertoires with empirical results. Machine learning theory gains insight from the role

human interaction plays in this classification technique. An intrusion detection system

could be implemented based on these new insights. It could be applied independently or

in conjunction with other information security mechanisms such as signature-based

intrusion detection systems.

Recommendations

 Experimentation with packet level data is the foremost recommendation for future

work along the lines of the research presented here. All of the elements of the HTTP

headers should be examined, beginning with the resource request methods, as previously

noted. Refining the interaction feature into a set of more precise features is also

recommended. This includes obtaining more precise timing information and developing

a better statistical model of which network transactions result from user interactions. The

positive results in this work without that precision suggest that better results could be

achieved with it.

159

 Examining how the performance improvements resulting from the addition of the

interaction feature change across more extreme changes in the benign data patterns is also

recommended. This work included changes over time in the benign data sets but did not

fully investigate their impacts. Future work should also include timing information,

particularly for packet level information. The timestamps of the packet transmissions

would serve as the basis for constructing various time delta features, such as time

between connections to the same remote hosts. The net flow timestamps were not used in

this work, primarily to simplify the process of integrating malicious flows with benign

flows captured on separate hosts at separate times.

 A final recommendation is to create a honeypot environment that also supports the

generation and capture of user interaction such that fully integrated data sets could be

generated and made available for research. Most of the data sets provided by the

operators of honeypots contain only the malicious network traffic. This would not be a

trivial undertaking, but would produce more accurate data sets help researchers avoid

some of the pitfalls associated with data integration.

Summary

 The research presented in this Dissertation Report achieved its stated goal of revealing

techniques for improving detection of data theft from a networked computer by bot

malware. The experimental results demonstrated that including information about user

interaction on the infected computer improved the detection performance of two

classifiers, Naive Bayes and Random Forest. The experiments also demonstrated which

specific sets of features derived from network flow software, Argus, resulted in the best

160

performance in terms of true and false positives by these two classifiers. This new

knowledge represents the primary contribution of this work to the information security

body of knowledge.

161

References

Alazab, M., Venkatraman, S., Watters, P., Alazab, M., & Alazab, A. (2012). Cybercrime: the
case of obfuscated malware. In H. Jahankhani, E. Pimenidis, R. Bashroush, & A. Al-
Nemrat (Eds.) Global Security, Safety and Sustainability & e-Democracy. Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering (pp. 204-211). Berlin: Springer.

Al-Bataineh, A., & White, G. (2012). Analysis and detection of malicious data exfiltration in

web traffic. In Proceedings of the 7th International Conference on Malicious and
Unwanted Software (pp. 26-31). Washington, DC: IEEE.

Al-Hammadi, Y., Aickelin, U., & Greensmith, J. (2008). DCA for bot detection. In

Proceedings of the IEEE World Congress on Computational Intelligence (pp. 1807-
1816). Washington, DC: IEEE.

Al-Hammadi, Y., Aickelin, U., & Greensmith, J. (2010). Performance evaluation of DCA and

SRC on a single bot detection. Journal of Information Assurance and Security, 5, 303-
313.

Alserhani, F., Akhlaq, M., Awan, I. U., & Cullen, A. J. (2010). Detection of coordinated

attacks using alert correlation model. In 2010 IEEE International Conference on
Progress in Informatics and Computing (pp. 542-546). Washington, DC: IEEE.

Aickelin, U., & Cayzer, S. (2002). The danger theory and its application to AIS. In J. Timmis

& P. Bentley (Eds.) Proceedings of the First International Conference on Artificial
Immune Systems (ICARIS). Canterbury, UK: University of Kent.

Anchor, K. P., Zydallis, J. B., Gunsch, G. H., & Lamont, G. B. (2002). Extending the computer

defense immune system: network intrusion detection with a multiobjective evolutionary
programming approach. In J. Timmis & P. Bentley (Eds.) Proceedings of the First
International Conference on Artificial Immune Systems (ICARIS). Canterbury, UK:
University of Kent.

Arthur, C. (2011, May 3). Sony suffers second data breach with theft of 25m more user details.

The Guardian. Retrieved January 16, 2012, from
http://www.guardian.co.uk/technology/blog/2011/may/03/sony-data-breach-online-
entertainment

Baker, L. B., & Finkle, J. (2011, April 26). Sony PlayStation suffers massive data breach.

Reuters. Retrieved January 16, 2012, from http://www.reuters.com/article/2011/04/26/us-
sony-stoldendata-idUSTRE73P6WB20110426

Beers, M. H., Fletcher, A. J., Jones, T. V., Porter, R., Berkwitz, M., & Kaplan, J. L. (2003).

The Merck manual of medical information. New York: Pocket Books.

http://www.guardian.co.uk/technology/blog/2011/may/03/sony-data-breach-online-entertainment
http://www.guardian.co.uk/technology/blog/2011/may/03/sony-data-breach-online-entertainment
http://www.reuters.com/article/2011/04/26/us-sony-stoldendata-idUSTRE73P6WB20110426
http://www.reuters.com/article/2011/04/26/us-sony-stoldendata-idUSTRE73P6WB20110426

162

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine
Learning, 2(1), 1-127.

Binkley, J. R., & Singh, S. (2006). An algorithm for anomaly-based botnet detection. In

Proceedings of the 2nd Conference on Steps to Reducing Unwanted Traffic on the
Internet - Volume 2 (Article 7). Berkeley, CA: USENIX Association.

Binsalleeh, H., Ormerod, T., Boukhtouta, A., Sinha, P., Youssef, A., Debbabi, M., & Wang, L.

(2010). On the analysis of the zeus botnet crimeware toolkit. In 2010 Eighth Annual
International Conference on Privacy Security and Trust (pp. 31-38). Washington, DC:
IEEE.

Boulanger, (1998). Catapults and grappling hooks: the tools and techniques of information

warfare. IBM Systems Journal, 37(1), 106-114.

Brezo, F., Santos, I., Bringas, P. G., & del Val, J. L. (2011). Challenges and limitations in

current botnet detection. In 22nd International Workshop on Database and Expert
Systems Applications (pp. 95-101). Washington, DC: IEEE Computer Society.

Celik, Z. B., Raghuram, J., Kesidis, G. & Miller, D. J. (2011). Salting public traces with attack

traffic to test flow classifiers. In 2011 Cyber Security Experimentation and Test
Workshop. Berkeley, CA: USENIX Association.

Choi, H., Lee, H., & Kim, H. (2009). BotGAD: detecting botnets by capturing group activities

in network traffic. In Proceedings of the Fourth International ICST Conference on
Communication System Software and Middleware (Article 2). New York: ACM.

Coates, A., Lee, H., & Ng, A. Y. (2011). An analysis of single-layer networks in unsupervised

feature learning. In Proceeding of the 14th International Conference on Artificial
Intelligence and Statistics. Retrieved March 24, 2013 from
http://jmlr.csail.mit.edu/proceedings/papers/v15/.

Cohen, W. W. (1995). Fast effective rule induction. In Machine Learning 12th International

Conference. San Francisco, CA: Morgan Kaufmann.

Cooke, E., Jahanian, F., & McPherson, D. (2005). The zombie roundup: understanding,

detecting, and disrupting botnets. In Proceedings of the Steps to Reducing Unwanted
Traffic on the Internet (Article 6). Berkeley, CA: USENIX Association.

Cui, W., Katz, R. H., & Tan, W. (2005). BINDER: an extrusion-based break-in detector for

personal computers. In Proceedings of the USENIX 2005 Annual Technical Conference
(pp. 363-366). Berkeley, CA: USENIX Association.

Dal, D., Abraham, S., Abraham, A., Sanyal, S., & Sanglikar, M. (2008). Evolution induced

secondary immunity: an artificial immune system based intrusion detection system. In

http://jmlr.csail.mit.edu/proceedings/papers/v15/

163

International Conference on Computer Information Systems and Industrial Management
Applications (pp. 65-70). Washington, DC: IEEE.

Dasgupta, D. (1999). An overview of artificial immune systems and their applications. In D.

Dasgupta (Ed.), Artificial Immune Systems and Their Applications (pp. 3-21). Berlin:
Springer.

Dasgupta, D., & Forrest, S. (1995). Tool breakage detection in milling operations using a

negative-selection algorithm (Department of Computer Science Technical Report No.
CS95-5). Albuquerque, NM: University of New Mexico.

Dasgupta, D., & Forrest, S. (1996). Novelty detection in time series data using ideas from

immunology. In Proceedings of the ISCA 5th International Conference on Intelligent
Systems. Cary, NC: ISCA.

Dasgupta, D., & Forrest, S. (1999). An anomaly detection algorithm inspired by the immune

system. In D. Dasgupta (Ed.), Artificial Immune Systems and Their Applications (pp.
262-277). Berlin: Springer.

Dasgupta, D., Krishnakumar, K., Wong, D., & Berry, M. (2004). Negative selection algorithm

for aircraft fault detection. In G. Nicosia, V. Cutello, P. Bentley, & J. Timmis (Eds.)
Artificial Immune Systems, Third International Conference, ICARIS 2004. Lecture Notes
in Computer Science 3239 (pp. 1-14). Berlin: Springer.

de Castro, L. N., & Timmis, J. (2002). Artificial Immune Systems: A New Computational

Intelligence Approach. Berlin: Springer.

de Castro, L. N., & Von Zuben, F. J. (2000). The clonal selection algorithm with engineering

applications. In Proceedings of GECCO ‘00 Workshop on Artificial Immune Systems and
Their Applications (pp. 36-37). San Francisco: Morgan Kaufman.

de Castro, L. N., & Von Zuben, F. J. (2001). aiNet: an artificial immune network for data

analysis. In H. A. Abbass, R. A. Sarker, & C. S. Newton (Eds.) Data Mining: A
Heuristic Approach (pp. 231-260). Oakland: Idea Group Publishing.

de Castro, L. N., & Von Zuben, F. J. (2002). Learning and optimization using the clonal

selection principle. IEEE Transactions on Evolutionary Computation, 6(3), 239-251.

D'haeseleer, P., Forrest, S., & Helman, P. (1996). An immunological approach to change

detection: algorithms, analysis and implications. In 1996 IEEE Symposium on Security
and Privacy (pp. 110). Washington, DC: IEEE.

Dietrich, C. J., Rossow, C., & Pohlmann, N. (2013). CoCoSpot: clustering and recognizing

botnet command and control channels using traffic analysis. Computer Networks, 57,
475-486.

164

Dignan, L. (2011, May 24). Sony’s data breach costs likely to scream higher. ZDNet. Retrieved
January 16, 2012, from http://www.zdnet.com/blog/btl/sonys-data-breach-costs-likely-to-
scream-higher/49161

Domingos, P. (2012). A few useful things to know about machine learning. Communications

of the ACM, 55(10), 78-87.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd ed.) New York:

Wiley.

Ellis, T. J., & Levy, Y. (2010). A guide for novice researchers: design and development

research methods. In Proceedings of Informing Science & IT Education Conference.
Santa Rosa, CA: Informing Science Institute.

Fanelli, R. L. (2008). Network threat detection utilizing adaptive and innate immune system

metaphors. Dissertation Abstracts International, 69 (04). (UMI No. 3311864)

Floreano, D., & Mattiussi, C. (2008). Bio-Inspired Artificial Intelligence: Theories, Methods,

and Technologies. Cambridge, MA: The MIT Press.

Forrest, S., Hofmeyr, S. A., & Somayaji, A. (1997). Computer immunology. Communications

of the ACM, 40(10), 88-96.

Forrest, S., Hofmeyr, S. A., Somayaji, A., & Longstaff, T. A. (1996). A sense of self for Unix

processes. In Proceedings of the 1996 IEEE Conference on Security and Privacy (pp.
120-128). Washington, DC: IEEE.

Forrest, S., Perelson, A. S., Allen, L., & Cherukuri, R. (1994). Self-nonself discrimination in a

computer. In Proceedings of the 1994 IEEE Symposium on Security and Privacy (pp.
202-212). Washington, DC: IEEE.

Goebel, J., & Holz, T. (2007). Rishi: identify bot contaminated hosts by IRC nickname

evaluation. In Proceedings of the First Workshop on Hot Topics in Understanding
Botnets (Article 8). Berkeley, CA: USENIX Association.

Goring, S. P., Rabaiotti, J. R., & Jones, A. J. (2007). Anti-keylogging measures for secure

Internet login: An example of the law of unintended consequences. Computer Security,
26(6), 421-426.

Grégio, A. R. A., Fernandes, D. S., Afonso, V. M., de Geus, P. L., Martins, V. F., & Jino, M.

(2013). An empirical analysis of malicious internet banking software behavior. In
Proceedings of the 28th Annual ACM Symposium on Applied Computing (pp. 1830-
1835). New York: ACM.

http://www.zdnet.com/blog/btl/sonys-data-breach-costs-likely-to-scream-higher/49161
http://www.zdnet.com/blog/btl/sonys-data-breach-costs-likely-to-scream-higher/49161

165

Greensmith, J., & Aickelin, U. (2007). Dendritic cells for SYN scan detection. In Proceedings
of the 9th Annual Conference on Genetic and Evolutionary Computation (pp. 49-56).
New York: ACM.

Greensmith, J., Aickelin, U., & Cayzer, S. (2005). Introducing dendritic cells as a novel

immune inspired algorithm for anomaly detection. In C. Jacob, M. Pilat, P. Bentley, & J.
Timmis (Eds.) Artificial Immune Systems, 4th International Conference, ICARIS 2005.
Lecture Notes in Computer Science 3627 (pp. 29-42). Berlin: Springer.

Greensmith, J., Aickelin, U., & Tedesco, G. (2010). Information fusion for anomaly detection

with the dendritic cell algorithm. Information Fusion, 11(1), 21-34.

Gu, G. (2008). Correlation-based botnet detection in enterprise networks. Dissertation

Abstracts International, 69 (09). (UMI No. 3327579)

Gu, G., Perdisci, R., Zhang, J., & Lee, W. (2008). BotMiner: clustering analysis of network

traffic for protocol- and structure-independent botnet detection. In Proceedings of the
17th USENIX Security Symposium (pp. 139-154). Berkeley, CA: USENIX Association.

Gu, G., Porras, P., Yegneswaran, V., Fong, M., & Lee, W. (2007). BotHunter: detecting

malware infection through IDS-driven dialog correlation. In Proceedings of the 16th
USENIX Security Symposium (Article 12). Berkeley, CA: USENIX Association.

Guyon, I. (2007). Introduction to machine learning. Videolectures.net. Retrieved November 10,

2012, from http://videolectures.net/bootcamp07_guyon_itml/.

Guyon, I. & Elisseeff, A. (2006). An introduction to feature extraction. In I. Guyon, S. Gunn,

M. Nikravesh, & L. Zadeh (Eds.) Feature Extraction, Foundations and Applications.
Series Studies in Fuzziness and Soft Computing (pp. 1-24). Berlin: Springer.

Haddadi, F., Runkel, D., Zincir-Heywood, A. N., & Heywood, M. I. (2014). On botnet

behaviour analysis using GP and C4.5. In Proceedings of the 2014 conference companion
on Genetic and evolutionary computation companion (pp. 1253-1260). New York: ACM.

Haq, O., Ahmed, W., & Syed, A. A. (2014). Titan: Enabling low overhead and multi-faceted

network fingerprinting of a bot. In Proceedings of the 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (pp. 37-44). Washington,
DC: IEEE.

Hempstalk, K. (2009). Continuous typist verification using machine learning. The University of

Waikato Research Commons. Retrieved October 30, 2012, from
http://researchcommons.waikato.ac.nz/handle/10289/3282

Hinton, G.E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets.

Neural Computation, 18, 1527-1554.

http://videolectures.net/bootcamp07_guyon_itml/
http://researchcommons.waikato.ac.nz/handle/10289/3282

166

Hofmeyr, S. A., & Forrest, S. (2000). Architecture for an artificial immune system.
Evolutionary Computation, 8(4), 443-473.

Holmes, G., Donkin, A., & Witten, I. H. (1994). WEKA: A machine learning workbench. In

Proceedings of the 1994 Second Australian and New Zealand Conference on Intelligent
Information Systems (pp. 357-361). Washington, DC: IEEE.

Jacob, G., Hund, R., Kruegel, C., & Holz, T. (2011). Jackstraws: picking command and control

connections from bot traffic. In Proceedings of the 20th USENIX Conference on Security
(Article 29). Berkeley, CA: USENIX Association.

Javelin Strategy & Research (2011, February). 2011 identity fraud survey report: consumer

version. Retrieved January 16, 2012, from
https://www.javelinstrategy.com/lp/idfraudsurvey

Jerne, N. K. (1974). Towards a network theory of the immune system. Annals of Immunology,

125C, 373-389.

Jolliffe, I. T. (2002). Principal Component Analysis (2nd ed.). New York: Springer.

Karasaridis, A., Rexroad, B., & Hoeflin, D. (2007). Wide-scale botnet detection and

characterization. In Proceedings of the First Workshop on Hot Topics in Understanding
Botnets (Article 7). Berkeley, CA: USENIX Association.

Kephart, J. O., Sorkin, G. B., Arnold, W. C., Chess, D. M., Tesauro, G. J., & White, S. R.

(1995). Biologically inspired defenses against computer viruses. In Proceedings of the
14th International Joint Conference on Artificial Intelligence - Volume 1 (pp. 985-996).
San Francisco: Morgan Kaufmann.

Kirk, A. (2010). Analysis of the Zeus Trojan. Retrieved February 24, 2013, from

https://labs.snort.org/papers/zeus.html.

Kocak, F., Miller, D. J., & Kesidis, G. (2014). Detecting anomalous latent classes in a batch of

network traffic flows. In 2014 48th Annual Conference on Information Sciences and
Systems (pp. 1-6). Washington, DC: IEEE.

Kountz, E. (2009). US Internet Banking Forecast, 2009 to 2014. Retrieved March 7, 2012,

from http://www.forrester.com.

Le, Q. V., Ranzato, M. A., Monga, R., Devin, M., Chen, K., Corrado, G. S., Dean, J., & Ng, A.

Y. (2012). Building high-level features using large scale unsupervised learning. In
Proceedings of the 29th International Conference on Machine Learning.

Lee, W., Wang, C. & Dagon, D. (2007). Botnet detection: countering the largest security

threat. In W. Lee, C. Wang, & D. Dagon (Eds.) Botnet Detection: Countering the Largest
Security Threat. Advances in Information Security, Volume 36. New York: Springer.

https://www.javelinstrategy.com/lp/idfraudsurvey
https://labs.snort.org/papers/zeus.html
http://www.forrester.com/

167

Levine, J. G., Grizzard, J. B., Hutto, P. W., & Owen, H. L. (2004). A methodology to

characterize kernel level rootkit exploits that overwrite the system call table. In
Proceedings of IEEE SoutheastCon 2004 (pp 25-31). Washington, DC: IEEE.

Levy, Y., & Ellis, T. J. (2006). A systems approach to conduct an effective literature review in

support of information systems research. Informing Science Journal, 9, 181-212.

Liu, Y., Corbett, C., Chiang, K., Archibald, R., Mukherjee, B., & Ghosal, D. (2009). SIDD: A

framework for detecting sensitive data exfiltration by an insider attack. In 42nd Hawaii
International Conference on System Sciences (pp. 1-10). Washington, DC: IEEE.

Livadas, C., Walsh, R., Lapsley, D., & Strayer, W. T. (2006). Using machine learning

techniques to identify botnet traffic. In Proceedings of the 2006 31st IEEE Conference on
Local Computer Networks (pp. 967-974). Washington, DC: IEEE.

Lu, C., & Brooks, R. R. (2012). P2P hierarchical botnet traffic detection using hidden Markov

models. In Proceedings of the 2012 Workshop on Learning from Authoritative Security
Experiment Results (pp. 41-46). New York: ACM.

Martinez, W. L., & Martinez, A. R. (2008). Computational statistics handbook with MATLAB

(2nd ed.). New York: Chapman & Hall.

Matzinger, P. (1994). Tolerance, danger, and the extended family. Annual Review of

Immunology, 12, 991-1045.

McAfee (2011). McAfee threats report: fourth quarter 2010. Retrieved November 20, 2011,

from http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2010.pdf

McAfee (2012). McAfee threats reports: fourth quarter 2011. Retrieved July 21, 2012, from

http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2011.pdf

Mitchell, T. M. (1997). Machine Learning. New York: McGraw Hill.

Mohaisen, A., & Alrawi, O. (2013). Unveiling Zeus: automated classification of malware

samples. In Proceedings of the 22nd International Conference on World Wide Web
companion (pp. 829-832). International World Wide Web Conferences Steering
Committee.

Murray, I. (2010). Introduction to machine learning. Videolectures.net. Retrieved November

10, 2012, from http://videolectures.net/bootcamp2010_murray_iml/.

Nunnery, C. E. (2011). Advances in modern botnet understanding and the accurate

enumeration of infected hosts. Dissertation Abstracts International, 72 (09). (UMI No.
3457925)

http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2010.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2011.pdf
http://videolectures.net/bootcamp2010_murray_iml/

168

Oro, D., Luna, J., Felguera, T., Vilanova, M. & Serna, J. (2010). Benchmarking IP blacklists
for financial botnet detection. In Proceedings of the 2010 Sixth International Conference
on Information Assurance and Security (pp. 62-67). Washington, DC: IEEE.

Ponemon Institute, LLC. (2011, March). 2010 annual study: U.S. cost of a data breach.
Retrieved January 16, 2012, from
http://www.symantec.com/content/en/us/about/media/pdfs/symantec_ponemon_data_bre
ach_costs_report.pdf

Porras, P., Saidi, H., & Yegneswaran, V. (2009). A foray into conficker’s logic and rendezvous

points. In LEET ’09: Proceedings of the 2nd USENIX Conference on Large-scale
Exploits and Emergent Threats. Berkeley, CA: USENIX Association.

Ramachandran, A., Feamster, N., & Dagon, D. (2006). Revealing botnet membership using

dnsbl counter-intelligence. In Proceeding of the 2nd Workshop on Steps to Reducing
Unwanted Traffic on the Internet (pp. 49-54). Berkeley, CA: USENIX Association.

Riccardi, M., Di Pietro, R., Palanques, M., & Vila, J. A. (2013). Titans’ revenge: Detecting

Zeus via its own flaws. Computer Networks, 57(2), 422-435.

Riccardi, M., Di Pietro, R., & Vila, J. A. (2011). Taming Zeus by leveraging its own crypto

internals. In Proceeding of the 2011 eCrime Researchers Summit (pp. 1-9). Washington,
DC: IEEE.

Rieck, K. (2011). Computer security and machine learning: worst enemies or best friends? In

Proceedings of the 2011 First SysSec Workshop (pp. 107-110). Washington, DC: IEEE.

Rossow, C., Dietrich, C. J., Bos, H., Cavallaro, L., van Steen, M., Freiling, F. C., & Pohlmann,

N. (2011). Sandnet: network traffic analysis of malicious software. In Proceedings of the
First Workshop on Building Analysis Datasets and Gathering Experience Returns for
Security (pp. 78-88). New York: ACM.

Sadasivam, K., Samudrala, B., & Yang, A. (2005). Design of network security projects using

honeypots. Journal of Computing in Small Colleges, 20(4), 282-293.

Schiller, C. & Binkley, J. (2007). Botnets: The Killer Web Applications. Syngress Publishing.

Shin, S., Gu, G., Reddy, N. & Lee, C. P. (2011). A large-scale empirical study of conficker.

Publication pending. Retrieved February 10, 2012, from
http://people.tamu.edu/~seungwon.shin/

Shin, S., Xu, Z., & Gu, G. (2012). EFFORT: efficient and effective bot malware detection.

Publication pending. Retrieved February 10, 2012, from
http://people.tamu.edu/~seungwon.shin/

http://www.symantec.com/content/en/us/about/media/pdfs/symantec_ponemon_data_breach_costs_report.pdf
http://www.symantec.com/content/en/us/about/media/pdfs/symantec_ponemon_data_breach_costs_report.pdf
http://people.tamu.edu/~seungwon.shin/
http://people.tamu.edu/~seungwon.shin/

169

Stahlberg, M. (2007). U.S. Patent Application No. US 11/806,568. Washington, DC: U.S.
Patent and Trademark Office.

Steinman, R. M. (2004). Dendritic cells: from the fabric of immunology. Clinical &

Investigative Medicine, 27(5), 231-236.

Stibor, T., Timmis, J., & Eckert, C. (2005). A comparative study of real-valued negative

selection to statistical anomaly detection techniques. In C. Jacob, M. Pilat, P. Bentley, &
J. Timmis (Eds.) Artificial Immune Systems, 4th International Conference, ICARIS 2005.
Lecture Notes in Computer Science 3627 (pp. 262-275). Berlin: Springer.

Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer, R., Kruegel,

C., & Vigna, G. (2009). Your botnet is my botnet: analysis of a botnet takeover. In
Proceedings of the 16th ACM Conference on Computer and Communications Security
(pp. 635-647). New York: ACM.

Strayer, W. T., Lapsley, D., Walsh, R., & Livadas, C. (2007). Botnet detection based on

network behavior. In W. Lee, C. Wang, & D. Dagon (Eds.) Botnet Detection: Countering
the Largest Security Threat. Advances in Information Security, Volume 36. New York:
Springer.

Sullivan, B. (2012, January 16). Zappos says hacker may have accessed info on 24 million

customers. MSNBC. Retrieved January 16, 2012, from
http://redtape.msnbc.msn.com/_news/2012/01/16/10163952-zappos-says-hacker-may-
have-accessed-info-on-24-million-customers

Sumner, D. (2010). Mobile Banking: A Growing and Lucrative Market. Retrieved March 7,

2012, from http://blog.nielsen.com/nielsenwire/consumer

Symantec (2011, April). Symantec Internet security threat report: trends for 2010. Retrieved

November 20, 2011, from http://www.symantec.com/threatreport/

Timmis, J. (2000). Artificial immune systems: a novel data analysis technique inspired by the

immune network theory. Ph.D. Dissertation, University of Wales, Aberystwyth, UK.

Timmis, J. (2007). Artificial immune systems - today and tomorrow. Natural Computing, 6(1),

1-18.

Ugarte-Pedrero, X., Santos, I., Sanz, B., Laorden, C., & Bringas, P. G. (2012). Countering

entropy measure attacks on packed software. In Proceedings of the 2012 IEEE
Consumer Communications and Networking Conference (pp. 164-168). Washington,
DC: IEEE.

Timmis, J., & Neal, M. (2001). A resource limited artificial immune system for data analysis.

Knowledge Based Systems, 14, 121-130.

http://redtape.msnbc.msn.com/_news/2012/01/16/10163952-zappos-says-hacker-may-have-accessed-info-on-24-million-customers
http://redtape.msnbc.msn.com/_news/2012/01/16/10163952-zappos-says-hacker-may-have-accessed-info-on-24-million-customers
http://blog.nielsen.com/nielsenwire/consumer
http://www.symantec.com/threatreport/

170

Venkatesh, G. K., & Nadarajan, R. A. (2012). HTTP botnet detection using adaptive learning
rate multilayer feed-forward neural network. In I. Askoxylakis, H. Pöhls, & J. Posegga
(Eds.) Information Security Theory and Practice. Security, Privacy and Trust in
Computing Systems and Ambient Intelligent Ecosystems. Lecture Notes in Computer
Science 7322 (pp. 38-48). Berlin: Springer.

Verizon (2012). 2012 Data Breach Investigations Report. Retrieved July 18, 2012, from

http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-
2012_en_xg.pdf

Villamarín-Salomón, R., & Brustoloni, C. (2009). Bayesian bot detection based on DNS traffic

similarity. In Proceedings of the 2009 ACM Symposium on Applied Computing (pp.
2035-2041). New York: ACM.

Wang, K., & Stolfo, S. (2004). Anomalous payload-based network intrusion detection. In E.

Jonsson, A. Valdes, & M. Almgren (Eds.) Recent Advances in Intrusion Detection.
Lecture Notes in Computer Science (pp. 203-222). Berlin: Springer.

Warrender, C., Forrest, S., & Pearlmutter, B. (1999). Detecting intrusions using system calls:

alternative data models. In 1999 IEEE Symposium on Security and Privacy (pp. 133).
Washington, DC: IEEE.

Witten, I. H., & Frank, E. (2005). Data mining: practical machine learning tools and

techniques (2nd ed.). New York: Elsevier.

Yen, T-F., & Reiter, M. K. (2008). Traffic aggregation for malware detection. In Proceedings

of the 5th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (pp. 207-227). Berlin: Springer.

Zeidanloo, H. R., Hosseinpur, F., & Borazjani, P. N. (2010). Botnet detection based on

common network behaviors by utilizing artificial immune system (AIS). In 2010 2nd
International Conference on Software Technology and Engineering (ICSTE), Vol. 1 (pp.
21-25). Washington, DC: IEEE.

Zhang, J., Luo, X., Perdisci, R., Gu, G., Lee, W., & Feamster, N. (2011). Boosting the

scalability of botnet detection using adaptive traffic sampling. In Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security (pp. 124-134).
New York: ACM.

Zhang, L., Yu, S., Wu, D., & Watters, P. (2011). A survey on latest botnet attack and defense.

In 2011 IEEE 10th International Conference on Trust, Security and Privacy in
Computing and Communications (pp. 53-60). Washington, DC: IEEE.

Zhang, Y., Zhai, Y., Du, Z., & Liu, D. (2007). Study of an adaptive immune detection

algorithm for anomaly detection. In Proceedings of the 2007 International Conference

http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf

171

on Computational Intelligence and Security (574-578). Washington, DC: IEEE
Computer Society.

Zhengbing, H., Ji, Z., & Ping, M. (2008). A novel anomaly detection algorithm based on real-

valued negative selection system. In First International Workshop on Knowledge
Discovery and Data Mining (pp. 499-502). Washington, DC: IEEE.

172

Appendix A

Deep Packet Inspection of 2014 Zeus Malware Samples

173

Appendix Details of Analysis

 The detailed analysis presented in this Appendix revealed new knowledge about the

network behavior of contemporary variants of the Zeus botnet from samples captured in

the wild during March and April of 2014. A total of fifteen sample network trace files

were initially examined. Seven of the samples, all those that employed the domain

generation algorithm (DGA), were found to contain no HTTP POST requests and

therefore not included here. The infected clients in those samples did not send any

content to the malicious servers, detection of which was the focus of this research. Eight

of the samples were found to contain HTTP POST requests with encrypted content,

consistent with the communications behavior reported for Zeus by previous researchers.

The HTTP requests and responses in each of these samples were thoroughly analyzed at

the inter-packet level to gain deeper insight into their observable network behavior and to

determine which corresponding netflows would be most appropriate for training and

testing the detection techniques in this research.

Sample File 32c collected on 03 Apr 2014 with total time of 4 minutes 54 seconds

 This network trace sample file consisted of 16 successful TCP connections, as

summarized in Table A-1. A column is included in the table to indicate whether the

connection was preceded by a DNS query when the HTTP Host Header field specified a

domain name as opposed to an IP address. In this case domain names were specified for

the suspicious servers.

Table A-1. Summary of Connections in File 32c

Source Port Destination IP HTTP Host Header DNS?

174

Source Port Destination IP HTTP Host Header DNS?

1043 173.255.227.44 tandembikesoftware.com Yes

1044 92.51.171.104 moneytrax.de Yes

1045 92.51.171.104 moneytrax.de n/a

1046 92.51.171.104 moneytrax.de n/a

1047 92.51.171.104 moneytrax.de n/a

1048 92.51.171.104 moneytrax.de n/a

1049 92.51.171.104 moneytrax.de n/a

1050 92.51.171.104 moneytrax.de n/a

1051 92.51.171.104 moneytrax.de n/a

1052 92.51.171.104 moneytrax.de n/a

1053 92.51.171.104 moneytrax.de n/a

1054 92.51.171.104 moneytrax.de n/a

1055 92.51.171.104 moneytrax.de n/a

1056 92.51.171.104 moneytrax.de n/a

1057 92.51.171.104 moneytrax.de n/a

1058 92.51.171.104 moneytrax.de n/a

First Connection: Source Port 1043, Destination IP 173.255.227.44

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request, a POST method, specified a resource named “file.php” along with its

relative path. The request included a message body (entity-body) with a length of 120

175

bytes. The message body contained no readable text. The Connection header specified

Keep-Alive to explicitly maintain a persistent connection after the response was

complete, suggesting that additional requests might follow. The Cache-Control header

specified No-Cache to prevent caching by all caching mechanisms in proxies or gateways

along the request chain. The response, successful status code 200 OK, included a

message body with a length of 118 bytes and no readable text. The Cache-Control header

used multiple tokens (values) to prevent caching along the request chain. The Expires

header specified a date and time in the distant past (1981). This is not a prescribed way

to use this header, according to RFC 2616, and may indicate a redundant effort to prevent

caching. The Content-Type header specified Text/Html and the message body content

was in fact readable text.

POST /phpbb2/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: tandembikesoftware.com

Content-Length: 120

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 03 Apr 2014 21:11:50 GMT

Server: Apache/2.2.14 (Ubuntu)

X-Powered-By: PHP/5.3.2-1ubuntu4.18

Set-Cookie: TW_APP=fu2e6mq7rc1f07cg5flmqnft77; path=/;

domain=.tandembikesoftware.com

Expires: Thu, 19 Nov 1981 08:52:00 GMT

176

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-

check=0

Pragma: no-cache

Vary: Accept-Encoding

Content-Length: 118

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

Fatal error: Class 'Phpbb2Controller' not found in

/srv/www/tandembikesoftware.com/public_html/index.php on line 547

 A query of ZeuS Tracker produced no matches for the IP Address 173.255.227.44 or

the domain name “tandembikesoftware.com” of the server observed in this connection.

A query using whois indicated that the IP address belonged to a block assigned to an ISP

in the United States and the domain name had been registered to an individual in the

United States for at least three years.

 For this connection, Argus created three flows, one for the HTTP request and response,

and two with packets to close the connection.

Table A-2: Flows from First Connection in File 32c

sport daddr dport dur sbytes dbytes spkts dpkts

1043 173.255.227.44 80 0.540241 572 763 4 3

1043 173.255.227.44 80 0.000000 60 54 1 1

1043 173.255.227.44 80 0.000000 60 0 1 0

Second Connection: Source Port 1044, Destination IP 92.51.171.104

177

 The HTTP content over this TCP connection consisted of two requests from the local

client to the remote server with corresponding responses from the remote server. The

first request, a POST method, specified a resource named “file.php” along with its

relative path. The request included a message body with a length of 120 bytes. The

message body contained no readable text. The Connection header specified Keep-Alive

to explicitly maintain a persistent connection after the response was complete, suggesting

that additional requests might follow. The Cache-Control header specified No-Cache to

prevent caching by all caching mechanisms in proxies or gateways along the request

chain. The response, redirection status code 301 Moved Permanently, did not include a

message body. The Cache-Control header used multiple tokens to prevent caching along

the request chain. The Expires header again specified a date in the past. The Location

header specified a complete URI for the new location. The X-Pingback header was used

in this response with a resource (xmlrpc.php) that suggested notification via a remote

procedure call. This technique would allow the remote host to track requests.

POST /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: moneytrax.de

Content-Length: 120

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 301 Moved Permanently

Date: Thu, 03 Apr 2014 21:11:50 GMT

178

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Location: http://www.moneytrax.de/images/upload/file.php

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

 The second request, a POST method, specified a resource named “file.php” along with

its relative path. This request also included a message body with a length of 120 bytes.

The message body contained no readable text, but was identical to the message body in

the previous request. The second response, redirection status code 301 Moved

Permanently, was essentially the same as the first response only time-stamped one second

later.

POST /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: moneytrax.de

Content-Length: 120

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 301 Moved Permanently

Date: Thu, 03 Apr 2014 21:11:51 GMT

Server: Apache/2.2.22 (Ubuntu)

179

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Location: http://www.moneytrax.de/images/upload/file.php

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=1, max=99

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

 A query of ZeuS Tracker produced no matches for the IP address 92.51.171.104 or the

domain name “moneytrax.de” of the server observed in this connection. A query using

whois indicated that the IP address belonged to a block assigned to a company in

Germany and the domain name had also been registered to a company in Germany for

more than seven years.

 For this connection, Argus created two flows, one for the HTTP requests and

responses, and one with packets to close the connection.

Table A-3: Flows from Second Connection in File 32c

sport daddr dport dur sbytes dbytes spkts dpkts

1044 92.51.171.104 80 2.173191 1076 1377 7 7

1044 92.51.171.104 80 0.068973 60 54 1 1

Third Connection: Source Port 1045, Destination IP 92.51.171.104

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request in this case was a GET method specifying the “file.php” resource as before.

180

The request did not include a message body. Again the Cache-Control header specified

No-Cache to prevent caching. The response, error status code 404 Not Found, did

include a message body. Again the X-Pingback header was used and the Expires header

with past date was used. The Content-Type header specified Text/html and the content

was readable text.

GET /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.moneytrax.de

Connection: Keep-Alive

Cache-Control: no-cache

HTTP/1.1 404 Not Found

Date: Thu, 03 Apr 2014 21:11:51 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Vary: Accept-Encoding

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

(html content removed)

 For this connection, Argus created one flow.

181

Table A-4: Flows from Third Connection in File 32c

sport daddr dport dur sbytes dbytes spkts dpkts

1045 92.51.171.104 80 0.431740 911 13829 12 13

Fourth Connection: Source Port 1046, Destination IP 92.51.171.104

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request and response were essentially the same as in the previous connection.

GET /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.moneytrax.de

Connection: Keep-Alive

Cache-Control: no-cache

HTTP/1.1 404 Not Found

Date: Thu, 03 Apr 2014 21:11:52 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Vary: Accept-Encoding

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

182

(html content removed)

 For this connection, Argus created one flow.

Table A-5: Flows from Fourth Connection in File 32c

sport daddr dport dur sbytes dbytes spkts dpkts

1046 92.51.171.104 80 0.419103 911 13775 12 12

Fifth Connection: Source Port 1047, Destination IP 92.51.171.104

 The HTTP content over this TCP connection consisted of two requests from the local

client to the remote server with corresponding responses from the remote server. These

requests and responses repeated those in the second connection, only the timestamps of

the responses were different.

POST /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: moneytrax.de

Content-Length: 120

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 301 Moved Permanently

Date: Thu, 03 Apr 2014 21:11:57 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

183

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Location: http://www.moneytrax.de/images/upload/file.php

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

POST /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: moneytrax.de

Content-Length: 120

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 301 Moved Permanently

Date: Thu, 03 Apr 2014 21:11:58 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Location: http://www.moneytrax.de/images/upload/file.php

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=1, max=99

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

184

 For this connection, Argus created two flows, one for the requests and responses and

another with packets to close the connection.

Table A-6: Flows from Fifth Connection in File 32c

sport daddr dport dur sbytes dbytes spkts dpkts

1047 92.51.171.104 80 2.090312 1076 1323 7 6

1047 92.51.171.104 80 0.070885 60 54 1 1

Sixth Connection: Source Port 1048, Destination IP 92.51.171.104

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request and response repeated those in the fourth connection, only the response

timestamps were different.

GET /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.moneytrax.de

Connection: Keep-Alive

Cache-Control: no-cache

HTTP/1.1 404 Not Found

Date: Thu, 03 Apr 2014 21:11:57 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

185

Vary: Accept-Encoding

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

(html/script content removed)

 For this connection, Argus created one flow.

Table A-7: Flows from Sixth Connection in File 32c

sport daddr dport dur sbytes dbytes spkts dpkts

1048 92.51.171.104 80 0.443478 911 13775 12 12

Seventh Connection: Source Port 1049, Destination IP 92.51.171.104

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request and response in this connection again repeated those in the fourth and sixth

connections.

GET /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.moneytrax.de

Connection: Keep-Alive

Cache-Control: no-cache

HTTP/1.1 404 Not Found

Date: Thu, 03 Apr 2014 21:11:58 GMT

186

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Vary: Accept-Encoding

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

(html/script content removed)

 For this connection, Argus created one flow.

Table A-8: Flows from Seventh Connection in File 32c

sport daddr dport dur sbytes dbytes spkts dpkts

1049 92.51.171.104 80 0.421246 911 13775 12 12

Eighth Connection: Source Port 1050, Destination IP 92.51.171.104

 The HTTP content over this TCP connection consisted of two requests from the local

client to the remote server with corresponding responses from the remote server. Again

the requests and responses were repeats of earlier connections.

POST /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: moneytrax.de

Content-Length: 120

187

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 301 Moved Permanently

Date: Thu, 03 Apr 2014 21:12:04 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Location: http://www.moneytrax.de/images/upload/file.php

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

POST /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: moneytrax.de

Content-Length: 120

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 301 Moved Permanently

Date: Thu, 03 Apr 2014 21:12:04 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

188

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Location: http://www.moneytrax.de/images/upload/file.php

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=1, max=99

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

 For this connection, Argus created two flows, one for the requests and responses and

another with packets to close the connection.

Table A-9: Flows from Eighth Connection in File 32c

sport daddr dport dur sbytes dbytes spkts dpkts

1050 92.51.171.104 80 2.086494 1076 1323 7 6

1050 92.51.171.104 80 0.069114 60 54 1 1

Ninth Connection: Source Port 1051, Destination IP 92.51.171.104

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

Again the request and response were repeats of earlier connections.

GET /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.moneytrax.de

Connection: Keep-Alive

Cache-Control: no-cache

189

HTTP/1.1 404 Not Found

Date: Thu, 03 Apr 2014 21:12:04 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Vary: Accept-Encoding

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

(html/script content removed)

 For this connection, Argus created one flow.

Table A-10: Flows from Ninth Connection in File 32c

sport daddr dport dur sbytes dbytes spkts dpkts

1051 92.51.171.104 80 0.418963 911 13775 12 12

Tenth Connection: Source Port 1052, Destination IP 92.51.171.104

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

Again the request and response were repeats of earlier connections.

GET /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

190

Host: www.moneytrax.de

Connection: Keep-Alive

Cache-Control: no-cache

HTTP/1.1 404 Not Found

Date: Thu, 03 Apr 2014 21:12:05 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Vary: Accept-Encoding

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

(html/script content removed)

 For this connection, Argus created one flow.

Table A-11: Flows from Tenth Connection in File 32c

sport daddr dport dur sbytes dbytes spkts dpkts

1052 92.51.171.104 80 0.419469 911 13775 12 12

Eleventh Connection: Source Port 1053, Destination IP 92.51.171.104

 The HTTP content over this TCP connection consisted of two requests from the local

client to the remote server with corresponding responses from the remote server. Again

the requests and responses were repeats of earlier connections.

191

POST /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: moneytrax.de

Content-Length: 120

Connection: Keep-Alive

Cache-Control: no-cache

(binary content removed)

HTTP/1.1 301 Moved Permanently

Date: Thu, 03 Apr 2014 21:12:10 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Location: http://www.moneytrax.de/images/upload/file.php

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

POST /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: moneytrax.de

Content-Length: 120

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

192

HTTP/1.1 301 Moved Permanently

Date: Thu, 03 Apr 2014 21:12:11 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Location: http://www.moneytrax.de/images/upload/file.php

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=1, max=99

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

 For this connection, Argus created two flows, one for the requests and responses and

another with packets to close the connection.

Table A-12: Flows from Eleventh Connection in File 32c

sport daddr dport dur sbytes dbytes spkts dpkts

1053 92.51.171.104 80 2.125171 1076 1323 7 6

1053 92.51.171.104 80 0.070738 60 54 1 1

Twelfth Connection: Source Port 1054, Destination IP 92.51.171.104

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

Again the request and response were repeats of earlier connections.

GET /images/upload/file.php HTTP/1.1

Accept: */*

193

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.moneytrax.de

Connection: Keep-Alive

Cache-Control: no-cache

HTTP/1.1 404 Not Found

Date: Thu, 03 Apr 2014 21:12:10 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Vary: Accept-Encoding

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

(html/script content removed)

 For this connection, Argus created one flow.

Table A-13: Flows from Twelfth Connection in File 32c

sport daddr dport Dur sbytes dbytes spkts dpkts

1054 92.51.171.104 80 0.427232 911 13775 12 12

Thirteenth Connection: Source Port 1055, Destination IP 92.51.171.104

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

Again the request and response were repeats of earlier connections.

194

GET /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.moneytrax.de

Connection: Keep-Alive

Cache-Control: no-cache

HTTP/1.1 404 Not Found

Date: Thu, 03 Apr 2014 21:12:11 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Vary: Accept-Encoding

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

(html/script content removed)

 For this connection, Argus created one flow.

Table A-14: Flows from Thirteenth Connection in File 32c

sport daddr dport dur sbytes dbytes spkts dpkts

1055 92.51.171.104 80 0.419937 911 13775 12 12

195

Fourteenth Connection: Source Port 1056, Destination IP 92.51.171.104

 The HTTP content over this TCP connection consisted of two requests from the local

client to the remote server with corresponding responses from the remote server. Again

the requests and responses were repeats of earlier connections.

POST /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: moneytrax.de

Content-Length: 120

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 301 Moved Permanently

Date: Thu, 03 Apr 2014 21:12:17 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Location: http://www.moneytrax.de/images/upload/file.php

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

POST /images/upload/file.php HTTP/1.1

Accept: */*

196

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: moneytrax.de

Content-Length: 120

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 301 Moved Permanently

Date: Thu, 03 Apr 2014 21:12:17 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Location: http://www.moneytrax.de/images/upload/file.php

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=1, max=99

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

 For this connection, Argus created one flow.

Table A-15: Flows from Fourteenth Connection in File 32c

sport daddr dport dur sbytes dbytes spkts dpkts

1056 92.51.171.104 80 2.115750 1076 1323 7 6

Fifteenth Connection: Source Port 1057, Destination IP 92.51.171.104

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

Again the request and response were repeats of earlier connections.

197

GET /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.moneytrax.de

Connection: Keep-Alive

Cache-Control: no-cache

HTTP/1.1 404 Not Found

Date: Thu, 03 Apr 2014 21:12:17 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Vary: Accept-Encoding

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

(html/script content removed)

 For this connection, Argus created one flow.

Table A-16: Flows from Fifteenth Connection in File 32c

sport daddr dport dur sbytes dbytes spkts dpkts

1057 92.51.171.104 80 0.429810 911 13775 12 12

198

Sixteenth Connection: Source Port 1058, Destination IP 92.51.171.104

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

Again the request and response were repeats of earlier connections.

GET /images/upload/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.moneytrax.de

Connection: Keep-Alive

Cache-Control: no-cache

HTTP/1.1 404 Not Found

Date: Thu, 03 Apr 2014 21:12:18 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.10

X-Pingback: http://www.moneytrax.de/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Vary: Accept-Encoding

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

(html/script content removed)

For this connection, Argus created one flow.

199

Table A-17: Flows from Sixteenth Connection in File 32c

sport daddr dport dur sbytes dbytes spkts dpkts

1058 92.51.171.104 80 0.428781 911 13775 12 12

 In this sample file (32c), the bot received a successful response from the first server,

but did not receive a successful response from the second server, even after multiple

attempts. As a result, not much was learned about the network communications behavior

based on the connections in this sample. The infected client made requests using both the

POST and GET methods. The POST requests each included an encrypted message body

but the GET requests did not. In all cases a resource named “file.php” was specified.

The message body returned in the response to the failed GET request was an HTML text

document with its language set to German, which is consistent with the domain

registration. The sequence and timing of requests, based on the Date header in the

responses, appeared to be two POST requests followed by two GET requests every five

seconds. This was likely due to the fact that the server was not finding that resource.

Note that the bot made several failed attempts to contact IP address 91.220.62.10,

registered to a Russian service provider, before a DNS query of tandembikesoftware.com

returned the IP address 173.255.227.44 and the first connection was established.

Immediately following that first connection, a DNS query of moneytrax.de returned the

IP address 92.51.171.104 seen in all subsequent connections. According to ZeuS

Tracker, none of these IP addresses were previously identified as Zeus servers.

200

Sample File b8c collected on 27 Mar 2014 with total time of 5 minutes 4 seconds

 This network trace sample file consisted of 15 successful TCP connections, as

summarized in the following table. A column is included in the table to indicate whether

the connection was preceded by a DNS query when the HTTP Host Header field

specified a domain name as opposed to an IP address. In this case an IP address was

specified for the suspicious server.

Table A-18: Summary of Connections in File b8c

Source Port Destination IP HTTP Host Header DNS?

1029 37.0.123.150 37.0.123.150 n/a

1030 37.0.123.150 37.0.123.150 n/a

1032 173.194.67.105 www.google.com Yes

1033 173.194.67.94 www.google.nl Yes

1034 37.0.123.150 37.0.123.150 n/a

1041 37.0.123.150 37.0.123.150 n/a

1043 37.0.123.150 37.0.123.150 n/a

1044 37.0.123.150 37.0.123.150 n/a

1045 37.0.123.150 37.0.123.150 n/a

1046 37.0.123.150 37.0.123.150 n/a

1047 173.194.67.105 www.google.com Yes

1048 173.194.67.94 www.google.nl Yes

1049 37.0.123.150 37.0.123.150 n/a

1050 37.0.123.150 37.0.123.150 n/a

1055 37.0.123.150 37.0.123.150 n/a

201

First Connection: Source Port 1029, Destination IP 37.0.123.150

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request, a POST method, specified a resource named “o.bin” along with its relative

path. The request included a message body with a length of 122 bytes. The message

body contained no readable text. The Host header specified an IP address rather than a

domain name. The Cache-Control header specified No-Cache to prevent caching by all

caching mechanisms in proxies or gateways along the request chain. The Connection

header specified Keep-Alive to explicitly maintain a persistent connection after the

response was complete, suggesting that additional requests might follow. The response,

successful status code 200 OK, included a message body with a length of 5328 bytes.

The message body contained no readable text, which is consistent with the value of

Application/Octet-stream for the Content-Type header. The Connection header specified

Close to close the connection upon completion. The Last-Modified header was used to

enable cache validation of this resource. The ETag header was also used in this response.

It specified a value to distinguish this entity from other variants of this resource (o.bin).

POST /administrator/cache/modules/tmp/com/o.bin HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: 37.0.123.150

Content-Length: 122

Connection: Keep-Alive

Cache-Control: no-cache

202

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 20:15:30 GMT

Server: Apache/2.2.26 (CentOS)

Last-Modified: Sun, 16 Mar 2014 09:42:42 GMT

ETag: "363668-14d0-4f4b61fd32880"

Accept-Ranges: bytes

Content-Length: 5328

Connection: close

Content-Type: application/octet-stream

(non-readable content removed)

 A query of ZeuS Tracker produced no matches for the server observed in this

connection. A query using whois indicated that the IP address belongs to a block

assigned to a service provider in Russia.

 For this connection, Argus created one flow.

Table A-19: Flows from First Connection in File b8c

sport daddr dport dur sbytes dbytes spkts dpkts

1029 37.0.123.150 80 0.222165 770 6094 7 9

Second Connection: Source Port 1030, Destination IP 37.0.123.150

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request and response in this connection were almost identical to those in the previous

203

connection with one notable exception: the request had a message body with a length of

128 bytes. The response returned the same content with an updated timestamp.

POST /administrator/cache/modules/tmp/com/o.bin HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: 37.0.123.150

Content-Length: 128

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 20:15:27 GMT

Server: Apache/2.2.26 (CentOS)

Last-Modified: Sun, 16 Mar 2014 09:42:42 GMT

ETag: "363668-14d0-4f4b61fd32880"

Accept-Ranges: bytes

Content-Length: 5328

Connection: close

Content-Type: application/octet-stream

(non-readable content removed)

 For this connection, Argus created one flow.

Table A-20: Flows from Second Connection in File b8c

sport daddr dport dur sbytes dbytes spkts dpkts

1030 37.0.123.150 80 0.335894 776 6094 7 9

204

Third Connection: Source Port 1032, Destination IP 173.194.67.105

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was an example of the Google Webhp redirect and beyond the scope of

this work.

GET /webhp HTTP/1.1

Accept: */*

Connection: Close

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.google.com

Cache-Control: no-cache

HTTP/1.1 302 Found

Cache-Control: private

Content-Type: text/html; charset=UTF-8

Location:

http://www.google.nl/webhp?gfe_rd=cr&ei=_YY0U4bJLouB0AXy_YDQAg

Content-Length: 263

Date: Thu, 27 Mar 2014 20:15:57 GMT

Server: GFE/2.0

Alternate-Protocol: 80:quic

Connection: close

(html content removed)

A query using whois indicated that the IP address was assigned to Google, Inc.

 For this connection, Argus created one flow.

205

Table A-21: Flows from Third Connection in File b8c

sport daddr dport dur sbytes dbytes spkts dpkts

1032 173.194.67.105 80 0.247901 467 824 5 5

Fourth Connection: Source Port 1033, Destination IP 173.194.67.94

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was an example of the Google Webhp redirect and beyond the scope of

this work.

GET /webhp?gfe_rd=cr&ei=_YY0U4bJLouB0AXy_YDQAg HTTP/1.1

Accept: */*

Connection: Close

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Cache-Control: no-cache

Host: www.google.nl

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 20:15:58 GMT

Expires: -1

Cache-Control: private, max-age=0

Content-Type: text/html; charset=UTF-8

Set-Cookie:

PREF=ID=035996bfe2cc00fc:FF=0:TM=1395951358:LM=1395951358:S=Fa05PSFNnmB

MOXGF; expires=Sat, 26-Mar-2016 20:15:58 GMT; path=/; domain=.google.nl

Set-Cookie: NID=67=PNF1MlHrllqGvyUScU3-

cu7JJ8uQQoT8PXzsSe_N2IJrh2OgJjsQ3oVOi1MdKwCoKGGjbtigQtEy4z73Z38AqYAh1MY

pWb0SsFcn1xFJmGfCQZH5Fr0JsqFqInG4UCAl; expires=Fri, 26-Sep-2014

20:15:58 GMT; path=/; domain=.google.nl; HttpOnly

P3P: CP="This is not a P3P policy! See

206

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info."

Server: gws

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

Alternate-Protocol: 80:quic

Connection: close

(html/script content removed)

A query using whois indicated that the IP address was assigned to Google, Inc.

 For this connection, Argus created one flow.

Table A-22: Flows from Fourth Connection in File b8c

sport daddr dport dur sbytes dbytes spkts dpkts

1033 173.194.67.94 80 0.324819 1222 30529 17 25

Fifth Connection: Source Port 1034, Destination IP 37.0.123.150

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request, a POST method, was very similar to those in the first two connections

except that a different resource was specified (“t.php”) and the content length was 373

bytes. The response, successful status code 200 OK, included a message body with a

length of 64 bytes. The message bodies of both the request and response contained no

readable text. Again the response specified Close in the Connection header to close the

connection after completion.

207

POST /administrator/cache/modules/tmp/com/t.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: 37.0.123.150

Content-Length: 373

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 20:15:58 GMT

Server: Apache/2.2.26 (CentOS)

X-Powered-By: PHP/5.2.17

Content-Length: 64

Connection: close

Content-Type: text/html; charset=UTF-8

(non-readable content removed)

 For this connection, Argus created one flow.

Table A-23: Flows from Fifth Connection in File b8c

sport daddr dport dur sbytes dbytes spkts dpkts

1034 37.0.123.150 80 0.559220 901 535 5 5

Sixth Connection: Source Port 1041, Destination IP 37.0.123.150

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was nearly identical to the one in the first connection specifying the

“o.bin” resource, only the timestamp of the response was different. However, even

208

though the length of the request message body was again 122 bytes, its content was

different. The content of the response message body was the same.

POST /administrator/cache/modules/tmp/com/o.bin HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: 37.0.123.150

Content-Length: 122

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 20:17:31 GMT

Server: Apache/2.2.26 (CentOS)

Last-Modified: Sun, 16 Mar 2014 09:42:42 GMT

ETag: "363668-14d0-4f4b61fd32880"

Accept-Ranges: bytes

Content-Length: 5328

Connection: close

Content-Type: application/octet-stream

(non-readable content removed)

 For this connection, Argus created one flow.

Table A-24: Flows from Sixth Connection in File b8c

sport daddr dport dur sbytes dbytes spkts dpkts

1041 37.0.123.150 80 0.258363 770 6094 7 9

209

Seventh Connection: Source Port 1043, Destination IP 37.0.123.150

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was very similar to the one in the fifth connection specifying the “t.php”

resource, both request and response contained message bodies with no readable text. The

message body of the request had a length of 519 bytes and unique content in this

connection. The message body of the response again had a length of 64 bytes but had

different content.

POST /administrator/cache/modules/tmp/com/t.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: 37.0.123.150

Content-Length: 519

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 20:17:57 GMT

Server: Apache/2.2.26 (CentOS)

X-Powered-By: PHP/5.2.17

Content-Length: 64

Connection: close

Content-Type: text/html; charset=UTF-8

(non-readable content removed)

 For this connection, Argus created one flow.

210

Table A-25: Flows from Seventh Connection in File b8c

sport daddr dport dur sbytes dbytes spkts dpkts

1043 37.0.123.150 80 0.301378 1047 535 5 5

Eighth Connection: Source Port 1044, Destination IP 37.0.123.150

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was very similar to those in the fifth and seventh connections specifying

the “t.php” resource. Both request and response contained message bodies with no

readable text. The message body of this request had a length of 1209 bytes and unique

content. The message body of the response again had a length of 64 bytes but again had

new content.

POST /administrator/cache/modules/tmp/com/t.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: 37.0.123.150

Content-Length: 1209

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 20:17:58 GMT

Server: Apache/2.2.26 (CentOS)

X-Powered-By: PHP/5.2.17

Content-Length: 64

Connection: close

211

Content-Type: text/html; charset=UTF-8

(non-readable content removed)

 For this connection, Argus created one flow.

Table A-26: Flows from Eighth Connection in File b8c

sport daddr dport dur sbytes dbytes spkts dpkts

1044 37.0.123.150 80 0.353216 1792 589 6 6

Ninth Connection: Source Port 1045, Destination IP 37.0.123.150

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was again very similar to those in previous connections specifying the

“t.php” resource, both request and response contained message bodies with no readable

text. The message body of this request had a length of 532 bytes and unique content.

The message body of the response again had a length of 64 bytes but again had new

content.

POST /administrator/cache/modules/tmp/com/t.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: 37.0.123.150

Content-Length: 532

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

212

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 20:17:58 GMT

Server: Apache/2.2.26 (CentOS)

X-Powered-By: PHP/5.2.17

Content-Length: 64

Connection: close

Content-Type: text/html; charset=UTF-8

(non-readable content removed)

 For this connection, Argus created one flow.

Table A-27: Flows from Ninth Connection in File b8c

sport daddr dport dur sbytes dbytes spkts dpkts

1045 37.0.123.150 80 0.399279 1060 535 5 5

Tenth Connection: Source Port 1046, Destination IP 37.0.123.150

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was again very similar to those in previous connections specifying the

“t.php” resource, both request and response contained message bodies with no readable

text. The message body of this request again had a length of 532 bytes but with unique

content. The message body of the response again had a length of 64 bytes but again had

new content.

POST /administrator/cache/modules/tmp/com/t.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: 37.0.123.150

213

Content-Length: 532

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 20:17:58 GMT

Server: Apache/2.2.26 (CentOS)

X-Powered-By: PHP/5.2.17

Content-Length: 64

Connection: close

Content-Type: text/html; charset=UTF-8

(non-readable content removed)

 For this connection, Argus created one flow.

Table A-28: Flows from Tenth Connection in File b8c

sport daddr dport dur sbytes dbytes spkts dpkts

1046 37.0.123.150 80 0.406927 1060 535 5 5

Eleventh Connection: Source Port 1047, Destination IP 173.194.67.105

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was an example of the Google Webhp redirect and beyond the scope of

this work.

GET /webhp HTTP/1.1

Accept: */*

214

Connection: Close

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.google.com

Cache-Control: no-cache

HTTP/1.1 302 Found

Location:

http://www.google.nl/webhp?gfe_rd=ctrl&ei=doc0U6vrLsf10gW2u4DwCQ&gws_rd

=cr

Cache-Control: private

Content-Type: text/html; charset=UTF-8

Set-Cookie:

PREF=ID=528718a0f6ccff38:FF=0:TM=1395951478:LM=1395951478:S=EYt_JCPPFmn

Vi52v; expires=Sat, 26-Mar-2016 20:17:58 GMT; path=/;

domain=.google.com

Set-Cookie: NID=67=DHBEP51svy1Znu-

1O0ee4KDWRFcJ83YokQCacQfAa1ySQY4luMNVlVHMfyrSlfehgLMFzxtxmPlh9fv9wyZ5pU

ZhOt7n9ozyzsKKTG5yFqI8Z93W5862DPyCMJQsYrSi; expires=Fri, 26-Sep-2014

20:17:58 GMT; path=/; domain=.google.com; HttpOnly

P3P: CP="This is not a P3P policy! See

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info."

Date: Thu, 27 Mar 2014 20:17:58 GMT

Server: gws

Content-Length: 279

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

Alternate-Protocol: 80:quic

Connection: close

(html content removed)

 For this connection, Argus created one flow.

Table A-29: Flows from Eleventh Connection in File b8c

sport daddr dport dur sbytes dbytes spkts dpkts

215

1047 173.194.67.105 80 0.155842 467 1422 5 5

Twelfth Connection: Source Port 1048, Destination IP 173.194.67.94

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was an example of the Google Webhp redirect and beyond the scope of

this work.

GET /webhp?gfe_rd=ctrl&ei=doc0U6vrLsf10gW2u4DwCQ&gws_rd=cr HTTP/1.1

Accept: */*

Connection: Close

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Cookie:

PREF=ID=035996bfe2cc00fc:FF=0:TM=1395951358:LM=1395951358:S=Fa05PSFNnmB

MOXGF; NID=67=PNF1MlHrllqGvyUScU3-

cu7JJ8uQQoT8PXzsSe_N2IJrh2OgJjsQ3oVOi1MdKwCoKGGjbtigQtEy4z73Z38AqYAh1MY

pWb0SsFcn1xFJmGfCQZH5Fr0JsqFqInG4UCAl

Cache-Control: no-cache

Host: www.google.nl

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 20:17:58 GMT

Expires: -1

Cache-Control: private, max-age=0

Content-Type: text/html; charset=UTF-8

Set-Cookie:

PREF=ID=035996bfe2cc00fc:U=1a04e1f878b384e8:FF=0:TM=1395951358:LM=13959

51478:S=qqchw8s7DMTOssGt; expires=Sat, 26-Mar-2016 20:17:58 GMT;

path=/; domain=.google.nl

Set-Cookie:

216

NID=67=kROtNIBxGBYO95f_qiZfzWdx9vjyAYYvcixfuSwIBZPiGFzML8UXnjT_BFbeOmiC

TUs32MOKRavALUSUyNe1cT8BRyY9SjDuzVydoF7AH-XCWkmtikCL_0WIwE18KGbH;

expires=Fri, 26-Sep-2014 20:17:58 GMT; path=/; domain=.google.nl;

HttpOnly

P3P: CP="This is not a P3P policy! See

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info."

Server: gws

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

Alternate-Protocol: 80:quic

Connection: close

(html/script content removed)

 For this connection, Argus created one flow.

Table A-30: Flows from Twelfth Connection in File b8c

sport daddr dport dur sbytes dbytes spkts dpkts

1048 173.194.67.94 80 0.326700 1397 30576 16 25

Thirteenth Connection: Source Port 1049, Destination IP 37.0.123.150

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was again very similar to those in previous connections specifying the

“t.php” resource, both request and response contained message bodies with no readable

text. The message body of this request had a length of 4155 bytes and unique content.

The message body of the response again had a length of 64 bytes but again had new

content.

217

POST /administrator/cache/modules/tmp/com/t.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: 37.0.123.150

Content-Length: 4155

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 20:17:58 GMT

Server: Apache/2.2.26 (CentOS)

X-Powered-By: PHP/5.2.17

Content-Length: 64

Connection: close

Content-Type: text/html; charset=UTF-8

(non-readable content removed)

 For this connection, Argus created one flow.

Table A-31: Flows from Thirteenth Connection in File b8c

sport daddr dport dur sbytes dbytes spkts dpkts

1049 37.0.123.150 80 0.428192 4900 751 9 9

Fourteenth Connection: Source Port 1050, Destination IP 37.0.123.150

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was again very similar to those in previous connections specifying the

218

“t.php” resource, both request and response contained message bodies with no readable

text. The message body of this request had a length of 373 bytes and new content. The

message body of the response again had a length of 64 bytes but again had new content.

POST /administrator/cache/modules/tmp/com/t.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: 37.0.123.150

Content-Length: 373

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 20:17:59 GMT

Server: Apache/2.2.26 (CentOS)

X-Powered-By: PHP/5.2.17

Content-Length: 64

Connection: close

Content-Type: text/html; charset=UTF-8

(non-readable content removed)

 For this connection, Argus created one flow.

Table A-32: Flows from Fourteenth Connection in File b8c

sport daddr dport dur sbytes dbytes spkts dpkts

1050 37.0.123.150 80 0.388736 901 535 5 5

219

Fifteenth Connection: Source Port 1055, Destination IP 37.0.123.150

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was again very similar to those in previous connections specifying the

“o.bin” resource, both request and response contained message bodies with no readable

text. The message body of this request again had a length of 122 bytes but with different

content. The message body of the response again had a length of 5328 bytes and the

same content.

POST /administrator/cache/modules/tmp/com/o.bin HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: 37.0.123.150

Content-Length: 122

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 20:19:31 GMT

Server: Apache/2.2.26 (CentOS)

Last-Modified: Sun, 16 Mar 2014 09:42:42 GMT

ETag: "363668-14d0-4f4b61fd32880"

Accept-Ranges: bytes

Content-Length: 5328

Connection: close

Content-Type: application/octet-stream

(non-readable content removed)

220

 For this connection, Argus created one flow.

Table A-33: Flows from Fifteenth Connection in File b8c

sport daddr dport dur sbytes dbytes spkts dpkts

1055 37.0.123.150 80 0.211148 830 6094 8 9

 The behavior observed in the connections of this sample file (b8c) differed from that

reported by Alserhani, Akhlaq, Awan, and Cullen (2010), Binsalleeh, Ormerod,

Boukhtouta, Sinha, Youssef, Debbabi, and Wang (2010), and Riccardi, Di Pietro,

Palanques, and Vila (2013). Here the infected client appeared to request updated

configuration files with a POST method as opposed to the GET method reported by the

other researchers. In each case, the POST method with resource “o.bin” was used to

request files from the server and the POST method with resource “t.php” was used to

provide information, likely stolen data or status updates, to the server. This later

behavior matches the behavior reported by both research teams, only the resource name is

“t.php” rather than the default “gate.php” they reported. Also note that requests for each

category were sent at two-minute intervals. Based on the Date header in the responses,

the first two “o.bin” requests were responded to at 20:15:27 and 20:15:30. The next one

was responded to at 20:17:31, and the final one at 20:19:31. The first “t.php” request was

sent at 20:15:58, the next six were sent between 20:17:57 and 20:17:59.

221

Sample File 2d7 collected on 28 Mar 2014 with total time 5 minutes 1 second

 This network trace sample file consisted of nine successful TCP connections, as

summarized in the following table. A column is included in the table to indicate whether

the connection was preceded by a DNS query when the HTTP Host Header field

specified a domain name as opposed to an IP address. In this case a domain name was

specified for the suspicious server.

Table A-34: Summary of Connections in File 2d7

Source Port Destination IP HTTP Host Header DNS?

1030 199.201.122.227 ad-amirsarvi.ir Yes

1031 199.201.122.227 ad-amirsarvi.ir n/a

1032 199.201.122.227 ad-amirsarvi.ir n/a

1033 199.201.122.227 ad-amirsarvi.ir n/a

1034 173.194.40.241 www.google.com Yes

1035 173.194.40.247 www.google.se Yes

1036 199.201.122.227 ad-amirsarvi.ir n/a

1040 199.201.122.227 ad-amirsarvi.ir n/a

1041 199.201.122.227 ad-amirsarvi.ir n/a

First Connection: Source Port 1030, Destination IP 199.201.122.227

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request, a POST method, specified a resource named “file.php” along with its

relative path. The request included a message body with a length of 122 bytes. The

222

message body contained no readable text. The Connection header specified Keep-Alive

to explicitly maintain a persistent connection after the response was complete, suggesting

that additional requests might follow. The Cache-Control header specified No-Cache to

prevent caching by all caching mechanisms in proxies or gateways along the request

chain. The response, successful status code 200 OK, included a message body with a

length of 5360 bytes. The Cache-Control header specified Public to allow caching along

the request chain. The filename “config.dll” was specified for this message body using

the Content-Disposition header. The Content-Disposition header was used together with

the Content-Type header to recommend storing rather than displaying of the file by the

client. The Content-Disposition header is not formally part of the HTTP/1.1 standard in

RFC 2616, but has been borrowed from RFC 1806 and widely implemented.

POST /media/system/css/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: ad-amirsarvi.ir

Content-Length: 122

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2014 02:16:14 GMT

Server: Apache/2

X-Powered-By: PHP/5.4.25

Cache-Control: public

Content-Disposition: attachment; filename="%2e/files/config.dll"

Content-Transfer-Encoding: binary

223

Content-Length: 5360

Vary: Accept-Encoding,User-Agent

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Content-Type: application/octet-stream

(non-readable content removed)

 A query of ZeuS Tracker produced a match for the IP address and domain name of the

server observed in this connection. A query using whois indicated that this IP address

belonged to a block assigned to an entity named Synaptica, without further information.

The domain name was registered in 2014 to an individual in Iran.

Figure A-1. Positive ZeuS Tracker Results for 199.201.122.227

 For this connection, Argus created two flows, one with the HTTP request and response

packets and another with the packets to close the connection.

224

Table A-35: Flows from First Connection in File 2d7

sport daddr dport dur sbytes dbytes spkts dpkts

1030 199.201.122.227 80 1.474594 835 6176 8 8

1030 199.201.122.227 80 0.214727 60 54 1 1

Second Connection: Source Port 1031, Destination IP 199.201.122.227

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request, a POST method, specified a resource named “file.php” along with its

relative path. The request included a message body with a length of 128 bytes. The

message body contained no readable text. Use of headers was the same as in the previous

connection. The response, successful status code 200 OK, included a message body with

a length of 177951 bytes. Use of headers in the response was also the same as in the

previous connection. The filename “cit_video.module” was specified for this message

body using the Content-Disposition header.

POST /media/system/css/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: ad-amirsarvi.ir

Content-Length: 128

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2014 02:16:16 GMT

225

Server: Apache/2

X-Powered-By: PHP/5.4.25

Cache-Control: public

Content-Disposition: attachment; filename="%2e/files/cit_video.module"

Content-Transfer-Encoding: binary

Content-Length: 177951

Vary: Accept-Encoding,User-Agent

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Content-Type: application/octet-stream

(non-readable content removed)

 For this connection, Argus created three flows, two for the HTTP request and response

packets and a third with the packets to close the connection.

Table A-36: Flows from Second Connection in File 2d7

sport daddr dport dur sbytes dbytes spkts dpkts

1031 199.201.122.227 80 4.957335 3391 75068 46 56

1031 199.201.122.227 80 4.987528 3858 108264 61 78

1031 199.201.122.227 80 0.000574 120 2355 2 2

Third Connection: Source Port 1032, Destination IP 199.201.122.227

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request, a POST method, specified a resource named “file.php” along with its

relative path. The request included a message body with a length of 131 bytes. The

message body contained no readable text. Use of headers was the same as in the previous

connection. The response, successful status code 200 OK, included a message body with

a length of 221471 bytes. Use of headers in the response was also the same as in the

226

previous connection. The filename “cit_ffcookie.module” was specified for this message

body using the Content-Disposition header.

POST /media/system/css/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: ad-amirsarvi.ir

Content-Length: 131

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2014 02:16:24 GMT

Server: Apache/2

X-Powered-By: PHP/5.4.25

Cache-Control: public

Content-Disposition: attachment;

filename="%2e/files/cit_ffcookie.module"

Content-Transfer-Encoding: binary

Content-Length: 221471

Vary: Accept-Encoding,User-Agent

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Content-Type: application/octet-stream

(non-readable content removed)

 For this connection, Argus created two flows, one for the HTTP request and response

and a second with packets to close the connection.

227

Table A-37: Flows from Third Connection in File 2d7

sport daddr dport dur sbytes dbytes spkts dpkts

1032 199.201.122.227 80 4.903603 9398 231046 139 170

1032 199.201.122.227 80 0.224905 60 54 1 1

Fourth Connection: Source Port 1033, Destination IP 199.201.122.227

 The HTTP content over this TCP connection consisted of four requests from the local

client to the remote server with corresponding responses from the remote server. Each

request consisted of a POST method specifying the resource “gate.php” and contained

message bodies with no readable text. The content length was the same for two of the

requests (548 bytes) but the content was unique in all four. Similarly, the responses all

had a content length of 64 bytes but each had unique content. This could suggest that the

content was padded and encrypted to result in an entity of that length.

POST /media/system/css/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: ad-amirsarvi.ir

Content-Length: 535

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Fri, 28 Mar 20Date: Fri, 28 Mar 2014 02:16:44 GMT

Server: Apache/2

X-Powered-By: PHP/5.4.25

Vary: User-Agent

228

Content-Length: 64

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Content-Type: text/html

(non-readable content removed)

POST /media/system/css/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: ad-amirsarvi.ir

Content-Length: 1223

Connection: Keep-Alive

Cache-Control: no-cache

(binary content removed)

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2014 02:16:44 GMT

Server: Apache/2

X-Powered-By: PHP/5.4.25

Vary: User-Agent

Content-Length: 64

Keep-Alive: timeout=1, max=99

Connection: Keep-Alive

Content-Type: text/html

(non-readable content removed)

POST /media/system/css/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: ad-amirsarvi.ir

Content-Length: 548

229

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2014 02:16:47 GMT

Server: Apache/2

X-Powered-By: PHP/5.4.25

Vary: User-Agent

Content-Length: 64

Keep-Alive: timeout=1, max=98

Connection: Keep-Alive

Content-Type: text/html

(non-readable content removed)

POST /media/system/css/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: ad-amirsarvi.ir

Content-Length: 548

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2014 02:16:48 GMT

Server: Apache/2

X-Powered-By: PHP/5.4.25

Vary: User-Agent

Content-Length: 64

Keep-Alive: timeout=1, max=97

Connection: Keep-Alive

Content-Type: text/html

230

(non-readable content removed)

 For this connection, Argus created six flows, two for the HTTP requests and responses

and four with unanswered packets from the client to close the connection.

Table A-38: Flows from Fourth Connection in File 2d7

sport daddr dport dur sbytes dbytes spkts dpkts

1033 199.201.122.227 80 4.627199 4123 1287 7 8

1033 199.201.122.227 80 1.001572 120 390 2 2

1033 199.201.122.227 80 1.793639 120 0 2 0

1033 199.201.122.227 80 0.000000 60 0 1 0

1033 199.201.122.227 80 0.000000 60 0 1 0

1033 199.201.122.227 80 0.000000 60 0 1 0

Fifth Connection: Source Port 1034, Destination IP 173.194.40.241

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was an example of the Google Webhp redirect and beyond the scope of

this work.

GET /webhp HTTP/1.1

Accept: */*

Connection: Close

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.google.com

Cache-Control: no-cache

231

HTTP/1.1 302 Found

Location: http://www.google.se/webhp?gfe_rd=ctrl&ei=ht40U8G3H-

WO8QfHwoDAAQ&gws_rd=cr

Cache-Control: private

Content-Type: text/html; charset=UTF-8

Set-Cookie:

PREF=ID=d37cbd36766b67cb:FF=0:TM=1395973766:LM=1395973766:S=u6-

DmDJ_ftlh6zvE; expires=Sun, 27-Mar-2016 02:29:26 GMT; path=/;

domain=.google.com

Set-Cookie: NID=67=XggWzWj_gWLFqr_pFPcmWJliBqPCtOk9ztUCoc1gMr-

V4HXDfkh5ZFZcTWm0mX25IqejlH_a1ENDlP86scmEFKgxWDr5FbbLWn8ZZn4NZ0TBYSE4BJ

WJZptj0OXBU8VJ; expires=Sat, 27-Sep-2014 02:29:26 GMT; path=/;

domain=.google.com; HttpOnly

P3P: CP="This is not a P3P policy! See

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info."

Date: Fri, 28 Mar 2014 02:29:26 GMT

Server: gws

Content-Length: 279

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

Alternate-Protocol: 80:quic

Connection: close

(html content removed)

 For this connection, Argus created one flow.

Table A-39: Flows from Fifth Connection in File 2d7

sport daddr dport dur sbytes dbytes spkts dpkts

1034 173.194.40.241 80 0.502010 467 1422 5 5

232

Sixth Connection: Source Port 1035, Destination IP 173.194.40.247

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was an example of the Google Webhp redirect and beyond the scope of

this work.

GET /webhp?gfe_rd=ctrl&ei=ht40U8G3H-WO8QfHwoDAAQ&gws_rd=cr HTTP/1.1

Accept: */*

Connection: Close

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Cache-Control: no-cache

Host: www.google.se

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2014 02:29:27 GMT

Expires: -1

Cache-Control: private, max-age=0

Content-Type: text/html; charset=UTF-8

Set-Cookie:

PREF=ID=d486b8dd37fdc592:FF=0:TM=1395973767:LM=1395973767:S=CpD_b8Pxz2N

3gQ6k; expires=Sun, 27-Mar-2016 02:29:27 GMT; path=/; domain=.google.se

Set-Cookie:

NID=67=kTatCaQ0l7SRAO51WSNQLbj9J1r00IXqG22CjqJOkBg57pObnQdh76_VE47kEjo7

lS4W7aQLn89efOcgY3o_GCPOvKZX_jQID70oEnmbqA4Tfij3ypgCfeiWxK_dVCR8;

expires=Sat, 27-Sep-2014 02:29:27 GMT; path=/; domain=.google.se;

HttpOnly

P3P: CP="This is not a P3P policy! See

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info."

Server: gws

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

233

Alternate-Protocol: 80:quic

Connection: close

(html/script content removed)

 For this connection, Argus created one flow.

Table A-40: Flows from Sixth Connection in File 2d7

sport daddr dport dur sbytes dbytes spkts dpkts

1035 173.194.40.247 80 0.703918 1354 30679 19 26

Seventh Connection: Source Port 1036, Destination IP 199.201.122.227

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was similar to those in the fourth connection. The request had a message

body with a length of 377 bytes and no readable text. The response had a message body

with a length of 64 bytes and unique content.

POST /media/system/css/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: ad-amirsarvi.ir

Content-Length: 377

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2014 02:16:48 GMT

234

Server: Apache/2

X-Powered-By: PHP/5.4.25

Vary: User-Agent

Content-Length: 64

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Content-Type: text/html

(non-readable content removed)

 For this connection, Argus created six flows, two for the HTTP request and response

and four with unanswered FIN-ACK packets from the client to close the connection.

Table A-41: Flows from Seventh Connection in File 2d7

sport daddr dport dur sbytes dbytes spkts dpkts

1036 199.201.122.227 80 3.356106 894 178 5 3

1036 199.201.122.227 80 1.937593 120 391 2 2

1036 199.201.122.227 80 2.694393 120 0 2 0

1036 199.201.122.227 80 0.000000 60 0 1 0

1036 199.201.122.227 80 0.000000 60 0 1 0

1036 199.201.122.227 80 0.000000 60 0 1 0

Eighth Connection: Source Port 1040, Destination IP 199.201.122.227

 The HTTP content over this TCP connection consisted of five requests from the local

client to the remote server with corresponding responses from the remote server. These

exchanges were similar to those in previous connections specifying the “gate.php”

resource. All requests and responses had message bodies with unique content and no

readable text. Two of the five requests had the same content length. All of the responses

again had a content length of 64 bytes. This could suggest that the content was padded

and encrypted to result in an entity of that length.

235

POST /media/system/css/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: ad-amirsarvi.ir

Content-Length: 527

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2014 02:19:49 GMT

Server: Apache/2

X-Powered-By: PHP/5.4.25

Vary: User-Agent

Content-Length: 64

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Content-Type: text/html

(non-readable content removed)

POST /media/system/css/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: ad-amirsarvi.ir

Content-Length: 1215

Connection: Keep-Alive

Cache-Control: no-cache

(binary content removed)

HTTP/1.1 200 OK

236

Date: Fri, 28 Mar 2014 02:19:54 GMT

Server: Apache/2

X-Powered-By: PHP/5.4.25

Vary: User-Agent

Content-Length: 64

Keep-Alive: timeout=1, max=99

Connection: Keep-Alive

Content-Type: text/html

(non-readable content removed)

POST /media/system/css/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: ad-amirsarvi.ir

Content-Length: 540

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2014 02:19:56 GMT

Server: Apache/2

X-Powered-By: PHP/5.4.25

Vary: User-Agent

Content-Length: 64

Keep-Alive: timeout=1, max=98

Connection: Keep-Alive

Content-Type: text/html

(non-readable content removed)

237

POST /media/system/css/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: ad-amirsarvi.ir

Content-Length: 540

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2014 02:19:57 GMT

Server: Apache/2

X-Powered-By: PHP/5.4.25

Vary: User-Agent

Content-Length: 64

Keep-Alive: timeout=1, max=97

Connection: Keep-Alive

Content-Type: text/html

(non-readable content removed)

POST /media/system/css/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: ad-amirsarvi.ir

Content-Length: 4168

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2014 02:19:58 GMT

Server: Apache/2

X-Powered-By: PHP/5.4.25

238

Vary: User-Agent

Content-Length: 64

Keep-Alive: timeout=1, max=96

Connection: Keep-Alive

Content-Type: text/html

(non-readable content removed)

 For this connection, Argus created four flows, three for the HTTP requests and

responses and a fourth with the packets to close the connection.

Table A-42: Flows from Eighth Connection in File 2d7

sport daddr dport dur sbytes dbytes spkts dpkts

1040 199.201.122.227 80 1.005816 922 116 3 2

1040 199.201.122.227 80 4.427854 7827 1507 9 7

1040 199.201.122.227 80 3.580216 220 270 1 5

1040 199.201.122.227 80 0.244170 186 390 3 2

Ninth Connection: Source Port 1041, Destination IP 199.201.122.227

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was similar to those in previous connections specifying the “file.php”

resource. Both the request and response had message bodies with no readable text.

Although the request had a message body of 122 bytes, same as in the first connection,

the content was different. The content of the response message body, again specified as

filename “config.dll” using the Content-Disposition header, was the same as in the first

connection.

239

POST /media/system/css/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: ad-amirsarvi.ir

Content-Length: 122

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2014 02:20:16 GMT

Server: Apache/2

X-Powered-By: PHP/5.4.25

Cache-Control: public

Content-Disposition: attachment; filename="%2e/files/config.dll"

Content-Transfer-Encoding: binary

Content-Length: 5360

Vary: Accept-Encoding,User-Agent

Keep-Alive: timeout=1, max=100

Connection: Keep-Alive

Content-Type: application/octet-stream

(non-readable content removed)

 For this connection, Argus created one flow.

Table A-43: Flows from Ninth Connection in File 2d7

sport daddr dport dur sbytes dbytes spkts dpkts

1041 199.201.122.227 80 2.440082 817 6176 8 8

 The behavior observed in the connections of this sample file (2d7) differed from that

reported by Alserhani, Akhlaq, Awan, and Cullen (2010), Binsalleeh, Ormerod,

Boukhtouta, Sinha, Youssef, Debbabi, and Wang (2010), and Riccardi, Di Pietro,

240

Palanques, and Vila (2013). Here the infected client appeared to request updated

configuration files with a POST method as opposed to the GET method reported by these

researchers. The command and control (C&C) server responded with the file “config.dll”

as opposed to the file “config.bin” reported by Binsalleeh et al. Here the client also

requested other files from the C&C server that were not previously reported, namely

“cit_video.module” and “cit_ffcookie.module.” In each case, the POST method

specifying resource “file.php” (POST /media/system/css/file.php HTTP/1.1) was used to

request files and the POST method specifying “gate.php” (POST

/media/system/css/gate.php HTTP/1.1) was used to provide information, likely status

updates and stolen data. This latter behavior matches the communications behavior

reported by Binsalleeh et al. to include the resource name. Riccardi, Di Pietro,

Palanques, and Vila (2013) reported that “gate.php” was among the pages in the Zeus

control panels root directory. They further reported that this PHP page on the C&C

server is responsible for handling incoming POST messages. The timing of requests,

based on the Date header in the responses, appeared to be POST requests for file updates

(file.php) every four minutes and POST requests with status information or stolen data

(gate.php) every three minutes. The latter POST requests were issued in sets of five,

which was not previously reported in the literature.

241

Sample File 9ca collected on 27 Mar 2014 with total time 4 minutes 55 seconds

 This network trace sample file consisted of nine successful TCP connections. A

column is included in the table to indicate whether the connection was preceded by a

DNS query when the HTTP Host Header field specified a domain name as opposed to an

IP address. In this case domain names were specified for the suspicious servers.

Table A-44: Summary of Connections in File 9ca

Source Port Destination IP HTTP Host Header DNS?

1030 200.98.246.214 saudeodontos.com.br Yes

1031 200.98.246.214 saudeodontos.com.br n/a

1032 200.98.246.214 saudeodontos.com.br n/a

1033 173.194.40.240 www.google.com Yes

1034 173.194.40.255 www.google.se Yes

1035 200.98.246.214 saudeodontos.com.br n/a

1036 85.158.181.11 www.two-of-us.at Yes

1040 200.98.246.214 saudeodontos.com.br n/a

1041 200.98.246.214 saudeodontos.com.br n/a

First Connection: Source Port 1030, Destination IP 200.98.246.214

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request, a POST method, specified a resource named “file.php” along with its

relative path. The request included a message body with a length of 128 bytes. The

message body contained no readable text. The Connection header specified Keep-Alive

242

to explicitly maintain a persistent connection after the response was complete, suggesting

that additional requests might follow. The Cache-Control header specified No-Cache to

prevent caching by all caching mechanisms in proxies or gateways along the request

chain. The response, successful status code 200 OK, included a message body with a

length of 177951 bytes. The filename “cit_video.module” was specified for this message

body using the Content-Disposition header. The Content-Disposition header was used to

recommend storing rather than displaying of the file by the client.

POST /media/system/images/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: saudeodontos.com.br

Content-Length: 128

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:02:25 GMT

Content-Type: application/octet-stream

Connection: keep-alive

Keep-Alive: timeout=15

Server: Apache

Cache-Control: public

Content-Disposition: attachment; filename="%2e/files/cit_video.module"

Content-Transfer-Encoding: binary

Content-Length: 177951

(non-readable content removed)

243

 ZeuS Tracker reports this hostname and IP address as a known ZeuS Command and

Control (C&C) host in Brazil. The figure illustrates the results of the IP search.

(https://zeustracker.abuse.ch/monitor.php?search=200.98.246.214)

Figure A-2: Positive ZeuS Tracker Results for 200.98.246.214

 For this connection, Argus created four flows, two for the HTTP requests and

responses and two with packets to close the connection.

Table A-45: Flows from First Connection in File 9ca

sport daddr dport dur sbytes dbytes spkts dpkts

1030 200.98.246.214 80 4.962722 2588 83764 37 63

1030 200.98.246.214 80 1.713675 3186 108847 52 79

1030 200.98.246.214 80 0.000000 60 54 1 1

244

1030 200.98.246.214 80 0.403900 60 54 1 1

Second Connection: Source Port 1031, Destination IP 200.98.246.214

 The HTTP content over this TCP connection consisted of two requests from the local

client to the remote server with corresponding responses from the remote server. The

request, a POST method, specified a resource named “file.php” along with its relative

path. The request included a message body with a length of 122 bytes and no readable

text. The Connection header specified Keep-Alive to explicitly maintain a persistent

connection after the response was complete, suggesting that additional requests might

follow. The Cache-Control header specified No-Cache to prevent caching by all caching

mechanisms in proxies or gateways along the request chain. The response, successful

status code 200 OK, included a message body with a length of 5376 bytes. The filename

“config.dll” was specified for this message body using the Content-Disposition header.

POST /media/system/images/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: saudeodontos.com.br

Content-Length: 122

Connection: Keep-Alive

Cache-Control: no-cache

(binary content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:02:25 GMT

Content-Type: application/octet-stream

Connection: keep-alive

245

Keep-Alive: timeout=15

Server: Apache

Cache-Control: public

Content-Disposition: attachment; filename="%2e/files/config.dll"

Content-Transfer-Encoding: binary

Content-Length: 5376

(non-readable content removed)

The second request, a POST method, specified a resource named “file.php” along with its

relative path. The request included a message body with a length of 131 bytes. The

message body contained no readable text. The use of headers was the same as in the

previous exchange. The response, successful status code 200 OK, included a message

body with a length of 221471 bytes. The content of the response message body was

identified as a named file (cit_ffcookie.module) using the Content-Disposition header.

The Content-Disposition header was used to recommend storing rather than displaying of

the file by the user agent.

POST /media/system/images/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: saudeodontos.com.br

Content-Length: 131

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:02:32 GMT

246

Content-Type: application/octet-stream

Connection: keep-alive

Keep-Alive: timeout=15

Server: Apache

Cache-Control: public

Content-Disposition: attachment;

filename="%2e/files/cit_ffcookie.module"

Content-Transfer-Encoding: binary

Content-Length: 221471

(binary content removed)

 For this connection, Argus created four flows, three for the HTTP requests and

responses and a fourth with the packets to close the connection.

Table A-46: Flows from Second Connection in File 9ca

sport daddr dport dur sbytes dbytes spkts dpkts

1031 200.98.246.214 80 1.782831 764 6122 7 8

1031 200.98.246.214 80 4.994077 4131 129455 63 94

1031 200.98.246.214 80 1.510830 2226 101405 37 74

1031 200.98.246.214 80 3.422332 120 108 2 2

Third Connection: Source Port 1032, Destination IP 200.98.246.214

 The HTTP content over this TCP connection consisted of four requests from the local

client to the remote server with corresponding responses from the remote server. Each

request consisted of a POST method specifying the “gate.php” resource and contained

message bodies with no readable text. Each had a different content length and unique

content. The responses all had a content length of 64 bytes but each had unique content.

247

This could suggest that the content was padded and encrypted to result in an entity of that

length.

POST /media/system/images/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: saudeodontos.com.br

Content-Length: 525

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:02:55 GMT

Content-Type: text/html

Connection: keep-alive

Keep-Alive: timeout=15

Server: Apache

Content-Length: 64

(non-readable content removed)

POST /media/system/images/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: saudeodontos.com.br

Content-Length: 1213

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

248

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:02:56 GMT

Content-Type: text/html

Connection: keep-alive

Keep-Alive: timeout=15

Server: Apache

Content-Length: 64

(non-readable content removed)

POST /media/system/images/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: saudeodontos.com.br

Content-Length: 538

Connection: Keep-Alive

Cache-Control: no-cache

(binary content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:02:57 GMT

Content-Type: text/html

Connection: keep-alive

Keep-Alive: timeout=15

Server: Apache

Content-Length: 64

(non-readable content removed)

POST /media/system/images/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: saudeodontos.com.br

249

Content-Length: 245

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:03:06 GMT

Content-Type: text/html

Connection: keep-alive

Keep-Alive: timeout=15

Server: Apache

Content-Length: 64

(non-readable content removed)

 For this connection, Argus created six flows, two for the HTTP requests and responses

and four with packets to close the connection.

Table A-47: Flows from Third Connection in File 9ca

sport daddr dport dur sbytes dbytes spkts dpkts

1032 200.98.246.214 80 2.960269 3353 1127 7 8

1032 200.98.246.214 80 0.613338 585 337 2 2

1032 200.98.246.214 80 0.000000 60 54 1 1

1032 200.98.246.214 80 4.606362 120 0 2 0

1032 200.98.246.214 80 0.000000 60 0 1 0

1032 200.98.246.214 80 0.000000 60 0 1 0

Fourth Connection: Source Port 1033, Destination IP 173.194.40.240

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

250

This exchange was an example of the Google Webhp redirect and beyond the scope of

this work.

GET /webhp HTTP/1.1

Accept: */*

Connection: Close

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.google.com

Cache-Control: no-cache

HTTP/1.1 302 Found

Cache-Control: private

Content-Type: text/html; charset=UTF-8

Location:

http://www.google.se/webhp?gfe_rd=cr&ei=3nU0U9bWMeOO8Qe10IGAAQ

Content-Length: 263

Date: Thu, 27 Mar 2014 19:02:54 GMT

Server: GFE/2.0

Alternate-Protocol: 80:quic

Connection: close

(html content removed)

 For this connection, Argus created a single flow.

Table A-48: Flows from Fourth Connection in File 9ca

sport daddr dport dur sbytes dbytes spkts dpkts

1033 173.194.40.240 80 0.536148 467 824 5 5

251

Fifth Connection: Source Port 1034, Destination IP 173.194.40.255

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was an example of the Google Webhp redirect and beyond the scope of

this work.

GET /webhp?gfe_rd=cr&ei=3nU0U9bWMeOO8Qe10IGAAQ HTTP/1.1

Accept: */*

Connection: Close

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Cache-Control: no-cache

Host: www.google.se

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:02:55 GMT

Expires: -1

Cache-Control: private, max-age=0

Content-Type: text/html; charset=UTF-8

Set-Cookie:

PREF=ID=3ecf050e7f29beba:FF=0:TM=1395946975:LM=1395946975:S=XB9tJLEKQ0q

d3a0s; expires=Sat, 26-Mar-2016 19:02:55 GMT; path=/; domain=.google.se

Set-Cookie: NID=67=GdIT7qYHZBfLFIeTiWLEE-

kFnNSR3wtbp0fbq3Wc6yQKYb8emitdWgccWDhK9Hwc7kQUasOi0X_wBrZUdFqQVpvgOSrFO

dTa1c0VxUhqgqyBo2f503rFyGr0M-4WzbrS; expires=Fri, 26-Sep-2014 19:02:55

GMT; path=/; domain=.google.se; HttpOnly

P3P: CP="This is not a P3P policy! See

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info."

Server: gws

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

Alternate-Protocol: 80:quic

252

Connection: close

(html/script content removed)

 For this connection, Argus created a single flow.

Table A-49: Flows from Fifth Connection in File 9ca

sport daddr dport dur sbytes dbytes spkts dpkts

1034 173.194.40.255 80 0.861316 1222 30625 17 25

Sixth Connection: Source Port 1035, Destination IP 200.98.246.214

 The HTTP content over this TCP connection consisted of two requests from the local

client to the remote server with corresponding responses from the remote server. These

exchanges are similar to those previous specifying the “gate.php” resource. The requests

contain message bodies with different lengths and different content. The responses also

contain messages bodies with different lengths and different content. Unlike the previous

exchanges, the first response had a length of 132 bytes, not the more commonly observed

64 bytes. This suggests additional information was encrypted and passed.

POST /media/system/images/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: saudeodontos.com.br

Content-Length: 372

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

253

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:02:56 GMT

Content-Type: text/html

Connection: keep-alive

Keep-Alive: timeout=15

Server: Apache

Content-Length: 132

(non-readable content removed)

POST /media/system/images/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: saudeodontos.com.br

Content-Length: 538

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:02:57 GMT

Content-Type: text/html

Connection: keep-alive

Keep-Alive: timeout=15

Server: Apache

Content-Length: 64

(non-readable content removed)

 For this connection, Argus created six flows, one for the HTTP requests and responses

and the others with only packets to close the connection.

254

Table A-50: Flows from Sixth Connection in File 9ca

sport daddr dport dur sbytes dbytes spkts dpkts

1035 200.98.246.214 80 2.026271 1712 805 6 5

1035 200.98.246.214 80 0.000000 60 54 1 1

1035 200.98.246.214 80 0.000000 60 0 1 0

1035 200.98.246.214 80 0.000000 60 0 1 0

1035 200.98.246.214 80 0.000000 60 0 1 0

1035 200.98.246.214 80 0.000000 60 0 1 0

Seventh Connection: Source Port 1036, Destination IP 85.158.181.11

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request, a GET method, specified a resource named “file.exe” along with its relative

path. The request did not include a message body. The response, successful status code

200 OK, included a message body with a length of 790528 bytes. The response also used

the ETag header to uniquely identify the entity, which was further described as an

Application/Octet-Stream using the Content-Type header. In this case it appears to be a

MS Windows executable file based on the MZ Header with human-readable text

embedded in its first line stating “This program cannot be run in DOS mode.” More

human-readable text was embedded near the end of the entity, indicative of a string table

in an MS Windows executable file. Notable was the text “CorExeMain.mscoree.dll” for

a dynamic linked library and the text “Internal Name BCoin.exe” and “Original Filename

BCoin.exe” for the executable name.

255

GET /images/file.exe HTTP/1.1

Accept: */*

Connection: Close

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.two-of-us.at

Cache-Control: no-cache

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:02:57 GMT

Server: Apache

Last-Modified: Mon, 24 Mar 2014 05:59:39 GMT

ETag: "22cac4-c1000-4f553f0df32ab"

Accept-Ranges: bytes

Content-Length: 790528

Vary: User-Agent

Connection: close

Content-Type: application/octet-stream

MZ......................@..

.!..L.!This program cannot be run in DOS mode.^M

(non-readable content removed)

(among embedded text near the end: Internal name BCoin.exe)

 Neither the hostname nor the IP address of this server was listed in ZeuS Tracker.

 For this connection, Argus created two flows.

Table A-51: Flows from Seventh Connection in File 9ca

sport daddr dport dur sbytes dbytes spkts dpkts

1036 85.158.181.11 80 4.999082 10439 426232 171 309

1036 85.158.181.11 80 4.122364 11160 396765 186 287

256

Eighth Connection: Source Port 1040, Destination IP 200.98.246.214

 The HTTP content over this TCP connection consisted of five requests from the local

client to the remote server with corresponding responses from the remote server. These

exchanges were similar to those in previous connections requesting specifying the

“gate.php” resource. All requests and responses had message bodies with unique content.

Two of the five requests had the same content length. All of the responses again had a

content length of 64 bytes. This could suggest that the content was padded and encrypted

to result in an entity of that length.

POST /media/system/images/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: saudeodontos.com.br

Content-Length: 517

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:05:58 GMT

Content-Type: text/html

Connection: keep-alive

Keep-Alive: timeout=15

Server: Apache

Content-Length: 64

(non-readable content removed)

257

POST /media/system/images/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: saudeodontos.com.br

Content-Length: 1205

Connection: Keep-Alive

Cache-Control: no-cache

(binary content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:05:59 GMT

Content-Type: text/html

Connection: keep-alive

Keep-Alive: timeout=15

Server: Apache

Content-Length: 64

(non-readable content removed)

POST /media/system/images/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: saudeodontos.com.br

Content-Length: 530

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:05:59 GMT

Content-Type: text/html

258

Connection: keep-alive

Keep-Alive: timeout=15

Server: Apache

Content-Length: 64

(non-readable content removed)

POST /media/system/images/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: saudeodontos.com.br

Content-Length: 530

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:05:59 GMT

Content-Type: text/html

Connection: keep-alive

Keep-Alive: timeout=15

Server: Apache

Content-Length: 64

(non-readable content removed)

POST /media/system/images/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: saudeodontos.com.br

259

Content-Length: 4152

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:06:00 GMT

Content-Type: text/html

Connection: keep-alive

Keep-Alive: timeout=15

Server: Apache

Content-Length: 64

(non-readable content removed)

 For this connection, Argus created three flows, one for the HTTP requests and responses

and two with only packets to close the connection.

Table A-52: Flows from Eighth Connection in File 9ca

sport daddr dport dur sbytes dbytes spkts dpkts

1040 200.98.246.214 80 2.930238 8788 2017 13 16

1040 200.98.246.214 80 0.000000 60 54 1 1

1040 200.98.246.214 80 0.336374 60 54 1 1

Ninth Connection: Source Port 1041, Destination IP 200.98.246.214

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request, a POST method, specified a resource named “file.php” along with its

relative path. The request included a message body with a length of 122 bytes. The

260

message body contained no readable text. This request was very similar to the first

request in the second connection in terms of header usage and content length. However,

the message body content of the request was different. The response, successful status

code 200 OK, included a message body with a length of 5376 bytes. The filename

“config.dll” was specified for this message body using the Content-Disposition header.

The content of the response message body was the same as in the previous response with

this named file.

POST /media/system/images/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: saudeodontos.com.br

Content-Length: 122

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Thu, 27 Mar 2014 19:06:27 GMT

Content-Type: application/octet-stream

Connection: keep-alive

Keep-Alive: timeout=15

Server: Apache

Cache-Control: public

Content-Disposition: attachment; filename="%2e/files/config.dll"

Content-Transfer-Encoding: binary

Content-Length: 5376

(non-readable content removed)

261

 For this connection, Argus created two flows, one for the HTTP request and response

and another with packets to close the connection.

Table A-53: Flows from Ninth Connection in File 9ca

sport daddr dport dur sbytes dbytes spkts dpkts

1041 200.98.246.214 80 1.265840 704 6068 6 7

1041 200.98.246.214 80 0.101395 60 54 1 1

 The behavior observed in the connections of this sample file (9ca) was very similar to

the behavior observed in the connections of the previous sample file (2d7), keeping in

mind that this file (9ca) preceded the other (2d7) chronologically by one day. The POST

method was used with a resource named “file.php” to request files from a known Zeus

command and control server. Three of the same files were requested. Two of the files

were exactly the same size, and one (config.dll) had a length differing by only 16 bytes.

These files were even located at the same relative paths on the respective servers. In both

sample files the POST method was also used with a resource named “gate.php” to send

encrypted information from the client to the server. The patterns of usage of this

technique were very similar in content and timing. In the previous file (2d7), sets of five

“gate.php” requests were sent after receipt of the three previously mentioned files using

the “file.php” requests. In this file (9ca), one set of six “gate.php” requests was sent,

followed three minutes later by one set of five. Highlighting the difference in the number

of requests was a GET request for a resource named “file.exe” after the set of six

“gate.php” requests. Moreover, one of the six requests had a longer response, 132 bytes

instead of 64 bytes, suggesting that this extra request included instructions in its response

to retrieve this file from a different server. Also interesting was the internal name,

BCoin.exe, of the supplied Windows executable file. Very little information could be

262

found on the Internet about this particular file. However, its name suggests potential use

with BitCoin electronic currency. Mohaisen and Alrawi (2013) reported that bitcoin

mining was among the features of new Zeus variants.

263

Sample File 054 collected on 28 Mar 2014 with total time 5 minutes 21 seconds

 This network trace sample file consisted of seven successful TCP connections as

summarized in the following table. A column is included in the table to indicate whether

the connection was preceded by a DNS query when the HTTP Host Header field

specified a domain name as opposed to an IP address. In this case an IP address was

specified for the suspicious server.

Table A-54: Summary of Connections in File 054

Source Port Destination IP HTTP Host Header DNS?

1029 92.63.98.3 92.63.98.3 n/a

1031 173.194.70.106 www.google.com Yes

1032 173.194.70.94 www.google.de Yes

1036 92.63.98.3 92.63.98.3 n/a

1037 92.63.98.3 92.63.98.3 n/a

1038 173.194.70.106 www.google.com Yes

1039 173.194.70.94 www.google.de Yes

First Connection: Source Port 1029, Destination IP 92.63.98.3

 The HTTP content over this TCP connection consisted of five requests from the local

client to the remote server with five corresponding responses from the remote server.

The first request, a GET method, specified a resource named “config.bin” along with its

relative path. The request did not include a message body, only headers. The first

request was 167 bytes before the packet overhead. The first response, with Successful

code 200 OK, did include a message body with no readable text. The first response was

264

36329 bytes before packet overhead. The request’s Accept header specified “*/*” to

allow any media type. The request’s Host header specified an explicit IP address rather

than a domain name. The request’s Cache-Control header specified No-Cache to prevent

caching of the request. The response’s Server header specified nginx as the software

handling the request. The response’s Content-Type and Content-Length headers

specified that the resource was a binary stream (application/octet-stream) of 36080 bytes.

The response’s Date and Last-Modified headers specified the date-time of the message

and of the requested resource. The response’s Connection header specified “keep-alive”

for a persistent connection. The response’s ETag header specified a current value for the

requested entity. The response’s Accept-Ranges header specified bytes to indicate that it

accepts byte-range requests.

GET /hl82ltwxk7/modules/config.bin HTTP/1.1

Accept: */*

User-Agent: Mozilla/5.0 (compatible; MSIE 6.0; Windows NT 6.2)

Host: 92.63.98.3

Cache-Control: no-cache

HTTP/1.1 200 OK

Server: nginx

Date: Fri, 28 Mar 2014 01:28:06 GMT

Content-Type: application/octet-stream

Connection: keep-alive

Content-Length: 36080

Last-Modified: Wed, 26 Mar 2014 11:39:17 GMT

ETag: "5332bc65-8cf0"

Accept-Ranges: bytes

(non-readable content removed)

265

 The second request, a GET method, specified a resource named “mod1.bin” along

with its relative path. The request did not include a message body, only headers. The

second request was 170 bytes before the packet overhead. The second response, with

Successful code 200 OK, included a message body with no readable text. The second

response was 9464 bytes before packet overhead. The same request headers and values

were used as in the first request. The same response headers were also used as in the first

response, with different values for Date, Content-Length, Last-Modified, and ETag.

GET /hl82ltwxk7/modules/mod1.bin HTTP/1.1

Accept: */*

User-Agent: Mozilla/5.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1)

Host: 92.63.98.3

Cache-Control: no-cache

HTTP/1.1 200 OK

Server: nginx

Date: Fri, 28 Mar 2014 01:28:12 GMT

Content-Type: application/octet-stream

Connection: keep-alive

Content-Length: 9216

Last-Modified: Tue, 04 Mar 2014 09:33:03 GMT

ETag: "53159dcf-2400"

Accept-Ranges: bytes

(non-readable content removed)

 The third request, a GET method, specified a resource named “mod2.bin” along with

its relative path. The request did not include a message body, only headers. The third

request was 170 bytes before the packet overhead. The third response, with Successful

code 200 OK, included a message body with no readable text. The third response was

266

8952 bytes before packet overhead. The same request headers and values were used as in

the first two requests. The same response headers were also used as in the first two

responses, with different values for Date, Content-Length, Last-Modified, and Etag.

GET /hl82ltwxk7/modules/mod2.bin HTTP/1.1

Accept: */*

User-Agent: Mozilla/5.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1)

Host: 92.63.98.3

Cache-Control: no-cache

HTTP/1.1 200 OK

Server: nginx

Date: Fri, 28 Mar 2014 01:28:13 GMT

Content-Type: application/octet-stream

Connection: keep-alive

Content-Length: 8704

Last-Modified: Tue, 04 Mar 2014 09:33:01 GMT

ETag: "53159dcd-2200"

Accept-Ranges: bytes

(non-readable content removed)

 The fourth request, a GET method, specified a resource named “mod3.bin” along with

its relative path. The request did not include a message body, only headers. The fourth

request was 170 bytes before the packet overhead. The fourth response, with Successful

code 200 OK, did include a message body with no readable text. The fourth response

was 8440 bytes before packet overhead. The same request headers and values were used

as in the first three requests. The same response headers were also used as in the first

three responses, with different values for Content-Length, Last-Modified, and Etag.

GET /hl82ltwxk7/modules/mod3.bin HTTP/1.1

267

Accept: */*

User-Agent: Mozilla/5.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1)

Host: 92.63.98.3

Cache-Control: no-cache

HTTP/1.1 200 OK

Server: nginx

Date: Fri, 28 Mar 2014 01:28:13 GMT

Content-Type: application/octet-stream

Connection: keep-alive

Content-Length: 8192

Last-Modified: Tue, 04 Mar 2014 09:33:02 GMT

ETag: "53159dce-2000"

Accept-Ranges: bytes

(non-readable content removed)

 The fifth request, a POST method, specified a resource named “cde.php” along with

its relative path. The request included a message body with no readable text. The fifth

request was 506 bytes before the packet overhead. The fifth response, with Successful

code 200 OK, included a message body with no readable text. The fifth response was

244 bytes before packet overhead. The resource name suggests that the content is PHP

script but it appears as a binary content in the message body. The request’s Content-

Length header is used to specify its length. The response also differs significantly from

the previous responses. This time the response’s Content-Type header specifies

Text/Html even though the message body is binary. The response uses the Transfer-

Encoding header and specifies Chunked for the transformation applied to the message

body. The response’s Connection header specifies Close to terminate the persistent

connection. The response also includes an X-Powered-By header specifying PHP/5.4.25

which suggests that version of PHP is being used on the remote server.

268

POST /hl82ltwxk7/cde.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/5.0 (compatible; MSIE 6.0; Windows NT 6.2)

Host: 92.63.98.3

Content-Length: 304

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Server: nginx

Date: Fri, 28 Mar 2014 01:28:37 GMT

Content-Type: text/html

Transfer-Encoding: chunked

Connection: close

X-Powered-By: PHP/5.4.25

(non-readable content removed)

 The features of the fifth request-response series seem slightly unusual for the

following reasons: the message body of the POST request was not in the expected text

format, the message body of the response was not in the expected text format, and the

message body of the response was chunked. Chunked encoding is often used to return a

dynamically-generated entity. A zero-sized chunk signals the end of the message body.

Chunked encoding is also generally used with persistent HTTP connections. In this

response the connection was closed with the Connection header.

 A whois query reports that IP address 92.63.98.3 is part of a block assigned to a

provider in Irkutsk, Russia. A search of the Zeus Tracker web site produced no results

that matched this IP address.

269

 For this connection, Argus created one flow for the first GET request and its response,

a second flow for the next three GET requests and their responses, and a third flow for

the POST request and its response.

Table A-55: Flows from First Connection in File 054

sport daddr dport dur sbytes dbytes spkts dpkts

1029 92.63.98.3 80 0.797518 1363 38011 20 31

1029 92.63.98.3 80 1.001453 1452 28422 16 29

1029 92.63.98.3 80 0.373748 680 460 3 4

 The differences in byte count, 1196 from the 20 source packets and 1682 from the 31

destination packets in the first flow, 942 from the 16 source packets and 1566 from the 29

destination packets in the second flow, and 174 from the three source packets and 216

from the four destination packets in the third flow, represent the packet overhead from IP

and TCP headers. Average overhead from this remote server is 54.3, 54.0, and 54.0 bytes

per packet, respectively, for the three flows in this connection.

Second Connection: Source Port 1031, Destination IP 173.194.70.106

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server and a corresponding response from the remote server.

The request, a GET method, specified a resource named “webhp” and did not include a

message body, only headers. The request was 152 bytes before the packet overhead. The

response, with Redirection code 302 Found, did include a message body in the form of

HTML. The response was 1125 bytes before packet overhead. This exchange was an

example of the Google Webhp redirect and beyond the scope of this work.

270

GET /webhp HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.google.com

Cache-Control: no-cache

HTTP/1.1 302 Found

Location:

http://www.google.de/webhp?gfe_rd=ctrl&ei=RNA0U8ecKYuV_AaG2YDoAw&gws_rd

=cr

Cache-Control: private

Content-Type: text/html; charset=UTF-8

Set-Cookie:

PREF=ID=55285ca6ac9ee775:FF=0:TM=1395970116:LM=1395970116:S=CoTFyt1zG5X

oSVIk; expires=Sun, 27-Mar-2016 01:28:36 GMT; path=/;

domain=.google.com

Set-Cookie:

NID=67=RcwnxF43KollBCOM287KAnUCqiko0zDY4itMzoNUEd0oRBFMLpiDUVvYI8a_gmv0

j-ORrHi2X2NuBWObMG-6rs4t53f6M90U_jyTgARunodE-xE-Nf5GbL4ZEQoxLGKR;

expires=Sat, 27-Sep-2014 01:28:36 GMT; path=/; domain=.google.com;

HttpOnly

P3P: CP="This is not a P3P policy! See

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info."

Date: Fri, 28 Mar 2014 01:28:36 GMT

Server: gws

Content-Length: 279

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

Alternate-Protocol: 80:quic

(html content removed)

271

 A whois query reports that IP address 173.194.70.106 is part of a block assigned to

Google, Inc. in Mountain View, California. This is consistent with the web site specified

by the Host header. A search of the Zeus Tracker web site produced no results that

matched this IP address.

 For this connection, Argus created one flow for the GET request and its response, and

a second flow for the single reset (RST) packet sent three minutes after the response.

Table A-56: Flows from Second Connection in File 054

sport daddr dport dur sbytes dbytes spkts dpkts

1031 173.194.70.106 80 0.445003 388 1295 4 3

1031 173.194.70.106 80 0 60 0 1 0

The first flow includes the request and response messages. The differences in byte count,

236 from the four source packets and 170 from the three destination packets, represent

the packet overhead from IP and TCP headers. Average overhead from this remote server

is 56.7 bytes per packet in this connection.

Third Connection: Source Port 1032, Destination IP 173.194.70.94

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server and a corresponding response from the remote server.

The request, a GET method, did not include a message body, only headers. The request

was for the resource provided in the Location header of the response in the previous

connection. A corresponding DNS query occurred between the two connections based on

the domain name in that Location header. The DNS query of “www.google.de” returned

272

the IP address 173.194.70.94 used in this connection. This exchange was an example of

the Google Webhp redirect and beyond the scope of this work.

GET /webhp?gfe_rd=ctrl&ei=RNA0U8ecKYuV_AaG2YDoAw&gws_rd=cr HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.google.de

Cache-Control: no-cache

Connection: Keep-Alive

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2014 01:28:37 GMT

Expires: -1

Cache-Control: private, max-age=0

Content-Type: text/html; charset=UTF-8

Set-Cookie:

PREF=ID=faf0ff2cee6827d3:FF=0:TM=1395970117:LM=1395970117:S=2KxkWYcMGR0

8IQmT; expires=Sun, 27-Mar-2016 01:28:37 GMT; path=/; domain=.google.de

Set-Cookie: NID=67=n06nDhFEr7EgebUGqZD0d2WoNYfcv1pAZwVv8JL7Nj5u2v-

gkpLbCyBUhdPc4s2wQHXacBeAdV7XKaOhh7aak2Mv8H-

x8k9Yj5NieWb5slutiNBJAnt1nG6vLtnFuzZL; expires=Sat, 27-Sep-2014

01:28:37 GMT; path=/; domain=.google.de; HttpOnly

P3P: CP="This is not a P3P policy! See

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info."

Server: gws

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

Alternate-Protocol: 80:quic

Transfer-Encoding: chunked

(html/script content removed)

273

 A whois query reports that IP address 173.194.70.94 is also part of a block assigned to

Google, Inc. in Mountain View, California. Again, this is consistent with the web site

specified by the Host header. Interestingly, a search of the Zeus Tracker web site

produced a positive result for this IP address in its historical results for Zeus command

and control servers. Figure n illustrates this result. This is likely a false positive.

Figure A-3: Positive ZeuS Tracker Results for 173.194.70.94

 For this connection, Argus created one flow for the GET request and its response, and

a second flow for the single reset packet sent three minutes after the response.

Table A-57: Flows from Third Connection in File 054

sport daddr dport dur sbytes dbytes spkts dpkts

1032 173.194.70.94 80 0.736667 1119 30596 15 25

1032 173.194.70.94 80 0 60 0 1 0

274

Fourth Connection: Source Port 1036, Destination IP 92.63.98.3

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server and a corresponding response from the remote server.

The request, a POST method, and its response are nearly identical to those in the previous

connection over source port 1029. One notable difference is the value of the Content-

Length header of the request, 400 (bytes) in this request compared with 304 in the

previous. The request and response message bodies contained unique content.

POST /hl82ltwxk7/cde.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/5.0 (compatible; MSIE 6.0; Windows NT 6.2)

Host: 92.63.98.3

Content-Length: 400

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Server: nginx

Date: Fri, 28 Mar 2014 01:31:36 GMT

Content-Type: text/html

Transfer-Encoding: chunked

Connection: close

X-Powered-By: PHP/5.4.25

(non-readable content removed)

 For this connection, Argus created a single flow.

275

Table A-58: Flows from Fourth Connection in File 054

sport daddr dport dur sbytes dbytes spkts dpkts

1036 92.63.98.3 80 0.545857 898 522 5 5

Fifth Connection: Source Port 1037, Destination IP 92.63.98.3

 The HTTP content over this TCP connection consisted of four requests from the local

client to the remote server and four corresponding responses from the remote server. The

content of these GET method requests and their responses is effectively the same as those

from the earlier connection over source port 1029. Only the value of the time in the Date

header of the responses is different. Each response time is within one second of being

exactly four minutes later than its counterpart in the previous connection.

GET /hl82ltwxk7/modules/config.bin HTTP/1.1

Accept: */*

User-Agent: Mozilla/5.0 (compatible; MSIE 6.0; Windows NT 6.2)

Host: 92.63.98.3

Cache-Control: no-cache

HTTP/1.1 200 OK

Server: nginx

Date: Fri, 28 Mar 2014 01:32:07 GMT

Content-Type: application/octet-stream

Connection: keep-alive

Content-Length: 36080

Last-Modified: Wed, 26 Mar 2014 11:39:17 GMT

ETag: "5332bc65-8cf0"

Accept-Ranges: bytes

(non-readable content removed)

276

GET /hl82ltwxk7/modules/mod1.bin HTTP/1.1

Accept: */*

User-Agent: Mozilla/5.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1)

Host: 92.63.98.3

Cache-Control: no-cache

HTTP/1.1 200 OK

Server: nginx

Date: Fri, 28 Mar 2014 01:32:13 GMT

Content-Type: application/octet-stream

Connection: keep-alive

Content-Length: 9216

Last-Modified: Tue, 04 Mar 2014 09:33:03 GMT

ETag: "53159dcf-2400"

Accept-Ranges: bytes

(non-readable content removed)

GET /hl82ltwxk7/modules/mod2.bin HTTP/1.1

Accept: */*

User-Agent: Mozilla/5.0 (compatible; MSIE 6.0; Windows NT 6.2)

Host: 92.63.98.3

Cache-Control: no-cache

HTTP/1.1 200 OK

Server: nginx

Date: Fri, 28 Mar 2014 01:32:13 GMT

Content-Type: application/octet-stream

Connection: keep-alive

Content-Length: 8704

Last-Modified: Tue, 04 Mar 2014 09:33:01 GMT

277

ETag: "53159dcd-2200"

Accept-Ranges: bytes

(non-readable content removed)

GET /hl82ltwxk7/modules/mod3.bin HTTP/1.1

Accept: */*

User-Agent: Mozilla/5.0 (compatible; MSIE 6.0; Windows NT 6.2)

Host: 92.63.98.3

Cache-Control: no-cache

HTTP/1.1 200 OK

Server: nginx

Date: Fri, 28 Mar 2014 01:32:14 GMT

Content-Type: application/octet-stream

Connection: keep-alive

Content-Length: 8192

Last-Modified: Tue, 04 Mar 2014 09:33:02 GMT

ETag: "53159dce-2000"

Accept-Ranges: bytes

(non-readable content removed)

 For this connection, Argus created two flows, one for the first GET request and its

response, and another for the next three GET requests and their responses. The first flow

has the same byte and packet counts as its earlier counterpart. The second has 10 fewer

source bytes, 162 more destination bytes, and three more destination packets.

Table A-59: Flows from Fifth Connection in File 054

sport daddr dport dur sbytes dbytes spkts dpkts

1037 92.63.98.3 80 0.781075 1363 38011 20 31

1037 92.63.98.3 80 0.913748 1442 28584 16 32

278

Sixth Connection: Source Port 1038, Destination IP 173.194.70.106

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server and a corresponding response from the remote server. As

with the previous connection to this server on source port 1031, this GET method request

did not include a message body. Unlike the previous connection, this request included a

Cookie header with corresponding value.

GET /webhp HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.google.com

Cache-Control: no-cache

Cookie:

PREF=ID=55285ca6ac9ee775:FF=0:TM=1395970116:LM=1395970116:S=CoTFyt1zG5X

oSVIk;

NID=67=RcwnxF43KollBCOM287KAnUCqiko0zDY4itMzoNUEd0oRBFMLpiDUVvYI8a_gmv0

j-ORrHi2X2NuBWObMG-6rs4t53f6M90U_jyTgARunodE-xE-Nf5GbL4ZEQoxLGKR

HTTP/1.1 302 Found

Cache-Control: private

Content-Type: text/html; charset=UTF-8

Location:

http://www.google.de/webhp?gfe_rd=cr&ei=NdE0U7zKO8mT_AbUhICQCw

Content-Length: 263

Date: Fri, 28 Mar 2014 01:32:37 GMT

Server: GFE/2.0

Alternate-Protocol: 80:quic

(html content removed)

279

 For this connection, Argus created one flow for the GET request and its response. The

sample trace file ends within two seconds of this connection so subsequent reset packet is

not observed in this case.

Table A-60: Flows from Sixth Connection in File 054

sport daddr dport dur sbytes dbytes spkts dpkts

1038 173.194.70.106 80 0.545044 671 1278 5 4

Seventh Connection: Source Port 1039, Destination IP 173.194.70.94

 The HTTP content over this TCP connection consisted of one request from the local

client to the remote server. The sample trace file ended before the response was observed

in this case. The GET method request was again for the resource provided in the

Location header of the previous connection’s response.

GET /webhp?gfe_rd=cr&ei=NdE0U7zKO8mT_AbUhICQCw HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Connection: Keep-Alive

Cache-Control: no-cache

Cookie:

PREF=ID=faf0ff2cee6827d3:FF=0:TM=1395970117:LM=1395970117:S=2KxkWYcMGR0

8IQmT; NID=67=n06nDhFEr7EgebUGqZD0d2WoNYfcv1pAZwVv8JL7Nj5u2v-

gkpLbCyBUhdPc4s2wQHXacBeAdV7XKaOhh7aak2Mv8H-

x8k9Yj5NieWb5slutiNBJAnt1nG6vLtnFuzZL

Host: www.google.de

 For this connection, Argus created one flow for the GET request. The sample trace

file ends immediately thereafter.

280

Table A-61: Flows from Seventh Connection in File 054

sport daddr dport dur sbytes dbytes spkts dpkts

1039 173.194.70.94 80 0.070219 610 62 3 1

 The behavior observed in the connections of this sample file (054) was very similar to

that reported by Alserhani, Akhlaq, Awan, and Cullen (2010), Binsalleeh, Ormerod,

Boukhtouta, Sinha, Youssef, Debbabi, and Wang (2010), and Riccardi, Di Pietro,

Palanques, and Vila (2013). The infected client appeared to request updated

configuration files with a GET method and “config.bin” resource, as reported by

Binsalleeh et al. (2010) and Riccardi et al. (2013). The same method was used to request

three additional files (mod1.bin, mod2.bin, mod3.bin) which likely contained

supplemental configuration information. The client then used a POST method with

encrypted message body to send information back to the server. In this case the resource

was named “cde.php” as opposed to the resource named “gate.php” reported by

Binsalleeh et al. and Riccardi et al. The requests for configuration files were repeated at

four minutes intervals. The requests to send information were repeated at three minute

intervals. Even though the responses to the POST requests were chunked and therefore

did not contain a Content-Length header, they were both 64 bytes in length.

281

Sample File 3f9 collected on 30 Mar 2014 with total time 4 minutes 52 seconds

 This network trace sample file consisted of seven successful TCP connections, as

summarized in the following table. A column is included in the table to indicate whether

the connection was preceded by a DNS query when the HTTP Host Header field

specified a domain name as opposed to an IP address. In this case domain names were

specified for the suspicious servers.

Table A-62: Summary of Connections in File 3f9

Source Port Destination IP HTTP Host Header DNS?

1030 184.22.237.213 crayolabank.ru Yes

1031 184.22.237.213 crayolabank.ru n/a

1032 184.22.237.213 bingbangtheory.ru Yes

1033 173.194.112.82 www.google.com Yes

1034 173.194.112.88 www.google.de Yes

1038 184.22.237.213 bingbangtheory.ru n/a

1039 184.22.237.213 crayolabank.ru n/a

First Connection: Source Port 1030, Destination IP 184.22.237.213

 The HTTP content over this TCP connection consisted of six requests from the local

client to the remote server with corresponding responses from the remote server. Each

request used the POST method specifying a resource named “file.php” and included a

message body with no readable text. The length of the message bodies was 128 bytes for

each of the first four and 131 bytes for the last two. The content of the first two message

bodies was the same, the content of the second two message bodies was also the same but

282

different than that of the first two, and the content of the third two message bodies were

unique. The Cache-Control header with No-Cache token was used to prevent caching

along the request chain. In each case the server responded with status code 404 Not

Found. No message bodies were included in these responses. No unusual headers were

used.

POST /net/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: crayolabank.ru

Content-Length: 128

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 404 Not Found

Date: Sun, 30 Mar 2014 13:05:12 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

POST /net/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: crayolabank.ru

Content-Length: 128

Connection: Keep-Alive

Cache-Control: no-cache

283

(non-readable content removed)

HTTP/1.1 404 Not Found

Date: Sun, 30 Mar 2014 13:05:12 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=15, max=99

Connection: Keep-Alive

Content-Type: text/html

POST /net/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: crayolabank.ru

Content-Length: 128

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 404 Not Found

Date: Sun, 30 Mar 2014 13:05:12 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=15, max=98

Connection: Keep-Alive

Content-Type: text/html

POST /net/file.php HTTP/1.1

284

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: crayolabank.ru

Content-Length: 128

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 404 Not Found

Date: Sun, 30 Mar 2014 13:05:13 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=15, max=97

Connection: Keep-Alive

Content-Type: text/html

POST /net/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: crayolabank.ru

Content-Length: 131

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 404 Not Found

Date: Sun, 30 Mar 2014 13:05:13 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=15, max=96

285

Connection: Keep-Alive

Content-Type: text/html

POST /net/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: crayolabank.ru

Content-Length: 131

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 404 Not Found

Date: Sun, 30 Mar 2014 13:05:14 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=15, max=95

Connection: Keep-Alive

Content-Type: text/html

 A query of ZeuS Tracker produced a match for the IP address and domain name of the

server observed in this connection. A query using whois indicated that this IP address

belongs to a block assigned to an entity without location details. The domain name was

registered on 27 February 2014 to a “private person” without further details.

286

Figure A-4: Positive ZeuS Tracker Results for 184.22.237.213

 For this connection, Argus created three flows, one for the HTTP requests and

responses, and two with the packets to close the connection.

Table A-63: Flows from First Connection in File 3f9

sport daddr dport dur sbytes dbytes spkts dpkts

1030 184.22.237.213 80 2.585317 2570 1971 10 8

1030 184.22.237.213 80 0.000000 60 54 1 1

1030 184.22.237.213 80 0.000000 60 0 1 0

Second Connection: Source Port 1031, Destination IP 184.22.237.213

 The HTTP content over this TCP connection consisted of three requests from the local

client to the remote server with corresponding responses from the remote server. The

first request, a POST method, specified a resource named “file.php” along with its

relative path. The request contained a message body with no readable text and a length

287

of 122 bytes. The response, successful status code 200 OK, also contained a message

body with no readable text. The response included a Content-Disposition header

specifying that the content should be handled as a file named “config.dll” and a Content-

Type header specifying Application/Octet-stream for the content. The length of the

response message body was 30368 bytes. Keep-Alive was specified using the

Connection header for a persistent connection, suggesting that additional exchanges

would follow.

POST /net/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: crayolabank.ru

Content-Length: 122

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Sun, 30 Mar 2014 13:05:12 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Cache-Control: public

Content-Disposition: attachment; filename="%2e/files/config.dll"

Content-Transfer-Encoding: binary

Content-Length: 30368

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: application/octet-stream

(non-readable content removed)

288

 The next two requests were also POST methods specifying a resource named

“file.php” and included message bodies with no readable text. Although the length of

their message bodies was the same, 131 bytes, their content was different. Both elicited

responses with error status code 404 Not Found. Neither of the responses included a

message body.

POST /net/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: crayolabank.ru

Content-Length: 131

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 404 Not Found

Date: Sun, 30 Mar 2014 13:05:13 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=15, max=99

Connection: Keep-Alive

Content-Type: text/html

POST /net/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: crayolabank.ru

Content-Length: 131

Connection: Keep-Alive

Cache-Control: no-cache

289

(non-readable content removed)

HTTP/1.1 404 Not Found

Date: Sun, 30 Mar 2014 13:05:14 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=15, max=98

Connection: Keep-Alive

Content-Type: text/html

 For this connection, Argus created three flows, one for the HTTP requests and

responses, and two with the packets to close the connection.

Table A-64: Flows from Second Connection in File 3f9

sport daddr dport dur sbytes dbytes spkts dpkts

1031 184.22.237.213 80 2.786054 2303 32821 22 29

1031 184.22.237.213 80 0.000000 60 54 1 1

1031 184.22.237.213 80 0.000000 60 0 1 0

Third Connection: Source Port 1032, Destination IP 184.22.237.213

 The HTTP content over this TCP connection with a new remote server consisted of

five requests from the local client to the remote server with corresponding responses from

the remote server. The first four requests were again POST methods specifying a

resource named “file.php” and included message bodies with no readable text. The

length of the four message bodies was the same, 131 bytes, but the content changed after

the first two for the second two. The second pair followed the first pair by ten seconds.

290

All requests elicited responses with error status code 404 Not Found. None of the

responses included a message body.

POST /net/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: bingbangtheory.ru

Content-Length: 131

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 404 Not Found

Date: Sun, 30 Mar 2014 13:05:25 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

POST /net/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: bingbangtheory.ru

Content-Length: 131

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

291

HTTP/1.1 404 Not Found

Date: Sun, 30 Mar 2014 13:05:25 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=15, max=99

Connection: Keep-Alive

Content-Type: text/html

POST /net/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: bingbangtheory.ru

Content-Length: 131

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 404 Not Found

Date: Sun, 30 Mar 2014 13:05:35 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=15, max=98

Connection: Keep-Alive

Content-Type: text/html

POST /net/file.php HTTP/1.1

Accept: */*

292

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: bingbangtheory.ru

Content-Length: 131

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 404 Not Found

Date: Sun, 30 Mar 2014 13:05:36 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 0

Keep-Alive: timeout=15, max=97

Connection: Keep-Alive

Content-Type: text/html

 The fifth request was also a POST method but for the “gate.php” resource. The

request included a message body with no readable text and a length of 376 bytes. The

response, successful status code 200 OK, also included a message body with no readable

text even though the Content-Type header specified Text/Html. The length of the

response message body was 64 bytes.

POST /net/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: bingbangtheory.ru

Content-Length: 376

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

293

HTTP/1.1 200 OK

Date: Sun, 30 Mar 2014 13:05:42 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 64

Keep-Alive: timeout=15, max=96

Connection: Keep-Alive

Content-Type: text/html

(non-readable content removed)

 A query of ZeuS Tracker also produced a match for this second domain which had

been associated with a different IP address. The match also indicates that this particular

resource (bingbangtheory.ru/net/gate.php) was a drop zone. Riccardi, Di Pietro,

Palanques, and Vila (2013) report that C&C and drop zone are two names for the main

server that hosts the control panel and receives information from the bots. The domain

name was registered on 28 March 2014, also to a “private person” without further details.

294

Figure A-5: Positive ZeuS Tracker Results for bingbangtheory.ru

 For this connection, Argus created seven flows, three for the HTTP requests and

responses, and four with only packets to close the connection.

Table A-65: Flows from Third Connection in File 3f9

sport daddr dport dur sbytes dbytes spkts dpkts

1032 184.22.237.213 80 1.094589 968 735 5 4

1032 184.22.237.213 80 0.769651 846 618 3 2

1032 184.22.237.213 80 0.696703 698 421 2 2

1032 184.22.237.213 80 0.000000 60 54 1 1

1032 184.22.237.213 80 3.605412 120 0 2 0

1032 184.22.237.213 80 0.000000 60 0 1 0

1032 184.22.237.213 80 0.000000 60 0 1 0

295

Fourth Connection: Source Port 1033, Destination IP 173.194.112.82

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was an example of the Google Webhp redirect and beyond the scope of

this work.

GET /webhp HTTP/1.1

Accept: */*

Connection: Close

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.google.com

Cache-Control: no-cache

HTTP/1.1 302 Found

Location: http://www.google.de/webhp?gfe_rd=ctrl&ei=pRY4U-

zsLOGG8QfXkYCQBA&gws_rd=cr

Cache-Control: private

Content-Type: text/html; charset=UTF-8

Set-Cookie:

PREF=ID=2d16737d3f3c9978:FF=0:TM=1396184742:LM=1396184742:S=mtODtJvDSxK

h2avQ; expires=Tue, 29-Mar-2016 13:05:42 GMT; path=/;

domain=.google.com

Set-Cookie:

NID=67=eCPHhLNc38gVFahYuQWQ4IvnL1CqhQxT4qtNeVCC_VtqGs1pDyz6f7eBLTPINOpo

7JpM-fk7lXn3nZgFiVAZpGbMliRHSMAMBlgztq0zUqUHSFNFkdNF0w9KGbZNhPjF;

expires=Mon, 29-Sep-2014 13:05:42 GMT; path=/; domain=.google.com;

HttpOnly

P3P: CP="This is not a P3P policy! See

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info."

Date: Sun, 30 Mar 2014 13:05:42 GMT

Server: gws

Content-Length: 279

296

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

Alternate-Protocol: 80:quic

Connection: close

(html content removed)

 A query of ZeuS Tracker produced no matches for the IP address or domain name of

the server observed in this connection. A query using whois indicated that this IP address

belongs to a block assigned to Google, Inc.

 For this connection, Argus created one flow.

Table A-66: Flows from Fourth Connection in File 3f9

sport daddr dport dur sbytes dbytes spkts dpkts

1033 173.194.112.82 80 0.628610 467 1422 5 5

Fifth Connection: Source Port 1034, Destination IP 173.194.112.88

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was an example of the Google Webhp redirect and beyond the scope of

this work.

GET /webhp?gfe_rd=ctrl&ei=pRY4U-zsLOGG8QfXkYCQBA&gws_rd=cr HTTP/1.1

Accept: */*

Connection: Close

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Cache-Control: no-cache

Host: www.google.de

297

HTTP/1.1 200 OK

Date: Sun, 30 Mar 2014 13:05:42 GMT

Expires: -1

Cache-Control: private, max-age=0

Content-Type: text/html; charset=UTF-8

Set-Cookie:

PREF=ID=2757e05cb728038a:FF=0:TM=1396184742:LM=1396184742:S=-

zOfTqNQdLRxOCRN; expires=Tue, 29-Mar-2016 13:05:42 GMT; path=/;

domain=.google.de

Set-Cookie:

NID=67=dT7vyHjGTeGTZ2S9kWgVyLI7cuNXTBf1fg_SkR7XUVHkwyONRGuX77PmJjhNxXFA

cMBxscXlZJRoUnpRuaSM28Ekv4FJIHqgygDSu7kfcfhEoe_Yv_vrI7heduecDBix;

expires=Mon, 29-Sep-2014 13:05:42 GMT; path=/; domain=.google.de;

HttpOnly

P3P: CP="This is not a P3P policy! See

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info."

Server: gws

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

Alternate-Protocol: 80:quic

Connection: close

(html/script content removed)

 A query of ZeuS Tracker produced no matches for the IP address or domain name of

the server observed in this connection. A query using whois indicated that this IP address

belongs to a block assigned to Google, Inc.

 For this connection, Argus created one flow.

Table A-67: Flows from Fifth Connection in File 3f9

sport daddr dport dur sbytes dbytes spkts dpkts

1034 173.194.112.88 80 0.618048 1294 30496 18 25

298

Sixth Connection: Source Port 1038, Destination IP 184.22.237.213

 The HTTP content over this TCP connection consisted of five requests from the local

client to the remote server with corresponding responses from the remote server. Each of

the requests used the POST method specifying the “gate.php” resource and contained a

message body with no readable text. Four of the five message bodies were of different

lengths, and all had unique content. All of the responses reported successful status code

200 OK and included message bodies with no readable text. All of the response message

bodies were 64 bytes in length, but with unique content.

POST /net/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: bingbangtheory.ru

Content-Length: 525

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Sun, 30 Mar 2014 13:08:42 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 64

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

(non-readable content removed)

299

POST /net/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: bingbangtheory.ru

Content-Length: 1213

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Sun, 30 Mar 2014 13:08:42 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 64

Keep-Alive: timeout=15, max=99

Connection: Keep-Alive

Content-Type: text/html

(non-readable content removed)

POST /net/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: bingbangtheory.ru

Content-Length: 538

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

300

HTTP/1.1 200 OK

Date: Sun, 30 Mar 2014 13:08:42 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 64

Keep-Alive: timeout=15, max=98

Connection: Keep-Alive

Content-Type: text/html

(non-readable content removed)

POST /net/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: bingbangtheory.ru

Content-Length: 538

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Sun, 30 Mar 2014 13:08:43 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 64

Keep-Alive: timeout=15, max=97

Connection: Keep-Alive

Content-Type: text/html

(non-readable content removed)

301

POST /net/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: bingbangtheory.ru

Content-Length: 4164

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Sun, 30 Mar 2014 13:08:43 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Vary: Accept-Encoding

Content-Length: 64

Keep-Alive: timeout=15, max=96

Connection: Keep-Alive

Content-Type: text/html

(non-readable content removed)

 For this connection, Argus created three flows, one for the HTTP requests and

responses and two with only packets to close the connection.

Table A-68: Flows from Sixth Connection in File 3f9

sport daddr dport dur sbytes dbytes spkts dpkts

1038 184.22.237.213 80 2.112349 8742 2114 13 10

1038 184.22.237.213 80 0.000000 60 54 1 1

1038 184.22.237.213 80 0.000000 60 0 1 0

302

Seventh Connection: Source Port 1039, Destination IP 184.22.237.213

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request to POST the “file.php” resource included a message body with no readable

text and a length of 122 bytes. The response, successful status code 200 OK, also

included a message body with no readable text. The response included a Content-

Disposition header with tokens indicating that the content should be handled as a file

named “config.dll” and a Content-Type header specifying Application/Octet-stream for

the content. The length of the response message body was 30368 bytes. The content was

the same as that of the response in the second connection which also specified the same

“config.dll” filename.

POST /net/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: crayolabank.ru

Content-Length: 122

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Sun, 30 Mar 2014 13:09:14 GMT

Server: Apache/2.2.16 (Debian)

X-Powered-By: PHP/5.4.26-1~dotdeb.0

Cache-Control: public

Content-Disposition: attachment; filename="%2e/files/config.dll"

Content-Transfer-Encoding: binary

Content-Length: 30368

Keep-Alive: timeout=15, max=100

303

Connection: Keep-Alive

Content-Type: application/octet-stream

(non-readable content removed)

 For this connection, Argus created one flow.

Table A-69: Flows from Seventh Connection in File 3f9

sport daddr dport dur sbytes dbytes spkts dpkts

1039 184.22.237.213 80 1.756411 1463 32149 19 26

 The behavior observed in the connections of this sample file (3f9) showed both

similarities and differences to that reported by Alserhani, Akhlaq, Awan, and Cullen

(2010), Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, Debbabi, and Wang (2010),

and Riccardi, Di Pietro, Palanques, and Vila (2013). Here the infected client appeared to

request updated configuration files with a POST method as opposed to the GET method

reported by Alserhami, et al. (2010), Binsalleeh et al. (2010), and Riccardi et al. (2013).

The resource here was named “file.php” as opposed to the name “config.bin” reported by

these researchers. The client appeared to send information with another POST method,

this time using the resource named “gate.php” which does match what was previously

reported. The interval between requests for configuration file updates was four minutes.

The interval between requests to send information was three minutes. A notable

difference observed in this sample file was the use of a second remote server. As

reported by Riccardi et al., the Zeus ecosystem can consist of two or three entities. When

it’s three entities, separate servers are used for C&C and for hosting of the configuration

files. The C&C server has the control panel and receives the data from the bots. The

other server provides the updated configuration files. When it’s two entities, those

304

functions are combined on a single server. The infected client is the other entity. In this

sample file, the server crayolabank.ru provided the configuration file updates and the

server bingbangtheory.ru received the status updates from the infected client.

305

Sample File 3b7 collected on 12 Mar 2014 with total time 4 minutes 47 seconds

 This network trace sample file consisted of six successful TCP connections, as

summarized in the following table. A column is included in the table to indicate whether

the connection was preceded by a DNS query when the HTTP Host Header field

specified a domain name as opposed to an IP address. In this case a domain name was

specified for the suspicious server.

Table A-70: Summary of Connections in File 3b7

Source Port Destination IP HTTP Host Header DNS?

1034 80.239.159.24 www.download.windowsupdate.com Yes

1035 173.194.70.104 www.google.com Yes

1036 173.194.70.94 www.google.de Yes

1037 188.226.212.147 delapotalcopa.pw Yes

1038 188.226.212.147 delapotalcopa.pw n/a

1039 188.226.212.147 delapotalcopa.pw n/a

First Connection: Source Port 1034, Destination IP 80.239.159.24

 The HTTP content over this TCP connection consisted of two requests from the local

client to the remote server with corresponding responses from the remote server. These

exchanges were examples of a Microsoft Windows periodic update.

GET /msdownload/update/v3/static/trustedr/en/authrootseq.txt HTTP/1.1

Accept: */*

User-Agent: Microsoft-CryptoAPI/5.131.2600.5512

Host: www.download.windowsupdate.com

Connection: Keep-Alive

306

Cache-Control: no-cache

Pragma: no-cache

HTTP/1.1 200 OK

Content-Type: text/plain

Last-Modified: Wed, 12 Mar 2014 05:29:31 GMT

Accept-Ranges: bytes

ETag: "806f4cbb43dcf1:0"

Server: Microsoft-IIS/7.5

X-Powered-By: ASP.NET

Content-Length: 18

Cache-Control: max-age=4558

Date: Fri, 28 Mar 2014 03:20:02 GMT

Connection: keep-alive

X-CCC: NO

X-CID: 2

(binary content removed)

GET /msdownload/update/v3/static/trustedr/en/authrootstl.cab HTTP/1.1

Accept: */*

User-Agent: Microsoft-CryptoAPI/5.131.2600.5512

Host: www.download.windowsupdate.com

Connection: Keep-Alive

Cache-Control: no-cache

Pragma: no-cache

HTTP/1.1 200 OK

Content-Type: application/octet-stream

Last-Modified: Wed, 12 Mar 2014 20:20:10 GMT

Accept-Ranges: bytes

ETag: "0b96c77303ecf1:0"

Server: Microsoft-IIS/7.5

X-Powered-By: ASP.NET

307

Content-Length: 54007

Cache-Control: max-age=10031

Date: Fri, 28 Mar 2014 03:20:03 GMT

Connection: keep-alive

X-CCC: NO

X-CID: 2

(binary content removed)

 A query of ZeuS Tracker produced no matches for the IP address or domain name of

the server in this connection. A query using whois indicated that this IP address belongs

to a block assigned to Akamai, a popular content distribution network (CDN) service

provider. The domain name was registered in 1997 to Microsoft Corporation.

 For this connection, Argus created two flows, one for the HTTP requests and

responses and one with a packet to close the connection.

Table A-71: Flows from the First Connection in File 3b7

sport daddr dport dur sbytes dbytes spkts dpkts

1034 80.239.159.24 80 0.970389 2150 57067 28 44

1034 80.239.159.24 80 0.000000 60 0 1 0

Second Connection: Source Port 1035, Destination IP 173.194.70.104

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was an example of the Google Webhp redirect and beyond the scope of

this work.

308

GET /webhp HTTP/1.1

Accept: */*

Connection: Close

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.google.com

Cache-Control: no-cache

HTTP/1.1 302 Found

Cache-Control: private

Content-Type: text/html; charset=UTF-8

Location: http://www.google.de/webhp?gfe_rd=cr&ei=e-

o0U4WsHsbh_Aa57IGAAg

Content-Length: 263

Date: Fri, 28 Mar 2014 03:20:27 GMT

Server: GFE/2.0

Alternate-Protocol: 80:quic

Connection: close

(html content removed)

 A query of ZeuS Tracker produced no matches for the IP address or domain name of

the server in this connection. A query using whois indicated that this IP address belongs

to a block assigned Google, Inc.

 For this connection, Argus created one flow.

Table A-72: Flows from the Second Connection in File 3b7

sport daddr dport dur sbytes dbytes spkts dpkts

1035 173.194.70.104 80 0.406644 467 824 5 5

309

Third Connection: Source Port 1036, Destination IP 173.194.70.94

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

This exchange was an example of the Google Webhp redirect and beyond the scope of

this work.

GET /webhp?gfe_rd=cr&ei=e-o0U4WsHsbh_Aa57IGAAg HTTP/1.1

Accept: */*

Connection: Close

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Cache-Control: no-cache

Host: www.google.de

HTTP/1.1 200 OK

Date: Fri, 28 Mar 2014 03:20:28 GMT

Expires: -1

Cache-Control: private, max-age=0

Content-Type: text/html; charset=UTF-8

Set-Cookie:

PREF=ID=e72611090f7d6620:FF=0:TM=1395976827:LM=1395976828:S=I7ioIueBoyY

QVcO1; expires=Sun, 27-Mar-2016 03:20:28 GMT; path=/; domain=.google.de

Set-Cookie: NID=67=OPfUMW-

CHRpBSlyR8TXm3dLr7r7Va6LiQLJhrtTuy6Ydx2gzsfVc-

eQ_kEe3HHS22Xoz5M3_SCNXC47Fprwx0YZYfUuEyhxpfzcgorQIRbNRdd1fV6QUi2vq8xO3

h-ox; expires=Sat, 27-Sep-2014 03:20:28 GMT; path=/; domain=.google.de;

HttpOnly

P3P: CP="This is not a P3P policy! See

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info."

Server: gws

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

Alternate-Protocol: 80:quic

310

Connection: close

(html/script content removed)

 A query of ZeuS Tracker produced a match for the IP address but not the domain

name of the server in this connection. This is likely a false positive. A query using

whois indicated that this IP address belongs to a block assigned to Google, Inc., which is

consistent with the web site specified by the Host header.

Figure A-6: Positive ZeuS Tracker Results for 173.194.70.94

 For this connection, Argus created one flow.

Table A-73: Flows from the Third Connection in File 3b7

sport daddr dport dur sbytes dbytes spkts dpkts

1036 173.194.70.94 80 0.632747 1282 30538 18 25

311

Fourth Connection: Source Port 1037, Destination IP 188.226.212.147

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request, a POST method, specified a resource named “post2host.php” along with its

relative path. The request contained a message body with no readable text and a length

of 376 bytes. The response, successful status code 200 OK, also included a message

body with no readable text. Its length was 129 bytes, not the more common 64 bytes.

POST /base/post2host.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: delapotalcopa.pw

Content-Length: 376

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Server: nginx/1.4.6

Date: Fri, 28 Mar 2014 03:20:30 GMT

Content-Type: text/html; charset=UTF-8

Content-Length: 129

Connection: keep-alive

X-Powered-By: PHP/5.4.25

(non-readable content removed)

 A query of ZeuS Tracker produced no matches for the IP address or domain name of

the server in this connection. A query using whois indicated that this IP address belongs

312

to a block assigned to an entity in the United States. The domain name was registered on

11 March 2014 to an individual in Russia.

 For this connection, Argus created one flow.

Table A-74: Flows from the Fourth Connection in File 3b7

sport daddr dport dur sbytes dbytes spkts dpkts

1037 188.226.212.147 80 4.032442 1005 649 7 6

Fifth Connection: Source Port 1038, Destination IP 188.226.212.147

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request, a GET method, specified a resource named “res.exe” along with its relative

path. The request did not contain a message body. The response, successful status code

200 OK, did include a message body with some readable text. Application/Octet-stream

was specified in the Content-Type header and the MZ header “This program cannot be

run in DOS mode” was contained in the first line of the message body.

GET /base/res.exe HTTP/1.1

Accept: */*

Connection: Close

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: delapotalcopa.pw

Cache-Control: no-cache

HTTP/1.1 200 OK

Server: nginx/1.4.6

Date: Fri, 28 Mar 2014 03:20:30 GMT

Content-Type: application/octet-stream

Content-Length: 346624

313

Connection: close

Last-Modified: Thu, 27 Mar 2014 22:28:35 GMT

ETag: "6320667-54a00-4f59e1b176ac0"

Accept-Ranges: bytes

MZ......................@..

.!..L.!This program cannot be run in DOS mode.

(non-readable content removed)

 For this connection, Argus created one flow.

Table A-75: Flows from the Fifth Connection in File 3b7

sport daddr dport dur sbytes dbytes spkts dpkts

1038 188.226.212.147 80 3.723237 10556 361153 173 264

Sixth Connection: Source Port 1039, Destination IP 188.226.212.147

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request, a POST method, specified a resource named “post2host.php” along with its

relative path. The request did include a message body with a length of 209 and no

readable text. The response, successful status code 200 OK, included a message body

with a length of 64 bytes and no readable text.

POST /base/post2host.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: delapotalcopa.pw

Content-Length: 209

Connection: Keep-Alive

Cache-Control: no-cache

314

(non-readable content removed)

HTTP/1.1 200 OK

Server: nginx/1.4.6

Date: Fri, 28 Mar 2014 03:20:34 GMT

Content-Type: text/html; charset=UTF-8

Content-Length: 64

Connection: keep-alive

X-Powered-By: PHP/5.4.25

(non-readable content removed)

 For this connection, Argus created two flows, one for the HTTP request and response

and one with only a packet to close the connection.

Table A-76: Flows from the Sixth Connection in File 3b7

sport daddr dport dur sbytes dbytes spkts dpkts

1039 188.226.212.147 80 1.255460 718 475 5 4

1039 188.226.212.147 80 0.000000 60 0 1 0

 The behavior observed in the connections of this sample file (3b7) was very similar to

the behavior observed in the connections of sample file 9ca. An encrypted response

longer than 64 bytes to information posted from the infected client resulted in a

subsequent GET method request for an executable file. In this case, however, the file

description embedded in the string table of this Windows executable file was “IME Open

Extended Dictionary Manager” with an original filename of “imeextdictionary_mgr.”

It’s not clear why dictionary functionality was provided to the bot. This has not been

previously reported.

315

Sample File 058 collected on 04 Apr 2014 with total time 4 minutes 44 seconds

 This network trace sample file consisted of three successful TCP connections, as

summarized in the following table. A column is included in the table to indicate whether

the connection was preceded by a DNS query when the HTTP Host Header field

specified a domain name as opposed to an IP address. In this case a domain name was

specified for the suspicious server.

Table A-77: Summary of Connections in File 058

Source Port Destination IP HTTP Host Header DNS?

1030 95.128.157.163 www.decoagua.com Yes

1031 95.128.157.163 www.decoagua.com n/a

1032 95.128.157.163 www.decoagua.com n/a

First Connection: Source Port 1030, Destination IP 95.128.157.163

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request, a POST method, specified a resource named “index.php” along with its

relative path. The request included a message body of 67 bytes with no readable text.

The response, successful status code 200 OK, included a message body of 34441 bytes.

The filename “deco.bin” was specified for this message body using the Content-

Disposition header.

POST /es/plugins/config/index.php HTTP/1.1

Accept: */*

Content-Type: application/x-www-form-urlencoded

Connection: Close

316

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.decoagua.com

Content-Length: 67

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Fri, 04 Apr 2014 09:40:43 GMT

Server: Apache/2.2.17 (Linux/SUSE)

X-Powered-By: PHP/5.3.5

Content-Disposition: attachment; filename=deco.bin

Content-Length: 34441

Content-Transfer-Encoding: binary

Connection: close

Content-Type: text/plain

(non-readable content removed)

 A query of ZeuS Tracker produced a match for both the IP address and domain name

of the server in this connection. A query using whois indicated that this IP address

belongs to a block assigned to a service provider in Spain. The domain name was

registered in 2013 to an individual in Spain.

317

Figure A-7: Positive ZeuS Tracker Results for 95.128.157.163

 For this connection, Argus created one flow.

Table A-78: Flows from the First Connection in File 058

sport daddr dport dur sbytes dbytes spkts dpkts

1030 95.128.157.163 80 1.210800 1648 36341 22 30

Second Connection: Source Port 1031, Destination IP 95.128.157.163

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request, a POST method, specified a resource named “gate.php” along with its

relative path. The request included a message body of 290 bytes with no readable text.

The response, successful status code 200 OK, included a message body of 64 bytes. The

response message body contained no readable text even though Text/Html was specified

in the Content-Type header.

318

POST /es/plugins/adm/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.decoagua.com

Content-Length: 290

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Fri, 04 Apr 2014 09:41:13 GMT

Server: Apache/2.2.17 (Linux/SUSE)

X-Powered-By: PHP/5.3.5

Content-Length: 64

Connection: close

Content-Type: text/html

(non-readable content removed)

 For this connection, Argus created one flow.

Table A-79: Flows from the Second Connection in File 058

sport daddr dport dur sbytes dbytes spkts dpkts

1031 95.128.157.163 80 0.488812 804 523 5 5

Third Connection: Source Port 1032, Destination IP 95.128.157.163

 The HTTP content over this TCP connection consisted of a single request from the

local client to the remote server with a corresponding response from the remote server.

The request, a POST method, specified a resource named “gate.php” along with its

relative path. The request included a message body of 390 bytes with no readable text.

319

The response, successful status code 200 OK, included a message body of 64 bytes. The

message body contained no readable text even though Text/Html was specified in the

response Content-Type header.

POST /es/plugins/adm/gate.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: www.decoagua.com

Content-Length: 390

Connection: Keep-Alive

Cache-Control: no-cache

(non-readable content removed)

HTTP/1.1 200 OK

Date: Fri, 04 Apr 2014 09:41:13 GMT

Server: Apache/2.2.17 (Linux/SUSE)

X-Powered-By: PHP/5.3.5

Content-Length: 64

Connection: close

Content-Type: text/html

(non-readable content removed)

 For this connection, Argus created one flow.

Table A-80: Flows from the Third Connection in File 058

sport daddr dport dur sbytes dbytes spkts dpkts

1032 95.128.157.163 80 0.568172 904 523 5 5

 The behavior observed in the connections of this sample file (058) again differs from

that reported in the literature in that the POST method was used to request a file update

instead of the GET method. The POST method with default resource name “gate.php”

320

was used by the infected client to send information to the server, consistent with behavior

previously reported in the literature. The 64-byte response from the server to these

requests was noted here as in the previous sample files. Although more than three and a

half minutes remained in the trace, no subsequent requests were observed. This suggests

that the update intervals for requesting files and posting information were longer than

three minutes.

Appendix Summary and Findings

 The detailed analysis presented in this appendix produced new knowledge about the

network behavior of contemporary variants of the Zeus botnet from samples captured in

the wild during March and April of 2014. A total of fifteen sample network trace files

were examined. Seven of the samples, all those that employed the domain generation

algorithm, were found to contain no HTTP POST requests and therefore deferred for

publication elsewhere. The infected clients in those samples did not send any content to

the malicious servers, detection of which was the focus of this research. Eight of the

samples were found to contain POST requests with encrypted content, consistent with the

communications behavior reported for Zeus by other researchers (Al-Bataineh & White,

2012; Alserhani, Akhlaq, Awan, & Cullen, 2010; Binsalleeh, Ormerod, Boukhtouta,

Sinha, Youssef, Debbabi, & Wang, 2010; Riccardi, Di Pietro, Palanques, & Vila, 2013).

The HTTP requests and responses in each of these samples were thoroughly analyzed at

the inter-packet level to gain deeper insight into their observable network behavior and to

determine which corresponding netflows would be most appropriate for training and

testing the detection techniques in this research.

321

 Discovering Zeus servers that were not previously reported was an expected outcome

of this analysis given that these were new sample traces provided by the operators of

Sandnet and that criminal operators of Zeus servers dynamically change hostnames and

IP addresses to avoid detection. After a thorough search of the Internet for information

about the Zeus botnet, the ZeuS Tracker web site (https://zeustracker.abuse.ch/) was

found to be the most comprehensive and authoritative reference for previously observed

Zeus servers and therefore used in this research. Six of the IP addresses and four of the

domain names were new discoveries.

 Discovering new resource names and filenames was also an expected outcome of this

analysis, since these are under the criminal operator’s control and would seem obvious

items to change in order to elude detection techniques that rely on fixed strings.

Discovering variations in the request intervals was also expected since this parameter is

also under the operator’s control and is enabled by the Zeus crimeware toolkit (Al-

Bataineh & White, 2012; Riccardi, Di Pietro, Palanques, & Vila, 2013). An unexpected

discovery was the use of the HTTP POST method by infected clients to request file

updates. None of the previous research teams (Al-Bataineh & White, 2012; Alserhani,

Akhlaq, Awan, & Cullen, 2010; Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef,

Debbabi, & Wang, 2010; Riccardi, Di Pietro, Palanques, & Vila, 2013) reported this

technique in their findings. Only one of the eight sample files, file 054, included

successful requests by the infected client for configuration file updates using the GET

method as reported in the literature. File 32c, included requests by the infected client

using the GET method which appeared to be for configuration file updates, but none of

the requests resulted in a successful response. File 3b7 did not include a request for

https://zeustracker.abuse.ch/

322

configuration file updates using either method but did include a request using the GET

method for a supplemental file. This followed an apparent command from the server in

response to the previous request using the POST method. This use of the GET method

was also observed in file 9ca.

 The use of the POST method with encrypted payload to request configuration file

updates is significant for multiple reasons. It represents a more sophisticated technique

than the use of GET with no payload because it allows additional information to be sent

along with the request. This capability could be leveraged to reduce the frequency of

network connections and reduce the malware’s overall footprint, for example. This new

technique also alters the reported, and therefore expected, network behavior of a host

infected with Zeus that some intrusion detection techniques may depend on.

 Each of the eight sample files analyzed here were found to include TCP connections

with Zeus HTTP requests and responses that were suitable for training and testing

detection methods. Only two of the files were missing primary elements of the Zeus

communications pattern described as requesting and receiving updated configuration files

and sending status updates and stolen data (Al-Bataineh & White, 2012; Alserhani,

Akhlaq, Awan, & Cullen, 2010; Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef,

Debbabi, & Wang, 2010; Riccardi, Di Pietro, Palanques, & Vila, 2013). In aggregate, the

files presented a reasonably complete and diverse set of samples for this research. Some

previous researchers reported using a larger number of Zeus samples, but none reported

using Zeus datasets with as much variety. Mohaisen and Alrawi (2013) reported using a

dataset of 1,980 Zeus samples but did not elaborate on the relative homogeneity of the

data. Al-Bataineh and White (2012) reported that 239 examples in their dataset

323

established connections with C&C servers. They did not comment on the number of

Zeus variants, but their findings suggested a homogeneous set. Because the focus of their

research was different, Alserhani, Akhlaq, Awan, and Cullen (2010), Binsalleeh et al.

(2010), and Riccardi et al. (2013) used the Zeus crimeware toolkit to create a single

variant of Zeus for their respective network analyses.

	Nova Southeastern University
	NSUWorks
	2015

	Immunology Inspired Detection of Data Theft from Autonomous Network Activity
	Theodore O. Cochran
	Share Feedback About This Item
	NSUWorks Citation

	Dissertation Final Report

