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When genetic algorithms (GA) are used to produce music, the results are limited by a 

fitness bottleneck problem. To create effective music, the GA needs to be thoroughly 

trained by humans, but this takes extensive time and effort. Applying online collective 

intelligence or “crowdsourcing” to train a musical GA is one approach to solve the fitness 

bottleneck problem. The hypothesis was that when music was created by a GA trained by 

a crowdsourced group and music was created by a GA trained by a small group, the 

crowdsourced music would be more effective and musically sound. When a group of 

reviewers and composers evaluated the music, the crowdsourced songs scored slightly 

higher overall than the songs from the small-group songs, but with the small number of 

evaluators, the difference was not statistically significant. 



 

 

 Acknowledgements 
 

I owe a debt of gratitude to Drs. Maxine Cohen, Maria Niederberger, and Sumitra 

Mukherjee for their advice, insight, expertise, and help as my committee. Thanks to Dr. 

Terry Countermine, Adam Ogle, Carolyn Novak, Jeff Roach, Kellie Price, Mike Lehrfeld 

and the rest of the Computer and Information Sciences Department at East Tennessee 

State University for encouraging me on this path and providing technical advice. The 

encouragement and camaraderie of fellow Nova GCIS students was very valuable to me. 

 

Thank you to Dr. Edith Seier for answering statistics questions and to Zach Smith for 

proofreading. I appreciate the help from each of the research participants. Finally, I 

cannot thank Erik enough for his support and patience. 

 

 



 

 

Table of Contents 

 

 

Abstract  iii 

List of Tables viii 

List of Figures  ix 

 

Chapters 

 

1. Introduction  1 

Problem Statement and Goal  1 

Relevance and Significance  3  

Barriers and Issues  4 

Research Questions 5 

Limitations  5 

Definition of Terms  6 

Summary  7 

 

2. Review of the Literature  9 

Computer Music  9 

Bottleneck in Compositional Interactive GA Fitness Functions  10 

Fitness Bottleneck Workarounds  13 

Existing Compositional GAs  14 

Other Applications of AI in Music  15 

Crowdsourcing  16 

Risks of Crowdsourcing  18 

Amazon Mechanical Turk  20 

Fitness Bottlenecks with Crowdsourcing  21 

Music Crowdsourcing  21 

DarwinTunes  23 

MIREX Evaluations  24 

Contribution  26 

Summary  26 

 

3. Methodology  29 

Research Methods  29 

Procedures  30 

 Genetic Algorithm Choice  30 

 Melodycomposition (MC)  31 

 Fitness Functions  33 

 Musical Genre Choice  34 

 Prototype Creation  36 

Task Setup  37 

Precautions  40 

  

v 



 

 

Recruitment of and Instructions for Trainers  42 

Genetic Algorithm Training  44 

Recruitment of and Instructions for Reviewers and Composers  46 

Results Format  48. 

Summary  48 

 

4. Results  50 

Findings  50 

 Music  50 

Reviewers‟ Feedback on Small Control Group Music  51 

Reviewers‟ Feedback on Large Test Group Music  52 

Composers‟ Feedback on Small Control Group Music  53 

Composers‟ Feedback on Large Test Group Music  54 

Small Control vs. Crowdsourced Test  55 

Reviewers‟ Question by Question Comparison  59 

Composers‟ Question by Question Comparison  61 

Reviewers vs. Composers  64 

Song by Song Comparison  68 

Summary of Results  68 

 

5. Conclusions  69 

Implications  69 

Recommendations  69 

 Genetic Algorithm Setup  69 

 Training Process  72 

 Review Process  74 

Summary  75 

 

Appendixes 

A. Nova Southeastern University IRB Approval  79 

B. East Tennessee State University IRB Approval  81 

C. Screenshots of User Interface  82 

D. Trainer Instructions  86 

E. Trainer Recruitment  87 

F. Trainer Consent Form  88 

G. Reviewer Instructions  90 

H. Composer Instructions 91 

I. Reviewer Recruitment  92 

J. Reviewer Consent Form  93 

K. Composer Recruitment  94 

L. Composer Consent Form  96 

M. Reviews of Control GA Music by the Non-Musically Trained  98 

N. Reviews of Test GA Music by the Non-Musically Trained  106 

O. Reviews of Control GA Music by Composers  113 

 

vi 



 

 

P. Reviews of Test GA Music by Composers  120 

Q. Overall Comments from Reviewers   127 

R. Overall Comments from Composers  128 

 

Reference List  130 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vii 



 

 

List of Tables 

Tables 

1. t test of Test minus Control Effectiveness Differences from All, Reviewers, and 

Composers  56 

 

2. Paired t test of Per-Song Reviewer vs. Composer Ratings  66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

viii



 

 

List of Figures 

 

Figures 

1. Combined reviewer ratings of test condition music  51 

2. Combined reviewer ratings of control condition music  53 

3. Combined composer ratings of test condition music  54 

4. Combined composer ratings of control condition music  55 

5. Difference between reviewers‟/composers‟ ratings of test vs. control effectiveness  56 

 

6. Randomization test for ratings of test vs. control effectiveness  57 

 

7. Difference between reviewers‟ ratings of test vs. control originality  58 

 

8. Difference between composers‟ ratings of test vs. control chorale-likeness  59 

 

9. Combined reviewer ratings for “I like this music”  60 

10. Combined reviewer ratings for “This music is artistically effective”  60 

11. Combined reviewer ratings for “This music sounds similar to things I‟ve heard 

before”  61 

 

12. Combined composer ratings for “This music is interesting”  62 

13. Combined composers ratings for “This music is creative”  63 

14. Combined composer ratings for “This music is artistically effective”  63 

15. Combined composer ratings for “This music is chorale-like”  64 

16. Combined reviewer ratings of all music  65 

17. Combined composer ratings of all music  65 

18. Reviewers‟/composers‟ artistic effectiveness ratings  66 

19. Randomization test for all reviewer vs. composer ratings  67 

ix



1 

 

Chapter 1 

Introduction 

 

Problem Statement and Goal 

Artificial intelligence genetic algorithms (GA) can be used to produce music, and 

the fitness function that guides the generational evolution may be either pre-programmed 

rules or ratings of human preference. Computer-created music that is measured against 

existing music compositions or adherence to rules regarding voice leading, harmonic 

progressions, and so forth tend to be homogeneous and non-interesting (Biles, 2007; 

Roads, 1985).  It is lacking because “[music] distinguishes itself by the focus on human 

emotions and aesthetics – qualities that are not fully understood and which are difficult to 

describe mathematically,” (Jensen & Haddow, 2011, p. 41), and “music requires aesthetic 

judgments which are not easy to model and implement in the form of an algorithm” (de 

Freitas & Guimarães, 2011, p. 419).  

The alternative technique, known as an interactive GA (Unehara & Onisawa, 

2003), is to allow human listeners to gauge the quality of a composition; “fitness boils 

down to deciding the merit of a piece of music, and this is inherently subjective” (Biles, 

2007, p. 41). Existing methods of GA music creation using human fitness functions can 

produce more effective music than GAs without human input; however, they are limited 

in scope and quality due to a fitness bottleneck. (Biles 2007; Chen, 2007; de Freitas & 

Guimarães, 2011; Fu, Wu, Chen, Wu & Chen, 2009; Gartland-Jones & Copley, 2003; 

Jensen & Haddow, 2011; Khalifa, Khan, Begovic, Wisdom, & Wheeler, 2007; 

McDermott, O‟Neill, & Griffith, 2010; Oliwa, 2008; Unehara & Onisawa, 2003).   
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The fitness bottleneck occurs because humans must attentively listen and 

precisely rate a substantial amount of audio information to train a musical GA; they may 

take too long or be overwhelmed in doing so. The fitness bottleneck problem has 

repeatedly shown up as a limiting factor in musical GA research (Biles, 2007; de Freitas 

& Guimarães, 2011; Tokui & Iba, 2000). By training GAs that were successful (other 

than fitness bottleneck shortcomings) for music composition with online collective 

intelligence, or “crowdsourcing”, it may be possible to supply the algorithm with 

adequate training data without requiring much input from any one evaluator.  

This research was intended to show whether applying crowdsourcing to the 

human review fitness function of musical GAs yields more effective music, as compared 

to the small groups typically chosen to provide feedback to a compositional interactive 

GA. Those small groups are limited by a fitness bottleneck, because it takes a great deal 

of time and effort to fully train the GA. This was accomplished by establishing an 

interactive GA that creates music in a two-part chorale-like style. The music was 

intended to be electronically generated and not performed live. A small group of 

reviewers worked on one instance of the musical interactive GA, as a control group, and 

those results were compared to a crowdsourced instance of the same musical interactive 

GA. The resulting music was subjectively rated by another set of reviewers, as well as 

composers, to show which music the listeners considered more effective. 

The hypothesis was that when comparing music created by an interactive GA 

trained by a crowdsourced group and music created by an interactive GA trained by a 

small group, as in previous research, the crowdsourced music would be more effective 
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and musically superior. It was tested by gathering feedback from composers and from 

non-musically trained reviewers. 

 

Relevance and Significance 

Music production with computer assistance is important because the music and 

the creative process used to compose the music can be enjoyable. By giving subjective 

feedback on chromosomes of a musical interactive GA, the average person may be 

granted a creative opportunity that they would not have had otherwise (Unehara & 

Onisawa, 2003) because “[t]he experience of creating music is another side of musical 

entertainment that is a demanding aspect for a novice population,” (Ning & Zhou, 2010, 

p. 13:1). They are able to contribute to the production of a piece of music, and indirectly 

collaborate with others, without needing any background knowledge in music theory and 

composition (Chen, 2007; Yee-King, 2000). Other current computer music research also 

shares the goal of making creative input accessible for amateurs and non-musicians, 

either for groups (Miletto, Flores, Pimenta, Rutily, & Santagada, 2007; Tanaka, Tokui, & 

Momeni, 2005) or individuals (Nichols, Morris, & Basu, 2009), though these do not 

make use of evolutionary computing. 

This research also served to investigate another use for crowdsourcing, which 

appears frequently in current literature. Others have applied crowdsourcing to problems 

in the musical domain, such as rating music popularity (Bhagwan, Grandison, & Gruhl , 

2009; Xia, Huang, Duan, and Whinston, 2009) and music similarity (Urbano, Morato, 

Marrero, & Martin, 2010), but only in one project has it been applied to music creation 

(DarwinTunes, 2010b; DarwinTunes, 2010c; DarwinTunes, 2010d).  
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Barriers and Issues 

In the current literature, music production using interactive GAs has been limited 

by the fitness bottleneck. It takes too much time and effort to review a sufficient number 

of musical evolutions. Due to human capabilities and cognitive limitations, there are a 

number of contributing sub-problems. First, since auditory information is presented 

serially, it takes more time to listen to each music sample than it would for visual tasks 

such as viewing a photograph. One can glance over an image quickly to get the gist of it, 

but a second of a song does not reveal as much information.  

Also, human short term memory is quite limited, usually only holding about seven 

pieces of information (Miller, 1956). Since it takes so much longer to listen to a song than 

to view an image, it also becomes much more difficult for a person to make comparisons 

between songs. For instance, four images can be viewed on the same screen and quickly 

compared, whereas four song excerpts cannot be heard simultaneously, and by the time 

the fourth one is heard, the first one is mostly forgotten (Biles, 2007).  

This limitation could be mitigated by having trainers listen to the songs many 

times and committing them to long term memory (Sharp, Rogers, & Preece, 2007; 

Shneiderman, Plaisant, Cohen, & Jacobs, 2009). Again, though, for GAs, a great deal of 

music must be rated throughout the many generations, so this would not be an effective 

solution to the problem. 

Finally, concentration is a limiting factor. “Listening carefully and critically to 

music requires a level of concentration that most people seldom demonstrate” (Biles, 
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2007, p. 43). Therefore, prolonged listening and rating sessions would be ineffective for 

GA training. 

 

Research Questions 

The primary research question was as follows: When music that is created by a 

GA trained by a crowdsourced group is compared to music created by a GA trained by a 

small group, is the crowdsourced music more effective? Other information was gathered 

as well, namely, qualitative data regarding peoples‟ opinions about music stemming from 

a crowd-trained compositional interactive GA. 

 

Limitations 

There was a potentially problematic issue in dealing with music created with input 

from a large group of people. Because a crowdsourced group has varying opinions and 

preferences about music, the results may therefore turn out to be averaged and 

homogenous: reflecting a bit of input from everyone but satisfying the requirements and 

preferences of no one. In other words, “composing music that is loved by everyone is an 

extremely difficult task, if not impossible” (Chen, 2007, p. 9).  It was hoped that 

narrowing down the genre to two-part chorale-like music would lessen this problem, 

because at least the listeners approached the music with a similar mindset and the 

interactive GA was not trained with input from every possible type of music.  

After the music was created, the reviewers (and perhaps even more strongly for 

the composers) had individual tastes that may not have match the crowdsourced average. 
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No research specifically addressing this issue has been found. There were not enough 

reviewers or composers to make the results statistically significant. 

 

Definition of Terms 

 CAPTCHA – A program to recognize real human users and tell them apart from 

bots. Most CAPTCHAs involve reading distorted letters and entering them into a 

text box. It is an acronym that stands for “Completely Automated Public Turing 

Test To Tell Computers and Humans Apart” (Carnegie Mellon University, 2010). 

 Chorale – “The congregational hymn of the Lutheran church”, a style of music 

usually sung in four parts and set to sacred text (Sadie, 1988, p. 152). The chorale 

form, and variations thereof, appears frequently in music, particularly from 

Baroque composers in the 17
th

 and 18
th

 centuries. 

 Chord - multiple notes sounding together (Sadie, 1988, p. 152). 

 Drift – A phenomenon in genetics where changes occur in a small population due 

to random chance, rather than by natural selection (Encyclopedia Britannica, 

2011). 

 Genre – “a category of artistic, musical, or literary composition characterized by a 

particular style, form, or content” (Merriam-Webster, 2011). 

 Harmonic progression – a coherent series of chords (Sadie, 1988, p. 598). 

 HIT – a Human Intelligence Task on mTurk (Amazon.com, Inc., 2010a). 

 mTurk – Amazon Mechanical Turk, a crowdsourcing marketplace (Amazon.com, 

Inc., 2010a). 
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 Music theory – “the study of the theoretical elements of music including sound 

and pitch, rhythm, melody, harmony, and notation” (dictionary.com, 2011). 

 Octave – a range of notes wherein the highest one has twice the frequency of the 

lowest. Alphabetical note names (A – G) repeat once per octave (Sadie, 1988, p. 

534). 

 Pitch – the frequency of a sound. Musically, a pitch can be identified by an octave 

and note name (A – G) (Sadie, 1988, p. 581). 

 Rest – A mark indicating silence and the absence of a note (Sadie, 1988, p. 623). 

 Turker – a worker on mTurk who completes HITs in return for payment (Nowak 

& Rüger, 2010; Wikipedia, 2011). 

 Voice leading – a strategy for constructing polyphony – that is, multiple, 

independent voices or parts (Sadie, 1988, p. 813). It is also known as part-writing 

(Sadie, 1988, p. 559). 

 

Summary 

Chapter 1 described the research problem, significance,  a brief summary of the 

experimental setup, barriers, issues, limitations, and definitions of terms. When GAs are 

used to create music, the fitness function may be programmatic or guided by human 

input. The fitness bottleneck has been a limitation so far in musical genetic algorithms 

that do not rely solely on programmatic fitness functions. This research was intended to 

evaluate crowdsourcing as a possible solution to the fitness bottleneck. Two musical GA 

instances, one crowdsourced and one trained by a small group, were run; the resulting 
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music was rated by a group of general reviewers and a group of composers to see which 

was more effective.  

Chapter 2 addresses the background literature regarding musical GAs (both 

programmatic and interactive) and the fitness bottleneck problem in compositional GAs. 

The benefits and disadvantages of crowdsourcing are discussed, as well as examples of 

where it has been used successfully. The proposed contribution of this research is 

described, followed by a more detailed description of the research plan with methods, 

procedures, and formatting of results, in Chapter 3. Chapter 4 provides the results of the 

experiment, summarizing the ratings and comments from reviewers and composers. 

Then, Chapter 5 explains the significance of the results and suggests questions for future 

research. 
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Chapter 2 

Review of the Literature 

 

Computer Music 

 Research in computer music began as early as the 1960‟s (Gill, 1963; Mathews, 

1963; Seay, 1964). Computers were found to be useful tools for sound generation and as 

aids to human composers (Shneiderman et al., 2009). As for music creation by 

computers, it was believed that the compositional algorithms must be based on the voice 

leading and harmonic progression rules from music theory. However, it was not possible 

to fully notate all rules, so such results were limited to the rules and methods of a single 

composer (Gill, 1963) or augmented with elements of randomness (Mathews, 1963).  

   As computers advanced and artificial intelligence was further developed, 

researchers realized AI had several musical applications – composition, performance, 

music theory, analysis, and digital sound processing (Meehan, 1979; Roads, 1985). GAs 

in particular have been successful for musical computer learning. Referring to 

transcription, Reis and Vega (2007, p. 1965) said “genetic algorithms are perfect 

candidates for solving this problem.”  

In fact, music composition can be considered a type of search problem with no 

optimal solution, for which GAs are rather well suited (Biles, 1994; Gartland-Jones & 

Copley, 2003). “. . . [A] typical musician „knows what she likes‟, and the aesthetic sense 

guides the search through the various problem spaces of notes, chords, or voicings” 

(Biles, 1994, p. 131). In a sense, the evolution of music in GAs mimics the natural order 

of cultural development, since many people work on compositions, building off what has 
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been successful in the past and adding novel “mutations” (DarwinTunes, 2010). Those 

ideas, themes, and techniques that are successful, effective, popular, or artistically 

appreciated survive to be tried in new configurations in new compositions. 

In spite of the pioneers‟ research, the difficulties of music notation, theory 

codification, and modeling remained, and it was not possible to digitally duplicate the 

human composition or performance processes (Kirk & Miranda, 2009; Meehan, 1979; 

Roads, 1985). Presently, some researchers are still working on the programmatic fitness 

function approach to composition, where rules of music theory are notated as clearly and 

completely as possible and AI (usually GA) applications are made to follow them 

(Birchfield, 2003; de Freitas & Guimarães, 2011; De Prisco, Zaccagnino, & Zaccagnino, 

2010; Jensen & Haddow, 2011; Khalifa & Al-Mourad, 2006; Khalifa et al., 2007; Nelson 

2003; Nelson, 2005; Oliwa, 2008).  

Some argue that the results of compositional GAs that use programmatic fitness 

functions are non-musical, because artistic, interesting music often does not strictly 

follow all the rules of voice leading and chord progressions (Biles, 2007; Roads, 1985). 

Creativity and creative solutions often come from knowing when to “break the rules”. 

Even deciding which rules to include and how to encode them in the first place – 

“creating an aesthetically conscious measure of fitness” (de Freitas & Guimarães, 2011, 

p. 419) – is a difficult research problem (Miranda, 2004).  

 

Bottleneck in Compositional Interactive GA Fitness Functions  

An alternative research path has developed, where humans provide insight but 

computers do the majority of the work with interactive GAs. Musical information is 
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written in digital chromosomes, which are mated and mutated over successive 

generations, with the best surviving. However, when human insight is used as the fitness 

function for the interactive GA, there is a major bottleneck.  

Tokui and Iba (2000, p. 229) described the problem as follows: “[T]he common 

difficulty in the practical use of IEC [interactive evolutionary computation] is the human 

fatigue. Since a user must work with a tireless computer to evaluate each individual in 

every generation, he/she may well feel pain. It is the biggest remaining problem to reduce 

the psychological burden on users.” A number of compositional interactive GAs are 

described below, along with the fitness bottleneck‟s impact on them, if applicable.  

GenJam, a genetic algorithm which produced jazz solos, was an early musical 

interactive GA project that mentioned the fitness bottleneck (Biles, 1994). It was only 

designed for use with one evaluator. The author suggested future work that would use 

neural networks or an initial seed population to cut down on the amount of fitness 

listening required for the evaluator (Biles, 1994).  

Yee-King‟s (2000) Audioserve project was  intended to create sound  rather than 

music, though it still has a great deal in common with other compositional interactive 

GAs and was accessed via a web interface. Some notable differences are a user-

adjustable mutation rate, the ability to swap chromosomes with GA instances being 

trained by other people, and the ability to go back in history to use parents from the past. 

Perhaps this freedom is due to the domain of FM/AM circuits being more flexible and 

forgiving than music because it has no rules and fewer user expectations. In any event, 

Yee-King (2000, Client Program section, paragraph 2) states: “. . . the user can only be 
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expected to effectively audition a small number of candidates at each iteration of the 

GA.”  

Unemi (2002) made SBEAT3, an interactive GA intended to help musical novices 

with composition. It gives users a comparatively large amount of control over the music 

(e.g. changing key, changing tempo). They note that the time taken for user ratings is 

burdensome and limits population sizes, since music must be heard in series, unlike other 

tasks such as image viewing which may be done in parallel. 

Legaspi, Hashimoto, Moriyama, Kurihara, and Numao (2007) created a prototype 

with the Constructive Adaptive User Interface (CAUI) and incorporated the Diverse 

Density (DD) weighting metric and First Order Inductive Learning (FOIL) heuristic 

function for multi-part learning. For the tests, evaluators classified training data using six 

sets of labels (favorable-unfavorable, bright-dark, happy-sad, heartrending-not 

heartrending, stable-unstable, and beautiful-ugly).  

Based on the training data, the system generated new music that matched the 

labels with 80.6% accuracy for four of the six label pairs, but it was only tested with 11 

participants listening to 75 musical songs. Each participant‟s ratings and preferences were 

kept separately, so there were essentially 11 instances of the same interactive GA with 

only 75 songs rated, instead of 1 interactive GA with 825 songs rated. The training, or 

fitness function creation, was done upfront with existing music, rather than generationally 

during interactive GA operation (Legaspi et al., 2007). 

The authors attributed the 80.6% accuracy to the setup of the music theory 

constraints. However, effects of tiring or discrimination difficulty in the evaluators, or the 

small sample of evaluators and small number of songs may also have been factors. 
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Perhaps if a larger group of evaluators had been used, the accuracy of the training and 

subsequently created music may have been improved (Legaspi et al., 2007). 

There are, additionally, other interactive GA projects that did not specifically 

mention the fitness bottleneck, either because the sampling was intentionally and 

admittedly small or because there was no user testing, only the development of a proof-

of-concept. For example, Numao, Takagi, and Nakamura (2002) created the Constructive 

Adaptive User Interface, on which the Legaspi et al., (2007) work is built. It focuses on 

learning relationships between certain musical constructs and human emotions.  

 

Fitness Bottleneck Workarounds 

The research above discussed the fitness bottleneck as a limitation, and there are 

projects in this domain that have attempted to work around it. For example, Gartland-

Jones and Copley (2003) created a musical-building-block application that recomposes 

itself as blocks are added or removed by a user. They stated that users do not need to 

explicitly evaluate the music at each step and the bottleneck is removed. However, there 

is a still a human giving indirect subjective feedback and the application is thereby 

limited to a small scale. 

Unehara and Onisawa‟s (2003) interactive GA is a hybrid approach, where a 

programmatic fitness function is applied first to eliminate clearly poor chromosomes and 

lessen the work required of users. After the poor chromosomes of a generation are 

removed, user input is required to select the best chromosomes. Their testing was limited 

in scope, with six subjects listening to 15 generations of 16-measure chromosomes. They 

confirmed that the music had subjectively increased in quality by the last generation, but 
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were aware that the fitness bottleneck was a limitation: “The system design using the 

interactive GA has the problem that users have to repeat simple evaluation. The more 

users repeat evaluation of musical works, the more users feel fatigue” (Unehara & 

Onisawa, 2003, p. 86). 

Fu et al. (2009) developed the CFE (Composition, Feedback, and Evolution) 

framework for musical interactive GAs, with the hope of minimizing user input by 

continuing to create music autonomously after several rounds of user fitness input. They 

state “it is still hard, if not impossible, to create pleasant music for unskilled people . . . 

we should make the grading runs as few as possible . . . making a lot of tests by using 

manpower is not efficient” (Fu et al., 2009, p. 1863 - 1864). They suggest user testing of 

their system as future work. 

 

Existing Compositional GAs 

Several compositional GAs with freely available source code were reviewed. The 

VARIATIONS algorithm in Perl (Jacob, 2009) and a master‟s thesis in C++ from a 

student at the College of William and Mary (Schoenberger, 2009) were examined, but 

found to be incomplete or musically primitive.  

The work of Numao et al., (2002), Legaspi, Hashimoto, and Numao (2006), 

Legaspi et al., (2007), and Sugimoto, Legaspi, Ota, Moriyama, Kurihara, and Numao 

(2008) was explored and the interactive GA developed by this group of researchers 

seemed relevant to this proposed research, due to the refined iterations of the interactive 

GA and their related research goals. However, they were contacted as a group with the 
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form on the Architecture for Intelligence Numao Lab website and individually by email, 

and no one responded.  

Spieldose was one complete musical GA for which the source code was freely 

available. It ran in Matlab and featured several up-front customization parameters, 

including number of measures, harmonic progressions, number of “invaders” (mutations), 

size of generations, and type of crossover. It used an interactive fitness function to create  

melodies with harmonic accompaniment using a MIDI synthesizer sound (GAVAB 

Research Group, 2007; Sánchez, Pantrigo, Virseda, & Pérez, 2007).  

Melodycomposition (MC) was another complete musical GA with source code 

posted online. It was written in Java with the Genetic Algorithms Package (JGAP) and 

used a programmatic fitness function (Craane, 2009a; Craane, 2009b; Meffert & Rotstan, 

2009). It created melodies (without harmonic accompaniment) with a MIDI synthesizer 

sound. MC featured even more up-front customization parameters in the user interface: 

maximum duplicate rests, maximum duplicate notes, proportion of notes to rests, number 

of major intervals, number of perfect intervals, number of parallel intervals, maximum 

range, pitch distribution, number of notes, and number of evolutions. All of these options 

helped customize the music toward a chorale-like style. 

 

Other Applications of AI in Music 

Finally, it should be noted that (a) different AI methods besides GAs can be used 

in music creation and (b) GAs have other musical applications besides music creation. 

For example, BeatBender uses autonomous percussion agents to create rhythmic patterns 

(Levisohn & Pasquier, 2008). In a way, it avoids the fitness bottleneck since there is no 
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human input during training. By the same token, it has the same problem as GAs 

programmed to use rules of voice leading and harmonic progressions for fitness; the 

result is not musically interesting (Biles, 2007; Roads, 1985).  

Of the six GAs for expressive performance that are discussed in Kirke and 

Miranda‟s survey (2009), all of them have programmatic fitness functions, rather than 

human. Another example of a programmatic fitness function is Reis and Vega‟s (2007) 

GA for musical transcription where the fitness function is a sum of differences of 

expected and actual frequencies. McDermott et al. used an interactive GA for sound 

synthesis (2010).  In a limited capacity, GAs have been applied to music processing and 

listening, too (Biles, 2007). Gabrani, Bhargava, Bhawana and Gill (2008) developed a 

GA for remixing Indian music; it relies on a programmatic, not interactive, fitness 

function. 

 

Crowdsourcing 

 Crowdsourcing is a potential solution to the musical interactive GA fitness 

bottleneck. First recognized in the mid-2000s, crowdsourcing is a method of solving 

problems with, and outsourcing work, to the collective online intelligence (Howe, 2006). 

Su, Pavlov, Chow, and Baker (2007, p.231) recommend it “for training and monitoring 

machine learning-based applications”, as did Lease, Carvalho, and Yilmaz (2011). 

Though there are pitfalls such as poor data quality from malicious or uninformed 

participants, group thoughts and contributions have several benefits. For example, the 

workload is distributed so that tasks can be completed faster and around-the-clock. Under 

the right conditions, the group‟s answers are usually more effective than those of experts 
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(Surowiecki, 2005). Surowiecki would classify this as a Cognition (as opposed to 

Cooperation or Coordination) problem because it deals with the averaging or combining 

of opinions to find a group consensus. 

Crowdsourcing is potentially a good fit for this problem because of its success in 

solving similar types of problems. It is recommended for human review of large amounts 

of data and collective decision-making and under certain circumstances, the results are 

moderately high quality, inexpensive, and fast (Alonso, Rose, & Stewart, 2008; Carvalho, 

Lease, & Yilmaz, 2010; Hintikka, 2008; Ledlie, Odero, Minkov, Kiss, & Polifroni, 2010; 

Mannes, 2009; Mason & Watts, 2009; Stewart, Huerta, & Sader, 2009; Su et al., 2007). 

Crowdsourcing has appeared in recent research for purposes such as these: 

 labeling articles‟ search relevance (Ganjisaffar, Javanmardi, & Lopes, 2009) 

 collecting creative drawings (Koblin, 2009) 

 rating audio and video sample quality (Chen, Wu, Chang, & Lei, 2009) 

 tagging location-sensitive queries and points of interest with mobile devices 

(Yan, Marzilli, Homes, Ganesan, & Corner, 2009) 

 describing and organizing geometric shapes (Jagadeesan et al, 2009) 

 tracking popular music (Xia et al., 2009) 

 rating search result relevance (Alonso et al., 2008)  

 collecting user feedback (Kittur, Chi, & Suh, 2008)  

 extracting product and brand information (Su et al., 2007) 

 tagging specific objects in an image (Von Ahn, Liu, & Blum, 2006) 

 remote massage (Chung, Chiu, Xiao, & Chi, 2009) 

 assessing visualization design (Heer & Bostock, 2010) 
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 task delegation in Wikipedia (Krieger, Stark, & Klemmer, 2009) 

 collecting volunteer expertise to help the homeless (Li, Buyuktur, Hutchful, Sant,     

  & Nainwal, 2008) 

 calculating music popularity (Bhagwan et al., 2009) 

 determining the clearest presentation of mashup code for software engineers 

(Stolee & Elbaum, 2010) 

 annotating political campaign ads (Hsueh, Melville, & Sindhwani, 2009) 

 training speech recognition software (Ledlie et al., 2010) 

 translating text in images (Liu et al., 2010) 

 annotating an image corpus with multiple labels (Nowak & Rüger, 2010) 

 constructing philosophical concept hierarchies (Eckert et al., 2010) 

 indexing films and television shows (Geisler, Willard, & Whitworth, 2010) 

 voluntary translating by IBM employees (Stewart, Lubensky, & Huerta, 2010) 

 evaluating musical similarity (Urbano et al., 2010) 

 iteratively transcribing and editing copy (Little, Chilton, Miller & Goldman, 

2009). 

 

Risks of Crowdsourcing 

There is a risk of users entering accidental or malicious bad data, but strategies 

such as discarding outliers, requiring qualification exams, enabling voting schemes, or 

asking a user repeat questions to see if they give the same answer improve the accuracy 

of data collection (Chen et al., 2009; Harper, Raban, Rafaeli, & Konstan, 2008; Heer & 

Bostock, 2010; Ledlie et al., 2010; Su et al., 2007). Qualification tests can also be given 
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to eliminate obviously unqualified users, but one known problem of crowdsourcing is 

that while it can be used to gather popular opinion, it cannot be counted on to provide 

expert opinions (Roman, 2009). Since the GA training step of the proposed research does 

not require informed choices or specialized knowledge of music theory, qualification 

tests will be unnecessary. 

In many cases, users must be motivated extrinsically to participate. It is difficult 

to get a new crowdsourcing community up-and-running, so existing sites like Amazon 

Mechanical Turk (mTurk), InnoCentive, CrowdFlower, Wilogo, fellowforce, BootB, 

CrowdSPRING and Cloud Crowd can be used instead, where a large workforce is already 

in place and workers will complete given tasks in exchange for money (Amazon.com 

Inc., 2010a; BootBe, Inc., 2011; CloudCrowd, 2009; CrowdFlower, 2011; 

CrowdSPRING, 2011; Eckert et al., 2010; fellowforce, 2007; Innocentive, 2011; Stewart 

et al., 2009; Wilogo.com, 2011).  If the topic is considered to be interesting enough, users 

are willing to participate and add their input without monetary reward; they may still 

desire other non-tangible rewards such as status or entertainment (Von Ahn & Dabbish, 

2004; Yang, Adamic, & Ackerman, 2008).  

The user environment was an unknown variable that could not be controlled in 

crowdsourcing. The users were not in the same place, nor were they using the same 

hardware, browser, or operating system. They could be working under less-than-ideal 

conditions, such as having a slow internet connection, having a low resolution monitor, or 

being in a loud room. 
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Amazon Mechanical Turk 

mTurk is known as a “micro-task market” since it was made for, and is primarily 

used for, small tasks that pay a few cents and take seconds to complete (Heer & Bostock, 

2010). It has been used as a source of participants in many of the recent crowdsourcing 

research projects listed previously:  

 mCrowd for tagging location-sensitive queries and points of interest with mobile 

devices (Yan et al., 2009) 

 Multimedia QoE evaluation, where audio and video sample quality is rated (Chen 

et al., 2009) 

 Sheep Market where creative drawings are collected (Koblin, 2009) 

 Geometric reasoning tasks where shapes are described and organized (Jagadeesan 

et al., 2009) 

 TERC where search results are rated for relevance (Alonso et al., 2008) 

 User studies where feedback is gathered (Kittur et al., 2008) 

 Tests of graphical perception  to evaluate visualizations (Heer & Bostock, 2010) 

 Ad annotation for political campaigns (Hsueh et al., 2009) 

 Software engineering research, where coding strategies for mashups are evaluated 

(Stolee & Elbaum, 2010) 

 Philosophy ontology construction (Eckert et al., 2010) 

 Ratings of music similarity (Urbano et al., 2010) 

 Transcriptions and edits of text (Little et al., 2009). 
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Fitness Bottlenecks with Crowdsourcing 

 In the field of geometric reasoning, the work of Jagadeesan et al. (2009) serves as 

a parallel example to this proposed research. They state that humans are good at 

geometric reasoning tasks such as fitting irregular shapes into the smallest possible space. 

These tasks can be done programmatically, like music creation, but fall short of the 

results that can be achieved with human input (Jagadeesan et al., 2009).  

 In their study, they tested three types of geometric reasoning work: canonical 

viewpoints, shape similarity, and strip packing. They recruited users on mTurk to 

complete tasks in each of the three areas. The goal was to set benchmarks of good 

performance with human input with which to judge programmatic methods. In the end 

though, they came to a surprising conclusion: “[c]rowdsourcing has proved so effective 

that in many cases the authors have questions if automated solutions are really required” 

(Jagadeesan et al, 2009, p. 313).  

 

Music Crowdsourcing 

Participation in crowdsourcing, music or otherwise, is further encouraged when 

the costs of contributing are lower; if users only have to vote, or choose a pre-arranged 

response, it is easier and requires less commitment than writing comments or contributing 

new content. Xia et al., (2009) call this Ballot Box Communication (BBC) as opposed to 

Computer Mediated Communication (CMC). They studied the logs of Internet Relay 

Chat (IRC) music sharing groups to observe that even without written communication, 

the users were collaborating in a sense. The music the users had chosen to upload and 

download showed aggregate trends in music popularity (Xia et al., 2009). 
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In contrast to users‟ active involvement in crowdsourcing, they can also become 

unknowing participants as part of the crowd. In the music-related example of Sound 

Index, data on user music-listening behavior is collected from many online sources 

(social networks, online radio, downloads, sales) to more accurately reflect music 

popularity than traditional Billboard rankings which rely on music sales (Bhagwan et al., 

2009). 

Three commercial websites, Last.fm, Pandora Radio, and Spotify use 

crowdsourcing to gather and make music recommendations (Celma & Lamere, 2008, 

Last.fm, 2009; Pandora Radio, 2009, Spotify, 2010). On Pandora Radio, the music 

labeling and classification is done by their own employees, not the general Internet 

population used in many instances of crowdsourcing. However, ordinary users of the site 

may create, share, and build upon each others‟ “stations” (Pandora Radio, 2009). 

Likewise on Last.fm, users share playlists and recommendations, join fan groups, and 

listen to music chosen by those with similar tastes (Last.fm, 2009). Spotify provides 

similar functionality, where users can share their own playlists and collaborate with 

others to create new ones (Spotify, 2010).  

The success of these sites demonstrates that users are willing to listen to music 

and rate it in exchange for music that they enjoy and that they have an interest in using 

sites that direct them to new music based on their preferences and crowdsourcing data. A 

major difference between these sites and the proposed research is that Last.fm, Pandora 

Radio, and Spotify provide access to existing recorded music, rather than newly created 

computer music. DarwinTunes and the Music Information Retrieval Evaluation 
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eXchange (MIREX) Evaluations, described below, are the two music crowdsourcing 

projects most closely related to this research. 

 

DarwinTunes 

 Darwin Tunes, developed by MacCallum and Leroi at Imperial College, London, 

is the only existing large-scale crowdsourced compositional interactive GA 

(DarwinTunes, 2010b). It consists of an interactive GA developed in Perl and accessible 

via a web interface. A song is four measures of four beats, and it is presented as a loop 

(DarwinTunes, 2010d). Songs are rated on a 5-point scale, with the labels “I love it!”, “I 

like it”, “It‟s ok . . .”, “I don‟t like it”, and “I can‟t stand it!” (DarwinTunes, 2010a). After 

20 songs have been rated, the top 10 are mated with crossover and a 1/1500 chance per 

node of mutation (DarwinTunes, 2010c).   

There were multiple concurrently developing population groups, and site visitors 

were automatically assigned to one. This procedure was in place to prevent drift; they 

suspected that certain changes might take place regardless of the music ratings, and they 

will be able to compare the independently evolving populations to compare. Any 

significant similarities will be attributed to drift (DarwinTunes, 2010c).  

 The DarwinTunes work is the closest to the research proposed here. There are 

several key differences, however. DarwinTunes has not been presented in any 

publications; it appears to be a more informal trial of what happens when a compositional 

interactive GA is offered to the general public – “What, exactly, will we be looking for in 

our evolving populations? Frankly, we‟re not sure – nor do we have to be” 

(DarwinTunes, 2010c, paragraph 7).  
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Consequently, there is no side-by-side comparison of the output from a small 

group and from a crowdsourced group, and no formal evaluation of the music that has 

been produced. Their research questions were “[H]ow important is human creative input 

compared to audience selection? Is progress smooth and continuous or step-like?” 

(DarwinTunes, 2010b, paragraph 4). They are currently evaluating the results and 

analyzing the data and have not yet published any findings. 

MacCallum ran a smaller-scale site called Evolectronica in 2009, off which 

DarwinTunes is based. It is no longer active (Evolectronica 2011a, Evolectronica 2011b). 

The latest official statement on progress in December 2010 said there have been 641 

generations of evolution on DarwinTunes (Twitter, 2010). With 100 chromosomes per 

generation, that means that 64,100 songs have been rated, which is larger than the size of 

the training group in this research. There are discrepancies in generation numbering, 

though; the Audio Snapshots page indicates that there are at least 3,060 generations, but it 

may be that the individual populations they were evolving concurrently are counted 

separately (DarwinTunes, 2010e). While there is a CAPTCHA in place to prevent 

automated responses (DarwinTunes, 2010a), there is no assurance that this is truly 

crowdsourced and not trained by a small group of people rating many songs. 

 

MIREX Evaluations 

 MIREX  is an information retrieval system in which music is rated by similarity 

to other music.The cost of expert time to rate the similarity between songs was 

unsustainable, so Urbano et al. (2010) attempted to crowdsource the ratings to non-
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experts on mTurk. They believed their experiment to be the first music-related task 

research on mTurk. 

 Urbano et al. (2010) used preference judgments for ranking, where participants 

are presented with two choices and they choose the better one. In the manner of a sorting 

algorithm, the list items (songs, in this case) are sorted one pair at a time, and it prevents 

listener fatigue from hearing too much at once. On mTurk, they posted 281 HITs with 10 

assignments each; there were 70 unique workers, an average of 22 seconds per 

assignment, and a total time of 37 hours and 40 minutes.  As safeguards against malicious 

or lazy answers, they restricted recruitment to a 95% or higher HIT acceptance rate, 

gathered multiple ratings on the same pairs of songs from different Turkers, and 

discarded responses that showed bot-like behavior. 

The results of the MIREX similarity judgments showed that while agreement 

between non-experts on mTurk was considerably lower than agreement between experts, 

the averaged rankings of the mTurk non-experts were similar to the rankings of the 

experts. The total cost for the mTurk experiment was $70.25; otherwise, the cost would 

have been the equivalent of 70 hours of expert time. The commonality between their 

experiment and this research was the collection of non-expert opinions about short songs 

on mTurk; the differences were that they asked about song similarity and used that data 

for a sorting algorithm, while this research asked about song quality and used that data in 

a GA. 
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Contribution 

This research contributes to both the computer music and crowdsourcing 

literature. For computer music, it demonstrates an alternative technique for compositional 

interactive GAs that avoids the fitness bottleneck. It allows people without musical 

training or composition experience to contribute to the creation of new music.  

For crowdsourcing, it shows another possible application where the wisdom of 

crowds and small bits of input from lots of people can solve problems effectively. 

Crowdsourcing has been shown to solve a wide variety of problems, and by 

demonstrating its effects on this particular problem, the research will show the efficacy of 

crowdsourcing for creative collaboration and music creation. Others have applied it to 

problems in the musical domain, such as rating music popularity (Bhagwan et al., 2009; 

Xia et al., 2009) and music similarity (Urbano et al., 2010). 

Crowdsourcing has only been applied to an interactive GA for music creation in 

one other project (DarwinTunes, 2010b; DarwinTunes, 2010c; DarwinTunes, 2010d). 

This research differs from DarwinTunes in that DarwinTunes was an exploratory venture 

posted on a custom crowdsourcing site, rather than mTurk or another marketplace. The 

researchers wanted to see what would happen when a large number of people gave input 

to a musical GA online; their setup had less management and planning, and their results 

were not compared to a small-group control condition.  

 

Summary 

 Computers have been used as an aid for musical endeavors in several ways. They 

can help with sound synthesis, sound processing, music theory analysis, composition, and 
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performance. AI has been applied to creation and composition. There are two tactics, 

sometimes used in conjunction, for creating music with GAs. The fitness function may be 

programmatic, based on music theory (e.g. rules regarding chord progressions and voice 

leading). Alternatively, it may be subjective, relying on user feedback, which is known as 

an interactive GA. Interactive GAs are subject to a fitness bottleneck because it takes too 

much time and energy for humans to rate and review many generations of chromosomes, 

thus limiting the effectiveness of the music created by the interactive GA.  

 Crowdsourcing is the outsourcing of work to the collective online intelligence. A 

wide variety of work types have been crowdsourced, and it is most effective for use in 

tasks that are easy for humans but difficult for computers, such as image tagging and 

relevance rating. It is subject to misuse by careless or malicious users, but there are 

techniques to check responses for validity and mitigate that risk. Amazon mTurk is a 

crowdsourcing community where requestors can post tasks and Turkers will do the work 

in exchange for small payments.  

Crowdsourcing has been applied to the GA fitness bottleneck in other domains 

and it has been applied to music recommendation systems. In DarwinTunes, it was tried 

with a compositional interactive GA to see what type of music could be created. Their 

music may be found at http://darwintunes.org/audio-snapshots, but their work was only 

exploratory and not to answer any particular research questions. In another study, music 

similarity-rating tasks were posted on mTurk.  

This chapter has covered the relevant existing literature in the intersections of the 

music, GA, and crowdsourcing domains. The next chapter describes the research 
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methodology in detail. Chapter 4 summarizes the results of the research, and Chapter 5 

explains the significance of the results and recommendations for future work.  



29 

 

Chapter 3 

Methodology 

 

Research Methods 

The hypothesis was that crowdsourcing would alleviate the fitness bottleneck 

problem for compositional interactive GAs. In other words, music that is created by a 

crowdsourced compositional interactive GA will be more effective than past music that 

was generated from compositional interactive GAs, which had been trained by 

individuals or small groups and were thereby limited in quality. To test the hypothesis, an 

experimental study was conducted.  

In the study, the control was a compositional interactive GA trained by a small 

group, while the experimental condition was a compositional interactive GA trained by a 

very large group (i.e. crowdsourcing). Crowdsourcing is the independent variable, the 

effects of which were tested on compositional interactive GAs. The primary output from 

the study was two sets of music. However, the music could not be objectively 

programmatically compared to determine which are best. Musical effectiveness is 

subjective and must be rated by humans.  

Therefore, two more groups of people were recruited to rate the music in a blind 

study. A more detailed description of the research steps is explained below, including the 

genetic algorithm choice, fitness functions, musical genre choice, prototype creation, task 

setup, precautions, genetic algorithm training, and recruitment and instructions for 

trainers, reviewers, and composers.  Many design decisions are based on work by Legaspi 

et al. (2007) in “Music Compositional Intelligence with an Affective Flavor”, due to 
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similarities between the studies and the fact that they provided a helpful level of detail for 

replication. The Nova Southeastern University (NSU) and East Tennessee State 

University (ETSU) Institutional Review Board (IRB) approval letters may be found in 

Appendices A and B, respectively. 

 

Procedures 

Genetic Algorithm Choice 

As discussed in the literature review section, several pre-existing musical 

interactive GA potentially met the requirements for this study. Melodycomposition (MC) 

was selected for several reasons, though Spieldose was also a promising alternative. MC 

has more customization built-in for setting up the starting point. Neither was perfectly 

suited to the planned chorale-like style, because Spieldose produces a single melody with 

harmonic accompaniment and MC produces a single melody. This research requires two 

simultaneous melodies, so either GA would have needed modification in that respect. 

Both GAs create export files in the MIDI format. 

Since MC was implemented in Java, it could be more effectively integrated with 

mTurk‟s Java API. Spieldose was implemented in the MATLAB programming language, 

which placed more restrictions on the way it must be run on the server (a potential 

licensing issue) and would have been much more difficult to integrate with mTurk. The 

biggest disadvantage of modifying MC is that Spieldose uses a human fitness function 

that MC lacks.  
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Melodycomposition (MC) 

Below is a representation of a gene from a sample chromosome from MC. This 

run was setup to contain 24 notes, so the chromosome contains 24 notes/genes. Each note 

is represented by the pitch (any of the 12 chromatic notes represented by letter name or a 

silent rest), the octave (an integer in the range of 0 – 8), and the relative duration 

(sixteenth, eighth, quarter, half, whole). 

[F#:7:QUARTER] 

[A#:4:QUARTER] 

[F#:6:EIGTH] 

[A#:4:QUARTER] 

[F#:5:EIGTH] 

[G#:6:EIGTH] 

[B:4:QUARTER] 

[E:5:QUARTER] 

[D#:5:QUARTER] 

[A:6:QUARTER] 

[D#:5:EIGTH] 

[C#:5:QUARTER] 

[A#:6:EIGTH] 

[C#:5:QUARTER] 

[C#:6:QUARTER] 

[D#:6:EIGTH] 

[D#:5:QUARTER] 

[REST:5:QUARTER] 

[A#:7:EIGTH] 

[REST:4:QUARTER] 

[F#:4:QUARTER] 

[A#:4:EIGTH] 

[G#:6:EIGTH] 

[REST:6:EIGTH] 

 

In MC, the GA is setup as follows. Some constants are set, such as octave range 

(4 – 7 by default), possible note values (only quarter and eighth, by default), and 

population size (40 by default). The initial population is filled with chromosomes 

generated at random within those constraints.  
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 When the GA was modified, it was made into an interactive GA, where the most 

fit chromosomes were the ones marked best by the users; the programmatic fitness 

function was left in place with relatively lower weight to supplement the user ratings. 

This was important since users only provide ratings of best, middle, and worst out of 

three, and there would have been three large groups of equally rated music songs without 

supplemental programmatic fitness. Additional programmatic fitness rules were added to 

the default rules that came with MC; the final guidelines are described in Fitness 

Functions. 

Out of each generation, the best chromosome was preserved for the next 

generation, and the rest of the next generation was bred from the other chromosomes. The 

genetic operators used were crossover and mutation. Crossover occurred at a random 

point between two chromosomes at a given rate, and the default is 35%. Mutation 

occurred at a given rate and the default was 1 in 12 genes being mutated. If a gene was 

selected at random, each atomic element – note, octave, and duration, in this case – had a 

50% chance of being changed to something else at random. These operations were left 

with their default settings. 

The selection and replacement strategies are written in the JGAP package, not 

MC. The termination condition was reached when a specific number of evolutions have 

been completed, which were 11 and 200, for the small group training and crowdsourced 

training, respectively. The population size and termination condition were modified to 

meet the crowdsourcing requirements detailed in Genetic Algorithm Training below. 
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Fitness Functions 

In order to avoid a population of 75 having 25 best, 25 middle, and 25 worst 

chromosomes, lower-weighted programmatic fitness functions were put in place. They 

were also intended to guide the music toward an instrumental chorale-like style with only 

two parts 

 After Large Skip Strategy – After a skip of a 5th or larger in a melody, the next 

motion should be stepwise in the other direction. An augmented fourth should 

never occur in ascending motion; its inversion, the descending diminished fifth, 

should be followed by a step in ascending motion. The leading tone (ti) should be 

followed by the tonic (do) one half-step above it.  

 Consecutive Skips Strategy – Two consecutive skips should not add up to more 

than an octave (within a melody line).  

 Global Pitch Distribution Strategy – Within a melody line, 98% of the intervals 

should be less than 9 half steps. 

 Human Review Strategy –Melodies are more likely to be bred if they are rated 

favorably by users on Amazon Mechanical Turk. 

 Interval Strategy –Within a part, at least 50% of the notes should follow stepwise 

motion, rather than skips. 

 Parallel Motion Strategy -There should not be parallel motion in octaves or 

perfect 5ths. The two parts should not arrive at a 5th from the same direction nor 

skip at the same time. The parts should not cross. 

 Proportion Notes/Rests Strategy – A melody should be at least 90% notes and not 

more than 10% rests. 
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 Range Strategy – The bass part should be in the two octaves below middle C and 

the soprano part should be in the two octaves above middle C.  There was hard 

limit, not a fitness function, of absolutely nothing lower than octave two octaves 

below middle C and absolutely nothing higher than two octaves above middle C. 

It was possible, though unlikely, for bass to appear above middle C or soprano 

below it due to the Parallel Motion Strategy. 

 Repeating Notes Strategy –More than one rest in a row or more than two 

repeating notes in a row are discouraged. 

 Scale Strategy –All melodies are in C Major, and notes outside the scale 

(accidentals) should not appear. 

 Strong Beats Strategy – Beat one in each measure should not be an eighth note. 

The last note should not be an eighth note or quarter note.  

 

Musical Genre Choice 

Limiting the music to one genre was intended focus the evolutions into a better 

end result. In other words, some algorithmic fitness was left in to guide the general 

direction of the music. Two-voiced chorale-like music has been chosen for this purpose, 

and this decision was made for several reasons.  

First, MC is not set up for varied instrumentation; adding it would significantly 

increase the GA complexity. Because the instrumentation is not varied, some popular 

genres (i.e. rock, country) would not have been appropriate because they depend on the 

instrumental timbre and percussive instruments to create the overall sound, while the 

melodic content is less important.  
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On the other hand, many types of Baroque, Classical, Romantic, and 20
th

-century 

music would have intricate rules for fundamental algorithmic fitness and would have 

been less accessible to non-musically-trained listeners. Chorales (with some conditions) 

seemed to fit all the required criteria. They were suitable and intended for homogenous 

instrumentation. Their overlap with church hymns and folk music made them familiar-

sounding to the general audience, but their numerous occurrences in art music (e.g. 

Baroque and Classical) mean that they were taken seriously by, and were of interest to, 

professional musicians. Finally, they had a well-defined set of guidelines with which to 

initially set up the GA, which have been appealing to and used by other compositional 

GA researchers (De Prisco et al., 2010). 

 A few aspects of the traditional chorale style were modified for use in this study. 

It was two-voiced, with only soprano and bass, so as not to make the GA rule encoding 

overwhelming; the alto and tenor were omitted. The soprano and bass are considered the 

most aurally salient of the four parts (Huron, 2001). As previously stated, voice-leading 

and harmonic rules are relatively well-defined, but also quite extensive. This reduction in 

parts kept the GA setup workload from becoming a barrier to progress, while still 

allowing harmony and implied chords.  

A second difference was the absence of text and therefore religious context. 

Though traditional chorales were set to text, words will not be relevant to the focus of 

this work and will therefore be omitted. The parts were kept approximately in the soprano 

and bass ranges of a choral work. Thus, the genre resembled two-part instrumental music 

(similar to a four-part chorale in range and voice-leading, with the omission of text and 

the alto and tenor lines missing). 
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Prototype Creation 

Naturally, the interface was a webpage; this is standard for crowdsourcing and 

helpful for contacting a wide variety of users. Web pages were constructed for 

communication between the end user and the musical interactive GA. The user interface 

was written in XHTML, CSS, PHP, and JavaScript, while the processing and connection 

between mTurk and the interactive GA were accomplished with Java, using the Eclipse 

IDE. The storage of users‟ answers and music from the interactive GA required a 

database, for which MySQL was used. Since MC creates MIDI files, the MIDI files first 

had to be converted to .wavs as an intermediary step, then to .mp3s for ease of playing in 

a browser and for sound consistency on participant computers.  

As with other multimedia HITs such as CastingWords audio transcriptions and 

the Flash application used by Heer and Bostock (2010), neither the text nor the audio files 

of the HIT were stored by Amazon (Amazon.com, Inc, 2010; CastingWords, 2010, 

Urbano et al., 2010). While the HITs appeared on mTurk, the questions and links to mp3 

files were shown within an iframe on the mTurk page and hosted on 

www.jessicakeup.com through Rackspace. The audio files were linked to and served 

from that same server.  

mTurk provides several ways to post HITS. They may be posted through a GUI 

on mturk.com, through a command line interface, or using one of the four SDKs in Java, 

Ruby, Perl, or .NET (Amazon, Inc., 2010d). Due to the need for communication between 

the GA written in Java and mTurk, the Java SDK was selected. It proved to be a minor 

problem (explained in Experimental Setup, below) that the tasks could not be posted as 

multiple assignments in the same HIT, but had to be posted as separate HITs. They could 
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not be posted as one large HIT with many assignments because they were posted 

generation-by-generation, instead of all at once.  

There were slight differences in the source code of the two interactive GA 

instances. The biggest difference was that the test GA posted HITs to the live version of 

mTurk, and the control GA posted to the sandbox version. By posting the control HITs to 

the sandbox, the trainers from both groups were able to see the same screens (for 

consistency), and a second interface did not have to be created. Other differences 

included the database to which they wrote and the number of generations they were to 

complete. The source code for the small control group program may be found at 

http://www.jessicakeup.com/research/controlCode.zip; the source code for the large test 

group program is located at http://www.jessicakeup.com/research/testCode.zip. 

Screenshots of the user interface may be found in Appendix C. 

 

Task Setup 

Each task consisted of an interactive GA trainer listening to a set of three musical 

excerpts (chromosomes) and ranking them by preference, so that the interactive GA 

instances could be run through many generations of improvements – each time breeding 

the preferred chromosomes selected by the trainers. Participants in the large group would 

listen to three eight-measure songs by clicking a play button for each, and participants in 

the small group would listen to 25 sets of three eight-measure songs. 

The interaction options shown onscreen were to play or replay each of the songs 

and to select the best, middle, and worst. The time required go through a cycle of 

listening and ranking took approximately 60 seconds, rather than several minutes or even 
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hours or days, so it was not a large amount of work for any one person. After all, that was 

the purpose of applying crowdsourcing to the human fitness function of a musical 

interactive GA – it is too time-consuming and tiring for a small group of people to rate a 

large set of songs (Biles 2007; Fu et al., 2009; Gartland-Jones & Copley, 2003; Khalifa et 

al., 2007; Oliwa, 2008; Tokui & Iba, 2000, Unehara and Onisawa, 2003).  

 The number of songs per task and the ranking method were chosen for the 

following reasons. Chen et al. (2009) discuss rating and ranking schemes for use in 

crowdsourcing for their experiment with gathering feedback on the quality of audio and 

video files. There are some similarities in that participants are choosing the best sounding 

choice, but for Chen et al. (2009) “best” means clearest audio recording with least loss 

and noise, and for this research “best” means most effective music. They point out 

problems with the commonly used MOS (mean opinion score) test. When given a rating 

scale, participants will interpret it differently or may not understand it. Their answers are 

ordinal, which indicates that averaging them does not accurately reflect the responses 

(Chen et al., 2009).  

Unehara and Onisawa (2003) used such a rating scale, but it was more appropriate 

for their research than in this case, because the work was not shared among multiple 

users; it is less of a problem to have the users interpret the scales differently if they are 

working independently and their responses are not being averaged or added. The 

DarwinTunes project (DarwinTunes 2010a) used a five-point rating scale, even with 

collaborative work. Instead of this, Chen et al. (2009) recommend comparisons with 

prioritization instead for this type of research.  
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It also would have been possible to offer the option of “keep” or “good” and 

“don‟t keep” or “bad” for each individual chromosome, as was done by Biles (1994) and 

Unemi (2002). Again, this works for independent users, but with collaboration, it is 

undesirable because of user interpretation. Some could choose to approve liberally and 

bad chromosomes could be bred, while some could choose to disapprove liberally and 

good chromosomes could be lost. Thus, for this research, prioritized comparisons will 

allow trainers to keep track of the songs in their minds while still narrowing down the 

“best” music to 1/3 of the original group size and avoiding effects of inconsistent rating 

styles from different users. 

The length of the songs was chosen for three reasons. First, Legaspi et al. (2007) 

used 8 and 16 measure phrases in their study. Unemi (2002) had songs of 16 beats, 

Unehara and Onisawa (2003) used 4-measure songs that were combined into 16-measure 

songs, and DarwinTunes‟ (2010b) songs are 4 measures long with 4 beats per measure. 

This indicates that eight measures is a reasonable and common size for compositional 

GAs. Secondly, that length corresponds to a complete musical thought in traditional 

music. Thirdly, at approximately 96 beats per minute with a 4/4 time signature, an 8 

measure sample will last approximately 20 seconds.  

Listening to all three songs in a task took approximately 60 seconds. Therefore, it 

was a relatively short and easy task suitable for crowdsourcing on mTurk. While 

participants could not retain 60 seconds of audio in short-term memory, they should have 

been able to remember a brief impression of it (e.g. “liked it”, “hated it”, “boring”, 

“beautiful”, etc.).  
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Furthermore, since it was a short listening task, it could be remunerated with a 

trivial payment on mTurk. Su et al. (2009) researched a crowdsourcing work community 

they called “System M”, where they found hourly rates between $0.78/hour minimum 

and $6.53/hour maximum.  Jagadeesen et al. (2009) paid $1.00 for HITs that average 18 

minutes 57 seconds, or about $3.00/hour. Eckert et al. (2010) paid the equivalent of $3.25 

an hour. In their experiment to find Turker‟s “reservation wages” (i.e. the lowest amount 

of money for which they are willing to continue working), Horton and Chilton (2010) 

found an average of $1.38/hour and that workers felt disproportionally motivated to work 

on HITs with modulo five payments, like $0.05 and $0.10. 

 Since participants in this study were paid $0.10 for HITs that last approximately 

60 seconds, that is equivalent to earning $6.00/hour, which is a typical, or even above 

average,  payment for mTurk workers, per Eckert et al. (2010), Horton and Chilton 

(2010), Jagadeesen et al. (2009) and Su et al.‟s (2007) findings. Heer and Bostock 

reported that increases in pay led to faster, but not more accurate or thoughtful, responses 

(2010). The instructions that were shown to both groups of interactive GA trainers may 

be found in Appendix D.  

 

Precautions 

Responses where the choice was made in less time than was required to listen to 

all songs were be discarded, as the participant did not follow instructions and listen to 

everything. Both client-side (JavaScript) and server-side (Java) checks were put into 

place to ensure that they listened for as long as necessary, selected a rating for each 
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sample, and did not select the same answer for different songs(e.g. did not mark two as 

“best”). 

Additionally, there are safeguards in place on mTurk to avoid getting maliciously 

incorrect or random data in return. Certain requirement thresholds, such as ratio of 

completed HITs and ratio of good completed HITs (those found acceptable by other 

requesters), can be set to filter out unscrupulous Turkers. For best results, Amazon 

recommends allowing only those with 95%+ HIT approval ratings to participate 

(Amazon.com, Inc., 2010b). Another safeguard is that work requesters do not have to pay 

Turkers if their work is unsatisfactory, and in turn, that a Turker‟s HIT approval rating 

will decrease.  

mTurk makes it easy to limit assignments within a HIT to one-per-Turker, so 

researchers who wanted that restriction usually post multiple assignments in a single HIT, 

rather than multiple HITs (Alonso et al. 2008; Amazon.com, Inc., 2010b; Kittur et al,. 

2008). As stated in the previous section, the Java SDK and asynchronicity of task 

postings required that the listening tasks be posted as separate HITs.  Stolee and Elbaum 

(2010) reported that it is not possible to limit users to only a single HIT, but Little et al. 

(2009) were able to keep their own records of who had completed what in a database, and 

handle the HIT-limiting themselves. That functionality was built into this prototype, with 

the plan to have 5,000 unique Turkers reviewing and rating only one set of three songs 

each. 
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Recruitment of and Instructions for Trainers 

There was a small (11 participant) locally recruited control group to demonstrate 

what is possible with a few people providing fitness function input. They were recruited 

by flyers at ETSU, with no requirement for musical experience or knowledge (Appendix 

E) and signed an informed consent document (Appendix F).  

The size of the group was chosen based on the work of Unehara and Onisawa 

(2003) and Legaspi et al. (2007), which, of all the articles, books, and proceedings 

referenced in the Literature Review section of Chapter 2, were the only ones who gave a 

detailed description of the number of participants and number of songs involved in 

interactive GA training. The others made no mention of the numbers, because they used a 

general term like “some”, or only had one trainer. With 11 trainers listening to 25 sets of 

3 songs each and a total of 825 songs, this experimental setup was equal to or more 

thorough than these conditions: 

 Six trainers listening to 15 songs each, for 90 songs total (Unehara & 

Onisawa, 2003). 

 Eleven trainers listening to 75 songs each, for 825 total songs (Legaspi et 

al., 2007)   

In contrast to the control group, the test group was a large, crowdsourced group 

which also had no requirements regarding musical experience. The experimental 

crowdsourcing group users were found using mTurk, a “marketplace for work that 

requires human intelligence” where individuals are paid very small amounts of money to 

complete tasks; interestingly, it is also known as “artificial artificial intelligence” 

(Amazon.com, Inc., 2010a). mTurk has been shown to be a rich resource of user work, 
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with a reasonable percentage of accurate, reliable, and dedicated workers (Kittur et al., 

2008; Mason & Watts, 2009; Milne & Witten, 2008; Nowak & Rüger, 2010; Su et al., 

2007).  

Before the test group HITs were posted, six pilot participants were recruited from 

mTurk. This was only to verify that the HITs were set up correctly and the instructions 

were clear. After the test, their responses were discarded. Small technical problems and 

clarifications in the title of the HITs were corrected before beginning studies with the 

large crowdsourcing group. 

The experimental group users were recruited on mTurk as the experiment 

progressed, with a 95% HIT approval rating as a qualification, as recommended by 

mTurk. Unfortunately, the other answer verification techniques suggested by 

crowdsourcing researchers are not applicable for these tasks. There is no prerequisite 

knowledge to test as a qualification and since there are no “right” or “wrong” answers, it 

does not make sense to compare answers from different trainers.  It also means that using 

“gold standard” questions with known correct answers cannot be used to evaluate the 

quality of a trainer‟s answers (Eckert et al., 2010, Heer & Bostock, 2010). 

Access to a pool of users was accomplished by placing HITs for Turkers at 

https://requester.mturk.com/mturk/resources.  Their consent was gathered by way of a 

screen shown to them before continuing to the HIT. It had two buttons for them to choose 

between: “I do NOT agree to participate” and “I agree. Continue to the HIT” (Appendix 

C). The crowdsourced interactive GA training cost approximately $550 and it cost 

approximately $350 more to pay for the time of one small in-person interactive GA 

training group, one small group of reviewers, and one small group of composers. 
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The interactive GA training was not expected to take more than a few weeks at most, per 

these examples: 

 Payment of $0.01 each for 2,500 tasks on mTurk which were completed in a 

“couple of days” (Alonso et al., 2008, p. 14) 

 All 210 tasks were completed in 48 hours (Kittur et al., 2008) 

 Payment of $0.00 to $0.10 per task for 611 participants to complete 36,425 tasks 

(Mason and Watts, 2009) 

 Payment of  $0.15 each for 80 tasks completed in about three hours and $4 each 

for fifteen 81-minute tasks in about 2 hours (Jagadeesan et al., 2009) 

 Payment of $0.04 each for 1,000 tasks that were completed overnight (Hsueh et 

al., 2009) 

 Payment of $0.05 each for 891 tasks that were completed in approximately 9 

hours (Nowak & Rüger, 2010) 

 

Genetic Algorithm Training  

When the software was ready and control group users had been recruited, the 

training of the two interactive GA instances began. The two instances started with the 

same 75 random initial songs, which may be found at 

http://jessicakeup.com/research/originalRandomMelodies.zip. For the small group, 11 

trainers listened to 25 sets of three songs each in March and April 2011.  The participants 

completed their tasks in-person in a consistent environment - the mTurk Sandbox using 

Google Chrome on an Acer AS5742Z laptop with a 2GHz processor, 15.6" screen, and 

Windows 7. The tasks took approximately 45 – 60 minutes per in-person trainer. 
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For the large group in May 2011, this was 200 generations of 75 chromosomes, 

where each generation of 75 was heard by 25 trainers, with each person listening to three 

songs. In other words, there were 5,000 listening and ranking tasks and a total of 15,000 

distinct songs listened to.  

At the beginning of the experiment, there was a restriction in place that prevented 

any one Turker from completing more than one HIT. Only 125 HITs were completed in 

the first few days, and it became evident that it would take several months for the 

experiment to finish, if at all (if there were enough unique Turkers interested in 

participating). Since almost all of the mTurk researchers explicitly allowed individual 

workers to complete multiple HITs, with Little et al. (2009) being exceptions, the 

restriction was removed. The remaining 4,875 HITs took about another three-and-a-half 

days, with a mean time per HIT of 266 seconds. Heer and Bostock (2010) commented 

that it was difficult to predict how long HITs would take and what issues such as 

distractions and connection speed would cause delays. The statistics regarding number of 

HITS per Turker were as follows: 

Number of unique Turkers: 154 

Maximum # of HITs completed by a single Turker: 442 

Minimum # of HITs completed by a single Turker: 2 

Mean # of HITS completed per Turker: 31 

Median # of HITS completed per Turker: 8 

Mode # of HITs completed per Turker: 2 

 As the numbers indicate, there were a great deal fewer Turkers involved than if 

the HITs had been limited to one-per-person. The Median and Mode show that many of 
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the Turkers completed two, or another small number, of HITs. However, there were a few 

outlying individuals who completed a large number of HITs and skewed the mean 

upward. There were, in fact, 13 Turkers who completed more than 100 of these listening 

tasks each and heard more than 300 short songs. When the interactive GAs were finished, 

the top five songs from each instance were exported as mp3 files for use in the evaluation 

phase. 

 

Recruitment of and Instructions for Reviewers and Composers 

To test the research hypothesis, the resulting music was rated and reviewed by 

another set of general-audience participants and by composers to determine whether 

crowdsourced compositional interactive GAs produced  higher quality music than 

interactive GAs with a small group of reviewers as the fitness factor.  

The top five musical creations produced by each interactive GA setup (small 

training group and crowdsourced training group, respectively) were presented to the 

reviewers in random order to prevent bias. They were only be told that they are 

evaluating ten computer music compositions and were not be informed of the 

experimental and control conditions or the methodology used to create the music. The 

instructions that were shown to the general audience reviewers may be found in 

Appendix G, while the instructions shown to composers may be found in Appendix H. 

While the two earlier training groups - the small control group and large 

crowdsourced test group, who provided fitness to the interactive GAs – were only asked 

to rank three songs (or several sets of songs) in order of preference, the general audience 

reviewers and the composers were asked which they liked best and why.  
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The general audience reviewers were recruited locally with flyers (Appendix I) 

posted on the ETSU campus. They signed the informed consent document in Appendix J. 

They listened to the songs on an iPad2 were asked to rate their agreement/disagreement 

with the following statements: “I like this music”, “This music is artistically effective”, 

and “This music sounds similar to things I‟ve heard before”; they were also given 

optional, open ended questions reading “What, if any, emotion(s) does it evoke?”, “What, 

if anything, was memorable about it?”, and “What, if anything, were its shortcomings?” 

It took approximately 20 – 30 minutes per reviewer to listen to all 10 songs and give 

ratings and comments.  

The composers were recruited online via email (Appendix K) and most of their 

contact information was found on www.composersforum.org (Composers Forum, 2011). 

After email recruitment, they signed and returned the informed consent document in 

Appendix L by mail. They were then asked to rate their agreement/disagreement with 

these statements: “This music is interesting”, “This music is creative”, “This music is 

artistically effective”, and “This music is chorale-like.” They were given optional, open-

ended questions reading “What, if anything, was memorable about it?” and “What, if 

anything, were its shortcomings?” With these statements and questions, helpful 

information was gathered about the ways the music was effective, or how the quality 

might be improved.   

The research hypothesis would prove true if each set of reviewers rates the 

experimental crowdsourced interactive GA music more favorably than the control small 

group interactive GA music. The general audience reviewers provided more insight into 

popular appeal, while the composers provided more insight into artistic merit.  
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Results Format 

 The ratings from the two reviewing groups are reported in the next chapter, so as 

to show the effectiveness of the crowd-trained interactive GA compared to the small-

group-trained interactive GA. The mean ratings of the two groups were used to determine 

whether the null hypothesis or alternate hypothesis must be rejected with p-value < 0.05, 

where: 

H0 = small-group-trained and crowdsourcing-trained compositional interactive  

         GAs produce music that is equally effective 

H1 = crowdsourcing-trained compositional interactive GAs produce music that is  

         more effective than those trained by a small group 

Graphs showing the average Likert scale ratings are provided in Chapter 4, along 

with qualitative comments from reviewers and composers and links to the final songs that 

were created by both GA instances. The significance and contributions of the results and 

unanswered questions for future research may be found in Chapter 5. 

 

Summary 

When compositional interactive GAs have been used to create music, the results 

have been limited due to the extensive effort required for training. An experimental study 

was conducted to test the following hypothesis: When the training of a compositional 

interactive GA is crowdsourced, as opposed to being delegated to an individual or a small 

group, the fitness bottleneck is overcome and the resulting music is more effective.  
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MC, a compositional GA, was modified to use programmatic fitness rules guided 

toward a two-part chorale-like style and to collect human input as the most heavily 

weighted fitness function. Two instances of the modified version of MC were run: one 

with a very large crowdsourced group recruited from mTurk, and one with a small group 

of 11 recruited through traditional means. While the GAs were running, participants were 

given short songs in sets of three and asked to rank them  best, middle, and worst.  

After the music was created, another small group of eight reviewers was recruited, 

along with eight composers, to subjectively rate and give feedback on the music. This 

was done to determine whether the input from the small group or the crowdsourced group 

was more effective in training a compositional interactive GA. 
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Chapter 4 

Results 

 

Findings 

In this section, links are provided to the five best songs created by each of the two 

interactive GA training conditions. Aggregate, summarized data is reported from the 

reviewers‟ and composers‟ ratings and comments. Statistics were analyzed using 

Microsoft Excel, Minitab, and The R Project for Statistical Computing. Complete data 

collected from the reviewers and composers may be found in Appendixes M, N, O, P, Q, 

and R. 

 

Music 

For the remainder of this report, the songs are numbered 1 - 5 for the small control 

group and 6 - 10 for the large crowdsourced group. The five short songs created by the 

small in-person control training group may be found at the following URLs: 

 http://www.jessicakeup.com/research/1.mp3  

 http://www.jessicakeup.com/research/2.mp3  

 http://www.jessicakeup.com/research/3.mp3  

 http://www.jessicakeup.com/research/4.mp3  

 http://www.jessicakeup.com/research/5.mp3  

The five songs created by the large, crowdsourced test training group may be found at the 

following URLs: 

 http://www.jessicakeup.com/research/6.mp3  
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 http://www.jessicakeup.com/research/7.mp3  

 http://www.jessicakeup.com/research/8.mp3  

 http://www.jessicakeup.com/research/9.mp3  

 http://www.jessicakeup.com/research/10.mp3  

 

Reviewers’ Feedback on Small Control Group Music 

Figure 1 contains the combined non-musically trained reviewers‟ ratings of all 

five small-group-trained songs. It shows the agreement/disagreement percentages for the 

statements “I like this music”, “This music is artistically effective”, and “This music 

sounds similar to things I‟ve heard before.” It shows that all answers appeared for all 

statements, though Like was evenly distributed and Artistically Effective and Similar 

received more agreement and neutral answers. 

 
 

Figure 1. Combined reviewer ratings of control condition music. 
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The comments from the reviewers regarding the five songs they heard from the 

control group repeatedly mentioned these words and ideas: curiosity, suspense, 

dissonance, ballet, storytelling, syncopation, mystery, anxiety, awkward rhythms, and too 

much distance between the bass and soprano. The non-musically trained reviewers‟ per-

song ratings and comments regarding the control, small-group-trained interactive GA 

may be found in Appendix M. 

 

Reviewers’ Feedback on Large Test Group Music 

Figure 2 contains the combined non-musically trained reviewers‟ ratings of all 

five crowdsource-trained songs. It shows the agreement/disagreement percentages for the 

statements “I like this music”, “This music is artistically effective”, and “This music 

sounds similar to things I‟ve heard before.” Again, all statements received at least one of 

each answer. The reviewers seemed less polarized by the test condition music, as there 

were more Agrees and Neutrals and fewer Strongly Agree and Strongly Disagree 

responses as compared to the control condition music. 
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Figure 2. Combined reviewer ratings of test condition music. 

 

 

The comments from the reviewers regarding the five songs they heard from the 

test group repeatedly mentioned these words and ideas: darkness, lack of flow, mystery, 

curiosity, happiness, ballads, major 3rds, and the need for tempo variance. It was very 

similar to the reviewers‟ descriptions of the small group music, though a few songs in 

each group had unique comments. The non-musically trained reviewers‟ per-song ratings 

and comments regarding the test crowdsource-trained interactive GA may be found in 

Appendix N. 

 

Composers’ Feedback on Small Control Group Music 

Figure 3 contains the averages of the composers‟ ratings of all five small-group-

trained songs. It shows the agreement/disagreement percentages for the statements “This 

music is interesting”, “This music is creative”, “This music is artistically effective”, and 
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“This music is chorale-like.” It shows that all statement received all answers, except for 

Chorale-like, which mostly received Strongly Disagree answers.  

 
 

Figure 3. Combined composer ratings of control condition music. 

 

The comments from the composers regarding the five songs they heard from the 

control group repeatedly mentioned these words and ideas: randomness, dissonance, lack 

of coherence, lack of shape, and atonality. The composers‟ per-song ratings and 

comments regarding the control small-group-trained interactive GA may be found in 

Appendix O. 

 

Composers’ Feedback on Large Test Group Music 

Figure 4 contains the averages of the composers‟ ratings of all five crowdsource-

trained songs. It shows the agreement/disagreement percentages for the statements “This 

music is interesting”, “This music is creative”, “This music is artistically effective”, and 

“This music is chorale-like.” It is nearly identical to the graph of composers‟ feedback on 

the small control group music in Figure 3, as answers were mixed on all questions except 

for Chorale-like, where the answers were in strong disagreement. 
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Figure 4. Combined composer ratings of test condition music. 

 

The comments from the composers regarding the five songs they heard from the 

test group repeatedly mentioned these words and ideas: Atonal, contrapuntal, too 

sustained, dissonance, randomness, and lack of shape. It was very similar to the 

composers‟ descriptions of the small group music, though a few songs in each group had 

unique comments. The composers‟ per-song ratings and comments regarding the test  

crowdsource-trained interactive GA may be found in Appendix P. 

 

Small Control vs. Crowdsourced Test 

 In this section, the differences between answers to individual questions and 

groups of questions are compared between the control and test group songs. First is the 

difference in effectiveness. At this point and later in the chapter, effectiveness is used to 

describe the grouping of Like, Artistically Effective, Creative, and Interesting, where 

applicable (e.g. composers did not rate Like).  

The null hypothesis that “small-group-trained and crowdsourcing-trained 

compositional interactive GAs produce music that is equally effective” is not rejected at 



56 

 

the 95% confidence level because the p-value calculated by a t test (shown in Table 1) is 

0.463. 

 

Table 1 

 

t Test of Test Minus Control Differences in Effectiveness from All, Reviewers, and 

Composers 

 N Mean St. Dev. Min Q1 Median Q3 Max 

Combined 16 .015 6.19 -8.00  -3.75    -0.67 0.75 19.00 

 

Reviewers 8 .013 3.77 -8.00 -4.00    -2.50 1.75 19.00 

 

Composers  8 .017 8.24  -4.67 -1.17    -0.33 0.00  8.67 

 

The difference in effectiveness, shown below, was calculated by subtracting each 

reviewer and composers control group ratings for quality from their test group ratings for 

effectiveness. It shows a few outliers, but for most of the subjects, the test music and 

control music were very similar in effectiveness.There was more dispersion and variance 

in opinion regarding the difference in effectiveness between test and control music 

between reviewers as shown by the Figure 5 and the difference in standard deviation. 

 
 

Figure 5. Difference between reviewers‟/composers‟ ratings of test vs. control 

effectiveness. 
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In a randomization test run to compare the differences between Reviewers‟ and 

Composers‟ combined ratings of effectiveness in the test and control groups, the 

observed difference in means is very similar (near 0) between the groups, as seen in 

Figure 6. This indicates that the differences between effectiveness ratings of the test 

group vs. control group may have happened by chance and are not significant.  

 
Figure 6. Randomization test for ratings of test vs. control effectiveness. 

 

 

 For originality, the ratings “This music sounds similar to things I‟ve heard before” 

(reviewers only) were reversed.  In Figure 7, test music originality ratings of individual 

reviewers were subtracted from their control music originality ratings. There was one 

outlying reviewer who rated the test music considerably higher than the control music, 

and for the rest, the two groups were quite close in originality. 
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Figure 7. Difference between reviewers ratings of test vs. control originality. 

 

Composers agreed or disagreed with the statement “This music is chorale-like”, 

and Figure 8 shows their chorale-like ratings for the control group subtracted from their 

chorale-like ratings for the test group. One outlying composer felt strongly that the 

control music was more chorale-like than the test music, and for the rest, all the music 

was similar in its chorale-likeness.   
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Figure 8. Difference between composers‟ ratings of test vs. control chorale-likeness. 

 

Reviewers’ Question by Question Comparision 

In the following section, ratings from individual statements posed to reviewers are 

evaluated – first “I like this music”, then “This music is artistically effective,” and then 

“This music sounds similar to things I‟ve heard before”. Figure 9 shows the combined 

Like ratings from all reviewers for each song in both conditions. With a maximum score 

of 50, it indicates that the songs were fairly well-liked, with the test songs being slightly 

better liked than the control songs. 
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Figure 9. Combined reviewer ratings for “I like this music”. 

 

Figure 10 shows the combined artistic effectiveness ratings from all reviewers for 

each song in both conditions. With a maximum score of 50, it indicates that the songs 

were seen as fairly artistically effective, with the test songs rated slightly more artistically 

effective than the control songs. 

 

Figure 10. Combined reviewer ratings for “This music is artistically effective”. 
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Figure 11 shows the combined Originality (reverse of Similar) ratings from all 

reviewers for each song in both conditions. It indicates that the control and test songs had 

about the same average originality, though there was more spread in the control songs. 

With the responses centered around 25 – 30 out of 50, they believed the songs to be 

neither very original or un-original. 

 
 

Figure 11. Combined reviewer ratings for “This music sounds similar to things I‟ve 

heard before”. 

 

 

Composers’ Question by Question Comparision  

In the following section, ratings from individual statements posed to composers 

are evaluated – “This music is interesting”, “This music is creative”, “This music is 

artistically effective,” and “This music is chorale-like”. Figure 12 shows the combined 

Interesting ratings from all composers for each song in both conditions. The most 

interesting song was from the control group and the least interesting from the test group, 

but otherwise the test songs were rated as more interesting than the control songs. With 
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ratings between 25 – 40 out of a possible 50, the composers believed the songs to be 

more interesting than not. 

 

Figure 12. Combined composer ratings for “This music is interesting”. 

 

Figure 13 shows the combined Creative ratings from all composers for each song 

in both conditions. It indicates that the songs were believed to be moderately creative 

(between 25 – 40 where the maximum is 50) and that the control and test condition 

creativity levels were almost identical. 
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Figure 13. Combined composers ratings for “This music is creative”. 

 

Figure 14 shows the combined Artistically Effective ratings from all composers 

for each song in both conditions.The scatterplot suggests that the songs were less 

artistically effective than they were interesting and creative, from the composers‟ 

perspectives, and that both conditions‟ songs had about the same level of artistic 

effectiveness. 

 

 
 

Figure 14. Combined composer ratings for “This music is artistically effective”. 
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Figure 15 shows the combined Chorale-like ratings from all composers for each 

song in both conditions. This question was clearly the most disagreed with. In fact, with 

the minimum score being 8 (1 point from each composer), the ratings could not have 

been much lower. The control songs were all rated more chorale-like than the test songs.  

 

Figure 15. Combined composer ratings for “This music is chorale-like”. 

 

Reviewers vs. Composers 

In this section, trends in ratings by reviewers versus trends in ratings by 

composers are evaluated. When the control group ratings were combined and the test 

group ratings were combined, as shown in Figure 16, the reviewers rated both groups 

highest on the "This music is artistically effective" statement and highest on "This music 

sounds similar to things I've heard before". This means that the musical originality was 

low compared to the other factors. 
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Figure 16. Combined reviewer ratings of all music. 

 

 

When the control group ratings were combined and the test group ratings were 

combined, as shown in Figure 17, the composers rated both groups highest on the “This 

music is interesting" statement and lowest on the “This music is chorale-like” statement. 

 

Figure 17. Combined composer ratings of all music. 
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Both reviewers and composers rated their agreement with the statement “This 

music is artistically effective”. Figure 18 shows each song‟s ratings by reviewers and by 

composers. There was a wide variance in answers and there were higher ratings from 

reviewers, as a group, than composers. Perhaps this indicates that artistic effectiveness is 

a very subjective measurement and that composers have higher expectations of musical 

artistry. 

 
 

Figure 18. Reviewers‟/Composers‟ Artistic Effectiveness Ratings 

 

To verify the appearance of higher ratings from reviewers, a paired t test (Table 2) 

was  run. It  showed a p-value of 0.000. 

 

Table 2 

 

Paired t Test of Per-Song Reviewer vs. Composer Ratings 

 N         Mean St.Dev. SE Mean 

Reviewers 10 35.50 4.65 1.47 

 

Composers 10 26.60 4.67 1.48 

 

Difference 10 8.90 4.65 1.47 
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To further verify that reviewers gave higher ratings than composers, a 

randomization test for paired data was also run. It showed an approximated p-value of 

0.0011. This, along with the paired t test p-value of 0.000, proves that there is a 

statistically significant pattern of reviewers being more generous with their scoring than 

composers.  

 

Figure 19. Randomization Test for All Reviewer vs. Composer Ratings 

 

 

Reviewers and composers did not rate their agreement with the same statements 

(with the exception of “This music is artistically effective”); thus, their responses to the 

other individual statements could not be compared. The overall comments from reviewers 

and composers regarding the study and all the music they heard may be found in 

Appendices Q and R, respectively. 
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Song by Song Comparison 

According to the effectiveness sub-group of questions (Like, Artistically 

Effective, Creative, and Interesting), the best song was a tie between song 5 

(http://www.jessicakeup.com/research/5.mp3) from the control group and song 4 from 

the test group (http://www.jessicakeup.com/research/4.mp3). 

According to the combined reviewer ratings of all statements, the best song is 

song 5 (http://www.jessicakeup.com/research/5.mp3) from the control group and the 

worst song is song 1(http://www.jessicakeup.com/research/1.mp3) from the test group. 

According to the combined composer ratings of all statements, the best song is song 5 

(http://www.jessicakeup.com/research/5.mp3) from the control group and the worst song 

is song 4 (http://www.jessicakeup.com/research/4.mp3) from the test group. 

 

Summary of Results 

The reviewers‟ opinions of the test and control groups and composers‟ opinions of 

the test and control groups were given first. Most of their responses were moderate, 

except that the composers did not agree that any of the music was very chorale-like. In 

comparing the ratings for the test group and control group, there were not statistically 

significant differences in which was more effective. There was a significant difference in 

ratings given by reviewers and composers, in that reviewers tended to give higher ratings 

(to both test and control songs) than the composers did. 
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Chapter 5 

Conclusions 

 

Implications 

 First, it is important to note that due to small number of participants (N = 16) 

reviewing the music created by the interactive GAs, the differences in ratings were not 

statistically significant, with one exception. There was a definite difference between 

scores given (to both groups) by reviewers and scores given (to both groups) by 

composers. Further research with a larger number of reviewers and/or composers could 

answer the research question more definitively, and with statistical significance.  

The null hypothesis - small-group-trained and crowdsourcing-trained 

compositional interactive GAs produce music that is equally effective – cannot be 

rejected at this time. The rest of the results suggest that the small control group-trained 

music and the large crowdsource-trained music had small differences that may be 

attributed to chance. In some cases like Like and Interesting the test music performed 

slightly better, and in others like Chorale-like and Original, the control music performed 

slightly better.  

 

Recommendations 

Genetic Algorithm Setup 

If this particular modification of MC is to be used again, it should be further 

tested and adjusted, particularly regarding the mutation rate. The songs seem to have 

converged too quickly for the purposes of this experiment and reached local optimas. In 
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both the small group with 11 generations and the large group with 200 generations, the 

five best songs in the last generation of each sounded very similar to each other, even 

starting with the same motives and only differing in the middles and endings. In this 

research, genes had a 1 in 12 chance of being selected for mutation, and if selected, the 

note, octave, and duration each had a 1 in 2 chance of being randomly changed. Darwin 

Tunes‟ mutation occurred with a chance of 1/1500 per node within a chromosome, but 

they did not report problems with convergence (DarwinTunes, 2010c).  

One could argue that the reason the music created by the test condition was more 

effective than the control is that there were 189 more generations, and therefore, the 

music was more evolved and better, regardless of the human training input. It would be 

interesting to compare a 200-generation GA run with the same programmatic fitness 

functions and no human input. For future research, a crowdsourced interactive GA with 

200 (or some other large number) generations could be compared to a non-interactive GA 

with 200 generations that was trained only by programmatic fitness functions, to compare 

the effectiveness of the music each creates.  

While the composers‟ ratings varied with regard to interest, creativity, and artistic 

effectiveness, their responses showed an overwhelming belief that the music (created by 

both conditions) was not chorale-like. There are some changes to be considered in future 

research that may create a more chorale-like style. First, the programmatic fitness 

function rules need to be further refined or supplemented by additional constraints. Some 

of the rules included in this work were specific to chorales, but many others were merely 

general guidelines that would apply to most tonal music.  The other way to make the 

music more chorale-like would be to increase the relative weights of the rules. The 
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human input from mTurk was more heavily weighted than all the other rules combined. 

For example, a rating of “middle” from a set of three added 100,000 to the score and a 

rating of “worse” added 1,000,000 to the score. In contrast, a song with a too-high 

percentage of rests to notes was penalized at double the difference between the actual and 

max percentages (e.g. a song with 30% rests instead of 10% or less would have had 40 

points added to its score). Every eighth note that occurred on the first beat of a measure 

added 20 points to the song‟s score. A lower score was more desirable. The disparity in 

scoring between human ratings and everything else was because the GAs were supposed 

to be primarily interactive. The programmatic rules were only in place to be used as a tie 

breaker, but the emphasis on the human ratings may have been too much. 

Regarding the choice of a chorale-like style, it was a limitation that the music 

contained only soprano and bass parts, and  it therefore lacked the typical four-part 

texture that includes an alto and tenor voice.  Another rule, namely that the chorales only 

used notes from the C major scale, is also problematic, since chorales typically tonicize 

chords and modulate to closely related keys.  To create such harmonic shifts would call 

for the inclusion of chromatic pitches and many additional constraints.  

Had the author been aware of the Turkit toolkit, it would have been used in 

development (Little et al., 2009). It manages automatic, iterative postings of HITs to 

mTurk for HITs where the contents of one batch are dependent on the previous. It was 

created by Little et al., (2009) for tests with iterative tasks related to “image description, 

copy editing, handwriting recognition, and sorting” and would likely have been able to 

handle many of the error checking and reposting functions that were written for this 

research. 
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Training Process 

Before the experiment was conducted, it was expected that the HITs would take a 

little more than 60 seconds to complete, for an effective rate of more than $6.00/hour. 

That was considerably higher than the HITs other researchers have found or posted 

themselves. However, they were judging hour rates based on the time it actually took to 

complete the HIT. Since that proved to be almost 4 ½ minutes, the workers were only 

paid a rate equivalent to $1.35 an hour. It is suspected that they were not listening to the 

songs over-and-over, but rather waiting on the page to load, multitasking, etc.  More 

detailed recordkeeping of their click activity might be able to answer that question. 

The rating method of choosing the best, middle, and worst song out of three was 

chosen for several reasons outlined in Chapter 3. Using a scale, such as 1 – 5 or 1 – 10, 

can be inconsistent because participants have different interpretations of what each score 

means and an individuals‟ strictness or generosity with scores may vary over time. 

During the experiment, though, one trainer offered his opinion about why he wished there 

were other rating options available. He expressed concern about getting sets of three 

unusually good or unusually bad songs. He believed that the best in some groups were 

worse than the worst in others, and had no way to accurately rate them as such. 

Preference judgments could be a way around that problem. With preference judgments 

two options are offered at a time and the participant chooses the better one.  As various 

pairs are evaluated, the entire list of songs could be sorted by quality (Urbano et al., 

2010).  

The one-HIT-per-worker limit that was removed near the beginning of the large 

test group training may have had an effect on the results. While it still maintained 
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adherence to the premise of work undertaken by the collective online intelligence, it 

would have been more in the spirit of crowdsourcing to have input from more unique 

participants (Surowiecki, 2005). The workers who completed a large number of HITs had 

a bigger influence on the music that was eventually created than the workers who 

completed a few HITs. Since the answers to their questions were purely subjective, most 

of the measures recommended by Amazon and other researchers to prevent cheating - 

such as known correct answers and qualification tests - were not applicable. Therefore, 

there was a risk that one of the Turkers who completed a large number of HITs could 

have done so carelessly or maliciously and negatively affected the outcome.  

Averaged ratings from multiple Turkers might have been helpful in ensuring 

quality ratings. As Xu and Bailey (2011, p. 1185) reasoned in their crowdsourcing of 

visual design critiques, “[s]ince workers may have different styles and diverse aesthetic 

experiences, we adopt a voting scheme to prevent the introduction of errors.” 

DarwinTunes, too, used a voting scheme (DarwinTunes, 2010d). Even voting is not 

always a good solution; in situations where cheating workers are abundant, the honest 

and correct answers may be outvoted (Lease, et al., 2011).  

If a voting scheme is not implemented, it could be tried again with the one-per-

person restriction in place, perhaps with higher pay to encourage participation. However, 

that is probably a less effective solution because it conflicts with the typical Turker 

workflow. Due to the learning curve of a HITs and other factors like qualification tests, 

many Turkers do streaks of work where they find worthwhile types of HITs and complete 

them as long as possible (Heer & Bostock, 2010). 
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Review Process 

As a side effect of the premature convergence of the interactive GAs to similar-

sounding music, one of the survey statements became less relevant. Some participants 

expressed concern about “This music sounds similar to things I‟ve heard before.” They 

were unsure if they were supposed to compare it with other music from this study, where 

the answer was likely “agree” or “strongly agree” or with all the music they had heard 

prior to the study, where the answer was more likely negative. Thus, the reviewers‟ 

answers to that question were not very meaningful. The composers were not asked that 

question, though it is important to note that three of them thought it impossible to 

differentiate between all of the control and test songs, and gave identical ratings to all ten. 

Though the ratings for the crowdsourced music were slightly higher than that of 

the small-group-trained music, neither set of songs had particularly high ratings. 

Reviewers and composers expressed some valid concerns about the amount of dissonance 

and the feeling of atonality that made it seem random. Perhaps, if a similar experiment is 

repeated, the melody should be left to evolve on its own programmatically for a number 

of generations before participants are brought in to train it, as Unehara and Onisawa 

(2003) suggested.  Alternatively, using a minimum programmatic fitness function (in 

which clearly subpar songs are discarded without sending them to trainers) could allow 

the songs to become more musically refined and effective with the same amount of 

reviewer effort (de Freitas & Guimarães, 2011).  

The reviewers seemed less polarized by the test condition music, as there were 

more Agree and Neutral responses (and fewer Strongly Agree and Strong Disagree 

responses) for Like and Artistically Effective, as compared to the control condition 
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music. This supports the idea discussed in Chapter 1 that music created by a 

crowdsourced interactive GA might have more popular appeal overall, but might not be 

loved or hated since it was created by consensus of so many people.  

The qualitative comments from both composers and reviewers indicated that the 

music would have been more effective with more variety. They specifically mentioned 

variations in tempo and instrumentation, but other factors such as variations in key 

signatures, time signatures, modalities, and number of parts could be implemented as 

well.  

 

Summary 

Computers have been used for tools in sound synthesis, sound processing, music 

theory analysis, composition, and performance. AI has been applied to creation and 

composition. When GAs used to create music, the fitness function may be programmatic 

based on music theory regarding voice leading and harmonic progressions. Computer-

created music created by GAs with programmatic fitness functions tend to be 

homogeneous and non-interesting (Biles, 2007; Roads, 1985).  

In an Interactive GA (Unehara & Onisawa, 2003), human listeners gauge the 

quality of a composition; Interactive GAs are subject to a fitness bottleneck because it 

takes a lot of time and energy for humans to rate and review generations of 

chromosomes, thus limiting the effectiveness of the music created by the Interactive GA.  

Existing methods of music creation with Interactive GA can produce higher 

quality output than compositions without human input; however, they are by a fitness 

bottleneck. (Biles 2007; Chen, 2007; Fu et al., 2009; Gartland-Jones & Copley, 2003; 
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Khalifa et al.,  2007; Oliwa, 2008; Unehara & Onisawa, 2003).  Humans must attentively 

listen and precisely rate a substantial amount of audio information to train a musical GA; 

they may take too long or be overwhelmed in doing so and this fitness bottleneck is 

repeatedly referred to as a limiting factor in musical GA research (Biles, 2007; Tokui & 

Iba, 2000). By training interactive GAs for music composition with online collective 

intelligence, or “crowdsourcing”, it was possible to supply the algorithm with adequate 

training data without requiring much input from any one evaluator.  

This research was intended to show whether applying crowdsourcing to the 

human review fitness function of musical GAs yields more effective music, as compared 

to the small groups typically chosen to provide feedback to a compositional interactive 

GA. Those small groups are limited by a fitness bottleneck, because it takes a great deal 

of time and effort to fully train the GA.  

Crowdsourcing is the outsourcing of work to the collective online intelligence. A 

wide variety of work types have been crowdsourced, and it is most effective for use in 

tasks that are easy for humans but difficult for computers, such as image tagging and 

relevance rating. It is subject to misuse by careless or malicious users, but there are 

techniques to check responses for validity and mitigate that risk. Amazon mTurk is a 

crowdsourcing community where requestors can post tasks and Turkers will do the work 

in exchange for small payments.  

Crowdsourcing has been applied to the GA fitness bottleneck in other domains 

and it has been applied to music recommendation systems. In DarwinTunes, it was tried 

with a compositional interactive GA to see what type of music could be created. An 

experimental study was conducted to test the following hypothesis: When the training of 
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a compositional interactive GA is crowdsourced, as opposed to being delegated to an 

individual or a small group, the fitness bottleneck is overcome and the resulting music is 

more effective.    

This was accomplished by establishing an interactive GA that created music in a 

two-part chorale-like style. A small group of group of eleven participants recruited 

through traditional means trained one instance of the musical interactive GA, as a control 

group. Those results were compared to another instance of the same musical interactive 

GA trained by a large crowdsourced group recruited from mTurk.  

After the music was created, another small group of eight reviewers was recruited, 

along with eight composers, to subjectively rate and give feedback on the music. This 

was done to determine which training method for interactive compositional GAs was 

more effective. The data was analyzed to gather the following information. 

The songs from the large, crowdsourced test group scored slightly higher (with all 

questions combined) than the songs from the small-group-trained control group both in 

the combination of all reviewer ratings and all composer ratings. Specifically, the 

reviewers found the test music to be more artistically effective and more likeable, but less 

original. The composers found the test music to be more interesting, less creative, less 

artistically effective, and less chorale-like. This suggests that crowdsourcing might be a 

more effective training method, but that the difference in sums of Likert-scale answers 

was small enough that it could be attributed to random chance. 

Several modifications or additions to the methodology were suggested, should the 

experiment be repeated or a similar experiment run. For the genetic algorithm, the 

mutation rate may need to be changed, more rules should perhaps be added and the 
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existing rules might need different weights. It would be interesting to create music with a 

200-generation GA instance using only the programmatic fitness functions and compare 

that to the crowdsourced music. The Turkit toolkit could have been used to simplify HIT 

management on mTurk.  

Rather than asking for best, middle, and worst ratings, a preference judgment 

might be a better choice. HITs should probably either be limited to one-per-Turker 

(which slows and limits the work) or the music ratings should be voting-based (which 

requires multiple workers to listen to the same music). The GA could use the 

programmatic fitness functions to eliminate obviously bad choices or to evolve on its 

own a while before human reviewers are brought in. Finally, the similarity/originality 

question should have been clarified for reviewers and composers. While the above 

suggestions could have made the results clearer or research process smoother, the 

research showed that crowdsourcing on mTurk has potential as a solution to the fitness 

bottleneck in compositional GAs. 
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Appendix A 

 

Nova Southeastern University IRB Approval 

 
 

 
 
 

 
 
 

MEMORANDUM 
 

To:  Jessica Keup 

 

From:  Ling Wang, Ph.D. 

                        Institutional Review Board       

          
 

Date:  Dec. 3, 2010 

 

Re: Computer Music Composition using Crowdsourcing and Genetic Algorithms 

 

IRB Approval Number:  wang10151001 

 

I have reviewed the above-referenced research protocol at the center level.  Based on the 

information provided, I have determined that this study is exempt from further IRB 

review.  You may proceed with your study as described to the IRB.  As principal 

investigator, you must adhere to the following requirements: 

 

1) CONSENT:  If recruitment procedures include consent forms these must be 

obtained in such a manner that they are clearly understood by the subjects and the 

process affords subjects the opportunity to ask questions, obtain detailed answers 

from those directly involved in the research, and have sufficient time to consider 

their participation after they have been provided this information.  The subjects 

must be given a copy of the signed consent document, and a copy must be placed 

in a secure file separate from de-identified participant information.  Record of 

informed consent must be retained for a minimum of three years from the 

conclusion of the study. 

2) ADVERSE REACTIONS:  The principal investigator is required to notify the 

IRB chair and me (954-262-5369 and 954-262-2020 respectively) of any adverse 

reactions or unanticipated events that may develop as a result of this study.  

 

 

NOVA SOUTHEASTERN 
UNIVERSITY  
Office of Grants and Contracts 
Institutional Review Board 

3301 College Avenue  Fort Lauderdale, FL  33314-7796  (954) 262-5369  
Fax: (954) 262-3977  Email: inga@nsu.nova.edu  Web site: www.nova.edu/cwis/ogc 
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Reactions or events may include, but are not limited to, injury, depression as a 

result of participation in the study, life-threatening situation, death, or loss of 

confidentiality/anonymity of subject.  Approval may be withdrawn if the problem 

is serious. 

3) AMENDMENTS:  Any changes in the study (e.g., procedures, number or types of 

subjects, consent forms, investigators, etc.) must be approved by the IRB prior to 

implementation.  Please be advised that changes in a study may require further 

review depending on the nature of the change.  Please contact me with any 

questions regarding amendments or changes to your study. 

The NSU IRB is in compliance with the requirements for the protection of human 

subjects prescribed in Part 46 of Title 45 of the Code of Federal Regulations (45 CFR 46) 

revised June 18, 1991. 

 

Cc: Protocol File 

 Office of Grants and Contracts 
 
 
 

3301 College Avenue  Fort Lauderdale, FL  33314-7796  (954) 262-5369  
Fax: (954) 262-3977  Email: inga@nsu.nova.edu  Web site: www.nova.edu/cwis/ogc 
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Appendix B 

 

East Tennessee State University IRB Approval 
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Appendix C 

 

Screenshots of User Interface 

 
Listing of HITs Screen 
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Consent Screen 
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Listening Screen 
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Confirmation/Thank You Screen 
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Appendix D 

Trainer Instructions 
 

 

Listen to the three musical samples below and rate your preferences. 
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Appendix E 

 

Trainer Recruitment 

 

Participants needed for 
research in musical artificial 
intelligence 
  
We are looking for volunteers to take part in a study to evaluate 
different methods of training artificial intelligence programs to 
compose music. 
 
As a participant in this study, you would be asked to listen to samples 
of music created by an artificial intelligence composition program and 
evaluate them. You must be at least 18 years old to participate. 
 
Your participation would involve one session lasting approximately 
one hour. 
In appreciation for your time, you will receive a $10 Amazon.com 
giftcard. 
 

 
 
For more information about this study, or to volunteer for this 
study, please contact: 
 
Jessica Keup 
ETSU Department of Computer and Information Sciences  
Nova Southeastern University School of Computer and Information 
Sciences 
(423) 439-6963 or  
keup@etsu.edu 
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Appendix F 

 

Trainer Consent Form  
 

     Consent Form for Participation in the Research Study Entitled 
  Computer Music Composition using Crowdsourcing and Genetic Algorithms 

 
 
Funding Source: None. 
IRB protocol #: wang10151001 
 
Principal investigator    Co-investigator 
Jessica Keup, MHCI    Maxine Cohen, Ph.D. 
ETSU Box 70711    3301 College Avenue 
Johnson City, TN  37614   Fort Lauderdale, FL  33314 
(423) 439-6963     (954) 262-2072 
 
For questions/concerns about your research rights, contact: 
Human Research Oversight Board (Institutional Review Board or IRB)  
Nova Southeastern University 
(954) 262-5369/Toll Free: 866-499-0790 
IRB@nsu.nova.edu 
 
Site Information 
East Tennessee State University  
Department of Computer and Information Sciences 
807 University Pkwy 
Johnson City, TN  37614 
 
What is the study about? 
You are invited to participate in a research study. The goal of this study is to compare 
training methods of genetic algorithms that create music.   
 
Why are you asking me? 
We are inviting you to participate because we need a large number of people to listen to and 
review music. There will be approximately 5,043 participants in this research study. 
 
What will I be doing if I agree to be in the study? 
You will listen to 25 sets of 3 very short songs and rank them to indicate which you think is 
best. These tasks should take no more than 1 hour to complete. 
 
Is there any audio or video recording? 
There is no audio or video recording. Only your responses to the questions will be kept. 
 
What are the dangers to me? 
Risks to you are minimal, meaning they are not thought to be greater than other risks you 
experience everyday. If you have questions about the research, your research rights, or if 
you experience an injury because of the research please contact Ms. Keup at (423) 439-
6963. You may also contact the IRB at the numbers indicated above with questions about 
your research rights. 
 
Initials: _________  Date: _________                Page 1 of 2 

 



89 

 

Are there any benefits to me for taking part in this research study? 
There are no benefits to you for participating. 
 
Will I get paid for being in the study?  Will it cost me anything? 
It will not cost you anything to participate in the study. You will receive a $10 Amazon gift 
card to compensate you for your time. 
 
How will you keep my information private? 
Your responses will only include your ratings of the music, and no personally identifying 
information will be gathered. All information obtained in this study is strictly confidential 
unless disclosure is required by law. The IRB, regulatory agencies, or Dr. Cohen may review 
research records. 
 
What if I do not want to participate or I want to leave the study? 
You have the right to leave this study at any time or refuse to participate. If you do decide to 
leave or you decide not to participate, you will not experience any penalty or loss of services 
you have a right to receive.  If you choose to withdraw, any information collected about you 
before the date you leave the study will be kept in the research records for five years from 
the conclusion of the study but you may request that it not be used. 
 
Other Considerations: 
If the researchers learn anything which might change your mind about being involved, you 
will be told of this information.  
 
Voluntary Consent by Participant: 
By signing below, you indicate that 

 this study has been explained to you 

 you have read this document or it has been read to you 

 you are at least 18 years old 

 your questions about this research study have been answered 

 you have been told that you may ask the researchers any study related questions in 
the future or contact them in the event of a research-related injury 

 you have been told that you may ask Institutional Review Board (IRB) personnel 
questions about your study rights 

 you are entitled to a copy of this form after you have read and signed it 

 you voluntarily agree to participate in the study entitled Computer Music Composition 
using Crowdsourcing and Genetic Algorithms 
 
 

Participant's Signature: ___________________________ Date: ________________ 
 
Participant’s Name: ______________________________ Date: ________________ 
 
Signature of Person Obtaining Consent: _____________________________   
 
Date: ___________________________ 
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Appendix G 

 

Reviewer Instructions 
 

 

For this study, you will be asked to listen to ten musical excerpts. You may listen to them 

as many times as you like. You will be asked to rate each excerpt on a number of aspects 

and describe your opinion of its merits or shortcomings.   

 

Excerpt 1        
 

Question 

Strongly 

Disagree 

Somewhat 

Disagree Neutral 

Somewhat 

Agree 

Strongly 

Agree 

a. I like this music      

b.This music is 

artistically effective 

     

c.This music sounds 

similar to things I‟ve 

heard before 

     

 

What, if any, emotion(s) does it evoke? 

________________________________________________________________________ 

________________________________________________________________________ 

 

What, if anything, was memorable about it? 

________________________________________________________________________ 

________________________________________________________________________ 

 

What, if anything, were its shortcomings? 

________________________________________________________________________ 

________________________________________________________________________ 

 

[repeated for Excerpts 2 – 10] 

 
Do you have any overall comments about the selections? 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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Appendix H 

 

Composer Instructions 

 

 
For this study, you will be asked to listen to ten musical excerpts. You may listen to them 

as many times as you like. You will be asked to rate each excerpt on a number of aspects 

and describe your opinion of its merits or shortcomings.   

 

 

Excerpt 1 
 

Question 

Strongly 

Disagree 

Somewhat 

Disagree Neutral 

Somewhat 

Agree 

Strongly 

Agree 

a. This music is 

interesting 

     

b.This music is creative      

c.This music is 

artistically effective 

     

d.This music is chorale-

like 
     

 

What, if anything, was memorable about it? 

________________________________________________________________________ 

________________________________________________________________________ 

 

What, if anything, were its shortcomings? 

________________________________________________________________________ 

________________________________________________________________________ 

 

 

[repeated for Excerpts 2 – 10] 

 

 

Do you have any overall comments about the selections? 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 
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Appendix I 

 

Reviewer Recruitment 
 

Participants needed for 
research in musical artificial 
intelligence 
  
We are looking for volunteers to take part in a study to evaluate 
different methods of training artificial intelligence programs to 
compose music. 
 
As a participant in this study, you would be asked to listen to samples 
of music created by an artificial intelligence composition program and 
evaluate them. You must be at least 18 years old to participate. 
 
Your participation would involve one session lasting approximately 30 
minutes. 
In appreciation for your time, you will receive a $5 Amazon.com 
giftcard. 
 

 
 
For more information about this study, or to volunteer for this 
study, please contact: 
 
Jessica Keup 
ETSU Department of Computer and Information Sciences  
Nova Southeastern University School of Computer and Information 
Sciences 
(423) 439-6963 or  
keup@etsu.edu 
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Appendix J 

 

Reviewer Consent Form 
 

 

     Consent Form for Participation in the Research Study Entitled 
  Computer Music Composition using Crowdsourcing and Genetic Algorithms 

 
Funding Source: None. 
IRB protocol #: wang10151001 
 
Principal investigator    Co-investigator 
Jessica Keup, MHCI    Maxine Cohen, Ph.D. 
ETSU Box 70711    3301 College Avenue 
Johnson City, TN  37614   Fort Lauderdale, FL  33314 
(423) 439-6963     (954) 262-2072 
 
For questions/concerns about your research rights, contact: 
Human Research Oversight Board (Institutional Review Board or IRB)  
Nova Southeastern University 
(954) 262-5369/Toll Free: 866-499-0790 
IRB@nsu.nova.edu 
 
Site Information 
East Tennessee State University  
Department of Computer and Information Sciences 
807 University Pkwy 
Johnson City, TN  37614 
 
What is the study about? 
You are invited to participate in a research study. The goal of this study is to compare 
training methods of genetic algorithms that create music.   
 
Why are you asking me? 
We are inviting you to participate because we need a large number of people to listen to and 
review music. There will be approximately 5,043 participants in this research study. 
 
What will I be doing if I agree to be in the study? 
You will listen to 10 very short songs, rate them on a number of scales, and describe your 
opinions of them. These tasks should take no more than 30 minutes to complete. 
 
Is there any audio or video recording? 
There is no audio or video recording. Only your responses to the questions will be kept. 
 
What are the dangers to me? 
Risks to you are minimal, meaning they are not thought to be greater than other risks you 
experience everyday. If you have questions about the research, your research rights, or if 
you experience an injury because of the research please contact Ms. Keup at (423) 439-
6963. You may also contact the IRB at the numbers indicated above with questions about 
your research rights 
 
Initials: _________  Date: _________                Page 1 of 2 
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Are there any benefits to me for taking part in this research study? 
There are no benefits to you for participating. 
 
Will I get paid for being in the study?  Will it cost me anything? 
It will not cost you anything to participate in the study. You will receive a $5 Amazon gift card 
to compensate you for your time. 
 
How will you keep my information private? 
Your responses will only include your ratings and descriptions of the music, and no 
personally identifying information will be gathered. All information obtained in this study is 
strictly confidential unless disclosure is required by law. The IRB, regulatory agencies, or Dr. 
Cohen may review research records. 
 
What if I do not want to participate or I want to leave the study? 
You have the right to leave this study at any time or refuse to participate. If you do decide to 
leave or you decide not to participate, you will not experience any penalty or loss of services 
you have a right to receive.  If you choose to withdraw, any information collected about you 
before the date you leave the study will be kept in the research records for five years from 
the conclusion of the study but you may request that it not be used. 
 
Other Considerations: 
If the researchers learn anything which might change your mind about being involved, you 
will be told of this information.  
 
Voluntary Consent by Participant: 
By signing below, you indicate that 

 this study has been explained to you 

 you have read this document or it has been read to you 

 you are at least 18 years old 

 your questions about this research study have been answered 

 you have been told that you may ask the researchers any study related questions in 
the future or contact them in the event of a research-related injury 

 you have been told that you may ask Institutional Review Board (IRB) personnel 
questions about your study rights 

 you are entitled to a copy of this form after you have read and signed it 
you voluntarily agree to participate in the study entitled Computer Music Composition 
using Crowdsourcing and Genetic Algorithms 

 
 

 
Participant's Signature: ___________________________ Date: ________________ 
 
Participant’s Name: ______________________________ Date: ________________ 
 
Signature of Person Obtaining Consent: _____________________________   
 
Date: ___________________________ 
 

 

 

 

 

Initials: _________  Date: ______               Page 2 of 2 
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Appendix K  

Composer Recruitment Form 

 

Participants needed for 
research in musical artificial 
intelligence 
  
We are looking for volunteers to take part in a study to evaluate 
different methods of training artificial intelligence programs to 
compose music. 
 
As a participant in this study, you would be asked to listen to samples 
of music created by an artificial intelligence composition program and 
evaluate them. You must be at least 18 years old to participate. 
 
Your participation would involve one session lasting approximately 
thirty minutes 
In appreciation for your time, you will receive a $25 Amazon.com 
giftcard. 

 
 
For more information about this study, or to volunteer for this 
study, please contact: 
 
Jessica Keup 
ETSU Department of Computer and Information Sciences  
Nova Southeastern University School of Computer and Information 
Sciences 
(423) 439-6963 or  
keup@etsu.edu 
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Appendix L 

 

Composer Consent Form 
 

     Consent Form for Participation in the Research Study Entitled 
  Computer Music Composition using Crowdsourcing and Genetic Algorithms 

 
 
Funding Source: None. 
IRB protocol #: wang10151001 
 
Principal investigator    Co-investigator 
Jessica Keup, MHCI    Maxine Cohen, Ph.D. 
ETSU Box 70711    3301 College Avenue 
Johnson City, TN  37614   Fort Lauderdale, FL  33314 
(423) 439-6963     (954) 262-2072 
 
For questions/concerns about your research rights, contact: 
Human Research Oversight Board (Institutional Review Board or IRB)  
Nova Southeastern University 
(954) 262-5369/Toll Free: 866-499-0790 
IRB@nsu.nova.edu 
 
Site Information 
East Tennessee State University  
Department of Computer and Information Sciences 
807 University Pkwy 
Johnson City, TN  37614 
 
What is the study about? 
You are invited to participate in a research study. The goal of this study is to compare 
training methods of genetic algorithms that create music.   
 
Why are you asking me? 
We are inviting you to participate because we need a large number of people to listen to and 
review music. There will be approximately 5,043 participants in this research study. 
 
What will I be doing if I agree to be in the study? 
You will listen to 10 very short songs, rate them on a number of scales, and describe your 
opinions of them. These tasks should take no more than 30 minutes to complete. 
 
Is there any audio or video recording? 
There is no audio or video recording. Only your responses to the questions will be kept. 
 
What are the dangers to me? 
Risks to you are minimal, meaning they are not thought to be greater than other risks you 
experience everyday. If you have questions about the research, your research rights, or if 
you experience an injury because of the research please contact Ms. Keup at (423) 439-
6963. You may also contact the IRB at the numbers indicated above with questions about 
your research rights. 
 
Initials: _________  Date: _________                Page 1 of 2 
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Are there any benefits to me for taking part in this research study? 
There are no benefits to you for participating. 
 
Will I get paid for being in the study?  Will it cost me anything? 
It will not cost you anything to participate in the study. You will receive a $25 Amazon gift 
card to compensate you for your time. 
 
How will you keep my information private? 
Your responses will only include your ratings and descriptions of the music, and no 
personally identifying information will be gathered. All information obtained in this study is 
strictly confidential unless disclosure is required by law. The IRB, regulatory agencies, or Dr. 
Cohen may review research records. 
 
What if I do not want to participate or I want to leave the study? 
You have the right to leave this study at any time or refuse to participate. If you do decide to 
leave or you decide not to participate, you will not experience any penalty or loss of services 
you have a right to receive.  If you choose to withdraw, any information collected about you 
before the date you leave the study will be kept in the research records for five years from 
the conclusion of the study but you may request that it not be used. 
 
Other Considerations: 
If the researchers learn anything which might change your mind about being involved, you 
will be told of this information.  
 
Voluntary Consent by Participant: 
By signing below, you indicate that 

 this study has been explained to you 

 you have read this document or it has been read to you 

 you are at least 18 years old 

 your questions about this research study have been answered 

 you have been told that you may ask the researchers any study related questions in 
the future or contact them in the event of a research-related injury 

 you have been told that you may ask Institutional Review Board (IRB) personnel 
questions about your study rights 

 you are entitled to a copy of this form after you have read and signed it 

 you voluntarily agree to participate in the study entitled Computer Music Composition 
using Crowdsourcing and Genetic Algorithms 

 
Participant's Signature: ___________________________ Date: ________________ 
 
Participant’s Name: ______________________________ Date: ________________ 
 
Signature of Person Obtaining Consent: _____________________________   
 
Date: ___________________________ 

 

 

 

 

 

 

 

Initials: _________  Date: _________                Page 2 of 2 
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Appendix M 

 

Reviews of Control GA Music by the Non-Musically Trained 

 

 
Song 1: 

 

 
 

What, if any, emotion(s) does it evoke? 

 

 still a dark feeling 

 

 same as previous 

 

 this captures the same emotions as [above] - curiosity mostly 

 

 suspense, again 

 

 made me feel medieval 

 

 Reminiscent of the previous example, but with much deeper, darker inclinations. 

If the previous example was a broken ballet dancer music box, this one is the 

small boy that‟s breaking it while it plays. 

 

What, if anything, was memorable about it? 

 

 felt like a snip of a story being told 
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 ballet 

 

 again, I heard a melody and counter-melody in their infancy 

 

 again, it was Debussy-like. It would not be stuck in my head as melody, but the 

chords and whole tones are memorable. 

 

 Immediate emotional response. I didn‟t have to wait for it. 

 

 I liked the „big‟ feel of the score 

 

 Nice melodies here, and the countermelody/harmonies were nice 

 

What, if anything, were its shortcomings? 

 

 I don‟t like the low part 

 

 Same as [previous] 

 

 None 

 

 I don‟t think the melody & countermelody belonged together in this one, the 

combination of the two was very jarring. 

 

 

Song 2: 
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What, if any, emotion(s) does it evoke? 

 

 dark/maybe explaining a story 

 

 curiosity 

 

 confusion 

 

 not sure 

 

 the opening made me anxious 

 

 Another bright piece, this one brings images of children playing while outside 

while a storm approaches 

 

What, if anything, was memorable about it? 

 

 reminds me about an intense video game scene music 

 

 parallel octaves in the middle and weird syncopation 

 

 nothing 

 

 sounds “clanky” 

 

 I liked the melodies and countermelodies, the dissonances were effective 

 

What, if anything, were its shortcomings? 

 

 Tunes are not in accordance 

 

 Same as [previous 9] 

 

 It was not as successful as the others like it because it was not harmonious 

 

 Disorganized 

 

 Too staccato, and sounded „tinny‟ 

 

 None noticeable 
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Song 3 

 

 
 

What, if any, emotion(s) does it evoke? 

 

 again still a mix of dark and happy feeling 

 

 suspense again, as one traditionally associates with dodecaphonic music in a 

movie or an opera. Tension. 

 

 I wanted to slow it down or speed it up. It should not have all been the same 

tempo. To be affective it would need to be played with emotion 

 

 A little more upbeat 

 

 Again, a bit too much chaos in this one, like a youngster with a bit of piano 

lessons under their belt, just banging away and trying new things without really 

knowing how things “should” sound 

 

What, if anything, was memorable about it? 

 

 this reminded me of a mystery theme music 

 

 not much 

 

 The anxiety of it. The excerpt itself is not memorable. 

 

 Has a “melody” 
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 Some of the faster melodic movement was intriguing, but seemed out of place 

with the rest of the piece 

 

What, if anything, were its shortcomings? 

 

 Again, like example [1], it was too rhythmic and awkwardly syncopated 

 

 Mentioned in [1
st
 question]. It feels too mechanical, therefore it doesn‟t make 

sense. 

 

 Not bad – for a computer 

 

 I didn‟t like the pace . . . seemed to start and stop abruptly. 

 

 The great distance between the highs and lows as well as the seeming incongruity 

between melodic and harmonic progression makes this one a bit hard to listen to, 

unless you‟re a fan of experimental music  

 

 

Song 4 

 

 
 

What, if any, emotion(s) does it evoke? 

 

 this had a darker feeling than most of the previous music 

 

 suspense 
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 wonder. It‟s slightly scary, but at the same time evokes curiosity. 

 

 Sounds like one of the earlier excerpts. Sadness – somber 

 

 Had a cheerful cadence. 

 

 Longing, nostalgia, a bit morose 

 

What, if anything, was memorable about it? 

 

 felt like the music was trying to explain a story 

 

 it was too rhythmic for dodecaphonic music – its awkward syncopation was 

memorable. 

 

 It reminds me of Debussy. That piece of music could be made into a symphony 

piece. 

 

 Very low notes, very high notes. Low bass – high treble 

 

 Good harmonics and countermelodies 

 

What, if anything, were its shortcomings? 

 

 The tunes are not in accordance 

 

 It sounded like Schoenberg. I hate Schoenberg  

 

 At the end, the rhythm seems a bit jazzy and doesn‟t fit the mood. 

 

 Some of the countermelodies were extremely off-putting from the rest of the 

overall tone  
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Song 5 

 

 
 

What, if any, emotion(s) does it evoke? 

 

 dark/sad or explanation feeling 

 

 amusement 

 

 None, it makes me curious to the thinking of the composer when composing. 

More analytical. 

 

 Could be used in a drama for transition between scenes 

 

 Has a bright feel to it. 

 

 Black Swan  Images of a broken music box ballet dancer rotating in a 

caterwauling motion, instead of the gracefulness one would expect 

 

What, if anything, was memorable about it? 

 

 Piano 

 

 Not much, other than no major third at the end  

 

 It would be hard to repeat, since it was so disjunct. Not memorable. 

 

 This one is very “dancelike”, dreamlike, the melody in particular was nice. 
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What, if anything, were its shortcomings? 

 

 Same 

 

 It sounds like modern compositions in some ways, but to me it sounds like a child 

randomly playing notes. 

 

 None to note 
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Appendix N 

 

Reviews of Test GA Music by the Non-Musically Trained 
 

Song 6 

 

 
 

What, if any, emotion(s) does it evoke? 

 

 dark emotion 

 

 same as examples [1 & 2] 

 

 anxiousness. Frustration. 

 

 Not sure 

 

 Dark and moody, sinister, chaotic 

 

What, if anything, was memorable about it? 

 

 I remembered a major third at the end 

 

 Nothing. Only the bit of melody lead in the beginning. 

 

 Lots of dissonance and large intervals that stand out 
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What, if anything, were its shortcomings? 

 

 didn‟t flow very well 

 

 The tunes are not compatible 

 

 Same as [previous] 

 

 It did not flow together. The notes seemed random; out of place as well as the 

rhythm. 

 

 Too many pauses. 

 

 Rhythm could be enhanced 

 

 Some of the intervals are a bit too striking 

 

 

Song 7 

 

 
 

What, if any, emotion(s) does it evoke? 

 

 this made me “perk” up. Still dark but very interesting 

 

 again, curiosity 
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 Again, a sense of mystery, but towards the end a bit of frustration. 

 

 Suspense 

 

 Playful, adventurous, trepidation 

 

What, if anything, was memorable about it? 

 

 this song felt more like a classical artist 

 

 a few seconds into the piece I thought I heard a hint of a Chopin etude 

 

 The beginning riff. I don‟t think the whole thing was memorable because there is 

no resolutions. 

 

 I liked the strong opening, somewhat like a movie soundtrack. 

 

 This felt more cohesive and “bright” 

 

What, if anything, were its shortcomings? 

 

 The ending part sounds not like the end 

 

 This might have sounded better with variable temp, maybe a couple of tenutos 

 

 Not following through with the set-up expectations. 

 

 Still a bit irregular 

 

 Some of the harmonies tended to stretch into the newer motive, leading to an 

inconsistent tone at times 
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Song 8 

 

 
 

What, if any, emotion(s) does it evoke? 

 

 this was still dark feeling but had a little happier feeling 

 

 curiosity 

 

 mystery and curiosity 

 

 dramatic 

 

 I imagine this is something that Bette Midler would write when she were drunk 

. Again, very much like a modern “ballad”. Picture a lounge singer, that‟s had 

the same gig for 50 years, and it‟s the end of the night and there‟s only a handful 

or regulars at the bar, and this is what comes out. 

 

What, if anything, was memorable about it? 

 

 still sounded like video game music 

 

 toward the end the harmonies chanced on something resembling an altered 

dominant 

 

 The melody. This could be a successful version for the murder-mystery theme. 

 

 Reminds me of a soap opera 
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 I really liked the lower countermelody on this one. 

 

What, if anything, were its shortcomings? 

 

 not compatible 

 

 same as [previous] 

 

 Too steady of a tempo. It felt like it needed to rest on some notes to communicate 

the feeling of suspense 

. 

 Started out strong but seemed to lose something at the end. 

 

 

Song 9 

 

 
 

What, if any, emotion(s) does it evoke? 

 

 dark w/some happy moments 

 

 give me the feeling like water under a layer of ice 

 

 same as [previous] 

 

 mystery 

 

 uplifting 
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 There‟s a hint of mainstream “torchsong” or “ballad” style here 

 

What, if anything, was memorable about it? 

 

 story being told 

 

 at one point in the middle I heard a curious counter-melody. This excerpt is more 

interesting than [previous]. 

 

 The beginning is something catchy – it could even be the beginning of a murder-

mystery show theme song. 

 

 It seemed well composed 

 

 Nice harmonics and chord progressions here, some of the melodies were very nice 

 

What, if anything, were its shortcomings? 

 

 Same as [previous] 

 

 There was not enough repetition of the initial theme that was set up. 

 

 In both the melody & the harmony (or countermelody) there were too many 

extreme highs and lows that just distracted the listener from the rest of the piece 

 

Song 10 
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What, if any, emotion(s) does it evoke? 

 

 dark/sad feeling 

 

 give me a feeling of a dream about ocean 

 

 frustration 

 

 confusion but a want for the melody to come through = frustration 

 

 somber 

 

 This is another one that brings to mind unrequited or forgone love . . . I could see 

this in some sort of broadway musical 

 

What, if anything, was memorable about it? 

 

 story trying to be told 

 

 I heard the major third at the end again 

 

 The melody is coming through more. I can remember the absence of much 

harmony. 

 

 Irregular 

 

 The melody & countermelody meshed much better here 

 

What, if anything, were its shortcomings? 

 

 I don‟t like the low part 

 

 I think the awkward syncopation interferes with what could be interesting melody 

lines. 

 

 The bass seemed to be competing with the treble melody. 

 

 This excerpt did not sound like anything that I have heard in the past. 

 

 Too simple, overly repetitive. 

 

 While the melody & countermelody went well together, it felt at times as if they 

were competing with one another, and there was quite a bit of “dead space” on 

either end, where the harmonics weren‟t carried over to maintain the theme/tone 
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Appendix O 

 

Reviews of Control GA Music by Composers 

 
Song 1: 

 

 
 

What, if anything, was memorable about it? 

 

 Dissonant “chord” progressions 

 

 The initial phrase imitation signaled „structure in time.‟ 

 

 Nothing 

 

 Same comments as [Song No. 1] 

 

 Opening motive is answered in bass. 

 

 Abrupt ending 

 

What, if anything, were its shortcomings? 

 

 No phrase shape 

 

 However, the „structure in time‟ made no effort to organize via meter 

 

 Randomness 
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 Same as [song 1]. It‟s just notes, raw material, that could generate something 

interesting with lots of sculpting. 

 

 Same comments as [Song No. 1] 

 

 Lacks coherence throughout. 

 

 Lacked sense of form 

 

 

Song 2 

 

 
 

What, if anything, was memorable about it? 

 

 Layered 

 

 Is this [Song 7] revisited?  How different are the two? 

 

 With rhythmic interplay that develops and a harmonic vocabulary that hints at 

tonality while still being quite dissonant and modern, this is the most interesting 

of the bunch. 

 

 Opening gesture reminded me of [song 2] 

 

 Same comments as [Song No. 1] 
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 Opening motive is answered in bass. 

 

 Bass line at end! 

 

What, if anything, were its shortcomings? 

 

 No shape or direction 

 

 Same as [song 1] 

 

 Same comments as [Song No. 1] 

 

 More of the same comments from [number 4] 

 

 Lacks coherence throughout. 

 

 

 

Song 3 

 

 
 

What, if anything, was memorable about it? 

 

 Layered linear “harmony” 

 

 The final cadence almost seemed tonal; thanks! 

 

 Reminded me of [song 3] 
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 Same comments as [Song No. 1] 

 

 Opening motive is answered in bass. Similar to [#3, 5, 7, 8], but ending suggests 

tonality. 

 

What, if anything, were its shortcomings? 

 

 Lacks forward motion and obvious progression 

 

 Random, and the ending especially seems really out of character. The tonal 

resolution just doesn‟t fit – it sounds cheesy after what came before. 

 

 Same as [song 1] 

 

 Same comments as [Song No. 1] 

 

 Seemed to start out somewhere but never really moved in a particular direction 

 

 Lacks coherence throughout. 

 

 Lacks energy 1/3 way through, then at end 

 

 

Song 4 
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What, if anything, was memorable about it? 

 

 A little more consonant than [1 – 8] 

 

 Mostly, that it could become a continuation of [Song 1] 

 

 The rhythms suggest a sense of organization, but it isn‟t quite there. 

 

 Nothing 

 

 Same comments as [Song No. 1] 

 

 Opening motive is answered in bass. 

 

What, if anything, were its shortcomings? 

 

 No direction or forward phrase motion 

 

 See comments for [Song 1]; the single ultimate pitch made the cadence even more 

stable 

 

 Same as [song 1] 

 

 Same comments as [Song No. 1] 

 

 seemed more random 

 

 Lacks coherence throughout 
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Song 5 

 

 
 

What, if anything, was memorable about it? 

 

 A little more consonant than [1 – 8] 

 

 Both in structure and cadence it is atonal.  Its counterpoint makes the many 2nds 

and 7ths listenable 

 

 It has a bit of a sense of evolution and growth, but not much. 

 

 Nothing 

 

 Same comments as [Song No. 1] 

 

 Rhythmic continuity. Harmonic continuity – following a perceivable logic and 

course. 

 

 Opening motive is answered in bass. 

 

 Good placement of low C pedal 

 

What, if anything, were its shortcomings? 

 

 No direction or forward phrase motion 
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 Most objectives of classical (tonal) composition (form through phrase 

construction, cadences, etc) were not attempted here. 

 

 Same comments as [Song No. 1] 

 

 Lacks coherence throughout. 
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Appendix P 

 

Reviews of Test GA Music by Composers 

 

 
Song 6 

 

 
 

What, if anything, was memorable about it? 

 

 Layered dissonance 

 

 The single note (somewhat melodic) reiteration is more conjunct, thus is slightly 

more chorale-like 

 

 Opening gesture reminded me of [song 1]. 

 

 Same comments as [Song No. 1] 

 

 harmonic continuity 

 

 Like [#1] and [#2], it is atonal, contrapuntal. Starts with conversation between 

treble and bass. Ending 3d is nice. 

 

What, if anything, were its shortcomings? 
 

 No phrase shape 
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 No sense of unity or direction 

 

 Same as [song 1]. 

 

 Same comments as [Song No. 1] 

 

 Like [#1] and [#2], it lacks unity that could have been created by better 

development of melodic or rhythmic motives. 

 

 

Song 7 

 

 
 

What, if anything, was memorable about it? 

 

 Feels rhythmic with multi-voiced lines 

 

 By this time I am visualizing the movie scenes the Songs portray. 

 

 Nothing 

 

 Same comments as [Song No. 1] 

 

 The harmonic sense seemed to dissipate about halfway through 

 

 Atonal, contrapuntal. Starts with conversation between treble and bass. 
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What, if anything, were its shortcomings? 

 

 Emphasized dissonance. No obvious phrasing or shape. 

 

 It seems quite random. 

 

 This seems more like raw material that can be sculpted into something “creative” 

or “artistically effective.” The lack of nuanced articulation, dynamics, and the 

perpetually depressed sustain pedal its most noticeable shortcomings. 

 

 Same comments as [Song No. 1] 

 

 Opening motive could have been better manipulated for more unity. 

 

 

Song 8 

 

 
 

What, if anything, was memorable about it? 

 

 Layered rhythmic motifs. 

 

 Its seemingly thicker texture had me listening more closely for inferred chord 

progression 

 

 The implication of tonality in the low voice helps this one. The back-and-forth of 

high to low voicing gives it a sense of organization. 
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 The material reminded me of [song 1]. 

 

 Same comments as [Song No. 1] 

 

 Atonal, contrapuntal. Starts with conversation between treble and bass. 

 

What, if anything, were its shortcomings? 

 

 The sustained sounds made it too dissonant to be at all pleasant. Very little 

discernable phrasing. 

 

 I couldn‟t count; were all chromatic pitches used equally? 

 

 Same as [song 1] 

 

 Same comments as [Song No. 1]\ 

 

 Opening motive could have been better manipulated for more unity. 

 

 

 

Song 9 

 

 
 

What, if anything, was memorable about it? 

 

 Feels rhythmic with multi-voiced lines 
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 Only that other Songs seem to use the same creative formulae 

 

 This one has the tension-and-release that we look for in most types of music. That 

makes it feel like it‟s going somewhere. 

 

 Reminded me of [song 1] 

 

 The melodic material seems interesting and with the “right” harmonies, whether 

dissonant or consonant, has some interesting potential. 

 

 Harmonic and rhythmic continuity. Good emotional quality, a sense of angst. 

 

 Like [#1], [#2], and [#4], atonal and contrapuntal. Starts with conversation 

between treble and bass. 

 

 The low D comes in at a nice place 

 

What, if anything, were its shortcomings? 

 

 The sustained sounds made it too dissonant to be at all pleasant. Very little 

discernable phrasing. 

 

 By this time, the similarity of the Songs is making them less artistically effective 

 

 Same as [song 1] 

 

 The midi-like playback aside, it reminds me of a composition student who wants 

to stretch his or her use of harmony but doesn‟t really understand how. It uses 

dissonant harmonies just for the sake of dissonance. There‟s no apparent logic to 

it, it seems random in its “progression”. Less pedal would possibly help. 

 

 Opening motive could have been better manipulated for more unity. 
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Song 10 

 

 
 

What, if anything, was memorable about it? 

 

 Feels layered 

 

 The reiteration (conjunct) was lost again; the cadential chord was interesting 

 

 The pauses give it a better sense of phrasing than most of the pieces. 

 

 Opening reminded me of [song 1] 

 

 Same comments as [Song No. 1] 

 

 Like [#1, 2, 4 and 6], atonal, contrapuntal. Starts with conversation between 

treble and bass. Ending 3d is nice. 

 

What, if anything, were its shortcomings? 

 

 No shape or direction 

 

 feels quite random 

 

 Same as [song 1] 

 

 Same comments as [Song No. 1] 
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 The randomness of the harmonic center leads me down no particular path. I feel 

that I‟m left unattended. 

 

 Opening motive could have been better manipulated for more unity. 
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Appendix Q 

 

Overall Comments from Reviewers 
 

 

 The music tied together. If each clip was wound together I believe it would tell a 

story. A story about a mystery or tragic time in someones life. Also could see 

some of this music used in a RPG or a mystery movie. 

 

 The music might be more effective if all lines moved, like a Count Basie sax 

section; or if the tempo varied, or with a database of chords (while leaving the 

inversion/spelling of those chords up to the program) giving added weight to the 

probability of the root going up a 4
th

, down a 5
th

, or down a minor 2
nd

. 

 

 There were obviously 2 themes and each had a successful version to my ears. 

However, the absence of variation in tempo bothered me. They lacked emotion 

and feeling. 

 

 I am impressed by the fact that these selections were AI composed 

 

 Some seemed well written, while others felt as if they were just notes strung out 

on a page. I would like to hear a longer selection, as a couple of them had a good 

hook but ended before I got fully engaged. 

 

 The sounds are great but too short to grasp the rhythm 

 

 Overall, I feel like these are a decent sampling of pieces. They are all fairly dark, 

but most have interesting bits and pieces. Several combine those well, others 

don‟t. I‟d say that something similar could be written by a student taking their 

first composition course and perhaps only having made it through the first half of 

the course, learning the basics, and some of the rules of “how things should 

sound”, but missing out on all the really important nuances of what is pleasing to 

the ear. Granted, this is all very subjective, as I tend to find darker, experimental 

music extremely satisfying, while others might not. Most people also tend to not 

prefer songs set in a minor key, but those are among my favorite. Overall, I liked 

most of these, and would welcome the opportunity to hear longer pieces  
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Appendix R 

 

Overall Comments from Composers 

 
Do you have any overall comments about the selections? 

 

 These selections have characteristics similar to MIDI realizations of music written 

by humans. The primary problem with these melody fragments AND MIDI 

realizations of all types is the lack of forward motion and phrase progression. 

GOOD human performances will always “lead” the listener toward the end of the 

phrase and will leave the melody with a sense of completion. This sense was 

missing. Whether a human performer could have provided this type of forward 

motion and phrasing in THIS music is still an unanswered question. I don‟t feel 

that these renditions had much, if any, motion. And the shape of the phrase was 

not readily evident. 

 

 I am obsessively partial to the harmonic overtone series and the construction of 

music suggested by its structure.  Unfortunately that makes me partial to tonal 

music and therefore, all of its impact on pitch, duration, timbre and intensity 

common to music composition.  And since „this music is chorale-like‟ was an 

evaluation criterion, all the rules of voice leading would also come into play.  

Little in the Songs seemed to embrace these elements of music. 

I do enjoy atonal music for the intellectual lengths to which it goes to disallow a 

single pitch being a „tonic.‟  AI music, as represented here, seems to embrace this 

approach.   

If I had another lifetime unencumbered by the vicissitudes of daily life, I would 

think it possible to personally invite AI into the „HOS‟ and allow AI to 

mathematically proceed through an evolution of relationships to the musical 

elements (and the forms, melodies and harmonies that have come to us).  It would 

be amusing to see if in several weeks AI would have traveled a course similarly to 

what has occurred in millennia of western music history. 

Thanks, it‟s been fun! 

 

 With such short excerpts, I found myself drawn to the pieces that had more 

suggestion of organization, and this included the presence of tonal harmony or 

harmonic implications.  Any of these pieces – including the ones that seem 

completely pointless in these truncated forms - have the potential to be interesting 

and artistically satisfying if developed into longer works.   

The lack of expression in the playback is a hurdle to accepting this music.  If 

interpreted with nuance and expression all of these pieces would fare much better. 

I‟m puzzled by the question of whether the pieces are “chorale-like”.  There‟s 

nothing remotely suggestive of a chorale in any of them. Perhaps if they were 

slowed down and played on a sound with more sustain, but even then I don‟t think 

“chorale” would really be the effect. 
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 Even though I was unable to articulate precisely what at the time of listening, 

clearly something was memorable about the first few selections due to the fact 

that I recognized them later. My response on the shortcomings on the first song is 

a fair representation of my overall thoughts on the selections. 

 

 I‟m sorry that my answers turned out to be the same for each selection. What I 

said in response to the first selection is true for all of the selections. There‟s 

potential of course, but there doesn‟t seem to be any logic behind the use of 

harmonies. I wasn‟t looking for beauty per se, but something that was musical. 

The midi-like stiffness will always take away some of the musicality, but as I 

stated before the lack of harmonic logic seems to me to be the real downfall. This 

is not to say that it can‟t work and I have no clue how you teach a technology the 

concepts of consonance and dissonance or how you give it suggestions on the use 

of extended harmonies, but it does create some interesting and exciting 

possibilities. I think the pieces are strongest melodically even with similarities 

between each tune. To me very typical of a composition student (AI or not) trying 

to find his/her/its way in an extended harmonic landscape. 

 

 I think there is an influencing effect of familiarity due to listening to these as a 

group, because they start to seem like variations on a theme, and I think there may 

be an inherent preference for things that sound familiar since there is a unifying 

logic among the samples. I think this is influencing the grading of them. 

 

 Each example begins with a promise of logic and coherence but does not follow 

through. I miss the human input. 

 

 I was surprised how similar they, on the surface, were. Hard to contrast. Small, 

detailed differences. 

I broke them into two sets of 5 based on the opening motive. Within each set I 

then rated them and used those five positions as my answers for Questions A. B. 

C.  

None of the examples were what I would consider chorale-like. 

For me the placement of the initial low note was critical in setting up some sense 

of a note. 

Also a continuous sounding of notes (approx 16
th

 notes) seemed more effective. 

This holds true in Bach. 
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