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Software is often large, complicated and expensive to build and maintain. Redundant 

code can make these applications even more costly and difficult to maintain. Duplicated 

code is often introduced into these systems for a variety of reasons. Some of which 

include developer churn, deficient developer application comprehension and lack of 

adherence to proper development practices. 
 
Code redundancy has several adverse effects on a software application including an 

increased size of the codebase and inconsistent developer changes due to elevated 

program comprehension needs. A code clone is defined as multiple code fragments that 

produce similar results when given the same input. There are generally four types of 

clones that are recognized. They range from simple type-1 and 2 clones, to the more 

complicated type-3 and 4 clones. Numerous clone detection mechanisms are able to 

identify the simpler types of code clone candidates, but far fewer claim the ability to find 

the more difficult type-3 clones. Before CCCD, MeCC and FCD were the only clone 

detection techniques capable of finding type-4 clones. A drawback of MeCC is the 

excessive time required to detect clones and the likely exploration of an unreasonably 

large number of possible paths. FCD requires extensive amounts of random data and a 

significant period of time in order to discover clones.  

 

This dissertation presents a new process for discovering code clones known as Concolic 

Code Clone Discovery (CCCD). This technique discovers code clone candidates based on 

the functionality of the application, not its syntactical nature. This means that things like 

naming conventions and comments in the source code have no effect on the proposed 

clone detection process. CCCD finds clones by first performing concolic analysis on the 

targeted source code. Concolic analysis combines concrete and symbolic execution in 

order to traverse all possible paths of the targeted program. These paths are represented 

by the generated concolic output. A diff tool is then used to determine if the concolic 

output for a method is identical to the output produced for another method. Duplicated 

output is indicative of a code clone.  

 

CCCD was validated against several open source applications along with clones of all 

four types as defined by previous research. The results demonstrate that CCCD was able 

to detect all types of clone candidates with a high level of accuracy.  

 

In the future, CCCD will be used to examine how software developers work with type-3 

and type-4 clones. CCCD will also be applied to various areas of security research, 

including intrusion detection mechanisms.  
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Chapter 1 

Introduction 

Background 

Software systems may be large, complicated and used for extended periods of 

time. During the lifecycle of an application, it will typically need to be constantly updated 

and maintained. This may need to be done in order to fix bugs, keep it compatible with 

new technologies or improve performance (Kim, Jung, Kim, & Yi, 2011; Singh & Goel, 

2007; Ueda, Kamiya, Kusumoto, & Inoue, 2002).  

Source code is often reused throughout the application. As the application’s 

source code is maintained and evolves, additional reuse occurs (Marcus & Maletic, 2001; 

Singh, Bhatia, & Sangwan, 2009). Additionally, people will typically join and leave the 

software development team throughout this lifecycle. This is known as developer churn. 

This developer churn means that developers with varying levels of understanding of the 

application will be modifying the application (Meneely, Williams, Snipes, & Osborne, 

2008; Monden, Nakae, Kamiya, Sato, & Matsumoto, 2002). These developers will likely 

have to alter the application in numerous locations during this maintenance phase. Some 

of these changes and added functionality will be redundant across the application. From a 

software engineering standpoint, the most appropriate way to make these alterations is to 

refactor the application, and not perform simple copy and pastes of the code (Pressman, 

2010). 
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Developers are generally aware of the adverse effects that copying and pasting 

code snippets throughout the application will have. However, it still occurs quite 

frequently in most large software applications. Between 5 -23% of all code in software is 

estimated to be redundant or exact copy and pastes of source code (Baxter, Yahin, 

Moura, Sant'Anna, & Bier, 1998; Schulze, Apel, & Kastner, 2010). Code redundancies 

are created for both necessary and unnecessary reasons. On some occasions, 

redundancies may be necessary due to language restrictions. In other scenarios, they may 

occur simply due a lack of system understanding or other avoidable situations (Ducasse, 

Rieger, & Demeyer, 1999; Jarzabek & Xue, 2010).  

A code clone is defined as multiple code fragments which produce similar results 

when given the same input (Fukushima et al., 2009). There are four types of code clones. 

These range in complexity from type-1 to type-4 clones. Type-1 clones are the simplest, 

and most easy to detect, while type-3 and 4 clones are much more complicated, and much 

harder to detect, if at all discoverable (Roy, Cordy, & Koschke, 2009). Specific examples 

of each type are described later in this work.  

Code clones are undesirable in software for several reasons. First of all, when 

making changes on the cloned segments, these alterations will need to be made uniformly 

throughout the application. Failure to do so may lead to faults being created inside of the 

application or even logical errors when some of the clones are repaired and others 

continue to contain bugs. The maintenance costs of the application will also likely be 

increased since alterations made to redundant segments will have to be done numerous 

times (Juergens, Deissenboeck, Hummel, & Wagner, 2009). In economic terms, this 

increased maintenance cost is a very serious matter. It is estimated that maintenance 
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activity comprises over 80% of the overall cost of many software projects (Shukla & 

Misra, 2008). Finally, tangled or scattered clones across a system will make it very 

difficult for developers to understand how specific functions are implemented throughout 

a system. In the event the developer does not understand the implementation of a specific 

module of code, they may unintentionally change the functionality of the system during 

software maintenance (Maisikeli & Mitropoulos, 2010). 

 

Problem Statement 

Throughout the software development cycle, code cloning is a frequent 

occurrence and is generally considered to be a sign of bad software design (Duala-Ekoko 

& Robillard, 2010; Wettel & Marinescu, 2005). Most often, clones are the result of a 

copy and paste activity by the developers. This action is one where the same code 

segment is replicated throughout the application for various reasons (Deissenboeck, 

Hummel, & Juergens, 2010).  With the progression of time, applications are generally 

growing larger. As the number of lines in the source code continues to expand, detecting 

clones becomes more difficult (Bruntink, Deursen, Engelen, & Tourwe, 2005). 

The issue of the existence of clones in applications is not a new problem (Baker, 

1995). Clones themselves do not introduce faults into the system. Faults are introduced 

because an application will generally need to be maintained. It is during this maintenance 

phase is where clones generally have the largest adverse effect on the system. The 

maintenance phase of an application generally represents 40-70% of the total cost of the 

project (Ducasse et al., 1999; Seaman, 2008; Ueda et al., 2002).  
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Clones significantly add to the expense of the software maintenance phase of a 

project (Juergens et al., 2009). Inconsistently changing clones in the application is where 

a significant increase to the overall maintenance cost of the application may occur 

(Hummel, Juergens, & Steidl, 2011). Clones also increase the general size of the 

application (Deissenboeck et al., 2010). This makes locating desired sections of code 

much more difficult.  This can be a significant issue since locating these specific sections 

for bug fixing can be a difficult and time consuming task (Chen, Jaygarl, Yang, & Wu, 

2008). 

When numerous clones exist, developers need to pay extra care in changing all 

clones uniformly (Krawitz, 2012). Inconsistent changes to clones represent faults in 50% 

of the cases if the change was introduced intentionally (Deissenboeck et al., 2010). The 

existence of clones may also lead to significant segments of dead code, or unused 

segments in the application. This may be lead to problems with comprehensiveness, 

readability, extensibility, and maintainability (Kapser & Godfrey, 2008). 

An additional goal of software development is to create applications which are 

highly modular. Some of the benefits of code modularization are reusability, and ease of 

maintenance. The software testing process may also be hindered by the presence of code 

clones. If unit testing is utilized, extra unit tests will be required to be written against each 

of these code clones. This will add extra time to the project initially, as well as to the 

maintenance of these tests. Error discovery and location may also be hindered by the 

existence of code clones (Roy et al., 2009). 
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Code clones represent a significant problem for applications, and it is important to 

be able to identify these clones so they may be dealt with accordingly by the developers 

(Kapser & Godfrey, 2008). There are four defined levels of code clones as described by 

Gold, Krinke, Harman, and Binkley (2010): 

 Type-1: The code is syntactically identical except for white spaces, layout and 

comments. 

 Type-2: Code is syntactically identical except for variations in identifiers, 

literals, types, and variations permitted under Type 1. 

 Type-3: Code which is modified by adding, removing, or alteration statements, 

in addition to variations allowed under Type 2.  

 Type-4: Code which uses different syntax, but produces the same result.  

As described by Roy (2009), Figure 1 represents a type-1 code clone. The two 

sections of code are identical in every manner. Figure 2 represents a type-2 clone. Only 

the variable identifiers have been altered and are shown in bold. Figure 3 represents a 

type-3 code clone. The only difference is the extra input variable into the foo method. 

The rest of the syntax and functionality remains identical to the original source code. 

Figure 4 and Figure 5 represent type-4 clones. The declaration order of prod and sum 

have been reversed. However, the remaining code has identical syntax to the original. 
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Code Block 1 Code Block 2 

  
 

Figure 1. Type-1 clone example (Roy et al., 2009).  

 

 

Code Block 1 Type-2 Clone 

  
 

Figure 2. Type-2 Clone example (Roy et al., 2009). 
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Code Block 1 Type-3 Clone 

 
 

 
Figure 3.  Type-3 Code Clone (Roy et al., 2009). 

 

 

 

Code Block 1 Type-4 Clone 

 
 

 
Figure 4. Type-4 Code Clone (Roy et al., 2009). 
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Code Block 1 Type-4 Clone 

 
Figure 5. Type-4 Code clone (Roy et al., 2009). 

 

In order to detect various clone levels, there are currently numerous methods 

which have been implemented by both the research and commercial communities 

(Deissenboeck et al., 2010; Higo, Kamiya, Kusumoto, & Inoue, 2007). Most 

contemporary research concentrates on discovering Type-1 and 2 clones, and is largely 

successful at doing so. A few of these tools are able to detect Type-3 clones (Roy et al., 

2009). Added, modified or deleted statements often alter the functionality of a software 

component. Redundant code of this nature often causes type-3 and type-4 clones. These 

are typically difficult for clone detection techniques to detect and many methodologies do 

not even attempt to find them (Koschke, 2007).  

In symbolic analysis, program variables that typically contain concrete values are 

replaced with symbolic values. These are inputs which may represent a wide range of 

possible values. Traditionally, symbolic execution has been used to explore a large 

number of possible program paths (Pasareanu et al., 2008; Person, Dwyer, Elbaum, & 

Pasareanu, 2008; Person, Yang, Rungta, & Khurshid, 2011). Concolic execution uses 
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both concrete and symbolic values for interpreting a target program. Concrete states 

allow concolic analysis to deterministically evaluate any program expression.  This helps 

to overcome some limitations of pure symbolic analysis such as the inability to handle 

some types of loops, recursion and exploration of infeasible paths (Takaki et al., 2010). 

Applications which contain code clones are generally poorly designed and are more 

expensive in terms of maintenance, extensibility and ease of comprehension (Roy et al., 

2009).  

While numerous clone detection methods exist, they all suffer for a variety of 

reasons. One of the most prevalent issues is the inability for most techniques to 

efficiently and effectively detect type-3 and type-4 clones. Only two methods claim the 

ability to detect type-4 clones. One of which utilizes functional analysis, while the other 

uses a memory comparison technique. A primary drawback of functional analysis is that 

random data needs to be generated in order to discover code clones. This can be a 

difficult and time consuming process (Krawitz, 2012). An issue with the memory 

comparison based process is that it takes quite a long time to run since it uses a standard 

static analysis technique. Other problems with standard static analysis include the 

exploration of an unreasonably large number of program states and the substantial cost of 

maintaining and solving symbolic constraints along the program’s execution paths (Kim 

et al., 2011; Majumdar & Sen, 2007). Additional problems also exist with other existing 

methodologies. These include normalization and need for historical data (Basit & 

Jarzabek, 2005). Due to these issues with current approaches, further work is required in 

order to create a robust technique for code clone procedure. 
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Clone detection is important in aiding the software development process in a 

variety of ways. While numerous techniques are able to detect type-1 and type-2 clones, 

few are able to discover type-3. Even less claim the ability to detect type-4 clone 

candidates. A new and robust technique for clone discovery is needed to fill this gap. 

 

Dissertation Goal 

The goal of this dissertation was to discover clone candidates using concolic 

analysis. No existing clone detection techniques appear to utilize this method.  The 

proposed technique discovers code clone candidates based on their functional nature. 

Naming conventions, comments and other syntactical attributes have no bearing on the 

clone candidate detection process.  This is accomplished by analyzing the concolic output 

of the source code. This dissertation proposed a process known as Concolic Code Clone 

Discovery (CCCD) in order to discover clones. 

 

Research Questions 

The primary research question CCCD answered was if concolic analysis could be 

used to detect code clones. No previous work appears to have ever attempted this. A 

secondary research question was what types of clones concolic analysis would be able to 

discover. 
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Relevance and Significance 

Today’s large software systems are complicated applications which have the 

capability of being heavily utilized in industry for extended periods of time. During the 

lifespan of an application, it is very likely to require extensive modifications. In order 

lifespan of an application, it is very likely to require extensive modifications. In order for 

its users to remain satisfied, the software will need to be constantly evolving (Geiger, 

Fluri, Gall, & Pinzger, 2006). Specific reasons for these updates include altering the 

program’s functionality, bug fixes, and environment changes. Based on this, the possible 

negative ramifications of code clones are very important. The effort required to perform 

changes on a system go up as do the number of code clones. This means that code clones 

are a significant factor which must be paid attention as the system evolves (Geiger et al., 

2006).  
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Figure 6. Failure curves for software (Pressman, 2010). 

 

Dealing with large software systems is extremely challenging for the companies 

who must maintain them. As maintenance is performed on the system, it generally 

becomes harder to maintain in a quality manner (Figure 6). Ideally, the failure rate of 

software should go down, or at the very least remain steady. However, this is not the 

case. As maintenance is performed on the application, the error rate actually tends to rise 

(Monden et al., 2002; Pressman, 2010) . 

Larger applications will likely have more developers associated with them, and 

thus a higher turnover rate. As developers join and exit the project, they will not only 

develop in their individual manner, but will also not be aware of existing functionality in 

other parts of the application (Monden et al., 2002).  This means that these developers 
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will have a high likelihood of knowingly or unknowingly injecting a high level of clones 

into the application. Once this happens, it will be very difficult to retain a high level of 

maintainability and reliability for the system (Akito & Shinichi, 2001). Very often, code 

clones may be introduced for valid reasons. Typically however, they most often exist as a 

result of a poor software design or poor development practices (Fukushima et al., 2009). 

Since the existence of code clones tends to help contribute to this high cost of 

change, locating them can be extremely beneficial in decreasing the already significant 

maintenance portion of an application (Geiger et al., 2006). There are several existing 

techniques for detecting code clones (Bruntink et al., 2005; Kim et al., 2011; Krawitz, 

2012; Roy et al., 2009): 

 Text: Attempt to detect similar sequences by using minimal analysis. 

 Lexical/Token: Apply lexical analysis to the source code and attempts to locate 

similar lines of code. 

 Tree: Obtain a syntactical representation of the source code by using parsers.  

 Metrics: Related to hashing algorithms. In this methodology, each fragment of a 

program, a number of various metrics are gathered regarding them. This 

information is subsequently used to find similar fragments. 

 Graph: Obtains source code representation from a high level of abstraction. 

Program Dependency Graphs (PDGs) are comprised of information of a 
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semantic manner. These include data such as control and data flow of the 

program. 

 Functional: Performs black box testing on blocks of code. Clones produce 

identical outputs when provided identical inputs. 

 Symbolic: Uses symbolic output of an application to discover similarities. 

Typically, text, token and tree based methodologies focus on the source code as it 

is being developed. Graph based techniques rely upon the data and control flow 

information for clone discovery. Finally, metrics based methods use a hybrid of various 

existing techniques and gauge the results by using vectors, graphs or other abstract 

representation (Bruntink et al., 2005; Roy et al., 2009).  

CCCD is a new technique for clone candidate discovery. This identification 

process is done without paying attention to the comments or naming conventions in the 

source code. It is done entirely through the concolic analysis of the application. 

Additionally, concolic analysis was demonstrated to be a new and practical solution to 

candidate code clone discovery. This is something which does not appear to have been 

previously attempted. Type-4 clones are comprised of different source code. CCCD is 

capable of discovering these types of clones. This is because concolic analysis only 

follows the flow and functionality of the program and is not directly tied into the syntax 

of the source code.   
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Based on a literature review, no attempts have been made to discover code clones 

candidates (of any type) using concolic analysis. CCCD is well suited to discover these 

clones because current techniques rely upon text based comparisons, source code 

analysis, data flow analysis or symbolic analysis. Since CCCD uses concolic analysis 

which combines concrete and symbolic values, it only cares about the flow of the 

application. This means that numerous problematic issues which have hindered previous 

clone detection techniques are irrelevant to the proposed technique. Problematic areas 

such as comments and naming conventions which have plagued many existing clone 

detection techniques have no effect on CCCD. Knowing the flow of the application is 

important because these paths help define the functional equivalence of two code 

segments. Two segments which are functionally equivalent are clones (Person et al., 

2008). CCCD is beneficial because it limits the negative ramifications of code clones on 

applications, and thus reduces the development, and maintenance costs while helping to 

assure a high quality application.  

The goal of this dissertation was to develop a process to locate code clones by 

comparing the output of the concolic analysis of various code segments. This helps to 

address the problems of the high cost of software maintenance and poor overall software 

quality. The cost of maintaining the software will decrease as the number of code clones 

is abated. CCCD allows software developers the ability to find clone candidates. 
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Barriers and Issues 

CCCD is a new and complicated approach to clone discovery. There were 

numerous challenges which had to be overcome. These included hurdles related to the 

gathering of test data, the evaluation of existing tools, concolic analysis aspects, and any 

minor concolic equalization processes which needed to be carried out. 

Clones have the potential to be a wide range of sizes. Some clones may only be a 

few lines long (Bruntink, Deursen, & Tourwe, 2004), or more than 200 lines long 

(Monden et al., 2002). This means that CCCD needed to account for these widely varying 

sizes. Large software projects are not generally developed by a single developer. Due to 

this, an innumerable amount of different development techniques and processes had to be 

accounted for by the proposed discovery process.  

In order to perform concolic analysis on a system, it must first have an existing 

concolic analysis tool be able to be adapted to run each class individually using concolic 

analysis. CCCD had to be made to append the name of the instantiating class onto the 

blocks of generated symbolic data. These are all important for the comparison process 

and will be discussed in the approach section. Additional modifications had to be 

performed on the selected concolic analysis tool. Some of these were fairly substantial 

and required a significant amount of development effort. Other alterations were much 

simpler changes to configuration settings, but required a significant amount of thought 

and background work in order to ensure that they were configured properly. 

Once the necessary concolic values have been generated, a diff was performed on 

this output. A diff is a simple operation that notes any differences between two files.  Any 

discovered similarities are an indication of a possible clone candidate. This comparison 
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was done using an already existing tool, Notepad++. Future work may combine all of this 

functionality into a single application, but at the present time it is out of the scope of this 

dissertation.  

The output is compared at the method level, meaning that clones are only 

detectable at this level of granularity. This is because each method in the application has 

concolic analysis performed upon it individually by a modified version of Java Path 

Finder (JPF), an application which was originally created by NASA. Presently, this 

altered tool is only capable of accurately and effectively generating the data required for 

CCCD on a method by method basis. This is the same for all currently known concolic 

analysis applications. This may be a limitation of CCCD since clones can exist within 

multiple methods, when the methods themselves are not clones.  Further enhancements to 

existing concolic analysis tools would eliminate the need to only analyze code on a 

method by method basis. It is important to note that this is a limitation of the tools, not of 

the overall concolic analysis technique.  

 

Limitations  

The purpose of this dissertation was to identify code clone candidates using 

concolic analysis. CCCD discovered code clone candidates in a manner which is 

independent of the semantics of the code being analyzed.  Even though CCCD represents 

a new and robust method for discovering clones, it does have a potential limitation. While 

concolic analysis is able to overcome many of the path constraints of symbolic analysis, 

other restrictions exist which may limit its ability to perform complete analysis on a 

system. One of these inhibitors is the inability of current concolic analysis tools to 
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compute concrete values to satisfy all constraints (Sen, 2007). This did not pose a 

problem for the conducted research, but could create problems if CCCD were attempted 

to be implemented on a much larger scale. This is an inherent problem with existing 

concolic analysis tools which may be fixed by future research into this specific area. 

However, this is out of the scope of this dissertation. 

 

Definition of Terms 

Abstract Syntax Tree-

Based Techniques  

Use parsers to obtain a syntactical representation of the 

source code, usually in the form as an AST, before the 

AST is searched for similar sub-trees (Krawitz, 2012, 

p.15).  

  

AST Abstract Syntax Tree (Krawitz, 2012, p.15). 

  

Code Clone 

Implementing the same program functionality more 

than one time.  Multiple code fragments that produce 

similar results given the same input (Krawitz, 2012, 

p.15).   

  

Concolic Analysis 

Combines random testing and symbolic execution to 

partly remove the limitations of random testing and 

symbolic execution based testing (Sen, 2007, p. 1). 

  

Functional Behavior 

How the output of a system is affected by inputs 

without regard for the contents of the system.  Ignoring 

the internal mechanism of a system and focusing on the 

outputs generated in response to inputs.  Black Box 

behavior (Krawitz, 2012, p.15). 

  

Lexical 

Relating to words or the vocabulary of the system as 

distinguished from the syntax rules and construction 

(Krawitz, 2012, p.16). 

  

Lexical/Token-Based 

Techniques  

Applies lexical analysis to the source code and use the 

lexical analysis to find similar lines of code (Krawitz, 

2012, p.16). 
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PDG Program Dependence Graph (Krawitz, 2012, p.16). 

  

Program Dependence 

Graph-Based Techniques  

Obtain a source code representation of high abstraction 

that contain information such as control and data flow 

of the program that can be analyzed and compared to 

find code clones (Krawitz, 2012, p.16). 

  

Program Maintenance 

The modification of a system after delivery to correct 

faults or improve performance.  Most maintenance 

implements functional enhancements (Krawitz, 2012, 

p.15). 

Random Testing 

 

Random testing generates a large number of inputs 

randomly. The program is then run on those inputs to 

check if programmer written assertions hold, or in the 

absence of specifications (Majumdar & Sen, 2007, p. 

1). 

  

Refactor 

Changing the source code of a computer program 

without modifying the program’s functional behavior 

(Krawitz, 2012, p.17).   

  

Semantically Similar 

Two blocks of code that have the same meaning or 

produce the same results based on an analysis of the 

words and symbols used to generate the source code 

(Krawitz, 2012, p.17).   

  

Source Code 

A collection of human-readable statements that provide 

instructions to the computer so it can complete a task.  

Also called a program (Krawitz, 2012, p.17).   

Symbolic Execution 

 

A program is executed using symbolic variables in 

place of concrete values for inputs. Each conditional 

expression in the program represents a constraint that 

determines an execution path (Sen, 2005, p. 1). 

Syntactically Similar 
The same results based on an analysis of code metrics 

or AST analysis (Krawitz, 2012, p.17). 

  

Text-Based Techniques  

Perform minimal analysis before attempting to detect 

similar sequences of lines of code (Krawitz, 2012, 

p.17). 
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Summary 

Duplicated source code in an application is known as code clones. These can have 

several adverse effects on an application. Some of which include increased maintenance 

and code comprehension costs. Most research recognizes four types of code clones. 

Type-1 and Type-2 clones are reasonably basic and detectable by the majority of clone 

detection mechanisms. Only a few works claim the ability to detect the more elaborate 

Type-3 clones while even less state that they are able to identify Type-4 clones, which are 

the most complex. 

 CCCD is a new system for detecting code clone candidates. Concolic analysis 

was used in order to discover similar functionality within an application. Things that have 

plagued many previous clone detection systems, such as semantics, were not taken into 

consideration and therefore do not pose a problem for the proposed process. CCCD 

begins by analyzing the target application and producing the necessary concolic values. 

This output is then examined for identical sections, which is indicative of a clone 

candidate. CCCD ultimately provided an indication of the clone candidate along with the 

locations of all candidates in the examined source code.  
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Chapter 2 

Review of the Literature 

 

Testing is heavily used in industry in order ensure software quality. Having the 

ability to automatically traverse all paths of an application is important for numerous 

testing techniques (Sen, 2007). Manually testing all paths of an application is generally 

not practical due to the sheer number of possibilities that even the smallest applications 

may have. Exhaustive analysis or the testing of all possible paths cannot be reasonably 

expected to be feasible, even in an automated fashion for the vast majority of 

applications. In order to adequately test applications, several types of analysis techniques 

that aim to examine all possible paths of the application have been devised (Majumdar & 

Sen, 2007). 

Code Clone Detection 

The majority of current clone detection techniques do an adequate job of finding 

type-1, type-2, and sometimes type-3 clones (Koschke, 2007). Only two works claim the 

ability the ability to detect type-4 clones (Kim et al., 2011; Krawitz, 2012). In order to 

properly understand CCCD, it is important to understand the previous methodologies 

along with their strengths and weaknesses. Additionally, it is important to understand the 

effectiveness of the existing techniques in order to be able to compare them with CCCD. 

Previous research by Roy and Cordy (2008) separate the existing detection techniques 

into four principle categories. These are text, lexical, syntactical and Semantic.  
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Textual Approach 

Text based approaches use very little or no normalization or transformation on the 

source code being examined. White space and comments are usually ignored. Typically, 

the raw source code is directly used in the clone detection process (Bruntink et al., 2005; 

Roy et al., 2009). One approach examines the substrings of the source code. The first step 

is to hash the code fragments of a defined number of lines.  A sliding window technique 

is then used to identify sequences of lines that have the same hash values as clones 

(Johnson, 1993). Dot or scatter plot approaches have also been utilized with arguably 

better results (Roy et al., 2009). In this process, a coordinate value is assigned to various 

source code segments. If two lines have the same coordinate plots, they are assumed to be 

equal. This process has the additional benefit of allowing clone information to be 

visualized.  (Ducasse et al., 1999; Roy et al., 2009). A drawback to text based approaches 

is that by examining the source code directly, small changes may have significantly 

adverse effects on this system since it is essentially using a pattern matching scheme in 

order to discover clones (Bruntink et al., 2005). 

 

Lexical Approach 

Lexical approaches first transform the source code into a series of lexical 

“tokens.” This is done by using a compiler-style lexical analysis technique (Roy & 

Cordy, 2008). The list of generated tokens is then scanned for duplications. Duplications 

are then considered to represent code clones. A primary benefit of this method over text 

based approaches is that minor changes such as formatting, spacing and code renaming 

generally pose a smaller problem. Variations of this technique have been found to detect 
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type-1, type-2 and in certain situations type-3 clones (Roy et al., 2009). A powerful tool 

which uses this approach is CCFinder (Kamiya, Kusumoto, & Inoue, 2002).  

 

Syntactical Approach 

Syntactical approaches first use a parser in order to convert programs into either 

parse trees or Abstract Syntax Trees (ASTs) (Roy et al., 2009). Tree based approaches 

discover clones by using a parser to examine the generated AST (Bruntink et al., 2005). 

Similar sub trees are then discovered using tree-matching techniques. The discovered 

code segments are then returned as classes or clone pairs. A more sophisticated clone 

detection process may be done by abstracting variable names, literal values, and other 

tokens in the tree representation. However, there are some issues with this technique. 

Possible problematic areas include near misses between functions, sub clones and errors 

caused by scale (Baxter et al., 1998; Roy & Cordy, 2008). Several AST detection 

techniques have been proposed thus far. Various methods include dynamic programming 

approaches for handing differences in comparing sub trees (W. Yang, 1991). Converting 

the AST to XML using a data mining technique in order to extract parameterized clones 

has also been proven to be beneficial (Wahler, Seipel, Gudenberg, & Fischer, 2004).  

Metrics based approaches gather various metrics for each of the code fragments. 

Instead of comparing the code directly, these metric vectors are examined (Lague, 

Proulx, Mayrand, Merlo, & Hudepohl, 1997; Mayrand, Leblanc, & Merlo, 1996; Roy & 

Cordy, 2008). Euclidean distance and other distance evaluators may be utilized in order 

to indicate code similarities (Koschke, 2007). One technique utilizes calculated metrics 
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for syntactical units. These may include class, function or a method which generate 

values which may be compared to discover clones in these units (Roy & Cordy, 2008). 

 

Semantic Approach 

Semantic approaches utilize static program analysis to generate more precise 

information than from simply using syntactic similarities. This technique is broken up 

into two categories, Program Dependency Graph (PDG) and hybrid approaches (Roy & 

Cordy, 2008). PDG Based Techniques consider semantic information encoded in the 

dependency graph as a form of source code abstraction. In this technique, the generated 

information in the dependency graph represents control and data flow information 

(Bruntink et al., 2005). A sub graph isomorphic algorithm is used to discover clones as 

similar sub graphs from the PDG (Roy & Cordy, 2008).  

 

Symbolic-based Approach 

A recent approach to code clone discovery has been through the use of a process 

known as Memory Comparison-based Clone Detection (MeCC). This technique 

compares abstract memory states which are generated by a semantic-based static 

analyzer. In order to generate all of the necessary memory states, symbolic analysis is 

used to estimate the effects on all of the procedures being examined.  

 

Behavior-based Approach 

Behavior based approaches attempt to discover code clone candidates by studying 

the functional behavior of a block of code. This is done by examining how blocks of code 
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react to various inputs. Inputs were provided to methods in the source code and the output 

of these methods are then recorded. Similar output indicates a clone candidate (Krawitz, 

2012). Krawitz (2012) created a functional analysis tool that discovers clones using a 

processes known as Code Clone Discovery Based on Functional Behavior. This work 

claims to be able to detect all types of clones and is completely independent of the syntax 

of the source code being analyzed. 

Concolic Analysis 

Concrete variables are items which have a specific value assigned to them. 

Symbolic analysis involves symbolic variables used in place of concrete values for input. 

These symbolic values may represent theoretically any possible value in the system. A 

primary goal of symbolic analysis is to discover all feasible system paths (Sen, Marinov, 

& Agha, 2005). Concolic analysis combines concrete and symbolic values in order to 

traverse all possible paths of an application (up to a given length). The main premise 

behind symbolic execution is the use of symbolic values instead of actual concrete values 

(Sen, 2007). Symbolic analysis has been used to compare two programs for semantic 

equality (Menon, Pingali, & Mateev, 2003). The computed symbolic outputs are 

expressed as a function of the symbolic inputs (Cadar et al., 2011). The state of a 

symbolically executed program is comprised of several values. These include the path 

condition (PC), the program counter, and the symbolic values of the program variables. 

According to Pasareanu (2008), it is comprised of a Boolean formula over the symbolic 

inputs. The program counter states the next statement which is to be executed. The 

various paths followed during a program’s symbolic execution is represented by the 
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symbolic execution tree (Khurshid, Pasareanu, & Visser, 2003). The next statement to be 

executed is typically defined by the program position (PP) (Person et al., 2008). 

Concolic analysis is a variant of symbolic execution where concrete executions 

are run simultaneously with symbolic analysis (Majumdar & Sen, 2007). The concolic 

execution process begins by first generating random values for primitive inputs, and null 

values for pointer inputs. Using a loop, these values are fed into the targeted method. 

Following this execution, a new test input is generated using the symbolic constraint in 

the path constraint. Using this information, solvers are generated which are used to 

generate new test input in order to direct the application along a different execution path. 

This process is continued until all possible distinct paths have been reached using a depth 

search strategy (Sen, 2007). The primary advantage of using concolic instead of symbolic 

analysis techniques is the presence of concrete values. These can be used to simplify 

constraints and help in the precise reasoning of complex data structures (Majumdar & 

Sen, 2007).  

 

        
 

Figure 7. Code to be examined by concolic analysis. 
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Figure 8. Concolic Analysis Flow 

 

Figure 7 displays a function which is to have concolic analysis performed upon it, 

while Figure 8 shows its data flow. The analysis process would first begin with an 

arbitrary value being assigned to a and b. For the concrete execution, a=b=1. Line #2 

would set c to be 2, and the if statement in the 3
rd

 line will fail since a ≠ 100000. The 

symbolic execution will follow the same path taken by the concrete execution, but will 

merely treat a and b as symbolic variables. C will be set to the expression 2b and will 

make note that a ≠ 100000 since the test in line 3 failed. This is known as a path 

condition and will need to be true for every execution following this same path. 

The goal is to follow every path of the application. This means that the next step 

for this example is to take the last path condition encountered, a ≠ 100000 and negate it. 

This means that a=100000. In order to find values for the input variables a and b, an 

automated theorem prover is then invoked using a complete set of symbolic and path 

variables created during the symbolic execution process. This automated theorem prover 
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shows the logical consequence of a set of statements. The goal of this prover is to help 

ensure that all program paths are properly followed. In this situation, the values created 

by this theorem prover may be a=100000 and y =0. Using this input, the application may 

now reach the inner branch on line 4. Since 100000 is not less than 2, this branch will not 

be taken. This means that the path conditions are now a=100000 and a ≥ c, which will be 

negated to have the other path followed meaning that a<c. The theorem prover will next 

examine a and b to satisfy a=100000, a<c and x=2b. One example of this may be 

a=100000 and b=50001. Using these assumptions, the error on line 5 will be reached and 

all possible paths will have been followed.  

While traditional concolic based approaches do offer some benefits in comparison 

to standard symbolically based methods, the number of possible paths to be explored for 

each method is still impractically large for most situations. Typically, only small parts of 

the program state space may be explored (Sen et al., 2005). This is largely because as the 

length of the executions grow, maintaining and solving symbolic constraints along the 

execution path become more expensive. Various program paths may be explored 

exhaustively, however both symbolic and concolic based techniques are ill suited for 

exploring deep program states which are only reached after long program executions 

(Majumdar & Sen, 2007). 

             
           Figure 9. Sample Code. 
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### PCs: 1 1 0 

--------original PC------------ 

original pc # = 1 

a_1_SYMINT < b_2_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

a_1_SYMINT < b_2_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

a_1_SYMINT < b_2_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

a_1_SYMINT < b_2_SYMINT 

SPC # = 0 

    --> # = 1 

a_1_SYMINT < b_2_SYMINT 

SPC # = 0 -> true 

### PCs: 2 2 0 

top 

--------original PC------------ 

original pc # = 1 

a_1_SYMINT >= b_2_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

a_1_SYMINT >= b_2_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

a_1_SYMINT >= b_2_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

a_1_SYMINT >= b_2_SYMINT 

SPC # = 0 

--> # = 1 

a_1_SYMINT >= b_2_SYMINT 

SPC # = 0 -> true 

### PCs: 3 3 0 

Bottom 

 

Figure 10. Sample Concolic output. 

 

           Figure 9 shows a code snippet that undergoes concolic analysis, which is 

demonstrated in Figure 10. This was generated using a modified version of Java Path 
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Finder (JPF). Path conditions, along with all possible branches and paths the application 

may take are displayed in this resulting output. In addition to software testing, concolic 

analysis has traditionally been used in several other areas. Some of which includes the 

generation of test input data and fault localization (Artzi, Dolby, Tip, & Pistoia, 2010; 

Wassermann et al., 2008).   

In order to traverse the paths of an application, concolic analysis uses a depth-first 

search. A depth-first search is a way of exploring all possible paths of a tree by starting at 

the root and traversing each possible branch as far as possible. Once a path has been fully 

examined, the search will investigate the next branch until it reaches a terminal point (Li 

& Garcia-Luna-Aceves, 2007; Sibeyn, Abello, & Meyer, 2002; Tatti & Cule, 2011). This 

is a rather important process in concolic analysis for several reasons. Too short of a 

search means that not enough paths will be explored. Too deep of an analysis may lead to 

an extremely large or time consuming exploration of the program space. In the event an 

infinite loop is encountered, the tree may be impossible to fully traverse (Majumdar & 

Sen, 2007; Sen, 2007). Optimally, a middle ground will be found that offers an adequate 

exploration of an adequate number of execution spaces, but does not take an 

unreasonable number of paths. There are several different methods for handling this 

problem. The traditional approach is to backtrack in order to define the search depth. 

However, for large or complex application segments, this is still a very expensive task. 

Recent research has been done in order to  make this analysis into a more efficient 

process (Sen et al., 2005).  

One method of reducing the possible negative impacts of a depth-first search is to 

use a bounded or depth-limited search. This alternative will explore a tree in the same 
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manner as a depth-first search, but will be merely limited by the maximum depth limit 

which may be traversed. The main benefit to this method is that infinitely deep paths will 

never be explored (Bardin & Herrmann, 2009). A disadvantage of this method will be 

that the tree is not explored beneath the defined level of the defined limit value. This 

leads to the chance that the entire tree will not be analyzed (Bond, Srivastava, McKinley, 

& Shmatikov, 2010; D. Yang & Powers, 2005). Appendix B contains examples of the 

concolic output of Figure 9 with a depth search of 1, 3 and 5.  

Lakhotia. Harman, & McMinn (2008) describe a concolic search process where 

they set the depth search parameter to infinite. They describe how their mechanism got 

caught in an infinite loop numerous times and often needed a large number of iterations 

to complete its search. This is often the case with unbounded depth searches such as this. 

Other works discuss possible alternative methods for resolving this path exploration 

issue, but no definitive solution appears to have been discovered to best serve every 

possible situation uniformly (Bardin & Herrmann, 2009; Lakhotia et al., 2008; Majumdar 

& Sen, 2007; Sen, 2007).   
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Chapter 3 

Methodology  

 

Overview of Research Methodology 

In order to detect code clone candidates, CCCD performs concolic analysis which 

analyzes the flow or paths taken by the application. The detection process is comprised of 

two primary phases. The first is to run concolic analysis on the source code. A modified 

version of an existing tool known as Java Path Finder (JPF) is used to perform this step
2
. 

The generated concolic output is then examined for code clone candidates by looking for 

repeated or like segments in this output. Figure 11 depicts the components of CCCD and 

the necessary steps to discover code clone candidates. This current research only 

represents a proof of concept. Further work may be done in order to make this into a 

complete tool. 

                                                 
2
 http://babelfish.arc.nasa.gov/trac/jpf 

http://babelfish.arc.nasa.gov/trac/jpf
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Figure 11. CCCD Sequence and Flow 

 

Concolic Analysis Generation 

In order to generate the necessary concolic output, a modified version JPF is 

used. This is a free application which has been utilized in previous research (Ihantola, 

2006; Kalibera, Parizek, Malohlava, & Schoeberl, 2010; Visser, Pasareanu, & 

Khurshid, 2004).  JPF was also chosen since it is a robust tool that is easy to use, 

configure and modify. Its availability also means that the CCCD process is repeatable 

for other researchers. 
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Figure 12. JPF example concolic output. 

 

Running JPF against the source code of an application is a relatively simple 

process. The source code of the desired software may be analyzed by this tool through 

Eclipse. Figure 12 shows a simple example of concolic output using JPF. Ultimately, 

numerous sets of concolic analysis are generated. Since concolic analysis only cares 

about the flow of an application and not the precise syntax of the source code, no 

normalization is expected to be required (Sen, 2007). 

JPF requires numerous modifications and configuration changes in order to make 

it into a functional component of CCCD. While the core concolic engine was not altered, 

some of its output was changed. The main concolic engine was not modified for several 

reasons. The first is that concolic analysis by itself is largely capable of discovering 

clones. Subsequent alterations to its output were simply needed to make the clone 
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discovery process more robust and effective. Additionally, CCCD is largely agnostic to 

the exact concolic analysis tool implemented. An existing concolic analysis tool should 

be interchangeable into the CCCD process.  

The alterations made to JPF were made through the application’s listener and 

configuration files. These were created as part of JPF in order to make it easily 

configurable by other developers. Some of the changes that were made to the listener are 

the removal of various unneeded output variables such as the concolic counters and other 

configuration settings which are output as part of the concolic generation process. 

A significant hurdle that needed to be overcome was the selection of the proper 

depth search level for concolic analysis to use in order to discover code clones. 

Analyzing too few paths will yield too few results, while examining too many will lead to 

too many paths being analyzed which could lead to an overly complex or time consuming 

exploration of program space (Bardin & Herrmann, 2009; Lakhotia et al., 2008).   

This is a serious matter for CCCD. Too small of a depth search means that not 

enough concolic results will be returned since not enough paths will be explored. 

Searching too many paths could lead to infinite loops being encountered which will 

effectively stop the concolic analysis process. Additionally, if there is a point where a 

specific search depth will not create a more accurate process, then traversing any more 

paths simply represents wasted resources.  

Concolic analysis has the ability to use lazy instantiation in this decision making 

process. This means that the components of the method inputs are created in an on 

demand basis. Input sizes do not require a priori bounding (Khurshid et al., 2003). The 

decision to use lazy instantiation was an important one for ensuring the quality of CCCD. 
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Using lazy initialization with concolic values, the execution tree of the application was 

generated. If this tree is infinite, this approach discovers all of the possible nodes of the 

tree. This means that a test set with maximum test coverage is created (Ihantola, 2006). 

Ensuring maximum coverage is of significance importance in detecting clones. If all 

paths are not appropriately explored, this may affect the concolic output and lead to 

incorrect determinations during the clone identification process.  

 

Code Clone Candidate Identification  

The concolic output is then examined for identical or repeated portions. Sections 

are compared using the noted start and end of each method, so that specific code blocks 

may be searched for. Since concolic execution only cares about the concolic path or 

functionality of the application being examined, duplicate output represents a clone 

candidate. This process is done using a diff tool to look for repeated segments. The 

concolic output of the examined methods is then compared and exact matches will 

identify a clone candidate. 

 
Figure 13. Example function. 
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Figure 14. Example clone function. 

 

    
Figure 15. Example second clone function. 

 

 

 
Figure 16. Example concolic output of Figure 13. 
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Figure 17. Concolic output of Figure 14. 

 

 

 
 Figure 18. Concolic output of Figure 15.  

 

Figure 16, Figure 17 and Figure 18 represent the concolic output of the code 

snippets. Figure 13 represents a method with distinct functionality and is not a clone (Roy 

et al., 2009).  
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Figure 19. Comparison of concolic output of Figure 16 and Figure 17. 

 

 

Figure 20. Comparison of concolic output of Figure 15 and Figure 16 
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Figure 20 represents a simple diff done using Notepad++
3
. Since the analyzed 

source code (Figure 14 & Figure 15) are dissimilar, the diff performed on the concolic 

data shows significant differences between this output. However, since Figure 14 and 

Figure 15 represent code clones, a diff done on their concolic output in Figure 20 shows 

that the concolic output is similar. This dissertation represents a proof of concept. Future 

work may be done in order to make this comparison method into an automatic process 

and eliminate much of the need for human interaction. 

 

Specific Research Methods Employed 

 The research methods employed attempted to find clones of all four categories.  

Once the output from CCCD was completed, a manual process was used to determine the 

accuracy of the clone candidate discovery process. In order to validate the proposed 

process, each of the four clone types were injected into the system. These were taken 

from previous research (Krawitz, 2012; Roy et al., 2009). The output of CCCD was then 

manually checked to ensure that it properly detected all four of these classes of clones. 

This validation effort closely mimics that performed by Krawitz (2012) on this tool. 

 CCCD then analyzed several open source applications which acted as 

benchmarks. Since JPF is only compatible with software written in Java, all selected 

applications were written in this language. The proposed method is only limited by the 

chosen concolic analysis system and is language independent as a general process. The 

                                                 
3
 http://notepad-plus-plus.org/ 

http://notepad-plus-plus.org/
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applications used as benchmarks were JDraw
4
, DrJava

5
, JabRef

6
, Jrand

7
, Tuxguitar

8
 and 

RES
9
. All of these applications are open source and are freely available to the public. 

When this data was further processed by CCCD, it demonstrated the ability of concolic 

analysis to detect code clone candidates. 

 

Instrument Development and Validation   

CCCD is comprised of two existing tools, JPF and an application for performing 

diffs, which in this case will be Notepad++. The initial setup of JPF was a relatively easy 

and straightforward process which was accomplished by following instructions on the 

application’s website
10

.  JPF was then significantly modified. These alterations included 

functionality changes largely implemented through the application’s listener and 

configuration modifications. While the output given to Notepad++ had to be altered, this 

diff application did not.  

Once JPF had been setup and the proper instructions were followed in order to 

allow for basic concolic analysis to be performed, further alterations were then required 

in order to make JPF a functional component of CCCD. The largest modification made 

was the alteration of the listener. This is customized software in JPF which changes the 

desired functionality of the application. Modifying this listener gives the ability to 

customize virtually any of the functionality in JPF.  

                                                 
4
 http://jdraw.sourceforge.net/ 

5
 http://drjava.sourceforge.net/ 

6
 http://jabref.sourceforge.net/ 

7
 http://sourceforge.net/projects/jrand/ 

8
 http://sourceforge.net/projects/tuxguitar/ 

9
 http://sourceforge.net/projects/opencobol2java/ 

10
 http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/start 

http://jdraw.sourceforge.net/
http://drjava.sourceforge.net/
http://jabref.sourceforge.net/
http://sourceforge.net/projects/jrand/
http://sourceforge.net/projects/tuxguitar/
http://sourceforge.net/projects/opencobol2java/
http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/start
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Figure 21. Example of concolic counters. 

 

While these modifications to JPF significantly enhanced the concolic values 

returned as part of the clone candidate identification process, some cleansing was 

required. The first step was to remove the variable counters from the concolic output. 

These are merely numeric assignments assigned to variables by JPF in an incremental 

fashion. They have no effect on the actual flow of the application and no benefits to the 

clone detection process. An example of these counter values are displayed in Figure 21 

and are shown as “CONST_1” and “a_1_SYMINT” in bold.  
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Figure 22. Example variable count difference before cleaning. 
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Figure 23. Example variable count difference after cleaning. 

 

Figure 22 represents a diff on some example concolic output before the cleaning 

process has taken place and the integer values have been removed.  Figure 23 shows 

these same two code segments after the cleaning process has occurred and the two 

segments are now found to be identical. This cleaning process is important for removing 

minor differences between code segments that are simply a byproduct of JPF. These are 

not at all indicative of actual differences between the functionality of two segments of 

code. This cleaning process took place by altering the JPF’s listener. Once this 

adjustment occurred, the modified concolic output was then automatically displayed.  
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Figure 24. Information to be removed from concolic output. 

 

Several other pieces of information that are a byproduct of JPF were then 

removed from the output.  Figure 24 represents the beginning of a concolic output file. In 

this example, several pieces of information exist which are not needed for clone 

discovery using concolic analysis. This information is highlighted in red. As part of the 

CCCD process, this output was removed since it has no bearing on the functionality of 

the examined source code and is merely a byproduct of concolic analysis. 

There are numerous settings changes that had to be modified in JPF in order to 

use it as part of the CCCD process. While these alterations were not difficult to 

implement, they did require a substantial amount of thought in determining what they 

should be and how they will interact with the clone detection process. One of these 

settings is the debug flag, which should be enabled. This instructs JPF to output the 

appropriate concolic data for analysis. Not having this option enacted will not produce 

the appropriate concolic output for examination.  
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Figure 25. Example of method referencing another method. 

 

Since the methods may reference and call other functions in the application, the 

path explored by concolic analysis may traverse multiple methods. Since the goal of this 

work is to only find clones at the method level, the paths which enter outside functions 

must be identified. Figure 25 represents a simple method “pathCheck_Master” which 

references another method “pathCheck_Sub”. If the modified version of JPF is run 

against pathCheck_Master, its flow will enter “pathCheck_Sub”. The concolic output will 

not differentiate between the two methods. 
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  Figure 26. Modified concolic output to indicate different method. 
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Figure 27. External function information removed. 

 

A modification to the listener was required to add the ability to notate that a 

different method is being referenced. Figure 26 represents the concolic output where a 

statement has been added with the name of the new method which has been entered by 

the concolic analysis. The modified listener then has the capability to remove information 

from the noted paths. This idea is represented in Figure 27. It is important to note that 

even though the method names are added to the concolic output, they are not specifically 

used in the comparison process used to detect clones. This means that CCCD’s ability to 

detect type-3 and type-4 clones is not affected in any way. 
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Figure 28. Example method to be targeted. 

 

CCCD targets individual methods by specifying them in the application’s 

configuration file. Focusing on a specific method is done by using the syntax 

“symbolic.method = ClassName.MethodName(sym#sym).” ClassName represents the 

class being targeted while MethodName is the respective method. The values “sym#sym” 

is used to indicate two inputs into the method signature. For example, if the code in 

Figure 28 was to be analyzed and was located in a class called “Calculator”, the 

configuration file would need to contain “symbolic.method = Calculator.Add(sym#sym)”  

Each function which is to be analyzed needs to be referenced in this manner. Future 

research may be done in order to add the functionality to automatically execute all 

methods of the application in a single command. However, that is out of the scope of this 

current research and does not affect the question of if concolic analysis can be used to 

detect clone candidates. 

Once these alterations have been performed and the output has been cleaned, a 

simple diff was performed on it. This may be done using an existing tool, which in this 

case was Notepad++. The same process was then used on the next method to be 

compared. Ultimately, two sets of concolic output exist and a simple diff process using 

Notepad++ was then done in order to indicate a possible clone candidate. 
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Resource Requirements 

The resources required to complete this research were not an issue. A concolic 

testing application was required to perform concolic analysis on the target application. 

This concolic generation application was altered in order to be an effective component of 

CCCD. JPF was able to meet these requirements. Additionally, a tool capable of 

performing a diff on the modified output was required. This research used Notepad++. 

Summary 

This research used several open source applications as benchmarks for 

demonstrating the effectiveness of CCCD in discovering code clones. Existing clones 

were first identified in the benchmark applications. CCCD was then run to see how many 

of these clones it was able to discover. Clones of all four types as identified by previous 

research were then inserted into these benchmark applications. CCCD was then run to see 

how many of these clones it was able to discover.  

This work used a modified version of JPF in order to execute concolic analysis on 

the examined applications. Notepad++ was then used to perform a diff on the generated 

output in order to discover clones. Similar output was indicative of a code clone 

candidate. Each of these primary components of CCCD are freely available to download.   
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Chapter 4 

Results  

 

Results Introduction 

This dissertation introduced CCCD, a candidate code clone detection method 

which is based on concolic analysis. This technique was able to detect all four types of 

code clone candidates. This chapter presents the results and observations found from 

conducting the experiments described in the previous chapter. Several open source 

applications were selected and examined for code clone candidates. Additionally, code 

clones which were defined by previous works were injected into these applications 

(Krawitz, 2012; Roy et al., 2009). These added clones were helpful in showing that 

CCCD was capable of discovering clone candidates of all four types. CCCD was then run 

against these applications and the results were recorded.  

 CCCD discovered clones on a method level by first performing concolic analysis 

on each of the desired functions. This output was then compared with the concolic values 

from other methods in the application. Identical concolic products indicated a clone 

candidate. Based on the results, CCCD was able to discover the vast majority of clone 

candidates and only struggled with a single example due various technical limitations of 

the selected modified concolic analysis tool, JPF. Future development of this tool or the 

selection of a different concolic analysis application would likely alleviate this issue. This 
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hurdle was by no means a limitation of CCCD, but only of the selected concolic analysis 

tool. 

 

CCCD Results 

CCCD was first evaluated against clones which were defined by Krawitz (2012) 

and Roy (2009). These are shown in Appendix A. These existing clone examples were 

selected for several reasons. The first is that using them gave an initial indication of the 

effectiveness of CCCD and what clones and clone types it was able to discover. 

Secondly, these examples represent a full spectrum of all clone types providing a solid 

evaluation benchmark for CCCD. Finally, since this information originated from existing 

research it is repeatable for future analysis. In order to evaluate CCCD against these 

examples, each of the selected clones by Roy (2009) and Krawitz (2012) were analyzed 

by CCCD. Their output was then compared and the determination was made if a clone 

was successfully identified. 

 



53 

 

 

 

 
Figure 29. Type-1 Clones in Injected Code. 
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Figure 30. Type-1 Concolic Output of Figure 29. 

 

 

 
An example of an inserted type-1 clone is represented in Figure 29. These clones 

are semantically identical (Koschke, 2007). CCCD was able to detect the existence of a 

code clone candidate between these two functions by comparing the concolic output of 

these two methods. These results are shown in Figure 30. The concolic output of both of 

these methods is identical, thus correctly indicating a code clone. Due to the significant 

length of the concolic output, an abbreviated segment shown in Figure 30. Complete 

results for all injected clones may be found in Appendix C.   
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Figure 31. Type-2 Clones in Injected Code. 

 

 

 

 
Figure 32. Type-2 Concolic Output of Figure 31. 
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Type-2 clones are syntactically identical except for variable identifiers and 

variable types (Koschke, 2007). Figure 31 represents an example of a type-2 clone as 

defined by Krawitz (2012). Figure 32 displays the concolic output created by CCCD for 

each of the analyzed methods. Based on the diff process, there are no differences between 

the output generated by CCCD for these methods. This is a correct indication of a code 

clone. Due to the significant length of the concolic output, an abbreviated segment is 

shown in Figure 32. Complete results for all injected clones may be found in Appendix 

C.   

 

 

Figure 33. Type-3 Clones in Injected Code. 
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Figure 34. Type-3 Concolic Output of Figure 33.  

 

 

Type-3 clones have differences between methods that include added, removed or 

altered statements (Koschke, 2007). An example of a type-3 clone as defined by Krawitz 

(2012) is shown in Figure 33. The output generated by CCCD is shown in Figure 34. A 

diff between these two sets of concolic output states that they are identical, thus properly 

indicating a code clone candidate. Due to the extreme length of the concolic output, an 

abbreviated segment is shown in Figure 34. Complete results for all injected clones may 

be found in Appendix C. 
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Figure 35. Type-4 Clones in Injected Code. 

 

 

 

 
 

 
Figure 36. Type-4 Concolic Output of Figure 35 
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Type-4 clones are methods which produce the same result, but by using different 

syntax (Koschke, 2007). An example of a type-4 clone as defined by Krawitz (2012) is 

shown in Figure 35. The output from each of these methods is shown in Figure 36. A diff 

on these two sets of concolic output indicates that the two sets of output are identical, 

thus properly indicating a clone candidate. Due to the significant length of the concolic 

output, an abbreviated segment is shown in Figure 36. Complete results for all injected 

clones may be found in Appendix C.  
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Table 1. Roy Results 
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Table 2. Krawitz Results. 

 
 

Discovering all four clone types was very important because it demonstrated the 

robustness and effectiveness of CCCD. In order to further demonstrate its abilities, 

CCCD was run in a similar fashion against several other clones already defined by 

Krawitz (2012) and Roy (2009). A full listing of these clones is represented in Appendix 

A. As shown in Table 1, CCCD was able to discover clones defined by Roy (2009) very 

effectively. All types of clones were found. The only issues arose when CCCD attempted 

to analyze one of the clones as defined by Roy (2009), known as “3c” which is 

represented in Appendix A. JPF was unable to traverse all paths of this method for 

technical reasons. This is a limitation of JPF, not of the CCCD process. This constraint 

will be further discussed in Chapter 5 of this work. Even with this issue, CCCD was able 

to discover clones defined by Roy (2009) very proficiently. Table 2 displays CCCD’s 

ability to discover code clone candidates based upon the work by Krawitz (2012). CCCD 

was able to properly detect all of these clones.  
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Table 3. Existing Clones in Template Applications. 

 

 

 
 

The next phase was to look for clones in the benchmark software. The examined 

open source applications were RES, JRand, DrJava, Jabref, JDraw, PS and TuxGuitar. 

Clones were pre-identified in the benchmark applications by using a manual process. 

Only type-1 and type-2 clones were discovered using this technique. This is not 

surprising since manually identifying type-3 and type-4 clone candidates is very difficult 

due to their semantic differences. CCCD was then ran against these applications to see if 

all of the manually identified clones could be discovered using this technique. CCCD was 

able to discover all 14 type-1 clones and the 3 identified type-2 clones in these 

applications. A complete set of these results may be seen in Table 3. 
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Table 4. Injected Clones in Template Applications. 

Application Type-1  Type-2 Type-3 Type-4 Total 

RES Yes Yes Yes Yes 4/4 

JRand Yes Yes Yes Yes 4/4 

DrJava Yes Yes Yes Yes 4/4 

Jabref Yes Yes Yes Yes 4/4 

JDraw Yes Yes Yes Yes 4/4 

PS Yes Yes Yes Yes 4/4 

TuxGuitar Yes Yes Yes Yes 4/4 

Total 7/7 7/7 7/7 7/7 28/28 

 

In order to determine if CCCD was able to detect all four types of clones in these 

benchmark applications, clones identified by Krawitz (2012) and Roy (2009) were 

randomly injected into the source code and their locations were noted. A class containing 

all four types of clones was inserted into each application. The example class with all 

four clone types is represented in Appendix A. CCCD was then ran against these 

applications to see if all four types of clones could be identified in this sample class. For 

each application, CCCD was able to identify all of the inserted clones in this class.  

The next step was to randomly insert clones defined by Krawitz (2012) and Roy 

(2009) into these applications. CCCD was then run against these applications to see 

which of these injected clones it would be able to discover. CCCD was able to identify all 

28 clones injected into these applications. These results are represented in Table 4. 
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Summary 

CCCD has been shown to be able to detect code clone candidates of all types 

using concolic analysis. CCCD was able to discover potential clones at the method level. 

Manual analysis was first used to find potential clones in several open source benchmark 

applications. CCCD was able to identify all of these manually identified clones. More 

clones of all types were taken from previous research and then injected into these 

applications. CCCD was able to discover all of these clones. CCCD had no trouble 

discovering all four types of clones, even the most difficult type-3 and type -4 clones. 
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Chapter 5 

Conclusions  

 

Concolic analysis has been demonstrated to be a highly effective code clone 

discovery mechanism capable of finding all types of clones. Concolic analysis was the 

primary mechanism for a developed clone detection process, CCCD. The semantics of 

the examined source code had no effect on CCCD’s detection capabilities since concolic 

analysis only relies on the flow of the application and its possible paths. Things like 

naming conventions and comments which have been problematic for previous clone 

detection techniques have no bearing on CCCD (Roy et al., 2009). Discovering code 

clones is important in the field of software development (Bellon, Koschke, Antoniol, 

Krinke, & Merlo, 2007; Higo et al., 2007; Hummel et al., 2011). Clones increase the size 

and complexity of an application. This makes maintenance more complex and expensive. 

This increased size makes program comprehension more difficult (Geiger et al., 2006; 

Gode & Koschke, 2009).  

 CCCD worked by first performing concolic analysis on the source code of the 

targeted application on a method by method basis. This was done using a modified 

version of JPF. The output was then recorded and duplicate concolic output was an 

indication of a clone candidate.  
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Implications 

 This dissertation demonstrated the ability of concolic analysis to identify all four 

types of clones. Methods of ensuring proper path coverage using lazy instantiation for 

concolic analysis were also discussed. This is important because improper path coverage 

could lead to code clones being misidentified, either as false positives or false negatives. 

This dissertation also discussed proper methods of preparing the concolic output for 

comparison. Unneeded values from concolic analysis were removed. Improperly 

removing these values could also lead to inaccurate clone detection results.  

 

Recommendations 

CCCD was developed in order to prove the ability of concolic analysis to act as 

the basis for a candidate code clone discovery technique. While this tool was very 

effective in demonstrating these capabilities, it is by no means a complete application. 

Further work is needed to make clone detection into a more automated process. 

Additionally, it would be useful for the application to internally perform a diff and 

automatically create a report with the clone candidates discovered in the target 

application. Enhancements to the actual concolic generation process would also help in 

avoiding fatal errors when unsupported code is encountered. While this was not a 

significant problem in this work, this can foreseeably be an issue when this tool is applied 

on a much larger scale. 

 During the concolic analysis process, fatal exceptions would occur when JPF 

encountered an unsupported variable type. Some these unsupported variable types 
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include short, byte and float. This is not a significant concern for several reasons. First of 

all, JPF is merely a concolic analysis component of CCCD. Future work on JPF or the 

inclusion of another concolic analysis tool into CCCD would likely solve this problem. 

Secondly, CCCD was still able to proficiently discover type-3 and even the tougher type-

4 clones.  

 CCCD was successful at discovering clones on the method level. Future work 

may be done in order to allow concolic analysis to detect clones at a more granular level. 

This work would entail modifying JPF or the selected concolic analysis tool. These 

modifications were not done in this dissertation because the goal of this work was to 

merely demonstrate the feasibility of discovering code clones using concolic analysis. 

 

Summary 

 Many software systems exist for extended periods of time. These applications will 

typically need to be updated in order to add new functionality and have bugs repaired 

(Kim et al., 2011). During these updates, functionality will often be duplicated in several 

areas of the application (Marcus & Maletic, 2001). This can occur for a variety of 

reasons. The first is that developers may not be aware that they are replicating this 

functionality. Applications are frequently very large, and developers often join and leave 

the project teams intermittently throughout its lifecycle. This makes it extremely difficult 

for developers to have a thorough understanding of the system. This lack of program 

comprehension may lead to developers unknowingly duplicating functionality throughout 

the application (Meneely et al., 2008). Developers may also knowingly repeat 
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functionality in an application. In order to save time, they may copy and paste source 

code to several areas of the application, a process which is detrimental from a software 

engineering perspective (Pressman, 2010). These repeated segments often comprise a 

significant portion of a software project. One estimate is that between 5-23% of all code 

in software is redundant or exact copy and pastes of the source code (Baxter et al., 1998; 

Schulze et al., 2010). 

 Code clones are defined as multiple code fragments which produce similar results 

when given the same input (Fukushima et al., 2009). There are generally four types of 

accepted code clones (Roy et al., 2009). These range in complexity from the simpler 

type-1 to the more complex type-4 clones. There four defined levels of clones as 

described by Gold, Krinke, Harman, and Binkley (2010) are: 

 Type-1: The code is syntactically identical except for white spaces, layout and 

comments.  

 Type-2: Code is syntactically identical except for variations in identifiers, literals, 

types, and variations permitted under Type 1.  

 Type-3: Code which is modified by adding, removing, or alteration statements, in 

addition to variations allowed under Type 2.   

 Type-4: Code which uses different syntax, but produces the same result.   
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Clones are generally considered to be detrimental for a variety of reasons. First of 

all, they increase the maintenance costs of an application. This is because changes will 

need to be made and tested in numerous locations throughout the application (Juergens et 

al., 2009). Additionally, if changes are made inconsistently, this could lead to faults 

persisting in the application when changes to specific clones are overlooked 

(Deissenboeck et al., 2010). Additionally, tangled or scattered code will make it more 

difficult for developers to fully and properly understand the code base. This could lead to 

longer time being required for program comprehension (Kapser & Godfrey, 2008). 

Several existing categories for clone detection techniques exist (Bruntink et al., 

2005; Kim et al., 2011; Krawitz, 2012; Roy et al., 2009). These are: 

 Text: Attempt to detect similar sequences by using minimal analysis.  

 Lexical/Token: Apply lexical analysis to the source code and attempts to locate 

similar lines of code.  

 Tree: Obtain a syntactical representation of the source code by using parsers.  

 Metrics: Related to hashing algorithms. In this methodology, each fragment of a 

program, a number of various metrics are gathered regarding them. This information 

is subsequently used to find similar fragments.  

 Graph: Obtains source code representation from a high level of abstraction.  
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 Program Dependency Graphs (PDGs) are comprised of information of a semantic 

manner. These include data such as control and data flow of the program.  

 Functional: Performs black box testing on blocks of code. Clones produce identical 

outputs when provided identical inputs. 

 Symbolic: Uses symbolic output of an application to discover similarities. 

 Many clone detection tools are only able to discover the simpler type-1 and type-2 

clones. Far fewer works claim the ability to discover type-3 clones (Roy et al., 2009). 

Only two techniques claim to be able to discover the most complicated types of clones, 

type-4. These techniques use functional analysis and a memory comparison based 

technique. A primary drawback to the functional analysis process is that random data 

needs to be generated in order to discover clones. This can be a difficult and time 

consuming process (Krawitz, 2012). The memory comparison based technique suffers 

because it takes quite a long time to run and that it explores what is often an unreasonable 

large number of program states (Kim et al., 2011; Majumdar & Sen, 2007). 

 This dissertation introduced a new technique for discovering clone clones based 

on concolic analysis. CCCD is a tool which uses concolic analysis as the main 

component for detecting clones. CCCD first performs concolic analysis on the targeted 

source code using a modified version of JPF. Concolic analysis works by combining 

concrete and symbolic values in order to traverse all possible paths of an application (up 

to a given length) (Sen, 2007). Concolic analysis ultimately generates output indicating 

all possible paths an application may take (Majumdar & Sen, 2007; Sen et al., 2005). 
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Semantics, comments and infeasible paths are not taken into consideration. During this 

concolic analysis process, the modified version of JPF alters this generated output in 

order to remove unneeded information. This is accomplished through modifications made 

to the listener of this tool. 

 The final step of CCCD is a diff process conducted on this concolic output. As 

part of this proof of concept, an existing application known as Notepad++ carries out this 

phase. Duplicated output is an indication of a code clone candidate. This is because 

redundant output indicates that the paths or functionality of the application are identical. 

This identical functionality is a sign of a code clone candidate. 

 CCCD was verified using clones established by previous research (Krawitz, 2012; 

Roy et al., 2009). The first step was to confirm that CCCD was able to properly discover 

these previously identified clones on an individual basis, which it was successful in 

doing. The next phase was to verify that CCCD would be able to find clone candidates in 

existing programs. Several open source applications were selected and clones were 

manually identified in them. CCCD was then run against these programs and all of the 

pre-identified clones were successfully discovered by CCCD. All of these identified 

clones were of the simpler type-1 and type-2 categories. In order to check CCCD’s ability 

to discover the more complicated clones in existing applications, type-3 and type-4 

clones were taken from previous research by Krawitz (2012) and Roy (2009). These 

clones were then injected into the selected open source applications. CCCD then 

examined the programs in order to check its ability to discover the clones. CCCD was 

able to discover all of the injected clones in these applications. During the development 
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of CCCD, several questions had to be answered. These included the proper depth search, 

the use of lazy instantiation and how un-needed data could be removed from the concolic 

results.  

This dissertation presented a new process for discovering code clones known as 

CCCD. Using concolic analysis, this technique found clone candidates based on the 

functionality of the application and not its syntactic nature. This means that things like 

naming conventions and comments in the source code had no effect on this clone 

detection process. CCCD was able to discover all four types of clones. The tool was 

verified using clones defined by several existing works and against manually identified 

existing clones in benchmark applications.   
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Appendix A 

CCCD Validation Data for Type-1, Type-2, Type-3 and Type-4 Clones 

 
 

import java.lang.Math; 

 

public class Basic_Class1 { 

 

 // Example of a dummy, non-clone function 

 public void foo1(int a){ 

  if(a <3){ 

   while(a <3){ 

    a = a+1; 

    System.out.println("while"); 

   } 

  } 

 } 

  

  

 // Example of a dummy, non-clone function 

 public int foo2(int a, int b) 

 { 

  if(a>b){ 

   b = a; 

  } 

  return a; 

 } 

  

 // Example of a dummy, non-clone function 

 public int foo3(int a) 

 { 

  for (int i=0; i<a;i++){ 

   a = a+1; 

  } 

  return a; 

 } 

  

 // Example of a dummy, non-clone function 

 public boolean foo4(int a){ 

  if (a>3){ 

   return true; 

  }else{ 

   return false; 

  } 

 } 
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// Note: The following clones were taken from work by Krawitz(2012) 

  

 //Type-1 Clones - Krawitz 

 public double Type1a_Krawitz(int n) 

 { 

 int p = -1; 

 int sum = 0; 

 

 for (p = 0; p < n; p++) 

 { 

  sum += p; 

 } 

 

 if (n == 0) return sum; 

 else return sum / n; 

 } 

 

 // Type 1 Clone - Krawitz 

 public double Type1b_Krawitz(int n) 

 { 

 int p = -1; 

 int sum = 0; 

 

 //this is a comment that is not in any other method() 

 for (p = 0; p < n; p++) 

  sum += p; 

 

 if (n == 0) 

  return sum; 

 else 

  return sum / n; 

 } 

 

  

  

 

 //Type-2 Clones - Krawitz 

 public double Type2a_Krawitz(int n) 

 { 

 int q = -1; 

 double sum = 0; 

 

 for (q = 0; q < n; q++) 

 { 

 sum += q; 

 } 

 

 if (n == 0) return sum; 

 else return sum / n; 

 } 

 

 //Type-2 Clones - Krawitz 

 public double Type2b_Krawitz(int t) 

 { 

 int p = -1; 
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 int tot = 0; 

 

 //this is a comment that is not the same as any other comment 

 for (p = 0; p < t; p++) 

 tot += p; 

 

 if (t == 0) 

 return tot; 

 else 

 return tot / t; 

 } 

 

   

 // type 3 clone from Krawitz 

 public double Type3a_Krawitz(int n) 

 { 

 int q = -1; 

 double sum = 0; 

 

 q = 0; 

 while(q < n) 

 { 

 sum += q; 

 q++; 

 } 

 

 if (n == 0) return sum; 

 else return sum / n; 

 } 

 

 // type 3 clone - Krawitz 

 public double Type3b_Krawitz(int t) 

 { 

 int p = -1, tot = 0; 

 

 //this is another unique comment 

 for (p = 0; p < t; p++) 

  tot += p; 

 

 if (t == 0) 

  return (double)tot; 

 else 

  return (double)tot / t; 

 } 
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 //Type-4 Clones  - Krawitz 

 public double Type4a_Krawitz(int limit) 

 { 

 //to prevent stack overflow when large random values are input 

 if (limit > 1000 || limit < 1) 

  limit = 1; 

 

 double[] d = new double[limit]; 

 double tot = 0; 

 

 for (int n = 0; n < d.length; n++) 

  d[n] = n * n * n; 

 

 for (int n = 0; n < d.length; n++) 

  tot += d[n]; 

 

 return tot; 

 } 

 

 // Type 4 Clone - Krawitz 

 public double Type4b_Krawitz(int limit) 

 { 

 //to prevent stack overflow when large random values are input 

 if (limit > 1000 || limit < 1) 

  limit = 1000; 

 

 return Type4b2_Krawitz("-", limit, 0, 0); 

 } 

 

       public double Type4b2_Krawitz(String s, int limit, double tot, 

int n){ 

 

 if (limit > 1000 || limit < 1)//to prevent stack overflow 

  limit = 1000; 

 

 if (n < limit) 

 tot = Type4b2_Krawitz("-", limit, tot + Math.pow(n, 3), ++n); 

 return tot; 

 } 

 

 

  

  

// Note, these clones were taken from the work by Cordy(2008) 

  

 // Original Code - Cordy 

 void sumProdO(int n) { 

  double sum=0.0; //C1 

  double prod =1.0; 

  for (int i=1; i<=n; i++) 

  { 

   sum=sum + i; 

   prod = prod * i; 

   foo(sum, prod);  

  } 



77 

 

 

 

 } 

  

  

// Example 1A - Type 1 Clone - Cordy 

 void sumProd1A(int n) { 

  double sum=0.0; //C1 

  double prod =1.0; 

   for (int i=1; i<=n; i++) 

   { 

    sum=sum + i; 

    prod = prod * i; 

    foo(sum, prod);  

   } 

 } 

  

  

 // Example 1B - Type 1 Clone - Cordy 

 void sumProd1B(int n) { 

  double sum=0.0; //C1 

  double prod =1.0; //C 

  for (int i=1; i<=n; i++) 

  { 

   sum=sum + i;  

   prod = prod * i; 

   foo(sum, prod);  

  } 

 } 

   

   

// Example 1C - Type 1 Clone - Cordy 

 void sumProd1C(int n) { 

  double sum=0.0; //C1 

  double prod =1.0; 

  for (int i=1; i<=n; i++) { 

   sum=sum + i; 

   prod = prod * i; 

   foo(sum, prod);  

  } 

 } 

   

   

   

 // Example 2A - Type 2 Clone - Cordy 

 void sumProd2A(int n){ 

  double s=0.0; //C1 

  double p =1.0; 

  for (int j=1; j<=n; j++) 

  { 

   s=s + j; 

   p = p * j; 

   foo(s, p);  

  } 

 } 
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 // Example 2B - Type 2 Clone - Cordy 

 void sumProd2B(int n){ 

  double s=0.0; //C1 

  double p =1.0; 

  for (int j=1; j<=n; j++) 

  { 

   s=s + j; 

   p = p * j; 

   foo(p, s);  

   } 

  } 

   

   

 // Example 2C - Type 2 Clone - Cordy 

 void sumProd2C(int n) { 

  int sum=0; //C1 

  int prod =1; 

  for (int i=1; i<=n; i++) 

  { 

   sum=sum + i; 

   prod = prod * i; 

   foo(sum, prod);  

   } 

  } 

   

   

 // Example 2D - Type 2 Clone - Cordy 

 void sumProd2D(int n) { 

  double sum=0.0; //C1 

  double prod =1.0; 

  for (int i=1; i<=n; i++) 

  { 

   sum=sum + (i*i); 

   prod = prod*(i*i); 

   foo(sum, prod);  

   } 

  } 

   

   

 // Example 3A - Type 3 Clone - Cordy 

 void sumProd3A(int n) { 

  double sum=0.0; //C1 

  double prod =1.0; 

  for (int i=1; i<=n; i++) 

  { 

   sum=sum + i; 

   prod = prod * i; 

   foo(sum, prod, n);  

  } 

 } 
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 // Example 3B - Type 3 Clone - Cordy 

 void sumProd3B(int n) { 

  double sum=0.0; //C1 

  double prod =1.0; 

  for (int i=1; i<=n; i++) 

  { 

   sum=sum + i; 

   prod = prod * i; 

   foo(prod);  

   } 

  } 

  

   

  // Example 3C - Type 3 Clone - Cordy 

 void sumProd3C(int n) { 

  double sum=0.0; //C1 

  double prod =1.0; 

  for (int i=1; i<=n; i++) 

  { 

   sum=sum + i; 

   prod = prod * i; 

   if ((n % 2) == 0) {  

    foo(sum, prod); 

   }  

  } 

 } 

   

   

  // Example 3D - Type 3 Clone - Cordy 

 void sumProd3D(int n) { 

  double sum=0.0; //C1 

  double prod =1.0; 

  for (int i=1; i<=n; i++) 

  { 

   sum=sum + i; 

   //line deleted 

   foo(sum, prod);  

   } 

  } 

   

 // Example 3E - Type 3 Clone - Cordy 

 // For syntax purposes, the precise functionality was altered. 

  public void sumProd3E(int n) { 

  double sum=0.0; //C1 

  double prod =1.0; 

  for (int i=1; i<=n; i++) 

  {  

   if (i %2 == 0){  

    sum+= i; 

   } 

   prod = prod * i; 

   foo(sum, prod);  

   } 
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  } 

   

  // Example 4a - Type 4 Clone - Cordy 

  void sumProd4A(int n) { 

   double prod =1.0; 

   double sum=0.0; //C1 

   for (int i=1; i<=n; i++) 

   { 

    sum=sum + i; 

    prod = prod * i; 

    foo(sum, prod);  

   } 

  } 

   

   

  // Example 4B - Type 4 Clone - Cordy 

  void sumProd4B(int n) { 

   double sum=0.0; //C1 

   double prod =1.0; 

   for (int i=1; i<=n; i++) 

   { 

    prod = prod * i; 

    sum=sum + i; 

    foo(sum, prod);  

   } 

  } 

   

   

  // Example 4C - Type 4 Clone - Cordy 

  void sumProd4C(int n) { 

   double sum=0.0; //C1 

   double prod =1.0; 

   for (int i=1; i<=n; i++) 

   { 

    sum=sum + i; 

    foo(sum, prod); 

    prod=prod * i;  

   } 

  } 

   

 

  // Example 4D - Type 4 Clone - Cordy 

  void sumProd4D(int n) { 

   double sum=0.0; //C1 

   double prod =1.0; 

   int i=0; 

   while (i<=n) 

   {  

    sum=sum + i; 

    prod = prod * i; 

   } 

  } 

 

 

// dummy methods to simply handle the test sum prod functions 
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private double foo(double sum)[ return sum +1.0; ] 

 

private double foo(double sum, double prod, double temp)[ 

return sum + prod + temp; 

]   

 

private double foo(double sum, double prod)[ return sum + prod +1; ] 
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Appendix B 

Depth Search Examples 

 

Depth Search Limit of 1 
 

 
 
No path conditions for Run(0,java.lang.String@133,java.lang.String@135) 
 
 

 

 

Depth Search Limit of 3 
 

 

 

### PCs: 1 1 0 

--------original PC------------0 

original pc # = 1 

a_1_SYMINT < a_1_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

a_1_SYMINT < a_1_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

a_1_SYMINT < a_1_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

a_1_SYMINT < a_1_SYMINT 

SPC # = 0 

 --> # = 1 

a_1_SYMINT < a_1_SYMINT 

SPC # = 0 -> false 

### PCs: 2 1 1 

 

====================================================== search 

constraint 

Search Depth: 3 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 
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  call stack: 

 at ProxyRun.depthTest(ProxyRun.java:82) 

 at ProxyRun.Run(ProxyRun.java:33) 

 at ProxyRun.main(ProxyRun.java:13) 

 

--------original PC------------0 

original pc # = 1 

a_1_SYMINT >= a_1_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

a_1_SYMINT >= a_1_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

a_1_SYMINT >= a_1_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

a_1_SYMINT >= a_1_SYMINT 

SPC # = 0 

 --> # = 1 

a_1_SYMINT >= a_1_SYMINT 

SPC # = 0 -> true 

### PCs: 3 2 1 

bottom 

 

====================================================== search 

constraint 

Search Depth: 3 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at DrJava.toStringA(DrJava.java:21) 

 at ProxyRun.Run(ProxyRun.java:61) 

 at ProxyRun.main(ProxyRun.java:13) 

 

 

 

Depth Search Limit of 5 
 
### PCs: 1 1 0 
--------original PC------------0 
original pc # = 1 
a_1_SYMINT < a_1_SYMINT 
SPC # = 0 
--- end printing original PC --- 
--------begin after splitting------------ 
originalPC # = 1 
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a_1_SYMINT < a_1_SYMINT 
SPC # = 0 
concolicPC # = 0 
SPC # = 0 
simplePC # = 1 
a_1_SYMINT < a_1_SYMINT 
SPC # = 0 
--------end after splitting------------ 
solving: PC # = 1 
a_1_SYMINT < a_1_SYMINT 
SPC # = 0 
 --> # = 1 
a_1_SYMINT < a_1_SYMINT 
SPC # = 0 -> false 
### PCs: 2 1 1 
--------original PC------------0 
original pc # = 1 
a_1_SYMINT >= a_1_SYMINT 
SPC # = 0 
--- end printing original PC --- 
--------begin after splitting------------ 
originalPC # = 1 
a_1_SYMINT >= a_1_SYMINT 
SPC # = 0 
concolicPC # = 0 
SPC # = 0 
simplePC # = 1 
a_1_SYMINT >= a_1_SYMINT 
SPC # = 0 
--------end after splitting------------ 
solving: PC # = 1 
a_1_SYMINT >= a_1_SYMINT 
SPC # = 0 
 --> # = 1 
a_1_SYMINT >= a_1_SYMINT 
SPC # = 0 -> true 
### PCs: 3 2 1 
bottom 
--------original PC------------0 
original pc # = 2 
Length_0_ == CONST_0 && 
a_1_SYMINT >= a_1_SYMINT 
SPC # = 0 
--- end printing original PC --- 
--------begin after splitting------------ 
originalPC # = 2 
Length_0_ == CONST_0 && 
a_1_SYMINT >= a_1_SYMINT 
SPC # = 0 
concolicPC # = 0 
SPC # = 0 
simplePC # = 2 
a_1_SYMINT >= a_1_SYMINT && 
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Length_0_ == CONST_0 
SPC # = 0 
--------end after splitting------------ 
solving: PC # = 2 
a_1_SYMINT >= a_1_SYMINT && 
Length_0_ == CONST_0 
SPC # = 0 
 --> # = 2 
a_1_SYMINT >= a_1_SYMINT && 
Length_0_ == CONST_0 
SPC # = 0 -> false 
### PCs: 4 2 2 
--------original PC------------0 
original pc # = 2 
Length_0_ != CONST_0 && 
a_1_SYMINT >= a_1_SYMINT 
SPC # = 0 
--- end printing original PC --- 
--------begin after splitting------------ 
originalPC # = 2 
Length_0_ != CONST_0 && 
a_1_SYMINT >= a_1_SYMINT 
SPC # = 0 
concolicPC # = 0 
SPC # = 0 
simplePC # = 2 
a_1_SYMINT >= a_1_SYMINT && 
Length_0_ != CONST_0 
SPC # = 0 
--------end after splitting------------ 
solving: PC # = 2 
a_1_SYMINT >= a_1_SYMINT && 
Length_0_ != CONST_0 
SPC # = 0 
 --> # = 2 
a_1_SYMINT >= a_1_SYMINT && 
Length_0_ != CONST_0 
SPC # = 0 -> true 
### PCs: 5 3 2 
--------original PC------------0 
original pc # = 3 
CONST_1 >= Length_0_ && 
Length_0_ != CONST_0 && 
a_1_SYMINT >= a_1_SYMINT 
SPC # = 0 
--- end printing original PC --- 
--------begin after splitting------------ 
originalPC # = 3 
CONST_1 >= Length_0_ && 
Length_0_ != CONST_0 && 
a_1_SYMINT >= a_1_SYMINT 
SPC # = 0 
concolicPC # = 0 
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SPC # = 0 
simplePC # = 3 
a_1_SYMINT >= a_1_SYMINT && 
Length_0_ != CONST_0 && 
CONST_1 >= Length_0_ 
SPC # = 0 
--------end after splitting------------ 
solving: PC # = 3 
a_1_SYMINT >= a_1_SYMINT && 
Length_0_ != CONST_0 && 
CONST_1 >= Length_0_ 
SPC # = 0 
 --> # = 3 
a_1_SYMINT >= a_1_SYMINT && 
Length_0_ != CONST_0 && 
CONST_1 >= Length_0_ 
SPC # = 0 -> true 
### PCs: 6 4 2 
--------begin after splitting------------ 
originalPC # = 3 
CONST_1 >= Length_0_[1] && 
Length_0_[1] != CONST_0 && 
a_1_SYMINT[-1000000] >= a_1_SYMINT[-1000000] 
SPC # = 0 
concolicPC # = 0 
SPC # = 0 
simplePC # = 3 
a_1_SYMINT[-1000000] >= a_1_SYMINT[-1000000] && 
Length_0_[1] != CONST_0 && 
CONST_1 >= Length_0_[1] 
SPC # = 0 
--------end after splitting------------ 
solving: PC # = 3 
a_1_SYMINT[-1000000] >= a_1_SYMINT[-1000000] && 
Length_0_[1] != CONST_0 && 
CONST_1 >= Length_0_[1] 
SPC # = 0 
 --> # = 3 
a_1_SYMINT[-1000000] >= a_1_SYMINT[-1000000] && 
Length_0_[1] != CONST_0 && 
CONST_1 >= Length_0_[1] 
SPC # = 0 -> true 
MethodInfo[ProxyRun.main([Ljava/lang/String;)V] 
 
====================================================== search constraint 
Search Depth: 5 
 
====================================================== snapshot  
no live threads 
--------original PC------------0 
original pc # = 3 
CONST_1 < Length_0_ && 
Length_0_ != CONST_0 && 
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a_1_SYMINT >= a_1_SYMINT 
SPC # = 0 
--- end printing original PC --- 
--------begin after splitting------------ 
originalPC # = 3 
CONST_1 < Length_0_ && 
Length_0_ != CONST_0 && 
a_1_SYMINT >= a_1_SYMINT 
SPC # = 0 
concolicPC # = 0 
SPC # = 0 
simplePC # = 3 
a_1_SYMINT >= a_1_SYMINT && 
Length_0_ != CONST_0 && 
CONST_1 < Length_0_ 
SPC # = 0 
--------end after splitting------------ 
solving: PC # = 3 
a_1_SYMINT >= a_1_SYMINT && 
Length_0_ != CONST_0 && 
CONST_1 < Length_0_ 
SPC # = 0 
 --> # = 3 
a_1_SYMINT >= a_1_SYMINT && 
Length_0_ != CONST_0 && 
CONST_1 < Length_0_ 
SPC # = 0 -> true 
### PCs: 7 5 2 
 
====================================================== search constraint 
Search Depth: 5 
 
====================================================== snapshot  
thread 
index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,priority=
5,lockCount=0,suspendCount=0 
  call stack: 
 at DrJava.toStringA(DrJava.java:28) 
 at ProxyRun.Run(ProxyRun.java:61) 
 at ProxyRun.main(ProxyRun.java:13) 
 
PC # = 3 
CONST_1 >= Length_0_[1] && 
Length_0_[1] != CONST_0 && 
a_1_SYMINT[-1000000] >= a_1_SYMINT[-1000000] 
SPC # = 0 
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Appendix C 

Extended Concolic Output 

 

Krawitz 1a 

 
### PCs: 1 1 0 

--------original PC------------0 

original pc # = 1 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

CONST < a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

CONST < a_SYMINT 

SPC # = 0 

 --> # = 1 

CONST < a_SYMINT 

SPC # = 0 -> true 

### PCs: 2 2 0 

--------original PC------------0 

original pc # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST < a_SYMINT && 
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CONST < a_SYMINT 

SPC # = 0 

 --> # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 -> true 

### PCs: 3 3 0 

--------original PC------------0 

original pc # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 -> true 

### PCs: 4 4 0 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type1a_Krawitz(Basic_Class1.java:59) 

 at Diss.Basic_Super.Run(Basic_Super.java:24) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 3 
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CONST >= a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

CONST >= a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 -> true 

### PCs: 5 5 0 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type1a_Krawitz(Basic_Class1.java:64) 

 at Diss.Basic_Super.Run(Basic_Super.java:24) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 2 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 2 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 
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concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

 --> # = 2 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 -> true 

### PCs: 6 6 0 

--------original PC------------0 

original pc # = 3 

a_SYMINT == CONST && 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

a_SYMINT == CONST && 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 -> false 

### PCs: 7 6 1 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  
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thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type1a_Krawitz(Basic_Class1.java:64) 

 at Diss.Basic_Super.Run(Basic_Super.java:24) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 3 

a_SYMINT != CONST && 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

a_SYMINT != CONST && 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 -> true 

### PCs: 8 7 1 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type1a_Krawitz(Basic_Class1.java:65) 

 at Diss.Basic_Super.Run(Basic_Super.java:24) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 
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original pc # = 1 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

 --> # = 1 

CONST >= a_SYMINT 

SPC # = 0 -> true 

### PCs: 9 8 1 

--------original PC------------0 

original pc # = 2 

a_SYMINT == CONST && 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 2 

a_SYMINT == CONST && 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

 --> # = 2 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 -> true 

### PCs: 10 9 1 

--------begin after splitting------------ 

originalPC # = 2 

a_SYMINT[0] == CONST && 

CONST >= a_SYMINT[0] 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 
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simplePC # = 2 

CONST >= a_SYMINT[0] && 

a_SYMINT[0] == CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST >= a_SYMINT[0] && 

a_SYMINT[0] == CONST 

SPC # = 0 

 --> # = 2 

CONST >= a_SYMINT[0] && 

a_SYMINT[0] == CONST 

SPC # = 0 -> true 

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V] 

--------original PC------------0 

original pc # = 2 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 2 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 

 --> # = 2 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 -> true 

### PCs: 11 10 1 

--------original PC------------0 

original pc # = 3 

REAL == CONST && 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

REAL == CONST && 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 
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SPC # = 0 

simplePC # = 3 

CONST >= a_SYMINT && 

a_SYMINT != CONST && 

REAL == CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST >= a_SYMINT && 

a_SYMINT != CONST && 

REAL == CONST 

SPC # = 0  

 

Krawitz 1b 
 
### PCs: 1 1 0 

--------original PC------------0 

original pc # = 1 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

CONST < a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

CONST < a_SYMINT 

SPC # = 0 

 --> # = 1 

CONST < a_SYMINT 

SPC # = 0 -> true 

### PCs: 2 2 0 

--------original PC------------0 

original pc # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 
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CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

 --> # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 -> true 

### PCs: 3 3 0 

--------original PC------------0 

original pc # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 -> true 

### PCs: 4 4 0 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 
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 at Diss.Basic_Class1.Type1b_Krawitz(Basic_Class1.java:74) 

 at Diss.Basic_Super.Run(Basic_Super.java:25) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 3 

CONST >= a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

CONST >= a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 -> true 

### PCs: 5 5 0 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type1b_Krawitz(Basic_Class1.java:77) 

 at Diss.Basic_Super.Run(Basic_Super.java:25) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 2 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 
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--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 2 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

 --> # = 2 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 -> true 

### PCs: 6 6 0 

--------original PC------------0 

original pc # = 3 

a_SYMINT == CONST && 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

a_SYMINT == CONST && 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 -> false 

### PCs: 7 6 1 
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====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type1b_Krawitz(Basic_Class1.java:78) 

 at Diss.Basic_Super.Run(Basic_Super.java:25) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 3 

a_SYMINT != CONST && 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

a_SYMINT != CONST && 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 -> true 

### PCs: 8 7 1 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 
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 at Diss.Basic_Class1.Type1b_Krawitz(Basic_Class1.java:80) 

 at Diss.Basic_Super.Run(Basic_Super.java:25) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 1 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

 --> # = 1 

CONST >= a_SYMINT 

SPC # = 0 -> true 

### PCs: 9 8 1 

--------original PC------------0 

original pc # = 2 

a_SYMINT == CONST && 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 2 

a_SYMINT == CONST && 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

 --> # = 2 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 -> true 

### PCs: 10 9 1 

--------begin after splitting------------ 

originalPC # = 2 
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a_SYMINT[0] == CONST && 

CONST >= a_SYMINT[0] 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST >= a_SYMINT[0] && 

a_SYMINT[0] == CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST >= a_SYMINT[0] && 

a_SYMINT[0] == CONST 

SPC # = 0 

 --> # = 2 

CONST >= a_SYMINT[0] && 

a_SYMINT[0] == CONST 

SPC # = 0 -> true 

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V] 

--------original PC------------0 

original pc # = 2 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 2 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 

 --> # = 2 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 -> true 

### PCs: 11 10 1 

--------original PC------------0 

original pc # = 3 

REAL == CONST && 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 



102 

 

 

 

REAL == CONST && 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST >= a_SYMINT && 

a_SYMINT != CONST && 

REAL == CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST >= a_SYMINT && 

a_SYMINT != CONST && 

REAL == CONST 

SPC # = 0 

Krawitz 2a 
 

### PCs: 1 1 0 

--------original PC------------0 

original pc # = 1 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

CONST < a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

CONST < a_SYMINT 

SPC # = 0 

 --> # = 1 

CONST < a_SYMINT 

SPC # = 0 -> true 

### PCs: 2 2 0 

 

====================================================== search 

constraint 

Search Depth: 3 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 
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 at Diss.Basic_Class1.Type2a_Krawitz(Basic_Class1.java:95) 

 at Diss.Basic_Super.Run(Basic_Super.java:27) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 1 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

 --> # = 1 

CONST >= a_SYMINT 

SPC # = 0 -> true 

### PCs: 3 3 0 

 

Krawitz 2b 
 

### PCs: 1 1 0 

--------original PC------------0 

original pc # = 1 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

CONST < a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

CONST < a_SYMINT 

SPC # = 0 

 --> # = 1 

CONST < a_SYMINT 

SPC # = 0 -> true 

### PCs: 2 2 0 
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====================================================== search 

constraint 

Search Depth: 3 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type2b_Krawitz(Basic_Class1.java:111) 

 at Diss.Basic_Super.Run(Basic_Super.java:28) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 1 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

 --> # = 1 

CONST >= a_SYMINT 

SPC # = 0 -> true 

### PCs: 3 3 0 

Krawitz 3a 
 

### PCs: 1 1 0 

--------original PC------------0 

original pc # = 1 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

CONST < a_SYMINT 
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SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

CONST < a_SYMINT 

SPC # = 0 

 --> # = 1 

CONST < a_SYMINT 

SPC # = 0 -> true 

### PCs: 2 2 0 

--------original PC------------0 

original pc # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

 --> # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 -> true 

### PCs: 3 3 0 

--------original PC------------0 

original pc # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 
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SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 -> true 

### PCs: 4 4 0 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type3a_Krawitz(Basic_Class1.java:132) 

 at Diss.Basic_Super.Run(Basic_Super.java:30) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 3 

CONST >= a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

CONST >= a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 
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CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 -> true 

### PCs: 5 5 0 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type3a_Krawitz(Basic_Class1.java:138) 

 at Diss.Basic_Super.Run(Basic_Super.java:30) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 2 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 2 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

 --> # = 2 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 -> true 

### PCs: 6 6 0 

--------original PC------------0 

original pc # = 3 

a_SYMINT == CONST && 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

a_SYMINT == CONST && 
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CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 -> false 

### PCs: 7 6 1 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type3a_Krawitz(Basic_Class1.java:138) 

 at Diss.Basic_Super.Run(Basic_Super.java:30) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 3 

a_SYMINT != CONST && 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

a_SYMINT != CONST && 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT != CONST 
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SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 -> true 

### PCs: 8 7 1 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type3a_Krawitz(Basic_Class1.java:139) 

 at Diss.Basic_Super.Run(Basic_Super.java:30) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 1 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

 --> # = 1 

CONST >= a_SYMINT 

SPC # = 0 -> true 

### PCs: 9 8 1 

--------original PC------------0 

original pc # = 2 

a_SYMINT == CONST && 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 
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--------begin after splitting------------ 

originalPC # = 2 

a_SYMINT == CONST && 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

 --> # = 2 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 -> true 

### PCs: 10 9 1 

--------begin after splitting------------ 

originalPC # = 2 

a_SYMINT[0] == CONST && 

CONST >= a_SYMINT[0] 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST >= a_SYMINT[0] && 

a_SYMINT[0] == CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST >= a_SYMINT[0] && 

a_SYMINT[0] == CONST 

SPC # = 0 

 --> # = 2 

CONST >= a_SYMINT[0] && 

a_SYMINT[0] == CONST 

SPC # = 0 -> true 

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V] 

--------original PC------------0 

original pc # = 2 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 2 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 
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simplePC # = 2 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 

 --> # = 2 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 -> true 

### PCs: 11 10 1 

--------original PC------------0 

original pc # = 3 

REAL == a_SYMINT && 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

REAL == a_SYMINT && 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST >= a_SYMINT && 

a_SYMINT != CONST && 

REAL == a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST >= a_SYMINT && 

a_SYMINT != CONST && 

REAL == a_SYMINT 

SPC # = 0 

 --> # = 3 

CONST >= a_SYMINT && 

a_SYMINT != CONST && 

REAL == a_SYMINT 

SPC # = 0 -> true 

### PCs: 12 11 1 

--------begin after splitting------------ 

originalPC # = 3 

REAL[-10000.0] == a_SYMINT[-10000] && 

a_SYMINT[-10000] != CONST && 

CONST >= a_SYMINT[-10000] 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 
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CONST >= a_SYMINT[-10000] && 

a_SYMINT[-10000] != CONST && 

REAL[-10000.0] == a_SYMINT[-10000] 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST >= a_SYMINT[-10000] && 

a_SYMINT[-10000] != CONST && 

REAL[-10000.0] == a_SYMINT[-10000] 

SPC # = 0 

 --> # = 3 

CONST >= a_SYMINT[-10000] && 

a_SYMINT[-10000] != CONST && 

REAL[-10000.0] == a_SYMINT[-10000] 

SPC # = 0 -> true 

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V] 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

no live threads 

PC # = 2 

a_SYMINT[0] == CONST && 

CONST >= a_SYMINT[0] 

SPC # = 0 

 

PC # = 3 

REAL[-10000.0] == a_SYMINT[-10000] && 

a_SYMINT[-10000] != CONST && 

CONST >= a_SYMINT[-10000] 

SPC # = 0 

Krawitz 3b 
 

### PCs: 1 1 0 

--------original PC------------0 

original pc # = 1 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

CONST < a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 
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CONST < a_SYMINT 

SPC # = 0 

 --> # = 1 

CONST < a_SYMINT 

SPC # = 0 -> true 

### PCs: 2 2 0 

--------original PC------------0 

original pc # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

 --> # = 2 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 -> true 

### PCs: 3 3 0 

--------original PC------------0 

original pc # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 



114 

 

 

 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 -> true 

### PCs: 4 4 0 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type3b_Krawitz(Basic_Class1.java:148) 

 at Diss.Basic_Super.Run(Basic_Super.java:31) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 3 

CONST >= a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

CONST >= a_SYMINT && 

CONST < a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 -> true 
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### PCs: 5 5 0 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type3b_Krawitz(Basic_Class1.java:151) 

 at Diss.Basic_Super.Run(Basic_Super.java:31) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 2 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 2 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 

 --> # = 2 

CONST < a_SYMINT && 

CONST >= a_SYMINT 

SPC # = 0 -> true 

### PCs: 6 6 0 

--------original PC------------0 

original pc # = 3 

a_SYMINT == CONST && 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

a_SYMINT == CONST && 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 
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concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 -> false 

### PCs: 7 6 1 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type3b_Krawitz(Basic_Class1.java:152) 

 at Diss.Basic_Super.Run(Basic_Super.java:31) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 3 

a_SYMINT != CONST && 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

a_SYMINT != CONST && 

CONST >= a_SYMINT && 

CONST < a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 



117 

 

 

 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 

 --> # = 3 

CONST < a_SYMINT && 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 -> true 

### PCs: 8 7 1 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type3b_Krawitz(Basic_Class1.java:154) 

 at Diss.Basic_Super.Run(Basic_Super.java:31) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 1 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

CONST >= a_SYMINT 

SPC # = 0 

 --> # = 1 

CONST >= a_SYMINT 

SPC # = 0 -> true 

### PCs: 9 8 1 

--------original PC------------0 

original pc # = 2 

a_SYMINT == CONST && 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 2 

a_SYMINT == CONST && 
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CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 

 --> # = 2 

CONST >= a_SYMINT && 

a_SYMINT == CONST 

SPC # = 0 -> true 

### PCs: 10 9 1 

--------begin after splitting------------ 

originalPC # = 2 

a_SYMINT[0] == CONST && 

CONST >= a_SYMINT[0] 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST >= a_SYMINT[0] && 

a_SYMINT[0] == CONST 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST >= a_SYMINT[0] && 

a_SYMINT[0] == CONST 

SPC # = 0 

 --> # = 2 

CONST >= a_SYMINT[0] && 

a_SYMINT[0] == CONST 

SPC # = 0 -> true 

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V] 

--------original PC------------0 

original pc # = 2 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 2 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 2 

CONST >= a_SYMINT && 

a_SYMINT != CONST 
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SPC # = 0 

--------end after splitting------------ 

solving: PC # = 2 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 

 --> # = 2 

CONST >= a_SYMINT && 

a_SYMINT != CONST 

SPC # = 0 -> true 

### PCs: 11 10 1 

--------original PC------------0 

original pc # = 3 

REAL == a_SYMINT && 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 3 

REAL == a_SYMINT && 

a_SYMINT != CONST && 

CONST >= a_SYMINT 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST >= a_SYMINT && 

a_SYMINT != CONST && 

REAL == a_SYMINT 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST >= a_SYMINT && 

a_SYMINT != CONST && 

REAL == a_SYMINT 

SPC # = 0 

 --> # = 3 

CONST >= a_SYMINT && 

a_SYMINT != CONST && 

REAL == a_SYMINT 

SPC # = 0 -> true 

### PCs: 12 11 1 

--------begin after splitting------------ 

originalPC # = 3 

REAL[-10000.0] == a_SYMINT[-10000] && 

a_SYMINT[-10000] != CONST && 

CONST >= a_SYMINT[-10000] 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 3 

CONST >= a_SYMINT[-10000] && 

a_SYMINT[-10000] != CONST && 

REAL[-10000.0] == a_SYMINT[-10000] 
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SPC # = 0 

--------end after splitting------------ 

solving: PC # = 3 

CONST >= a_SYMINT[-10000] && 

a_SYMINT[-10000] != CONST && 

REAL[-10000.0] == a_SYMINT[-10000] 

SPC # = 0 

 --> # = 3 

CONST >= a_SYMINT[-10000] && 

a_SYMINT[-10000] != CONST && 

REAL[-10000.0] == a_SYMINT[-10000] 

SPC # = 0 -> true 

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V] 

 

====================================================== search 

constraint 

Search Depth: 5 

 

====================================================== snapshot  

no live threads 

PC # = 2 

a_SYMINT[0] == CONST && 

CONST >= a_SYMINT[0] 

SPC # = 0 

 

PC # = 3 

REAL[-10000.0] == a_SYMINT[-10000] && 

a_SYMINT[-10000] != CONST && 

CONST >= a_SYMINT[-10000] 

SPC # = 0 

Krawitz 4a 
 

### PCs: 1 1 0 

--------original PC------------0 

original pc # = 1 

a_SYMINT <= CONST000 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

a_SYMINT <= CONST000 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

a_SYMINT <= CONST000 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

a_SYMINT <= CONST000 

SPC # = 0 

 --> # = 1 
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a_SYMINT <= CONST000 

SPC # = 0 -> true 

### PCs: 2 2 0 

 

====================================================== search 

constraint 

Search Depth: 3 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type4a_Krawitz(Basic_Class1.java:166) 

 at Diss.Basic_Super.Run(Basic_Super.java:33) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 1 

a_SYMINT > CONST000 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

a_SYMINT > CONST000 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

a_SYMINT > CONST000 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

a_SYMINT > CONST000 

SPC # = 0 

 --> # = 1 

a_SYMINT > CONST000 

SPC # = 0 -> true 

### PCs: 3 3 0 

--------begin after splitting------------ 

originalPC # = 1 

a_SYMINT[1001] > CONST000 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

a_SYMINT[1001] > CONST000 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

a_SYMINT[1001] > CONST000 

SPC # = 0 

 --> # = 1 

a_SYMINT[1001] > CONST000 

SPC # = 0 -> true 



122 

 

 

 

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V] 

 

====================================================== search 

constraint 

Search Depth: 3 

 

====================================================== snapshot  

no live threads 

PC # = 1 

a_SYMINT[1001] > CONST000 

SPC # = 0 

Krawitz 4b 
 

### PCs: 1 1 0 

--------original PC------------0 

original pc # = 1 

a_SYMINT <= CONST000 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

a_SYMINT <= CONST000 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

a_SYMINT <= CONST000 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

a_SYMINT <= CONST000 

SPC # = 0 

 --> # = 1 

a_SYMINT <= CONST000 

SPC # = 0 -> true 

### PCs: 2 2 0 

 

====================================================== search 

constraint 

Search Depth: 3 

 

====================================================== snapshot  

thread 

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0 

  call stack: 

 at Diss.Basic_Class1.Type4b_Krawitz(Basic_Class1.java:184) 

 at Diss.Basic_Super.Run(Basic_Super.java:34) 

 at Diss.Basic_Super.main(Basic_Super.java:11) 

 

--------original PC------------0 

original pc # = 1 



123 

 

 

 

a_SYMINT > CONST000 

SPC # = 0 

--- end printing original PC --- 

--------begin after splitting------------ 

originalPC # = 1 

a_SYMINT > CONST000 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

a_SYMINT > CONST000 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

a_SYMINT > CONST000 

SPC # = 0 

 --> # = 1 

a_SYMINT > CONST000 

SPC # = 0 -> true 

### PCs: 3 3 0 

--------begin after splitting------------ 

originalPC # = 1 

a_SYMINT[1001] > CONST000 

SPC # = 0 

concolicPC # = 0 

SPC # = 0 

simplePC # = 1 

a_SYMINT[1001] > CONST000 

SPC # = 0 

--------end after splitting------------ 

solving: PC # = 1 

a_SYMINT[1001] > CONST000 

SPC # = 0 

 --> # = 1 

a_SYMINT[1001] > CONST000 

SPC # = 0 -> true 

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V] 

 

====================================================== search 

constraint 

Search Depth: 3 

 

====================================================== snapshot  

no live threads 

PC # = 1 

a_SYMINT[1001] > CONST000 

SPC # = 0 
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