
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2013

Code Clone Discovery Based on Concolic
Analysis
Daniel Edward Krutz
Nova Southeastern University, dan7800@yahoo.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Daniel Edward Krutz. 2013. Code Clone Discovery Based on Concolic Analysis. Doctoral dissertation. Nova Southeastern University.
Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (203)
http://nsuworks.nova.edu/gscis_etd/203.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NSU Works

https://core.ac.uk/display/51097916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Code Clone Discovery Based on Concolic Analysis

by

Daniel Edward Krutz

A dissertation report submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

in

Computer Science

Graduate School of Computer and Information Sciences

Nova Southeastern University

2012

Code clone Discovery Based on Concolic Analysis

by

Daniel Edward Krutz

Fall 2012

Software is often large, complicated and expensive to build and maintain. Redundant

code can make these applications even more costly and difficult to maintain. Duplicated

code is often introduced into these systems for a variety of reasons. Some of which

include developer churn, deficient developer application comprehension and lack of

adherence to proper development practices.

Code redundancy has several adverse effects on a software application including an

increased size of the codebase and inconsistent developer changes due to elevated

program comprehension needs. A code clone is defined as multiple code fragments that

produce similar results when given the same input. There are generally four types of

clones that are recognized. They range from simple type-1 and 2 clones, to the more

complicated type-3 and 4 clones. Numerous clone detection mechanisms are able to

identify the simpler types of code clone candidates, but far fewer claim the ability to find

the more difficult type-3 clones. Before CCCD, MeCC and FCD were the only clone

detection techniques capable of finding type-4 clones. A drawback of MeCC is the

excessive time required to detect clones and the likely exploration of an unreasonably

large number of possible paths. FCD requires extensive amounts of random data and a

significant period of time in order to discover clones.

This dissertation presents a new process for discovering code clones known as Concolic

Code Clone Discovery (CCCD). This technique discovers code clone candidates based on

the functionality of the application, not its syntactical nature. This means that things like

naming conventions and comments in the source code have no effect on the proposed

clone detection process. CCCD finds clones by first performing concolic analysis on the

targeted source code. Concolic analysis combines concrete and symbolic execution in

order to traverse all possible paths of the targeted program. These paths are represented

by the generated concolic output. A diff tool is then used to determine if the concolic

output for a method is identical to the output produced for another method. Duplicated

output is indicative of a code clone.

CCCD was validated against several open source applications along with clones of all

four types as defined by previous research. The results demonstrate that CCCD was able

to detect all types of clone candidates with a high level of accuracy.

In the future, CCCD will be used to examine how software developers work with type-3

and type-4 clones. CCCD will also be applied to various areas of security research,

including intrusion detection mechanisms.

Acknowledgments

First and foremost I would like to thank my family. Without their guidance and support, I

would not be the man I am today. I would like to especially thank my grandparents.

Lydia, Edward (Opal), Betty, Karl, Louise (Lou-Lou) and Bob
1
. Lydia, thanks for all the

card games (I still say you were cheating somehow) and all the fantastic ravioli dinners.

“Opal”, thanks for all the hotdogs and hot chocolates at halftime of the football games.

Betty, thanks for the swimming and day trips to the Adirondacks, baseball games and

always keeping me more than well fed. Karl, thanks for all the wonderful stories and

always being so friendly, calm, hardworking and inspirational. Louise, thanks for keeping

my dressed so well and all the pancakes for breakfast. Bob, thanks for always being one

of my best friends, so easy to talk to and the countless Matchbox cars.

Over the years, I have come to realize how lucky I’ve been.

I would also like to thank my advisor, Dr. Frank Mitropoulos. He taught the first class at

Nova which really appealed to me and helped to foster my love of Software Engineering.

My committee has also been wonderful. I would especially like to thank Dr. Ronald M.

Krawitz. Over the years, he has been a wonderful mentor, classmate, committee member,

but most of all friend. There were countless phone calls that he gave me advice or simply

words of encouragement to carry on.

I would also like to thank the wonderful study group at Nova. They were extremely

helpful in helping me to finish this degree. I’ve made many good lifelong friends from

this group.

1
“The Bonda”

v

Table of Contents
Abstract ii

List of Figures v

List of Tables vi

Chapters

1. Introduction 1

 Background 1

Problem Statement 3

 Dissertation Goal 10

Research Questions 10

Relevance and Significance 11

Barriers and Issues 16

Limitations 17

Definition of Terms 18

Summary 20

2. Review of the Literature 21

 Code Clone Detection 21

Concolic Analysis 25

3. Methodology 32

 Overview of Research Methodology 32

Concolic Analysis Generation 33

Code Clone Candidate Identification 36

Specific Research Methods Employed 40

Instrument Development and Validation 41

Resource Requirements 50

Summary 50

vi

4. Results 51

Results Introduction 51

CCCD Results 52

Summary 64

5. Conclusions 65

 Implications 66

Recommendations 66

Summary 67

Appendixes

A. CCCD Validation for All Clone Types 73

B. Depth Search Examples 82

C. Extended Concolic output 88

References 124

vii

List of Figures

1. Type-1 clone example (Roy et al., 2009). 6

2. Type-2 Clone example (Roy et al., 2009). 6

3. Type-3 Code Clone (Roy et al., 2009). 7

4. Type-4 Code Clone (Roy et al., 2009). 7

5. Type-4 Code clone (Roy et al., 2009). 8

6. Failure curves for software (Pressman, 2010). 12

7. Code to be examined by concolic analysis. 26

8. Concolic Analysis Flow 27

9. Sample Code. 28

10. Sample Concolic output. 29

11. CCCD Sequence and Flow 33

12. JPF example concolic output. 34

13. Example function. 36

14. Example clone function. 37

15. Example second clone function. 37

16. Example concolic output of Figure 13. 37

17. Concolic output of Figure 14. 38

18. Concolic output of Figure 15. 38

19. Comparison of concolic output of Figure 16 and Figure 17. 39

20. Comparison of concolic output of Figure 15 and Figure 16 39

21. Example of concolic counters. 42

viii

22. Example variable count difference before cleaning. 43

23. Example variable count difference after cleaning. 44

24. Information to be removed from concolic output. 45

25. Example of method referencing another method. 46

26. Modified concolic output to indicate different method. 47

27. External function information removed. 48

28. Example method to be targeted. 49

29. Type-1 Clones in Injected Code. 53

30. Type-1 Concolic Output of Figure 29. 54

31. Type-2 Clones in Injected Code. 55

32. Type-2 Concolic Output of Figure 31. 55

33. Type-3 Clones in Injected Code. 56

34. Type-3 Concolic Output of Figure 33. 57

35. Type-4 Clones in Injected Code. 58

36. Type-4 Concolic Output of Figure 35 58

ix

List of Tables

1. Roy Results 60

2. Krawitz Results. 61

3. Existing Clones in Template Applications. 62

4. Injected Clones in Template Applications. 63

1

Chapter 1

Introduction

Background

Software systems may be large, complicated and used for extended periods of

time. During the lifecycle of an application, it will typically need to be constantly updated

and maintained. This may need to be done in order to fix bugs, keep it compatible with

new technologies or improve performance (Kim, Jung, Kim, & Yi, 2011; Singh & Goel,

2007; Ueda, Kamiya, Kusumoto, & Inoue, 2002).

Source code is often reused throughout the application. As the application’s

source code is maintained and evolves, additional reuse occurs (Marcus & Maletic, 2001;

Singh, Bhatia, & Sangwan, 2009). Additionally, people will typically join and leave the

software development team throughout this lifecycle. This is known as developer churn.

This developer churn means that developers with varying levels of understanding of the

application will be modifying the application (Meneely, Williams, Snipes, & Osborne,

2008; Monden, Nakae, Kamiya, Sato, & Matsumoto, 2002). These developers will likely

have to alter the application in numerous locations during this maintenance phase. Some

of these changes and added functionality will be redundant across the application. From a

software engineering standpoint, the most appropriate way to make these alterations is to

refactor the application, and not perform simple copy and pastes of the code (Pressman,

2010).

2

Developers are generally aware of the adverse effects that copying and pasting

code snippets throughout the application will have. However, it still occurs quite

frequently in most large software applications. Between 5 -23% of all code in software is

estimated to be redundant or exact copy and pastes of source code (Baxter, Yahin,

Moura, Sant'Anna, & Bier, 1998; Schulze, Apel, & Kastner, 2010). Code redundancies

are created for both necessary and unnecessary reasons. On some occasions,

redundancies may be necessary due to language restrictions. In other scenarios, they may

occur simply due a lack of system understanding or other avoidable situations (Ducasse,

Rieger, & Demeyer, 1999; Jarzabek & Xue, 2010).

A code clone is defined as multiple code fragments which produce similar results

when given the same input (Fukushima et al., 2009). There are four types of code clones.

These range in complexity from type-1 to type-4 clones. Type-1 clones are the simplest,

and most easy to detect, while type-3 and 4 clones are much more complicated, and much

harder to detect, if at all discoverable (Roy, Cordy, & Koschke, 2009). Specific examples

of each type are described later in this work.

Code clones are undesirable in software for several reasons. First of all, when

making changes on the cloned segments, these alterations will need to be made uniformly

throughout the application. Failure to do so may lead to faults being created inside of the

application or even logical errors when some of the clones are repaired and others

continue to contain bugs. The maintenance costs of the application will also likely be

increased since alterations made to redundant segments will have to be done numerous

times (Juergens, Deissenboeck, Hummel, & Wagner, 2009). In economic terms, this

increased maintenance cost is a very serious matter. It is estimated that maintenance

3

activity comprises over 80% of the overall cost of many software projects (Shukla &

Misra, 2008). Finally, tangled or scattered clones across a system will make it very

difficult for developers to understand how specific functions are implemented throughout

a system. In the event the developer does not understand the implementation of a specific

module of code, they may unintentionally change the functionality of the system during

software maintenance (Maisikeli & Mitropoulos, 2010).

Problem Statement

Throughout the software development cycle, code cloning is a frequent

occurrence and is generally considered to be a sign of bad software design (Duala-Ekoko

& Robillard, 2010; Wettel & Marinescu, 2005). Most often, clones are the result of a

copy and paste activity by the developers. This action is one where the same code

segment is replicated throughout the application for various reasons (Deissenboeck,

Hummel, & Juergens, 2010). With the progression of time, applications are generally

growing larger. As the number of lines in the source code continues to expand, detecting

clones becomes more difficult (Bruntink, Deursen, Engelen, & Tourwe, 2005).

The issue of the existence of clones in applications is not a new problem (Baker,

1995). Clones themselves do not introduce faults into the system. Faults are introduced

because an application will generally need to be maintained. It is during this maintenance

phase is where clones generally have the largest adverse effect on the system. The

maintenance phase of an application generally represents 40-70% of the total cost of the

project (Ducasse et al., 1999; Seaman, 2008; Ueda et al., 2002).

4

Clones significantly add to the expense of the software maintenance phase of a

project (Juergens et al., 2009). Inconsistently changing clones in the application is where

a significant increase to the overall maintenance cost of the application may occur

(Hummel, Juergens, & Steidl, 2011). Clones also increase the general size of the

application (Deissenboeck et al., 2010). This makes locating desired sections of code

much more difficult. This can be a significant issue since locating these specific sections

for bug fixing can be a difficult and time consuming task (Chen, Jaygarl, Yang, & Wu,

2008).

When numerous clones exist, developers need to pay extra care in changing all

clones uniformly (Krawitz, 2012). Inconsistent changes to clones represent faults in 50%

of the cases if the change was introduced intentionally (Deissenboeck et al., 2010). The

existence of clones may also lead to significant segments of dead code, or unused

segments in the application. This may be lead to problems with comprehensiveness,

readability, extensibility, and maintainability (Kapser & Godfrey, 2008).

An additional goal of software development is to create applications which are

highly modular. Some of the benefits of code modularization are reusability, and ease of

maintenance. The software testing process may also be hindered by the presence of code

clones. If unit testing is utilized, extra unit tests will be required to be written against each

of these code clones. This will add extra time to the project initially, as well as to the

maintenance of these tests. Error discovery and location may also be hindered by the

existence of code clones (Roy et al., 2009).

5

Code clones represent a significant problem for applications, and it is important to

be able to identify these clones so they may be dealt with accordingly by the developers

(Kapser & Godfrey, 2008). There are four defined levels of code clones as described by

Gold, Krinke, Harman, and Binkley (2010):

 Type-1: The code is syntactically identical except for white spaces, layout and

comments.

 Type-2: Code is syntactically identical except for variations in identifiers,

literals, types, and variations permitted under Type 1.

 Type-3: Code which is modified by adding, removing, or alteration statements,

in addition to variations allowed under Type 2.

 Type-4: Code which uses different syntax, but produces the same result.

As described by Roy (2009), Figure 1 represents a type-1 code clone. The two

sections of code are identical in every manner. Figure 2 represents a type-2 clone. Only

the variable identifiers have been altered and are shown in bold. Figure 3 represents a

type-3 code clone. The only difference is the extra input variable into the foo method.

The rest of the syntax and functionality remains identical to the original source code.

Figure 4 and Figure 5 represent type-4 clones. The declaration order of prod and sum

have been reversed. However, the remaining code has identical syntax to the original.

6

Code Block 1 Code Block 2

Figure 1. Type-1 clone example (Roy et al., 2009).

Code Block 1 Type-2 Clone

Figure 2. Type-2 Clone example (Roy et al., 2009).

7

Code Block 1 Type-3 Clone

Figure 3. Type-3 Code Clone (Roy et al., 2009).

Code Block 1 Type-4 Clone

Figure 4. Type-4 Code Clone (Roy et al., 2009).

8

Code Block 1 Type-4 Clone

Figure 5. Type-4 Code clone (Roy et al., 2009).

In order to detect various clone levels, there are currently numerous methods

which have been implemented by both the research and commercial communities

(Deissenboeck et al., 2010; Higo, Kamiya, Kusumoto, & Inoue, 2007). Most

contemporary research concentrates on discovering Type-1 and 2 clones, and is largely

successful at doing so. A few of these tools are able to detect Type-3 clones (Roy et al.,

2009). Added, modified or deleted statements often alter the functionality of a software

component. Redundant code of this nature often causes type-3 and type-4 clones. These

are typically difficult for clone detection techniques to detect and many methodologies do

not even attempt to find them (Koschke, 2007).

In symbolic analysis, program variables that typically contain concrete values are

replaced with symbolic values. These are inputs which may represent a wide range of

possible values. Traditionally, symbolic execution has been used to explore a large

number of possible program paths (Pasareanu et al., 2008; Person, Dwyer, Elbaum, &

Pasareanu, 2008; Person, Yang, Rungta, & Khurshid, 2011). Concolic execution uses

9

both concrete and symbolic values for interpreting a target program. Concrete states

allow concolic analysis to deterministically evaluate any program expression. This helps

to overcome some limitations of pure symbolic analysis such as the inability to handle

some types of loops, recursion and exploration of infeasible paths (Takaki et al., 2010).

Applications which contain code clones are generally poorly designed and are more

expensive in terms of maintenance, extensibility and ease of comprehension (Roy et al.,

2009).

While numerous clone detection methods exist, they all suffer for a variety of

reasons. One of the most prevalent issues is the inability for most techniques to

efficiently and effectively detect type-3 and type-4 clones. Only two methods claim the

ability to detect type-4 clones. One of which utilizes functional analysis, while the other

uses a memory comparison technique. A primary drawback of functional analysis is that

random data needs to be generated in order to discover code clones. This can be a

difficult and time consuming process (Krawitz, 2012). An issue with the memory

comparison based process is that it takes quite a long time to run since it uses a standard

static analysis technique. Other problems with standard static analysis include the

exploration of an unreasonably large number of program states and the substantial cost of

maintaining and solving symbolic constraints along the program’s execution paths (Kim

et al., 2011; Majumdar & Sen, 2007). Additional problems also exist with other existing

methodologies. These include normalization and need for historical data (Basit &

Jarzabek, 2005). Due to these issues with current approaches, further work is required in

order to create a robust technique for code clone procedure.

10

Clone detection is important in aiding the software development process in a

variety of ways. While numerous techniques are able to detect type-1 and type-2 clones,

few are able to discover type-3. Even less claim the ability to detect type-4 clone

candidates. A new and robust technique for clone discovery is needed to fill this gap.

Dissertation Goal

The goal of this dissertation was to discover clone candidates using concolic

analysis. No existing clone detection techniques appear to utilize this method. The

proposed technique discovers code clone candidates based on their functional nature.

Naming conventions, comments and other syntactical attributes have no bearing on the

clone candidate detection process. This is accomplished by analyzing the concolic output

of the source code. This dissertation proposed a process known as Concolic Code Clone

Discovery (CCCD) in order to discover clones.

Research Questions

The primary research question CCCD answered was if concolic analysis could be

used to detect code clones. No previous work appears to have ever attempted this. A

secondary research question was what types of clones concolic analysis would be able to

discover.

11

Relevance and Significance

Today’s large software systems are complicated applications which have the

capability of being heavily utilized in industry for extended periods of time. During the

lifespan of an application, it is very likely to require extensive modifications. In order

lifespan of an application, it is very likely to require extensive modifications. In order for

its users to remain satisfied, the software will need to be constantly evolving (Geiger,

Fluri, Gall, & Pinzger, 2006). Specific reasons for these updates include altering the

program’s functionality, bug fixes, and environment changes. Based on this, the possible

negative ramifications of code clones are very important. The effort required to perform

changes on a system go up as do the number of code clones. This means that code clones

are a significant factor which must be paid attention as the system evolves (Geiger et al.,

2006).

12

Figure 6. Failure curves for software (Pressman, 2010).

Dealing with large software systems is extremely challenging for the companies

who must maintain them. As maintenance is performed on the system, it generally

becomes harder to maintain in a quality manner (Figure 6). Ideally, the failure rate of

software should go down, or at the very least remain steady. However, this is not the

case. As maintenance is performed on the application, the error rate actually tends to rise

(Monden et al., 2002; Pressman, 2010) .

Larger applications will likely have more developers associated with them, and

thus a higher turnover rate. As developers join and exit the project, they will not only

develop in their individual manner, but will also not be aware of existing functionality in

other parts of the application (Monden et al., 2002). This means that these developers

13

will have a high likelihood of knowingly or unknowingly injecting a high level of clones

into the application. Once this happens, it will be very difficult to retain a high level of

maintainability and reliability for the system (Akito & Shinichi, 2001). Very often, code

clones may be introduced for valid reasons. Typically however, they most often exist as a

result of a poor software design or poor development practices (Fukushima et al., 2009).

Since the existence of code clones tends to help contribute to this high cost of

change, locating them can be extremely beneficial in decreasing the already significant

maintenance portion of an application (Geiger et al., 2006). There are several existing

techniques for detecting code clones (Bruntink et al., 2005; Kim et al., 2011; Krawitz,

2012; Roy et al., 2009):

 Text: Attempt to detect similar sequences by using minimal analysis.

 Lexical/Token: Apply lexical analysis to the source code and attempts to locate

similar lines of code.

 Tree: Obtain a syntactical representation of the source code by using parsers.

 Metrics: Related to hashing algorithms. In this methodology, each fragment of a

program, a number of various metrics are gathered regarding them. This

information is subsequently used to find similar fragments.

 Graph: Obtains source code representation from a high level of abstraction.

Program Dependency Graphs (PDGs) are comprised of information of a

14

semantic manner. These include data such as control and data flow of the

program.

 Functional: Performs black box testing on blocks of code. Clones produce

identical outputs when provided identical inputs.

 Symbolic: Uses symbolic output of an application to discover similarities.

Typically, text, token and tree based methodologies focus on the source code as it

is being developed. Graph based techniques rely upon the data and control flow

information for clone discovery. Finally, metrics based methods use a hybrid of various

existing techniques and gauge the results by using vectors, graphs or other abstract

representation (Bruntink et al., 2005; Roy et al., 2009).

CCCD is a new technique for clone candidate discovery. This identification

process is done without paying attention to the comments or naming conventions in the

source code. It is done entirely through the concolic analysis of the application.

Additionally, concolic analysis was demonstrated to be a new and practical solution to

candidate code clone discovery. This is something which does not appear to have been

previously attempted. Type-4 clones are comprised of different source code. CCCD is

capable of discovering these types of clones. This is because concolic analysis only

follows the flow and functionality of the program and is not directly tied into the syntax

of the source code.

15

Based on a literature review, no attempts have been made to discover code clones

candidates (of any type) using concolic analysis. CCCD is well suited to discover these

clones because current techniques rely upon text based comparisons, source code

analysis, data flow analysis or symbolic analysis. Since CCCD uses concolic analysis

which combines concrete and symbolic values, it only cares about the flow of the

application. This means that numerous problematic issues which have hindered previous

clone detection techniques are irrelevant to the proposed technique. Problematic areas

such as comments and naming conventions which have plagued many existing clone

detection techniques have no effect on CCCD. Knowing the flow of the application is

important because these paths help define the functional equivalence of two code

segments. Two segments which are functionally equivalent are clones (Person et al.,

2008). CCCD is beneficial because it limits the negative ramifications of code clones on

applications, and thus reduces the development, and maintenance costs while helping to

assure a high quality application.

The goal of this dissertation was to develop a process to locate code clones by

comparing the output of the concolic analysis of various code segments. This helps to

address the problems of the high cost of software maintenance and poor overall software

quality. The cost of maintaining the software will decrease as the number of code clones

is abated. CCCD allows software developers the ability to find clone candidates.

16

Barriers and Issues

CCCD is a new and complicated approach to clone discovery. There were

numerous challenges which had to be overcome. These included hurdles related to the

gathering of test data, the evaluation of existing tools, concolic analysis aspects, and any

minor concolic equalization processes which needed to be carried out.

Clones have the potential to be a wide range of sizes. Some clones may only be a

few lines long (Bruntink, Deursen, & Tourwe, 2004), or more than 200 lines long

(Monden et al., 2002). This means that CCCD needed to account for these widely varying

sizes. Large software projects are not generally developed by a single developer. Due to

this, an innumerable amount of different development techniques and processes had to be

accounted for by the proposed discovery process.

In order to perform concolic analysis on a system, it must first have an existing

concolic analysis tool be able to be adapted to run each class individually using concolic

analysis. CCCD had to be made to append the name of the instantiating class onto the

blocks of generated symbolic data. These are all important for the comparison process

and will be discussed in the approach section. Additional modifications had to be

performed on the selected concolic analysis tool. Some of these were fairly substantial

and required a significant amount of development effort. Other alterations were much

simpler changes to configuration settings, but required a significant amount of thought

and background work in order to ensure that they were configured properly.

Once the necessary concolic values have been generated, a diff was performed on

this output. A diff is a simple operation that notes any differences between two files. Any

discovered similarities are an indication of a possible clone candidate. This comparison

17

was done using an already existing tool, Notepad++. Future work may combine all of this

functionality into a single application, but at the present time it is out of the scope of this

dissertation.

The output is compared at the method level, meaning that clones are only

detectable at this level of granularity. This is because each method in the application has

concolic analysis performed upon it individually by a modified version of Java Path

Finder (JPF), an application which was originally created by NASA. Presently, this

altered tool is only capable of accurately and effectively generating the data required for

CCCD on a method by method basis. This is the same for all currently known concolic

analysis applications. This may be a limitation of CCCD since clones can exist within

multiple methods, when the methods themselves are not clones. Further enhancements to

existing concolic analysis tools would eliminate the need to only analyze code on a

method by method basis. It is important to note that this is a limitation of the tools, not of

the overall concolic analysis technique.

Limitations

The purpose of this dissertation was to identify code clone candidates using

concolic analysis. CCCD discovered code clone candidates in a manner which is

independent of the semantics of the code being analyzed. Even though CCCD represents

a new and robust method for discovering clones, it does have a potential limitation. While

concolic analysis is able to overcome many of the path constraints of symbolic analysis,

other restrictions exist which may limit its ability to perform complete analysis on a

system. One of these inhibitors is the inability of current concolic analysis tools to

18

compute concrete values to satisfy all constraints (Sen, 2007). This did not pose a

problem for the conducted research, but could create problems if CCCD were attempted

to be implemented on a much larger scale. This is an inherent problem with existing

concolic analysis tools which may be fixed by future research into this specific area.

However, this is out of the scope of this dissertation.

Definition of Terms

Abstract Syntax Tree-

Based Techniques

Use parsers to obtain a syntactical representation of the

source code, usually in the form as an AST, before the

AST is searched for similar sub-trees (Krawitz, 2012,

p.15).

AST Abstract Syntax Tree (Krawitz, 2012, p.15).

Code Clone

Implementing the same program functionality more

than one time. Multiple code fragments that produce

similar results given the same input (Krawitz, 2012,

p.15).

Concolic Analysis

Combines random testing and symbolic execution to

partly remove the limitations of random testing and

symbolic execution based testing (Sen, 2007, p. 1).

Functional Behavior

How the output of a system is affected by inputs

without regard for the contents of the system. Ignoring

the internal mechanism of a system and focusing on the

outputs generated in response to inputs. Black Box

behavior (Krawitz, 2012, p.15).

Lexical

Relating to words or the vocabulary of the system as

distinguished from the syntax rules and construction

(Krawitz, 2012, p.16).

Lexical/Token-Based

Techniques

Applies lexical analysis to the source code and use the

lexical analysis to find similar lines of code (Krawitz,

2012, p.16).

19

PDG Program Dependence Graph (Krawitz, 2012, p.16).

Program Dependence

Graph-Based Techniques

Obtain a source code representation of high abstraction

that contain information such as control and data flow

of the program that can be analyzed and compared to

find code clones (Krawitz, 2012, p.16).

Program Maintenance

The modification of a system after delivery to correct

faults or improve performance. Most maintenance

implements functional enhancements (Krawitz, 2012,

p.15).

Random Testing

Random testing generates a large number of inputs

randomly. The program is then run on those inputs to

check if programmer written assertions hold, or in the

absence of specifications (Majumdar & Sen, 2007, p.

1).

Refactor

Changing the source code of a computer program

without modifying the program’s functional behavior

(Krawitz, 2012, p.17).

Semantically Similar

Two blocks of code that have the same meaning or

produce the same results based on an analysis of the

words and symbols used to generate the source code

(Krawitz, 2012, p.17).

Source Code

A collection of human-readable statements that provide

instructions to the computer so it can complete a task.

Also called a program (Krawitz, 2012, p.17).

Symbolic Execution

A program is executed using symbolic variables in

place of concrete values for inputs. Each conditional

expression in the program represents a constraint that

determines an execution path (Sen, 2005, p. 1).

Syntactically Similar
The same results based on an analysis of code metrics

or AST analysis (Krawitz, 2012, p.17).

Text-Based Techniques

Perform minimal analysis before attempting to detect

similar sequences of lines of code (Krawitz, 2012,

p.17).

20

Summary

Duplicated source code in an application is known as code clones. These can have

several adverse effects on an application. Some of which include increased maintenance

and code comprehension costs. Most research recognizes four types of code clones.

Type-1 and Type-2 clones are reasonably basic and detectable by the majority of clone

detection mechanisms. Only a few works claim the ability to detect the more elaborate

Type-3 clones while even less state that they are able to identify Type-4 clones, which are

the most complex.

 CCCD is a new system for detecting code clone candidates. Concolic analysis

was used in order to discover similar functionality within an application. Things that have

plagued many previous clone detection systems, such as semantics, were not taken into

consideration and therefore do not pose a problem for the proposed process. CCCD

begins by analyzing the target application and producing the necessary concolic values.

This output is then examined for identical sections, which is indicative of a clone

candidate. CCCD ultimately provided an indication of the clone candidate along with the

locations of all candidates in the examined source code.

21

Chapter 2

Review of the Literature

Testing is heavily used in industry in order ensure software quality. Having the

ability to automatically traverse all paths of an application is important for numerous

testing techniques (Sen, 2007). Manually testing all paths of an application is generally

not practical due to the sheer number of possibilities that even the smallest applications

may have. Exhaustive analysis or the testing of all possible paths cannot be reasonably

expected to be feasible, even in an automated fashion for the vast majority of

applications. In order to adequately test applications, several types of analysis techniques

that aim to examine all possible paths of the application have been devised (Majumdar &

Sen, 2007).

Code Clone Detection

The majority of current clone detection techniques do an adequate job of finding

type-1, type-2, and sometimes type-3 clones (Koschke, 2007). Only two works claim the

ability the ability to detect type-4 clones (Kim et al., 2011; Krawitz, 2012). In order to

properly understand CCCD, it is important to understand the previous methodologies

along with their strengths and weaknesses. Additionally, it is important to understand the

effectiveness of the existing techniques in order to be able to compare them with CCCD.

Previous research by Roy and Cordy (2008) separate the existing detection techniques

into four principle categories. These are text, lexical, syntactical and Semantic.

22

Textual Approach

Text based approaches use very little or no normalization or transformation on the

source code being examined. White space and comments are usually ignored. Typically,

the raw source code is directly used in the clone detection process (Bruntink et al., 2005;

Roy et al., 2009). One approach examines the substrings of the source code. The first step

is to hash the code fragments of a defined number of lines. A sliding window technique

is then used to identify sequences of lines that have the same hash values as clones

(Johnson, 1993). Dot or scatter plot approaches have also been utilized with arguably

better results (Roy et al., 2009). In this process, a coordinate value is assigned to various

source code segments. If two lines have the same coordinate plots, they are assumed to be

equal. This process has the additional benefit of allowing clone information to be

visualized. (Ducasse et al., 1999; Roy et al., 2009). A drawback to text based approaches

is that by examining the source code directly, small changes may have significantly

adverse effects on this system since it is essentially using a pattern matching scheme in

order to discover clones (Bruntink et al., 2005).

Lexical Approach

Lexical approaches first transform the source code into a series of lexical

“tokens.” This is done by using a compiler-style lexical analysis technique (Roy &

Cordy, 2008). The list of generated tokens is then scanned for duplications. Duplications

are then considered to represent code clones. A primary benefit of this method over text

based approaches is that minor changes such as formatting, spacing and code renaming

generally pose a smaller problem. Variations of this technique have been found to detect

23

type-1, type-2 and in certain situations type-3 clones (Roy et al., 2009). A powerful tool

which uses this approach is CCFinder (Kamiya, Kusumoto, & Inoue, 2002).

Syntactical Approach

Syntactical approaches first use a parser in order to convert programs into either

parse trees or Abstract Syntax Trees (ASTs) (Roy et al., 2009). Tree based approaches

discover clones by using a parser to examine the generated AST (Bruntink et al., 2005).

Similar sub trees are then discovered using tree-matching techniques. The discovered

code segments are then returned as classes or clone pairs. A more sophisticated clone

detection process may be done by abstracting variable names, literal values, and other

tokens in the tree representation. However, there are some issues with this technique.

Possible problematic areas include near misses between functions, sub clones and errors

caused by scale (Baxter et al., 1998; Roy & Cordy, 2008). Several AST detection

techniques have been proposed thus far. Various methods include dynamic programming

approaches for handing differences in comparing sub trees (W. Yang, 1991). Converting

the AST to XML using a data mining technique in order to extract parameterized clones

has also been proven to be beneficial (Wahler, Seipel, Gudenberg, & Fischer, 2004).

Metrics based approaches gather various metrics for each of the code fragments.

Instead of comparing the code directly, these metric vectors are examined (Lague,

Proulx, Mayrand, Merlo, & Hudepohl, 1997; Mayrand, Leblanc, & Merlo, 1996; Roy &

Cordy, 2008). Euclidean distance and other distance evaluators may be utilized in order

to indicate code similarities (Koschke, 2007). One technique utilizes calculated metrics

24

for syntactical units. These may include class, function or a method which generate

values which may be compared to discover clones in these units (Roy & Cordy, 2008).

Semantic Approach

Semantic approaches utilize static program analysis to generate more precise

information than from simply using syntactic similarities. This technique is broken up

into two categories, Program Dependency Graph (PDG) and hybrid approaches (Roy &

Cordy, 2008). PDG Based Techniques consider semantic information encoded in the

dependency graph as a form of source code abstraction. In this technique, the generated

information in the dependency graph represents control and data flow information

(Bruntink et al., 2005). A sub graph isomorphic algorithm is used to discover clones as

similar sub graphs from the PDG (Roy & Cordy, 2008).

Symbolic-based Approach

A recent approach to code clone discovery has been through the use of a process

known as Memory Comparison-based Clone Detection (MeCC). This technique

compares abstract memory states which are generated by a semantic-based static

analyzer. In order to generate all of the necessary memory states, symbolic analysis is

used to estimate the effects on all of the procedures being examined.

Behavior-based Approach

Behavior based approaches attempt to discover code clone candidates by studying

the functional behavior of a block of code. This is done by examining how blocks of code

25

react to various inputs. Inputs were provided to methods in the source code and the output

of these methods are then recorded. Similar output indicates a clone candidate (Krawitz,

2012). Krawitz (2012) created a functional analysis tool that discovers clones using a

processes known as Code Clone Discovery Based on Functional Behavior. This work

claims to be able to detect all types of clones and is completely independent of the syntax

of the source code being analyzed.

Concolic Analysis

Concrete variables are items which have a specific value assigned to them.

Symbolic analysis involves symbolic variables used in place of concrete values for input.

These symbolic values may represent theoretically any possible value in the system. A

primary goal of symbolic analysis is to discover all feasible system paths (Sen, Marinov,

& Agha, 2005). Concolic analysis combines concrete and symbolic values in order to

traverse all possible paths of an application (up to a given length). The main premise

behind symbolic execution is the use of symbolic values instead of actual concrete values

(Sen, 2007). Symbolic analysis has been used to compare two programs for semantic

equality (Menon, Pingali, & Mateev, 2003). The computed symbolic outputs are

expressed as a function of the symbolic inputs (Cadar et al., 2011). The state of a

symbolically executed program is comprised of several values. These include the path

condition (PC), the program counter, and the symbolic values of the program variables.

According to Pasareanu (2008), it is comprised of a Boolean formula over the symbolic

inputs. The program counter states the next statement which is to be executed. The

various paths followed during a program’s symbolic execution is represented by the

26

symbolic execution tree (Khurshid, Pasareanu, & Visser, 2003). The next statement to be

executed is typically defined by the program position (PP) (Person et al., 2008).

Concolic analysis is a variant of symbolic execution where concrete executions

are run simultaneously with symbolic analysis (Majumdar & Sen, 2007). The concolic

execution process begins by first generating random values for primitive inputs, and null

values for pointer inputs. Using a loop, these values are fed into the targeted method.

Following this execution, a new test input is generated using the symbolic constraint in

the path constraint. Using this information, solvers are generated which are used to

generate new test input in order to direct the application along a different execution path.

This process is continued until all possible distinct paths have been reached using a depth

search strategy (Sen, 2007). The primary advantage of using concolic instead of symbolic

analysis techniques is the presence of concrete values. These can be used to simplify

constraints and help in the precise reasoning of complex data structures (Majumdar &

Sen, 2007).

Figure 7. Code to be examined by concolic analysis.

27

Figure 8. Concolic Analysis Flow

Figure 7 displays a function which is to have concolic analysis performed upon it,

while Figure 8 shows its data flow. The analysis process would first begin with an

arbitrary value being assigned to a and b. For the concrete execution, a=b=1. Line #2

would set c to be 2, and the if statement in the 3
rd

 line will fail since a ≠ 100000. The

symbolic execution will follow the same path taken by the concrete execution, but will

merely treat a and b as symbolic variables. C will be set to the expression 2b and will

make note that a ≠ 100000 since the test in line 3 failed. This is known as a path

condition and will need to be true for every execution following this same path.

The goal is to follow every path of the application. This means that the next step

for this example is to take the last path condition encountered, a ≠ 100000 and negate it.

This means that a=100000. In order to find values for the input variables a and b, an

automated theorem prover is then invoked using a complete set of symbolic and path

variables created during the symbolic execution process. This automated theorem prover

28

shows the logical consequence of a set of statements. The goal of this prover is to help

ensure that all program paths are properly followed. In this situation, the values created

by this theorem prover may be a=100000 and y =0. Using this input, the application may

now reach the inner branch on line 4. Since 100000 is not less than 2, this branch will not

be taken. This means that the path conditions are now a=100000 and a ≥ c, which will be

negated to have the other path followed meaning that a<c. The theorem prover will next

examine a and b to satisfy a=100000, a<c and x=2b. One example of this may be

a=100000 and b=50001. Using these assumptions, the error on line 5 will be reached and

all possible paths will have been followed.

While traditional concolic based approaches do offer some benefits in comparison

to standard symbolically based methods, the number of possible paths to be explored for

each method is still impractically large for most situations. Typically, only small parts of

the program state space may be explored (Sen et al., 2005). This is largely because as the

length of the executions grow, maintaining and solving symbolic constraints along the

execution path become more expensive. Various program paths may be explored

exhaustively, however both symbolic and concolic based techniques are ill suited for

exploring deep program states which are only reached after long program executions

(Majumdar & Sen, 2007).

 Figure 9. Sample Code.

29

PCs: 1 1 0

--------original PC------------

original pc # = 1

a_1_SYMINT < b_2_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

a_1_SYMINT < b_2_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

a_1_SYMINT < b_2_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 1

a_1_SYMINT < b_2_SYMINT

SPC # = 0

 --> # = 1

a_1_SYMINT < b_2_SYMINT

SPC # = 0 -> true

PCs: 2 2 0

top

--------original PC------------

original pc # = 1

a_1_SYMINT >= b_2_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

a_1_SYMINT >= b_2_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

a_1_SYMINT >= b_2_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 1

a_1_SYMINT >= b_2_SYMINT

SPC # = 0

--> # = 1

a_1_SYMINT >= b_2_SYMINT

SPC # = 0 -> true

PCs: 3 3 0

Bottom

Figure 10. Sample Concolic output.

 Figure 9 shows a code snippet that undergoes concolic analysis, which is

demonstrated in Figure 10. This was generated using a modified version of Java Path

30

Finder (JPF). Path conditions, along with all possible branches and paths the application

may take are displayed in this resulting output. In addition to software testing, concolic

analysis has traditionally been used in several other areas. Some of which includes the

generation of test input data and fault localization (Artzi, Dolby, Tip, & Pistoia, 2010;

Wassermann et al., 2008).

In order to traverse the paths of an application, concolic analysis uses a depth-first

search. A depth-first search is a way of exploring all possible paths of a tree by starting at

the root and traversing each possible branch as far as possible. Once a path has been fully

examined, the search will investigate the next branch until it reaches a terminal point (Li

& Garcia-Luna-Aceves, 2007; Sibeyn, Abello, & Meyer, 2002; Tatti & Cule, 2011). This

is a rather important process in concolic analysis for several reasons. Too short of a

search means that not enough paths will be explored. Too deep of an analysis may lead to

an extremely large or time consuming exploration of the program space. In the event an

infinite loop is encountered, the tree may be impossible to fully traverse (Majumdar &

Sen, 2007; Sen, 2007). Optimally, a middle ground will be found that offers an adequate

exploration of an adequate number of execution spaces, but does not take an

unreasonable number of paths. There are several different methods for handling this

problem. The traditional approach is to backtrack in order to define the search depth.

However, for large or complex application segments, this is still a very expensive task.

Recent research has been done in order to make this analysis into a more efficient

process (Sen et al., 2005).

One method of reducing the possible negative impacts of a depth-first search is to

use a bounded or depth-limited search. This alternative will explore a tree in the same

31

manner as a depth-first search, but will be merely limited by the maximum depth limit

which may be traversed. The main benefit to this method is that infinitely deep paths will

never be explored (Bardin & Herrmann, 2009). A disadvantage of this method will be

that the tree is not explored beneath the defined level of the defined limit value. This

leads to the chance that the entire tree will not be analyzed (Bond, Srivastava, McKinley,

& Shmatikov, 2010; D. Yang & Powers, 2005). Appendix B contains examples of the

concolic output of Figure 9 with a depth search of 1, 3 and 5.

Lakhotia. Harman, & McMinn (2008) describe a concolic search process where

they set the depth search parameter to infinite. They describe how their mechanism got

caught in an infinite loop numerous times and often needed a large number of iterations

to complete its search. This is often the case with unbounded depth searches such as this.

Other works discuss possible alternative methods for resolving this path exploration

issue, but no definitive solution appears to have been discovered to best serve every

possible situation uniformly (Bardin & Herrmann, 2009; Lakhotia et al., 2008; Majumdar

& Sen, 2007; Sen, 2007).

32

Chapter 3

Methodology

Overview of Research Methodology

In order to detect code clone candidates, CCCD performs concolic analysis which

analyzes the flow or paths taken by the application. The detection process is comprised of

two primary phases. The first is to run concolic analysis on the source code. A modified

version of an existing tool known as Java Path Finder (JPF) is used to perform this step
2
.

The generated concolic output is then examined for code clone candidates by looking for

repeated or like segments in this output. Figure 11 depicts the components of CCCD and

the necessary steps to discover code clone candidates. This current research only

represents a proof of concept. Further work may be done in order to make this into a

complete tool.

2
 http://babelfish.arc.nasa.gov/trac/jpf

http://babelfish.arc.nasa.gov/trac/jpf

33

Figure 11. CCCD Sequence and Flow

Concolic Analysis Generation

In order to generate the necessary concolic output, a modified version JPF is

used. This is a free application which has been utilized in previous research (Ihantola,

2006; Kalibera, Parizek, Malohlava, & Schoeberl, 2010; Visser, Pasareanu, &

Khurshid, 2004). JPF was also chosen since it is a robust tool that is easy to use,

configure and modify. Its availability also means that the CCCD process is repeatable

for other researchers.

34

Figure 12. JPF example concolic output.

Running JPF against the source code of an application is a relatively simple

process. The source code of the desired software may be analyzed by this tool through

Eclipse. Figure 12 shows a simple example of concolic output using JPF. Ultimately,

numerous sets of concolic analysis are generated. Since concolic analysis only cares

about the flow of an application and not the precise syntax of the source code, no

normalization is expected to be required (Sen, 2007).

JPF requires numerous modifications and configuration changes in order to make

it into a functional component of CCCD. While the core concolic engine was not altered,

some of its output was changed. The main concolic engine was not modified for several

reasons. The first is that concolic analysis by itself is largely capable of discovering

clones. Subsequent alterations to its output were simply needed to make the clone

35

discovery process more robust and effective. Additionally, CCCD is largely agnostic to

the exact concolic analysis tool implemented. An existing concolic analysis tool should

be interchangeable into the CCCD process.

The alterations made to JPF were made through the application’s listener and

configuration files. These were created as part of JPF in order to make it easily

configurable by other developers. Some of the changes that were made to the listener are

the removal of various unneeded output variables such as the concolic counters and other

configuration settings which are output as part of the concolic generation process.

A significant hurdle that needed to be overcome was the selection of the proper

depth search level for concolic analysis to use in order to discover code clones.

Analyzing too few paths will yield too few results, while examining too many will lead to

too many paths being analyzed which could lead to an overly complex or time consuming

exploration of program space (Bardin & Herrmann, 2009; Lakhotia et al., 2008).

This is a serious matter for CCCD. Too small of a depth search means that not

enough concolic results will be returned since not enough paths will be explored.

Searching too many paths could lead to infinite loops being encountered which will

effectively stop the concolic analysis process. Additionally, if there is a point where a

specific search depth will not create a more accurate process, then traversing any more

paths simply represents wasted resources.

Concolic analysis has the ability to use lazy instantiation in this decision making

process. This means that the components of the method inputs are created in an on

demand basis. Input sizes do not require a priori bounding (Khurshid et al., 2003). The

decision to use lazy instantiation was an important one for ensuring the quality of CCCD.

36

Using lazy initialization with concolic values, the execution tree of the application was

generated. If this tree is infinite, this approach discovers all of the possible nodes of the

tree. This means that a test set with maximum test coverage is created (Ihantola, 2006).

Ensuring maximum coverage is of significance importance in detecting clones. If all

paths are not appropriately explored, this may affect the concolic output and lead to

incorrect determinations during the clone identification process.

Code Clone Candidate Identification

The concolic output is then examined for identical or repeated portions. Sections

are compared using the noted start and end of each method, so that specific code blocks

may be searched for. Since concolic execution only cares about the concolic path or

functionality of the application being examined, duplicate output represents a clone

candidate. This process is done using a diff tool to look for repeated segments. The

concolic output of the examined methods is then compared and exact matches will

identify a clone candidate.

Figure 13. Example function.

37

Figure 14. Example clone function.

Figure 15. Example second clone function.

Figure 16. Example concolic output of Figure 13.

38

Figure 17. Concolic output of Figure 14.

 Figure 18. Concolic output of Figure 15.

Figure 16, Figure 17 and Figure 18 represent the concolic output of the code

snippets. Figure 13 represents a method with distinct functionality and is not a clone (Roy

et al., 2009).

39

Figure 19. Comparison of concolic output of Figure 16 and Figure 17.

Figure 20. Comparison of concolic output of Figure 15 and Figure 16

40

Figure 20 represents a simple diff done using Notepad++
3
. Since the analyzed

source code (Figure 14 & Figure 15) are dissimilar, the diff performed on the concolic

data shows significant differences between this output. However, since Figure 14 and

Figure 15 represent code clones, a diff done on their concolic output in Figure 20 shows

that the concolic output is similar. This dissertation represents a proof of concept. Future

work may be done in order to make this comparison method into an automatic process

and eliminate much of the need for human interaction.

Specific Research Methods Employed

 The research methods employed attempted to find clones of all four categories.

Once the output from CCCD was completed, a manual process was used to determine the

accuracy of the clone candidate discovery process. In order to validate the proposed

process, each of the four clone types were injected into the system. These were taken

from previous research (Krawitz, 2012; Roy et al., 2009). The output of CCCD was then

manually checked to ensure that it properly detected all four of these classes of clones.

This validation effort closely mimics that performed by Krawitz (2012) on this tool.

 CCCD then analyzed several open source applications which acted as

benchmarks. Since JPF is only compatible with software written in Java, all selected

applications were written in this language. The proposed method is only limited by the

chosen concolic analysis system and is language independent as a general process. The

3
 http://notepad-plus-plus.org/

http://notepad-plus-plus.org/

41

applications used as benchmarks were JDraw
4
, DrJava

5
, JabRef

6
, Jrand

7
, Tuxguitar

8
 and

RES
9
. All of these applications are open source and are freely available to the public.

When this data was further processed by CCCD, it demonstrated the ability of concolic

analysis to detect code clone candidates.

Instrument Development and Validation

CCCD is comprised of two existing tools, JPF and an application for performing

diffs, which in this case will be Notepad++. The initial setup of JPF was a relatively easy

and straightforward process which was accomplished by following instructions on the

application’s website
10

. JPF was then significantly modified. These alterations included

functionality changes largely implemented through the application’s listener and

configuration modifications. While the output given to Notepad++ had to be altered, this

diff application did not.

Once JPF had been setup and the proper instructions were followed in order to

allow for basic concolic analysis to be performed, further alterations were then required

in order to make JPF a functional component of CCCD. The largest modification made

was the alteration of the listener. This is customized software in JPF which changes the

desired functionality of the application. Modifying this listener gives the ability to

customize virtually any of the functionality in JPF.

4
 http://jdraw.sourceforge.net/

5
 http://drjava.sourceforge.net/

6
 http://jabref.sourceforge.net/

7
 http://sourceforge.net/projects/jrand/

8
 http://sourceforge.net/projects/tuxguitar/

9
 http://sourceforge.net/projects/opencobol2java/

10
 http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/start

http://jdraw.sourceforge.net/
http://drjava.sourceforge.net/
http://jabref.sourceforge.net/
http://sourceforge.net/projects/jrand/
http://sourceforge.net/projects/tuxguitar/
http://sourceforge.net/projects/opencobol2java/
http://babelfish.arc.nasa.gov/trac/jpf/wiki/install/start

42

Figure 21. Example of concolic counters.

While these modifications to JPF significantly enhanced the concolic values

returned as part of the clone candidate identification process, some cleansing was

required. The first step was to remove the variable counters from the concolic output.

These are merely numeric assignments assigned to variables by JPF in an incremental

fashion. They have no effect on the actual flow of the application and no benefits to the

clone detection process. An example of these counter values are displayed in Figure 21

and are shown as “CONST_1” and “a_1_SYMINT” in bold.

43

Figure 22. Example variable count difference before cleaning.

44

Figure 23. Example variable count difference after cleaning.

Figure 22 represents a diff on some example concolic output before the cleaning

process has taken place and the integer values have been removed. Figure 23 shows

these same two code segments after the cleaning process has occurred and the two

segments are now found to be identical. This cleaning process is important for removing

minor differences between code segments that are simply a byproduct of JPF. These are

not at all indicative of actual differences between the functionality of two segments of

code. This cleaning process took place by altering the JPF’s listener. Once this

adjustment occurred, the modified concolic output was then automatically displayed.

45

Figure 24. Information to be removed from concolic output.

Several other pieces of information that are a byproduct of JPF were then

removed from the output. Figure 24 represents the beginning of a concolic output file. In

this example, several pieces of information exist which are not needed for clone

discovery using concolic analysis. This information is highlighted in red. As part of the

CCCD process, this output was removed since it has no bearing on the functionality of

the examined source code and is merely a byproduct of concolic analysis.

There are numerous settings changes that had to be modified in JPF in order to

use it as part of the CCCD process. While these alterations were not difficult to

implement, they did require a substantial amount of thought in determining what they

should be and how they will interact with the clone detection process. One of these

settings is the debug flag, which should be enabled. This instructs JPF to output the

appropriate concolic data for analysis. Not having this option enacted will not produce

the appropriate concolic output for examination.

46

Figure 25. Example of method referencing another method.

Since the methods may reference and call other functions in the application, the

path explored by concolic analysis may traverse multiple methods. Since the goal of this

work is to only find clones at the method level, the paths which enter outside functions

must be identified. Figure 25 represents a simple method “pathCheck_Master” which

references another method “pathCheck_Sub”. If the modified version of JPF is run

against pathCheck_Master, its flow will enter “pathCheck_Sub”. The concolic output will

not differentiate between the two methods.

47

 Figure 26. Modified concolic output to indicate different method.

48

Figure 27. External function information removed.

A modification to the listener was required to add the ability to notate that a

different method is being referenced. Figure 26 represents the concolic output where a

statement has been added with the name of the new method which has been entered by

the concolic analysis. The modified listener then has the capability to remove information

from the noted paths. This idea is represented in Figure 27. It is important to note that

even though the method names are added to the concolic output, they are not specifically

used in the comparison process used to detect clones. This means that CCCD’s ability to

detect type-3 and type-4 clones is not affected in any way.

49

Figure 28. Example method to be targeted.

CCCD targets individual methods by specifying them in the application’s

configuration file. Focusing on a specific method is done by using the syntax

“symbolic.method = ClassName.MethodName(sym#sym).” ClassName represents the

class being targeted while MethodName is the respective method. The values “sym#sym”

is used to indicate two inputs into the method signature. For example, if the code in

Figure 28 was to be analyzed and was located in a class called “Calculator”, the

configuration file would need to contain “symbolic.method = Calculator.Add(sym#sym)”

Each function which is to be analyzed needs to be referenced in this manner. Future

research may be done in order to add the functionality to automatically execute all

methods of the application in a single command. However, that is out of the scope of this

current research and does not affect the question of if concolic analysis can be used to

detect clone candidates.

Once these alterations have been performed and the output has been cleaned, a

simple diff was performed on it. This may be done using an existing tool, which in this

case was Notepad++. The same process was then used on the next method to be

compared. Ultimately, two sets of concolic output exist and a simple diff process using

Notepad++ was then done in order to indicate a possible clone candidate.

50

Resource Requirements

The resources required to complete this research were not an issue. A concolic

testing application was required to perform concolic analysis on the target application.

This concolic generation application was altered in order to be an effective component of

CCCD. JPF was able to meet these requirements. Additionally, a tool capable of

performing a diff on the modified output was required. This research used Notepad++.

Summary

This research used several open source applications as benchmarks for

demonstrating the effectiveness of CCCD in discovering code clones. Existing clones

were first identified in the benchmark applications. CCCD was then run to see how many

of these clones it was able to discover. Clones of all four types as identified by previous

research were then inserted into these benchmark applications. CCCD was then run to see

how many of these clones it was able to discover.

This work used a modified version of JPF in order to execute concolic analysis on

the examined applications. Notepad++ was then used to perform a diff on the generated

output in order to discover clones. Similar output was indicative of a code clone

candidate. Each of these primary components of CCCD are freely available to download.

51

Chapter 4

Results

Results Introduction

This dissertation introduced CCCD, a candidate code clone detection method

which is based on concolic analysis. This technique was able to detect all four types of

code clone candidates. This chapter presents the results and observations found from

conducting the experiments described in the previous chapter. Several open source

applications were selected and examined for code clone candidates. Additionally, code

clones which were defined by previous works were injected into these applications

(Krawitz, 2012; Roy et al., 2009). These added clones were helpful in showing that

CCCD was capable of discovering clone candidates of all four types. CCCD was then run

against these applications and the results were recorded.

 CCCD discovered clones on a method level by first performing concolic analysis

on each of the desired functions. This output was then compared with the concolic values

from other methods in the application. Identical concolic products indicated a clone

candidate. Based on the results, CCCD was able to discover the vast majority of clone

candidates and only struggled with a single example due various technical limitations of

the selected modified concolic analysis tool, JPF. Future development of this tool or the

selection of a different concolic analysis application would likely alleviate this issue. This

52

hurdle was by no means a limitation of CCCD, but only of the selected concolic analysis

tool.

CCCD Results

CCCD was first evaluated against clones which were defined by Krawitz (2012)

and Roy (2009). These are shown in Appendix A. These existing clone examples were

selected for several reasons. The first is that using them gave an initial indication of the

effectiveness of CCCD and what clones and clone types it was able to discover.

Secondly, these examples represent a full spectrum of all clone types providing a solid

evaluation benchmark for CCCD. Finally, since this information originated from existing

research it is repeatable for future analysis. In order to evaluate CCCD against these

examples, each of the selected clones by Roy (2009) and Krawitz (2012) were analyzed

by CCCD. Their output was then compared and the determination was made if a clone

was successfully identified.

53

Figure 29. Type-1 Clones in Injected Code.

54

Figure 30. Type-1 Concolic Output of Figure 29.

An example of an inserted type-1 clone is represented in Figure 29. These clones

are semantically identical (Koschke, 2007). CCCD was able to detect the existence of a

code clone candidate between these two functions by comparing the concolic output of

these two methods. These results are shown in Figure 30. The concolic output of both of

these methods is identical, thus correctly indicating a code clone. Due to the significant

length of the concolic output, an abbreviated segment shown in Figure 30. Complete

results for all injected clones may be found in Appendix C.

55

Figure 31. Type-2 Clones in Injected Code.

Figure 32. Type-2 Concolic Output of Figure 31.

56

Type-2 clones are syntactically identical except for variable identifiers and

variable types (Koschke, 2007). Figure 31 represents an example of a type-2 clone as

defined by Krawitz (2012). Figure 32 displays the concolic output created by CCCD for

each of the analyzed methods. Based on the diff process, there are no differences between

the output generated by CCCD for these methods. This is a correct indication of a code

clone. Due to the significant length of the concolic output, an abbreviated segment is

shown in Figure 32. Complete results for all injected clones may be found in Appendix

C.

Figure 33. Type-3 Clones in Injected Code.

57

Figure 34. Type-3 Concolic Output of Figure 33.

Type-3 clones have differences between methods that include added, removed or

altered statements (Koschke, 2007). An example of a type-3 clone as defined by Krawitz

(2012) is shown in Figure 33. The output generated by CCCD is shown in Figure 34. A

diff between these two sets of concolic output states that they are identical, thus properly

indicating a code clone candidate. Due to the extreme length of the concolic output, an

abbreviated segment is shown in Figure 34. Complete results for all injected clones may

be found in Appendix C.

58

Figure 35. Type-4 Clones in Injected Code.

Figure 36. Type-4 Concolic Output of Figure 35

59

Type-4 clones are methods which produce the same result, but by using different

syntax (Koschke, 2007). An example of a type-4 clone as defined by Krawitz (2012) is

shown in Figure 35. The output from each of these methods is shown in Figure 36. A diff

on these two sets of concolic output indicates that the two sets of output are identical,

thus properly indicating a clone candidate. Due to the significant length of the concolic

output, an abbreviated segment is shown in Figure 36. Complete results for all injected

clones may be found in Appendix C.

60

Table 1. Roy Results

61

Table 2. Krawitz Results.

Discovering all four clone types was very important because it demonstrated the

robustness and effectiveness of CCCD. In order to further demonstrate its abilities,

CCCD was run in a similar fashion against several other clones already defined by

Krawitz (2012) and Roy (2009). A full listing of these clones is represented in Appendix

A. As shown in Table 1, CCCD was able to discover clones defined by Roy (2009) very

effectively. All types of clones were found. The only issues arose when CCCD attempted

to analyze one of the clones as defined by Roy (2009), known as “3c” which is

represented in Appendix A. JPF was unable to traverse all paths of this method for

technical reasons. This is a limitation of JPF, not of the CCCD process. This constraint

will be further discussed in Chapter 5 of this work. Even with this issue, CCCD was able

to discover clones defined by Roy (2009) very proficiently. Table 2 displays CCCD’s

ability to discover code clone candidates based upon the work by Krawitz (2012). CCCD

was able to properly detect all of these clones.

62

Table 3. Existing Clones in Template Applications.

The next phase was to look for clones in the benchmark software. The examined

open source applications were RES, JRand, DrJava, Jabref, JDraw, PS and TuxGuitar.

Clones were pre-identified in the benchmark applications by using a manual process.

Only type-1 and type-2 clones were discovered using this technique. This is not

surprising since manually identifying type-3 and type-4 clone candidates is very difficult

due to their semantic differences. CCCD was then ran against these applications to see if

all of the manually identified clones could be discovered using this technique. CCCD was

able to discover all 14 type-1 clones and the 3 identified type-2 clones in these

applications. A complete set of these results may be seen in Table 3.

63

Table 4. Injected Clones in Template Applications.

Application Type-1 Type-2 Type-3 Type-4 Total

RES Yes Yes Yes Yes 4/4

JRand Yes Yes Yes Yes 4/4

DrJava Yes Yes Yes Yes 4/4

Jabref Yes Yes Yes Yes 4/4

JDraw Yes Yes Yes Yes 4/4

PS Yes Yes Yes Yes 4/4

TuxGuitar Yes Yes Yes Yes 4/4

Total 7/7 7/7 7/7 7/7 28/28

In order to determine if CCCD was able to detect all four types of clones in these

benchmark applications, clones identified by Krawitz (2012) and Roy (2009) were

randomly injected into the source code and their locations were noted. A class containing

all four types of clones was inserted into each application. The example class with all

four clone types is represented in Appendix A. CCCD was then ran against these

applications to see if all four types of clones could be identified in this sample class. For

each application, CCCD was able to identify all of the inserted clones in this class.

The next step was to randomly insert clones defined by Krawitz (2012) and Roy

(2009) into these applications. CCCD was then run against these applications to see

which of these injected clones it would be able to discover. CCCD was able to identify all

28 clones injected into these applications. These results are represented in Table 4.

64

Summary

CCCD has been shown to be able to detect code clone candidates of all types

using concolic analysis. CCCD was able to discover potential clones at the method level.

Manual analysis was first used to find potential clones in several open source benchmark

applications. CCCD was able to identify all of these manually identified clones. More

clones of all types were taken from previous research and then injected into these

applications. CCCD was able to discover all of these clones. CCCD had no trouble

discovering all four types of clones, even the most difficult type-3 and type -4 clones.

65

Chapter 5

Conclusions

Concolic analysis has been demonstrated to be a highly effective code clone

discovery mechanism capable of finding all types of clones. Concolic analysis was the

primary mechanism for a developed clone detection process, CCCD. The semantics of

the examined source code had no effect on CCCD’s detection capabilities since concolic

analysis only relies on the flow of the application and its possible paths. Things like

naming conventions and comments which have been problematic for previous clone

detection techniques have no bearing on CCCD (Roy et al., 2009). Discovering code

clones is important in the field of software development (Bellon, Koschke, Antoniol,

Krinke, & Merlo, 2007; Higo et al., 2007; Hummel et al., 2011). Clones increase the size

and complexity of an application. This makes maintenance more complex and expensive.

This increased size makes program comprehension more difficult (Geiger et al., 2006;

Gode & Koschke, 2009).

 CCCD worked by first performing concolic analysis on the source code of the

targeted application on a method by method basis. This was done using a modified

version of JPF. The output was then recorded and duplicate concolic output was an

indication of a clone candidate.

66

Implications

 This dissertation demonstrated the ability of concolic analysis to identify all four

types of clones. Methods of ensuring proper path coverage using lazy instantiation for

concolic analysis were also discussed. This is important because improper path coverage

could lead to code clones being misidentified, either as false positives or false negatives.

This dissertation also discussed proper methods of preparing the concolic output for

comparison. Unneeded values from concolic analysis were removed. Improperly

removing these values could also lead to inaccurate clone detection results.

Recommendations

CCCD was developed in order to prove the ability of concolic analysis to act as

the basis for a candidate code clone discovery technique. While this tool was very

effective in demonstrating these capabilities, it is by no means a complete application.

Further work is needed to make clone detection into a more automated process.

Additionally, it would be useful for the application to internally perform a diff and

automatically create a report with the clone candidates discovered in the target

application. Enhancements to the actual concolic generation process would also help in

avoiding fatal errors when unsupported code is encountered. While this was not a

significant problem in this work, this can foreseeably be an issue when this tool is applied

on a much larger scale.

 During the concolic analysis process, fatal exceptions would occur when JPF

encountered an unsupported variable type. Some these unsupported variable types

67

include short, byte and float. This is not a significant concern for several reasons. First of

all, JPF is merely a concolic analysis component of CCCD. Future work on JPF or the

inclusion of another concolic analysis tool into CCCD would likely solve this problem.

Secondly, CCCD was still able to proficiently discover type-3 and even the tougher type-

4 clones.

 CCCD was successful at discovering clones on the method level. Future work

may be done in order to allow concolic analysis to detect clones at a more granular level.

This work would entail modifying JPF or the selected concolic analysis tool. These

modifications were not done in this dissertation because the goal of this work was to

merely demonstrate the feasibility of discovering code clones using concolic analysis.

Summary

 Many software systems exist for extended periods of time. These applications will

typically need to be updated in order to add new functionality and have bugs repaired

(Kim et al., 2011). During these updates, functionality will often be duplicated in several

areas of the application (Marcus & Maletic, 2001). This can occur for a variety of

reasons. The first is that developers may not be aware that they are replicating this

functionality. Applications are frequently very large, and developers often join and leave

the project teams intermittently throughout its lifecycle. This makes it extremely difficult

for developers to have a thorough understanding of the system. This lack of program

comprehension may lead to developers unknowingly duplicating functionality throughout

the application (Meneely et al., 2008). Developers may also knowingly repeat

68

functionality in an application. In order to save time, they may copy and paste source

code to several areas of the application, a process which is detrimental from a software

engineering perspective (Pressman, 2010). These repeated segments often comprise a

significant portion of a software project. One estimate is that between 5-23% of all code

in software is redundant or exact copy and pastes of the source code (Baxter et al., 1998;

Schulze et al., 2010).

 Code clones are defined as multiple code fragments which produce similar results

when given the same input (Fukushima et al., 2009). There are generally four types of

accepted code clones (Roy et al., 2009). These range in complexity from the simpler

type-1 to the more complex type-4 clones. There four defined levels of clones as

described by Gold, Krinke, Harman, and Binkley (2010) are:

 Type-1: The code is syntactically identical except for white spaces, layout and

comments.

 Type-2: Code is syntactically identical except for variations in identifiers, literals,

types, and variations permitted under Type 1.

 Type-3: Code which is modified by adding, removing, or alteration statements, in

addition to variations allowed under Type 2.

 Type-4: Code which uses different syntax, but produces the same result.

69

Clones are generally considered to be detrimental for a variety of reasons. First of

all, they increase the maintenance costs of an application. This is because changes will

need to be made and tested in numerous locations throughout the application (Juergens et

al., 2009). Additionally, if changes are made inconsistently, this could lead to faults

persisting in the application when changes to specific clones are overlooked

(Deissenboeck et al., 2010). Additionally, tangled or scattered code will make it more

difficult for developers to fully and properly understand the code base. This could lead to

longer time being required for program comprehension (Kapser & Godfrey, 2008).

Several existing categories for clone detection techniques exist (Bruntink et al.,

2005; Kim et al., 2011; Krawitz, 2012; Roy et al., 2009). These are:

 Text: Attempt to detect similar sequences by using minimal analysis.

 Lexical/Token: Apply lexical analysis to the source code and attempts to locate

similar lines of code.

 Tree: Obtain a syntactical representation of the source code by using parsers.

 Metrics: Related to hashing algorithms. In this methodology, each fragment of a

program, a number of various metrics are gathered regarding them. This information

is subsequently used to find similar fragments.

 Graph: Obtains source code representation from a high level of abstraction.

70

 Program Dependency Graphs (PDGs) are comprised of information of a semantic

manner. These include data such as control and data flow of the program.

 Functional: Performs black box testing on blocks of code. Clones produce identical

outputs when provided identical inputs.

 Symbolic: Uses symbolic output of an application to discover similarities.

 Many clone detection tools are only able to discover the simpler type-1 and type-2

clones. Far fewer works claim the ability to discover type-3 clones (Roy et al., 2009).

Only two techniques claim to be able to discover the most complicated types of clones,

type-4. These techniques use functional analysis and a memory comparison based

technique. A primary drawback to the functional analysis process is that random data

needs to be generated in order to discover clones. This can be a difficult and time

consuming process (Krawitz, 2012). The memory comparison based technique suffers

because it takes quite a long time to run and that it explores what is often an unreasonable

large number of program states (Kim et al., 2011; Majumdar & Sen, 2007).

 This dissertation introduced a new technique for discovering clone clones based

on concolic analysis. CCCD is a tool which uses concolic analysis as the main

component for detecting clones. CCCD first performs concolic analysis on the targeted

source code using a modified version of JPF. Concolic analysis works by combining

concrete and symbolic values in order to traverse all possible paths of an application (up

to a given length) (Sen, 2007). Concolic analysis ultimately generates output indicating

all possible paths an application may take (Majumdar & Sen, 2007; Sen et al., 2005).

71

Semantics, comments and infeasible paths are not taken into consideration. During this

concolic analysis process, the modified version of JPF alters this generated output in

order to remove unneeded information. This is accomplished through modifications made

to the listener of this tool.

 The final step of CCCD is a diff process conducted on this concolic output. As

part of this proof of concept, an existing application known as Notepad++ carries out this

phase. Duplicated output is an indication of a code clone candidate. This is because

redundant output indicates that the paths or functionality of the application are identical.

This identical functionality is a sign of a code clone candidate.

 CCCD was verified using clones established by previous research (Krawitz, 2012;

Roy et al., 2009). The first step was to confirm that CCCD was able to properly discover

these previously identified clones on an individual basis, which it was successful in

doing. The next phase was to verify that CCCD would be able to find clone candidates in

existing programs. Several open source applications were selected and clones were

manually identified in them. CCCD was then run against these programs and all of the

pre-identified clones were successfully discovered by CCCD. All of these identified

clones were of the simpler type-1 and type-2 categories. In order to check CCCD’s ability

to discover the more complicated clones in existing applications, type-3 and type-4

clones were taken from previous research by Krawitz (2012) and Roy (2009). These

clones were then injected into the selected open source applications. CCCD then

examined the programs in order to check its ability to discover the clones. CCCD was

able to discover all of the injected clones in these applications. During the development

72

of CCCD, several questions had to be answered. These included the proper depth search,

the use of lazy instantiation and how un-needed data could be removed from the concolic

results.

This dissertation presented a new process for discovering code clones known as

CCCD. Using concolic analysis, this technique found clone candidates based on the

functionality of the application and not its syntactic nature. This means that things like

naming conventions and comments in the source code had no effect on this clone

detection process. CCCD was able to discover all four types of clones. The tool was

verified using clones defined by several existing works and against manually identified

existing clones in benchmark applications.

73

Appendix A

CCCD Validation Data for Type-1, Type-2, Type-3 and Type-4 Clones

import java.lang.Math;

public class Basic_Class1 {

 // Example of a dummy, non-clone function

 public void foo1(int a){

 if(a <3){

 while(a <3){

 a = a+1;

 System.out.println("while");

 }

 }

 }

 // Example of a dummy, non-clone function

 public int foo2(int a, int b)

 {

 if(a>b){

 b = a;

 }

 return a;

 }

 // Example of a dummy, non-clone function

 public int foo3(int a)

 {

 for (int i=0; i<a;i++){

 a = a+1;

 }

 return a;

 }

 // Example of a dummy, non-clone function

 public boolean foo4(int a){

 if (a>3){

 return true;

 }else{

 return false;

 }

 }

74

// Note: The following clones were taken from work by Krawitz(2012)

 //Type-1 Clones - Krawitz

 public double Type1a_Krawitz(int n)

 {

 int p = -1;

 int sum = 0;

 for (p = 0; p < n; p++)

 {

 sum += p;

 }

 if (n == 0) return sum;

 else return sum / n;

 }

 // Type 1 Clone - Krawitz

 public double Type1b_Krawitz(int n)

 {

 int p = -1;

 int sum = 0;

 //this is a comment that is not in any other method()

 for (p = 0; p < n; p++)

 sum += p;

 if (n == 0)

 return sum;

 else

 return sum / n;

 }

 //Type-2 Clones - Krawitz

 public double Type2a_Krawitz(int n)

 {

 int q = -1;

 double sum = 0;

 for (q = 0; q < n; q++)

 {

 sum += q;

 }

 if (n == 0) return sum;

 else return sum / n;

 }

 //Type-2 Clones - Krawitz

 public double Type2b_Krawitz(int t)

 {

 int p = -1;

75

 int tot = 0;

 //this is a comment that is not the same as any other comment

 for (p = 0; p < t; p++)

 tot += p;

 if (t == 0)

 return tot;

 else

 return tot / t;

 }

 // type 3 clone from Krawitz

 public double Type3a_Krawitz(int n)

 {

 int q = -1;

 double sum = 0;

 q = 0;

 while(q < n)

 {

 sum += q;

 q++;

 }

 if (n == 0) return sum;

 else return sum / n;

 }

 // type 3 clone - Krawitz

 public double Type3b_Krawitz(int t)

 {

 int p = -1, tot = 0;

 //this is another unique comment

 for (p = 0; p < t; p++)

 tot += p;

 if (t == 0)

 return (double)tot;

 else

 return (double)tot / t;

 }

76

 //Type-4 Clones - Krawitz

 public double Type4a_Krawitz(int limit)

 {

 //to prevent stack overflow when large random values are input

 if (limit > 1000 || limit < 1)

 limit = 1;

 double[] d = new double[limit];

 double tot = 0;

 for (int n = 0; n < d.length; n++)

 d[n] = n * n * n;

 for (int n = 0; n < d.length; n++)

 tot += d[n];

 return tot;

 }

 // Type 4 Clone - Krawitz

 public double Type4b_Krawitz(int limit)

 {

 //to prevent stack overflow when large random values are input

 if (limit > 1000 || limit < 1)

 limit = 1000;

 return Type4b2_Krawitz("-", limit, 0, 0);

 }

 public double Type4b2_Krawitz(String s, int limit, double tot,

int n){

 if (limit > 1000 || limit < 1)//to prevent stack overflow

 limit = 1000;

 if (n < limit)

 tot = Type4b2_Krawitz("-", limit, tot + Math.pow(n, 3), ++n);

 return tot;

 }

// Note, these clones were taken from the work by Cordy(2008)

 // Original Code - Cordy

 void sumProdO(int n) {

 double sum=0.0; //C1

 double prod =1.0;

 for (int i=1; i<=n; i++)

 {

 sum=sum + i;

 prod = prod * i;

 foo(sum, prod);

 }

77

 }

// Example 1A - Type 1 Clone - Cordy

 void sumProd1A(int n) {

 double sum=0.0; //C1

 double prod =1.0;

 for (int i=1; i<=n; i++)

 {

 sum=sum + i;

 prod = prod * i;

 foo(sum, prod);

 }

 }

 // Example 1B - Type 1 Clone - Cordy

 void sumProd1B(int n) {

 double sum=0.0; //C1

 double prod =1.0; //C

 for (int i=1; i<=n; i++)

 {

 sum=sum + i;

 prod = prod * i;

 foo(sum, prod);

 }

 }

// Example 1C - Type 1 Clone - Cordy

 void sumProd1C(int n) {

 double sum=0.0; //C1

 double prod =1.0;

 for (int i=1; i<=n; i++) {

 sum=sum + i;

 prod = prod * i;

 foo(sum, prod);

 }

 }

 // Example 2A - Type 2 Clone - Cordy

 void sumProd2A(int n){

 double s=0.0; //C1

 double p =1.0;

 for (int j=1; j<=n; j++)

 {

 s=s + j;

 p = p * j;

 foo(s, p);

 }

 }

78

 // Example 2B - Type 2 Clone - Cordy

 void sumProd2B(int n){

 double s=0.0; //C1

 double p =1.0;

 for (int j=1; j<=n; j++)

 {

 s=s + j;

 p = p * j;

 foo(p, s);

 }

 }

 // Example 2C - Type 2 Clone - Cordy

 void sumProd2C(int n) {

 int sum=0; //C1

 int prod =1;

 for (int i=1; i<=n; i++)

 {

 sum=sum + i;

 prod = prod * i;

 foo(sum, prod);

 }

 }

 // Example 2D - Type 2 Clone - Cordy

 void sumProd2D(int n) {

 double sum=0.0; //C1

 double prod =1.0;

 for (int i=1; i<=n; i++)

 {

 sum=sum + (i*i);

 prod = prod*(i*i);

 foo(sum, prod);

 }

 }

 // Example 3A - Type 3 Clone - Cordy

 void sumProd3A(int n) {

 double sum=0.0; //C1

 double prod =1.0;

 for (int i=1; i<=n; i++)

 {

 sum=sum + i;

 prod = prod * i;

 foo(sum, prod, n);

 }

 }

79

 // Example 3B - Type 3 Clone - Cordy

 void sumProd3B(int n) {

 double sum=0.0; //C1

 double prod =1.0;

 for (int i=1; i<=n; i++)

 {

 sum=sum + i;

 prod = prod * i;

 foo(prod);

 }

 }

 // Example 3C - Type 3 Clone - Cordy

 void sumProd3C(int n) {

 double sum=0.0; //C1

 double prod =1.0;

 for (int i=1; i<=n; i++)

 {

 sum=sum + i;

 prod = prod * i;

 if ((n % 2) == 0) {

 foo(sum, prod);

 }

 }

 }

 // Example 3D - Type 3 Clone - Cordy

 void sumProd3D(int n) {

 double sum=0.0; //C1

 double prod =1.0;

 for (int i=1; i<=n; i++)

 {

 sum=sum + i;

 //line deleted

 foo(sum, prod);

 }

 }

 // Example 3E - Type 3 Clone - Cordy

 // For syntax purposes, the precise functionality was altered.

 public void sumProd3E(int n) {

 double sum=0.0; //C1

 double prod =1.0;

 for (int i=1; i<=n; i++)

 {

 if (i %2 == 0){

 sum+= i;

 }

 prod = prod * i;

 foo(sum, prod);

 }

80

 }

 // Example 4a - Type 4 Clone - Cordy

 void sumProd4A(int n) {

 double prod =1.0;

 double sum=0.0; //C1

 for (int i=1; i<=n; i++)

 {

 sum=sum + i;

 prod = prod * i;

 foo(sum, prod);

 }

 }

 // Example 4B - Type 4 Clone - Cordy

 void sumProd4B(int n) {

 double sum=0.0; //C1

 double prod =1.0;

 for (int i=1; i<=n; i++)

 {

 prod = prod * i;

 sum=sum + i;

 foo(sum, prod);

 }

 }

 // Example 4C - Type 4 Clone - Cordy

 void sumProd4C(int n) {

 double sum=0.0; //C1

 double prod =1.0;

 for (int i=1; i<=n; i++)

 {

 sum=sum + i;

 foo(sum, prod);

 prod=prod * i;

 }

 }

 // Example 4D - Type 4 Clone - Cordy

 void sumProd4D(int n) {

 double sum=0.0; //C1

 double prod =1.0;

 int i=0;

 while (i<=n)

 {

 sum=sum + i;

 prod = prod * i;

 }

 }

// dummy methods to simply handle the test sum prod functions

81

private double foo(double sum)[return sum +1.0;]

private double foo(double sum, double prod, double temp)[

return sum + prod + temp;

]

private double foo(double sum, double prod)[return sum + prod +1;]

82

Appendix B

Depth Search Examples

Depth Search Limit of 1

No path conditions for Run(0,java.lang.String@133,java.lang.String@135)

Depth Search Limit of 3

PCs: 1 1 0

--------original PC------------0

original pc # = 1

a_1_SYMINT < a_1_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

a_1_SYMINT < a_1_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

a_1_SYMINT < a_1_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 1

a_1_SYMINT < a_1_SYMINT

SPC # = 0

 --> # = 1

a_1_SYMINT < a_1_SYMINT

SPC # = 0 -> false

PCs: 2 1 1

== search

constraint

Search Depth: 3

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

83

 call stack:

 at ProxyRun.depthTest(ProxyRun.java:82)

 at ProxyRun.Run(ProxyRun.java:33)

 at ProxyRun.main(ProxyRun.java:13)

--------original PC------------0

original pc # = 1

a_1_SYMINT >= a_1_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

a_1_SYMINT >= a_1_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

a_1_SYMINT >= a_1_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 1

a_1_SYMINT >= a_1_SYMINT

SPC # = 0

 --> # = 1

a_1_SYMINT >= a_1_SYMINT

SPC # = 0 -> true

PCs: 3 2 1

bottom

== search

constraint

Search Depth: 3

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at DrJava.toStringA(DrJava.java:21)

 at ProxyRun.Run(ProxyRun.java:61)

 at ProxyRun.main(ProxyRun.java:13)

Depth Search Limit of 5

PCs: 1 1 0
--------original PC------------0
original pc # = 1
a_1_SYMINT < a_1_SYMINT
SPC # = 0
--- end printing original PC ---
--------begin after splitting------------
originalPC # = 1

84

a_1_SYMINT < a_1_SYMINT
SPC # = 0
concolicPC # = 0
SPC # = 0
simplePC # = 1
a_1_SYMINT < a_1_SYMINT
SPC # = 0
--------end after splitting------------
solving: PC # = 1
a_1_SYMINT < a_1_SYMINT
SPC # = 0
 --> # = 1
a_1_SYMINT < a_1_SYMINT
SPC # = 0 -> false
PCs: 2 1 1
--------original PC------------0
original pc # = 1
a_1_SYMINT >= a_1_SYMINT
SPC # = 0
--- end printing original PC ---
--------begin after splitting------------
originalPC # = 1
a_1_SYMINT >= a_1_SYMINT
SPC # = 0
concolicPC # = 0
SPC # = 0
simplePC # = 1
a_1_SYMINT >= a_1_SYMINT
SPC # = 0
--------end after splitting------------
solving: PC # = 1
a_1_SYMINT >= a_1_SYMINT
SPC # = 0
 --> # = 1
a_1_SYMINT >= a_1_SYMINT
SPC # = 0 -> true
PCs: 3 2 1
bottom
--------original PC------------0
original pc # = 2
Length_0_ == CONST_0 &&
a_1_SYMINT >= a_1_SYMINT
SPC # = 0
--- end printing original PC ---
--------begin after splitting------------
originalPC # = 2
Length_0_ == CONST_0 &&
a_1_SYMINT >= a_1_SYMINT
SPC # = 0
concolicPC # = 0
SPC # = 0
simplePC # = 2
a_1_SYMINT >= a_1_SYMINT &&

85

Length_0_ == CONST_0
SPC # = 0
--------end after splitting------------
solving: PC # = 2
a_1_SYMINT >= a_1_SYMINT &&
Length_0_ == CONST_0
SPC # = 0
 --> # = 2
a_1_SYMINT >= a_1_SYMINT &&
Length_0_ == CONST_0
SPC # = 0 -> false
PCs: 4 2 2
--------original PC------------0
original pc # = 2
Length_0_ != CONST_0 &&
a_1_SYMINT >= a_1_SYMINT
SPC # = 0
--- end printing original PC ---
--------begin after splitting------------
originalPC # = 2
Length_0_ != CONST_0 &&
a_1_SYMINT >= a_1_SYMINT
SPC # = 0
concolicPC # = 0
SPC # = 0
simplePC # = 2
a_1_SYMINT >= a_1_SYMINT &&
Length_0_ != CONST_0
SPC # = 0
--------end after splitting------------
solving: PC # = 2
a_1_SYMINT >= a_1_SYMINT &&
Length_0_ != CONST_0
SPC # = 0
 --> # = 2
a_1_SYMINT >= a_1_SYMINT &&
Length_0_ != CONST_0
SPC # = 0 -> true
PCs: 5 3 2
--------original PC------------0
original pc # = 3
CONST_1 >= Length_0_ &&
Length_0_ != CONST_0 &&
a_1_SYMINT >= a_1_SYMINT
SPC # = 0
--- end printing original PC ---
--------begin after splitting------------
originalPC # = 3
CONST_1 >= Length_0_ &&
Length_0_ != CONST_0 &&
a_1_SYMINT >= a_1_SYMINT
SPC # = 0
concolicPC # = 0

86

SPC # = 0
simplePC # = 3
a_1_SYMINT >= a_1_SYMINT &&
Length_0_ != CONST_0 &&
CONST_1 >= Length_0_
SPC # = 0
--------end after splitting------------
solving: PC # = 3
a_1_SYMINT >= a_1_SYMINT &&
Length_0_ != CONST_0 &&
CONST_1 >= Length_0_
SPC # = 0
 --> # = 3
a_1_SYMINT >= a_1_SYMINT &&
Length_0_ != CONST_0 &&
CONST_1 >= Length_0_
SPC # = 0 -> true
PCs: 6 4 2
--------begin after splitting------------
originalPC # = 3
CONST_1 >= Length_0_[1] &&
Length_0_[1] != CONST_0 &&
a_1_SYMINT[-1000000] >= a_1_SYMINT[-1000000]
SPC # = 0
concolicPC # = 0
SPC # = 0
simplePC # = 3
a_1_SYMINT[-1000000] >= a_1_SYMINT[-1000000] &&
Length_0_[1] != CONST_0 &&
CONST_1 >= Length_0_[1]
SPC # = 0
--------end after splitting------------
solving: PC # = 3
a_1_SYMINT[-1000000] >= a_1_SYMINT[-1000000] &&
Length_0_[1] != CONST_0 &&
CONST_1 >= Length_0_[1]
SPC # = 0
 --> # = 3
a_1_SYMINT[-1000000] >= a_1_SYMINT[-1000000] &&
Length_0_[1] != CONST_0 &&
CONST_1 >= Length_0_[1]
SPC # = 0 -> true
MethodInfo[ProxyRun.main([Ljava/lang/String;)V]

== search constraint
Search Depth: 5

== snapshot
no live threads
--------original PC------------0
original pc # = 3
CONST_1 < Length_0_ &&
Length_0_ != CONST_0 &&

87

a_1_SYMINT >= a_1_SYMINT
SPC # = 0
--- end printing original PC ---
--------begin after splitting------------
originalPC # = 3
CONST_1 < Length_0_ &&
Length_0_ != CONST_0 &&
a_1_SYMINT >= a_1_SYMINT
SPC # = 0
concolicPC # = 0
SPC # = 0
simplePC # = 3
a_1_SYMINT >= a_1_SYMINT &&
Length_0_ != CONST_0 &&
CONST_1 < Length_0_
SPC # = 0
--------end after splitting------------
solving: PC # = 3
a_1_SYMINT >= a_1_SYMINT &&
Length_0_ != CONST_0 &&
CONST_1 < Length_0_
SPC # = 0
 --> # = 3
a_1_SYMINT >= a_1_SYMINT &&
Length_0_ != CONST_0 &&
CONST_1 < Length_0_
SPC # = 0 -> true
PCs: 7 5 2

== search constraint
Search Depth: 5

== snapshot
thread
index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,priority=
5,lockCount=0,suspendCount=0
 call stack:
 at DrJava.toStringA(DrJava.java:28)
 at ProxyRun.Run(ProxyRun.java:61)
 at ProxyRun.main(ProxyRun.java:13)

PC # = 3
CONST_1 >= Length_0_[1] &&
Length_0_[1] != CONST_0 &&
a_1_SYMINT[-1000000] >= a_1_SYMINT[-1000000]
SPC # = 0

88

Appendix C

Extended Concolic Output

Krawitz 1a

PCs: 1 1 0

--------original PC------------0

original pc # = 1

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

CONST < a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 1

CONST < a_SYMINT

SPC # = 0

 --> # = 1

CONST < a_SYMINT

SPC # = 0 -> true

PCs: 2 2 0

--------original PC------------0

original pc # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST < a_SYMINT &&

89

CONST < a_SYMINT

SPC # = 0

 --> # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0 -> true

PCs: 3 3 0

--------original PC------------0

original pc # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0 -> true

PCs: 4 4 0

== search

constraint

Search Depth: 5

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type1a_Krawitz(Basic_Class1.java:59)

 at Diss.Basic_Super.Run(Basic_Super.java:24)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 3

90

CONST >= a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

CONST >= a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0 -> true

PCs: 5 5 0

== search

constraint

Search Depth: 5

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type1a_Krawitz(Basic_Class1.java:64)

 at Diss.Basic_Super.Run(Basic_Super.java:24)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 2

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 2

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

91

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

 --> # = 2

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0 -> true

PCs: 6 6 0

--------original PC------------0

original pc # = 3

a_SYMINT == CONST &&

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

a_SYMINT == CONST &&

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0 -> false

PCs: 7 6 1

== search

constraint

Search Depth: 5

== snapshot

92

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type1a_Krawitz(Basic_Class1.java:64)

 at Diss.Basic_Super.Run(Basic_Super.java:24)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 3

a_SYMINT != CONST &&

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

a_SYMINT != CONST &&

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0 -> true

PCs: 8 7 1

== search

constraint

Search Depth: 5

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type1a_Krawitz(Basic_Class1.java:65)

 at Diss.Basic_Super.Run(Basic_Super.java:24)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

93

original pc # = 1

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

CONST >= a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 1

CONST >= a_SYMINT

SPC # = 0

 --> # = 1

CONST >= a_SYMINT

SPC # = 0 -> true

PCs: 9 8 1

--------original PC------------0

original pc # = 2

a_SYMINT == CONST &&

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 2

a_SYMINT == CONST &&

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

 --> # = 2

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0 -> true

PCs: 10 9 1

--------begin after splitting------------

originalPC # = 2

a_SYMINT[0] == CONST &&

CONST >= a_SYMINT[0]

SPC # = 0

concolicPC # = 0

SPC # = 0

94

simplePC # = 2

CONST >= a_SYMINT[0] &&

a_SYMINT[0] == CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST >= a_SYMINT[0] &&

a_SYMINT[0] == CONST

SPC # = 0

 --> # = 2

CONST >= a_SYMINT[0] &&

a_SYMINT[0] == CONST

SPC # = 0 -> true

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V]

--------original PC------------0

original pc # = 2

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 2

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0

 --> # = 2

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0 -> true

PCs: 11 10 1

--------original PC------------0

original pc # = 3

REAL == CONST &&

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

REAL == CONST &&

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

95

SPC # = 0

simplePC # = 3

CONST >= a_SYMINT &&

a_SYMINT != CONST &&

REAL == CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST >= a_SYMINT &&

a_SYMINT != CONST &&

REAL == CONST

SPC # = 0

Krawitz 1b

PCs: 1 1 0

--------original PC------------0

original pc # = 1

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

CONST < a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 1

CONST < a_SYMINT

SPC # = 0

 --> # = 1

CONST < a_SYMINT

SPC # = 0 -> true

PCs: 2 2 0

--------original PC------------0

original pc # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

96

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

 --> # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0 -> true

PCs: 3 3 0

--------original PC------------0

original pc # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0 -> true

PCs: 4 4 0

== search

constraint

Search Depth: 5

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

97

 at Diss.Basic_Class1.Type1b_Krawitz(Basic_Class1.java:74)

 at Diss.Basic_Super.Run(Basic_Super.java:25)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 3

CONST >= a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

CONST >= a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0 -> true

PCs: 5 5 0

== search

constraint

Search Depth: 5

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type1b_Krawitz(Basic_Class1.java:77)

 at Diss.Basic_Super.Run(Basic_Super.java:25)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 2

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

98

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 2

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

 --> # = 2

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0 -> true

PCs: 6 6 0

--------original PC------------0

original pc # = 3

a_SYMINT == CONST &&

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

a_SYMINT == CONST &&

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0 -> false

PCs: 7 6 1

99

== search

constraint

Search Depth: 5

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type1b_Krawitz(Basic_Class1.java:78)

 at Diss.Basic_Super.Run(Basic_Super.java:25)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 3

a_SYMINT != CONST &&

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

a_SYMINT != CONST &&

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0 -> true

PCs: 8 7 1

== search

constraint

Search Depth: 5

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

100

 at Diss.Basic_Class1.Type1b_Krawitz(Basic_Class1.java:80)

 at Diss.Basic_Super.Run(Basic_Super.java:25)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 1

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

CONST >= a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 1

CONST >= a_SYMINT

SPC # = 0

 --> # = 1

CONST >= a_SYMINT

SPC # = 0 -> true

PCs: 9 8 1

--------original PC------------0

original pc # = 2

a_SYMINT == CONST &&

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 2

a_SYMINT == CONST &&

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

 --> # = 2

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0 -> true

PCs: 10 9 1

--------begin after splitting------------

originalPC # = 2

101

a_SYMINT[0] == CONST &&

CONST >= a_SYMINT[0]

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST >= a_SYMINT[0] &&

a_SYMINT[0] == CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST >= a_SYMINT[0] &&

a_SYMINT[0] == CONST

SPC # = 0

 --> # = 2

CONST >= a_SYMINT[0] &&

a_SYMINT[0] == CONST

SPC # = 0 -> true

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V]

--------original PC------------0

original pc # = 2

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 2

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0

 --> # = 2

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0 -> true

PCs: 11 10 1

--------original PC------------0

original pc # = 3

REAL == CONST &&

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

102

REAL == CONST &&

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST >= a_SYMINT &&

a_SYMINT != CONST &&

REAL == CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST >= a_SYMINT &&

a_SYMINT != CONST &&

REAL == CONST

SPC # = 0

Krawitz 2a

PCs: 1 1 0

--------original PC------------0

original pc # = 1

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

CONST < a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 1

CONST < a_SYMINT

SPC # = 0

 --> # = 1

CONST < a_SYMINT

SPC # = 0 -> true

PCs: 2 2 0

== search

constraint

Search Depth: 3

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

103

 at Diss.Basic_Class1.Type2a_Krawitz(Basic_Class1.java:95)

 at Diss.Basic_Super.Run(Basic_Super.java:27)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 1

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

CONST >= a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 1

CONST >= a_SYMINT

SPC # = 0

 --> # = 1

CONST >= a_SYMINT

SPC # = 0 -> true

PCs: 3 3 0

Krawitz 2b

PCs: 1 1 0

--------original PC------------0

original pc # = 1

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

CONST < a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 1

CONST < a_SYMINT

SPC # = 0

 --> # = 1

CONST < a_SYMINT

SPC # = 0 -> true

PCs: 2 2 0

104

== search

constraint

Search Depth: 3

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type2b_Krawitz(Basic_Class1.java:111)

 at Diss.Basic_Super.Run(Basic_Super.java:28)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 1

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

CONST >= a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 1

CONST >= a_SYMINT

SPC # = 0

 --> # = 1

CONST >= a_SYMINT

SPC # = 0 -> true

PCs: 3 3 0

Krawitz 3a

PCs: 1 1 0

--------original PC------------0

original pc # = 1

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

CONST < a_SYMINT

105

SPC # = 0

--------end after splitting------------

solving: PC # = 1

CONST < a_SYMINT

SPC # = 0

 --> # = 1

CONST < a_SYMINT

SPC # = 0 -> true

PCs: 2 2 0

--------original PC------------0

original pc # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

 --> # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0 -> true

PCs: 3 3 0

--------original PC------------0

original pc # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

106

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0 -> true

PCs: 4 4 0

== search

constraint

Search Depth: 5

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type3a_Krawitz(Basic_Class1.java:132)

 at Diss.Basic_Super.Run(Basic_Super.java:30)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 3

CONST >= a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

CONST >= a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

107

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0 -> true

PCs: 5 5 0

== search

constraint

Search Depth: 5

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type3a_Krawitz(Basic_Class1.java:138)

 at Diss.Basic_Super.Run(Basic_Super.java:30)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 2

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 2

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

 --> # = 2

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0 -> true

PCs: 6 6 0

--------original PC------------0

original pc # = 3

a_SYMINT == CONST &&

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

a_SYMINT == CONST &&

108

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0 -> false

PCs: 7 6 1

== search

constraint

Search Depth: 5

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type3a_Krawitz(Basic_Class1.java:138)

 at Diss.Basic_Super.Run(Basic_Super.java:30)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 3

a_SYMINT != CONST &&

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

a_SYMINT != CONST &&

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT != CONST

109

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0 -> true

PCs: 8 7 1

== search

constraint

Search Depth: 5

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type3a_Krawitz(Basic_Class1.java:139)

 at Diss.Basic_Super.Run(Basic_Super.java:30)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 1

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

CONST >= a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 1

CONST >= a_SYMINT

SPC # = 0

 --> # = 1

CONST >= a_SYMINT

SPC # = 0 -> true

PCs: 9 8 1

--------original PC------------0

original pc # = 2

a_SYMINT == CONST &&

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

110

--------begin after splitting------------

originalPC # = 2

a_SYMINT == CONST &&

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

 --> # = 2

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0 -> true

PCs: 10 9 1

--------begin after splitting------------

originalPC # = 2

a_SYMINT[0] == CONST &&

CONST >= a_SYMINT[0]

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST >= a_SYMINT[0] &&

a_SYMINT[0] == CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST >= a_SYMINT[0] &&

a_SYMINT[0] == CONST

SPC # = 0

 --> # = 2

CONST >= a_SYMINT[0] &&

a_SYMINT[0] == CONST

SPC # = 0 -> true

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V]

--------original PC------------0

original pc # = 2

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 2

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

111

simplePC # = 2

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0

 --> # = 2

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0 -> true

PCs: 11 10 1

--------original PC------------0

original pc # = 3

REAL == a_SYMINT &&

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

REAL == a_SYMINT &&

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST >= a_SYMINT &&

a_SYMINT != CONST &&

REAL == a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST >= a_SYMINT &&

a_SYMINT != CONST &&

REAL == a_SYMINT

SPC # = 0

 --> # = 3

CONST >= a_SYMINT &&

a_SYMINT != CONST &&

REAL == a_SYMINT

SPC # = 0 -> true

PCs: 12 11 1

--------begin after splitting------------

originalPC # = 3

REAL[-10000.0] == a_SYMINT[-10000] &&

a_SYMINT[-10000] != CONST &&

CONST >= a_SYMINT[-10000]

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

112

CONST >= a_SYMINT[-10000] &&

a_SYMINT[-10000] != CONST &&

REAL[-10000.0] == a_SYMINT[-10000]

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST >= a_SYMINT[-10000] &&

a_SYMINT[-10000] != CONST &&

REAL[-10000.0] == a_SYMINT[-10000]

SPC # = 0

 --> # = 3

CONST >= a_SYMINT[-10000] &&

a_SYMINT[-10000] != CONST &&

REAL[-10000.0] == a_SYMINT[-10000]

SPC # = 0 -> true

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V]

== search

constraint

Search Depth: 5

== snapshot

no live threads

PC # = 2

a_SYMINT[0] == CONST &&

CONST >= a_SYMINT[0]

SPC # = 0

PC # = 3

REAL[-10000.0] == a_SYMINT[-10000] &&

a_SYMINT[-10000] != CONST &&

CONST >= a_SYMINT[-10000]

SPC # = 0

Krawitz 3b

PCs: 1 1 0

--------original PC------------0

original pc # = 1

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

CONST < a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 1

113

CONST < a_SYMINT

SPC # = 0

 --> # = 1

CONST < a_SYMINT

SPC # = 0 -> true

PCs: 2 2 0

--------original PC------------0

original pc # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

 --> # = 2

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0 -> true

PCs: 3 3 0

--------original PC------------0

original pc # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 3

114

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0 -> true

PCs: 4 4 0

== search

constraint

Search Depth: 5

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type3b_Krawitz(Basic_Class1.java:148)

 at Diss.Basic_Super.Run(Basic_Super.java:31)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 3

CONST >= a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

CONST >= a_SYMINT &&

CONST < a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0 -> true

115

PCs: 5 5 0

== search

constraint

Search Depth: 5

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type3b_Krawitz(Basic_Class1.java:151)

 at Diss.Basic_Super.Run(Basic_Super.java:31)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 2

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 2

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0

 --> # = 2

CONST < a_SYMINT &&

CONST >= a_SYMINT

SPC # = 0 -> true

PCs: 6 6 0

--------original PC------------0

original pc # = 3

a_SYMINT == CONST &&

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

a_SYMINT == CONST &&

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

116

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0 -> false

PCs: 7 6 1

== search

constraint

Search Depth: 5

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type3b_Krawitz(Basic_Class1.java:152)

 at Diss.Basic_Super.Run(Basic_Super.java:31)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 3

a_SYMINT != CONST &&

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

a_SYMINT != CONST &&

CONST >= a_SYMINT &&

CONST < a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 3

117

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0

 --> # = 3

CONST < a_SYMINT &&

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0 -> true

PCs: 8 7 1

== search

constraint

Search Depth: 5

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type3b_Krawitz(Basic_Class1.java:154)

 at Diss.Basic_Super.Run(Basic_Super.java:31)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 1

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

CONST >= a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 1

CONST >= a_SYMINT

SPC # = 0

 --> # = 1

CONST >= a_SYMINT

SPC # = 0 -> true

PCs: 9 8 1

--------original PC------------0

original pc # = 2

a_SYMINT == CONST &&

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 2

a_SYMINT == CONST &&

118

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0

 --> # = 2

CONST >= a_SYMINT &&

a_SYMINT == CONST

SPC # = 0 -> true

PCs: 10 9 1

--------begin after splitting------------

originalPC # = 2

a_SYMINT[0] == CONST &&

CONST >= a_SYMINT[0]

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST >= a_SYMINT[0] &&

a_SYMINT[0] == CONST

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST >= a_SYMINT[0] &&

a_SYMINT[0] == CONST

SPC # = 0

 --> # = 2

CONST >= a_SYMINT[0] &&

a_SYMINT[0] == CONST

SPC # = 0 -> true

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V]

--------original PC------------0

original pc # = 2

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 2

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 2

CONST >= a_SYMINT &&

a_SYMINT != CONST

119

SPC # = 0

--------end after splitting------------

solving: PC # = 2

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0

 --> # = 2

CONST >= a_SYMINT &&

a_SYMINT != CONST

SPC # = 0 -> true

PCs: 11 10 1

--------original PC------------0

original pc # = 3

REAL == a_SYMINT &&

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 3

REAL == a_SYMINT &&

a_SYMINT != CONST &&

CONST >= a_SYMINT

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST >= a_SYMINT &&

a_SYMINT != CONST &&

REAL == a_SYMINT

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST >= a_SYMINT &&

a_SYMINT != CONST &&

REAL == a_SYMINT

SPC # = 0

 --> # = 3

CONST >= a_SYMINT &&

a_SYMINT != CONST &&

REAL == a_SYMINT

SPC # = 0 -> true

PCs: 12 11 1

--------begin after splitting------------

originalPC # = 3

REAL[-10000.0] == a_SYMINT[-10000] &&

a_SYMINT[-10000] != CONST &&

CONST >= a_SYMINT[-10000]

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 3

CONST >= a_SYMINT[-10000] &&

a_SYMINT[-10000] != CONST &&

REAL[-10000.0] == a_SYMINT[-10000]

120

SPC # = 0

--------end after splitting------------

solving: PC # = 3

CONST >= a_SYMINT[-10000] &&

a_SYMINT[-10000] != CONST &&

REAL[-10000.0] == a_SYMINT[-10000]

SPC # = 0

 --> # = 3

CONST >= a_SYMINT[-10000] &&

a_SYMINT[-10000] != CONST &&

REAL[-10000.0] == a_SYMINT[-10000]

SPC # = 0 -> true

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V]

== search

constraint

Search Depth: 5

== snapshot

no live threads

PC # = 2

a_SYMINT[0] == CONST &&

CONST >= a_SYMINT[0]

SPC # = 0

PC # = 3

REAL[-10000.0] == a_SYMINT[-10000] &&

a_SYMINT[-10000] != CONST &&

CONST >= a_SYMINT[-10000]

SPC # = 0

Krawitz 4a

PCs: 1 1 0

--------original PC------------0

original pc # = 1

a_SYMINT <= CONST000

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

a_SYMINT <= CONST000

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

a_SYMINT <= CONST000

SPC # = 0

--------end after splitting------------

solving: PC # = 1

a_SYMINT <= CONST000

SPC # = 0

 --> # = 1

121

a_SYMINT <= CONST000

SPC # = 0 -> true

PCs: 2 2 0

== search

constraint

Search Depth: 3

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type4a_Krawitz(Basic_Class1.java:166)

 at Diss.Basic_Super.Run(Basic_Super.java:33)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 1

a_SYMINT > CONST000

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

a_SYMINT > CONST000

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

a_SYMINT > CONST000

SPC # = 0

--------end after splitting------------

solving: PC # = 1

a_SYMINT > CONST000

SPC # = 0

 --> # = 1

a_SYMINT > CONST000

SPC # = 0 -> true

PCs: 3 3 0

--------begin after splitting------------

originalPC # = 1

a_SYMINT[1001] > CONST000

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

a_SYMINT[1001] > CONST000

SPC # = 0

--------end after splitting------------

solving: PC # = 1

a_SYMINT[1001] > CONST000

SPC # = 0

 --> # = 1

a_SYMINT[1001] > CONST000

SPC # = 0 -> true

122

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V]

== search

constraint

Search Depth: 3

== snapshot

no live threads

PC # = 1

a_SYMINT[1001] > CONST000

SPC # = 0

Krawitz 4b

PCs: 1 1 0

--------original PC------------0

original pc # = 1

a_SYMINT <= CONST000

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

a_SYMINT <= CONST000

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

a_SYMINT <= CONST000

SPC # = 0

--------end after splitting------------

solving: PC # = 1

a_SYMINT <= CONST000

SPC # = 0

 --> # = 1

a_SYMINT <= CONST000

SPC # = 0 -> true

PCs: 2 2 0

== search

constraint

Search Depth: 3

== snapshot

thread

index=0,name=main,status=RUNNING,this=java.lang.Thread@0,target=null,pr

iority=5,lockCount=0,suspendCount=0

 call stack:

 at Diss.Basic_Class1.Type4b_Krawitz(Basic_Class1.java:184)

 at Diss.Basic_Super.Run(Basic_Super.java:34)

 at Diss.Basic_Super.main(Basic_Super.java:11)

--------original PC------------0

original pc # = 1

123

a_SYMINT > CONST000

SPC # = 0

--- end printing original PC ---

--------begin after splitting------------

originalPC # = 1

a_SYMINT > CONST000

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

a_SYMINT > CONST000

SPC # = 0

--------end after splitting------------

solving: PC # = 1

a_SYMINT > CONST000

SPC # = 0

 --> # = 1

a_SYMINT > CONST000

SPC # = 0 -> true

PCs: 3 3 0

--------begin after splitting------------

originalPC # = 1

a_SYMINT[1001] > CONST000

SPC # = 0

concolicPC # = 0

SPC # = 0

simplePC # = 1

a_SYMINT[1001] > CONST000

SPC # = 0

--------end after splitting------------

solving: PC # = 1

a_SYMINT[1001] > CONST000

SPC # = 0

 --> # = 1

a_SYMINT[1001] > CONST000

SPC # = 0 -> true

MethodInfo[Diss.Basic_Super.main([Ljava/lang/String;)V]

== search

constraint

Search Depth: 3

== snapshot

no live threads

PC # = 1

a_SYMINT[1001] > CONST000

SPC # = 0

124

References

Akito, M., & Shinichi, S. (2001). Capturing industrial experiences of software

maintenance using product metrics.

Artzi, S., Dolby, J., Tip, F., & Pistoia, M. (2010). Directed test generation for effective

fault localization. Paper presented at the Proceedings of the 19th international

symposium on Software testing and analysis, Trento, Italy.

Baker, B. S. (1995). On finding duplication and near-duplication in large software

systems. Paper presented at the Proceedings of the Second Working Conference

on Reverse Engineering.

Bardin, S., & Herrmann, P. (2009). Pruning the Search Space in Path-Based Test

Generation. Paper presented at the Proceedings of the 2009 International

Conference on Software Testing Verification and Validation.

Basit, H. A., & Jarzabek, S. (2005). Detecting higher-level similarity patterns in

programs. SIGSOFT Softw. Eng. Notes, 30(5), 156-165. doi:

10.1145/1095430.1081733

Baxter, I. D., Yahin, A., Moura, L., Sant'Anna, M., & Bier, L. (1998). Clone Detection

Using Abstract Syntax Trees. Paper presented at the Proceedings of the

International Conference on Software Maintenance.

Bellon, S., Koschke, R., Antoniol, G., Krinke, J., & Merlo, E. (2007). Comparison and

Evaluation of Clone Detection Tools. IEEE Trans. Softw. Eng., 33(9), 577-591.

doi: 10.1109/tse.2007.70725

Bond, M. D., Srivastava, V., McKinley, K. S., & Shmatikov, V. (2010). Efficient,

context-sensitive detection of real-world semantic attacks. Paper presented at the

Proceedings of the 5th ACM SIGPLAN Workshop on Programming Languages

and Analysis for Security, Toronto, Canada.

Bruntink, M., Deursen, A. v., Engelen, R. v., & Tourwe, T. (2005). On the Use of Clone

Detection for Identifying Crosscutting Concern Code. IEEE Trans. Softw. Eng.,

31(10), 804-818. doi: 10.1109/tse.2005.114

Bruntink, M., Deursen, A. v., & Tourwe, T. (2004). An Initial Experiment in Reverse

Engineering Aspects. Paper presented at the Proceedings of the 11th Working

Conference on Reverse Engineering.

Cadar, C., Godefroid, P., Khurshid, S., Pasreanu, C. S., Sen, K., Tillmann, N., & Visser,

W. (2011). Symbolic execution for software testing in practice: preliminary

125

assessment. Paper presented at the Proceeding of the 33rd international

conference on Software engineering, Waikiki, Honolulu, HI, USA.

Chen, I.-X., Jaygarl, H., Yang, C.-Z., & Wu, P.-J. (2008). Information retrieval on bug

locations by learning co-located bug report clusters. Paper presented at the

Proceedings of the 31st annual international ACM SIGIR conference on Research

and development in information retrieval, Singapore, Singapore.

Deissenboeck, F., Hummel, B., & Juergens, E. (2010). Code clone detection in practice.

Paper presented at the Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering - Volume 2, Cape Town, South Africa.

Duala-Ekoko, E., & Robillard, M. P. (2010). Clone region descriptors: Representing and

tracking duplication in source code. ACM Trans. Softw. Eng. Methodol., 20(1), 1-

31. doi: 10.1145/1767751.1767754

Ducasse, S., Rieger, M., & Demeyer, S. (1999). A Language Independent Approach for

Detecting Duplicated Code. Paper presented at the Proceedings of the IEEE

International Conference on Software Maintenance.

Fukushima, Y., Kula, R., Kawaguchi, S., Fushida, K., Nagura, M., & Iida, H. (2009).

Code Clone Graph Metrics for Detecting Diffused Code Clones. Paper presented

at the Proceedings of the 2009 16th Asia-Pacific Software Engineering

Conference.

Geiger, R., Fluri, B., Gall, H., & Pinzger, M. (2006). Relation of Code Clones and

Change Couplings. In L. Baresi & R. Heckel (Eds.), Fundamental Approaches to

Software Engineering (Vol. 3922, pp. 411-425): Springer Berlin / Heidelberg.

Gode, N., & Koschke, R. (2009). Incremental Clone Detection. Paper presented at the

Proceedings of the 2009 European Conference on Software Maintenance and

Reengineering.

Gold, N., Krinke, J., Harman, M., & Binkley, D. (2010). Issues in clone classification for

dataflow languages. Paper presented at the Proceedings of the 4th International

Workshop on Software Clones, Cape Town, South Africa.

Higo, Y., Kamiya, T., Kusumoto, S., & Inoue, K. (2007). Method and implementation for

investigating code clones in a software system. Inf. Softw. Technol., 49(9-10),

985-998. doi: 10.1016/j.infsof.2006.10.005

Hummel, B., Juergens, E., & Steidl, D. (2011). Index-based model clone detection. Paper

presented at the Proceedings of the 5th International Workshop on Software

Clones, Waikiki, Honolulu, HI, USA.

126

Ihantola, P. (2006). Test data generation for programming exercises with symbolic

execution in Java PathFinder. Paper presented at the Proceedings of the 6th

Baltic Sea conference on Computing education research: Koli Calling 2006,

Uppsala, Sweden.

Jarzabek, S., & Xue, Y. (2010). Are clones harmful for maintenance? Paper presented at

the Proceedings of the 4th International Workshop on Software Clones, Cape

Town, South Africa.

Johnson, J. H. (1993). Identifying redundancy in source code using fingerprints. Paper

presented at the Proceedings of the 1993 conference of the Centre for Advanced

Studies on Collaborative research: software engineering - Volume 1, Toronto,

Ontario, Canada.

Juergens, E., Deissenboeck, F., Hummel, B., & Wagner, S. (2009). Do code clones

matter? Paper presented at the Proceedings of the 31st International Conference

on Software Engineering.

Kalibera, T., Parizek, P., Malohlava, M., & Schoeberl, M. (2010). Exhaustive testing of

safety critical Java. Paper presented at the Proceedings of the 8th International

Workshop on Java Technologies for Real-Time and Embedded Systems, Prague,

Czech Republic.

Kamiya, T., Kusumoto, S., & Inoue, K. (2002). CCFinder: a multilinguistic token-based

code clone detection system for large scale source code. Software Engineering,

IEEE Transactions on, 28(7), 654-670.

Kapser, C. J., & Godfrey, M. W. (2008). "Cloning considered harmful" considered

harmful: patterns of cloning in software. Empirical Softw. Engg., 13(6), 645-692.

doi: 10.1007/s10664-008-9076-6

Khurshid, S., Pasareanu, C. S., & Visser, W. (2003). Generalized symbolic execution for

model checking and testing. Paper presented at the Proceedings of the 9th

international conference on Tools and algorithms for the construction and analysis

of systems, Warsaw, Poland.

Kim, H., Jung, Y., Kim, S., & Yi, K. (2011). MeCC: memory comparison-based clone

detector. Paper presented at the Proceedings of the 33rd International Conference

on Software Engineering, Waikiki, Honolulu, HI, USA.

Koschke, R. (2007). Survey of Research on Software Clones. Seminar on Deplication,

Redundancy, and Similarity in Software.

Krawitz, R. M. (2012). Code Clone Discovery Based on Functional Behavior

127

Lague, B., Proulx, D., Mayrand, J., Merlo, E. M., & Hudepohl, J. (1997). Assessing the

Benefits of Incorporating Function Clone Detection in a Development Process.

Paper presented at the Proceedings of the International Conference on Software

Maintenance.

Lakhotia, K., Harman, M., & McMinn, P. (2008). Handling dynamic data structures in

search based testing. Paper presented at the Proceedings of the 10th annual

conference on Genetic and evolutionary computation, Atlanta, GA, USA.

Li, Z., & Garcia-Luna-Aceves, J. J. (2007). Finding multi-constrained feasible paths by

using depth-first search. Wirel. Netw., 13(3), 323-334. doi: 10.1007/s11276-006-

7528-8

Maisikeli, S. G., & Mitropoulos, F. J. (2010, 3-5 Oct. 2010). Aspect mining using Self-

Organizing Maps with method level dynamic software metrics as input vectors.

Paper presented at the Software Technology and Engineering (ICSTE), 2010 2nd

International Conference on.

Majumdar, R., & Sen, K. (2007). Hybrid Concolic Testing. Paper presented at the

Proceedings of the 29th international conference on Software Engineering.

Marcus, A., & Maletic, J. I. (2001). Identification of High-Level Concept Clones in

Source Code. Paper presented at the Proceedings of the 16th IEEE international

conference on Automated software engineering.

Mayrand, J., Leblanc, C., & Merlo, E. M. (1996, 4-8 Nov 1996). Experiment on the

automatic detection of function clones in a software system using metrics. Paper

presented at the Software Maintenance 1996, Proceedings., International

Conference on.

Meneely, A., Williams, L., Snipes, W., & Osborne, J. (2008). Predicting failures with

developer networks and social network analysis. Paper presented at the

Proceedings of the 16th ACM SIGSOFT International Symposium on

Foundations of software engineering, Atlanta, Georgia.

Menon, V., Pingali, K., & Mateev, N. (2003). Fractal symbolic analysis. ACM Trans.

Program. Lang. Syst., 25(6), 776-813. doi: 10.1145/945885.945888

Monden, A., Nakae, D., Kamiya, T., Sato, S.-i., & Matsumoto, K.-i. (2002). Software

Quality Analysis by Code Clones in Industrial Legacy Software. Paper presented

at the Proceedings of the 8th International Symposium on Software Metrics.

Pasareanu, C. S., Mehlitz, P. C., Bushnell, D. H., Gundy-Burlet, K., Lowry, M., Person,

S., & Pape, M. (2008). Combining unit-level symbolic execution and system-level

concrete execution for testing nasa software. Paper presented at the Proceedings

128

of the 2008 international symposium on Software testing and analysis, Seattle,

WA, USA.

Person, S., Dwyer, M. B., Elbaum, S., & Pasareanu, C. S. (2008). Differential symbolic

execution. Paper presented at the Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of software engineering, Atlanta,

Georgia.

Person, S., Yang, G., Rungta, N., & Khurshid, S. (2011). Directed incremental symbolic

execution. SIGPLAN Not., 46(6), 504-515. doi: 10.1145/1993316.1993558

Pressman, R. (2010). Software Engineering A Practitioner's Approach (7th ed.). Boston:

McGraw Hill Higher Education.

Roy, C. K., & Cordy, J. R. (2008). Scenario-Based Comparison of Clone Detection

Techniques. Paper presented at the Proceedings of the 2008 The 16th IEEE

International Conference on Program Comprehension.

Roy, C. K., Cordy, J. R., & Koschke, R. (2009). Comparison and evaluation of code

clone detection techniques and tools: A qualitative approach. Sci. Comput.

Program., 74(7), 470-495. doi: 10.1016/j.scico.2009.02.007

Schulze, S., Apel, S., & Kastner, C. (2010). Code clones in feature-oriented software

product lines. Paper presented at the Proceedings of the ninth international

conference on Generative programming and component engineering, Eindhoven,

The Netherlands.

Seaman, C. B. (2008). Software Maintenance: Concepts and Practice Authored by Penny

Grubb and Armstrong A. Takang World Scientific, New Jersey. Copyright ; 2003;

349 pages ISBN 981-238-426-X (paperback) J. Softw. Maint. Evol., 20(6), 463-

466. doi: 10.1002/smr.v20:6

Sen, K. (2007). Concolic testing. Paper presented at the Proceedings of the twenty-second

IEEE/ACM international conference on Automated software engineering, Atlanta,

Georgia, USA.

Sen, K., Marinov, D., & Agha, G. (2005). CUTE: a concolic unit testing engine for C.

Paper presented at the Proceedings of the 10th European software engineering

conference held jointly with 13th ACM SIGSOFT international symposium on

Foundations of software engineering, Lisbon, Portugal.

Shukla, R., & Misra, A. K. (2008). Estimating software maintenance effort: a neural

network approach. Paper presented at the Proceedings of the 1st India software

engineering conference, Hyderabad, India.

129

Sibeyn, J. F., Abello, J., & Meyer, U. (2002). Heuristics for semi-external depth first

search on directed graphs. Paper presented at the Proceedings of the fourteenth

annual ACM symposium on Parallel algorithms and architectures, Winnipeg,

Manitoba, Canada.

Singh, Y., Bhatia, P. K., & Sangwan, O. (2009). Predicting software maintenance using

fuzzy model. SIGSOFT Softw. Eng. Notes, 34(4), 1-6. doi:

10.1145/1543405.1543425

Singh, Y., & Goel, B. (2007). A step towards software preventive maintenance.

SIGSOFT Softw. Eng. Notes, 32(4), 10. doi: 10.1145/1281421.1281432

Takaki, M., Cavalcanti, D., Gheyi, R., Iyoda, J., D'Amorim, M., Prud\, R. B., . . . ncio.

(2010). Randomized constraint solvers: a comparative study. Innov. Syst. Softw.

Eng., 6(3), 243-253. doi: 10.1007/s11334-010-0124-1

Tatti, N., & Cule, B. (2011). Mining closed episodes with simultaneous events. Paper

presented at the Proceedings of the 17th ACM SIGKDD international conference

on Knowledge discovery and data mining, San Diego, California, USA.

Ueda, Y., Kamiya, T., Kusumoto, S., & Inoue, K. (2002). Gemini: Maintenance Support

Environment Based on Code Clone Analysis. Paper presented at the Proceedings

of the 8th International Symposium on Software Metrics.

Visser, W., Pasareanu, C. S., & Khurshid, S. (2004). Test input generation with java

PathFinder. Paper presented at the Proceedings of the 2004 ACM SIGSOFT

international symposium on Software testing and analysis, Boston, Massachusetts,

USA.

Wahler, V., Seipel, D., Gudenberg, J. W. v., & Fischer, G. (2004). Clone Detection in

Source Code by Frequent Itemset Techniques. Paper presented at the Proceedings

of the Source Code Analysis and Manipulation, Fourth IEEE International

Workshop.

Wassermann, G., Yu, D., Chander, A., Dhurjati, D., Inamura, H., & Su, Z. (2008).

Dynamic test input generation for web applications. Paper presented at the

Proceedings of the 2008 international symposium on Software testing and

analysis, Seattle, WA, USA.

Wettel, R., & Marinescu, R. (2005). Archeology of Code Duplication: Recovering

Duplication Chains from Small Duplication Fragments. Paper presented at the

Proceedings of the Seventh International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing.

130

Yang, D., & Powers, D. M. W. (2005). Measuring semantic similarity in the taxonomy of

WordNet. Paper presented at the Proceedings of the Twenty-eighth Australasian

conference on Computer Science - Volume 38, Newcastle, Australia.

Yang, W. (1991). Identifying syntactic differences between two programs. Softw. Pract.

Exper., 21(7), 739-755. doi: 10.1002/spe.4380210706

	Nova Southeastern University
	NSUWorks
	2013

	Code Clone Discovery Based on Concolic Analysis
	Daniel Edward Krutz
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1444354927.pdf.zVbTj

