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Abstract 

 

An Abstract of a Dissertation Submitted to Nova Southeastern University 

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 

 

A Comparative Analysis of Machine Learning Techniques 

For Foreclosure Prediction 

 

By 

Dexter R. Brown 

 

January 2012 

 

The current decline in the U.S. economy was accompanied by an increase in foreclosure 

rates starting in 2007.  Though the earliest figures for 2009 - 2010 indicate a significant 

decrease, foreclosure of homes in the U.S. is still at an alarming level (Gutierrez, 2009a).  

Recent research at the University of Michigan suggested that many foreclosures could 

have been averted had there been a predictive system that did not only rely on credit 

scores and loan-to-value ratios (DeGroat, 2009).  Furthermore, Grover, Smith & Todd 

(2008) contend that foreclosure prediction can enhance the efficiency of foreclosure 

mitigation by facilitating the allocation of resources to areas where predicted foreclosure 

rates will be high. 

 

The primary goal of this dissertation was to develop a foreclosure prediction model that 

builds upon established bankruptcy and credit scoring models.  The study utilized and 

compared the predictive accuracy of three supervised machine learning (ML) techniques 

when applied to mortgage data.  The selected ML techniques were:  

ML1. Classification Trees  

ML2. Support Vector Machines (SVM)  

ML3. Genetic Programming  

The data used for the study is comprised of mortgage data, demographic metrics and 

certain macro-economic indicators that are available at the time of the inception of the 

loan.    

 

The hypothesis of the study was based on the assumption that foreclosure rates, and 

associated actions, are dependent on critical demographic (age, gender), economic (per 

capita income, inflation) and regional variables (predatory lending, unemployment 

index).  The task of the machine learning techniques was to identify a function that well 

approximates the relationship between these explanatory variables and the binary 

outcome of interest (mortgage status in +3 years from inception). 

  

The predictive accuracy of ML1 through ML3 was significantly better than expected 

given the size of the recordset (1000) and the number of input variables (~110).  Each 

ML technique achieved classification accuracy better than 75%, with ML3 scoring in the 

upper 90s.  Given such high scores, it was concluded that the hypothesis was satisfied 

and that ML techniques are suitable for prediction tasks in this problem domain. 
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Chapter 1 

 

Introduction 

Introduction 

 This study focused on building on the existing literature in order to develop an 

improved method for predicting the performance of residential mortgages within a period 

of three years from contract inception.  The prediction task was treated as a binary 

classification problem where mortgage performance was limited to ‘Status Quo’ or 

‘Foreclosure’.  Performance indicators such as ‘Refinance’ and ‘Sell with Profit’ are 

considered for future work.  The analysis period was limited to three years because of the 

dependence on macroeconomic forecasts, which are generally less accurate as the 

projection point increases.  The prediction was based on data acquired from a specialized 

data vendor.       

Problem Statement and Goal 

 A mortgage is a legal instrument which conveys a lien against property in 

exchange for securing a loan to purchase said property (Pritchard, 2009).  Mortgages are 

the principal means by which homes are purchased by American families and individuals.  

The term ‘foreclosure’ is officially defined by Merriam-Webster as “a legal proceeding 

that bars or extinguishes a mortgagor's right of redeeming a mortgaged estate”.  In 

addition to the social and economic hardships experienced by those foreclosed upon, 

foreclosure also has a negative effect on surrounding homes by reducing the value of 

nearby properties (Schuetz, Been & Ellen, 2008).  According to Schuetz, Been & Ellen, 

foreclosure also has the potential to reduce local governments’ tax bases. 



2 

 

 

 

 The current decline in the U.S. economy was validated by an increase in 

foreclosure rates starting in 2007.  Approximately one million homes were lost to 

foreclosure in 2008, up by nearly 63.5% from the 2007 national foreclosure index 

(Gutierrez, 2009a; Gores, 2009a).  Though the earliest figures for 2009 indicate a 

decrease by approximately 25%, foreclosure of homes in the U.S. is still at an alarming 

level (Gutierrez, 2009b).   The wealthy were not immune to the foreclosure crisis, as even 

homes valued at a million dollars or more saw double digit foreclosure rate increases in 

cities such as Ft. Worth, Texas (Brown, 2009).  Recent research at the University of 

Michigan suggested that many foreclosures could have been averted had there been a 

predictive system that did not only rely on credit scores and loan-to-value ratios 

(DeGroat, 2009).  Also, in recognition of the need for mortgage performance prediction 

systems, ForeclosureU.com introduced the LoanMod Creator system (ForeclosureU.com, 

2009).  LoanMod Creator automatically underwrites mortgage modifications based on 

affordability equations and computes real time success probabilities (ForeclosureU.com).  

Furthermore, Grover, Smith & Todd (2008) contend that foreclosure prediction can 

enhance the efficiency of foreclosure mitigation by facilitating the allocation of resources 

to areas where predicted foreclosure rates will be high. 

      The primary goal of this dissertation was to develop a foreclosure prediction 

model that:  

1. Builds upon established bankruptcy and credit scoring models. 

2. Based the prediction on data that is available at the time of loan inception. 

3. Employed supervised machine learning techniques.  
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 A secondary goal was to investigate the relative merits of alternate supervised 

machine learning techniques for this prediction task.  Three supervised machine learning 

(ML) techniques were contrasted to determine the most accurate predictor.  The selected 

ML techniques are  

ML1. Classification Trees  

ML2. Support Vector Machines (SVM)  

ML3. Genetic Programming.   

 The following highlights the reasoning behind the choice of the genesis models 

and technologies: 

1. Bankruptcy Prediction’s primary objective is to identify the variables of 

importance which can be used to forecast the financial failure of a 

commercial organization (Altman, 1984).  If a homeowner unit can be 

viewed upon as a financial entity, similar to a commercial organization or 

going concern (Lensberg, Eilifsen & McKee, 2006), then bankruptcy 

prediction models may be adaptable at this level as indicators of financial 

distress.  Since book losses usually precede insolvency (Mora et al, 2008), 

it may be theorized that homeowner financial distress is a potential 

precursor to foreclosure.  Accurate prediction of financial distress can 

afford homeowners the time to find and implement corrective measures 

before foreclosure occurs.   

2. Credit Scoring Models have been the staple of loan determination for 

several decades.  Fair Isaac Corporation is one of the US’s leading 

developers of credit scoring systems (myFICO, 2009).  Their numeric 
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ranking system is referred to as FICO and, like other mainstream models, 

is based on accounting ratios and regression analysis (Finlay, 2009).  

Recent research has seen a shift towards the application of ML techniques 

in credit scoring models (Lee, 2007; Bellotti & Crook, 2009; Abdou, 

2009).  This shift is recognition that the existing models are inaccurate 

predictors of borrower default (Finlay).  Since credit scoring is an integral 

part of the mortgage process that is unlikely to change, a cutting edge 

foreclosure prediction model should include elements of a forward-

looking credit scoring system. 

3. ML Techniques have evolved into the most commonly used analytical and 

predictive methods utilized in bankruptcy and credit scoring models 

(Odeh, Koduru, Das, Featherstone & Welch, 2007; Tsai & Wu, 2008; Yu, 

Wang & Lai, 2009).  This move is in recognition that the traditional 

accounting and statistical methods have proven less reliable in their 

predictive power (Zhang, Hu, Patuwo & Indro, 1999; Gao, Cui & Po, 

2008).  In addition, ML approaches have been found to perform well in 

domains where there is a large amount of data but limited supporting 

theory (Tan & Gilbert, 2003).  The general learning algorithms employed 

by ML techniques have the ability to assemble classifiers or hypotheses 

that can proffer an explanation relevant to the complex inter-relationships 

within domain datasets (Tan & Gilbert).   

 The classification accuracy of ML1 - ML3 was measured by comparing their 

predicted output versus historical data for foreclosures in the South Florida (Miami-Dade, 
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Broward, and Palm Beach) area.  Data was acquired from Dextec Systems for all 

identified input and output variables for the last three years.  A suitable subset of data 

was used to train ML1 - ML3, while the remaining subset of data was used to test ML1 - 

ML3’s predictive power. 

 The outcome variable of interest was whether a mortgage resulted in foreclosure 

within a specified period of time (three years) of its inception.  The input variables used 

as predictors are restricted to data available at the time of the inception of the loan and 

may be grouped as follows: 

 Variables that characterize the mortgage parameters 

 Variables that characterize the borrower 

 Macroeconomic indicators 

 Other indicators specific to the location of the property under consideration. 

Relevance and Significance of Study 

 The contribution of this study to the body of IS research is to demonstrate the 

suitability and value of ML techniques when applied to the foreclosure prediction 

problem.  A general search for literature specifically targeting ‘Foreclosure Prediction’ 

results in numerous articles which regurgitate numbers supplied by industry sources and 

organizations (Olick, 2010; Brown, 2009; Johnson, 2009).  A distinct methodology for 

deriving said numbers is seldom supplied, and tends to be more of an account of total 

regional foreclosures within a past or current period rather than a prediction.  Some 

articles present economic indicators in support of stated forecast, while others merely 

comment on perceived trends (Silva, 2009).  Of these sources, the Mortgage Bankers 
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Association (MBA) stands out as an organization that attempts to collate and present 

legitimate metrics related to foreclosures (2008).  Given the above, this study will be 

among the first to develop a foreclosure prediction model based on ML techniques. 

Barriers and Issues 

 The primary obstacle that this dissertation project encountered was that certain 

independent variables were not available because of issues pertaining to the Privacy Act 

(see Definition of Terms) and/or difficulty in consistent measurement.   

Hypothesis 

 The comparison of machine learning techniques was based on the hypothesis that 

foreclosure rates, and associated actions, are dependent on critical demographic (age, 

gender), economic (per capita income, inflation) and regional variables (predatory 

lending, unemployment index).  The task of the machine learning techniques was to 

identify a function that well approximates the relationship between these explanatory 

variables and the binary outcome of interest -- whether foreclosure occurs within three 

years of a loan's inception.  This study was a binary classification problem, and the stated 

goal was accomplished by designing the study as per the framework illustrated in Figure 

1. 
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Figure 1 - Theoretical Framework 

 

Definition of Terms 

 This section provides brief definitions for key terms that are used in chapters 2, 3 

and 4. 

Table 1 - Definition of Terms 

Term Definition 

API Application Programming Interface. 

AppFabric Microsoft’s distributed memory caching technology used primarily 

by cloud based applications. 

Azure Azure is Microsoft’s cloud computing infrastructure. 

Cloud 

Computing 

Cloud Computing is a software development approach that allows 

developers to consume data and computational services without 

significant concern for the operational status of the environment.  



8 

 

 

 

Term Definition 

CIL/MSIL Object oriented assembly like code that Microsoft.Net compatible 

languages’ source code is compiled into.  Common Intermediate 

Language (CIL) was formerly called Microsoft Intermediate 

Language or MSIL. 

IKVM IKVM is a freely available open source implementation of Java for 

Microsoft.NET.  It facilitates calls to Java classes directly from .NET 

code, and provides a .NET version of the Java Virtual Machine.  

IY Inception Year. 

J#.Net Microsoft’s implementation of Java for the .Net framework 2.0.  

J#.Net supports Java code up to JDK 1.1.6. 

JDK Java Development Kit. 

Lien A form of security interest granted over an item of property to secure 

the payment of a debt or performance of some other obligation. 

Linear Model A mathematical model in which linear equations connect the random 

variables and parameters. 

Macroeconomics Branch of economics which studies the overall level of economic 

activity (Bowden, 1992, p. 98).  Macroeconomic indicators are 

monetary figures that interact to influence the flow of money through 

an economy (Qi, 2001).   

Managed Code Microsoft code that strictly adheres to the data types defined by the 

Common Type System (CTS) and runs in the context of the Common 

Language Runtime (CLR). 
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Term Definition 

MemCached A free open source, high-performance, generic, distributed memory 

object caching system for use in speeding up dynamic applications by 

alleviating database load and/or API calls.   

OO Object Oriented.  A programming paradigm that attempts to 

decompose the behavior and properties of real world entities into 

representative templates that form the foundation upon which 

instances of the entity are created in a virtual work (Kay, 1996; Cho 

& Kim; 2001). 

Overfitting Overfitting generally occurs when a statistical model is excessively 

complex relative to the number of observations.  Overfitting leads to 

poor predictive accuracy. 

Plug-In A software component which can be dynamically loaded and early 

bound through the implementation of a known interface(s).  Usually 

extends or modifies the functionality of the parent software 

application.   

Privacy Act The Privacy Act of 1974 establishes a code of fair information 

practice that governs the collection, maintenance, use, and 

dissemination of personally identifiable information relevant to 

individuals. 

Qx x Quarters where x Ɛ {1,2,3,4,5,6,7,8,9,10,11,12}. 

Reflection A programming language’s ability to do type introspection during 

run-time. 

SDK Software Development Kit. 
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Term Definition 

SOA Service Oriented Architecture.  A software development architecture 

that stresses upon the decoupling of core components via the use of 

secure, distributed, consumable and platform neutral informational 

services. 

SQL Azure Microsoft’s cloud implementation of its SQL Server database. 

Tournament 

Selection 

Tournament selection is commonly used in genetic algorithms to 

select an individual from a population of individuals.  The selection 

process involves running several "tournaments" among a group of 

random individuals from the population. The individual with the best 

fitness score is then selected for crossover. 

Use Case A thorough definition of a system’s behavior in direct response to a 

particular external request from another system or actor. 

WCF Windows Communication Foundation.  Microsoft’s current 

distributed component technology. 

Worker Thread A thread is the smallest unit of execution within a Windows process 

space and executes asynchronously to its parent.  Worker threads are 

commonly used to handle background tasks that would otherwise put 

an application in a wait/busy state. 

 

Summary 

 One of the many objectives of Information Systems (IS) research is to advance 

knowledge that encourages dynamic applications of Information Technology (IT) 

towards solving tangible problems in human organizations (Hevner, March, Park & Ram, 

2004).  Foreclosure is a significant problem that can threaten the stability of an economy 

(Calhoun, 2010; Durbin, 2010).  As such, any predictive model that can accurately 
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anticipate foreclosures, with a reasonable degree of accuracy, will automatically gain 

significant societal value.  Therefore, this research attempted to develop a foreclosure 

prediction model based on ML techniques which, with confidence, will stimulate 

additional examinations of the topic. 
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Chapter 2 

 

Literature Review 

Introduction 

 This chapter provides a more in-depth examination of the genesis models and ML 

technologies used in this study.  With regard to the ML technologies, the seminal papers 

and authors thereof are identified and discussed.  Said discussions will lead into 

explorations of the foundation algorithms and or mathematical derivations for each ML 

type.  The genesis models were examined from an evolutionary perspective, starting with 

statistical methods and proceeding to current research of ML techniques in the 

development of new models.  Finally, this chapter will conclude with a summary of some 

advantages and disadvantages for each ML technique. 

Machine Learning 

 ML is a sub-field of Artificial Intelligence (AI) that focuses on the development 

of computational algorithms that allow computers to induce rules and patterns from 

empirical data (Langley & Simon, 1995).  ML is an interdisciplinary field which draws 

knowledge from mathematics and statistics, computer science, engineering, cognitive 

science, optimization theory and other scientific and mathematical disciplines 

(Ghahramani, 2004).  In ML methods, the input values and related output values are used 

to algorithmically deduce an assumed (but unknown) functional relationship among 

variable types that can be applied to predict outputs for new input values (Steinwart & 

Christmann, 2008, p.2).  ML methods generally fall into three main categories (Russel & 

Norvig, 2003, p.650):   
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 Supervised learning methods are based on the existence of a priori data 

knowledge whereby a sub-set of the input(s) and associated output(s) can be used 

by computational algorithms to classify and cluster the input data (Tan & Gilbert, 

2003).  In this learning method, the input observations are known to cause the 

output observations, therefore, the inputs are at the beginning and the outputs are 

at the end of the causal chain (Tan & Gilbert). 

 Unsupervised learning methods do not depend on the existence of a priori data 

knowledge in performing classification and clustering tasks (Tan & Gilbert).  In 

unsupervised learning, all the observations are assumed to be caused by latent 

variables at the end of the causal chain.  

 Reinforcement learning methods are based on psychology’s reinforcement theory 

which attempts to shape behavior by controlling the consequences of said 

behavior (Russel & Norvig, 2003, p.650).  Reinforcement learning agents do not 

depend solely on inputs from the controller, but also rely on feedback provided 

from the execution environment to alter or adjust their behavior accordingly.  

Continuous positive or negative feedback allows the agent to acquire reinforced 

knowledge of the environment (Ghahramani, 2004). 

The following sections (ML1 - ML3) discuss the supervised ML techniques used in this 

study.  

ML1: Classification Trees 

 A classification tree is a decision tree with discrete output values as opposed to 

continuous values in the case of regression trees (Russel & Norvig, 2003, p.653; Abu-

Nimeh, Nappa, Wang & Nair, 2007).  As decision trees, classification trees are an 
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induced collection of decision branches, leafs and nodes that classify observations 

dependent on input values (Cielen, Peeters & Vanhoof, 2004).  Each node in a decision 

tree represents a test of a property value, whiles the branches represent the possible 

values of the test (Russel & Norvig).   

 Classification trees classify instances into the categories of the dependent attribute 

(Y) by using the values of the independent (X) attributes (Morasca, 2002).  The 

classification process starts with the association of the dependent variable with a 

probability distribution for random selection of a binary (0, 1) entity (Morasca).  The 

probability distribution does not use the independent variables, thus the selection 

probability p(y) is unconditional.  As the process progresses, the conditional probability p 

(y|x) is used.  As such, each independent attribute will have varying degrees of usefulness 

for classifying instances as either 0 or 1.  An attribute X is considered "best" based on the 

maximization of the information gain H(Y) – H(Y|X), where  

H(Y) = - ∑y p(y) log p(y) and H(Y|X) = - ∑x p(x) ∑y p(y|x) log p(y|x) (Morasca; Russel & 

Norvig, 2003, p.659).  

 Several inductive algorithms exist for the generation of classification trees.  

Quinlan’s (1986) ID3 and (1993) C4.5, Breiman, Friedman, Olshen & Stone’s (1984) 

CART are examples of commonly used induction algorithms for classification trees 

(Esmeir & Markovitch, 2004).  Many classification tree algorithms are greedy because 

they induce from the top-down, making best possible decisions at each node (Esmeir & 

Markovitch).  Additionally, Ockham’s Razor (the least complex explanation for a given 
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phenomenon is most likely the correct one) is drawn upon to choose from among equally 

competing hypotheses (Russel & Norvig, 2003, p.659; Murphy & Pazzani, 1994).   

 The Recursive Partitioning Algorithm (RPA) is a foundation algorithm for many 

classification tree techniques (Ravi-Kumar & Ravi, 2007).  RPA is a non-parametric 

classification technique based on pattern recognition.  Quinlan’s C4.5 is an RPA that 

extends ID3 (Quinlan, 1986) for use with continuous variables (Morasca, 2002).  

Baesens, Van Gestel, Stepanova, Suykens & Vanthienen (2003) applied C4.5 to credit 

scoring classification.  The following is a pseudo-code representation of an RPA adapted 

from Russel & Norvig (2003, p.658):  

Function 1 - Classification Tree Learning Algorithm    

Begin Function TreeLearning (examples, attributes, default) returns Tree 

 if (examples.count==0) return default;  

 if (examples.all.output==classification) return classification; 

 if (attributes.count==0) return MaxClass(examples); 

 declare best, tree, m; 

 best = ChooseAttribute(examples, attributes); 

 tree = new Tree(best); //root node of new tree is best 

 m = MaxClass(examples);   

 for each vi in best 

  examplesi = examples.Find(where best = vi); 

  //recursive function call 

  declare subtree = TreeLearning (examplesi, attributes - best, m); 

  tree.AddBranch(vi, subtree);     

 next vi 

 return tree; 

End function     
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Begin Function ChooseAttribute(examples, attributes) 

 declare dictionary = new Dictionary<key, value>();   

 for each attribute in attributes 

  dictionary.Add(attribute.InformationGain(examples), attribute); 

 next attribute 

 dictionary.Keys.Sort; 

 return dictionary[dictionary.Keys[dictionary.Count-1]]; 

End function 

   

Begin Function MaxClass (examples) returns classification 

 declare list = new List<classification>; 

 for each example in examples 

  list.Add(example.classification); 

 next example 

 list.Sort; 

 return list[list.Count-1]; 

End function 

  

ML2: Support Vector Machines 

 SVM is a kernel machine learning method that performs classification tasks by 

constructing maximal margin hyperplanes in a multidimensional space in order to 

separate cases of different class labels (Moore, 2003).  Maximal margin hyperplanes 

provide the greatest separation between class boundaries with the training point nearest to 

the hyperplane acting as support vectors (Min & Lee, 2005; Russel & Norvig, 2003, 

p.751).   

 The genesis of SVM can be traced back to the work of Boser, Guyon & Vapnik 

(1992) which drew upon the Generalized Portrait Algorithm (GPA) by Vapnik and 

Lerner (Steinwart & Christmann, 2008, p.13).  Boser, Guyon & Vapnik’s work was 

originally called “Maximal Margin Classifier” and later “Hard Margin SVM” (Steinwart 

& Christmann, p.14).  The GPA is based on Vapnik and Chervonenkis’ (1971) Structural 
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Risk Minimization (SRM) principle from computational learning theory (Steinwart & 

Christmann).  SRM is an inductive principle in machine learning designed to address the 

problem of overfitting when a generalized model is selected from a finite data set 

(Vapnik & Chervonenkis, 1971). 

 From Boser, Guyon & Vapnik’s (1992) original work, for a linearly separable 

training set (i=1,….,N), the SVM hyperplane satisfies the inequality –   

(1) yi (w●xi + b) ≥ ∀i ∈ {1,…,N} where w is a normal and b is a bias (Gao, Cui & Po, 

2008; Min & Lee, 2005).  Furthermore, yi ∈ {-1, +1}, xi ∈ R
d
 is a case of the training set 

where d is the dimension of input space and w●xi is the dot product of the normal and xi 

(Gao, Cui & Po).  The dot product is an operation which takes two vectors and returns a 

real-valued scalar quantity.  The dot product of two vectors a = [a1, a2, …, an] and b = 

[b1, b2, … , bn] is therefore defined as: 
n

∑
i=1

 (ai bi) (William et al., 1998).  Under the 

constraint specified in (1), the optimal hyperplane is equivalent to minimizing ||w||
2 

(Min 

& Lee).   

 For non-linear surfaces a set of slack variables, ei….n and a penalization variable C 

for misclassification are introduced in order to relax the optimization problem (Gao, Cui 

& Po, 2008; Min & Lee, 2005).  The optimal hyperplane is, therefore, now achieved by 

minimizing (2) [0.5||w||
2
  + C

n

∑
i=1

(ei)] with respects to w,b,e under the constraint (3)  
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yi (w●xi + b) ≥ 1-ei, ei ≥ 0, ∀i ∈ {1,…,N} (Gao, Cui & Po; Steinwart & Christmann, 2008, 

p.15).  Finally, a Lagrange multiplier α is applied to each constraint in order to present 

the maxima of the linear problem.  Lagrange multipliers are used to find the extrema of a 

function that is subject to fixed outside conditions or constraints.  As such, the objective 

function with respect to α is: (4) ;
 
under the 

constraints:  and
 
 

 
(Gao, Cui & Po; Steinwart & 

Christmann).  SVM in a non-linear space is thus a quadratic programming optimization 

problem (Russel & Norvig, 2003, p.749).     

 Kernel Methods (KMs) are pattern analysis algorithms which discover relation 

types such as clusters, rankings and classifications in general types of data (Moschitti, 

2008).  A kernel function k is a mapping function which performs a non-linear map to a 

higher dimensional feature space (Russel & Norvig, 2003, p.751; Wu, Tzeng, Goo & 

Fang, 2007).  Kernel functions are usually represented as K (xi, xj) and replace the inner 

products of equation (4) in non-linear SVM such that eq. (4) becomes

 (Russel & Norvig; Gao, Cui & Po).  The selected 

kernel function is dependent on the classification task and the desired level of accuracy.  

The RBF (Gaussian) kernel has been used in many bankruptcy prediction and credit 

scoring studies (Lee, 2007; Wu, Tzeng, Goo & Fang; Min & Lee, 2005; Fan & 
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Palaniswami, 2000; Schebesch & Stecking, 2005).  The RBF kernel is defined as follows:

(Steinwart & Christmann, 2008, p.116). 

 Optimal choice of SVM kernel parameters is critical to classification accuracy 

and stability (Wu, Tzeng, Goo & Fang, 2007; Min & Lee, 2005).  The penalization 

variable C and the bandwidth of the RBF kernel ϭ2
 (sigma squared) must be cautiously 

predetermined.  Exponentially growing sequences of C (e.g. C
-5

,…,C
5
) and σ (e.g. ϭ-

10
,…,ϭ5

) is an acceptable method for pre-selecting SVM parameters, but is not without 

fault (Min & Lee, 2005).  

 Wu, Tzeng, Goo & Fang (2007) proposed a GA-SVM model for determining the 

optimal choices for these parameters relevant to bankruptcy prediction.  Their approach is 

based on using a Real Valued Genetic Algorithm (RGA) to optimize the parameters of 

the SVM.  Wu, Tzeng, Goo & Fang encoded a chromosome X as {p1, p2} where p1= C 

and p2 = ϭ.  The hit ratio is used as the fitness function whereby the GA-SVM’s 

performance is compared against other models such as traditional SVM, logit and Neural 

Network (NN).  Wu, Tzeng, Goo & Fang concluded that prediction accuracy was 

drastically improved by using the GA to seed the SVM.   

ML3: Genetic Programming   

 Genetic programming (GP) is an AI programming technique based on natural 

selection (Lensberg, Eilifsen & McKee, 2006).  Genetic programming is founded upon 
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genetic algorithms (GA), which are implemented using coded bit strings commonly 

referred to as chromosomes (Russel & Norvig, 2003, p.133).  Each gene in a 

chromosome, therefore, represents a specific behavioral condition or state within the 

problem space (Lensberg, Eilifsen & McKee).  In genetic algorithms, the chromosomes 

are evolved through generations via a process of mating, mutation and tournament 

selection based on suitability to a defined objective function or fitness function as in the 

case of GPs (Russel & Norvig).  The parameters which control mating and mutation are 

referred to as the Genetic Operators. 

 GPs differ from GAs in that the mutated elements are executable structures, often 

represented in the form of LISP expression trees, Java, or machine code programs for 

stack based machines, as opposed to bit strings (Russel & Norvig, 2003; Riolo, Worzel & 

Soule, 2009).  As such, GPs use a subset of a suitable programming language to represent 

the individual behavior rules (Lensberg).  In GP, new generations of programs are 

evolved through a process of mating of the top two selected programs.  Primarily, 

tournament selection is used to randomly select n number of programs from the GP 

population.  The top two programs are then determined by rank according to the values 

returned from execution of their fitness function.  These programs are mated based on the 

genetic operators (crossover point & mutation factor) and their offspring replace the least 

fit programs in the population.  This concept is illustrated in Table 2.  

Table 2 - Example of GP Program Selection 

Randomly Selected Programs Fitness Score  Rank 

11 0.81 1 

27 0.65 3 

35 0.57 4 

n 0.78 2 

Program 11 & n 

will be selected 

for mating. 
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 The crossover point is a point between 1 and the number of points in a program 

tree.  During mating, this point is randomly generated for each of the programs involved 

in the mating process.  The sub-trees rooted at the two picked points are then used in a 

recombination process to produce offspring.  In mutation, a single program is randomly 

selected and a point in the program’s sub-tree is deleted.  A new sub-tree is then grown at 

the mutation point thus creating a new program. 

 GPs have had successful applications in areas such as automated combination of 

analog electrical circuits (Koza et al, 1999), automatic creation of computer programs 

(Bruce, 1995) and solving complex state-space search problems (Russel & Norvig).  The 

upsurge in interest of GPs is attributed to John Koza’s 1992 publication titled ‘Genetic 

Programming: On the Programming of Computers by Means of Natural Selection’.  In 

this work, Koza introduces four examples of GPs and discusses several evolutionary 

concepts such as evolution of emergent behavior, evolution of subsumption, entropy-

driven evolution, evolution of strategy, and symbolic regression. 

 Symbolic regression is a GP technique for the search of a satisfactory 

mathematical expression that fits a set of data points, in a specific domain, from a 

constrained space of possible functions and terminal conditions (Koza, 1992, p.162).  

Simply stated, symbolic regression, also known as symbolic function identification, 

derives an equation from a given set of data points.  In symbolic regression, pre-

determination of the relationship type is minimized by a chosen set of standard 

mathematical and logical operators known as the instruction set (Koza, 1992, p.81).  A 

simple instruction set F, can be such that F = {+, -, *, /, and, or, not, conditional (if-then-
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else), loop, recursion}.  Set F is generally sufficient to account for most linear and 

polynomial relationships (Koza, p.163).  

 Symbolic regression uses Koza’s (1992) Automatically Defined Functions 

(ADFs).  ADFs are programs that consist of a function defining branch that can 

potentially utilize subroutines, loops, recursion and internal storage to promote the reuse 

of code, and a result producing branch (Koza, 2008, p.81).  Through the evolutionary 

process, the main program branch is free to decide how to use the ADFs to find a solution 

within the constrained space of possible functions (Langdon & Poli, 2002, p.11).   

Symbolic regression has been applied to the bankruptcy problem by Lensberg, Eilifsen, 

and McKee (2006) with favorable results, and has also been applied to the credit scoring 

problem (Abdou, 2009). 

 The following is a pseudo-code representation of Koza’s (2008) symbolic 

regression GP algorithm illustrated in Figure 2. 

1. Generate population of n randomly composed programs that comprise an 

instruction set F. 

2. Set termination condition and max generations. 

3. Loop until termination condition is met or max generations reached 

a. Calculate fitness score for each program in current generation i 

b. Randomly select genetic operation  

i. Case reproduce 

x1. Select programs for mating. 

x2. Determine crossover points 

x3. Create offspring and into new (i+1) population 
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ii. Case mutate 

x1. Select one program based on fitness 

x2. Mutate program 

x3. Insert mutant into new (i+1) population 

iii. Case architecture alteration 

x1. Select one program based on fitness 

x2. Perform architecture altering operation 

x3. Insert offspring into new (i+1) population  

c. End select 

d. Increment generation counter (i++) 

4. End loop 

5. Output program designation. 
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Figure 2 - Symbolic regression GP flow chart. (Koza, 2008) 

Bankruptcy Prediction 

 Beginning with the seminal paper on financial failure prediction by Beaver 

(1966), work on bankruptcy prediction logically progresses from purely an accounting 

practice to applications of ML techniques.  ML approaches such as Neural Networks 

(Perez, 2006), Genetic Programming (Abdelwahed & Amir, 2005; McKee & Lensberg, 

2002) and Support Vector Machines (Shin, Lee & Kim, 2005; Min & Lee, 2005) have 

been applied to the bankruptcy problem.  The bankruptcy problem is considered difficult 

because of the number of variables and the complexity of their relationships (Ohlson, 

1980; Altman, 1984; Keasey & Watson, 2005; Ward, 2006).  The application of ML 

techniques to the bankruptcy problem has generally indicated better results when 
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compared to purely statistical approaches (Laitinen & Laitinen, 2000; Charalambous, 

Charitou & Kaourou, 2000).  In their review paper titled ‘Bankruptcy prediction in banks 

and firms via statistical and intelligent techniques’, Ravi Kumar & Ravi (2007) 

concluded that stand-alone statistical techniques are no longer fashionable in bankruptcy 

prediction research.  Ravi Kumar & Ravi illustrate that ML techniques, particularly 

neural networks followed by rough sets and evolutionary approaches are currently the 

most commonly used approaches. 

 A literature search unearthed a plethora of papers that focus on bankruptcy 

prediction and financial distress indicators from accounting and AI perspectives.  Among 

the first papers to address the combination of AI with bankruptcy prediction is Odom & 

Sharda’s (1990) ‘A neural network model for bankruptcy prediction’.  In the midst of the 

more recently cited papers is Lensberg, Eilifsen & McKee (2006), which focuses on 

genetic programming and bankruptcy theory development.  Lensberg, Eilifsen & McKee 

is well cited in papers published in refereed journals such as Expert Systems with 

Applications, Knowledge-Based Systems and Computers & Operations Research (Rom 

& Slotnick, 2009; Tsai, 2008; Lee & Shih, 2009; Hung & Chen 2008).  Lensberg, 

Eilifsen & McKee is the bankruptcy model that will be drawn upon for this dissertation 

study. 
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Credit Scoring Models 

 In the U.S., credit models are used to calculate a score that is representative of an 

individual’s creditworthiness (myFICO, 2009).  Traditional credit scoring models are 

usually based on accounting ratios and regression analysis (Finlay, 2009).  Financial 

institutions use the scores generated by the models to evaluate the risk involved in 

lending money to consumers.  As such, credit scores determine who qualifies for a loan 

and the parameters of the loan (interest rate, term etc).  The Fair Isaac Corporation 

created the first credit scoring system in 1958 (myFICO).  Though the exact details of 

their model are unknown, it is largely based on the traditional approach (Finlay).  

Recently, recognition of the inadequacies of current credit scoring models has led to the 

application of ML techniques in the pursuit of more robust models.  Neural Networks, 

Support Vector Machines and Genetic Programming have all been applied to the problem 

with optimistic results (Abdou, 2009; Bellotti & Crook, 2009; Tsai, 2008; Yu & Wu, 

2008; Schebesch & Stecking, 2005).  

Foreclosure Factors 

 The options theory of foreclosures states that foreclosures occur when a 

property’s value becomes less than what is owed on the mortgage (Grover & Todd, 

2008). Additionally, the trigger event theory, suggest that foreclosures occur when the 

borrower experiences financial and physical setbacks which hinder continued payments 

(Grover & Todd).  Though both of these theories hold some validity, neither truly 

captures the interaction among the micro/macro economic, social, regional and legal 

factors at play in the foreclosure dynamic. 
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Summary 

 The following section summarizes some of the advantages and disadvantages of 

ML1 - ML3 from the perspective of the technology and relevance to the proposed study.   

Classification Trees 

Advantages 

 

 Has been applied to the bankruptcy problem (Marais, Patell & Wolfson, 1984; 

Frydman, Altman & Kao, 1985).   

 Excels at feature identification by interpreting interactions among predictors 

(Abu-Nimeh, Nappa, Wang & Nair, 2007). 

 C4.5 has been applied to credit scoring classification (Baesens, Van Gestel, 

Stepanova, Suykens & Vanthienen, 2003).  

 Can handle both categorical and continuous variables (Morasca, 2002).   

 Tends to produce models that are easy to interpret and can be used to create set of 

IF-THEN rules (Russel & Norvig, 2003; p. 654). 

Disadvantages 

 Classification trees can be unstable and minor data variations can result in the 

generation of very different looking trees (Russel & Norvig, 2003; p. 654).  

 Can succumb to overfitting of data (Russel & Norvig, p. 662). 

 Computationally expensive to train.  The order of complexity for C4.5 with a 

dataset of size n and each instance having m attributes is  

 O(m.n.log n) + O(n (log n)
2
). 
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Support Vector Machines 

 

Advantages 

 

 Supports linear, polynomial, radial basis function (RBF) and sigmoid kernels for 

regression and classification tasks (Moore, 2003).   

 Can process multiple continuous and categorical input variables (Schebesch & 

Stecking, 2005).   

 Kernel parameters may be optimized via a hybrid GA-SVM approach as 

demonstrated by Wu, Tzeng, Goo & Fang (2007). 

 Has been used in many recent bankruptcy prediction and credit scoring studies 

such as Bellotti & Crook, 2009; Lee, 2007; Min & Lee, 2005; Schebesch & 

Stecking, 2005; Min, Lee & Han (2006); Gao, Cui & Po, 2008. 

Disadvantages 

 

 Optimal choice of SVM kernel parameters is critical to classification accuracy 

and stability (Wu, Tzeng, Goo & Fang, 2007; Min & Lee, 2005).   

 Choice of kernel function can have an impact on the classification task and the 

desired level of accuracy.   

Genetic Programming 

 

Advantages  

 

 Symbolic regression has been applied to the bankruptcy problem by Lensberg, 

Eilifsen, and McKee (2006) with favorable results. 
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 Most linear and polynomial relationships can be deduced by a simple instruction 

set F such that F = {+, -, *, /, and, or, not, conditional (if-then-else), loop, 

recursion} (Koza, 1992, p.163).   

 Additions to set F (e.g. sin, cost, log, exp) can create a wider variety of output 

expressions. 

 Has been applied to the credit scoring problem (Abdou, 2009). 

Disadvantages 

 

 Identification of the correct fitness function is critical to satisfactory discovery of 

a workable expression. 

 Execution time can be very high (Lensberg, Eilifsen & McKee, 2006). 

 Expanded function sets increase the potential of bloat which is an excess of code 

expansion caused by the genetic operators searching for superior solutions 

without a resultant enhancement in fitness (Silva & Costa, 2005).   

 The number of major and minor control parameters is high in comparison to other 

machine learning methods.  Koza (1992, p. 641) enumerates approximately 

nineteen parameters of which population size M, max number of generations G, 

crossover probability pc, reproduction probability pr, crossover point cx, 

probability of mutation pm are critical to accuracy. 
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Chapter 3 

 

Methodology 

Introduction 

 This chapter focuses on presenting the technology that was implemented, and the 

steps executed, to develop the proposed foreclosure prediction model.  Emphasis was 

placed on the data that drove the study and the implementation of ML1 - 3 for side-by-

side predictive comparison.  The chapter concludes with a summary of the macro steps of 

the study.   

Data Acquisition 

 All macroeconomic data was retrieved using the ALFRED® (2009) API.  

ALFRED is a RESTful (Representational State Transfer) web service, created by 

Economic Research Division of the Federal Reserve Bank of St. Louis, which provides 

access to archived U.S. regional economic data.  REST is a client-server architectural 

style that is stateless, cacheable, exposes a uniform interface, and promotes layered 

system design (Fielding, 2000).       

 A stratified random sample of foreclosure data was requested from Dextec 

Systems.  The vendor responded by providing an equal number of randomly selected 

foreclosed and un-foreclosed data for Miami-Dade, Broward, and Palm Beach counties.  

Though this does not represent a stratified sample, it does reduce sampling bias since 

each type of mortgage/county record has an equal chance of being selected.  The total 
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record count was 1000 distributed as illustrated in Table 3.  The data obtained from 

Dextec Systems is available upon request.   

Table 3 - Mortgage Data Totals  

County Type Count 

Broward County Foreclosure 167 

Broward County Non-Foreclosure 167 

Dade County Foreclosure 167 

Dade County Non-Foreclosure 167 

Palm Beach County Foreclosure 166 

Palm Beach County Non-Foreclosure 166 

  Total 1,000 

 

Crime statistics from the National Archive of Criminal Justice Data (NACJD) was 

acquired and reviewed.  The NACJD is a part of the Inter-University Consortium for 

Political and Social Research (ICPSR) at the University of Michigan.  Though the 

NACJD data was extensive, a consistent, meaningful and regional (by zip/city) crime 

index could not be identified.     

 All data was imported into the database as described in Data Management. There 

was no need to scrub the data for consistency and balance.  A balanced dataset exists if 

the ratio between the two output classes is not significantly greater than 1:1.  The 

dependent and independent variable used in the study are presented next. 

Variables 

 The variables illustrated in Table 5 - Table 9 were postulated in the development 

of the foreclosure prediction model.  The selected variables were adapted or inferred from 

bankruptcy and credit scoring models by Lensberg, Eilifsen & McKee (2006) and Bellotti 

& Crook (2009) respectively.  Furthermore, variable selection was limited to the 

variables that were relevant to the unit of analysis, readily available, and not subject to 

acquisition limitations.  In some cases, the impact of a variable is mirrored by another 
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variable thereby rendering the impact of the variable’s exclusion moot.  Credit score is an 

example of such a variable as its value is mirrored by interest rate.  The following 

variables were initially identified but were later omitted: 

Table 4 – Excluded Variables 

Name Reason for Omission 

Income  Unavailable due to Privacy Laws. 

Credit Score As above. 

Gender As above. 

Mortgage Payment Not recorded by data vendor. 

Average Age of Mortgagee(s) As above. 

Multi-Income As above. 

Crime Rate For Region Difficulty in identifying consistent index.  

.
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Table 5 - Independent Variables – Mortgage Parameters 

Name Data Type Example/Scale of Measure/Comments Data Source Measurement Frequency 

Mortgage Type Discrete 0= Fixed, 1= ARM, 3=Other Dextec Systems Inception and Current Year 

Interest Rate  Continuous 6.02%. (Current rate in case of an ARM) Dextec Systems 
Inception and quarterly 

thereafter 

Principal Amount Continuous Amount borrowed. Dextec Systems Inception 

Mortgage Year  Discrete Inception Year – Current Year  Dextec Systems Annually 

Current Market  

Value 
Continuous 

Estimate of amount that can be currently 

obtained for property if sold within next 3 

months.  

Dextec Systems Inception and Current Year 
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Table 6 - Independent Variables – Macroeconomic 

Name Data Type Example/Scale of Measure/Comments Data Source Measurement Frequency 

Prime Rate Continuous 
The interest rate charged by banks to their most 

creditworthy customers.   
ALFRED® 

Inception and quarterly 

thereafter. 

Inflation Continuous 

An increase in the cost of goods and services in 

an economy over a period of time due to loss of 

purchasing power in the medium of exchange.  

ALFRED® 
Inception and quarterly 

thereafter. 

Consumer Price 

Index 
Continuous 

Average price for a typical market basket 

consumed by the average household.  
ALFRED® 

Inception and quarterly 

thereafter. 

 

     

Table 7- Independent Variables – Demographic  

Name Data Type Example/Scale of Measure/Comments Data Source Measurement Frequency 

Zip Discrete Zip code or any integer based regional identifier Dextec Systems Inception 
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Table 8 - Independent Variables – Regional 

Name Data Type Example/Scale of Measure/Comments Data Source Measurement Frequency 

 

Regional Home 

Ownership 

Rate 

Continuous 

The homeownership rate is the percentage of 

homeowning households among all households in 

the given demographic group. 

ALFRED® 
Inception and quarterly 

thereafter 

Predatory 

Lending 
Discrete 

Prevalence of predatory lending practices.  

(Strupp, 2009).  Indicates whether region has laws 

which regulates predatory lending  

(Rose, 2008). {0,1} 

MBA 
Inception and Current 

Year. 

Unemployment 

Rate 
Continuous 

Percentage of those in the labor pool who are 

unemployed. 

ALFRED® 
Inception and quarterly 

thereafter 

Per Capita 

Income 
Continuous 

Amount each citizen receives if the yearly 

regional income is divided equally among 

everyone. (Bowden, 1992, p. 92). 

ALFRED® 
Inception  and Semi-

annually thereafter 
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Table 9 - Dependent Variable 

       

Name Data Type Possible Values Data Source Measurement Frequency 

Mortgage 

Status 
Discrete 

0 = Status Quo - Mortgage proceeds to maturity 

without any significant changes. 

1 = Foreclosure - Mortgage fails and property is sold 

by financing house. 

Dextec Systems 
Inception and quarterly 

thereafter. 
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Workbench 

 For the comparative analysis of ML1 - ML3, a generic workbench was created to 

facilitate parallel processing of the mortgage data.  The workbench, hereinafter referred 

to as Raptor, was designed with extensibility, scalability and re-use in mind.  As such, 

Raptor was built using an SOA pattern that made monolithic and cloud based system 

deployment possible.  In the cloud scenario, Raptor's core services (SDK) were

 

Figure 3 - High level overview of Raptor System. 
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deployed to the Azure development environment through Visual Studio 2010.  The plug-

ins for SVM, CT and GP were then deployed in Azure and registered with Raptor.  

Figure 3 illustrates the high level overview of the system.  UML class diagrams for 

Raptor are presented in Appendix B - D. 

Raptor was written in C# 4.0 with Visual Studio 2010.  IKVM was used to bridge the 

Java → .Net gap as JDK limitations with J#.Net were encountered.  The plug-ins were 

based on the following academically embraced open source ML libraries/SDKs.  : 

1. University of Waikato’s machine learning library (WEKA) was used for developing 

the classification tree (ML1) implementation (Holmes, Donkin & Witten, 1997).   

2. National Taiwan University’s (NTU) Library for Support Vector Machines 

(LIBSVM) was used to develop the ML2 implementation (Chang & Lin, 2009).   

3. George Mason University’s Evolutionary Computation Research System (ECJ19) 

was initially used for developing the genetic program (ML3) implementation (Luke et 

al., 2008).  Adapting ECJ19 for multi-parameter symbolic regression (MPSR) proved 

to be somewhat awkward because of its complex interfaces and reliance on 

configuration files.  For this reason, the GP implementation used an MPSR library by 

Dudley (2011) as a wrapper around ECJ19 for improved ease of use. 

 Proxy classes to the ALFRED® API were built to promote simple consumption of 

the service.  The Federal Reserve supplies excellent documentation on the API which 

supports language neutral consumption.  The class diagram of the proxies is illustrated in 

Figure 22. 
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Data Management 

 The study required a database to manage the large amount of mortgage data that 

drove the ML plug-Ins.  Microsoft’s SQL Server 2008 was given preference over other 

databases (Oracle, IBM DB2) because of its ease of use in importing data, scrubbing data 

and migration to Azure (MSDN, 2008).  Summary descriptions of the database tables that 

were created are presented in Appendix E, whiles Appendix F displays the relationships 

amongst the tables.  Data management is handled by the use case ‘Maintain Data’ as 

illustrated in Figure 4. 

.  

Figure 4 - Maintain Data 

 Data was imported by using Raptor to invoke a modified version of the Microsoft 

SQL Server Import and Export Wizard (Figure 5).  The output artifact of the wizard is a 

SQL Package, which stores the actions (new table etc.) to be performed on the target 

database.  Raptor uses the WCF Service called RaptorData (Figure 3) to transport the 

package to the database server and to execute the package.  All actions performed on the 

database are logged to a table called ‘DatabaseLog’ (Table 23).  This functionality is 

intrinsic to SQL Server 2008.  A database trigger called ‘AddPrimaryKeyToNewTables’ 

is fired for insert events on this table.  The trigger’s primary purpose is to add a column 

called ID, of type uniqueidentifier, to the newly imported table and to register (insert 
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meta-data) said table in ‘RegisteredDataSets’ (Table 35).  The column ID is used by 

Raptor to uniquely distinguish each row of data. 

 
Figure 5 – SQL Server Import/Export Wizard. 
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Data Extenders 

 A Raptor Data Extender is a function which horizontally extends a registered 

dataset.  As such, each extender maps directly to a column in the total dataset (Figure 8).  

Data Extenders are implemented as either WCF Services or .Net libraries.  Meta-data that 

describes and facilitates execution of extenders are handled by the use case ‘Maintain 

Data Extensions’ ( 

Figure 6 & Figure 34).   

 

Figure 6 – Maintain Data Extenders 

Unlike Raptor ML Plug-Ins, extenders do not implement any specialized 

interfaces or base classes.  Instead, reflection is used to interrogate the service/library to 

discover available functions and their associated parameters.  Data extender parameters 

can either be constant values or the values of adjacent columns.  Since many extenders 

need run only once, Microsoft’s App Fabric Caching Service was used to minimize 

database stress and network traffic.  All ALFRED® (2009) metrics were implemented as 

data extenders. 
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ML Plug-Ins 

 Raptor ML Plug-Ins are logical components which implement the various 

machine learning algorithms.  They are pluggable units controlled and dynamically 

executed by Raptor.  Plug-ins are managed by the use case ‘Maintain PlugIns’ (Figure 7).  

Plug-Ins can be either .Net libraries, WCF Services or Web Services.  Unlike data 

extenders, plug-ins must implement a common interface called ‘IRaptorPlugIn’ (Figure 

10).   If this interface is not implemented, the plug-in cannot be registered.  Registration 

is similar to data extenders, in that, the purpose is to acquire and save meta-data that can 

be used to identify, describe, and execute the logical unit.   

 

Figure 7- Maintain Plug-Ins 

  

 The default parameters for ML Plug-Ins are set during registration, and may be 

changed before and after the project is opened.  The results of each plug-in run can be 

published to the database thereby creating a historical record for the run (Figure 9).  The 

parameters of a historical record may also be made current at anytime.  The results of a 

published plug-in run can also be viewed before the project is opened. 
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Figure 8 - Raptor Data Extenders 

Extender function for 

Consumer Price Index 

at Inception Year of 

Mortgage. 



44 

 

 

 

 

Figure 9 - Plug-In Parameters  

Selected Plug-

In parameters. 

Historical Run data 

and associated 

parameters. 
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Figure 10 - Machine Learning Libraries Class Diagrams 
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Raptor Project 

 To perform analysis on the mortgage data, a Raptor project was created.  A 

Raptor project consists of the following elements:  

 One or more datasets (datasets may be joined or unioned). 

 One or more ML plug-in. 

 Zero or more Data Extenders. 

This section defines, by flow chart, the steps to be executed for building a Raptor project. 

These steps assume that the database has already been populated and scrubbed, and plug-

Ins for ML1 - ML3 have been registered.  The flow chart in Figure 11 maps the basic 

flow while Appendix G illustrates the relevant screens. 
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Figure 11 - New Project Flow 
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Figure 12 - High Level Sequence Diagram of Workbench Execution
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Process 

 This section delineates the steps to be executed for a comparative run of all 

registered ML plug-Ins.  Steps include the manual steps to be performed by the 

experimenter and those executed by Raptor (see Figure 12).  These steps assume that a 

Raptor project has already been created.       

1. Start Raptor. 

2. From menu select ‘Open Projects’. 

3. Click on desired project. 

4. Review plug-Ins.   

a. If all plug-Ins are not linked to project, right click and select ‘Add Plugins’ 

as illustrated in Figure 13. 

  

Figure 13 – Add Plug-Ins 

 

b. From the screen presented in Figure 36, select and save the desired plug-

Ins and return to the projects screen (Figure 9). 

5. Select ML1 plug-In which uses WEKA based implementation of C4.5 

classification tree algorithm.  

6. Set run parameters for ML1 

a. Set Minimum Number of Instances.  

b. Set Pruning to true. 

c. Set ‘Cross Validate’ to true. 

i. Set Number of Folds  
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d. Do not set Decision Tree.  This value is returned by the ML engine. 

e. Set UseM5InsteadOfJ48 to true; 

  

Figure 14 – ML1 Parameters 

7. Select ML2 plug-In which uses NTU’s implementation of SVM algorithm. 

8. Set run parameters for ML2 

a. Kernel method is locked at RBF and cannot be changed from UI. 

b. Set penalization variable C, start at a number less than 1. 

c. Set bandwidth (ϭ2
) of kernel function.  Start at 0.25. 

d. Set ‘Cross Validate’ to true. 

i. Set Number of Folds, default is 10  

e. Set ‘SaveModel’ to false. 

f. Set ‘Rehydrate Model’ to false. 

g. Ignore ModelName parameter; this is set by the ML engine. 

 

Figure 15 – ML2 Parameters 

 

9. Select ML3 plug-In which uses ECJ19/Dudley MPSR implementation of genetic 

program. 

10. Set run parameters for ML3. 

a. Set ‘BuildDepth’.  Default is 6. 

b. Set ‘MinimumAcceptableFitness’ to zero. 

c. Set ‘MaximumExecutionTime’ to 30 minutes. 
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d. Instruction set is hard coded and cannot be set from UI.  Testing done with 

following combination: 

i. Add 

ii. Subtract 

iii. Multiply 

iv. Divide 

v. < 

vi. > 

vii. = 

viii. AndAlso 

ix. OrElse 

x. Not 

xi. Power 

e. Ignore ‘Mutation Threshold’. 

f. Set ‘Population Size’.  Default is 1000. 

g. Set ‘Crossover Point’ to 10. 

h. Set ‘Tournament Size’ to 2. 

i. Set ‘Number of Generations’.  Default is 100. 

j. Set ‘Maximum Node Count’. 

k. Ignore ‘Write out Stats’, ‘Expression Tree’ and ‘Found in Generation’.  

These are output variables set by the engine. 

 

Figure 16 – ML3 Parameters 

11. Review Data Extenders. 

a. If all extenders are not linked to project, right click and select ‘Add 

Extenders’ as illustrated in Figure 17.  
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Figure 17 – Add Data Extenders 

b. From the screen presented in Figure 37Figure 36, select and save the 

desired extenders and return to the projects screen (Figure 9). 

12. Review Data Extender parameters.   

a. Parameters are either constants or the values of other columns as 

illustrated in Figure 18. 

 

Figure 18 – Data Extender Parameter Values Derived From. 

b. Set number of instances of selected extender and alias if necessary. 

13. Click on the ‘Run’ button. 

14. Raptor executes steps as illustrated in Figure 12. 

15. Click on ‘Output’ button to view Confusion Matrix and ROC. 

16. Click on the ‘Publish’ button to persist run to database. 

17.  From Input Form, modify plug-In parameters and then go to step 13. Perform this 

step n time.  
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This section summarizes all the development steps that were necessary to conduct this 

research. 

1. Acquired all hardware and software including necessary licenses. 

2. Built database for storing mortgage data. 

3. Built ALFRED web service proxy and consumer class. 

4. Acquired data from specified sources. 

5. Imported data into database and scrubbed. 

6. Set up App Fabric Cache service and tested.  This replaces MemCache Server as 

was originally proposed. 

7. Built work bench. 

a. Integrated data helper component to interface with database. 

b. Linked web service consumer class. 

c. Designed and built WCF interfaces and data types for SDK. 

d. Built grid, plug-in parameters and graphing forms. 

e. Implemented App Fabric Cache client interface. 

8. Built plug-Ins for ML1 - ML3. 

a. Built unit tests. 

b. Ran tests with small datasets to verify accuracy. 

c. Tested dynamic loading and remote execution.  

9. Built work bench unit tests. 

10. Executed research process. 
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Chapter 4 

Results 

 

Introduction 

 This chapter presents and comments on the predictive performance of ML1 - 

ML3.  Simple statistical analysis was used to determine base performance.  Each plug-In 

was concurrently executed 20 times with varying input parameters and randomized 

training dataset.  For each run, the input parameters, predictive results, and performance 

metrics were published to the Raptor database.   

The primary metric used to compare the performance of ML1 - ML3 was 

classification accuracy (CA). This metric has been a standard comparison metric used in 

classifier induction studies (Perlich, Provost & Simonoff, 2003).  Classification accuracy 

of an ML technique is the percentage of correctly predicted outputs after operation on a 

test dataset (Perlich, Provost & Simonoff).  It is calculated by the sum of True Positives 

(TP) and True Negatives (TN) divided by number of records in the test dataset Nt, thus 

CA = (TP + TN)/Nt .  Classification accuracy results are presented in the format known as 

a Confusion Matrix. 

K-fold cross validation was used to select the training and testing sets for ML1 - 

ML3.  Cross-validation is a commonly used technique in machine learning research 

which uses all available examples as training and test examples (Bengio & Grandvalet, 

2004).  In cross-validation, initially the original sample is randomly partitioned into K 

subsamples.  Of these K subsamples, a single subsample is retained for testing purposes, 

whiles K−1 subsamples are retained as training data (Bengio & Grandvalet). The cross-

validation process is then repeated K times, whereby each of the K subsamples is used 
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exactly once as validation data.  Each ML engine implemented K-fold cross validation 

switches which were turned on for each of the 20 runs.  In some runs K was varied in 

order to observe the effect on classification accuracy.  For each run, 30% of the total 

dataset was randomly chosen and shuffled to produce the training set upon which K-Fold 

validation was performed.    

ML1: Classification Tree  

ML1 used WEKA’s C4.5 classification engine, as the J48 engine is not suitable 

for handling numeric values.  Of ML1’s parameters, ‘Minimum Number of Instances’ 

was varied starting at 1, and progressed through to 200.  Pruning was always set to true 

along with ‘Cross Validate’.  The run with the highest classification accuracy of 0.82 

occurred with the parameters as illustrated in Table 10.  Table 13 logs the classification 

accuracy and execution times for ML1.   

ML1 outputted a set of 19 rules (Table 11) each of which points to a specific 

linear module (LM) that is used to predict foreclosure (Table 12).  Figure 19 presents the 

rules as a classification tree. 

Table 10 - Optimum parameters for ML1 

Parameter Name Value 

MinNumberInstances 2 

CrossValidate True 

NumberOfFolds 7 

Prune True 
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Table 11 - ML1 Generated Rules 

ML1 Rules  

If Mortgage Interest Rate Type = 0 And Market Value <= 144107.5 And  

Mortgage Amount <= 155250 And Sale Price <= 121248 And Inflation IY + Q2 <= 

3.25 Then LM1 (10/0%). 

 

If Mortgage Interest Rate Type = 0 and Market Value <= 144107.5 And  

Mortgage Amount <= 155250 And Sale Price <= 121248 And Inflation IY + Q2 > 

3.25 And ConsumerPriceIndex IY + Q10 <= 203.7 And Market Value <= 91246 

Then LM2 (4/0%). 

 

If Mortgage Interest Rate Type = 0 and Market Value <= 144107.5 And  

Mortgage Amount <= 155250 And Sale Price <= 121248 And Inflation IY + Q2 > 

3.25 And ConsumerPriceIndex IY + Q10 <= 203.7 And Market Value > 91246  

And ConsumerPriceIndex IY + Q9 <= 202.85 Then LM3 (4/0%). 

 

If Mortgage Interest Rate Type = 0 and Market Value <= 144107.5 And  

Mortgage Amount <= 155250 And Sale Price <= 121248 And Inflation IY + Q2 > 

3.25 And ConsumerPriceIndex IY + Q10 <= 203.7 And Market Value > 91246  

And ConsumerPriceIndex IY + Q9 > 202.85 Then LM4 (2/0%). 

 

If Mortgage Interest Rate Type = 0 and Market Value <= 144107.5 And  

Mortgage Amount <= 155250 And Sale Price > 121248 And Inflation IY + Q2 > 

3.25 And ConsumerPriceIndex IY + Q10 > 203.7 Then LM5 (4/0%). 

 

If Mortgage Interest Rate Type = 0 And Market Value <= 144107.5 And  

Mortgage Amount <= 155250 And Sale Price > 121248 And  

Mortgage Amount <= 127200 Then LM6 (11/0%). 

 

If Mortgage Interest Rate Type = 0 And Market Value <= 144107.5 And  

Mortgage Amount <= 155250 And Sale Price > 121248 And  

Mortgage Amount > 127200 And ConsumerPriceIndex IY + Q5 <= 195 Then LM7 

(5/94.464%). 

 

If Mortgage Interest Rate Type = 0 And Market Value <= 144107.5 And  

Mortgage Amount <= 155250 And Sale Price > 121248 And  

Mortgage Amount > 127200 And ConsumerPriceIndex IY + Q5 > 195 Then LM8 

(5/0%).  

 

If Mortgage Interest Rate Type = 0 And Market Value <= 144107.5 And  

Mortgage Amount > 155250 Then LM9 (16/92.176%).  

 

If Mortgage Interest Rate Type = 0 And Market Value > 144107.5  

Then LM10 (84/83.268%).  



57 

 

 

 

 

If Mortgage Interest Rate Type =1 And Sale Price <= 132983 And 

ConsumerSentiment IY + Q2 <= 92.7 Then LM11 (16/0%). 

 

If Mortgage Interest Rate Type =1 And Sale Price <= 132983 And 

ConsumerSentiment IY + Q2 > 92.7 Then LM12 (35/90.515%). 

 

If Mortgage Interest Rate Type =1 And Sale Price > 132983 And 

ConsumerSentiment IY + Q10 <= 84.8 Then LM13 (41/0%). 

 

If Mortgage Interest Rate Type =1 And Sale Price > 132983 And 

ConsumerSentiment IY + Q10 > 84.8 And Mortgage Amount <= 171000  

Then LM14 (24/0%). 

 

If Mortgage Interest Rate Type =1 And Sale Price > 132983 And 

ConsumerSentiment IY + Q10 > 84.8 And Mortgage Amount > 171000 And 

ConsumerPriceIndex IY + Q9 <= 200.65 Then LM15 (11/0%). 

 

If Mortgage Interest Rate Type =1 And Sale Price > 132983 And 

ConsumerSentiment IY + Q10 > 84.8 And Mortgage Amount > 171000 And 

ConsumerPriceIndex IY + Q9 > 200.65 And RegionalHousePriceIndex IY + Q7 <= 

432.63 Then LM16 (9/0%). 

 

If Mortgage Interest Rate Type =1 And Sale Price > 132983 And 

ConsumerSentiment IY + Q10 > 84.8 And Mortgage Amount > 171000 And 

ConsumerPriceIndex IY + Q9 > 200.65 And RegionalHousePriceIndex IY + Q7 > 

And 432.63 ConsumerPriceIndex IY + Q9 <= 204.626 And Sale Price <= 348912.5 

Then LM17 (9/76.66%). 

 

If Mortgage Interest Rate Type =1 And Sale Price > 132983 And 

ConsumerSentiment IY + Q10 > 84.8 And Mortgage Amount > 171000 And 

ConsumerPriceIndex IY + Q9 > 200.65 And RegionalHousePriceIndex IY + Q7 > 

And 432.63 ConsumerPriceIndex IY + Q9 <= 204.626 And Sale Price > 348912.5 

Then LM18 (3/0%). 

 

If Mortgage Interest Rate Type =1 And Sale Price > 132983 And 

ConsumerSentiment IY + Q10 > 84.8 And Mortgage Amount > 171000 And 

ConsumerPriceIndex IY + Q9 > 200.65 And RegionalHousePriceIndex IY + Q7 > 

And 432.63 ConsumerPriceIndex IY + Q9 > 204.626 Then LM19 (6/0%). 
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 Table 12 - Linear Models Generated by ML1 

Linear Models 

LM1 

Foreclosure =  

 Round(0.0126 * Interest Rate  

 - 0.0235 * Mortgage Interest Rate Type  

 - 0.0118 * ConsumerPriceIndex IY + Q10  

 - 0.2716 * Inflation IY + Q2  

 + 3.7789,0) 

LM2 

Foreclosure =  

 Round(0.0126 * Interest Rate  

 - 0.0235 * Mortgage Interest Rate Type  

 - 0.0105 * ConsumerPriceIndex IY + Q9  

 - 0.0101 * ConsumerPriceIndex IY + Q10  

 - 0.2341 * Inflation IY + Q2  

 + 1.371,0) 

 

LM3 

Foreclosure =  

 Round(0.0126 * Interest Rate  

 - 0.0235 * Mortgage Interest Rate Type  

 - 0 * Market Value  

 + 0.0116 * ConsumerPriceIndex IY + Q9  

 - 0.0101 * ConsumerPriceIndex IY + Q10  

 - 0.2341 * Inflation IY + Q2  

 + 1.1226,0) 

LM num: 4 

Foreclosure =  

 Round(0.0126 * Interest Rate  

 - 0.0235 * Mortgage Interest Rate Type  

 - 0 * Market Value  

 + 0.0118 * ConsumerPriceIndex IY + Q9  

 - 0.0101 * ConsumerPriceIndex IY + Q10  

 - 0.2341 * Inflation IY + Q2  

 + 1.0899,0) 

LM5 

Foreclosure =  

 Round(0.0126 * Interest Rate  

 - 0.0235 * Mortgage Interest Rate Type  

 - 0 * Market Value  

 + 0.0087 * ConsumerPriceIndex IY + Q9  

 - 0.0101 * ConsumerPriceIndex IY + Q10  

 - 0.2341 * Inflation IY + Q2  

 + 1.6315,0) 

 

LM6 

Foreclosure =  

 Round(0.0126 * Interest Rate  

 - 0.0235 * Mortgage Interest Rate Type  

 - 0 * Market Value  

 + 0.0106 * ConsumerPriceIndex IY + Q5  

 - 1.9975,0) 
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Linear Models 

LM7 

Foreclosure =  

 Round(0.0126 * Interest Rate  

 - 0.0235 * Mortgage Interest Rate Type  

 - 0 * Market Value  

 + 0.0169 * ConsumerPriceIndex IY + Q5  

 - 3.1838,0) 

 

LM8 

Foreclosure =  

 Round(0.0126 * Interest Rate  

 - 0.0235 * Mortgage Interest Rate Type  

 - 0 * Market Value  

 + 0.0169 * ConsumerPriceIndex IY + Q5  

 - 3.1584,0) 

LM9 

Foreclosure =  

 Round(0.0126 * Interest Rate  

 - 0.0235 * Mortgage Interest Rate Type  

 - 0 * Market Value  

 + 0.5108,0) 

LM10 

Foreclosure =  

 Round(0.0103 * Interest Rate  

 - 0.0235 * Mortgage Interest Rate Type  

 - 0 * Market Value  

 - 0.0104 * ConsumerPriceIndex IY + Q11  

 + 2.1702,0) 

 

LM11 

Foreclosure =  

 Round(0.0025 * Interest Rate  

 - 0.0222 * Mortgage Interest Rate Type  

 + 0 * Market Value  

 + 0.0046 * ConsumerSentiment IY + Q2  

 - 0.294,0) 

LM12 

Foreclosure =  

 Round(0.0025 * Interest Rate  

 - 0.0222 * Mortgage Interest Rate Type  

 + 0 * Market Value  

 + 0.0029 * ConsumerSentiment IY + Q2  

 + 0.0465,0) 
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Linear Models 

LM13 

Foreclosure =  

 Round(0.0025 * Interest Rate  

 - 0.0222 * Mortgage Interest Rate Type  

 - 0 * Market Value  

 + 0.0274,0) 

LM14 

Foreclosure =  

 Round(0.0025 * Interest Rate  

 - 0.0222 * Mortgage Interest Rate Type  

 - 0 * Market Value  

 + 0.0075,0) 

 

LM15 

Foreclosure =  

 Round(0.0025 * Interest Rate  

 - 0.0222 * Mortgage Interest Rate Type  

 - 0 * Market Value  

 - 0.0137,0) 

LM16 

Foreclosure =  

 Round(0.0025 * Interest Rate  

 - 0.0222 * Mortgage Interest Rate Type  

 - 0 * Market Value  

 - 0.0061 * ConsumerPriceIndex IY + Q9  

 + 0.0006 * RegionalHousePriceIndex IY + Q7  

 + 0.9495,0) 

 

LM17 

Foreclosure =  

 Round(0.0025 * Interest Rate  

 - 0.0222 * Mortgage Interest Rate Type  

 - 0 * Market Value  

 - 0.0085 * ConsumerPriceIndex IY + Q9  

 + 0.0004 * RegionalHousePriceIndex IY + Q7  

 + 1.5567,0) 

LM18 

Foreclosure =  

 Round(0.0025 * Interest Rate  

 - 0.0222 * Mortgage Interest Rate Type  

 - 0 * Market Value  

 - 0.0085 * ConsumerPriceIndex IY + Q9  

 + 0.0004 * RegionalHousePriceIndex IY + Q7  

 + 1.53,0) 
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Linear Models 

LM num: 19 

Foreclosure =  

 Round(0.0025 * Interest Rate  

 - 0.0222 * Mortgage Interest Rate Type  

 - 0 * Market Value  

 - 0.0096 * ConsumerPriceIndex IY + Q9  

 + 0.0004 * RegionalHousePriceIndex IY + Q7  

 + 1.7478,0) 
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Table 13 – Classification Accuracy for ML1 
MinNumberInstances Number 

of Folds 

False 

Positive 

(%) 

False 

Negative 

(%) 

TP FP TN FN Classification 

Accuracy 

Execution 

Time (sec) 

1 5 13.734 8.870 82 62 459 96 0.77 10.9472 

2 7 7.015 3.868 74 27 499 98 0.82 15.5627 

3 5 8.160 3.290 70 23 492 114 0.8 13.1124 

4 5 6.724 5.007 77 35 493 94 0.81 10.9778 

5 10 8.155 3.290 70 23 492 114 0.8 19.186 

6 10 5.866 8.584 97 60 460 82 0.8 14.9707 

7 15 5.866 8.584 97 60 460 82 0.8 11.7468 

8 5 8.011 8.155 66 57 464 112 0.76 10.6973 

9 20 5.866 8.441 97 59 461 82 0.8 15.4353 

12 5 8.226 8.011 63 56 465 115 0.76 12.8809 

15 20 10.658 0.858 17 6 527 149 0.78 37.097 

20 25 10.515 1.001 19 7 526 147 0.78 39.7959 

22 5 8.441 7.439 60 52 469 118 0.76 3.4029 

25 10 11.159 0.715 10 5 528 156 0.77 14.8202 

30 15 9.657 6.295 53 44 467 135 0.74 19.0104 

35 10 9.728 6.581 44 46 473 136 0.74 19.8101 

40 10 9.871 6.581 42 46 473 138 0.74 12.8107 

55 15 10.014 5.866 40 41 478 140 0.74 8.4886 

60 20 12.303 0.572 13 4 510 172 0.75 20.5286 

200 20 12.732 0.000 0 0 521 178 0.75 7.4209 

 Mean: 9.135 5.100 54.55 35.65 485.85 122.9 0.78 15.935 

Standard Deviation: 2.308 3.145 30.431 21.984 24.941 29.203 0.028 8.833 

Min: 5.866 0 0 0 459 82 0.74 3.403 

Max: 13.734 8.870 97 62 528 178 0.82 39.80 
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Figure 19 – Classification Tree for ML1 (Interest Rate Type=0) 
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Figure 20 – Classification Tree for ML1 (Interest Rate Type =1) 
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ML2: Support Vector Machine 

ML2 had two main input parameters that affected classification accuracy.  These 

parameters are ‘C’ and ‘Gamma’.  As with the other plug-Ins, ‘Cross Validation’ was 

always turned on.  Varying the ‘Number of Folds’ did not have much influence on the 

classification accuracy of ML2.  The parameter ‘Gamma’ was varied through 0.10 to 0.25 

and C was varied through 0.70 to 1.  The run with the highest percentage of correct 

predictions (84%) on the test dataset occurred with the parameters as illustrated in Table 

14.  Table 15 logs the classification accuracy and execution times for ML2.  The mean 

‘Classification Accuracy’ was 0.796 with a Standard Deviation of 0.038.  The average 

execution time was 9.099 seconds.  ML2 displayed a consistent ability to correctly 

predict all positive values.  

Table 14- Optimum parameters for ML2 

Parameter Name Value 

C 1 

Gamma 0.4 
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Table 15 – Classification Accuracy for ML2 
C Gamma False 

Positive 

(%) 

False 

Negative 

(%) 

TP FP TN FN Classification 

Accuracy 

Execution 

Time 

0.05 0.25 0 24.866 0 0 525 174 0.75 1.7088 

0.4 0.25 0 25.724 0 0 519 180 0.74 2.6728 

0.5 0.25 0 25.724 0 0 519 180 0.74 1.7088 

0.65 0.65 0 24.294 0 0 529 170 0.76 2.3186 

0.65 0.25 0 26.438 0 0 514 185 0.74 2.3389 

0.7 0.7 0 26.438 0 0 514 185 0.74 139.0241 

0.75 0.3 0 20.408 53 0 514 132 0.81 2.2817 

0.75 0.3 0 23.436 0 0 535 164 0.77 1.7258 

0.75 0.25 0 18.882 59 0 519 121 0.83 1.9063 

0.8 0.8 0 20.408 53 0 514 132 0.81 8.2048 

0.9 0.3 0 18.297 44 0 535 120 0.83 1.7058 

1 0.25 0 20.224 57 0 512 130 0.81 2.4041 

1 0.3 0 18.466 50 0 529 120 0.83 1.6837 

1 0.4 0 17.336 48 0 538 113 0.84 1.9265 

1 0.45 0 18.116 54 0 528 117 0.83 1.7018 

1 0.05 0 18.369 52 0 528 119 0.83 1.7048 

1 0.15 0 22.229 43 0 510 146 0.79 1.6978 

1 0.2 0 18.215 52 0 529 118 0.83 1.7519 

1 0.25 0 18.882 59 0 519 121 0.83 1.7118 

1.1 0.25 0 20.224 57 0 512 130 0.81 1.8091 

 Mean: 0 21.349 34.05 0 522.10 142.85 0.796 9.099 

Standard Deviation: 0 3.209 25.958 0 8.759 26.939 0.038 30.615 

 Min: 0 17.336 0 0 510.00 113.00 0.740 1.684 

 Max: 0 26.438 59.00 0 538.00 185.00 0.840 139.024 
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ML3: Genetic Programming Symbolic Regression 

 ML3 used symbolic regression via genetic programming to build an optimal 

solution in the form of an expression tree.  An expression tree is executable code 

represented as a data structure.  ML3 has eleven input parameters, four of which 

significantly varied the results.  Of these four, ‘Number of Generations’ was varied 

starting at 25, and progressing through to 125.  With the number of generations set 

between 100 and 125, the GP was more likely to find an optimal solution.  Population 

size was also a sensitive input parameter that affected results when set below 400.  

Population size was varied between 200 and 1000.  The run with the highest percentage 

of correct predictions (99.49%) on the test dataset occurred with the parameters as 

indicated in Table 16.  Table 18 logs the classification accuracy and execution times for 

ML3.  

Table 16 - Optimum parameters for ML3 

Parameter Name Value 

BuildDepth 6 

PopulationSize 600 

NumberOfGenerations 125 

MaxNodeCount 200 

 

The foreclosure expression generated for the best run was treated as follows: 

Let 

RegionalHousePriceIndex for quarter x= RHPIQx, 

RegionalHomeOwnershipRate for quarter x = RHORQx, 

ConsumerPriceIndex for quarter x = CPIQx, 

PrimeRate for quarter x = PRQx 

Inflation for quarter x = IQx 

ConsumerSentiment for quarter x = CSQx  
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And 

OrElse – Logical short circuit for ‘Or’ operator, such that, if the result of the first 

expression evaluated determines the final result of the operation, there is no need to 

evaluate the second expression.  

AndAlso – Logical short circuit for ‘And’ operator. Examples: 

 

Table 17 – OrElse and AndAlso 
Expression1 is Operator Expression2 is Result is 

True AndAlso True True 

True AndAlso False False 

False AndAlso (not evaluated) False 

True OrElse (not evaluated) True 

True OrElse False False 

False OrElse True False 

False False False False 

Then 

Equation 1 - Foreclosure Formula 

Foreclosure = (Sale Price < Mortgage Amount)  

OrElse (((CSQ6 – IQ0) - CPIQ4) > (CPIQ3 ^ (((IQ9 + ((((Sale Price * RHORQ3) –  

(CPIQ7 / PRQ7)) - IQ7) * RHORQ8)) ^ (((Sale Price / (IQ0 / (PRQ9 / (CPIQ2 - RHPIQ10)))) ^ 

CSQ8)
CS

Q10)) - (CSQ1
Sale Price

))))))  

AndAlso (Term > PRQ3))) 

 

The Expression Tree for this formula is presented in Figure 21
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Table 18 – Classification Accuracy for ML3 
Build 

Depth 

Population 

Size 

NumberOf 

Generations 

MaxNode 

Count 

False 

Positive 

(%) 

False 

Negative 

(%) 

TP FP TN FN Classification 

Accuracy 

Execution 

Time (sec) 

2 200 50 100 3.433 25.179 13 24 486 176 0.71 56.5785 

2 200 50 100 0.286 24.893 5 2 518 174 0.75 52.0811 

4 300 50 100 5.866 11.588 98 41 479 81 0.83 83.4023 

4 350 60 150 0.858 0.000 179 6 514 0 0.99 121.4955 

6 375 70 175 4.149 21.602 28 29 491 151 0.74 123.0094 

8 400 70 200 0.715 24.607 7 5 515 172 0.75 136.984 

10 425 80 225 0.429 24.607 7 3 517 172 0.75 160.8952 

10 425 80 225 0.429 23.748 3 3 527 166 0.76 218.9903 

10 425 80 225 1.001 0.000 160 7 532 0 0.99 310.8253 

10 450 90 250 1.001 0.000 175 7 517 0 0.99 218.7959 

10 475 100 275 4.149 20.744 30 29 495 145 0.75 248.2699 

10 500 110 300 2.003 23.319 12 14 510 163 0.75 269.4796 

6 500 125 200 0.572 0.000 175 4 520 0 0.99 310.3154 

8 500 125 300 0.572 25.036 4 4 516 175 0.74 274.3491 

6 600 125 200 0.572 0.000 179 4 516 0 0.995 370.7536 

6 700 125 200 0.572 0.000 179 4 516 0 0.99 385.4787 

8 750 125 200 1.574 22.747 13 11 516 159 0.76 405.4563 

10 500 120 300 1.288 21.459 22 9 518 150 0.77 335.2664 

10 1000 120 400 0.715 0.286 170 5 522 2 0.99 637.8624 

8 1000 120 300 0.715 0.000 172 5 522 0 0.99 610.7911 

   Mean: 1.545 13.491 81.550 10.800 512.350 94.300 0.849 266.554 

  Standard Deviation: 1.574 11.627 79.753 11.000 13.735 81.270 0.120 163.424 

  Min: 0.286 0.000 3.000 2.00 479.000 0.000 0.710 52.081 

  Max: 5.866 25.036 179.000 41.000 532.000 175.000 0.995 637.862 
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Figure 21 – Expression Tree of ML3 Optimal Solution 
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Summary  

 This chapter focused on presenting the performance results of ML1 - ML3.  Of 

these engines, ML3 had the highest classification accuracy and hit the 90+% mark on 

several occasions.  ML3 was significantly slower that ML1 or ML2, and also had the 

widest range of results with the lowest being in the low 70s.  ML3 had the most input 

parameters, all of which demonstrated a significant effect on classification accuracy. 

ML1s performance was disappointing and it is unclear whether this was a result 

of not discretizing input variables other than the output.  WEKA was designed as a 

monolithic machine learning application at a time when component design was not 

widely used.  As such, WEKA does not expose an easily workable API and depends on 

text files to set run-time parameters.  Also, the documentation does not clearly indicate 

how certain tasks, like discretization, are performed.  It would be interesting to see how 

ML1 performs with an independent classification tree engine. 

ML1 & ML3 commonly indicated that the following variables were significant 

for predication:  

1. RegionalHousePriceIndex 

2. ConsumerPriceIndex  

3. Inflation 

From the perspective of consistency, accuracy and speed, it would appear that ML2 is the 

best choice for developing a foreclosure prediction model.  This however is deceptive, 

because unlike the other engines, ML2 does not output any useable artifact.  ML2 was, 

however, the easiest to implement and use.  When combining all these factors it is hard to 

overlook ML2 as the primary choice for model development. 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

Conclusions 

 This study focused on a difficult prediction task of significant societal import.  

The hypothesis that drove the study theorized that mortgage performance, projected over 

a three year period, could be predicted with a reasonable degree of accuracy.  To support 

this hypothesis, the field of machine learning was researched and three suitable prediction 

algorithms were identified.  The ML algorithms were supported by a purpose built 

workbench which managed the execution of the ML engines.  The results were better 

than expected, with each algorithm scoring greater that 75% classification accuracy and 

in one case the high 90s%.  Given these performance figures, it is quite sufficient to state 

that the hypothesis was positively supported by the research outcome. 

Implications 

 The primary implication of this study is that it has the potential to stir additional 

research interest as identified in ‘Recommendations’.  Furthermore, it is hoped that other 

researchers attempt to reproduce the results herein by using other ML algorithms.  

Finally, it is hoped that this study advances the understanding of machine learning 

algorithms and their effectiveness in prediction tasks in general. 

Recommendations 

 Based on the findings of the research conducted within, the following 

recommendations are made: 
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1. Expand the dataset to include regions beyond South Florida and re-execute ML1 - 

ML3 on this expanded dataset. 

2. Add, if possible, relevant psychometric variables to the dataset.  Examples of such 

variables are Religion, Ethnicity and Occupation. 

3. Continue the development of the Raptor workbench with the goal of eliminating 

dependencies on WEKA, ECJx and other heavyset libraries.   

4. Include ROC analysis and automatic calculation of Area Under ROC. 

5. Expand the machine learning techniques to include Artificial Neural Networks 

and hybrid methods.  

6. Expand the mortgage projection out to at least 5 years. 

7. Seek additional macroeconomic variables and eliminate those which have little or 

no impact on the prediction task. 

8. Contrast performance of ML1 - ML3 against logistic regression. 

9. Expand the output to include ‘Refinance’ and ‘Sell with Profit’. 

Summary 

 This paper focused on the comparison of machine learning techniques in the 

problem domain of foreclosure prediction.  The fundamental hypothesis was that given a 

dataset of mortgages, machine learning techniques could be used to forecast the 

mortgages’ performance over a three year period.  The machine learning techniques used 

were Classification Trees (ML1), Support Vector Machines (ML2) and Genetic 

Programming (ML3). 

 The dataset of mortgages was focused on the Tri-County (Dade, Broward and 

Palm Beach counties) area of South Florida.  The dataset included Mortgage Amount, 



74 

 

 

 

Sale Price, Market Value, Mortgage date, and Interest Rate.  Macroeconomic indicators 

were used to expand the dataset horizontally and were measured quarterly.  Chosen 

indicators included 

1. Regional Per Capita Income   

2. Regional Home Ownership Rate 

3. Unemployment Rate 

4. Consumer Price Index 

5. Inflation 

6. Prime Rate 

A workbench was created in order to manage the dataset and record the performance 

results of ML1 - ML3.  The workbench was designed using an SOA architecture which 

permitted monolithic or cloud based deployment.  For extensibility, ML1 - ML3 were 

designed as plug-Ins.  ML1 was based on the C4.5 engine of the WEKA system (Holmes, 

Donkin & Witten, 1997).  ML2 used LibSVM by National Taiwan University (Chang & 

Lin, 2009).  ML3 used George Mason University’s ECJx (Luke et al., 2008) and 

Dudley’s (2011) MPSR library.      

The primary metric used to compare the performance of ML1 - ML3 was 

classification accuracy.  This metric has been a standard comparison metric used in 

classifier induction studies (Perlich, Provost & Simonoff, 2003).  Classification accuracy 

of an ML technique is the percentage of correctly predicted outputs after operation on a 

test dataset (Perlich, Provost & Simonoff).  It is calculated by the sum of True Positives 

(TP) and True Negatives (TN) divided by number of records in the test dataset Nt = (TP + 
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TN)/Nt .  Classification accuracy results are presented in the format known as a Confusion 

Matrix. 

The plug-Ins were run concurrently whiles varying their input parameters.  A total of 

20 runs were published to the workbench database.  ML3 (Genetic Program) delivered 

the highest classification accuracy figure but also had the highest standard deviation.  

ML3 showed the highest sensitivity to change in its input parameters.  ML2 (SVM) 

delivered the most stable performance and second highest classification accuracy.  ML1’s 

(Classification Tree) performance was disappointing but consistently demonstrated minor 

sensitivity to input variable changes.  The following summarizes the performance of all 

plug-Ins. 

Table 19 – Summary Results 

Plug-In Name Highest Classification Accuracy Standard Deviation 

ML1 0.82 0.028 

ML2 0.84 0.038 

ML3 0.995 0.120 

  

As part of the process, ML1 and ML3 generated artifacts which can be used as 

prediction models.  ML1’s classification tree consists of eighteen rules, each invoked 

dependent on the state of key input parameters.  It is possible to improve classification 

accuracy by focusing on the rule which nets the largest part of the dataset.  Likewise, 

ML3’s expression tree can be explored and simplified to improve efficiency.     
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Appendices 

A.  Alfred Proxies 

 

Figure 22 - High Level Class Diagram of ALFRED® Web Service Proxies 
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B.  Raptor User Interface Class Diagrams 

 

Figure 23 - Class Diagram of Raptor UI (a) 
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Figure 24 - Class Diagram of Raptor UI (b) 
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Figure 25 - Class Diagram of Raptor UI (c)  

 

WCF Clients 
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C.  Raptor Services Class Diagrams 

 

Figure 26 - Class Diagram of Raptor Services (a). 
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Figure 27 - Class Diagram of Raptor Services (b). 
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D.  Raptor Machine Learning WCF Services Class Diagram 

 

Figure 28 - Machine Learning WCF Services Class Diagram 
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E.  Database Tables 

 

Table 20 - City Table 
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Table 21 - CountryStateCountyCityZip Table  
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Table 22 - Country Table 
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Table 23 - Database Log Table 
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Table 24 – FedCache Table 
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Table 25 - Parameters Table  
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Table 26 - PlugInTypes Table 

 

 

 

 

 

 

 

 



90 

 

 

 

Table 27 - ProjectDataExtenders Table 
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Table 28 - ProjectDataSets Table 
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Table 29 - ProjectPlugIns Table 
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Table 30 - Projects Table 
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Table 31 - ProjectTestDataSet Table 
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Table 32 - ProjectUsers Table 
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Table 33 - RegionType Table 
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Table 34 - RegisteredDataExtenders Table 
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Table 35 - RegisteredDataSets Table 
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Table 36 - RegisteredPlugIns Table 

 

 

 

 



100 

 

 

 

 

Table 37 - Results Table 
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Table 38 - State Table 
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Table 39 - Users Table 
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Table 40 - Zip Table 
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F.  Raptor ERD 

 

Figure 29 - Entity Relationship Diagram of Raptor Database (a) 
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RegionType

PK Id uniqueidentifier

U1 RegionType varchar(20)

CrimeRate

PK Id uniqueidentifier

 RegionId uniqueidentifier
FK1 RegionType uniqueidentifier
 Rate numeric(6,2)

FEDCache

PK Id bigint

 sign tinyint
 CreatedDate datetime
 ModifiedDate datetime
 XmlStream image

CountryStateCityCountyZip

PK Id uniqueidentifier

FK2,U1 StateId uniqueidentifier
FK1,U1 CountyId uniqueidentifier
FK3,U1 ZipId uniqueidentifier

Country

PK Id uniqueidentifier

U1 CountryName varchar(150)

County

PK ID uniqueidentifier

U1 County varchar(50) DatabaseLog

PK DatabaseLogID int identity

 PostTime datetime
 DatabaseUser sysname
 Event sysname
 Schema sysname
 Object sysname
 TSQL ntext
 XmlEvent xml

RegionType

PK Id uniqueidentifier

U1 RegionType varchar(20)

State

PK Id uniqueidentifier

U1 StateName varchar(150)
U1 Abbreviation varchar(4)

Zip

PK Id uniqueidentifier

U1 ZipCode varchar(12)

 

Figure 30 - Entity Relationship Diagram of Raptor Database (b) 
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G.  Project Creation Screen Shots 

 

Figure 31 - Start New Project Wizard Screen. 
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Figure 32 - New Project Screen 
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Figure 33 - Register Dataset Screen 
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Figure 34 – Register Data Extenders Screen 
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Figure 35 – Register Plug-Ins Screen. 
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Figure 36 – Add Plug-In Screen 
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Figure 37 – Add Data Extenders 
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Figure 38 - New Project Screen 
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Figure 39 – Raptor Confusion Matrix View
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H.  Hardware and Software Requirements 

 

Table 41 - Software Resource Requirements  

Resource Purpose Note 

Address Database US address database 
US Postal Service. 

http://www.usps.com/ 

ALFRED® License 
Consume web 

service. 
http://alfred.stlouisfed.org 

Dudley MPSR Augment ECJ19 
Available upon request from 

msndex@msn.com 

ECJ19 GP library 
Available at 

http://cs.gmu.edu/~eclab/projects/ecj/ 

Graphing & Grid 

Libraries. 
UI components FarPoint Grid & XYGraph Components. 

IKVM.Net 
Java to .Net 

Converter 
Available at http://www.ikvm.net/. 

Microsoft Excel. Statistical Analysis 
Obtained through MSDN Academic 

Alliance. 

Microsoft Visio 

Enterprise Architect. 

UML artifacts and 

code generation. 

Obtained through MSDN Academic 

Alliance. 

Smart Draw Diagramming http://www.smartdraw.com 

SQL Server 2008 

Developer Edition. 
Database Server. 

Obtained through MSDN Academic 

Alliance. 

LibSVM. SVM library 
Available at 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

Visual Studio 2010 

Premium. 
IDE for C#.Net  

Obtained through MSDN Academic 

Alliance. 

WEKA Workbench 
Classification tree 

library. 

Available at 

http://www.cs.waikato.ac.nz/ml/weka 

http://www.usps.com/
http://alfred.stlouisfed.org/
http://cs.gmu.edu/~eclab/projects/ecj/
http://www.ikvm.net/
http://www.smartdraw.com/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.cs.waikato.ac.nz/ml/weka
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Table 42 - Hardware Resource Requirements 

Resource Purpose Note 

Desktop PC with OS 

>= Windows Vista. 

Workbench client  

MSDN Account. Azure development 

account. 
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