
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2012

A Comparative Analysis of Machine Learning
Techniques For Foreclosure Prediction
Dexter Randell Brown
Nova Southeastern University, msndex@msn.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Dexter Randell Brown. 2012. A Comparative Analysis of Machine Learning Techniques For Foreclosure Prediction. Doctoral dissertation.
Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (105)
http://nsuworks.nova.edu/gscis_etd/105.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

A Comparative Analysis of Machine Learning Techniques For

Foreclosure Prediction

By

Dexter R. Brown

A dissertation report paper submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

In

Information Systems

Graduate School of Computer and Information Sciences

Nova Southeastern University

2012

We hereby certify that this dissertation, submitted by Dexter R. Brown, conforms to

acceptable standards and is fully adequate in scope and quality to fulfill the dissertation

requirements for the degree of Doctor of Philosophy.

___ __________

Sumitra Mukherjee, Ph.D. Date

Chairperson of Dissertation Committee

___ __________

Mike Laszlo, Ph.D. Date

Dissertation Committee Member

___ __________

Junping Sun, Ph.D. Date

Dissertation Committee Member

Approved:

___ ___________

Eric Ackerman, Ph.D. Date

Dean, Graduate School of Computer and Information Sciences

Graduate School of Computer and Information Sciences

Nova Southeastern University

2012

Abstract

An Abstract of a Dissertation Submitted to Nova Southeastern University

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

A Comparative Analysis of Machine Learning Techniques

For Foreclosure Prediction

By

Dexter R. Brown

January 2012

The current decline in the U.S. economy was accompanied by an increase in foreclosure

rates starting in 2007. Though the earliest figures for 2009 - 2010 indicate a significant

decrease, foreclosure of homes in the U.S. is still at an alarming level (Gutierrez, 2009a).

Recent research at the University of Michigan suggested that many foreclosures could

have been averted had there been a predictive system that did not only rely on credit

scores and loan-to-value ratios (DeGroat, 2009). Furthermore, Grover, Smith & Todd

(2008) contend that foreclosure prediction can enhance the efficiency of foreclosure

mitigation by facilitating the allocation of resources to areas where predicted foreclosure

rates will be high.

The primary goal of this dissertation was to develop a foreclosure prediction model that

builds upon established bankruptcy and credit scoring models. The study utilized and

compared the predictive accuracy of three supervised machine learning (ML) techniques

when applied to mortgage data. The selected ML techniques were:

ML1. Classification Trees

ML2. Support Vector Machines (SVM)

ML3. Genetic Programming

The data used for the study is comprised of mortgage data, demographic metrics and

certain macro-economic indicators that are available at the time of the inception of the

loan.

The hypothesis of the study was based on the assumption that foreclosure rates, and

associated actions, are dependent on critical demographic (age, gender), economic (per

capita income, inflation) and regional variables (predatory lending, unemployment

index). The task of the machine learning techniques was to identify a function that well

approximates the relationship between these explanatory variables and the binary

outcome of interest (mortgage status in +3 years from inception).

The predictive accuracy of ML1 through ML3 was significantly better than expected

given the size of the recordset (1000) and the number of input variables (~110). Each

ML technique achieved classification accuracy better than 75%, with ML3 scoring in the

upper 90s. Given such high scores, it was concluded that the hypothesis was satisfied

and that ML techniques are suitable for prediction tasks in this problem domain.

Acknowledgments

Thanks to the almighty for granting me the physical and mental fortitude to see this task

to completion. All things are possible with His guidance, and the love and support of

family. I owe everything that I am to the discipline and tenacity imparted to me by my

dear mother Grace; the world of thanks to her. Much appreciation to my brothers Martin

and Raymond and sister Denise, for all the support and encouragement they gave me

since childhood.

Very special thanks to Dr. Sumitra Mukherjee who made this journey an enjoyable and

stimulating exercise. If I had to do this once more, Dr. Mukherjee will again be my

choice for dissertation chair. I must also acknowledge my wonderful friends Ryan

‘Piccard’ Russon and Duane ‘DeGlove’ Dudley for all the advice they shared with me.

Finally, thanks to the other members of my dissertation committee, Dr. Sun and Dr.

Laszlo, and all the faculty and staff at the GSCIS with whom I interacted over the past

four years.

v

Table of Contents

Abstract iii

Acknowledgments iv
List of Tables vii
List of Figures ix

Introduction 1

Introduction 1

Problem Statement and Goal 1
Relevance and Significance of Study 5
Barriers and Issues 6
Hypothesis 6

Definition of Terms 7
Summary 10

Literature Review 12

Introduction 12
Machine Learning 12

ML1: Classification Trees 13
ML2: Support Vector Machines 16

ML3: Genetic Programming 19
Bankruptcy Prediction 24
Credit Scoring Models 26

Foreclosure Factors 26
Summary 27

Methodology 30

Introduction 30
Data Acquisition 30

Variables 31
Workbench 37

Data Management 39
Data Extenders 41

ML Plug-Ins 42
Raptor Project 46
Process 49

Results 54

Introduction 54

ML1: Classification Tree 55
ML2: Genetic Programming Symbolic Regression 65

ML3: Support Vector Machine 65
Summary 71

Conclusions, Implications, Recommendations, and Summary 72

vi

Conclusions 72
Implications 72
Recommendations 72
Summary 73

Appendices 76

A. Alfred Proxies 76
B. Raptor User Interface Class Diagrams 77
C. Raptor Services Class Diagrams 80
D. Raptor Machine Learning WCF Services Class Diagram 82

E. Database Tables 83
F. Raptor ERD 104

G. Project Creation Screen Shots 106
H. Hardware and Software Requirements 115

References 117

Certification of Authorship 126

vii

List of Tables

Tables

Table 1 - Definition of Terms 7

Table 2 - Example of GP Program Selection 20

Table 3 - Mortgage Data Totals 31

Table 4 – Excluded Variables 32

Table 5 - Independent Variables – Mortgage Parameters 33

Table 6 - Independent Variables – Macroeconomic 34

Table 7- Independent Variables – Demographic 34

Table 8 - Independent Variables – Regional 35

Table 9 - Dependent Variable 36

Table 10 - Optimum parameters for ML1 55

Table 11 - ML1 Generated Rules 56

Table 12 - Linear Models Generated by ML1 58

Table 13 – Classification Accuracy for ML1 62

Table 14 - Optimum parameters for ML2 67

Table 15 – OrElse and AndAlso 68

Table 16 – Classification Accuracy for ML2 69

Table 17- Optimum parameters for ML3 65

Table 18 – Classification Accuracy for ML3 66

Table 19 – Summary Results 75

Table 20 - City Table 83

Table 21 - CountryStateCountyCityZip Table 84

Table 22 - Country Table 85

Table 23 - Database Log Table 86

Table 24 – FedCache Table 87

Table 25 - Parameters Table 88

Table 26 - PlugInTypes Table 89

Table 27 - ProjectDataExtenders Table 90

Table 28 - ProjectDataSets Table 91

Table 29 - ProjectPlugIns Table 92

viii

Table 30 - Projects Table 93

Table 31 - ProjectTestDataSet Table 94

Table 32 - ProjectUsers Table 95

Table 33 - RegionType Table 96

Table 34 - RegisteredDataExtenders Table 97

Table 35 - RegisteredDataSets Table 98

Table 36 - RegisteredPlugIns Table 99

Table 37 - Results Table 100

Table 38 - State Table 101

Table 39 - Users Table 102

Table 40 - Zip Table 103

Table 41 - Software Resource Requirements 115

Table 42 - Hardware Resource Requirements 116

ix

List of Figures

Figures

Figure 1 - Theoretical Framework 7

Figure 2 - Symbolic regression GP flow chart. (Koza, 2008) 24

Figure 3 - High level overview of Raptor System. 37

Figure 4 - Maintain Data 39

Figure 5 – SQL Server Import/Export Wizard. 40

Figure 6 – Maintain Data Extenders 41

Figure 7- Maintain Plug-Ins 42

Figure 8 - Raptor Data Extenders 43

Figure 9 - Plug-In Parameters 44

Figure 10 - Machine Learning Libraries Class Diagrams 45

Figure 11 - New Project Flow 47

Figure 12 - High Level Sequence Diagram of Workbench Execution 48

Figure 13 – Add Plug-Ins 49

Figure 14 – ML1 Parameters 50

Figure 15 – ML2 Parameters 50

Figure 16 – ML3 Parameters 51

Figure 17 – Add Data Extenders 52

Figure 18 – Data Extender Parameter Values Derived From. 52

Figure 20 – Classification Tree for ML1 (Interest Rate Type=0) 63

Figure 21 – Classification Tree for ML1 (Interest Rate Type =1) 64

Figure 21 – Expression Tree of ML2 Optimal Solution 70

Figure 28 - High Level Class Diagram of ALFRED® Web Service Proxies 76

Figure 29 - Class Diagram of Raptor UI (a) 77

Figure 30 - Class Diagram of Raptor UI (b) 78

Figure 31 - Class Diagram of Raptor UI (c) 79

Figure 32 - Class Diagram of Raptor Services (a). 80

Figure 33 - Class Diagram of Raptor Services (b). 81

Figure 34 - Machine Learning WCF Services Class Diagram 82

Figure 35 - Entity Relationship Diagram of Raptor Database (a) 104

x

Figure 36 - Entity Relationship Diagram of Raptor Database (b) 105

Figure 37 - Start New Project Wizard Screen. 106

Figure 38 - New Project Screen 107

Figure 39 - Register Dataset Screen 108

Figure 40 – Register Data Extenders Screen 109

Figure 41 – Register Plug-Ins Screen. 110

Figure 42 – Add Plug-In Screen 111

Figure 43 – Add Data Extenders 112

Figure 44 - New Project Screen 113

Figure 45 – Raptor Confusion Matrix View 114

1

Chapter 1

Introduction

Introduction

 This study focused on building on the existing literature in order to develop an

improved method for predicting the performance of residential mortgages within a period

of three years from contract inception. The prediction task was treated as a binary

classification problem where mortgage performance was limited to ‘Status Quo’ or

‘Foreclosure’. Performance indicators such as ‘Refinance’ and ‘Sell with Profit’ are

considered for future work. The analysis period was limited to three years because of the

dependence on macroeconomic forecasts, which are generally less accurate as the

projection point increases. The prediction was based on data acquired from a specialized

data vendor.

Problem Statement and Goal

 A mortgage is a legal instrument which conveys a lien against property in

exchange for securing a loan to purchase said property (Pritchard, 2009). Mortgages are

the principal means by which homes are purchased by American families and individuals.

The term ‘foreclosure’ is officially defined by Merriam-Webster as “a legal proceeding

that bars or extinguishes a mortgagor's right of redeeming a mortgaged estate”. In

addition to the social and economic hardships experienced by those foreclosed upon,

foreclosure also has a negative effect on surrounding homes by reducing the value of

nearby properties (Schuetz, Been & Ellen, 2008). According to Schuetz, Been & Ellen,

foreclosure also has the potential to reduce local governments’ tax bases.

2

 The current decline in the U.S. economy was validated by an increase in

foreclosure rates starting in 2007. Approximately one million homes were lost to

foreclosure in 2008, up by nearly 63.5% from the 2007 national foreclosure index

(Gutierrez, 2009a; Gores, 2009a). Though the earliest figures for 2009 indicate a

decrease by approximately 25%, foreclosure of homes in the U.S. is still at an alarming

level (Gutierrez, 2009b). The wealthy were not immune to the foreclosure crisis, as even

homes valued at a million dollars or more saw double digit foreclosure rate increases in

cities such as Ft. Worth, Texas (Brown, 2009). Recent research at the University of

Michigan suggested that many foreclosures could have been averted had there been a

predictive system that did not only rely on credit scores and loan-to-value ratios

(DeGroat, 2009). Also, in recognition of the need for mortgage performance prediction

systems, ForeclosureU.com introduced the LoanMod Creator system (ForeclosureU.com,

2009). LoanMod Creator automatically underwrites mortgage modifications based on

affordability equations and computes real time success probabilities (ForeclosureU.com).

Furthermore, Grover, Smith & Todd (2008) contend that foreclosure prediction can

enhance the efficiency of foreclosure mitigation by facilitating the allocation of resources

to areas where predicted foreclosure rates will be high.

 The primary goal of this dissertation was to develop a foreclosure prediction

model that:

1. Builds upon established bankruptcy and credit scoring models.

2. Based the prediction on data that is available at the time of loan inception.

3. Employed supervised machine learning techniques.

3

 A secondary goal was to investigate the relative merits of alternate supervised

machine learning techniques for this prediction task. Three supervised machine learning

(ML) techniques were contrasted to determine the most accurate predictor. The selected

ML techniques are

ML1. Classification Trees

ML2. Support Vector Machines (SVM)

ML3. Genetic Programming.

 The following highlights the reasoning behind the choice of the genesis models

and technologies:

1. Bankruptcy Prediction’s primary objective is to identify the variables of

importance which can be used to forecast the financial failure of a

commercial organization (Altman, 1984). If a homeowner unit can be

viewed upon as a financial entity, similar to a commercial organization or

going concern (Lensberg, Eilifsen & McKee, 2006), then bankruptcy

prediction models may be adaptable at this level as indicators of financial

distress. Since book losses usually precede insolvency (Mora et al, 2008),

it may be theorized that homeowner financial distress is a potential

precursor to foreclosure. Accurate prediction of financial distress can

afford homeowners the time to find and implement corrective measures

before foreclosure occurs.

2. Credit Scoring Models have been the staple of loan determination for

several decades. Fair Isaac Corporation is one of the US’s leading

developers of credit scoring systems (myFICO, 2009). Their numeric

4

ranking system is referred to as FICO and, like other mainstream models,

is based on accounting ratios and regression analysis (Finlay, 2009).

Recent research has seen a shift towards the application of ML techniques

in credit scoring models (Lee, 2007; Bellotti & Crook, 2009; Abdou,

2009). This shift is recognition that the existing models are inaccurate

predictors of borrower default (Finlay). Since credit scoring is an integral

part of the mortgage process that is unlikely to change, a cutting edge

foreclosure prediction model should include elements of a forward-

looking credit scoring system.

3. ML Techniques have evolved into the most commonly used analytical and

predictive methods utilized in bankruptcy and credit scoring models

(Odeh, Koduru, Das, Featherstone & Welch, 2007; Tsai & Wu, 2008; Yu,

Wang & Lai, 2009). This move is in recognition that the traditional

accounting and statistical methods have proven less reliable in their

predictive power (Zhang, Hu, Patuwo & Indro, 1999; Gao, Cui & Po,

2008). In addition, ML approaches have been found to perform well in

domains where there is a large amount of data but limited supporting

theory (Tan & Gilbert, 2003). The general learning algorithms employed

by ML techniques have the ability to assemble classifiers or hypotheses

that can proffer an explanation relevant to the complex inter-relationships

within domain datasets (Tan & Gilbert).

 The classification accuracy of ML1 - ML3 was measured by comparing their

predicted output versus historical data for foreclosures in the South Florida (Miami-Dade,

5

Broward, and Palm Beach) area. Data was acquired from Dextec Systems for all

identified input and output variables for the last three years. A suitable subset of data

was used to train ML1 - ML3, while the remaining subset of data was used to test ML1 -

ML3’s predictive power.

 The outcome variable of interest was whether a mortgage resulted in foreclosure

within a specified period of time (three years) of its inception. The input variables used

as predictors are restricted to data available at the time of the inception of the loan and

may be grouped as follows:

 Variables that characterize the mortgage parameters

 Variables that characterize the borrower

 Macroeconomic indicators

 Other indicators specific to the location of the property under consideration.

Relevance and Significance of Study

 The contribution of this study to the body of IS research is to demonstrate the

suitability and value of ML techniques when applied to the foreclosure prediction

problem. A general search for literature specifically targeting ‘Foreclosure Prediction’

results in numerous articles which regurgitate numbers supplied by industry sources and

organizations (Olick, 2010; Brown, 2009; Johnson, 2009). A distinct methodology for

deriving said numbers is seldom supplied, and tends to be more of an account of total

regional foreclosures within a past or current period rather than a prediction. Some

articles present economic indicators in support of stated forecast, while others merely

comment on perceived trends (Silva, 2009). Of these sources, the Mortgage Bankers

6

Association (MBA) stands out as an organization that attempts to collate and present

legitimate metrics related to foreclosures (2008). Given the above, this study will be

among the first to develop a foreclosure prediction model based on ML techniques.

Barriers and Issues

 The primary obstacle that this dissertation project encountered was that certain

independent variables were not available because of issues pertaining to the Privacy Act

(see Definition of Terms) and/or difficulty in consistent measurement.

Hypothesis

 The comparison of machine learning techniques was based on the hypothesis that

foreclosure rates, and associated actions, are dependent on critical demographic (age,

gender), economic (per capita income, inflation) and regional variables (predatory

lending, unemployment index). The task of the machine learning techniques was to

identify a function that well approximates the relationship between these explanatory

variables and the binary outcome of interest -- whether foreclosure occurs within three

years of a loan's inception. This study was a binary classification problem, and the stated

goal was accomplished by designing the study as per the framework illustrated in Figure

1.

7

Figure 1 - Theoretical Framework

Definition of Terms

 This section provides brief definitions for key terms that are used in chapters 2, 3

and 4.

Table 1 - Definition of Terms

Term Definition

API Application Programming Interface.

AppFabric Microsoft’s distributed memory caching technology used primarily

by cloud based applications.

Azure Azure is Microsoft’s cloud computing infrastructure.

Cloud

Computing

Cloud Computing is a software development approach that allows

developers to consume data and computational services without

significant concern for the operational status of the environment.

8

Term Definition

CIL/MSIL Object oriented assembly like code that Microsoft.Net compatible

languages’ source code is compiled into. Common Intermediate

Language (CIL) was formerly called Microsoft Intermediate

Language or MSIL.

IKVM IKVM is a freely available open source implementation of Java for

Microsoft.NET. It facilitates calls to Java classes directly from .NET

code, and provides a .NET version of the Java Virtual Machine.

IY Inception Year.

J#.Net Microsoft’s implementation of Java for the .Net framework 2.0.

J#.Net supports Java code up to JDK 1.1.6.

JDK Java Development Kit.

Lien A form of security interest granted over an item of property to secure

the payment of a debt or performance of some other obligation.

Linear Model A mathematical model in which linear equations connect the random

variables and parameters.

Macroeconomics Branch of economics which studies the overall level of economic

activity (Bowden, 1992, p. 98). Macroeconomic indicators are

monetary figures that interact to influence the flow of money through

an economy (Qi, 2001).

Managed Code Microsoft code that strictly adheres to the data types defined by the

Common Type System (CTS) and runs in the context of the Common

Language Runtime (CLR).

9

Term Definition

MemCached A free open source, high-performance, generic, distributed memory

object caching system for use in speeding up dynamic applications by

alleviating database load and/or API calls.

OO Object Oriented. A programming paradigm that attempts to

decompose the behavior and properties of real world entities into

representative templates that form the foundation upon which

instances of the entity are created in a virtual work (Kay, 1996; Cho

& Kim; 2001).

Overfitting Overfitting generally occurs when a statistical model is excessively

complex relative to the number of observations. Overfitting leads to

poor predictive accuracy.

Plug-In A software component which can be dynamically loaded and early

bound through the implementation of a known interface(s). Usually

extends or modifies the functionality of the parent software

application.

Privacy Act The Privacy Act of 1974 establishes a code of fair information

practice that governs the collection, maintenance, use, and

dissemination of personally identifiable information relevant to

individuals.

Qx x Quarters where x Ɛ {1,2,3,4,5,6,7,8,9,10,11,12}.

Reflection A programming language’s ability to do type introspection during

run-time.

SDK Software Development Kit.

10

Term Definition

SOA Service Oriented Architecture. A software development architecture

that stresses upon the decoupling of core components via the use of

secure, distributed, consumable and platform neutral informational

services.

SQL Azure Microsoft’s cloud implementation of its SQL Server database.

Tournament

Selection

Tournament selection is commonly used in genetic algorithms to

select an individual from a population of individuals. The selection

process involves running several "tournaments" among a group of

random individuals from the population. The individual with the best

fitness score is then selected for crossover.

Use Case A thorough definition of a system’s behavior in direct response to a

particular external request from another system or actor.

WCF Windows Communication Foundation. Microsoft’s current

distributed component technology.

Worker Thread A thread is the smallest unit of execution within a Windows process

space and executes asynchronously to its parent. Worker threads are

commonly used to handle background tasks that would otherwise put

an application in a wait/busy state.

Summary

 One of the many objectives of Information Systems (IS) research is to advance

knowledge that encourages dynamic applications of Information Technology (IT)

towards solving tangible problems in human organizations (Hevner, March, Park & Ram,

2004). Foreclosure is a significant problem that can threaten the stability of an economy

(Calhoun, 2010; Durbin, 2010). As such, any predictive model that can accurately

11

anticipate foreclosures, with a reasonable degree of accuracy, will automatically gain

significant societal value. Therefore, this research attempted to develop a foreclosure

prediction model based on ML techniques which, with confidence, will stimulate

additional examinations of the topic.

12

Chapter 2

Literature Review

Introduction

 This chapter provides a more in-depth examination of the genesis models and ML

technologies used in this study. With regard to the ML technologies, the seminal papers

and authors thereof are identified and discussed. Said discussions will lead into

explorations of the foundation algorithms and or mathematical derivations for each ML

type. The genesis models were examined from an evolutionary perspective, starting with

statistical methods and proceeding to current research of ML techniques in the

development of new models. Finally, this chapter will conclude with a summary of some

advantages and disadvantages for each ML technique.

Machine Learning

 ML is a sub-field of Artificial Intelligence (AI) that focuses on the development

of computational algorithms that allow computers to induce rules and patterns from

empirical data (Langley & Simon, 1995). ML is an interdisciplinary field which draws

knowledge from mathematics and statistics, computer science, engineering, cognitive

science, optimization theory and other scientific and mathematical disciplines

(Ghahramani, 2004). In ML methods, the input values and related output values are used

to algorithmically deduce an assumed (but unknown) functional relationship among

variable types that can be applied to predict outputs for new input values (Steinwart &

Christmann, 2008, p.2). ML methods generally fall into three main categories (Russel &

Norvig, 2003, p.650):

13

 Supervised learning methods are based on the existence of a priori data

knowledge whereby a sub-set of the input(s) and associated output(s) can be used

by computational algorithms to classify and cluster the input data (Tan & Gilbert,

2003). In this learning method, the input observations are known to cause the

output observations, therefore, the inputs are at the beginning and the outputs are

at the end of the causal chain (Tan & Gilbert).

 Unsupervised learning methods do not depend on the existence of a priori data

knowledge in performing classification and clustering tasks (Tan & Gilbert). In

unsupervised learning, all the observations are assumed to be caused by latent

variables at the end of the causal chain.

 Reinforcement learning methods are based on psychology’s reinforcement theory

which attempts to shape behavior by controlling the consequences of said

behavior (Russel & Norvig, 2003, p.650). Reinforcement learning agents do not

depend solely on inputs from the controller, but also rely on feedback provided

from the execution environment to alter or adjust their behavior accordingly.

Continuous positive or negative feedback allows the agent to acquire reinforced

knowledge of the environment (Ghahramani, 2004).

The following sections (ML1 - ML3) discuss the supervised ML techniques used in this

study.

ML1: Classification Trees

 A classification tree is a decision tree with discrete output values as opposed to

continuous values in the case of regression trees (Russel & Norvig, 2003, p.653; Abu-

Nimeh, Nappa, Wang & Nair, 2007). As decision trees, classification trees are an

14

induced collection of decision branches, leafs and nodes that classify observations

dependent on input values (Cielen, Peeters & Vanhoof, 2004). Each node in a decision

tree represents a test of a property value, whiles the branches represent the possible

values of the test (Russel & Norvig).

 Classification trees classify instances into the categories of the dependent attribute

(Y) by using the values of the independent (X) attributes (Morasca, 2002). The

classification process starts with the association of the dependent variable with a

probability distribution for random selection of a binary (0, 1) entity (Morasca). The

probability distribution does not use the independent variables, thus the selection

probability p(y) is unconditional. As the process progresses, the conditional probability p

(y|x) is used. As such, each independent attribute will have varying degrees of usefulness

for classifying instances as either 0 or 1. An attribute X is considered "best" based on the

maximization of the information gain H(Y) – H(Y|X), where

H(Y) = - ∑y p(y) log p(y) and H(Y|X) = - ∑x p(x) ∑y p(y|x) log p(y|x) (Morasca; Russel &

Norvig, 2003, p.659).

 Several inductive algorithms exist for the generation of classification trees.

Quinlan’s (1986) ID3 and (1993) C4.5, Breiman, Friedman, Olshen & Stone’s (1984)

CART are examples of commonly used induction algorithms for classification trees

(Esmeir & Markovitch, 2004). Many classification tree algorithms are greedy because

they induce from the top-down, making best possible decisions at each node (Esmeir &

Markovitch). Additionally, Ockham’s Razor (the least complex explanation for a given

15

phenomenon is most likely the correct one) is drawn upon to choose from among equally

competing hypotheses (Russel & Norvig, 2003, p.659; Murphy & Pazzani, 1994).

 The Recursive Partitioning Algorithm (RPA) is a foundation algorithm for many

classification tree techniques (Ravi-Kumar & Ravi, 2007). RPA is a non-parametric

classification technique based on pattern recognition. Quinlan’s C4.5 is an RPA that

extends ID3 (Quinlan, 1986) for use with continuous variables (Morasca, 2002).

Baesens, Van Gestel, Stepanova, Suykens & Vanthienen (2003) applied C4.5 to credit

scoring classification. The following is a pseudo-code representation of an RPA adapted

from Russel & Norvig (2003, p.658):

Function 1 - Classification Tree Learning Algorithm

Begin Function TreeLearning (examples, attributes, default) returns Tree

 if (examples.count==0) return default;

 if (examples.all.output==classification) return classification;

 if (attributes.count==0) return MaxClass(examples);

 declare best, tree, m;

 best = ChooseAttribute(examples, attributes);

 tree = new Tree(best); //root node of new tree is best

 m = MaxClass(examples);

 for each vi in best

 examplesi = examples.Find(where best = vi);

 //recursive function call

 declare subtree = TreeLearning (examplesi, attributes - best, m);

 tree.AddBranch(vi, subtree);

 next vi

 return tree;

End function

16

Begin Function ChooseAttribute(examples, attributes)

 declare dictionary = new Dictionary<key, value>();

 for each attribute in attributes

 dictionary.Add(attribute.InformationGain(examples), attribute);

 next attribute

 dictionary.Keys.Sort;

 return dictionary[dictionary.Keys[dictionary.Count-1]];

End function

Begin Function MaxClass (examples) returns classification

 declare list = new List<classification>;

 for each example in examples

 list.Add(example.classification);

 next example

 list.Sort;

 return list[list.Count-1];

End function

ML2: Support Vector Machines

 SVM is a kernel machine learning method that performs classification tasks by

constructing maximal margin hyperplanes in a multidimensional space in order to

separate cases of different class labels (Moore, 2003). Maximal margin hyperplanes

provide the greatest separation between class boundaries with the training point nearest to

the hyperplane acting as support vectors (Min & Lee, 2005; Russel & Norvig, 2003,

p.751).

 The genesis of SVM can be traced back to the work of Boser, Guyon & Vapnik

(1992) which drew upon the Generalized Portrait Algorithm (GPA) by Vapnik and

Lerner (Steinwart & Christmann, 2008, p.13). Boser, Guyon & Vapnik’s work was

originally called “Maximal Margin Classifier” and later “Hard Margin SVM” (Steinwart

& Christmann, p.14). The GPA is based on Vapnik and Chervonenkis’ (1971) Structural

17

Risk Minimization (SRM) principle from computational learning theory (Steinwart &

Christmann). SRM is an inductive principle in machine learning designed to address the

problem of overfitting when a generalized model is selected from a finite data set

(Vapnik & Chervonenkis, 1971).

 From Boser, Guyon & Vapnik’s (1992) original work, for a linearly separable

training set (i=1,….,N), the SVM hyperplane satisfies the inequality –

(1) yi (w●xi + b) ≥ ∀i ∈ {1,…,N} where w is a normal and b is a bias (Gao, Cui & Po,

2008; Min & Lee, 2005). Furthermore, yi ∈ {-1, +1}, xi ∈ R
d
 is a case of the training set

where d is the dimension of input space and w●xi is the dot product of the normal and xi

(Gao, Cui & Po). The dot product is an operation which takes two vectors and returns a

real-valued scalar quantity. The dot product of two vectors a = [a1, a2, …, an] and b =

[b1, b2, … , bn] is therefore defined as:
n

∑
i=1

 (ai bi) (William et al., 1998). Under the

constraint specified in (1), the optimal hyperplane is equivalent to minimizing ||w||
2

(Min

& Lee).

 For non-linear surfaces a set of slack variables, ei….n and a penalization variable C

for misclassification are introduced in order to relax the optimization problem (Gao, Cui

& Po, 2008; Min & Lee, 2005). The optimal hyperplane is, therefore, now achieved by

minimizing (2) [0.5||w||
2
 + C

n

∑
i=1

(ei)] with respects to w,b,e under the constraint (3)

18

yi (w●xi + b) ≥ 1-ei, ei ≥ 0, ∀i ∈ {1,…,N} (Gao, Cui & Po; Steinwart & Christmann, 2008,

p.15). Finally, a Lagrange multiplier α is applied to each constraint in order to present

the maxima of the linear problem. Lagrange multipliers are used to find the extrema of a

function that is subject to fixed outside conditions or constraints. As such, the objective

function with respect to α is: (4) ;

under the

constraints: and

(Gao, Cui & Po; Steinwart &

Christmann). SVM in a non-linear space is thus a quadratic programming optimization

problem (Russel & Norvig, 2003, p.749).

 Kernel Methods (KMs) are pattern analysis algorithms which discover relation

types such as clusters, rankings and classifications in general types of data (Moschitti,

2008). A kernel function k is a mapping function which performs a non-linear map to a

higher dimensional feature space (Russel & Norvig, 2003, p.751; Wu, Tzeng, Goo &

Fang, 2007). Kernel functions are usually represented as K (xi, xj) and replace the inner

products of equation (4) in non-linear SVM such that eq. (4) becomes

 (Russel & Norvig; Gao, Cui & Po). The selected

kernel function is dependent on the classification task and the desired level of accuracy.

The RBF (Gaussian) kernel has been used in many bankruptcy prediction and credit

scoring studies (Lee, 2007; Wu, Tzeng, Goo & Fang; Min & Lee, 2005; Fan &

19

Palaniswami, 2000; Schebesch & Stecking, 2005). The RBF kernel is defined as follows:

(Steinwart & Christmann, 2008, p.116).

 Optimal choice of SVM kernel parameters is critical to classification accuracy

and stability (Wu, Tzeng, Goo & Fang, 2007; Min & Lee, 2005). The penalization

variable C and the bandwidth of the RBF kernel ϭ2
 (sigma squared) must be cautiously

predetermined. Exponentially growing sequences of C (e.g. C
-5

,…,C
5
) and σ (e.g. ϭ-

10
,…,ϭ5

) is an acceptable method for pre-selecting SVM parameters, but is not without

fault (Min & Lee, 2005).

 Wu, Tzeng, Goo & Fang (2007) proposed a GA-SVM model for determining the

optimal choices for these parameters relevant to bankruptcy prediction. Their approach is

based on using a Real Valued Genetic Algorithm (RGA) to optimize the parameters of

the SVM. Wu, Tzeng, Goo & Fang encoded a chromosome X as {p1, p2} where p1= C

and p2 = ϭ. The hit ratio is used as the fitness function whereby the GA-SVM’s

performance is compared against other models such as traditional SVM, logit and Neural

Network (NN). Wu, Tzeng, Goo & Fang concluded that prediction accuracy was

drastically improved by using the GA to seed the SVM.

ML3: Genetic Programming

 Genetic programming (GP) is an AI programming technique based on natural

selection (Lensberg, Eilifsen & McKee, 2006). Genetic programming is founded upon

20

genetic algorithms (GA), which are implemented using coded bit strings commonly

referred to as chromosomes (Russel & Norvig, 2003, p.133). Each gene in a

chromosome, therefore, represents a specific behavioral condition or state within the

problem space (Lensberg, Eilifsen & McKee). In genetic algorithms, the chromosomes

are evolved through generations via a process of mating, mutation and tournament

selection based on suitability to a defined objective function or fitness function as in the

case of GPs (Russel & Norvig). The parameters which control mating and mutation are

referred to as the Genetic Operators.

 GPs differ from GAs in that the mutated elements are executable structures, often

represented in the form of LISP expression trees, Java, or machine code programs for

stack based machines, as opposed to bit strings (Russel & Norvig, 2003; Riolo, Worzel &

Soule, 2009). As such, GPs use a subset of a suitable programming language to represent

the individual behavior rules (Lensberg). In GP, new generations of programs are

evolved through a process of mating of the top two selected programs. Primarily,

tournament selection is used to randomly select n number of programs from the GP

population. The top two programs are then determined by rank according to the values

returned from execution of their fitness function. These programs are mated based on the

genetic operators (crossover point & mutation factor) and their offspring replace the least

fit programs in the population. This concept is illustrated in Table 2.

Table 2 - Example of GP Program Selection

Randomly Selected Programs Fitness Score Rank

11 0.81 1

27 0.65 3

35 0.57 4

n 0.78 2

Program 11 & n

will be selected

for mating.

21

 The crossover point is a point between 1 and the number of points in a program

tree. During mating, this point is randomly generated for each of the programs involved

in the mating process. The sub-trees rooted at the two picked points are then used in a

recombination process to produce offspring. In mutation, a single program is randomly

selected and a point in the program’s sub-tree is deleted. A new sub-tree is then grown at

the mutation point thus creating a new program.

 GPs have had successful applications in areas such as automated combination of

analog electrical circuits (Koza et al, 1999), automatic creation of computer programs

(Bruce, 1995) and solving complex state-space search problems (Russel & Norvig). The

upsurge in interest of GPs is attributed to John Koza’s 1992 publication titled ‘Genetic

Programming: On the Programming of Computers by Means of Natural Selection’. In

this work, Koza introduces four examples of GPs and discusses several evolutionary

concepts such as evolution of emergent behavior, evolution of subsumption, entropy-

driven evolution, evolution of strategy, and symbolic regression.

 Symbolic regression is a GP technique for the search of a satisfactory

mathematical expression that fits a set of data points, in a specific domain, from a

constrained space of possible functions and terminal conditions (Koza, 1992, p.162).

Simply stated, symbolic regression, also known as symbolic function identification,

derives an equation from a given set of data points. In symbolic regression, pre-

determination of the relationship type is minimized by a chosen set of standard

mathematical and logical operators known as the instruction set (Koza, 1992, p.81). A

simple instruction set F, can be such that F = {+, -, *, /, and, or, not, conditional (if-then-

22

else), loop, recursion}. Set F is generally sufficient to account for most linear and

polynomial relationships (Koza, p.163).

 Symbolic regression uses Koza’s (1992) Automatically Defined Functions

(ADFs). ADFs are programs that consist of a function defining branch that can

potentially utilize subroutines, loops, recursion and internal storage to promote the reuse

of code, and a result producing branch (Koza, 2008, p.81). Through the evolutionary

process, the main program branch is free to decide how to use the ADFs to find a solution

within the constrained space of possible functions (Langdon & Poli, 2002, p.11).

Symbolic regression has been applied to the bankruptcy problem by Lensberg, Eilifsen,

and McKee (2006) with favorable results, and has also been applied to the credit scoring

problem (Abdou, 2009).

 The following is a pseudo-code representation of Koza’s (2008) symbolic

regression GP algorithm illustrated in Figure 2.

1. Generate population of n randomly composed programs that comprise an

instruction set F.

2. Set termination condition and max generations.

3. Loop until termination condition is met or max generations reached

a. Calculate fitness score for each program in current generation i

b. Randomly select genetic operation

i. Case reproduce

x1. Select programs for mating.

x2. Determine crossover points

x3. Create offspring and into new (i+1) population

23

ii. Case mutate

x1. Select one program based on fitness

x2. Mutate program

x3. Insert mutant into new (i+1) population

iii. Case architecture alteration

x1. Select one program based on fitness

x2. Perform architecture altering operation

x3. Insert offspring into new (i+1) population

c. End select

d. Increment generation counter (i++)

4. End loop

5. Output program designation.

24

Figure 2 - Symbolic regression GP flow chart. (Koza, 2008)

Bankruptcy Prediction

 Beginning with the seminal paper on financial failure prediction by Beaver

(1966), work on bankruptcy prediction logically progresses from purely an accounting

practice to applications of ML techniques. ML approaches such as Neural Networks

(Perez, 2006), Genetic Programming (Abdelwahed & Amir, 2005; McKee & Lensberg,

2002) and Support Vector Machines (Shin, Lee & Kim, 2005; Min & Lee, 2005) have

been applied to the bankruptcy problem. The bankruptcy problem is considered difficult

because of the number of variables and the complexity of their relationships (Ohlson,

1980; Altman, 1984; Keasey & Watson, 2005; Ward, 2006). The application of ML

techniques to the bankruptcy problem has generally indicated better results when

25

compared to purely statistical approaches (Laitinen & Laitinen, 2000; Charalambous,

Charitou & Kaourou, 2000). In their review paper titled ‘Bankruptcy prediction in banks

and firms via statistical and intelligent techniques’, Ravi Kumar & Ravi (2007)

concluded that stand-alone statistical techniques are no longer fashionable in bankruptcy

prediction research. Ravi Kumar & Ravi illustrate that ML techniques, particularly

neural networks followed by rough sets and evolutionary approaches are currently the

most commonly used approaches.

 A literature search unearthed a plethora of papers that focus on bankruptcy

prediction and financial distress indicators from accounting and AI perspectives. Among

the first papers to address the combination of AI with bankruptcy prediction is Odom &

Sharda’s (1990) ‘A neural network model for bankruptcy prediction’. In the midst of the

more recently cited papers is Lensberg, Eilifsen & McKee (2006), which focuses on

genetic programming and bankruptcy theory development. Lensberg, Eilifsen & McKee

is well cited in papers published in refereed journals such as Expert Systems with

Applications, Knowledge-Based Systems and Computers & Operations Research (Rom

& Slotnick, 2009; Tsai, 2008; Lee & Shih, 2009; Hung & Chen 2008). Lensberg,

Eilifsen & McKee is the bankruptcy model that will be drawn upon for this dissertation

study.

26

Credit Scoring Models

 In the U.S., credit models are used to calculate a score that is representative of an

individual’s creditworthiness (myFICO, 2009). Traditional credit scoring models are

usually based on accounting ratios and regression analysis (Finlay, 2009). Financial

institutions use the scores generated by the models to evaluate the risk involved in

lending money to consumers. As such, credit scores determine who qualifies for a loan

and the parameters of the loan (interest rate, term etc). The Fair Isaac Corporation

created the first credit scoring system in 1958 (myFICO). Though the exact details of

their model are unknown, it is largely based on the traditional approach (Finlay).

Recently, recognition of the inadequacies of current credit scoring models has led to the

application of ML techniques in the pursuit of more robust models. Neural Networks,

Support Vector Machines and Genetic Programming have all been applied to the problem

with optimistic results (Abdou, 2009; Bellotti & Crook, 2009; Tsai, 2008; Yu & Wu,

2008; Schebesch & Stecking, 2005).

Foreclosure Factors

 The options theory of foreclosures states that foreclosures occur when a

property’s value becomes less than what is owed on the mortgage (Grover & Todd,

2008). Additionally, the trigger event theory, suggest that foreclosures occur when the

borrower experiences financial and physical setbacks which hinder continued payments

(Grover & Todd). Though both of these theories hold some validity, neither truly

captures the interaction among the micro/macro economic, social, regional and legal

factors at play in the foreclosure dynamic.

27

Summary

 The following section summarizes some of the advantages and disadvantages of

ML1 - ML3 from the perspective of the technology and relevance to the proposed study.

Classification Trees

Advantages

 Has been applied to the bankruptcy problem (Marais, Patell & Wolfson, 1984;

Frydman, Altman & Kao, 1985).

 Excels at feature identification by interpreting interactions among predictors

(Abu-Nimeh, Nappa, Wang & Nair, 2007).

 C4.5 has been applied to credit scoring classification (Baesens, Van Gestel,

Stepanova, Suykens & Vanthienen, 2003).

 Can handle both categorical and continuous variables (Morasca, 2002).

 Tends to produce models that are easy to interpret and can be used to create set of

IF-THEN rules (Russel & Norvig, 2003; p. 654).

Disadvantages

 Classification trees can be unstable and minor data variations can result in the

generation of very different looking trees (Russel & Norvig, 2003; p. 654).

 Can succumb to overfitting of data (Russel & Norvig, p. 662).

 Computationally expensive to train. The order of complexity for C4.5 with a

dataset of size n and each instance having m attributes is

 O(m.n.log n) + O(n (log n)
2
).

28

Support Vector Machines

Advantages

 Supports linear, polynomial, radial basis function (RBF) and sigmoid kernels for

regression and classification tasks (Moore, 2003).

 Can process multiple continuous and categorical input variables (Schebesch &

Stecking, 2005).

 Kernel parameters may be optimized via a hybrid GA-SVM approach as

demonstrated by Wu, Tzeng, Goo & Fang (2007).

 Has been used in many recent bankruptcy prediction and credit scoring studies

such as Bellotti & Crook, 2009; Lee, 2007; Min & Lee, 2005; Schebesch &

Stecking, 2005; Min, Lee & Han (2006); Gao, Cui & Po, 2008.

Disadvantages

 Optimal choice of SVM kernel parameters is critical to classification accuracy

and stability (Wu, Tzeng, Goo & Fang, 2007; Min & Lee, 2005).

 Choice of kernel function can have an impact on the classification task and the

desired level of accuracy.

Genetic Programming

Advantages

 Symbolic regression has been applied to the bankruptcy problem by Lensberg,

Eilifsen, and McKee (2006) with favorable results.

29

 Most linear and polynomial relationships can be deduced by a simple instruction

set F such that F = {+, -, *, /, and, or, not, conditional (if-then-else), loop,

recursion} (Koza, 1992, p.163).

 Additions to set F (e.g. sin, cost, log, exp) can create a wider variety of output

expressions.

 Has been applied to the credit scoring problem (Abdou, 2009).

Disadvantages

 Identification of the correct fitness function is critical to satisfactory discovery of

a workable expression.

 Execution time can be very high (Lensberg, Eilifsen & McKee, 2006).

 Expanded function sets increase the potential of bloat which is an excess of code

expansion caused by the genetic operators searching for superior solutions

without a resultant enhancement in fitness (Silva & Costa, 2005).

 The number of major and minor control parameters is high in comparison to other

machine learning methods. Koza (1992, p. 641) enumerates approximately

nineteen parameters of which population size M, max number of generations G,

crossover probability pc, reproduction probability pr, crossover point cx,

probability of mutation pm are critical to accuracy.

30

Chapter 3

Methodology

Introduction

 This chapter focuses on presenting the technology that was implemented, and the

steps executed, to develop the proposed foreclosure prediction model. Emphasis was

placed on the data that drove the study and the implementation of ML1 - 3 for side-by-

side predictive comparison. The chapter concludes with a summary of the macro steps of

the study.

Data Acquisition

 All macroeconomic data was retrieved using the ALFRED® (2009) API.

ALFRED is a RESTful (Representational State Transfer) web service, created by

Economic Research Division of the Federal Reserve Bank of St. Louis, which provides

access to archived U.S. regional economic data. REST is a client-server architectural

style that is stateless, cacheable, exposes a uniform interface, and promotes layered

system design (Fielding, 2000).

 A stratified random sample of foreclosure data was requested from Dextec

Systems. The vendor responded by providing an equal number of randomly selected

foreclosed and un-foreclosed data for Miami-Dade, Broward, and Palm Beach counties.

Though this does not represent a stratified sample, it does reduce sampling bias since

each type of mortgage/county record has an equal chance of being selected. The total

31

record count was 1000 distributed as illustrated in Table 3. The data obtained from

Dextec Systems is available upon request.

Table 3 - Mortgage Data Totals

County Type Count

Broward County Foreclosure 167

Broward County Non-Foreclosure 167

Dade County Foreclosure 167

Dade County Non-Foreclosure 167

Palm Beach County Foreclosure 166

Palm Beach County Non-Foreclosure 166

 Total 1,000

Crime statistics from the National Archive of Criminal Justice Data (NACJD) was

acquired and reviewed. The NACJD is a part of the Inter-University Consortium for

Political and Social Research (ICPSR) at the University of Michigan. Though the

NACJD data was extensive, a consistent, meaningful and regional (by zip/city) crime

index could not be identified.

 All data was imported into the database as described in Data Management. There

was no need to scrub the data for consistency and balance. A balanced dataset exists if

the ratio between the two output classes is not significantly greater than 1:1. The

dependent and independent variable used in the study are presented next.

Variables

 The variables illustrated in Table 5 - Table 9 were postulated in the development

of the foreclosure prediction model. The selected variables were adapted or inferred from

bankruptcy and credit scoring models by Lensberg, Eilifsen & McKee (2006) and Bellotti

& Crook (2009) respectively. Furthermore, variable selection was limited to the

variables that were relevant to the unit of analysis, readily available, and not subject to

acquisition limitations. In some cases, the impact of a variable is mirrored by another

32

variable thereby rendering the impact of the variable’s exclusion moot. Credit score is an

example of such a variable as its value is mirrored by interest rate. The following

variables were initially identified but were later omitted:

Table 4 – Excluded Variables

Name Reason for Omission

Income Unavailable due to Privacy Laws.

Credit Score As above.

Gender As above.

Mortgage Payment Not recorded by data vendor.

Average Age of Mortgagee(s) As above.

Multi-Income As above.

Crime Rate For Region Difficulty in identifying consistent index.

.

33

Table 5 - Independent Variables – Mortgage Parameters

Name Data Type Example/Scale of Measure/Comments Data Source Measurement Frequency

Mortgage Type Discrete 0= Fixed, 1= ARM, 3=Other Dextec Systems Inception and Current Year

Interest Rate Continuous 6.02%. (Current rate in case of an ARM) Dextec Systems
Inception and quarterly

thereafter

Principal Amount Continuous Amount borrowed. Dextec Systems Inception

Mortgage Year Discrete Inception Year – Current Year Dextec Systems Annually

Current Market

Value
Continuous

Estimate of amount that can be currently

obtained for property if sold within next 3

months.

Dextec Systems Inception and Current Year

34

Table 6 - Independent Variables – Macroeconomic

Name Data Type Example/Scale of Measure/Comments Data Source Measurement Frequency

Prime Rate Continuous
The interest rate charged by banks to their most

creditworthy customers.
ALFRED®

Inception and quarterly

thereafter.

Inflation Continuous

An increase in the cost of goods and services in

an economy over a period of time due to loss of

purchasing power in the medium of exchange.

ALFRED®
Inception and quarterly

thereafter.

Consumer Price

Index
Continuous

Average price for a typical market basket

consumed by the average household.
ALFRED®

Inception and quarterly

thereafter.

Table 7- Independent Variables – Demographic

Name Data Type Example/Scale of Measure/Comments Data Source Measurement Frequency

Zip Discrete Zip code or any integer based regional identifier Dextec Systems Inception

35

Table 8 - Independent Variables – Regional

Name Data Type Example/Scale of Measure/Comments Data Source Measurement Frequency

Regional Home

Ownership

Rate

Continuous

The homeownership rate is the percentage of

homeowning households among all households in

the given demographic group.

ALFRED®
Inception and quarterly

thereafter

Predatory

Lending
Discrete

Prevalence of predatory lending practices.

(Strupp, 2009). Indicates whether region has laws

which regulates predatory lending

(Rose, 2008). {0,1}

MBA
Inception and Current

Year.

Unemployment

Rate
Continuous

Percentage of those in the labor pool who are

unemployed.

ALFRED®
Inception and quarterly

thereafter

Per Capita

Income
Continuous

Amount each citizen receives if the yearly

regional income is divided equally among

everyone. (Bowden, 1992, p. 92).

ALFRED®
Inception and Semi-

annually thereafter

36

Table 9 - Dependent Variable

Name Data Type Possible Values Data Source Measurement Frequency

Mortgage

Status
Discrete

0 = Status Quo - Mortgage proceeds to maturity

without any significant changes.

1 = Foreclosure - Mortgage fails and property is sold

by financing house.

Dextec Systems
Inception and quarterly

thereafter.

37

Workbench

 For the comparative analysis of ML1 - ML3, a generic workbench was created to

facilitate parallel processing of the mortgage data. The workbench, hereinafter referred

to as Raptor, was designed with extensibility, scalability and re-use in mind. As such,

Raptor was built using an SOA pattern that made monolithic and cloud based system

deployment possible. In the cloud scenario, Raptor's core services (SDK) were

Figure 3 - High level overview of Raptor System.

38

deployed to the Azure development environment through Visual Studio 2010. The plug-

ins for SVM, CT and GP were then deployed in Azure and registered with Raptor.

Figure 3 illustrates the high level overview of the system. UML class diagrams for

Raptor are presented in Appendix B - D.

Raptor was written in C# 4.0 with Visual Studio 2010. IKVM was used to bridge the

Java → .Net gap as JDK limitations with J#.Net were encountered. The plug-ins were

based on the following academically embraced open source ML libraries/SDKs. :

1. University of Waikato’s machine learning library (WEKA) was used for developing

the classification tree (ML1) implementation (Holmes, Donkin & Witten, 1997).

2. National Taiwan University’s (NTU) Library for Support Vector Machines

(LIBSVM) was used to develop the ML2 implementation (Chang & Lin, 2009).

3. George Mason University’s Evolutionary Computation Research System (ECJ19)

was initially used for developing the genetic program (ML3) implementation (Luke et

al., 2008). Adapting ECJ19 for multi-parameter symbolic regression (MPSR) proved

to be somewhat awkward because of its complex interfaces and reliance on

configuration files. For this reason, the GP implementation used an MPSR library by

Dudley (2011) as a wrapper around ECJ19 for improved ease of use.

 Proxy classes to the ALFRED® API were built to promote simple consumption of

the service. The Federal Reserve supplies excellent documentation on the API which

supports language neutral consumption. The class diagram of the proxies is illustrated in

Figure 22.

39

Data Management

 The study required a database to manage the large amount of mortgage data that

drove the ML plug-Ins. Microsoft’s SQL Server 2008 was given preference over other

databases (Oracle, IBM DB2) because of its ease of use in importing data, scrubbing data

and migration to Azure (MSDN, 2008). Summary descriptions of the database tables that

were created are presented in Appendix E, whiles Appendix F displays the relationships

amongst the tables. Data management is handled by the use case ‘Maintain Data’ as

illustrated in Figure 4.

.

Figure 4 - Maintain Data

 Data was imported by using Raptor to invoke a modified version of the Microsoft

SQL Server Import and Export Wizard (Figure 5). The output artifact of the wizard is a

SQL Package, which stores the actions (new table etc.) to be performed on the target

database. Raptor uses the WCF Service called RaptorData (Figure 3) to transport the

package to the database server and to execute the package. All actions performed on the

database are logged to a table called ‘DatabaseLog’ (Table 23). This functionality is

intrinsic to SQL Server 2008. A database trigger called ‘AddPrimaryKeyToNewTables’

is fired for insert events on this table. The trigger’s primary purpose is to add a column

called ID, of type uniqueidentifier, to the newly imported table and to register (insert

40

meta-data) said table in ‘RegisteredDataSets’ (Table 35). The column ID is used by

Raptor to uniquely distinguish each row of data.

Figure 5 – SQL Server Import/Export Wizard.

41

Data Extenders

 A Raptor Data Extender is a function which horizontally extends a registered

dataset. As such, each extender maps directly to a column in the total dataset (Figure 8).

Data Extenders are implemented as either WCF Services or .Net libraries. Meta-data that

describes and facilitates execution of extenders are handled by the use case ‘Maintain

Data Extensions’ (

Figure 6 & Figure 34).

Figure 6 – Maintain Data Extenders

Unlike Raptor ML Plug-Ins, extenders do not implement any specialized

interfaces or base classes. Instead, reflection is used to interrogate the service/library to

discover available functions and their associated parameters. Data extender parameters

can either be constant values or the values of adjacent columns. Since many extenders

need run only once, Microsoft’s App Fabric Caching Service was used to minimize

database stress and network traffic. All ALFRED® (2009) metrics were implemented as

data extenders.

42

ML Plug-Ins

 Raptor ML Plug-Ins are logical components which implement the various

machine learning algorithms. They are pluggable units controlled and dynamically

executed by Raptor. Plug-ins are managed by the use case ‘Maintain PlugIns’ (Figure 7).

Plug-Ins can be either .Net libraries, WCF Services or Web Services. Unlike data

extenders, plug-ins must implement a common interface called ‘IRaptorPlugIn’ (Figure

10). If this interface is not implemented, the plug-in cannot be registered. Registration

is similar to data extenders, in that, the purpose is to acquire and save meta-data that can

be used to identify, describe, and execute the logical unit.

Figure 7- Maintain Plug-Ins

 The default parameters for ML Plug-Ins are set during registration, and may be

changed before and after the project is opened. The results of each plug-in run can be

published to the database thereby creating a historical record for the run (Figure 9). The

parameters of a historical record may also be made current at anytime. The results of a

published plug-in run can also be viewed before the project is opened.

43

Figure 8 - Raptor Data Extenders

Extender function for

Consumer Price Index

at Inception Year of

Mortgage.

44

Figure 9 - Plug-In Parameters

Selected Plug-

In parameters.

Historical Run data

and associated

parameters.

45

Figure 10 - Machine Learning Libraries Class Diagrams

46

Raptor Project

 To perform analysis on the mortgage data, a Raptor project was created. A

Raptor project consists of the following elements:

 One or more datasets (datasets may be joined or unioned).

 One or more ML plug-in.

 Zero or more Data Extenders.

This section defines, by flow chart, the steps to be executed for building a Raptor project.

These steps assume that the database has already been populated and scrubbed, and plug-

Ins for ML1 - ML3 have been registered. The flow chart in Figure 11 maps the basic

flow while Appendix G illustrates the relevant screens.

47

Figure 11 - New Project Flow

48

Figure 12 - High Level Sequence Diagram of Workbench Execution

49

Process

 This section delineates the steps to be executed for a comparative run of all

registered ML plug-Ins. Steps include the manual steps to be performed by the

experimenter and those executed by Raptor (see Figure 12). These steps assume that a

Raptor project has already been created.

1. Start Raptor.

2. From menu select ‘Open Projects’.

3. Click on desired project.

4. Review plug-Ins.

a. If all plug-Ins are not linked to project, right click and select ‘Add Plugins’

as illustrated in Figure 13.

Figure 13 – Add Plug-Ins

b. From the screen presented in Figure 36, select and save the desired plug-

Ins and return to the projects screen (Figure 9).

5. Select ML1 plug-In which uses WEKA based implementation of C4.5

classification tree algorithm.

6. Set run parameters for ML1

a. Set Minimum Number of Instances.

b. Set Pruning to true.

c. Set ‘Cross Validate’ to true.

i. Set Number of Folds

50

d. Do not set Decision Tree. This value is returned by the ML engine.

e. Set UseM5InsteadOfJ48 to true;

Figure 14 – ML1 Parameters

7. Select ML2 plug-In which uses NTU’s implementation of SVM algorithm.

8. Set run parameters for ML2

a. Kernel method is locked at RBF and cannot be changed from UI.

b. Set penalization variable C, start at a number less than 1.

c. Set bandwidth (ϭ2
) of kernel function. Start at 0.25.

d. Set ‘Cross Validate’ to true.

i. Set Number of Folds, default is 10

e. Set ‘SaveModel’ to false.

f. Set ‘Rehydrate Model’ to false.

g. Ignore ModelName parameter; this is set by the ML engine.

Figure 15 – ML2 Parameters

9. Select ML3 plug-In which uses ECJ19/Dudley MPSR implementation of genetic

program.

10. Set run parameters for ML3.

a. Set ‘BuildDepth’. Default is 6.

b. Set ‘MinimumAcceptableFitness’ to zero.

c. Set ‘MaximumExecutionTime’ to 30 minutes.

51

d. Instruction set is hard coded and cannot be set from UI. Testing done with

following combination:

i. Add

ii. Subtract

iii. Multiply

iv. Divide

v. <

vi. >

vii. =

viii. AndAlso

ix. OrElse

x. Not

xi. Power

e. Ignore ‘Mutation Threshold’.

f. Set ‘Population Size’. Default is 1000.

g. Set ‘Crossover Point’ to 10.

h. Set ‘Tournament Size’ to 2.

i. Set ‘Number of Generations’. Default is 100.

j. Set ‘Maximum Node Count’.

k. Ignore ‘Write out Stats’, ‘Expression Tree’ and ‘Found in Generation’.

These are output variables set by the engine.

Figure 16 – ML3 Parameters

11. Review Data Extenders.

a. If all extenders are not linked to project, right click and select ‘Add

Extenders’ as illustrated in Figure 17.

52

Figure 17 – Add Data Extenders

b. From the screen presented in Figure 37Figure 36, select and save the

desired extenders and return to the projects screen (Figure 9).

12. Review Data Extender parameters.

a. Parameters are either constants or the values of other columns as

illustrated in Figure 18.

Figure 18 – Data Extender Parameter Values Derived From.

b. Set number of instances of selected extender and alias if necessary.

13. Click on the ‘Run’ button.

14. Raptor executes steps as illustrated in Figure 12.

15. Click on ‘Output’ button to view Confusion Matrix and ROC.

16. Click on the ‘Publish’ button to persist run to database.

17. From Input Form, modify plug-In parameters and then go to step 13. Perform this

step n time.

53

This section summarizes all the development steps that were necessary to conduct this

research.

1. Acquired all hardware and software including necessary licenses.

2. Built database for storing mortgage data.

3. Built ALFRED web service proxy and consumer class.

4. Acquired data from specified sources.

5. Imported data into database and scrubbed.

6. Set up App Fabric Cache service and tested. This replaces MemCache Server as

was originally proposed.

7. Built work bench.

a. Integrated data helper component to interface with database.

b. Linked web service consumer class.

c. Designed and built WCF interfaces and data types for SDK.

d. Built grid, plug-in parameters and graphing forms.

e. Implemented App Fabric Cache client interface.

8. Built plug-Ins for ML1 - ML3.

a. Built unit tests.

b. Ran tests with small datasets to verify accuracy.

c. Tested dynamic loading and remote execution.

9. Built work bench unit tests.

10. Executed research process.

54

Chapter 4

Results

Introduction

 This chapter presents and comments on the predictive performance of ML1 -

ML3. Simple statistical analysis was used to determine base performance. Each plug-In

was concurrently executed 20 times with varying input parameters and randomized

training dataset. For each run, the input parameters, predictive results, and performance

metrics were published to the Raptor database.

The primary metric used to compare the performance of ML1 - ML3 was

classification accuracy (CA). This metric has been a standard comparison metric used in

classifier induction studies (Perlich, Provost & Simonoff, 2003). Classification accuracy

of an ML technique is the percentage of correctly predicted outputs after operation on a

test dataset (Perlich, Provost & Simonoff). It is calculated by the sum of True Positives

(TP) and True Negatives (TN) divided by number of records in the test dataset Nt, thus

CA = (TP + TN)/Nt . Classification accuracy results are presented in the format known as

a Confusion Matrix.

K-fold cross validation was used to select the training and testing sets for ML1 -

ML3. Cross-validation is a commonly used technique in machine learning research

which uses all available examples as training and test examples (Bengio & Grandvalet,

2004). In cross-validation, initially the original sample is randomly partitioned into K

subsamples. Of these K subsamples, a single subsample is retained for testing purposes,

whiles K−1 subsamples are retained as training data (Bengio & Grandvalet). The cross-

validation process is then repeated K times, whereby each of the K subsamples is used

55

exactly once as validation data. Each ML engine implemented K-fold cross validation

switches which were turned on for each of the 20 runs. In some runs K was varied in

order to observe the effect on classification accuracy. For each run, 30% of the total

dataset was randomly chosen and shuffled to produce the training set upon which K-Fold

validation was performed.

ML1: Classification Tree

ML1 used WEKA’s C4.5 classification engine, as the J48 engine is not suitable

for handling numeric values. Of ML1’s parameters, ‘Minimum Number of Instances’

was varied starting at 1, and progressed through to 200. Pruning was always set to true

along with ‘Cross Validate’. The run with the highest classification accuracy of 0.82

occurred with the parameters as illustrated in Table 10. Table 13 logs the classification

accuracy and execution times for ML1.

ML1 outputted a set of 19 rules (Table 11) each of which points to a specific

linear module (LM) that is used to predict foreclosure (Table 12). Figure 19 presents the

rules as a classification tree.

Table 10 - Optimum parameters for ML1

Parameter Name Value

MinNumberInstances 2

CrossValidate True

NumberOfFolds 7

Prune True

56

Table 11 - ML1 Generated Rules

ML1 Rules

If Mortgage Interest Rate Type = 0 And Market Value <= 144107.5 And

Mortgage Amount <= 155250 And Sale Price <= 121248 And Inflation IY + Q2 <=

3.25 Then LM1 (10/0%).

If Mortgage Interest Rate Type = 0 and Market Value <= 144107.5 And

Mortgage Amount <= 155250 And Sale Price <= 121248 And Inflation IY + Q2 >

3.25 And ConsumerPriceIndex IY + Q10 <= 203.7 And Market Value <= 91246

Then LM2 (4/0%).

If Mortgage Interest Rate Type = 0 and Market Value <= 144107.5 And

Mortgage Amount <= 155250 And Sale Price <= 121248 And Inflation IY + Q2 >

3.25 And ConsumerPriceIndex IY + Q10 <= 203.7 And Market Value > 91246

And ConsumerPriceIndex IY + Q9 <= 202.85 Then LM3 (4/0%).

If Mortgage Interest Rate Type = 0 and Market Value <= 144107.5 And

Mortgage Amount <= 155250 And Sale Price <= 121248 And Inflation IY + Q2 >

3.25 And ConsumerPriceIndex IY + Q10 <= 203.7 And Market Value > 91246

And ConsumerPriceIndex IY + Q9 > 202.85 Then LM4 (2/0%).

If Mortgage Interest Rate Type = 0 and Market Value <= 144107.5 And

Mortgage Amount <= 155250 And Sale Price > 121248 And Inflation IY + Q2 >

3.25 And ConsumerPriceIndex IY + Q10 > 203.7 Then LM5 (4/0%).

If Mortgage Interest Rate Type = 0 And Market Value <= 144107.5 And

Mortgage Amount <= 155250 And Sale Price > 121248 And

Mortgage Amount <= 127200 Then LM6 (11/0%).

If Mortgage Interest Rate Type = 0 And Market Value <= 144107.5 And

Mortgage Amount <= 155250 And Sale Price > 121248 And

Mortgage Amount > 127200 And ConsumerPriceIndex IY + Q5 <= 195 Then LM7

(5/94.464%).

If Mortgage Interest Rate Type = 0 And Market Value <= 144107.5 And

Mortgage Amount <= 155250 And Sale Price > 121248 And

Mortgage Amount > 127200 And ConsumerPriceIndex IY + Q5 > 195 Then LM8

(5/0%).

If Mortgage Interest Rate Type = 0 And Market Value <= 144107.5 And

Mortgage Amount > 155250 Then LM9 (16/92.176%).

If Mortgage Interest Rate Type = 0 And Market Value > 144107.5

Then LM10 (84/83.268%).

57

If Mortgage Interest Rate Type =1 And Sale Price <= 132983 And

ConsumerSentiment IY + Q2 <= 92.7 Then LM11 (16/0%).

If Mortgage Interest Rate Type =1 And Sale Price <= 132983 And

ConsumerSentiment IY + Q2 > 92.7 Then LM12 (35/90.515%).

If Mortgage Interest Rate Type =1 And Sale Price > 132983 And

ConsumerSentiment IY + Q10 <= 84.8 Then LM13 (41/0%).

If Mortgage Interest Rate Type =1 And Sale Price > 132983 And

ConsumerSentiment IY + Q10 > 84.8 And Mortgage Amount <= 171000

Then LM14 (24/0%).

If Mortgage Interest Rate Type =1 And Sale Price > 132983 And

ConsumerSentiment IY + Q10 > 84.8 And Mortgage Amount > 171000 And

ConsumerPriceIndex IY + Q9 <= 200.65 Then LM15 (11/0%).

If Mortgage Interest Rate Type =1 And Sale Price > 132983 And

ConsumerSentiment IY + Q10 > 84.8 And Mortgage Amount > 171000 And

ConsumerPriceIndex IY + Q9 > 200.65 And RegionalHousePriceIndex IY + Q7 <=

432.63 Then LM16 (9/0%).

If Mortgage Interest Rate Type =1 And Sale Price > 132983 And

ConsumerSentiment IY + Q10 > 84.8 And Mortgage Amount > 171000 And

ConsumerPriceIndex IY + Q9 > 200.65 And RegionalHousePriceIndex IY + Q7 >

And 432.63 ConsumerPriceIndex IY + Q9 <= 204.626 And Sale Price <= 348912.5

Then LM17 (9/76.66%).

If Mortgage Interest Rate Type =1 And Sale Price > 132983 And

ConsumerSentiment IY + Q10 > 84.8 And Mortgage Amount > 171000 And

ConsumerPriceIndex IY + Q9 > 200.65 And RegionalHousePriceIndex IY + Q7 >

And 432.63 ConsumerPriceIndex IY + Q9 <= 204.626 And Sale Price > 348912.5

Then LM18 (3/0%).

If Mortgage Interest Rate Type =1 And Sale Price > 132983 And

ConsumerSentiment IY + Q10 > 84.8 And Mortgage Amount > 171000 And

ConsumerPriceIndex IY + Q9 > 200.65 And RegionalHousePriceIndex IY + Q7 >

And 432.63 ConsumerPriceIndex IY + Q9 > 204.626 Then LM19 (6/0%).

58

 Table 12 - Linear Models Generated by ML1

Linear Models

LM1

Foreclosure =

 Round(0.0126 * Interest Rate

 - 0.0235 * Mortgage Interest Rate Type

 - 0.0118 * ConsumerPriceIndex IY + Q10

 - 0.2716 * Inflation IY + Q2

 + 3.7789,0)

LM2

Foreclosure =

 Round(0.0126 * Interest Rate

 - 0.0235 * Mortgage Interest Rate Type

 - 0.0105 * ConsumerPriceIndex IY + Q9

 - 0.0101 * ConsumerPriceIndex IY + Q10

 - 0.2341 * Inflation IY + Q2

 + 1.371,0)

LM3

Foreclosure =

 Round(0.0126 * Interest Rate

 - 0.0235 * Mortgage Interest Rate Type

 - 0 * Market Value

 + 0.0116 * ConsumerPriceIndex IY + Q9

 - 0.0101 * ConsumerPriceIndex IY + Q10

 - 0.2341 * Inflation IY + Q2

 + 1.1226,0)

LM num: 4

Foreclosure =

 Round(0.0126 * Interest Rate

 - 0.0235 * Mortgage Interest Rate Type

 - 0 * Market Value

 + 0.0118 * ConsumerPriceIndex IY + Q9

 - 0.0101 * ConsumerPriceIndex IY + Q10

 - 0.2341 * Inflation IY + Q2

 + 1.0899,0)

LM5

Foreclosure =

 Round(0.0126 * Interest Rate

 - 0.0235 * Mortgage Interest Rate Type

 - 0 * Market Value

 + 0.0087 * ConsumerPriceIndex IY + Q9

 - 0.0101 * ConsumerPriceIndex IY + Q10

 - 0.2341 * Inflation IY + Q2

 + 1.6315,0)

LM6

Foreclosure =

 Round(0.0126 * Interest Rate

 - 0.0235 * Mortgage Interest Rate Type

 - 0 * Market Value

 + 0.0106 * ConsumerPriceIndex IY + Q5

 - 1.9975,0)

59

Linear Models

LM7

Foreclosure =

 Round(0.0126 * Interest Rate

 - 0.0235 * Mortgage Interest Rate Type

 - 0 * Market Value

 + 0.0169 * ConsumerPriceIndex IY + Q5

 - 3.1838,0)

LM8

Foreclosure =

 Round(0.0126 * Interest Rate

 - 0.0235 * Mortgage Interest Rate Type

 - 0 * Market Value

 + 0.0169 * ConsumerPriceIndex IY + Q5

 - 3.1584,0)

LM9

Foreclosure =

 Round(0.0126 * Interest Rate

 - 0.0235 * Mortgage Interest Rate Type

 - 0 * Market Value

 + 0.5108,0)

LM10

Foreclosure =

 Round(0.0103 * Interest Rate

 - 0.0235 * Mortgage Interest Rate Type

 - 0 * Market Value

 - 0.0104 * ConsumerPriceIndex IY + Q11

 + 2.1702,0)

LM11

Foreclosure =

 Round(0.0025 * Interest Rate

 - 0.0222 * Mortgage Interest Rate Type

 + 0 * Market Value

 + 0.0046 * ConsumerSentiment IY + Q2

 - 0.294,0)

LM12

Foreclosure =

 Round(0.0025 * Interest Rate

 - 0.0222 * Mortgage Interest Rate Type

 + 0 * Market Value

 + 0.0029 * ConsumerSentiment IY + Q2

 + 0.0465,0)

60

Linear Models

LM13

Foreclosure =

 Round(0.0025 * Interest Rate

 - 0.0222 * Mortgage Interest Rate Type

 - 0 * Market Value

 + 0.0274,0)

LM14

Foreclosure =

 Round(0.0025 * Interest Rate

 - 0.0222 * Mortgage Interest Rate Type

 - 0 * Market Value

 + 0.0075,0)

LM15

Foreclosure =

 Round(0.0025 * Interest Rate

 - 0.0222 * Mortgage Interest Rate Type

 - 0 * Market Value

 - 0.0137,0)

LM16

Foreclosure =

 Round(0.0025 * Interest Rate

 - 0.0222 * Mortgage Interest Rate Type

 - 0 * Market Value

 - 0.0061 * ConsumerPriceIndex IY + Q9

 + 0.0006 * RegionalHousePriceIndex IY + Q7

 + 0.9495,0)

LM17

Foreclosure =

 Round(0.0025 * Interest Rate

 - 0.0222 * Mortgage Interest Rate Type

 - 0 * Market Value

 - 0.0085 * ConsumerPriceIndex IY + Q9

 + 0.0004 * RegionalHousePriceIndex IY + Q7

 + 1.5567,0)

LM18

Foreclosure =

 Round(0.0025 * Interest Rate

 - 0.0222 * Mortgage Interest Rate Type

 - 0 * Market Value

 - 0.0085 * ConsumerPriceIndex IY + Q9

 + 0.0004 * RegionalHousePriceIndex IY + Q7

 + 1.53,0)

61

Linear Models

LM num: 19

Foreclosure =

 Round(0.0025 * Interest Rate

 - 0.0222 * Mortgage Interest Rate Type

 - 0 * Market Value

 - 0.0096 * ConsumerPriceIndex IY + Q9

 + 0.0004 * RegionalHousePriceIndex IY + Q7

 + 1.7478,0)

62

Table 13 – Classification Accuracy for ML1
MinNumberInstances Number

of Folds

False

Positive

(%)

False

Negative

(%)

TP FP TN FN Classification

Accuracy

Execution

Time (sec)

1 5 13.734 8.870 82 62 459 96 0.77 10.9472

2 7 7.015 3.868 74 27 499 98 0.82 15.5627

3 5 8.160 3.290 70 23 492 114 0.8 13.1124

4 5 6.724 5.007 77 35 493 94 0.81 10.9778

5 10 8.155 3.290 70 23 492 114 0.8 19.186

6 10 5.866 8.584 97 60 460 82 0.8 14.9707

7 15 5.866 8.584 97 60 460 82 0.8 11.7468

8 5 8.011 8.155 66 57 464 112 0.76 10.6973

9 20 5.866 8.441 97 59 461 82 0.8 15.4353

12 5 8.226 8.011 63 56 465 115 0.76 12.8809

15 20 10.658 0.858 17 6 527 149 0.78 37.097

20 25 10.515 1.001 19 7 526 147 0.78 39.7959

22 5 8.441 7.439 60 52 469 118 0.76 3.4029

25 10 11.159 0.715 10 5 528 156 0.77 14.8202

30 15 9.657 6.295 53 44 467 135 0.74 19.0104

35 10 9.728 6.581 44 46 473 136 0.74 19.8101

40 10 9.871 6.581 42 46 473 138 0.74 12.8107

55 15 10.014 5.866 40 41 478 140 0.74 8.4886

60 20 12.303 0.572 13 4 510 172 0.75 20.5286

200 20 12.732 0.000 0 0 521 178 0.75 7.4209

 Mean: 9.135 5.100 54.55 35.65 485.85 122.9 0.78 15.935

Standard Deviation: 2.308 3.145 30.431 21.984 24.941 29.203 0.028 8.833

Min: 5.866 0 0 0 459 82 0.74 3.403

Max: 13.734 8.870 97 62 528 178 0.82 39.80

63

Figure 19 – Classification Tree for ML1 (Interest Rate Type=0)

64

Figure 20 – Classification Tree for ML1 (Interest Rate Type =1)

65

ML2: Support Vector Machine

ML2 had two main input parameters that affected classification accuracy. These

parameters are ‘C’ and ‘Gamma’. As with the other plug-Ins, ‘Cross Validation’ was

always turned on. Varying the ‘Number of Folds’ did not have much influence on the

classification accuracy of ML2. The parameter ‘Gamma’ was varied through 0.10 to 0.25

and C was varied through 0.70 to 1. The run with the highest percentage of correct

predictions (84%) on the test dataset occurred with the parameters as illustrated in Table

14. Table 15 logs the classification accuracy and execution times for ML2. The mean

‘Classification Accuracy’ was 0.796 with a Standard Deviation of 0.038. The average

execution time was 9.099 seconds. ML2 displayed a consistent ability to correctly

predict all positive values.

Table 14- Optimum parameters for ML2

Parameter Name Value

C 1

Gamma 0.4

66

Table 15 – Classification Accuracy for ML2
C Gamma False

Positive

(%)

False

Negative

(%)

TP FP TN FN Classification

Accuracy

Execution

Time

0.05 0.25 0 24.866 0 0 525 174 0.75 1.7088

0.4 0.25 0 25.724 0 0 519 180 0.74 2.6728

0.5 0.25 0 25.724 0 0 519 180 0.74 1.7088

0.65 0.65 0 24.294 0 0 529 170 0.76 2.3186

0.65 0.25 0 26.438 0 0 514 185 0.74 2.3389

0.7 0.7 0 26.438 0 0 514 185 0.74 139.0241

0.75 0.3 0 20.408 53 0 514 132 0.81 2.2817

0.75 0.3 0 23.436 0 0 535 164 0.77 1.7258

0.75 0.25 0 18.882 59 0 519 121 0.83 1.9063

0.8 0.8 0 20.408 53 0 514 132 0.81 8.2048

0.9 0.3 0 18.297 44 0 535 120 0.83 1.7058

1 0.25 0 20.224 57 0 512 130 0.81 2.4041

1 0.3 0 18.466 50 0 529 120 0.83 1.6837

1 0.4 0 17.336 48 0 538 113 0.84 1.9265

1 0.45 0 18.116 54 0 528 117 0.83 1.7018

1 0.05 0 18.369 52 0 528 119 0.83 1.7048

1 0.15 0 22.229 43 0 510 146 0.79 1.6978

1 0.2 0 18.215 52 0 529 118 0.83 1.7519

1 0.25 0 18.882 59 0 519 121 0.83 1.7118

1.1 0.25 0 20.224 57 0 512 130 0.81 1.8091

 Mean: 0 21.349 34.05 0 522.10 142.85 0.796 9.099

Standard Deviation: 0 3.209 25.958 0 8.759 26.939 0.038 30.615

 Min: 0 17.336 0 0 510.00 113.00 0.740 1.684

 Max: 0 26.438 59.00 0 538.00 185.00 0.840 139.024

67

ML3: Genetic Programming Symbolic Regression

 ML3 used symbolic regression via genetic programming to build an optimal

solution in the form of an expression tree. An expression tree is executable code

represented as a data structure. ML3 has eleven input parameters, four of which

significantly varied the results. Of these four, ‘Number of Generations’ was varied

starting at 25, and progressing through to 125. With the number of generations set

between 100 and 125, the GP was more likely to find an optimal solution. Population

size was also a sensitive input parameter that affected results when set below 400.

Population size was varied between 200 and 1000. The run with the highest percentage

of correct predictions (99.49%) on the test dataset occurred with the parameters as

indicated in Table 16. Table 18 logs the classification accuracy and execution times for

ML3.

Table 16 - Optimum parameters for ML3

Parameter Name Value

BuildDepth 6

PopulationSize 600

NumberOfGenerations 125

MaxNodeCount 200

The foreclosure expression generated for the best run was treated as follows:

Let

RegionalHousePriceIndex for quarter x= RHPIQx,

RegionalHomeOwnershipRate for quarter x = RHORQx,

ConsumerPriceIndex for quarter x = CPIQx,

PrimeRate for quarter x = PRQx

Inflation for quarter x = IQx

ConsumerSentiment for quarter x = CSQx

68

And

OrElse – Logical short circuit for ‘Or’ operator, such that, if the result of the first

expression evaluated determines the final result of the operation, there is no need to

evaluate the second expression.

AndAlso – Logical short circuit for ‘And’ operator. Examples:

Table 17 – OrElse and AndAlso
Expression1 is Operator Expression2 is Result is

True AndAlso True True

True AndAlso False False

False AndAlso (not evaluated) False

True OrElse (not evaluated) True

True OrElse False False

False OrElse True False

False False False False

Then

Equation 1 - Foreclosure Formula

Foreclosure = (Sale Price < Mortgage Amount)

OrElse (((CSQ6 – IQ0) - CPIQ4) > (CPIQ3 ^ (((IQ9 + ((((Sale Price * RHORQ3) –

(CPIQ7 / PRQ7)) - IQ7) * RHORQ8)) ^ (((Sale Price / (IQ0 / (PRQ9 / (CPIQ2 - RHPIQ10)))) ^

CSQ8)
CS

Q10)) - (CSQ1
Sale Price

))))))

AndAlso (Term > PRQ3)))

The Expression Tree for this formula is presented in Figure 21

69

Table 18 – Classification Accuracy for ML3
Build

Depth

Population

Size

NumberOf

Generations

MaxNode

Count

False

Positive

(%)

False

Negative

(%)

TP FP TN FN Classification

Accuracy

Execution

Time (sec)

2 200 50 100 3.433 25.179 13 24 486 176 0.71 56.5785

2 200 50 100 0.286 24.893 5 2 518 174 0.75 52.0811

4 300 50 100 5.866 11.588 98 41 479 81 0.83 83.4023

4 350 60 150 0.858 0.000 179 6 514 0 0.99 121.4955

6 375 70 175 4.149 21.602 28 29 491 151 0.74 123.0094

8 400 70 200 0.715 24.607 7 5 515 172 0.75 136.984

10 425 80 225 0.429 24.607 7 3 517 172 0.75 160.8952

10 425 80 225 0.429 23.748 3 3 527 166 0.76 218.9903

10 425 80 225 1.001 0.000 160 7 532 0 0.99 310.8253

10 450 90 250 1.001 0.000 175 7 517 0 0.99 218.7959

10 475 100 275 4.149 20.744 30 29 495 145 0.75 248.2699

10 500 110 300 2.003 23.319 12 14 510 163 0.75 269.4796

6 500 125 200 0.572 0.000 175 4 520 0 0.99 310.3154

8 500 125 300 0.572 25.036 4 4 516 175 0.74 274.3491

6 600 125 200 0.572 0.000 179 4 516 0 0.995 370.7536

6 700 125 200 0.572 0.000 179 4 516 0 0.99 385.4787

8 750 125 200 1.574 22.747 13 11 516 159 0.76 405.4563

10 500 120 300 1.288 21.459 22 9 518 150 0.77 335.2664

10 1000 120 400 0.715 0.286 170 5 522 2 0.99 637.8624

8 1000 120 300 0.715 0.000 172 5 522 0 0.99 610.7911

 Mean: 1.545 13.491 81.550 10.800 512.350 94.300 0.849 266.554

 Standard Deviation: 1.574 11.627 79.753 11.000 13.735 81.270 0.120 163.424

 Min: 0.286 0.000 3.000 2.00 479.000 0.000 0.710 52.081

 Max: 5.866 25.036 179.000 41.000 532.000 175.000 0.995 637.862

70

Figure 21 – Expression Tree of ML3 Optimal Solution

71

Summary

 This chapter focused on presenting the performance results of ML1 - ML3. Of

these engines, ML3 had the highest classification accuracy and hit the 90+% mark on

several occasions. ML3 was significantly slower that ML1 or ML2, and also had the

widest range of results with the lowest being in the low 70s. ML3 had the most input

parameters, all of which demonstrated a significant effect on classification accuracy.

ML1s performance was disappointing and it is unclear whether this was a result

of not discretizing input variables other than the output. WEKA was designed as a

monolithic machine learning application at a time when component design was not

widely used. As such, WEKA does not expose an easily workable API and depends on

text files to set run-time parameters. Also, the documentation does not clearly indicate

how certain tasks, like discretization, are performed. It would be interesting to see how

ML1 performs with an independent classification tree engine.

ML1 & ML3 commonly indicated that the following variables were significant

for predication:

1. RegionalHousePriceIndex

2. ConsumerPriceIndex

3. Inflation

From the perspective of consistency, accuracy and speed, it would appear that ML2 is the

best choice for developing a foreclosure prediction model. This however is deceptive,

because unlike the other engines, ML2 does not output any useable artifact. ML2 was,

however, the easiest to implement and use. When combining all these factors it is hard to

overlook ML2 as the primary choice for model development.

72

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

 This study focused on a difficult prediction task of significant societal import.

The hypothesis that drove the study theorized that mortgage performance, projected over

a three year period, could be predicted with a reasonable degree of accuracy. To support

this hypothesis, the field of machine learning was researched and three suitable prediction

algorithms were identified. The ML algorithms were supported by a purpose built

workbench which managed the execution of the ML engines. The results were better

than expected, with each algorithm scoring greater that 75% classification accuracy and

in one case the high 90s%. Given these performance figures, it is quite sufficient to state

that the hypothesis was positively supported by the research outcome.

Implications

 The primary implication of this study is that it has the potential to stir additional

research interest as identified in ‘Recommendations’. Furthermore, it is hoped that other

researchers attempt to reproduce the results herein by using other ML algorithms.

Finally, it is hoped that this study advances the understanding of machine learning

algorithms and their effectiveness in prediction tasks in general.

Recommendations

 Based on the findings of the research conducted within, the following

recommendations are made:

73

1. Expand the dataset to include regions beyond South Florida and re-execute ML1 -

ML3 on this expanded dataset.

2. Add, if possible, relevant psychometric variables to the dataset. Examples of such

variables are Religion, Ethnicity and Occupation.

3. Continue the development of the Raptor workbench with the goal of eliminating

dependencies on WEKA, ECJx and other heavyset libraries.

4. Include ROC analysis and automatic calculation of Area Under ROC.

5. Expand the machine learning techniques to include Artificial Neural Networks

and hybrid methods.

6. Expand the mortgage projection out to at least 5 years.

7. Seek additional macroeconomic variables and eliminate those which have little or

no impact on the prediction task.

8. Contrast performance of ML1 - ML3 against logistic regression.

9. Expand the output to include ‘Refinance’ and ‘Sell with Profit’.

Summary

 This paper focused on the comparison of machine learning techniques in the

problem domain of foreclosure prediction. The fundamental hypothesis was that given a

dataset of mortgages, machine learning techniques could be used to forecast the

mortgages’ performance over a three year period. The machine learning techniques used

were Classification Trees (ML1), Support Vector Machines (ML2) and Genetic

Programming (ML3).

 The dataset of mortgages was focused on the Tri-County (Dade, Broward and

Palm Beach counties) area of South Florida. The dataset included Mortgage Amount,

74

Sale Price, Market Value, Mortgage date, and Interest Rate. Macroeconomic indicators

were used to expand the dataset horizontally and were measured quarterly. Chosen

indicators included

1. Regional Per Capita Income

2. Regional Home Ownership Rate

3. Unemployment Rate

4. Consumer Price Index

5. Inflation

6. Prime Rate

A workbench was created in order to manage the dataset and record the performance

results of ML1 - ML3. The workbench was designed using an SOA architecture which

permitted monolithic or cloud based deployment. For extensibility, ML1 - ML3 were

designed as plug-Ins. ML1 was based on the C4.5 engine of the WEKA system (Holmes,

Donkin & Witten, 1997). ML2 used LibSVM by National Taiwan University (Chang &

Lin, 2009). ML3 used George Mason University’s ECJx (Luke et al., 2008) and

Dudley’s (2011) MPSR library.

The primary metric used to compare the performance of ML1 - ML3 was

classification accuracy. This metric has been a standard comparison metric used in

classifier induction studies (Perlich, Provost & Simonoff, 2003). Classification accuracy

of an ML technique is the percentage of correctly predicted outputs after operation on a

test dataset (Perlich, Provost & Simonoff). It is calculated by the sum of True Positives

(TP) and True Negatives (TN) divided by number of records in the test dataset Nt = (TP +

75

TN)/Nt . Classification accuracy results are presented in the format known as a Confusion

Matrix.

The plug-Ins were run concurrently whiles varying their input parameters. A total of

20 runs were published to the workbench database. ML3 (Genetic Program) delivered

the highest classification accuracy figure but also had the highest standard deviation.

ML3 showed the highest sensitivity to change in its input parameters. ML2 (SVM)

delivered the most stable performance and second highest classification accuracy. ML1’s

(Classification Tree) performance was disappointing but consistently demonstrated minor

sensitivity to input variable changes. The following summarizes the performance of all

plug-Ins.

Table 19 – Summary Results

Plug-In Name Highest Classification Accuracy Standard Deviation

ML1 0.82 0.028

ML2 0.84 0.038

ML3 0.995 0.120

As part of the process, ML1 and ML3 generated artifacts which can be used as

prediction models. ML1’s classification tree consists of eighteen rules, each invoked

dependent on the state of key input parameters. It is possible to improve classification

accuracy by focusing on the rule which nets the largest part of the dataset. Likewise,

ML3’s expression tree can be explored and simplified to improve efficiency.

76

Appendices

A. Alfred Proxies

Figure 22 - High Level Class Diagram of ALFRED® Web Service Proxies

77

B. Raptor User Interface Class Diagrams

Figure 23 - Class Diagram of Raptor UI (a)

78

Figure 24 - Class Diagram of Raptor UI (b)

79

Figure 25 - Class Diagram of Raptor UI (c)

WCF Clients

80

C. Raptor Services Class Diagrams

Figure 26 - Class Diagram of Raptor Services (a).

81

Figure 27 - Class Diagram of Raptor Services (b).

82

D. Raptor Machine Learning WCF Services Class Diagram

Figure 28 - Machine Learning WCF Services Class Diagram

 N

E

T

L

I

B

R

A

R

I

E

S

W

C

F

S

E

R

V

I

C

E

S

83

E. Database Tables

Table 20 - City Table

84

Table 21 - CountryStateCountyCityZip Table

85

Table 22 - Country Table

86

Table 23 - Database Log Table

87

Table 24 – FedCache Table

88

Table 25 - Parameters Table

89

Table 26 - PlugInTypes Table

90

Table 27 - ProjectDataExtenders Table

91

Table 28 - ProjectDataSets Table

92

Table 29 - ProjectPlugIns Table

93

Table 30 - Projects Table

94

Table 31 - ProjectTestDataSet Table

95

Table 32 - ProjectUsers Table

96

Table 33 - RegionType Table

97

Table 34 - RegisteredDataExtenders Table

98

Table 35 - RegisteredDataSets Table

99

Table 36 - RegisteredPlugIns Table

100

Table 37 - Results Table

101

Table 38 - State Table

102

Table 39 - Users Table

103

Table 40 - Zip Table

104

F. Raptor ERD

Figure 29 - Entity Relationship Diagram of Raptor Database (a)

105

RegionType

PK Id uniqueidentifier

U1 RegionType varchar(20)

CrimeRate

PK Id uniqueidentifier

 RegionId uniqueidentifier
FK1 RegionType uniqueidentifier
 Rate numeric(6,2)

FEDCache

PK Id bigint

 sign tinyint
 CreatedDate datetime
 ModifiedDate datetime
 XmlStream image

CountryStateCityCountyZip

PK Id uniqueidentifier

FK2,U1 StateId uniqueidentifier
FK1,U1 CountyId uniqueidentifier
FK3,U1 ZipId uniqueidentifier

Country

PK Id uniqueidentifier

U1 CountryName varchar(150)

County

PK ID uniqueidentifier

U1 County varchar(50) DatabaseLog

PK DatabaseLogID int identity

 PostTime datetime
 DatabaseUser sysname
 Event sysname
 Schema sysname
 Object sysname
 TSQL ntext
 XmlEvent xml

RegionType

PK Id uniqueidentifier

U1 RegionType varchar(20)

State

PK Id uniqueidentifier

U1 StateName varchar(150)
U1 Abbreviation varchar(4)

Zip

PK Id uniqueidentifier

U1 ZipCode varchar(12)

Figure 30 - Entity Relationship Diagram of Raptor Database (b)

106

G. Project Creation Screen Shots

Figure 31 - Start New Project Wizard Screen.

107

Figure 32 - New Project Screen

108

Figure 33 - Register Dataset Screen

109

Figure 34 – Register Data Extenders Screen

110

Figure 35 – Register Plug-Ins Screen.

111

Figure 36 – Add Plug-In Screen

112

Figure 37 – Add Data Extenders

113

Figure 38 - New Project Screen

114

Figure 39 – Raptor Confusion Matrix View

115

H. Hardware and Software Requirements

Table 41 - Software Resource Requirements

Resource Purpose Note

Address Database US address database
US Postal Service.

http://www.usps.com/

ALFRED® License
Consume web

service.
http://alfred.stlouisfed.org

Dudley MPSR Augment ECJ19
Available upon request from

msndex@msn.com

ECJ19 GP library
Available at

http://cs.gmu.edu/~eclab/projects/ecj/

Graphing & Grid

Libraries.
UI components FarPoint Grid & XYGraph Components.

IKVM.Net
Java to .Net

Converter
Available at http://www.ikvm.net/.

Microsoft Excel. Statistical Analysis
Obtained through MSDN Academic

Alliance.

Microsoft Visio

Enterprise Architect.

UML artifacts and

code generation.

Obtained through MSDN Academic

Alliance.

Smart Draw Diagramming http://www.smartdraw.com

SQL Server 2008

Developer Edition.
Database Server.

Obtained through MSDN Academic

Alliance.

LibSVM. SVM library
Available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Visual Studio 2010

Premium.
IDE for C#.Net

Obtained through MSDN Academic

Alliance.

WEKA Workbench
Classification tree

library.

Available at

http://www.cs.waikato.ac.nz/ml/weka

http://www.usps.com/
http://alfred.stlouisfed.org/
http://cs.gmu.edu/~eclab/projects/ecj/
http://www.ikvm.net/
http://www.smartdraw.com/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.cs.waikato.ac.nz/ml/weka

116

Table 42 - Hardware Resource Requirements

Resource Purpose Note

Desktop PC with OS

>= Windows Vista.

Workbench client

MSDN Account. Azure development

account.

117

References

Abdelwahed, T. & Amir, E. M. (2005). New evolutionary bankruptcy forecasting model

 based on genetic algorithms and neural networks. Proceedings of the 17th IEEE

 International Conference on Tools with Artificial Intelligence (ICTAI’05). IEEE

 Computer Society.

Abdou, H. A. (2009). Genetic programming for credit scoring: The case of Egyptian

 public sector banks. Expert Systems with Applications, In Press, Uncorrected

 Proof.

Abu-Nimeh, S., Nappa, D., Wang, X. & Nair, S. (2007). A comparison of machine

 learning techniques for phishing detection. Proceedings Of The Anti-Phishing

 Working Groups 2nd Annual eCrime Researchers Summit. Pittsburgh,

 Pennsylvania, ACM.

Arafah, A. & Haider, H. (2009). Closer look at loan defaults ahead of prison terms.

 McClatchy - Tribune Business News.

ALFRED®. (2009). ArchivaL Federal Reserve Economic Data. Retrieved March

 27
th

, 2009, from http://alfred.stlouisfed.org.

Altman, E. I. (1984). The success of business failure prediction models : An international

 survey. Journal of Banking, Accounting & Finance, 8(2),171-198.

Anonymous. (2009a). Freddie Mac stops foreclosure sales on loans eligible for new

 Obama home affordable modification program. PR Newswire. March 4th 2009.

Anonymous. (2009b). Open forum: Staving off foreclosures. National Mortgage News,

 33(22), 4.

Baesens, B., Van Gestel, T., Stepanova, M., Suykens, J. & Vanthienen, J. (2003).

 Benchmarking state-of-the-art classification algorithms for credit scoring.

 Journal of the Operational Research Society, 54, 627-635.

Beaver, W. (1966). Financial ratios as predictors of failures. Empirical research in

 accounting: Selected studies. Journal of Accounting Research, 5, 71–111.

Bellotti, T. & Crook, J. (2009). Support vector machines for credit scoring and discovery

 of significant features. Expert Systems with Applications, 36(2, Part 2), 3302-

 3308.

Bengio, Y., & Grandvalet, Y. (2004). No unbiased estimator of the variance of k-fold

cross-validation. Journal of Machine Learning Research, 5, 1089-1105.

http://alfred.stlouisfed.org/

118

Boser, B. E., Guyon, I. M. & Vapnik, V. N. (1992). A training algorithm for optimal

 margin classifiers. Proceedings Of The Fifth Annual Workshop On

 Computational Learning Theory. Pittsburgh, Pennsylvania, United States, ACM.

Bowden, E. V. (1992). Economics: The Science of Common Sense. (7
th

 ed.).

 Cincinnati, Ohio: Southwestern Publishing.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression

 trees. Monterey, CA: Wadsworth and Brooks.

Brown, C. (2009). Mortgage foreclosure predictions for 2010. The Mortgage

 Professional. Retrieved February 5
th

, 2010, from

 http://nationalmortgageprofessional.com/news15276/mortgage-foreclosure-

 predictions-2010.

Brown, S. (2009). Brief: Dallas-fort worth sees jump in foreclosures of $1 million-plus

 homes. McClatchy - Tribune Business News.

Bruce, W. S. (1995). The application of genetic programming to the automatic

 generation of object-oriented programs. PhD Dissertation. Graduate School of

 Computer and Information Sciences. Nova Southeastern University.

Calhoun, M. (2010). Center for Responsible Lending. Mergers & Acquisitions

 Business, 405. Retrieved February 7
th

, 2010, from

 http://proquest.umi.com.ezproxylocal.library.nova.edu/pqdweb?index=2&did=19

 54476531&SrchMode=2&sid=1&Fmt=3&VInst=PROD&VType=PQD&RQT=3

 09&VName=PQD&TS=1265581363&clientId=17038.

Chang, C. & Lin, C. (2009). LIBSVM: A Library for support vector machines.

 Retrieved May 14
th

, 2009, from http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

Charalambous, C., Charitou, A. & Kaourou, F. (2000). Comparative analysis of artificial

 neural network models: Application in bankruptcy prediction. Annals of

 Operations Research, 99(1-4), 403-425.

Cho, I., & Kim, Y. (2001). Critical factors for assimilation of object-oriented

programming languages. Journal of Management Information Systems, 18(3):

125.

Cielen, A., Peeters, L. & Vanhoof, K. (2004). Bankruptcy prediction using a data

 envelopment analysis. European Journal of Operational Research, 154(2), 526-

 532.

Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and ROC

 curves. Proceedings of the 23rd international conference on machine learning.

 Pittsburgh, Pennsylvania, ACM.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

119

DeGroat, B. (2009). Subprime mortgage crisis: Failure to predict failure. US Fed News

 Service, Including US State News.

Dudley, D. S. (2011). The design and development of a dynamic object-oriented genetic

program for symbolic regression. Retrieved April 4
th

, 2011, from

http://www.CodePlex.aspx?Dudley.

Durbin, R. (2010). $98 million in recovery act funding will be used to put Chicagoans

 back to work, mitigate foreclosure crisis. US Fed News Service. Retrieved

 February 7
th

, 2010, from

 http://proquest.umi.com.ezproxylocal.library.nova.edu/pqdweb?index=3&did=19

 47652281&SrchMode=2&sid=3&Fmt=3&VInst=PROD&VType=PQD&RQT=3

 09&VName=PQD&TS=1265582093&clientId=17038.

Esmeir, S. & Markovitch, S. (2004). Lookahead-based algorithms for anytime induction

 of decision trees. Proceedings Of The Twenty-First International Conference On

 Machine Learning. Banff, Alberta, Canada, ACM.

Ellen, Y. (2009). Renters being forced out by foreclosure on landlords. McClatchy -

 Tribune Business News.

Fan, A. & Palaniswami, M. (2000). Selecting bankruptcy predictors using a support

 vector machine approach. Proceedings of the International Joint Conference on

 Neural Networks (IJCNN'00). Australia, IEEE Press.

Fielding, R. T. (2000). Architectural styles and the design of network-based software

 architectures. Ph.D. dissertation, University of California, Irvine, United States.

 California. Retrieved January 4
th

, 2010, from Dissertations & Theses.

Finlay, S. (2009). Are we modeling the right thing? The impact of incorrect problem

 specification in credit scoring. Expert Systems with Applications, 36(5), 9065-

 9071.

Foote, C. L., Gerardi, K. & Willen, P. S. (2008). Negative equity and foreclosure:

 Theory and evidence. Journal of Urban Economics, 64(2), 234-245.

ForeclosureU.com. (2009). ForeclosureU introduces new web based software to help

 troubled property owners obtain mortgage modifications. Computer Weekly

 News, Sept. 10th, 63.

Frydman, H., Altman, E. I., Kao, D. (1985). Introducing recursive partitioning for

 financial classification: the case of financial distress. The Journal of Finance,

 40(1), 269.

120

Gao, Z., Cui, M. & Po, L. M. (2008). Enterprise bankruptcy prediction using noisy-

 tolerant support vector machine. Proceedings of the 2008 International Seminar

 on Future Information Technology and Management Engineering, FITME 08,

 China. IEEE Computer Society.

Gores, P. (2009a). Brief: Foreclosure filings up 5% in February. McClatchy - Tribune

 Business News.

Gores, P. (2009b). Home foreclosures increase again in Wisconsin. McClatchy –

Tribune Business News.

Ghahramani, Z. (2004). Unsupervised Learning. Gatsby Computational Neuroscience

 Unit. University College London. Retrieved May 10
th

, 2009, from

 http://www.gatsby.ucl.ac.uk/~zoubin/course05/ul.pdf.

Grover, M., Smith, L. & Todd, R. M. (2008). Targeting foreclosure interventions: An

 analysis of neighborhood characteristics associated with high foreclosure rates in

 two Minnesota counties. Journal of Economics and Business, 60(1-2), 91-109.

Gutierrez, S. (2009a). U.S. Foreclosure index: U.S. Foreclosures about 1 million in 2008;

 Fourth quarter shows decline over third-quarter peak. Business Wire.

Gutierrez, S. (2009b). U.S. Foreclosure index: Foreclosures slow dramatically, down

 more than 25% in January; California foreclosures at lowest level since December

 2007. Business Wire. February 11
th

 2009.

Herschtal, A., & Raskutti, B. (2004). Optimizing area under the roc curve using gradient

 descent. Proceedings of the twenty-first international conference on Machine

 learning. Banff, Alberta, Canada, ACM.

Hevner, A. R., March, S., Park, J., & Ram, S. (2004). Design science in information

 research. MIS Quarterly, 28(1), 75-105.

Holmes, G., Donkin, A. & Witten, I. H. (1997). WEKA: A machine learning workbench.

 Department of Computer Science: University of Waikato. Retrieved May 16
th

,

 2009, from

 http://www.cs.waikato.ac.nz/~ml/publications/1994/Holmes-ANZIIS-WEKA.pdf

Johnson, B. (2009). The tsunami effect. National Real Estate Investor. Retrieved

 February 5
th

, 2010, from http://nreionline.com/finance/real-estate-foreclosure-

 predictions-0501/.

Kay, A. C. (1996). The early history of Smalltalk. History of programming languages

II, ACM Press: 511-598.

http://www.gatsby.ucl.ac.uk/~zoubin/course05/ul.pdf

121

Kiviluoto, K. (1998). Predicting bankruptcies with the self-organizing map.

 Neurocomputing, 21(1-3), 191-201.

Koza, J. (2008). Introduction to genetic programming: Tutorial. Proceedings of the

 2008 GECCO conference companion on Genetic and evolutionary computation.

 Atlanta, GA, USA, ACM.

Koza, J., Andre, D., Bennett III, F. & Keane, M. (1999). Genetic Programming 3:

 Darwinian Invention and Problem Solving. Morgan Kaufman.

Koza, J. (1992). Genetic Programming: On the Programming of Computers by Means of

 Natural Selection (1
st
 ed.). MIT Press.

Laitinen, E. K. & Laitinen, T. (2000). Bankruptcy prediction: Application of the Taylor's

 expansion in logistic regression. International Review of Financial Analysis,

 9(4), 327-349.

Langdon, W. B. & Poli, R. (2002). Foundations of genetic programming. Springer

 Press.

Langley, P. & Simon, H. A. (1995). Applications of machine learning and rule induction.

 Communications of the ACM, 38(11), 54-64.

Lee, Y. C. (2007). Application of support vector machines to corporate credit rating

 prediction. Expert Systems with Applications, 33, 67-74.

Lee, K. C., Han, I. & Kwon, Y. (1996). Hybrid neural network models for bankruptcy

 predictions. Decision Support Systems, 18(1), 63-72.

Lensberg, T., Eilifsen, A. & McKee, T. E. (2006). Bankruptcy theory development and

 classification via genetic programming. European Journal of Operational

 Research, 169(2), 677-697.

Li, J. (2006). Comparing cart with back propagation neural networks in vegetation

 greenness classification. Proceedings of the 44th annual Southeast regional

 conference. Melbourne, Florida, ACM.

Luke, S., Panait, L., Balan, G., Paus, S., Skolicki, Z., Popovici, E., & et al. (2008). ECJ

 18 - A Java-based Evolutionary Computation Research System. George Mason

 University, Evolutionary Computation Laboratory. Retrieved December 14
th

,

 2008, from http://cs.gmu.edu/~eclab/projects/ecj/.

Maurer, H., & Linblad, C. (2009). Stepping up the foreclosure fight. Business Week,

 (4121), 4.

http://cs.gmu.edu/~eclab/projects/ecj/

122

Marais, M. L., Patell, J. M. & Wolfson, M. A. (1984). The experimental design of

 classification models: An application of recursive partitioning and bootstrapping

 to commercial bank loan classifications. Journal of Accounting Research,

 22, 84- 113.

MBA. (2008). Research Data Notes:Sources of Foreclosure Data. Retrieved May 4
th

,

 2008, from http://www.mortgagebankers.org/~/SourcesofForeclosureData.pdf

McKee, T. E. (2000). Developing a bankruptcy prediction model via rough sets theory.

 International Journal of Intelligent Systems in Accounting Finance &

 Management, 9(3), 159-173.

McKee, T. E. & Lensberg, T. (2002). Genetic programming and rough sets: A hybrid

 approach to bankruptcy classification. European Journal of Operational

 Research, 138(2), 436-451.

Min, S. H., Lee, J. & Han, I. (2006). Hybrid genetic algorithms and support vector

 machines for bankruptcy prediction. Expert Systems with Applications, 31(3),

 652-660.

Min, J. H. & Lee, Y. C. (2005). Bankruptcy prediction using support vector machine

 with optimal choice of kernel function parameters. Expert Systems with

 Applications, 28(4), 603-614.

Mora, A. M., Castillo, P. A., Merelo, J. J., Alfaro-Cid, E., et al. (2008). Discovering

 causes of financial distress by combining evolutionary algorithms and artificial

 neural networks. Proceedings Of The 10th Annual Conference On Genetic And

 Evolutionary Computation. Atlanta, GA, USA. ACM Press.

Morasca, S. (2002). A proposal for using continuous attributes in classification trees.

 Proceedings of the 14th International Conference on Software Engineering and

 Knowledge Engineering. Ischia, Italy, ACM.

Moschitti, A. (2008). Kernel methods, syntax and semantics for relational text

 categorization. Proceeding Of The 17th ACM Conference On Information And

 Knowledge Management. Napa Valley, California, USA, ACM.

Moore, A. W. (2003). Support Vector Machines. School of Computer Science: Carnegie

 Mellon University. Retrieved May 22
nd

, 2009, from

 http://www.autonlab.org/tutorials/svm15.pdf

MSDN (2008). Microsoft Neural Network Algorithm (SSAS). SQL Server 2005 Books

 Online. Retrieved April 19
th

, 2009, from

 http://msdn.microsoft.com/en-us/library/ms174941(SQL.90).aspx

http://www.autonlab.org/tutorials/svm15.pdf
http://msdn.microsoft.com/en-us/library/ms174941(SQL.90).aspx

123

Murphy, P. M. & Pazzani, M. J. (1994). Exploring the decision forest: An empirical

 investigation of Occam’s razor in decision tree induction. Journal of Artificial

 Intelligence Research, 1, 257-275.

myFICO (2009). The score that matters. Fair Isaac Corporation. Retrieved March

 27
th

, 2009, from http://www.myfico.com/Default.aspx

Nordin, P. (1997). Evolutionary program induction of binary machine code and its

 application. Krehl Verlag, Munster, Germany.

Odeh, O., Koduru, P., Das, S., Featherstone, A. M. & Welch, S. M. (2007). A multi-

 objective approach for the prediction of loan defaults. Proceedings Of The 9th

 Annual Conference On Genetic And Evolutionary Computation. London,

 England, ACM Press.

Olick, D. (2010). Predictions 2010: Real estate. Realty Check. Retrieved February 5
th

,

 2010, from http://www.cnbc.com/id/34110130

Paul, G. (2009a). Brief: Foreclosure filings up 5% in February. McClatchy - Tribune

 Business News.

Paul, G. (2009b). Home foreclosures increase again in Wisconsin. McClatchy - Tribune

 Business News.

Perez, M. (2006). Artificial neural networks and bankruptcy forecasting: A state of the

 art. Neural Computing & Applications, 15(2), 154-163.

Perlich, C., Provost, F. & Simonoff, J. (2003). Tree induction vs. logistic regression: A

 learning-curve analysis. Journal of Machine Learning Research, 4, 211-255.

Pittman, K. (2008). Comparison of data mining techniques used to predict student

 retention. Ph.D. dissertation, Nova Southeastern University, United States,

 Florida. Retrieved January 9
th

, 2010, from Dissertations & Theses @ Nova

 Southeastern University.

Poli, R., McPhee, N. F. & Vanneschi, L. (2008). The impact of population size on code

 growth in gp: Analysis and empirical validation. Proceedings of the 10th annual

 conference on Genetic and evolutionary computation. Atlanta, GA, USA, ACM.

Pritchard, J. (2009). Mortgage. About.com. Retrieved March 22
nd

, 2009, from

 http://banking.about.com/od/mortgages/g/mortgage.htm.

Qi, M. (2001). Predicting US recessions with leading indicators via neural network

 models. International Journal of Forecasting, 17, 383-401.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.

http://www.myfico.com/Default.aspx
http://banking.about.com/od/mortgages/g/mortgage.htm

124

Ravi Kumar, P. & Ravi, V. (2007). Bankruptcy prediction in banks and firms via

 statistical and intelligent techniques - A review. European Journal of

 Operational Research, 180(1), 1-28.

Riolo, R., Worzel, B. & Soule, T. (2009). Genetic programming theory and practice vi.

 Proceedings of the 6th Annual Genetic Programming Theory and Practice

 Workshops. New York, NY. Springer Press.

Rose, M. J. (2008). Predatory lending practices and subprime foreclosures:

 Distinguishing impacts by loan category. Journal of Economics and Business,

 60(1-2), 13-32.

Russel, S., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach. (2
nd

 ed.).

 New Jersey: Pearson Education.

Sai, Y. & Zhong, C. (2007). A hybrid GA-BP model for bankruptcy prediction.

 Proceedings of the Eighth International Symposium on Autonomous

 Decentralized Systems (ISADS'07). IEEE Computer Society.

Sai, Y., Zhong, C. & Nie, P. (2007). A hybrid RST and GA-BP model for Chinese listed

 company bankruptcy prediction. Proceedings of the Third International

 Conference on Natural Computation (ICNC 2007). IEEE Computer Society.

Sanders, D. H. (1990). Statistics: A Fresh Approach (4
th

 ed.). McGraw-Hill.

Schebesch, K. B. & Stecking, R. (2005). Support vector machines for classifying and

 describing credit applicants: Detecting typical and critical regions. Journal of the

 Operational Research Society, 56, 1082-1088.

Schuetz, J., Been, V. & Ellen, I. G. (2008). Neighborhood effects of concentrated

 mortgage foreclosures. Journal of Housing Economics, 17(4), 306-319.

Shin, K. S., Lee, T. S. & Kim, H. J. (2005). An application of support vector machines in

 bankruptcy prediction model. Expert Systems with Applications, 28(1), 127-135.

Shin, K. S. & Lee, Y. J. (2002). A genetic algorithm application in bankruptcy prediction

 modeling. Expert Systems with Applications, 23(3), 321-328.

Silva, J. (2009). Foreclosures: Predictions for 2010. Foreclosure Dump Blog. Retrieved

 January 10th, 2010, from http://www.foreclosuredump.com.

Silva, S. & Costa, E. (2005). Resource-limited genetic programming: The dynamic

 approach. Proceedings of the 2005 conference on Genetic and evolutionary

 computation. Washington DC, USA, ACM.

125

Steinwart, I. & Christmann, A. (2008). Support Vector Machines (1
st
 ed.). Springer

 Press.

Steve, B. (2009). Brief: Dallas-fort worth sees jump in foreclosures of $1 million-plus

 homes. McClatchy - Tribune Business News.

Steve, T. (2009). Peoria area foreclosures on the rise. McClatchy - Tribune Business

 News.

Strupp, R. J. (2009). Fraud hits FHA loans. The Sun.

Tan, A. C. & Gilbert, D. (2003). An empirical comparison of supervised machine

 learning techniques in bioinformatics. Proceedings of the First Asia-Pacific

 bioinformatics conference on Bioinformatics 2003 - Volume 19. Adelaide,

 Australia, Australian Computer Society, Inc.

Train, K. (2003). Discrete Choice Methods with Simulation. Cambridge University

 Press.

Tsai, C. F. (2009). Feature selection in bankruptcy prediction. Knowledge-Based

 Systems, 22(2), 120-127.

Tsai, C. F. & Wu, J. W. (2008). Using neural network ensembles for bankruptcy

 prediction and credit scoring. Expert Systems with Applications, 34(4), 2639-

 2649.

Vapnik, V.N., & Chervonenkis, A.Y. (1971). On the uniform convergence of relative

 frequencies of events to their probabilities. Theory of Probability and its

 Applications, 16(2), 264–280.

Wilson, R. L. & Sharda, R. (1994). Bankruptcy prediction using neural networks.

 Decision Support Systems, 11(5), 545-557.

Wu, C. H., Tzeng, G. H., Goo, Y. J. & Fang, W. C. (2007). A real-valued genetic

 algorithm to optimize the parameters of support vector machine for predicting

 bankruptcy. Expert Systems with Applications, 32(2), 397-408.

Yu, L., Wang, S. & Lai, K. K. (2009). An intelligent-agent-based fuzzy group decision

 making model for financial multi-criteria decision support: The case of credit

 scoring. European Journal of Operational Research, 195(3), 942-959.

Zhang, G., Hu, M. Y., Patuwo, B. E. & Indro, D. C. (1999). Artificial neural networks in

 bankruptcy prediction: General framework and cross-validation analysis.

 European Journal of Operational Research, 116(1), 16-32.

126

The Graduate School of Computer and Information Sciences

Certification of Authorship

Submitted to (Advisor’s Name): Dr. Sumitra Mukherjee

Student’s Name: Dexter R. Brown

Date of Submission: 01/03/2012

Purpose and Title of Submission: Dissertation Report: A Comparative Analysis Of

Machine Learning Techniques For Foreclosure Prediction

Certification of Authorship: I hereby certify that I am the author of this document and

that any assistance I received in its preparation is fully acknowledged and disclosed in the

document. I have also cited all sources from which I obtained data, ideas, or words that

are copied directly or paraphrased in the document. Sources are properly credited

according to accepted standards for professional publications. I also certify that this paper

was prepared by me for this purpose.

Student's Signature:

	Nova Southeastern University
	NSUWorks
	2012

	A Comparative Analysis of Machine Learning Techniques For Foreclosure Prediction
	Dexter Randell Brown
	Share Feedback About This Item
	NSUWorks Citation

	A Comparative Analysis Of Machine Learning Techniques For Foreclosure Prediction

