
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2010

Quantum Algorithm Animator
Lori Eileen Nicholson
Nova Southeastern University, lonichols@gmail.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Lori Eileen Nicholson. 2010. Quantum Algorithm Animator. Doctoral dissertation. Nova Southeastern University. Retrieved from
NSUWorks, Graduate School of Computer and Information Sciences. (262)
http://nsuworks.nova.edu/gscis_etd/262.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Quantum Algorithm Animator

by

Lori E. Nicholson

lnichols@nova.edu

A Final Dissertation Report

submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computer Science

Graduate School of Computer and Information Sciences

Nova Southeastern University

2010

We hereby certify that this dissertation, submitted by Lori E. Nicholson, conforms to

acceptable standards and is fully adequate in scope and quality to fulfill the dissertation

requirements for the degree of Doctor of Philosophy.

___ ________________

Michael J. Laszlo, Ph.D. Date

Chairperson of Dissertation Committee

___ ________________

Maxine S. Cohen, Ph.D. Date

Dissertation Committee Member

___ ________________

Junping Sun, Ph.D. Date

Dissertation Committee Member

Approved:

___ ________________

Leo Irakliotis, Ph.D. Date

Dean, Graduate School of Computer and Information Sciences

Graduate School of Computer and Information Sciences

Nova Southeastern University

2010

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Quantum Algorithm Animator

by

Lori E. Nicholson

November 2010

The design and development of quantum algorithms present a challenge, especially for

inexperienced computer science students. Despite the numerous common concepts with

classical computer science, quantum computation is still considered a branch of

theoretical physics not commonly used by computer scientists. Experimental research

into the development of a quantum computer makes the use of quantum mechanics in

organizing computation more attractive, however the physical realization of a working

quantum computer may still be decades away.

This study introduces quantum computing to computer science students using a quantum

algorithm animator called QuAL. QuAL‟s design uses features common to classical

algorithm animators guided by an exploratory study but refined to animate the esoteric

and interesting aspects of quantum algorithms.

In addition, this study investigates the potential for the animation of a quantum sorting

algorithm to help novice computer science students understand the formidable concepts

of quantum computing. The animations focus on the concepts required to understand

enough about quantum algorithms to entice student interest and promote the integration

of quantum computational concepts into computer science applications and curricula.

The experimental case study showed no significant improvement in student learning

when using QuAL‟s initial prototype. Possible reasons include the animator‟s

presentation of concepts and the study‟s pedagogical framework such as choice of

algorithm (Wallace and Narayanan‟s sorting algorithm), design of pre- and post tests, and

the study‟s small size (20 students) and brief duration (2 hours). Nonetheless, the

animation system was well received by students. Future work includes enhancing this

animation tool for illustrating elusive concepts in quantum computing.

Acknowledgements

I would like to express my deep gratitude and sincere appreciation to my advisor, Dr.

Michael Laszlo, whose patience, guidance and support helped me complete this

memorable project. I am also most grateful to Dr. Junping Sun and Dr. Maxine Cohen

for their continual support, encouraging reviews and for sharing their time and expertise

in serving as part of the committee for my dissertation. In addition, I would like to thank

the other Computer Science professors at Nova Southeastern University for providing a

wonderful educational experience during my Ph.D. coursework.

At Wayne State College, I would like to thank my department chair, Dr. Timothy Garvin,

for his patience and support as well as Dr. Vaughn Benson and Dr. Bob McCue for

standing by me when opposing forces attempted to prevail. I would like to thank my

mentors and friends, Molly Curnyn and Patricia Arneson for their kind words and

encouraging jabs.

I would like to thank my parents, Jim and Charlotte, and my sisters and brother, Kristi,

Teri and Gene, for their considerate prodding. Now our conversations do not have to

start out with that one common question! I would like to thank my wonderful friend

Laura, for her steadfast support and many years of patiently listening to me.

Finally, I would like to thank my husband, Jerry, and my son Evan for their

encouragement, playful banter, and constant support. I could not have accomplished this

monumental task without their love and encouragement.

v

Table of Contents

Abstract iii

List of Tables vii

List of Figures vii

Chapters

1. Introduction 1
 Problem Statement and Goal 1

 Relevance and Significance 7

 Barriers and Issues 13

 Delimitations and Limitations of the Study 16

 Definition of Terms 17

 Summary 18

2. Review of Relevant Literature 20

 Classical Algorithm Animation Research 20

 Human-Computer-Interaction – Interface Design 30

 Quantum Theory for Computer Scientists 32

 A Brief Survey of Quantum Mechanics 33

 Quantum Bits 38

 Quantum Entanglement 42

 Quantum Decoherence 43

 Simple Quantum Gates 45

 Quantum Parallelism 47

 Quantum Algorithms 48

 Deutsch‟s Quantum Algorithm 49

 Simon‟s Quantum Algorithm 51

 Shor‟s Quantum Algorithm 52

 Grover‟s Quantum Algorithm 54

 A Survey of Other Interesting Quantum Algorithms 56

 Summary of Knowns and Unknowns 59

3. Methodology 61

 Research Goal and Design Objectives 61

 Exploring Classical Algorithm Animators 62

 QuAL: Design and Documentation 64

 QuAL‟s Class Diagrams and Summaries 66

 The Case Study 74

 Planning: The Subjects 76

 Planning: The Object 76

 Planning: The Project 76

 Execution: Methods of Comparisons 77

vi

 Execution: Minimize the Effects of Confounding Factors 78

 Execution: Monitor the Case Study against the Plan 78

 Analysis: Data Collection 78

 Summary 79

4. Results 80

 Introduction 80

 The Quantum Algorithm Animator (QuAL) 81

 Quantum Sorting Algorithm 81

 QuAL‟s Animations 88

 Case Study Results 96

 Summary of Results 106

5. Conclusions, Implications, Recommendations, and Summary 107

 Conclusions 107

 Implications and Recommendations 109

 Summary 110

Appendixes

A. Wayne State College IRB Approval

B. Nova Southeastern University IRB Approval

C. Case Study Overall Pre / Post Test Results

D. Case Study Post-Test Results

E. Case Study Results and Comments

F. Case Study Exit Survey

G. Case Study Pre / Post Test

H. Case Study Consent Form

I. Case Study Student Tutorial – QuAL

J. Wallace and Narayanan‟s Quantum Sorting Algorithm

K. UML Class Diagram of QuAL

Reference List 137

vii

List of Tables

Table 1: Permutations of {3,6,1,8} 81

Table 2: Group (A) Pre-Test / Post-Test Data 100

Table 3: Group (B) Pre-Test / Post-Test Data 101

Table 4: t-Test Results 102

Table 5: Question Group Comparisons 103

Table 6: Section Results 104

viii

List of Figures

Figure 1: JavaMy Language Code 28

Figure 2: Bullets – Two Slit Experiment 34

Figure 3: Sound Waves – Two Slit Experiment 35

Figure 4: Electrons – Two Slit Experiment 36

Figure 5: Bloch Sphere 41

Figure 6: Common Single-Qubit State Transformations 46

Figure 7: OODA Process 64

Figure 8: UML Class Diagram for QuAL‟s Amplitude and Probability Animations 66

Figure 9: UML Class Diagram of Animation Control and GUI Classes 67

Figure 10: core Package Classes 69

Figure 11: core.quantSort Classes 71

Figure 12: QCL‟s query 84

Figure 13: Integers and their Averages 85

Figure 14: Average about the Mean 86

Figure 15: wallace () Procedure 87

Figure 16: Code Highlighting View 88

Figure 17: Probability Distributions 89

Figure 18: Initial Amplitudes 90

Figure 19: Initial Vector State 91

Figure 20: Negation Phase 91

Figure 21: Negate Phase Data 92

Figure 22: Calculating the Average 92

Figure 23: Amplification 93

Figure 24: Repeat Negate 93

Figure 25: Repeat Average 94

Figure 26: Repeat Amplify 94

Figure 27: Final Negate 95

Figure 28: Final Average 95

Figure 29: Final Amplification 96

Figure 30: Pre-Test Correct Answers 98

Figure 31: Post-Test Correct Answers 99

Figure 32: Group (A) Pre-Test / Post-Test Comparisons 99

Figure 33: Group (B) Pre-Test / Post-Test Comparisons 100

Figure 34: Pre-Test / Post-Test Question Comparisons 104

Figure 35: Group A / B Question Comparison 105

1

Chapter 1

Introduction

Problem Statement and Goal

 In the early 1970s, theorists researched the possibilities that a quantum computer could be

faster than a conventional computer for solving intractable problems. Academic curiosity

encouraged these observations without notice until Shor (1997) attracted attention to the field of

quantum computing with the development of a polynomial time algorithm for factoring large

numbers. Shor‟s discovery launched interest in quantum computing and encouraged research

into the development of an operational quantum computer. Current quantum computer research

is still theoretical and functionally impractical but in the next few decades, quantum computers

are likely to move out of research labs and into practical applications. Bacon and Leung (2007),

provide a summary of the broad range of experimental methodologies used by researchers to

build quantum computer‟s calling this quest one of the greatest technological races of the 21
st

century.

 Similar to their classical counterpart, quantum algorithms predate the actual development

of a practical quantum computer. Quantum algorithm research has provided solutions for many

computational problems and in some cases, provided more efficient solutions than classical

algorithms. Grover‟s (1996) algorithm uses quantum concepts to search an unsorted database

faster than its classical equivalent. Searching an unsorted database using a classical search

algorithm requiring a linear search runs in ()O N time to find the requested input in a database of

N entries. Grover‟s algorithm provides a solution to the same problem in ()O N time

2

(Brassard, 1997). Shor‟s (1997) algorithm, with its simplification of factoring, could cause

issues for public-key cryptography systems or move that technology into a new realm for

information security. These foundational algorithms provide solutions that are more efficient for

many of today‟s practical computing applications like database searches, data mining procedures

and prime number factoring by utilizing the enigmatic principles of quantum mechanics.

 Quantum programming is different from classical program development. In classical

programming, knowledge of the underlying computer architecture is not required. Abstraction

insulates the programmer from machine architecture. In contrast, quantum programming

requires an understanding of the implications of quantum mechanics to quantum computation.

Classical algorithms are written to accept some value, or set of values, as input and produce

some value, or set of values, as output. The typical classical algorithm is a sequence of

computational steps that transition from one state to the next in either a deterministic or a

probabilistic procedure. Quantum algorithms typically start with a particular state similar to

classical algorithms but from there they transition into a superposition of many states. A

sequence of quantum state transformations leads to a measurement of the system. The likelihood

of the system being in one state or another or in both is what defines the power and usefulness of

quantum computing.

 Shor (2003) examined the question of why there were so few classes of quantum algorithms

since early foundational quantum algorithms were developed. Shor provided several reasons for

this situation, one being that quantum computers are functionally different from conventional

computers. Techniques used for developing classical algorithms and classical intuitions for

understanding the process of computation no longer work in the quantum environment. Quantum

physics has been a developing science for several decades, yet computer science has only just

3

begun to incorporate the use of quantum mechanics into their field. Shor suggests that future

computer scientists will build upon early foundational research to discover numerous new and

significant quantum algorithmic techniques.

 Current work on the development of a practical quantum computer, active research in the

area of quantum algorithms, and the inherent difference between conventional and quantum

computing concepts establish a need for computer science programs to integrate quantum

concepts into their curricula. Although many institutions have added courses and content related

to quantum computing, there is a paucity of introductory tools available to promote the

understanding of quantum computing and assist students in learning about quantum algorithms.

 Educators in computer science departments have used algorithm animation as an

introductory tool to present visualizations and organized animations to students. Numerous

animation systems have been developed to aid students in experimenting with and understanding

classical algorithms. These systems provide a means of displaying events as they occur in

various phases of the algorithm and show basic operations of the algorithm. By illustrating how

objects change, presenting modifications to internal data structures and exposing hidden

algorithm properties, these systems provide an educational tool for learning algorithmic

concepts.

 This research provided a solution to the lack of introductory quantum algorithm pedagogical

tools, using data gathered from classical algorithm animator systems to create a quantum

algorithm animator. Information about existing classical algorithm animators along with

research into quantum concept learning was used to design this quantum algorithm animator. A

case study followed involving twenty computer science students to test the animator‟s

effectiveness in learning quantum computing concepts and acquiring aesthetic and interface

4

suggestions for future improvements or alternative design considerations.

 The goal of this research was to create a quantum algorithm animator designed to provide an

interactive learning environment for students. The quantum algorithm animator was developed

and entitled QuAL (Quantum Algorithm Animator). QuAL‟s main objective was to provide

visualizations of quantum computing concepts that may lead to a better understanding of

quantum algorithms. This thesis investigates how animations can be an effective means of

conveying the dynamic behavior of quantum algorithms by using QuAL in the case study.

 This research was accomplished in three stages. First, an exploratory study gathered

information about existing classical animation systems and compiled a listing of successful

approaches. Algorithm animators have been used as pedagogical tools since the early 1980s and

their effectiveness has been an active research topic (Stasko, Badre, & Lewis 1993; Kehoe &

Stasko, 1996; Gurka, 1997; Hansen, Schrimpsher, & Narayanan, 1998; Bryne, Catrambone, &

Stasko, 1999; Ciesielski & McDonald, 2001; Vrachnos & Jimoyiannis, 2008; Urquiza-Fuentes

& Velazquez-Iturbide, 2009). The results from these various research projects have concluded

that algorithm animators can provide positive learning experiences.

 After gathering the data from the exploratory study, this research utilized successful

components from classical animators to determine initial design criteria for QuAL. Classical

animators have taken numerous approaches to visualizing the internal operations of algorithms

and this research segment focused on those techniques that provide appropriate visualizations for

quantum computing concepts. Design criteria, user interface issues, and the creation process for

the production of quantum algorithms were refined by this research to provide an effective

learning environment. Techniques such as scaffolding, animation chunking, multiple levels of

granularity, interactivity, and promoting critical thinking have been integrated into many of the

5

existing classical animator‟s frameworks. Did they support quantum algorithm learning and

animate the concepts of quantum computing? Certain design criteria were found to be effective

but inefficient when dealing with quantum computing concepts. Allowing the manipulation of

input values was restricted during this initial prototype phase due to exponential growth when

qubit registers were put into a superposition of states. The number of steps to complete a

solution was redefined but the addition of code highlighting was added along with the ability to

control the speed of the animation. Additional findings are described in greater detail in Chapter

4 of this disseration report.

 Finally, this stage of the research investigated the architectures used to implement algorithm

animation systems. Which architecture provided a rich, interactive learning environment for

QuAL? Diehl (2007) examines the following architectures that have been used to create many of

the existing classical algorithm animation systems:

1. Ad hoc: A single algorithm is animated and implemented from scratch.

2. Libraries: Single algorithms are implemented using existing libraries with built-in

graphical abstractions, control elements, etc.

3. Special datatypes: Datatypes with built-in visualizations are used to program

algorithms.

4. Postmortem: Separate applications are used for the algorithm and visualization tool.

5. Interesting events: Annotations are used at essential program points in the algorithm

to display interesting events.

6. Declarative: Similar to interesting events except that the annotations and algorithm

code are separated.

7. Semantics-directed: A visual interpreter or debugger is used to execute the

6

algorithm.

Gloor (1997) provided a „recipe‟ for designing an algorithm animator. He proposes a seven-step

process for taking pseudocode of an algorithm to animation. Gloor‟s process begins at stage one

with the creation of a script. Typically this is the algorithm‟s pseudocode describing the high-

level action occuring in the animation. Stage two builds a storyboard, which is a series of

visualizations that illustrate the previous script or pseudocode. Next, in the layout stage, the data

structures to be animated are graphically specified. If sound is used it must be incorporated into

stage four which occurs directly before the final animation is created. Animation follows in

stage five of this seven-step process: computer animation packages may be used, or scripting

languages, or existing animation system frameworks. The final two stages consist of

inbetweening and editing. Inbetweening is a technique used to smooth the transitions between

keyframes and editing produces the finalized algorithm animation system.

 Experimenting with the data discovered in the second stage of this research provided

solutions for QuAL‟s design. Quantum computing concepts such as amplitude, state transitions,

probability distribution, qubit registers, entanglement, and unitary operations, were integrated

into QuAL to provide the student with the knowledge they will need to understand quantum

algorithms. QuAL will only animate one sorting quantum algorithm in this research‟s initial

prototype and case study.

 The final stage of this research presents a framework for using QuAL as a pedagogial tool

and a case study was performed experimenting with QuAL in an educational setting. QuAL is

conceived as a tool to help students form an effective bridge between textual material and the

application of quantum theory commonly used to develop quantum algorithms. The results of

the case study discussed in Chapter 4 provided preliminary conclusions to QuAL‟s effectiveness

7

as a pedagogical tool and information for future modifications to its functionality, interface, and

design. Chapter 3 contains an outline of the case study preformed by this research.

Relevance and Significance

 Algorithms are considered the cornerstone of computing (Levitin, 1999). Their concepts

have been introduced in many computer science programs as well-defined computational

procedures that may be considered tools for solving computational problems. Student

understanding of algorithmic concepts is important to the field of computer science but learning

to develop and understand algorithms may be difficult because the algorithm is a static

description of a dynamic process.

 Algorithm learning has been researched for many years as educators pursue a methodology

that might help students learn these concepts more efficiently and completely. Animating

algorithms is one method that has been used to visualize their internal operations and display

concepts using graphical representations. Animations were the logical next step to illustrations

of data structures and algorithm workings found in earlier computer science textbooks and they

provided a means of manipulating or controlling the display.

 Animating algorithms for educational purposes has motivated the development of animation

systems starting in the early 1970s (Hopgood, 1974). Baecker (1981) was the first to introduce

video as a medium for illustrating a number of different sorting algorithms running on both small

and large datasets. His 30 minute video entitled “Sorting Out Sorting” was a color film that

added a new dimension to teaching algorithms and was the first to use sound. The video worked

so well that students were able to watch the animations and successfully program some of the

algorithms described without any further instructional information. These animations were

viewed by students of various levels of computer expertise in this case study, but were mostly

8

used in introductory courses on algorithms and problem complexity (Stasko, Dominque, Brown,

& Price, 1997).

 Building on this foundational research, Brown and Sedgewick (1984) at Brown University

developed BALSA-I which was the first interactive algorithm animation system supporting

multiple simultaneous views of an algorithm‟s data structures. Stasko (1990) followed with the

development of TANGO, an animation system that introduced the path-transition model. Many

other systems began to emerge providing different approaches to animating algorithms like

BALSA-II (Brown, 1988), CAT (Brown & Najork, 1993) and more current systems such as

CATAI (Cattaneo, Ferraro, Italiano & Scarano, 2002), ANIMAL (Robling, Schuer & Freisleben,

2000), and LEONARDO (Crescenzi, Demtrescu, Finocchi & Petreschi, 1997).

 Subsequent research following the development of animation systems focused on providing

evidence of the benefits of using algorithm animation as an educational tool (Byrne, Catrambone

& Stasko, 1999; Hansen, Schrimpsher & Narayanan, 1998; Kehoe, Stasko & Taylor, 2001).

Mixed pedagogical results were found but the majority recorded slightly better results in

situations using visual animations. According to Tudoreanu, Wu, Hamilton-Taylor and Kraemer

(2002), using animation as a learning tool does provide benefits for understanding algorithmic

computations but they speculate that the animation system should avoid unrelated activity and

focus on using graphics that are self-explanatory and allow the user to connect directly to the

computation. In addition to teaching algorithmic concepts, animations have relevance in other

areas of computer science. Jones and Newman (1996), utilized animation techniques as an

instructional tool to teach operating system concepts, and Leung (2005), developed a

visualization tool for learners to gain insight on the Linux scheduling algorithm.

 Diehl (2007) describes several scenarios that have been developed to achieve higher learning

9

involvement particular to algorithm animation. The first explores the functional structure

supporting exploratory learning by only providing the primary building blocks of the algorithm.

In using this type of an application the user actively reinvents fragments of an algorithm

providing the student with an educational experience that finds the steps of a function for a

specific data input. The next scenario consists of visualized path testing that focuses the user on

finding input data for an algorithm that satisfies precise criteria rather than reconstructing the

algorithm. This type of an application would provide certain visualization tools allowing for

specified criteria and performance tasks.

 Research in human-computer interaction (HCI) has lead to the emergence of a field of study

called information visualization. This field has added interesting tools and techniques for the

development of interfaces with special attention focused on the relationship between the user and

visual representations of abstract data. Shneiderman (1973) pioneered visualization research

techniques as a path to concept discovery when he developed a polynomial viewer that used an

interactive visualization interface. Continuing his research, Shneiderman (1983) introduced a

concept called direct manipulation which provided an interface style involving the continuous

representation of objects of interest with fast, reversible, incremental actions and feedback.

Many of Shneiderman‟s visualization methods are still used as powerful components visualizing

technology in professional and educational settings (Plaisant & North, 2007).

 Data gathered from studies in this area have provided principles and guidelines for

improving the development of high quality interface designs. Shneiderman and Plaisant (1998)

present the future of interfaces with regard to higher resolution screens and the web as well as

provide insight into redesign issues with workplace software using ethnographic studies (Rose,

Shneiderman & Plaisant, 1995). Some of the tools that have been developed based on early

10

information visualization research have provided user-controlled applications making the

creation of dynamic visualizations quick and effective (Plaisant & Vinit, 1994; Heer, Card &

Landay, 2005).

 Shneiderman, Plaisant, Cohen and Jacobs (2009) continue HCI research by discussing

dramatic changes in user-interface design that can assist the learner in visualizing and interacting

with different concepts. Specifically for information visualization, their research claims that

techniques can be used to provide graphical presentations and user interfaces for manipulating

data with a larger number of items. Quantum mechanical concepts can become complicated by

the fact that many mathematical manipulations utilize matrix multiplication that may produce a

large amount of information. Visualization of this data may have to rely on Shneiderman et al.‟s

techniques. Their research will also provide useful HCI techniques for analyzing and interacting

with QuAL.

 Scientific discovery learning can be a highly self-directed process and students may learn

more by using familiar concepts as building blocks to understanding new or unfamiliar concepts.

Sorting data has historically been a fundamental problem discussed in many introductory

computer science curriculums. Sorting algorithm research has added a significant number of

solutions to this problem which has created a broad range of learning tools for this topic. This

research used sorting concepts as a means of bridging the gap between classical and quantum

algorithm understanding. The main purpose for using sorting concepts in this research is not to

learn about sorting algorithms as students using QuAL should already have acquired this

information from another source. The typical user of QuAL will be a first or second year

computer science major with a basic understanding of the foundational principles of classical

algorithms. Therefore sorting concepts will be used to cover the principles of algorithm design

11

and analysis using an extremely intuitive problem (i.e. sorting). Visualizations of sorting

algorithms have been a very popular research topic. Grissom et al. (2003) compared levels of

student learning engagement in their research by using the sorting problem as a simple learning

algorithm. Grissom‟s group concluded that visualizations of the sorting algorithm did indeed

assist students in learning about algorithmic procedures. In another article Rasala, Proulx and

Fell (1994), used sorting algorithms to provide students with a comparative approach to

algorithm analysis. Rasala et al. decided to use the sorting problem in their research because

students learn simple sorting concepts early in their course work, sorting concepts are easy to

visualize as they are familiar to students, and there are many sorting algorithms. With many

different sorting algorithms, animations can provide comparisions by illustrating more efficient

techniques, benchmarking different solutions, and running side-by-side simulations.

 Quantum sorting algorithms have been a topic covered by past and present research with a

common finding that many classical sorting algorithms are just as efficient as quantum

algorithms. Klauck (2003) found this to be only when the analysis was based on the number of

comparisons alone. Hoyer, Neerbek and Shi (2002), provided evidence that no comparison-

based quantum sorting algorithm could outperform a classical sorting algorithm. Yet, in space

bounded sorting, Klauck (2003) found that quantum computers outperform conventional

computers significantly and when lower bounds techniques are used to solve quantum sorting

problems, quantum search and sorting algorithms provide more efficient solutions than classical

algorithms (Yao, 1994; Ambainis, 2000; Buhrman & de Wolf, 2002). The efficiency of quantum

sorting algorithms will not affect the outcome of this research as the reason for using the sorting

problem is not based on comparison benchmarking rather on the common foundational

knowledge that it provides between classical and quantum algorithmic concepts.

12

 Current quantum computing research focuses on varying approaches towards developing a

practical quantum computer, the study of quantum information, and optimizing established as

well as developing new quantum algorithms. Bennink (2008) discusses the field of quantum

information and presents concerns on how secure encryption methods would be if a quantum

computer were developed but at the same time claims that quantum communication would

provide significant advances in information security. From a computer scientist‟s perspective,

Jorrand (2007) provides insights into the quantum information processing concepts that should

interest academia and industry. Jorrand claims that with current breakthroughs in quantum

concepts, the transition from classical to quantum has great potential for future research

especially for the computer science field. Quantum algorithm research is also actively pursuing

new and innovative solutions. Saeedi, Zamani and Sedighi (2008) have proposed a new

algorithm entitled MOSAIC, which they postulate is more efficient, producing results in fewer

steps when compared to recent search-based synthesis methods. Designing quantum algorithms

can be a difficult process but Aharonov and Ta-Shma (2003) have introduced a new approach

they define as Adiabatic State Generations (ASG). This new approach may bring new insights

and methods into quantum algorithm development.

 These articles provide just a few examples of current quantum computing and information

research. A National Science Foundation report stated “NSF should fund continual research into

understanding the ultimate algorithmic power of quantum computing along three fronts:

Developing new algorithms, understanding and developing new techniques used by quantum

algorithms and optimizing and extending current algorithms” (Theory of quantum computing

and communication, 2002, p. 3). This statement along with the above research provide evidence

that quantum algorithm development is an active research topic, therefore computer science

13

curriculums should add these concepts into their current coursework to promote student interest

in quantum computing.

 Computer science continues to evolve as new innovative ideas emerge from scientific

research. Conceptual shifts have occurred throughout computer science history. Programmers

changing from structural to object oriented programming or single to multi-threading have added

fuel to this evolution. Academia has responded by developing and using tools to assist students

in learning these new concepts as the scientific community provides evidence that knowledge in

these areas advances the field. Quantum computing is one of those areas that may alter the

approach used by computer scientists to develop new and efficient algorithms. It has united the

disciplines of physics and mathematics; understanding its concepts is becoming an important

addition to expanding computer science student‟s horizons.

Barriers and Issues

 Research in quantum computation is theoretical and there is no practical implementation of a

quantum computer to date. Consequently, the amount of literature supporting the research and

development of a quantum algorithm animator is limited. A few introductory teaching tools that

animate certain aspects of quantum algorithms and several animation systems that incorporate

quantum computing concepts exist but animating quantum algorithms has room to grow.

 Emberson (2002) conceived the idea of using a quantum algorithm designer as a pedagogical

tool for understanding quantum computer concepts in his Master‟s thesis. He entitled his

application Quantum Algorithm Design (QAD) and developed it to allow users the ability to

design and simulate quantum algorithms using quantum network gates with the circuit model of

quantum computation. The user would be required to understand certain quantum mechanical

principles before being able to design their first quantum algorithm. Hogg (2000) also

14

demonstrated the use of animation with a tool that used Mathematica as an interesting

environment for animating Grover‟s search algorithms and comparing it to other quantum search

algorithms.

 Emberson and Hogg‟s research rely on special environments, software, and toolsets for their

animations to function and assume knowledge of quantum physics. Knowledge of these

environments or acquisition of these applications makes their animations less portable and

perhaps costly to utilization in a classroom situation. Both designs also require precursory

knowledge of hefty quantum mechanical concepts requiring the need for additional physics

classes or curriculum adjustments. One of the goals for this research project was to identify the

best choice for developing an animation system that provided ease of use, portability for

educational effectiveness, and the appropriate development environment for introductory

quantum concept visualizations.

 One of the challenges that this research had to overcome was to depict the quantum

computational process in a way that elucidates that process. Many resources currently available

to the student assume or provide knowledge of quantum mechanics at levels that may deter a

beginning learner away from these concepts. Quantum mechanical concepts are important in the

development of quantum algorithms and this research had to balance the addition of certain

quantum mechanical and quantum computing concepts with the presentation of material in order

to encourage student curiosity. This balancing act was achieved by providing only what is

needed for a basic understanding of quantum computing as the foundation for introducing

quantum algorithms. Two objectives that helped to support this design goal:

1. Provide students with an introduction to basic quantum computing concepts i.e.

entanglement, quantum state, interference, amplitude, and probability distribution.

15

2. Give students a clear understanding of the steps required by a quantum algorithm to

solve a specific problem.

 The development environment for this animation system utilized quantum computing

concepts in a conventional computer environment in order to animate the quantum algorithm

selected by this research. Quantum mechanics states that until they are observed, particles exist

only as a discontinuous probability function. This situation is often visualized by

conceptualizing the state of an unobserved particle as an overlay of all its possible states

simultaneously. As an example consider a particle that might be observed in state X, Y, or Z.

When it is not being observed, quantum mechanical principles claim that this particle may exist

in three states simultaneously. The unobserved particle is said to be in a superposition of states.

Current quantum computer simulators create an environment where particle superposition

provides a reliable format in which an individual bit is stored as some measurable property of a

qubit and can store bits that are simultaneously 1 and 0, unlike conventional computers where at

any given time, a bit is either 1 or 0 but not both. These simulators can construct quantum logic

gates based on the interactions of one or more qubits and depending on such processes as

interference or entanglement, can be used to perform logical or mathematical operations on

qubits executed in parallel. This research incorporated a quantum simulator into the

development of this animator as a means of providing qubit registers, quantum data structures

and pre-developed quantum functions. Quantum Computing Language (QCL) was used to

provide this environment and is easily installed on a Linux system. Developing the animator as a

Java applet provided easy interaction with QCL and did not reduce the importance of portability.

Chapter 3 contains more information on the specific functionality of QCL (Omer, 1998).

16

Delimitations and Limitations of the Study

 Delimitations of the study include:

1. The case study employed twenty computer science students from Wayne State College

located in Wayne, Nebraska. The uniqueness of the study within a specific context makes it

difficult to replicate the use of the prototype or travel to another location in another context

(Creswell, 2003).

2. The study gathered only the students‟ perspective of the quantum animator‟s effectiveness

through their personal experiences when using the animator.

3. The quantum animator was developed for educational purposes as an initial prototype not for

professional developer purposes.

4. The quantum animator prototype developed concentrated animating one sorting quantum

algorithm. Future developments may include other foundational as well as different classes

of algorithms.

 Limitations of the study include:

1. Because of the convenience sampling used, the researcher cannot say with confidence the

sample used during the case study phase, will be representative of the population (Creswell,

2002).

2. Due to the nature of qualitative research, the data obtained during the case study phase may

be subject to different interpretations by different readers.

17

Definition of Terms

Amplitude: Complex numbers used to express the quantum system (Yanofsky & Mannucci,

2008).

Animation chunking: Animations are broken up into meaningful smaller sized components

(Diehl, 2007).

Decoherence: The quantum phenomenon that can cause random errors in a quantum system as a

result of entanglement with the environment (Yanofsky & Mannucci, 2008).

Distributed Algorithms: Algorithms that run concurrently on many interconnected processing

elements called processors (Koldehofe, Papatriantafilou, & Tsigas, 2006).

Interference: In wave theory, it is the effect of producing a new wave pattern when two or more

waves collide and combine. This same effect can occur in the quantum world when amplitudes

instead of heights interfere. Amplitudes are complex numbers and when interference occurs, they

can add up in ways that cancel out (Yanofsky & Mannucci, 2008).

Hadamard Gate: A special quantum gate representing the building blocks of quantum circuits

represented by the Hadamard matrix which is a unitary matrix (Omer, 1998).

Permutation: A rearrangement of elements in an ordered list into a one-to-one correspondence

with itself. The number of permutations on a set of n elements is given by n! (Dickau, 2010).

Superposition: When a quantum system is in more than one quantum state at a time it is said to

be in a superposition of states. Once the system is observed, the superposition will collapse into

a measured state (Yanofsky & Mannucci, 2008).

Scaffolding (animation): Different techniques used to provide instructions for using interfaces or

features. They may take many forms such as; guided tours, maps or overview diagrams, tables

of contents, dynamic overviews (Diehl, 2007).

18

Transition State: In quantum mechanics, the state in which a quantum machine cannot be

observed or measured (Yanofsky & Mannucci, 2008).

Quantum Entanglement: In quantum theory, when two or more object‟s interact with each other

in such a way that their two quantum state‟s become entangled or act as if they were one single

state. This entangled state results in a connection between the two objects, no matter how far

apart they are taken (Yanofsky & Mannucci, 2008).

Quantum State: In quantum computation, is any possible state in which a quantum computer can

be. They are described by state vectors and can be a 1, 0 or a probability of all possible states

(Yanofsky & Mannucci, 2008).

Qubit: A qubit or quantum bit is the smallest unit of information describing a two-dimensional

quantum system. Their classical counterpart is the bit, which describes a two-dimensional

classical system (Yanofsky & Mannucci, 2008).

Summary

 The purpose of this study was to examine the use of animation as a teaching tool for

quantum algorithm behavior and develop a prototype for use in an educational setting. There has

been limited work in this area with most of the work focusing on a specific development

environment or requiring advanced knowledge in quantum principles.

 Quantum mechanics has been an emerging discipline for many fields for some time but the

computer science field is just beginning to embrace its properties. Several of these properties

may provide efficient solutions to existing problems as well as provide the tools needed to

promote new discoveries that may lead to faster database searches, better security protocols, and

other interesting technological advancements.

 Algorithm animators have provided visual representations for classical algorithms and have

19

been used by academia as a successful tool for teaching their concepts. The complexity of

quantum algorithms may inhibit early computer science students from understanding the abstract

behaviors thereby deterring interest in this field of study. Animation may reduce student fears by

visualizing quantum behavior that introduces them to a different problem-solving paradigm.

 This research gathered data from existing classical animation systems and incorporated them

into a quantum animator called QuAL using principles that provide visualizations specific to

quantum concepts. A case study methodology was utilized to assess the proposed educational

framework from a student‟s perspective.

20

Chapter 2

Review of Relevant Literature

Classical Algorithm Animation Research

 Animating algorithms has been an accepted method for teaching algorithmic concepts to

computer science students despite mixed pedagogical successes. Most researchers have agreed

that the benefits of past, present and future animation systems are dependent on the

circumstances of the learning environment. Stasko (1997) claimed that students are enthusiastic

about using visualizations, but studies have not provided enough evidence that animations have

significantly improved their ability to learn certain concepts (Badre et al., 1991; Bryne,

Catrambone, & Stasko, 1999; Stasko, Badre, & Lewis, 1993).

 Although this early research did not provide clear results as to whether animations were

effective pedagogical tools for algorithm learning, other research attempted to focus on finding

out how animations could become effective pedagogical tools. Hundhausen et al. (2002)

presumes that the way students use visualizations is more important than the animations systems

themselves. Hansen, Schrimpsher, and Narayanan (1998) conclude that animations are an

effective teaching medium but a rethinking of algorithm animation design is required. They

continue by presenting a framework called Hypermedia Algorithm Visualization (HalVis) that

utilizes multiple media, semantic links and numerous cognitive devices, which help students

visualize algorithms specifically sorting algorithms. Hansen et al.‟s conclusions provide

evidence that designing an animation system to support incremental learning with real world

analogies, which transition to algorithm concepts, assist students more than just providing some

21

textual feedback. Access to fundamental algorithmic building blocks and a learning objective-

based design approach allowed their design to divide dynamic information into more manageable

pieces that uses animation chunks. Features such as pause / repeat procedures, animation chunks

presented in synchrony, three animation views (analogical, micro-level and macro-level), the

ability to change inputs, performance predictions, and pop-up reflections, all contribute to a

better learning environment.

 Urquiza-Fuentes and Velazquez-Iturbide (2009) furnish readers with a comprehensive

survey of successful algorithm animation systems along with main features that contribute to

their success. The researchers added specifics on the educational effectiveness of certain

features based on the conclusion that educational improvements could also depend on system-

specific features. Urquiza-Fuentes et al. classified their evaluations by two criteria: abstraction

level and implementation approach. Price et al.‟s (1998) software visualization taxonomy

defined the criterion of the abstraction level as: algorithm visualizations and program

visualizations. The implementation criterion were defined as three systems: script-based,

interface, and compiler-based. This study found that most animations systems contained two

common properties: first, all systems were interactive and second that all focused on usability.

These were important concepts for Urquiza-Fuentes et al. especially since they were evaluating

these systems for educational purposes. Urquiza-Fuentes et al.‟s recommendations for the design

of algorithm animations based learning experiences are as follows:

1. Viewing animations provides more effective knowledge acquisition.

2. Include additional text and narrative comments.

3. Explicit feedback is very important when students are answering questions.

4. Provide the ability to change inputs with advanced features such as different execution

22

scenarios, integration with an IDE, and a manipulation interface .

Conclusions of this study find that script-based systems are more suitable for viewing and

responding levels and compiler-based systems are more effective for changing, construction, and

presenting levels.

 Wiggins (1998) performed an interesting comparative study between two algorithm

animation tools. Wiggins compared a textual based tool with a more graphical based tool both

containing a graphical user interface and looked for a difference between student understanding

using both the tools and a difference in student preference for either tool. The assessments used

in this study were short answer exams, free response exams, and a preference questionnaire.

Conclusions from data collected in this study found that there was no significant difference in

student understanding but students tended to prefer the textual based system over the more

graphical based system.

 Historically, algorithm animation began by providing static illusions demonstrating the

algorithm‟s concepts. The early versions of these pictorial representations could be manipulated

to provide a high level of abstraction hiding details not relevant to the current concept. This

process helped students step through certain details of the algorithm before adding more

advanced items that might confuse them. These static visual representations became the

precursor to dynamically animating algorithms which were represented, at first, as a sequence of

illustrations (Gurka, 1997).

 Once algorithm animation systems were introduced, research moved towards developing

new more effective systems varying in their capabilities, platforms, support, animation libraries,

target audiences, and user interfaces. Algorithm animation systems were also built for specific

algorithm domains. Ayellet (1994) developed an animation system for use with geometric

23

algorithms. Geometric algorithms are used for solving geometric problems and are important for

computer graphics, robotics, and pattern recognition applications (Dobkin, 1992; Latombe, 1991;

Schwartz & Yap, 1987; Toussaint, 1986). Ayellet‟s system called GASP demonstrates the

techniques used to present complex ideas in an aesthetic format for user appreciation of

complicated mathematical notions. GASP animates highly complex geometric algorithms easily

without precursory knowledge of computer graphics and is oriented towards the knowledge of

the users. GASP‟s conceptual model includes three tasks: implementation of the algorithm

annotated with interesting events to be animated, design and implementation of the animation,

and interactive exploration of the algorithm. GASP also contains four components: the

animation system, algorithm implementation, hooks to the system, and style files. An important

concept that GASP demonstrates is that picking and well-defining a small domain makes it easier

to create an animation system that enables ease of use and effective visualizations.

 Jackson and Fovargue (1997) used the XTANGO software system to animate genetic

algorithms (Stasko, 1990). Genetic algorithms are used to to find solutions to combinatorially

hard problems. The difficulty in understanding genetic algorithms comes from the fact that their

behavior is difficult to predict as their operations are driven by evolutionary principles as they

attempt to solve highly mathematical problems. Jackson et al. developed a set of animation

sequences specific for genetic algorithms used with lecture based materials to teach students

about these interesting concepts. Their system is based on the assumption that students will be

introduced to evolutionary concepts before using the animations. An important component of

their teaching framework is the fact that they attempt to use an application that is simple enough

to animate but realistic enough to capture the student‟s interest. Pedagogical considerations

assisted with the design of the algorithm animations, the algorithm should be simple keeping just

24

the concepts needed to provide an introductory understanding of genetic algorithms as well as

keep the genetic concepts simple. They excluded advanced genetic concepts in an attempt to

softly introduce these difficult behaviors to the student and simply promote algorithmic

understanding and interest. Jackson et al. didn‟t feel that execution speed or optimal solutions

were important but focused instead on demonstrating significant genetic algorithm properties

with trends and acceptable solution visualizations. The dynamic animation used by their system

provided chromosomal visualization simulating real-world genetic properties as well as the

addition of color to highlight their problem principles. User input provided the ability to change

parameters such as number of chromosomes and genes, the probability of mutation and other

important genetic algorithm parameters.

 Tudoreanu, Wu, Hamilton-Taylor, and Kraemer (2002) provide evidence that algorithm

animation promote the understanding of distributed algorithms in their research using 3-D

visualization and legends. The methodology employed to assess student learning allowed users

to view the visualizations while answering questions supplied by this study, which helped to

promote their goal of testing effectiveness of the visualizations instead of the testing

environment. The legends designed for their visualizations provide the student with a pictorial

bridge between the encoded algorithm properties and the graphical features they represent. This

allowed the system to be presented to the student without any explanation except for what the

algorithm does. The classical termination detection algorithm for distributed systems was used

in this empirical study to provide a distributed computation problem. Prior to testing, the

students were shown a powerpoint presentation that explained the experimental environment and

a textual document containing a description of the algorithm. The data collected by this study

provided some evidence of the benefits to using visualizations in distributed algorithm

25

animation. Students did gain a more accurate understanding of the algorithmic concepts used in

this study with the research results recommending the importance of reducing cognitive load to

improve effectiveness.

 Another study using distributed algorithms was completed by Koldehofe, Papatriantafilou,

and Tsigas (2006) who entitled the environment LYDIAN. This environment provided support

for teaching and learning a collection of distributed algorithms used in an undergraduate

computer science class. LYDIAN provided students with the ability to write their own

algorithms or select from one stored in a database allowing teachers to use LYDIAN in

numerous formats with different levels of student expertise. The user interface was developed

using TCL/TK with protocol-defined events written into a trace file. The user can choose

between graphical or textual output and view all relevant information in one window. The

objectives of this development were to provide the student with key concepts concerning

distributed algorithms, change timing and workload to demonstrate different behaviors, and

display communication and time complexities of the selected algorithm. Stasko (1995)

developed animation libraries called POLKA that were used for this study and claimed to

provide portability, friendly interface, and good visualization features like multiple views, speed

tuning, step-by-step execution, and callback events.

 Animation techniques as they relate to the art of dynamic algorithm visualizations have been

a popular research topic as each new study attempts to provide more insight into the design of

more effective dynamic graphics. New techniques versus modified older techniques have been

manipulated and enhanced in an attempt to find the best mix for an effective animation system.

Early in classical algorithm animation history, Brown and Hershberger (1991) demonstrate the

importance of the use of sensory tactics by describing techniques that focus on the addition of

26

color and sound. Early versions of animators would use textual based displays falling into one

of two categories. Monolithic view, which concentrates all of the algorithm‟s concepts into one

dynamic view. These displays were successful for simple algorithms but would fail when

attempting to portray complicated processes due to the fact that they had to encode so much

information that the user would become confused or quickly tire of its details. And the other

category, multiple views, which became the technique of choice as they allowed the user to see

limited information about a few aspects of the algorithm. These views were easy to comprehend

with the composition of several views more manageable and understandable than the sum of

their individual views. With this in mind they provide summaries of several different systems

and the techniques used to promote more effective visualizations. Zeus used a multilevel

adaptive hashing technique that provided menus for the selection of algorithm, views, and input

data (Brown & Hershberger, 1991). The control panel format provided multiviews with

snapshot and restore capabilities, start/stop/step-thru buttons, as well as a slider for execution

speed control. Color was added to several speciality views to provide differentiation of

important concepts. Sound effects were also added to provide concept specific tones when

elements were changed or simulated collisions occurred.

 Sangwan (1997) built upon Brown and Hershberger‟s research by developing an animation

system using self-visualizing C. This research highlights animation techniques such as:

1. Multiple views: several views providing significant aspects of the algorithm

2. State cues: the display contains changes in the state of the algorithm portrayed by

changes in their graphical representation typically using a change of color or shape.

3. Static history: static material similar to the approach used by textbooks to convey the

dynamic behavior of the algorithm.

27

4. Input data: data in the form of small input data, pathological data, or cooked data that

helps the user step through concepts with visual displays.

5. Continuous versus discrete: small data sets support a continuous change while larger

data sets favor discrete change.

6. Multiple algorithms: comparisons of several algorithms synchronously help the user

compare and contrast specific concepts.

7. Color: the use of many united multiple views by representing similar or related objects

or features. May also be used to highlight areas of interest, capture history, or reveal the

state of an algorithm.

8. Sound: used to enhance visual views or signal omissions.

9. 3D: may be used to with objects or concepts that are inherently 2D.

10. Fisheye views: used to display large information structures.

The use of self-visualizing C in this research enables the animations to be written in C and the

language itself adds a self-animating data type int that corresponds to C‟s int data type. The

benefits of using this language provided ease of algorithm development and animations by both

the researcher and the users of the animation system.

 Current animation systems have used differing tactics to continue building more efficient

visualizations and also focus more on the student learning environment. Chen and Sobh (2001)

combined the visualization of data structures with the ability for user-defined algorithm

animations in their software application for use by their introductory computer science students.

Their software contained the following observable data structures: array, stack, queue, binary

search tree, heap and graph. The user-defined component of their applicaton allowed creation of

algorithms using the JavaMy language, which was used to visualize the execution of the

28

algorithm as well. The bubble sort algorithm was used to demonstrate the JavaMy code. An

example of the translated bubble sort algorithm into JavaMy code (refer to Figure 1).

The application in this research provides a built-in code editor or the user can write the code in

any text editor of their choice. Once developed the user can build and run the code to view the

animation. The animation frame consists of visualizations of the algorithm along with the

control panel and a textual view of the code. The control panel provides the user with the ability

to run the animation as a continuous or systematic (step-by-step) animation. A slider bar

provides access to the execution speed control. The JavaMy code is very similar to the Java

programming language except that a class definition is not a requirement for proper execution.

When developing code in the JavaMy language, the user can select which of the data structures

they want to animate and the language provides the required data types. Once written the code is

parsed and compiled and the animation runs. One limitation of this research‟s application is that

it only contains code for the most common data structures.

 A unique technique used by Zhou, Li, Xian, Lai, and Liang (2008) attempts to provide a

public static void main(String[] args) {

final int SIZE = 8;

MyArray intArray = new MyArray(

AnimatorFrame.ARRAY-POSITlON,SIZE);

for (int i=O; i<SlZE; i++) {

 intArray.setValue(

 ScreenPanel.getRandom(10,100), i);

}

for (int i=SIZE; i > 1; i- -) {

 for (int j=O; j< i-1; j++) {

 if(intArray.getInt (j) > intArray.getlnt (j+ 1))

 in tArray.swap (j, j + 1);

 }

 }

}

Figure 1: JavaMy Language Code

29

solution to the reuse of algorithm system implementations using a context-aware methodology.

Algorithm contexts hide its execution and the change in contexts drive the visualizations making

an algorithm implementation independent of its animation and thereby creating a reusable

system. Zhou et al. reference an important task to consider when developing an algorithm

animation system as the specifications on how the visualization is connected and applied to the

algorithm (Kerran & Stasko, 2002). Two approaches suggested by this research are event-driven

and data-driven approaches. Event-driven techniques typically identify interesting events that

correspond to relevant actions of the algorithm visualized by the approach. These interesting

events turn into graphical events that execute as animation routines. Data-driven techniques use

a mapping approach of the computational states into the graphical scenes. This approach uses a

technique that declares attributes of object code to depend on variables of the program code.

Stasko‟s (1995) POLKA libraries were also used in this research to provide examples of how

current animation systems identify events and then compare this technique to their own context

model. Zhou et al.‟s results provide three advantages to using a context-aware method over an

implicit approach:

1. Algorithm implementation is independent of algorithm animation.

2. Middleware for supporting the interaction between algorithm and animation is easier

to develop and reusable.

3. The algorithm context model is reusable.

They conclude by stating that their context model is maintainable and reusable for a wider range

of algorithm animations. Future work would include the development of an algorithm and

animation repository and better design of the middleware to support more complex context

management.

30

 Human Computer Interaction (HCI) – Interface Design

 Shneiderman, Plaisant, Cohen, and Jacobs (2009) suggest a sample of interface design

guidelines to use when initializing development of a user interface:

1. Navigating the interface

2. Organizing the display

3. Getting the user‟s attention

4. Facilitating data entry

Navigation is essential to user comfort and there are several rules to keep in mind as the interface

materializes: standardize task sequences, be descriptive when using embedded links, headings

should be unique, radio buttons work well for single choice items, develop printable pages, and

thumbnail images provide quick references for larger images.

 Effective display organization may require the design to follow one or many of the

following principles (Smith & Mosier, 1986):

1. Standardization of display data

2. Familiar features for display of information

3. Don‟t require the user to remember in between screens

4. Consistent input / output of information

5. User control of display data

 User attention can be difficult to attract especially if there might be information overload or

complicated design strategies. To minimize this interaction and maintain user attention,

Shneiderman et al. recommend the use of these techniques:

1. Use high intensity sparingly with only two intensity levels

2. Use markings where appropriate

31

3. Larger sizes attract more attention, use up to four sizes

4. Up to three fonts

5. Add inverse coloring

6. Don‟t use blinking displays

7. Add up to four standard colors

8. When using audio choose soft tones and avoid harsh sounds

 Data-entry is another important activity that should be considered in user interface design.

When designing this component considered using similar action sequences, less user input

actions, minimize user memory load, input / output of data should be linked, and allow user

control of data display.

 With respect to the design tools for user interface development Shneiderman et al. suggest

using the “Java Look and Feel Design Guidelines” (Sun Microsystems, 2001) as a reference on

user-interface design. These guidelines provide assistance for designers and developers to apply

Java classes to develop consistent, compatible, and easy to use applications. They use the Java

Foundation Classes (JFC) to provide a pluggable Java look and feel architecture that assists the

developer in Graphical User Interface (GUI) design focusing on: design considerations, visual

design, application graphics, and behavior.

 Visualization may be defined in application development as “a graphical representation of

data or concepts” or an “external artifact supporting decision making” (Ware, 2000, p.2). It is an

important consideration when developing applications for human use as it assists with analysis

and concept understanding by representing information visually. This technique of assistance is

called cognitive support. Tory and Moller (2004) explore current human factors research as it

applies to concept visualization. They introduce two new concepts called continuous model

32

visualization, that covers the visualization of algorithms that use a continuous model of the data

and the discrete model visualization. Discrete model visualization refers to the algorithm

visualizations that use discrete data models. Tory and Moller augment their research with a

connection between visualizations and human factors-based design. Human factors-based

design involves the use of design principles that focus on usability and usefulness of the intended

user group. The researchers claim this concept is overlooked when developers initiate interface

design and should be incorporated into applications that require users to view information or

manipulation of data. A human factor can be physical or cognitive property of a single entity or

social group but with regard towards visualization tends to be more cognitive. HCI

methodologies that provide possible approaches for human factors-based design include:

1. User motivated design

2. User and task-based design

3. Perception and cognition-based design

4. Prototype Implementation

5. Testing – functionality and ease of interaction

6. User-centered design

Quantum Theory for Computer Scientists

 Physicists endeavor to understand quantum mechanics completely but for computer

scientists to contribute to the theory of quantum computation only a partial understanding of

quantum mechanics is required. The question becomes “how much knowledge of quantum

mechanics is enough?” Mermin (2006) describes two reasons why computer scientists can

quickly understand the necessary quantum mechanical principles. He first describes a quantum

computer as being a simple example of a physical system that is discrete, made up of a finite

33

number of units, and whose behavior is constrained and specified. Focusing on this two-state

system can help avoid the peculiarities of quantum mechanics but should provide enough

understanding relevant to basic quantum computation.

 The most difficult part about learning quantum mechanics is the understanding of the

difference between the essential and the inessential quantum phenomena that will be represented

in an abstract model. Physicists take years to master this intuition but for an understanding of

quantum computation, the only important part is the abstract model, or the product of the

physicist‟s work. Mermin (2006) makes note of the fact that understanding quantum

computation is simply the knowledge of the capabilities of the quantum computer not the need to

understand how to build one.

 A brief survey of several computer science programs concerning their introduction to

quantum computer science curriculums find these popular textbooks as required reading for the

course (Nielsen & Chuang, 2000; Mermin, 2006; Hardy & Steeb, 2001; Yanofsky & Mannucci,

2008). The researcher will refer the reader to these textbooks to provide a broader introduction

on quantum mechanical concepts. This research will focus on the basic notions of quantum

computing with particular emphasis on quantum algorithms, the fundamental concepts needed to

introduce quantum algorithms to computer science students, and those concepts incorporated into

the design of QuAL.

A Brief Survey of Quantum Mechanics

 Quantum mechanical phenomena are difficult to understand since they exist at a molecular

level and cannot be characterized by common experiences. Instead, mathematical formulas and

natural associations create visualizations to assist with understanding these abstract principles

and theorems. The best way to illustrate the fundamental concepts supporting quantum physics

34

is by using the two-slit experiment. Figure 2 displays a common depiction of the first setup

using bullets.

On the left, there is an object firing bullets at the wall with two slits. Behind the wall is another

wall capable of measuring the number of bullets that go through the slits and measuring where

they land. The graph to the far right will display the probability distribution for the bullets

measured by the middle wall. In the first run of this experiment the top slit is opened, the graph

shows the bullet‟s distribution is normal. Then the bottom slit is opened and the top slit closed.

Once again, the graph displays a normal distribution. Finally, both slits are opened and bullets

Figure: 2 Bullets – Two Slit Experiment

35

hit the middle wall in a pattern that displays the distribution as the sum of the two previous

distributions. The results show that the bullets go through one slit or the other in this

demonstration of the two slit experiment.

 In the next experiment, the object will emit sound waves instead of shooting bullets. Figure

3 illustrates this setup.

With sound waves the distribution is the same when only one slit is open but when two slits are

open, the waves go through both slits at once interfering with one another and a sine wave

distribution is measured by the middle wall. The next setup will examine the distributions of

electrons as displayed in Figure 4.

Figure: 3 Sound Waves – Two Slit Experiment

36

When only one slit is open the distribution is similar to the bullet‟s measurements shown in a

normal distribution curve but when both slits are open, an unpredictable distribution occurs. The

electron distribution is similar to the sine wave distribution. It appears that the each electron,

shot one at a time to avoid interference, goes through the two slits at the same time and upon

exiting, cancels itself out. This illustrates the quantum principle of superposition. The electron

is not in a single position; rather it is in many positions at the same time. One limitation is that

the electron cannot be viewed, as it exists in these multiple states. The middle wall measures the

Figure: 4 Electrons – Two Slit Experiment

37

electron‟s position and in doing so causes the positions or superpositions to interfere with each

other, and collapse yielding a result. These elementary principles apply to the quantum bit or

qubit, which is the basic building block of quantum information.

 The mathematical formulas for this phenomenon are described in terms of the energy of a

wave as measured by its height (Hey & Walters, 1987).

2I h

where I is energy and h represents the height of the wave. Energy depends on the square of the

maximum height of the wave. Waves can fluctuate up and down, therefore h can be represented

by a positive or negative value. When a wave goes through the two slits, the total disturbance

12h , when both slits are open, is calculates as the sum of the disturbances caused by the waves

from each slit. Slit (1) is represented here as 1h and slit (2) is 2h so:

 12 1 2h h h

Calculating the corresponding energy from the above formula gives us:

2

12 12I h

and then

2

12 1 2()I h h

The wave amplitude is represented by 12I , expanding the right-handed component of this formula

looks like this:

 2 2

12 1 1 2 22I h h h h

Interference occurs when two slits are open as the waves go through each slit and recombine on

the other side. This same mathematical principle can be used to describe the electron

phenomenon that occurred in the two slit experiment except that the energy becomes the

38

probability of the electron arriving at a specific point on the middle detector wall and the height

becomes the amplitude. P represents the probability and a in this formula represents the

amplitude:

2

12 1 2()P a a

 The probability is related to the amplitudes as the sum of the amplitudes squared, which

describes one of the basic principles of quantum computation.

 The probability of an electron being at a certain point on the detector wall might be 20% at

one point and 10% at another but quantum mechanics has shown in the previous illustrations that

there is the potential of interference. In the quantum world, this means the potential of canceling

itself out or a negative probability. The core of quantum theory explains this by using complex

numbers that can cancel each other out and lower their probability. The probabilities of a

quantum system are measured by the square of the amplitudes, which are complex numbers

(Yanofsky & Mannucci, 2008). As an example, assume that there is a 1/ 2 chance of the

electron being at point (0,2) and a 1/ 2 chance of it begin at point (1,2). The square of 1/ 2

is 1/ 2 and of 1/ 2 is also 1/ 2 so there is a .50 chance of it being at point (0,2) and a .50

chance of it being at (1,2). The probabilities add up to 1. Now using complex numbers the

computation could be / 2i chances that it will be at (0,2) and a / 2i chance of being at (1,2).

The probability in this case would be the absolute value of the complex number squared or .25 in

both cases. Quantum mechanics states that the probabilities of the states and transitions are

complex numbers c such that
2| |c is a real number between 0 and 1.

Quantum Bits

 Quantum computing at its basic level is very similar to classical computing. The basic unit

for classical systems is the bit, considered the basic building block of computing information.

39

The classical bit is considered to be in one of two states, either on or off, and is represented as a

0 or 1.

 Quantum mechanical laws specify rules in quantum computation where a qubit is the basic

building block of computing information. A qubit can be in a basis state of 0 or 1 but the

difference and power of a qubit comes from the fact that it can also be in a superposition of states

between 0 and 1. This means that a qubit can be in all possible states between 0 and 1

simultaneously. When the qubit is in superposition the measurement of this system will result in

the collapse of the system to a single state. Before measuring the system, an outcome can

predicted with some probability. The two computational basis states for a qubit are | 0 and |1 ,

expressed in Dirac notation or also called bra / ket notation. The ket notation | x denotes

column vectors or states and the bra notation, |x denotes the conjugate transpose of | x . A

qubit is a unit vector in a two dimensional complex vector space with the state | 0 represented by

1

0

and the state |1 represented by

0

1

and typically denoted by {| 0 ,|1 } . Qubits in superposition of the two basis states such as

a | 0 + b |1 where a and b are complex numbers that specify the probability amplitudes such

that
2 2| | | | 1a b , when measured will have a probability of being in state | 0 as

2| |a and a

probability of being in state |1 as
2| |b .

 A quantum state denoted in this paper as | is a linear combination of all the states,

0 1 2 1| ,| ,| ,...,| nx x x x with complex weights,
0, 1, 2, 1..., nc c c c such that

40

 0 0 1 1 2 2 1 1| | | | ... | .n nc x c x c x c x

or as:

 2| | 1ic

where 2ci is probability of finding each state. As an example, consider the following

theoretical analogy, suppose our quantum system has three variables f = 0 if the f is false or f = 1

if f is true, and b = 0 if 5b or b = 1 if b = 5, and the third variable s = 0 if s is > 32 or s = 1 if s

<= 32. Our state vector would be [fbs] with eight possible states since 32 = 8 describing a system

of n qubits having a state space of 2n dimensions. If f = 1, b = 0, and s = 0 indicating that f is

true, 5b and s is > 32, we would have the state [100]. We use only three numbers to define a

state in this analogy. Next, suppose that we do not know what the exact values of f, b or s are at

any given time. The probability of finding the describe state is:

 .1[000] + .2[001] + .3[010] + .4[110] + .3[100] + .6[101] + .4[110] + .3[111]

This expression states that the complex weights are .1, .2 … to .3 for [111] and so the probability

of getting the described state of [100] is 2.3 = 0.09. The sum of all the probabilities is exactly

1.0, which means that there is a 100% certainty that the described state exists. Unobserved, the

values exist in all possible states but once the values are measures they collapse to one particular

state. The assigned weights, provide a probability that our values will be in a specific state with

[100] being measured 9% of the time and [001] 4% of the time. The exact state cannot be

measured but a prediction of the probabilities can provide a possible solution. If one of the

probabilities is near one and the others nearly zero, then the state nearing one will be considered

a high-probability state and if one measures exactly one, then that state will be the one measured

all of the time. A multiple qubit system such as the one describe above, can be assembled using

41

quantum registers similar to classical registers. Qubits are assembled into quantum registers with

the tensor product expressed as:

 0 1 2

for a three qubit system. So the state space for a three qubits, each with the basis {| 0 ,|1 , has

basis {| 0 | 0 ,| 0 |1 |1 | 0 ,|1 |1 }or expressed as{| 00 ,| 01 |10 ,|11 } more

compactly. A basis state for a three qubit system is:

 {| 000 ,| 001 ,| 010 ,| 011 ,|100 ,|101 ,|110 ,|111 }

and in general an n qubit system has 2n basis vectors. This exponential growth of the quantum

system‟s state space defines the power of quantum computation.

 A geometrical representation of a two-level quantum system is visualized with a Bloch

Sphere:

According to Figure 5, only two real numbers are needed to identify a qubit, therefore we can

map it to an arrow from the origin to the 3-D sphere of radius 1. Within this sphere context,

qubits can be represented by two angles that correspond to the latitude (Θ) and the longitude (Φ)

similar to a position on Earth. This quantum state would be represented by

 Figure 5: Bloch Sphere

(http://www.quantiki.org/wiki/index.php/Bloch_sphere)

42

with

In this notation, the North Pole represents the state | 0 and the South Pole represents the state

|1 . The equator corresponds to a superposition of both the basis states with equal weights, and

different phases. Representing a pure quantum state, the Bloch Sphere displays the fact that

given any state on the sphere, the diametrically opposite points to one possible outcome of

measurement on the system. This is a useful means of visualizing the state of a single qubit.

Quantum Entanglement

 Entanglement is a quantum phenomenon that solves the measured outcome situation by

claiming that the individual states of two particles are related or entangled, even if they are light

years apart. Entangle pairs or EPR pairs are created and permitted to exist in a particular

configuration, so if one particle is measured, the other one simultaneously yields a similar state.

The benefit of this quantum principle is that a measurement can be extracted of the quantum

system to form a basis without collapsing the system.

 Einstein, Podolsky, and Rosen (1935) proposed an experiment commonly referred to as the

EPR paradox. The implications of this experiment rocked the foundation of quantum theory at

the time and reinforced the esoteric and unusual behaviors of quantum mechanics. This research

paper contained the first definition of physical reality stating, in non-physicists‟ terms, that if a

physical property of an object can be known without it being observed, then that property could

not have been created by observation therefore if it was not created by observation, it must have

existed as a physical reality before its observation. A common example used to visualize this

43

property is to consider two entangled particles
1 1

| 00 |11
2 2

, one is sent to observer Alice,

and the other to observer Bob. Alice and Bob may be arbitrarily far apart. When Alice measures

her particle and finds it to be in state | 0 with a combined state of now | 00 , it is instantly

known that Bob‟s particle will also be in state | 0 . If Alice were to have found her particle in

state |1 , then Bob would also have observed |1 . An important note is that Bob has not actually

measured his system but only observed it. Bob has not collapsed the quantum system state but

when Alice measures her state both particles collapse. Quantum theory states that before Bob‟s

system is measured, his particle can have no defined value for its state, it is in a superposition

state. Only when measured does its value become physically real and this occurs when Alice

measures her state. Einstein‟s explanation of this paradox was to assume Bob‟s particle

possessed some kind of hidden fixed properties. The best that can be done to determine Bob‟s

state is to give probabilistic predictions. This theory is commonly known as a hidden variable

theory and claims that the simplest hidden variable theory for an EPR pair is that the particles are

either both in state | 0 or both in state |1 . Einstein believed that there was no mysterious

communication between the two particles; rather the particle properties were set when they were

created. Bell‟s inequality experiment reveals the converse to be true. Bell proved that there is a

strange connection between the particles, which instantaneously informs the undisturbed particle

of the state change of the other entangled particle (Bell, 1964).

Quantum Decoherence

 Quantum entanglement provided the proof that it is not possible to separate a particle being

measured from the entity performing the measurement. In a quantum environment, the particle

and its environment are bound together as one system. Both the measured particle and the

44

measuring device will have to be considered when attempting to understand and measure the

quantum system.

 The peculiarities of quantum mechanics create many questions affecting quantum

computation. When a measurement of a quantum system is performed, what causes the quantum

state to appear to “jump” to a particular eigenstate? Why can‟t a quantum system be viewed as a

superposition of many other states? Recall the double-slit experiment described earlier in this

section. In this experiment, the superposition of many other states is observed as constructive

and destructive interference effects. Why do these interference states disappear in the quantum

system?

 First, recall how a quantum state is expressed as a linear combination of components of

other states as the previous example showed here:

 .1[000] + .2[001] + .3[010] + .4[110] + .3[100] + .6[101] + .4[110] + .3[111]

or expressed as

 1 2 30.5 0.83 0.24s

where a superposition state , s , is the sum of components of other states and their probabilities

sum to one. In the double-slit experiment, interference components possess the same phase as

they combine to produce the interference effects. This is also true for the superposition state,

every component state must be in the same phase or coherent in order to achieve a superposition

state.

 In the real world, outside of our protected quantum environment, a particle is not completely

isolated. It interacts with the environment that may have an effect of the particle „being

observed‟ by the environment and this could cause the quantum particle‟s component states to

get entangled separately with different aspects of its environment. Potentially, each component

45

of the quantum particle forms separate entangled states causing their phases to be altered, which

destroys the coherent phase. This principle is known as decoherence and describes how

interference is lost. The interference components do not disappear but are simply out of phase

and are not visual at the macroscopic level. Decoherence can be defined as the loss of

information from a quantum system into the environment. As an example, imagine throwing a

rock into the sea off the coast of Florida. After the initial splash, the waves dissipate and

disappear from view. In actuality, they do not disappear but decrease in size, and get mixed into

and interfere with other waves. Decoherence explains why states appear to jump since it

happens so fast. It also explains why a superposition of states cannot be viewed, as decoherence

has taken place long before measurement of the system.

Simple Quantum Gates

 Up to this point, this section has described static quantum systems that change only when

measured. Classical systems use boolean logical gates as a way of manipulating bits and in the

quantum world, many of these same gates will apply with the exception that all operations that

are not measurements are reversible and are presented by unitary matrices. These matrices

represent quantum gates as counterparts to the classical gates similar to the logical AND or OR

gates. Quantum gates can be visualized as rotations of the quantum state on the Bloch Sphere.

Examples of common single-qubit quantum state transformations are displayed in Figure 6:

46

I is the identity transformation, which does not change its inputs. X is the negation

transformation, Z is a phase shift operation, and Y is a combination of Z and X. X, Y, and Z are

known as the Pauli Gates. Pauli-X gate is the quantum equivalent of a NOT gate and acts on a

single qubit. Pauli-Y gate also acts on a single qubit and equates to rotation of pi around the Y-

axis of the Bloch Sphere. Pauli-Z gate equates to the rotation of the Bloch Sphere around the Z-

axis and acts on a single qubit.

 Another important single qubit transformation is the Hadamard Transformation defined by

(Rieffel & Polak, 2000):

1

:| 0 (| 0 |1
2

H

1

|1 (| 0 |1
2

1 0

0 1

:| 0I

|1

:| 0X

|1

0 1

1 0

:| 0Y

|1

0 1

1 0

:| 0Z

|1

1 0

0 1

Figure 6: Common Single-Qubit State Transformations

47

This transformation is used generate a superposition of all 2n possible states which can be

viewed as the binary representation of the numbers 0 to 2 1n (Rieffel & Polak, 2000).

 (...) | 00...0H H

1

((| 0 |1 (| 0 |1 ... (| 0 |1)
2n

2 1

0

1
|

2

n

n
x

x

All five of the above transformations are unitary. Let
*M define a conjugate transpose of the

matrix M , the definition of unitary for any matrix M states that if M is unitary, then

*MM = I . Unitary transformations are considered as being rotations of a complex vector

space. If M is filled with only real numbers, then
*M is just TM , or the transpose of M .

Quantum Parallelism

 In addition to entanglement, quantum computers are faster at some computations due to

another quantum mechanical principle called quantum parallelism. True quantum parallelism is

defined as the ability of a quantum computer to perform multiple computations simultaneously

(Deutsch, 1985). It arises from the ability of a quantum memory register to exist in a

superposition of base states. It is different from classical parallelism in that classical computing

requires multiple processors linked together to perform parallel operations while the processors

are performing other computations as well. The computational space increases exponentially

with the number of particles in a quantum system, contrary to classical systems where an

exponential decrease in time requires and exponential increase in the number of processors.

This is an important concept to quantum algorithm development as it represents the fundamental

48

difference between classical and quantum computing (Kasivajhula, 2006).

 Many quantum algorithms take advantage of quantum parallelism to achieve the desired

results with high probability. The algorithms take advantage of the principle that allows

quantum computers to evaluate a function f(x) for many different values of x simultaneously.

Two common techniques used by quantum algorithms are (Rieffel & Polak, 2000):

1. Amplify the output values of interest or the „marked‟ value.

2. Find common properties of all the values of f(x).

The next subsection provides examples of how quantum algorithms manipulate quantum

parallelism principles to solve many computational problems.

Quantum Algorithms

 Reversibility, superposition, and parallelism are the three major differences between

classical and quantum operations (Omer, 1998). Reversibility is important in quantum

computing as it provides the ability of the quantum operations to harness the power of quantum

computation. Any classical subroutines performed in a quantum computation must be performed

reversibly. Decoherence is a problem associated with quantum computers so to keep quantum

computation coherent, quantum registers must be isolated avoiding entanglement with the

environment. Deterioration of a quantum system has to remain constant since no heat dissipation

is possible, therefore state changes have to be adiabatic. This means that with rapidly varying

conditions, a quantum mechanical system must adapt its functional form. For this reason, all

quantum computations must be reversible. Theoretical physics states that every operation on

quantum bits must be undoable meaning enough information must be kept to work any operation

backwards. Typical classical operations such as relational equivalence, Boolean AND, and

Boolean OR, have to be modified for use in quantum computing. The quantum gates described

49

in the previous subsection provide a straightforward formula for converting irreversible classical

operations to quantum operations. In addition, the NOT and CNOT gates provide classical

Boolean functionality on a qubit.

 Superposition and parallelism have been discussed in detail earlier in this paper and their

importance to quantum computing explained. The ability for quantum registers to be placed in a

superposition of states defines a powerful principle used by many quantum algorithms.

Exploiting this quantum mechanical principle places a quantum bit in two different values at the

same time. Quantum parallelism provides the ability to apply all the basis vectors in

superposition simultaneously and supports the generation of a superposition of all the results. In

this way, it is possible to compute f(x) for n values of x in a single application of a unitary

transformation.

 These quantum principles are exploited by the following quantum algorithms either all

together or separately to solve intractable problems simply. When developing a quantum

algorithm, a researcher has to think in terms of probabilistic factors, a conceptual change for

many computer science programmers.

Deutsch’s Quantum Algorithm

 Deutsch (1985) developed one of the first examples of how a quantum algorithm can exploit

quantum computational power. He presents an efficient quantum solution to a simple problem

that requires an exhaustive search to solve deterministically without error on a conventional

computer. In the Deutsch problem, a black box quantum computer is used to implement the

function f: {0, 1}

 {0, 1} in which the input is known to produce one of two outputs: balanced

or constant. The function f(x) takes a one bit argument and returns one bit but can only be

evaluated not altered as the definition of f(x) is immutable. One more criterion is that f(x) will

50

only be evaluated once. Classically, this problem would require at least two evaluations.

 The Deutsch algorithm is based upon a quantum version of the classical Fourier transform

that maps one complex-valued function of a real variable to another. This transformation

typically maps the time domain to the frequency domain. Fourier transforms map functions of

period r to functions that have non-zero values only at multiples of the frequency
2

r
. On a

classical computer, this operation takes time (log)O n n but on a quantum computer can take time

2(log)O n .

 Four possible functions fit the requirements of the Deutsch problem:

1. f(x) 0 //constant zero result

2. f(x) 1 //constant one result

3. f(x) x // identity function

4. f(x) ~x // boolean negation

The first two are constant, which means they output the same value regardless of the input

values. The last two are balanced because the output is zero half the time and one the other half

of the time. Superposition and parallelism are the key quantum principles used by the Deutsch

algorithm to determine whether a function is balanced or constant. Two qubits would be

required putting four basis states: f(00), f(01), f(10), f(11), into a superposition to start, with the

goal to determine whether f(x) is balanced or constant. The amplitudes start with positive values

where f(x) = 0 and negative amplitudes where f(x) = 1. Recall that the sum of the squares of the

absolute values of the amplitudes always sums to one. A quantum boolean exclusion operator is

used to move each input value to and output qubit basically by swapping basis vectors around

without changing the amplitudes. After this operation, there are still two positive values and two

negative values. Quantum parallelism principles allow a query to all possible outputs

51

simultaneously or the combined state as a single operation. The resulting output would either

print balanced or constant depending on which f(x) started as input when the quantum system is

finally measured.

Simon’s Quantum Algorithm

 Simon‟s periodicity problem is a generalization of Deutsch‟s problem but instead of

assessing whether a function is balanced or constant; it finds patterns in functions (Simon, 1997).

Simon‟s algorithm is another black box problem that demonstrates quantum algorithms

advantage over classical algorithms but does not solve a very difficult problem.

Assume a function :{0,1} {0,1}n nf that is evaluated not altered in the black box quantum

computer. The function f obeys the property that there exists a string 0 1 2 1... nc c c c c such that for

all strings , {0,1}nx y , we have () ()f x f y if and only if x y c , where is the bitwise

exclusive-or operation. This means that values of f repeat themselves in some pattern and the

pattern is determined by c, which is known as the period of f (Yannofsky & Mannucci, 2008).

Simon‟s algorithm will solve the problem by finding the string c using a combination of classical

and quantum procedures. An example of a function that satisfies the property follows assuming

n = 3:

Consider c = 110. Every output of f occurs twice, and the two input strings corresponding to any

one given output have bitwise exclusive-or (XOR) equal to c = 110. Illustrating these

x f(x)

000 101
001 010
010 000
011 110
100 000
101 110
110 101
111 010

52

calculations:

Hadamard operations prepare the initial state and then call the black box to transform the state.

Hadamard transforms convert the state performing simultaneous measurements on both registers.

Given enough values, the algorithm can solve the n-1 basis vectors, and compute string c that

satisfies c · y = 0, where y is the string measured by the quantum operations.

 The classical operations are involved in the post-processing calculations where a classical

algorithm uses the quantum results to solve linear equations. A pointwise exclusive or is used to

add the binary strings and conclude the final result of c.

Shor’s Quantum Algorithm

 Simon‟s algorithm is of little practical use but does provide an exponential speedup over any

classical algorithm. Its importance is often realized as the inspiration to Shor‟s polynomial-time

factorization algorithm that stimulated the field of quantum computing.

Shor‟s (1994) factoring algorithm is a significant foundational quantum algorithm as given a

practical quantum computer, Shor‟s algorithm would make many present cryptographic methods

obsolete. The algorithm is probabilistic and based on the fact that the factoring problem can be

reduced to the problem of finding the period of a function. Quantum parallelism is used in

Shor‟s algorithm to obtain a superposition of all the values of the function similar to Simon‟s

algorithm, in one step. A quantum Fourier transform, similar to the classical Fourier transform,

000 110 = 110; so, f (000) = f (110).

001 110 = 111; so, f (001) = f (111).

010 110 = 100; so, f (010) = f (100).

011 110 = 101; so, f (011) = f (101).

100 110 = 010; so, f (100) = f (010).

101 110 = 011; so, f (101) = f (011).

110 110 = 000; so, f (110) = f (000).

111 110 = 100; so, f (111) = f (100).

53

puts all the amplitude of a function into multiples of the reciprocal of the period. The resulting

measurement of the state that yields the period is found with high probability and is then used to

factor an integer or long list of digits. One issue with Shor‟s algorithm is that since the quantum

Fourier transform is based on the fast Fourier transform, the process gives only approximate

results in many applications.

 Similar to Simon‟s algorithm, Shor‟s process uses both quantum and classical operations.

Rieffel and Polak (2000) provide an outline of Shor‟s algorithm where M is the number factored:

1. When two numbers are coprime it means their greatest common divisor is 1. The first

step in Shor‟s algorithm is to determine if M is a prime, an even number, or an integer

power of a prime number. If yes to any of these then classical solutions are more

efficient, there is no reason to use Shor‟s algorithm.

2. If no to any of those in step 1 then a quantum solution is more efficient and so step 2

states to obtain classically a random integer a, that is the power of 2 such that:

2 22M a M

3. Still using classical methods find an arbitrary integer p such that p and M are coprime.

4. Using quantum parallelism, compute () modxf x a M for all integers from 0 to (a-1).

5. This step will prepare the amplitude function for use in step 7. In order to use the

quantum Fourier transform, a state is constructed whose amplitude function has the same

period as f. To accomplish this step, a random value r is obtained using the measurement

of the qubit register from step 4. The value of r is inconsequential in itself. The

importance is the effect of the measurement on the set of superpositions. What this

means is that after measurement of this first qubit register we obtain a value for r and the

other qubit register still in superposition when plugged into function f, will produce r.

54

Since modxa M is a periodic function, it is known that the unmeasured superposition

state after measurement is

 () | ,
x

C g x x r

 for some scale factor C where

1 if ()

()
0 otherwise

f x r
g x

6. Now apply a quantum Fourier transform to the state obtained in step 5.

7. Measure the state of the qubit register left in superposition to extract the period of

function f, calling it m. m has a very high probability of being a multiple of a / t, where t

is the desired period.

8. Using m, and moving over to a classical environment, use the Euclidean algorithm to

efficiently check for a non-trival common factor with M.

9. Repeat the algorithm, if necessary. Shor claims that a few repetitions of this algorithm

yield a factor M with high probability.

Grover’s Quantum Algorithm

 Grover (1996) developed a less spectacular but easier to implement quantum algorithm that

has many applications to database theory. He proposed an efficient solution using quantum

concepts to the searching problem, although there are other applications of this technique.

Grover‟s algorithm is also probabilistic similar to Shor‟s, meaning that the probability of failure

for both algorithms can be decreased by repeating the algorithm. (Yanofsky & Mannucci, 2008)

state that the number of repeats is significant and proven to be 2n times for Grover‟s algorithm.

 Grover‟s algorithm returns to the black box context similar to Deutch‟s and Simon‟s

previously defined algorithms. This searching problem is unstructured, which means that no

55

assumptions are used on the function f. A structured search, like searching an alphabetized list,

is where information is known about the search space and f. Consider a function

:{0,1} {0,1}nf that is implemented by a reversible transformation. Since this search is

unstructured, there are no promises on the function f, so it is not possible to use a binary search

or other methods to efficiently solve this classically.

 Grover‟s algorithm is simple to implement with the following steps:

1. Begin with an n-qubit register in the starting state of | 0
n

.

2. Apply a Hadamard transform
nH on the n-qubit register.

3. Repeat 2n
 times:

 3a.) Apply phase inversion operation: ()fU I H

 3b.) Apply the inversion about the mean operations: 2I A

4. Measure the qubits.

Summarizing the implementation of Grover‟s algorithm, step one and two are standard

operations for many quantum algorithm‟s, which first initializes a qubit register to a starting state

and then using the Hadamard transform puts the qubit register into a superposition of all input

states. Step 3 contains the difficult task of attempting to obtain a useful result from the

superposition. The trick is to change the quantum state so as to greatly increase the amplitude of

the marked state and decrease the amplitude of all other states to improve the probability of

finding the correct search element. The phase inversion operation should provide the initial state

change and inversion about the mean should amplify the marked state moving its probability

higher with each iteration of the loop in step 3. If all works correctly step 4‟s measurement

should provide the correct solution in the least amount of time. Classically repeating a search

56

process over and over should provide a better solution but Grover‟s algorithm can provide worse

results if executed too many or too few times.

 Wallace and Narayanan‟s (2001) used a derivative of Grover‟s algorithm in their quantum

sorting algorithm that is animated by this research. Steps 3a and 3b are discussed in detail in

Chapter 4 of this final report, as Grover‟s algorithm is important to the design and

implementation of QuAL.

A Survey of Other Interesting Quantum Algorithms

 Current quantum research has taken these foundational algorithms and modified them to

achieve greater efficiency, enhanced them to solve broader classes of problems, or adapted them

to other types of problems. Brassard and Hoyer (1997) propose a new quantum algorithm that

combines the techniques of Simon and Grover‟s algorithms to solve a decision problem in exact

quantum polynomial time. Quantum computation theory challenges the corollary of the

Church-Turing thesis that states that anything that can be computed in polynomial time on a

physical device could be computed in polynomial time on a probabilistic Turing machine.

Simon‟s algorithm provided a solution that may be solved in polynomial time on a quantum

computer, but its classical counterpart would require exponential time when the data was

supplied in a black box. Exact quantum polynomial time pertains to problems that quantum

computers can solve in guaranteed worst-case polynomial time.

 Buhrman et al. (2001) provide a generalization to Brassard, Hoyer and Tapp (1997)

algorithm, which was one of the earliest applications of Grover‟s (1996) algorithm. Buhrman et

al. utilize quantum amplitude amplification to solve the element distinctness problem. The

problem of elemental distinctness attempts to find out if all the elements in a list are distinct.

The classical version of this algorithm can provide a solution in (log)n n while Buhrman et al.‟s

57

solution can solve the problem faster in
3/4()n queries. Ambianis (2005) developed an even

faster solution for this problem in
2/3()n queries by using quantum walks. Quantum random

walks have been a very popular concept in developing new quantum algorithms. Physicists first

described them in 1993 (Aharonov, 1998) and they became an important computational tool

when interest in quantum computers increased. Quantum random walks provide illustrations for

the quantum concept of interference, which is one of the concepts that computer scientists should

understand when attempting to understand quantum algorithm development. The quantum walk

problem is similar to classical random walks, which uses the analogy of a person walking along a

straight line and assessing the direction of their next step. In the classical version, a probability

distribution describes the walker‟s current state that refers either to the fact that they have a

choice to go forward or backwards with equal probability. In the quantum walk version, the

walker is in a superposition of all positions measured by the amplitudes instead of the probability

of taking a step forward or backwards. Recall that amplitudes in quantum computing measure

the probability of being in one state or the other and in this analogy, they determine the walker‟s

next step but it is not just forward or backwards but a superposition of both choices.

 Mathematically, because amplitudes use complex numbers, this could mean that our

directions cancel each other out. Typically, in a classical situation, the probability of reaching

zero position is the sum of the two probabilities with equal probability of going in two different

directions, but in the quantum world, research has found a different scenario. Amplitude

measurements do not have to be positive numbers. A negative result may occur causing a

number greater than unity. This effect is known as quantum interference. Ambainis, Kempe and

Rivosh (2005) provide a solution to the problem of interference by using a quantum coin flip in

their quantum walk algorithm. The quantum walk‟s performance is improved to ()n searching

58

a spatially d-dimensional space. Quantum walks have also been used to improve upon triangle

finding and verifying matrix products (Magniez & Santha & Szegedy, 2005; Bhurman & Spalek,

2005).

 Shi (2001) uses concepts from Grover‟s (1996) algorithm and Ambainis‟ (2000) research to

prove that (log)n n comparisons are necessary for quantum sorting algorithms that use only

comparisons. Ambainis‟ previous lower bound was (log)n . Shi‟s improved lower bounds

mean that the best comparison-based quantum sorting algorithm can be no better than a constant

time faster than its classical counterpart can. In another paper, Shi (2002) worked to improve

searching, sorting and element distinctness with quantum concepts. Brassard et al. developed a

quantum algorithm that traverses a binary search tree using quantum routines more efficiently

than classical algorithms. Once again using the black box model so that the only way the

algorithm can obtain information about the input data is via queries. The use of binary search

trees is different from others who base their quantum algorithms on Fourier transforms and

amplitude amplification (Brassard, Hoyer, Mosca & Tapp, 2000).

 Using the sequential quantum circuit‟s model, Klauck (2003) examined the complexity of

sorting proving that quantum sorting algorithms are more efficient in a space bound setting.

Klauck confirmed this theory by claiming that the quantum complexity of sorting is different

from classical complexity. Using Grover‟s search algorithm and Durr and Hoyer‟s (1999)

quantum algorithm for finding minimum, Klauck demonstrates the following theorem: “For all

S in [(log),..., (/ log)]n n n there is a quantum circuit with space S that, given a comparison

oracle for n numbers, outputs the sorted sequence, and uses time
3/2 3/2(log /)n S . The entire

output is correct with probability 1 - for an arbitrarily small constant 0.”

59

 This research focused on Wallace and Narayanan‟s (2001) algorithm to animate the quantum

sorting concept. The main purpose of using a sorting quantum algorithm was the connection to

classical sorting concepts and the use of comparisons to bridge the gap between lecture and

animator usage.

 Wallace and Narayanan (2001) use superpositional permutation searching to propose two

new quantum algorithms for sorting and routing. The sorting quantum algorithm uses input of an

unsorted list of n items in random order to obtain an output of a sorted list of n items in a specific

sequence by using a derivative of Grover‟s search algorithm. Their research uses an alternative

approach to the classical sequential inspection and rearrangement, by recasting the sort process

as a search for a particular permutation of the list items sequenced in the desired sorting order

amongst all possible permutations of the list items. This quantum algorithm is discussed further

in Chapter 4 along with the derivative of Grover‟s algorithm used in their research.

Summary of Knows and Unknowns

 Quantum algorithm research is expanding its boundaries from the early historical discoveries

with the innovation of new algorithms, enhancements to foundational quantum algorithms and

broader problem solutions. Whether a quantum computer will emerge as the next new

technological revolution has yet to be determined but quantum computing concepts are

furnishing improved solutions to classical problems and computer scientists are beginning to

realize the value of these concepts. Quantum theory lags behind universal theory but quantum

computer scientists are hoping for a time when they can develop quantum algorithms that will

someday run on a universal quantum computer.

 Historical classical animator research has covered a broad range of theoretical topics and

proven that with certain parameters, animations are an effective means of conveying algorithm

60

concepts. Techniques such as speed control, visualizing code sequence, addition of colors, along

with supplemental lecture material were used by this research to contribute to QuAL‟s aesthetic

enrichment. QuAL‟s interface followed a few foundational guidelines by providing familiar

features, user control, consistent input / output, and added inverse coloring.

 Mermin (2006) claims that computer scientists do not need to understand how to build a

quantum computer but should comprehend the quantum mechanical properties required to

interact with one. Developing new quantum algorithms may require knowledge of entanglement,

quantum superposition, qubits, amplitudes, and distribution probabilities. An introductory

understanding of these properties could entice student interest in quantum computing and

promote its usage into more computer science applications.

61

Chapter 3

Methodology

Research Goal and Design Objectives

 The primary goal of this research was to design and develop an application that animates

quantum algorithms. Computer science students to promote learning quantum concepts and

entice student interest in quantum computing can then use this animator in an introductory

computer course. A design objective for this research was to develop an application that has an

easy to use interface providing animations of quantum concepts such as; entanglement,

probability distribution, amplitudes, qubits, quantum states, and superposition. Another design

objective was to provide animator features that promote a clear understanding of the steps

required by a quantum algorithm to use quantum concepts in solving a sorting problem. Sorting

concepts were used to promote a connection between a student‟s classical algorithmic knowledge

and the quantum concepts promoted by these animations.

 Three stages were used in this research; an exploratory stage, a design and development

stage, and finally the case study. The exploratory stage gathered data from classical algorithm

animation research and compiled a list of common features that could be used in the design of

QuAL. Quantum algorithms have similar operations to classical algorithms by requiring an

input, stepping through code statements, and then producing an output. Many of today‟s

quantum algorithms will use principles designed by classical algorithms but enhance those

procedures with quantum mechanical principles to provide faster, more efficient solutions.

Wallace and Narayanan‟s (2001) algorithm animated by this research utilized classical sorting

62

concepts to check the final product produced by their sorting quantum algorithm, testing to

assure ascending sort order. The main difference between classical and a quantum algorithmic

procedure is that you cannot see or measure the operations of a quantum algorithm. They operate

in a blackbox environment and only when observed does the state collapse to a specific

measurement. As an example, the common bubble sort algorithm can be animated by visualizing

blocks of different heights moving from one position to the next as the algorithm processes the

ascending sort order. The quantum sorting algorithm cannot be measured during the sort

operation so the procedures themselves cannot be animated during the sorting process. The

quantum concepts can be animated by checking quantum states or amplitudes and probability

distributions as the algorithm‟s methods calculate them.

 Exploring Classical Algorithm Animators

 The literature review provided research topics and data covering many classical algorithm

animators. The past and present research focused on user interfaces, design features, animation

theory, and algorithm understanding. Concepts and components that worked for the classical

environment may not provide enhanced interaction or design improvements in the quantum

environment due to the differences in procedures between the classical and quantum algorithms.

 The exploratory study discovered animator strengths and shortcomings. Animations

developed based on just aesthetics instead of concentrating on what a student needs to aid

understanding failed in student comprehension of presented material. Algorithm animation is

also plagued by the simple fact that animating abstract data has many different possibilities

depending on the requirements of the algorithms. Multiple views can also complicate learning

by becoming too confusing for the student but need to be used in order to display all the required

concepts for algorithm understanding. The user should not be left wondering why an animation

63

is moving, what values is it attempting to display, and how did the algorithm accomplish its final

steps. This research found that effective animators used many of the following findings: textual

annotations to assist students in associated mapping, expression of conspicuous or important

features, explain cause and effect clearly, dynamic instead of static images using clear

visualizations of cause and effect, multiple representations, and factual representations to reduce

complexity (Grillmeyer, 2001).

 This research found that no one path or environment used in the classical algorithm

animation realm would completely define the initial design of QuAL and its features. The

abstruse principles of quantum mechanics could not be animated by simple classical algorithm

animations but the animations could be defined by the complex numbers (amplitudes) and

probability distributions calculated during the course of the quantum algorithm‟s execution.

QuAL‟s initial design would incorporate text and graphical chart representations showing

algorithm progress described by Wallace and Narayanan‟s (2001) pseudocode, highlighting each

statement as it progresses through its operations, using a bar chart to represent amplitude changes

and a line chart plotting the dynamic activity of the probability distributions. Textual changes are

incorporated into this initial design to display important concepts associated with specific

quantum algorithm sorting processes.

 QuAL‟s interface was designed to provide a clearer, more accessible representation of the

information and interactions occurring in the animations. Different colors portray the dynamic

changes occurring with the probabilities and the color red was used to highlight the „marked‟

amplitude. A speed control slider provides the user with a chance for slowing or speeding up of

the animations and moving the control to the left end will slow the speed enough to follow each

animation systematically. Multiple views can be confusing but the user can gain an appreciation

64

for the algorithm‟s processes by examining one view at a time and then a combination as

animator understanding increases. The input window is non-editable in this initial prototype to

control qubit register growth, future versions will allow user input. The interface background

colors white, light grey and blue are used to provide a calm learning environment as quantum

concepts can be frustrating to learn.

QuAL: Design and Documentation

 The programming design of QuAL used an object-oriented development approach (OODA),

which followed the traditional five phases of analysis, specification, design, implementation, and

evolution. These phases provided feedback into one another in an iterative approach as changes

in design and specifications were required during implementation. Figure 7 provides a diagram

of this iterative process:

 Figure 7: OODA Process

65

During the OODA process, the Object-Oriented application framework was used to guide the

development of QuAL‟s graphical user interface (GUI) using the Java programming language.

(Laszlo, 2002) furnishes a survey of framework characteristics stating one of the main benefits of

using object-oriented code is its support for reuse. Other benefits of using a framework for the

development of GUI-based programs are:

1. Frameworks provide generic components allowing the developer to focus on other

application features.

2. The developer will customize the framework by adding application-defined classes that

connect to the framework.

3. Frameworks are responsible for flow of execution focusing the development effort on

other design elements.

4. The framework assists the development process by defining interfaces for components

providing the developer with a mechanism for customizing new components but still may

use the components provided by the framework.

5. The framework may contain design patterns.

66

QuAL’s Class Diagrams and Summaries

 Figure 8 shows several of QuAL‟s interesting animation classes. This class diagram

generated with Dia, represents the class AnimationDisplay and its subclasses

AnimationDisplayAmps, AnimationDisplayAlg, and PermutationDisplay. AnimationDisplay is

an abstract class that extends Canvas and is defined within the core package. It holds the basic

display methods for QuAL‟s animations. The three subclasses extend its parent class and further

define methods specific to the types of animations they represent. AnimationDisplayAmps

contain the methods and attributes for animating the quantum sorting algorithm‟s amplitude data,

AnimationDisplayAlg holds the methods and attributes for animating the probability data and

Figure 8: UML Class Diagram for QuAL‟s Amplitude and Probability Animations

67

PermutationDisplay will hold future methods for adding more animation specific to the different

permutations. Appendix K provides a complete UML class diagram containing all of QuAL‟s

classes and their relationships.

 The next class diagram displayed in Figure 9 shows the parent and child classes responsible

for the control of the animation and main graphical user interface.

QuSort extends AnimationAlgorithm to control the coordination of the different animation views

Figure 9: UML Class Diagram of Animation Control and GUI Classes

68

and contains the initial setup for the main graphical user interface. It initializes methods in the

parent class AnimationAlgorithm upon execution of the Java Applet with the location of the

textual file containing the quantum sorting algorithm‟s pseudocode and other essential starting

values. It also defines the wallaceSort method used to provide feedback and fire events when the

algorithm updates probabilities and amplitudes and sends that information to the class called

AnimationAlgorithm that coordinate the algorithms state with each of the views.

 The AnimationAlgorithm class implements runnable and SpeedChangeListener as the main

animation control class. Its methods control animation speed, determine which algorithm is

animated, and initializes the speed control, line change, and frame listeners. It contains methods

that watch for events as the algorithm‟s pseudocode highlighting is changed and coordinates the

changes of those lines of code. The initial prototype of QuAL animates the Wallace and

Narayanan (2001) sorting quantum algorithm but this system has been developed so that future

versions could quickly introduce other algorithms via the addition of new packages. The main

package core, shown in Figure 10, contains the foundational classes for the animation of

quantum algorithms. A second package core.quantSort, displayed in Figure 11, contain the

classes specific to animating the Wallace and Narayanan sorting algorithm. Additional classes

could be added to animate other algorithms by simply adding a new package and adding a

switching component to the main interface allowing the user to select between different

algorithms. Future additions to QuAL could animation other sorting algorithms or other classes

of quantum algorithms.

69

 The constructor of the AnimationAlgorithm class initializes listeners as vectors and sets up

initial values for the CodeWatcher, CodeExplain and SpeedControl classes. The

AnimationDisplay class is an abstract class that extends Canvas and its bare methods provide a

basic starting point for the graphical setup of the animations. LineChangeEvent is used to

control the movement from line to line of the highlighted pseudocode text and to coordinate the

addition of comments in the text box provided during animation execution. The CodeWatcher

Figure 10: core Package Classes

70

class implements a LineChangeListener and its methods provide updates to other classes by

exchanging messages between the classes. The SpeedChangeEvent class extends EventObject

and controls the value to increase or decrease the speed of the animation if the speed control

slider is modified during algorithm execution.

 QuAL‟s listener interfaces are implemented by several classes and provide the simple task

of maintaining the line-changing event, the speed-changing event and the future addition of

backtracking to add the reversible functionality to QuAL. The ability to go backwards is not

functional in this initial prototype but may be added to future additions to allow the user to work

backwards through algorithm execution.

 The SpeedControl class contains the layout instructions for the speed control slider and its

methods are responsible for calculating the time to sleep if the speed is increased or decreased,

adding a speed change listener or removing it, and firing a speed event when the slider is moved.

The CodeExplain class implements a LineChangeListener and contains the methods that setup

the components for the textual changes in the code text box. This class also sets the static values

for non-editable input values of “6, 2, 9, 1” which are the integers sorted by the quantum

algorithm. In future versions this class will contain the text boxes that allow the user to enter

different and additional integers to display. The LineChangeListener coordinates the changing

of the code text box with the highlighted pseudocode changes.

 In Figure 11, AnimationDisplayAlg class is responsible for the probability distribution

animation view. This class extends the abstract model class AnimationDisplay with the

implementations of paint() and updatedisplay(), coordinating changes of the probabilities with

the amplitude view and code highlighting view. It contains methods that control the

randomization of colors for the probability changes assisting the user with viewing the subtle

71

changes as the algorithm executes its code. The paint () method uses a PAD variable set to

control the height and width of the animation so that is maintains an appropriate size as the

animation changes and values increase and decrease. AnimationDisplayAmps is similar to the

AnimationDisplayAlg class except it contains the code required to display the amplitudes and

their changes during algorithm execution. The PermutationDisplay class is a bare bones class

intended to display permutations changes in future versions of QuAL.

Figure 11: core.quantSort Package Classes

72

 QuSort and QuantAL classes are the main applet classes. QuantAL contains the applet

initialization methods that start the applet with a small popup window that automatically starts

the applet but if the user stops the applet it displays a button to restart the animation if needed.

QuSort describe above extends AnimationAlgorithm and initializes classes as it coordinates the

flow of data collected from QCLDataRead.

 The data gathered during the exploratory stage provided options for quantum algorithm

development as well as classical animator information. Initially a simulator was not going to be

used in the design of QuAL but development of quantum data structures were cumbersome and

the Java programming language did not support some of the functionality required to develop

quantum algorithms. Bernhard Omer (1998) developed the Quantum Computation Language

(QCL) as part of his Ph.D. work at the Technical University of Vienna. QCL was selected due to

its easy installation in a Linux environment and since it functioned as an interpreter, starting the

application could be achieved at any location on the server by simply typing the command „qcl‟

at the command prompt.

 The data class QCLDataRead was added in order to utilize QCL. QCLDataRead‟s main

purpose is to parse the data generated dynamically as the algorithm executed its procedures.

Initially code was parsed via the Java file I/O procedures using streams and channels until it was

executed as a Java applet and web browser security issues forced a change into using the class

URL representing a Uniform Resource Locator. The URL object pointed to the file located

within the same web readable directory on the server. Using the URL class and the StringBuffer

class allowed the transfer of material to occur without security restrictions or causing browser

73

certificate failures.

 Animation mapping in QuAL uses the data-driven approach that relies on the assumption

that observing how variables of an application change provides information to the actions

performed by the underlying algorithm (Demetrescu, Finocchi, & Stasko, 2001). This method

worked well with the hidden components of quantum algorithms allowing QuAL to animate

based on capturing and monitoring data changes rather than on processing interesting events.

 QCLDataRead class parses the dynamically generated text files using a regular expression

focused on finding the amplitude and probability calculations generated by calls sent to the QCL

interpreter by a helper class called CmdExec. The CmdExec class opens an input / output stream

sending commands to QCL and recording the data retrieved as the algorithm executes its

procedures. The Wallace and Narayanan (2001) sorting algorithm was coded using QCL and

stored as a .qcl file so that the CmdExec class could easily send commands to the QCL

interpreter as strings. Typical classical algorithm animations record each step of the algorithm

results in a transition from one state to another. The state is then mapped into a visual

representation and usually shows the transitions as animations between these visualizations.

QuAL and its quantum algorithm animation is designed using a similar process but instead of

mapping the transition from one state to another it maps the data gathered by inserting a print

command into the wallace.qcl algorithm file capturing, via stream output commands, the

calculations. Data is stored in arrays by the QCLDataRead class and mapped to the animations

views. Probabilities are displayed using the plot charts and amplitudes are displayed using a bar

chart as the algorithm incorporates Grover‟s (1996) code to find the „marked‟ value. A Perl

script, called by CmdExec calculates the specific permutations of the values “6,2,1,9” and stores

them in an array. The index of the “1,2,6,9” permutation indicates a sorted element and if it

74

matches the value sent as the „marked‟ value to wallace.qcl then the animator knows the

quantum algorithm found the correct sorted solution.

 The Java Applet was compiled and runs on a Linux server running Debian 2.6.26-24. Java

version 1.6.0.20, QCL version 0.6.3 , and Perl version 5.10.0 were used to develop and execute

QuAL.

 The initial proposal research intended to include the Template Method pattern into the

design of QuAL as a method of defining an algorithm (Gamma et al., 1995). The Template

Method would have executed the algorithm, which calls one or more hook methods. The pattern

would not have achieved any benefit within the quantum algorithm environment since QCL

provided the basic algorithmic design steps and the implementation was accomplished by the

QCL interpreter.

The Case Study

 The case study was performed in stage five of this research. Walsham (1993) claims that

“the most appropriate method for conducting empirical research in the interpretive tradition is

the in-depth case study” (p. 14). In the previous section, Creswell (2003) recommends a

qualitative approach, including the use of case studies as a qualitative methodology. Yin (2003)

writes that a case study is defined as “an empirical inquiry that investigates a contemporary

phenomenon within its real-life context, especially when the boundaries between phenomenon

and context are not clearly evident” (p. 13).

 Runeson and Host (2008) provide guidelines for case study research with reference to

software engineering. They support the use of case studies claiming that it studies contemporary

phenomenon in a natural context and expand the characteristics of research methodologies by

using Robson‟s (2002) classifications of the four types of purposes for research:

75

1. Exploratory – answering the question of what is happening, creating new insights and

then generating ideas and hypotheses

2. Descriptive – portraying a situation or phenomenon

3. Explanatory – looking for an explanation of a problem

4. Improving – attempting to improve something of the studied phenomenon

Yin (2003) provides evidence that case studies are common to the fields of psychology,

sociology, political science, social work, business, and community planning. These case studies

are conducted to increase knowledge about many different entities and social behaviors or

cultural events so it seems reasonable to compare these processes to the field of software

engineering (Runeson & Host, 2008).

 This research followed the suggested guidelines of Kitchenham et al. (1995) to plan and

design, execute, and analyze the results of this case study:

1. Define the hypothesis

2. Select the pilot projects

3. Identify the method of comparison

4. Minimize the effect of confounding factors

5. Monitor the case study against the plan

6. Analyze and report the results

The main research goal was to build a quantum algorithm animator with a hypothesis that using

it as a pedagogical tool will help computer science students understand quantum computing

concepts more than lecturing to them. This case study used computer science students entering

their sophomore or junior year of school to test this hypothesis.

76

Planning: The Subjects

 This case study was carried out at Wayne State College in Wayne, Nebraska during the

summer academic semester with the participation of 20 students from a variety of Computer

Science courses. Participation in this research was strictly voluntary and none of the students

were currently enrolled in classes instructed by this researcher. The participants were mainly

male computer science majors within their first or second year as a major. This gender ratio is

typical of many computer science courses taught here at Wayne State College. Participation was

on a voluntary basis, and motivated by the prospect of curricular improvement.

Planning: The Object

 QuAL is the developed quantum algorithm animator and will be the object used to determine

if students learn more about quantum concepts than students who just listen to a quantum

computing lecture. The case study aims at answering the following research questions:

1. Will using QuAL provide better post-test results?

2. Will the students consider QuAL helpful or user-friendly?

3. What quantum concepts will both groups grasp and what concepts will be improved by

using QuAL?

Planning: The Project

 Twenty students volunteered their time to participate in this case study. Pre-test containing

questions about initial quantum computing and algorithm knowledge, began the study with every

student taking the same test at the same time. A quantum computing lecture followed that

presented a brief overview of basic quantum mechanical principles, quantum computing

concepts, classical versus quantum comparisons, and information about foundational quantum

algorithms. Students did not know which group they would be assigned to until the lecture was

77

completed in order to partially minimize the effect of confounding factors. Once they were

assigned a group letter A or B, they were asked to move to a common side of the lab. Group B

students were asked to leave the room for a short break while Group A students completed the

post-test and exit survey. Once Group A finished completing the documents they were asked to

leave the lab and Group B members were asked to return. Group B members used the QuAL

tutorial and were allowed to interact with the animator and ask questions before taking the post-

test. No time limit was specified and most students used another hour to interact with QuAL and

ask questions about its operations. Group B was then asked to complete the post-test and exit

survey. A hypothesis for this research was that algorithm animations should assist student

learning so Group B students should achieve better scores on the post-test.

Execution: Methods of Comparisons

 The comparisons were accomplished by using the pre-tests to determine initial quantum

computing knowledge and comparing them with their specific post-test results. Data was also

gathered comparing Group A pre-test / post-test results to Group B‟s pre-test / post-test results.

Exit survey results were used to assess aesthetic, interface, and other helpful information about

their experiences with QuAL.

Execution: Minimize the Effects of Confounding Factors

 Knowledge of group assignments was addressed only after the pre-test and lecture was

completed. This should minimize knowledge or assumption of group assignments that might

introduce errors. Using summer session students who volunteered provided a normal

distribution of student representation to minimize the effect of differences in response variables.

A confounding factor that may introduce issues is the fact that Group B was not able to learn

about the tool and evaluate the tool in separate activities.

78

Execution: Monitor the Case Study against the Plan

 The study‟s progress and results were compared to the plan. The case study was executed

correctly with no external factors causing result bias. All student volunteers remained as planned

and executed the required steps as described, no changes were recorded.

Analysis: Data Collection

 The results of this case study are presented in the next Chapter of this report. Collection of

the data was accomplished by gathering the pre-tests / post-tests and exit survey once both

groups completed them. Copies of the exit survey and the corrected pre / post-test are found in

appendix F and G respectively. The tests contained all the same questions and were divided into

the following four sections:

1. Basic quantum computing knowledge: questions 1,5,9,13,17

2. Quantum states: questions 2,6,10,14,18

3. Quantum sorting: questions 3,7,11,15,19

4. Quantum algorithms: questions 4,8,12,16,20

These sections were used to determine knowledge of a specific quantum concept in order to

determine and cross-reference concept learning. Test questions were crafted based on findings

from the exploratory study using questions common to classical algorithm animations and from

research material presented to introduce quantum concepts. No partial credit was given as all

questions have only one right answer. All the questions in the tests were multiple choice and

were constructed to measure understanding of the concepts presented in the lecture. Both groups

answered the exit survey but Group A only answered the first four questions. Group B answered

all the questions, as 5 – 14 were specific to QuAL.

79

Summary

 The design of the quantum algorithm animator (QuAL) was guided by data collected during

the exploratory stage of this study. Several of the concerns addressed during the design and

development stage, were to provide a clear mapping between accumulated data and animations,

clearly illustrating the most noticeable aspects of the system, and reduction of complexity.

 QuAL was implemented using a variety of methods including textual annotations, color,

movement, multiple views, and code highlighting. All of QuAL‟s animations were designed to

expand students‟ knowledge of quantum computing and entice interest in quantum algorithms.

 The case study was performed at Wayne State College in Wayne, Nebraska and results were

compiled and assessed. All of the data was collected as written test results then tabulated and

graphically presented using PASW Statistics 18 release 18.0.0 and Microsoft Excel.

80

Chapter 4

Results

Introduction

 This chapter covers an in-depth look at QuAL‟s animations focusing on how they work, and

how they illustrate the different concepts of quantum computing. The design and presentation of

these animations were influenced by the exploratory study of past and present classical algorithm

animators and on prior quantum computing work. The details of the design of these animations

and QuAL‟s inner Java code interactions are given in Chapter 3.

 QuAL was used in the case study introduced in Chapter 3 and the details of that study are

analyzed and presented in this section. Students were divided into two groups with both groups

listening to the quantum computer lecture and only one group using the animator. The

instructional framework in which the students preformed the case study work was organized to

simulate a common classroom setting at Wayne State College. Typical classroom diversity

would be higher male to female ratio and would include lecture, lab, and time for questions. The

case study volunteers were all 18 years or older and majored in computer science entering either

their sophomore or junior year in the program.

 The quantum sorting algorithm animated was Wallace and Narayanan‟s (2001) algorithm

that used principles of Grover‟s (1996) foundational searching quantum algorithm to locate the

permutation matrix that represented an ascending sort order of four integers. The sorting

problem should be a familiar classical concept to first or second year computer science students

who should have a preliminary knowledge of the classical approach.

81

The Quantum Algorithm Animator (QuAL)

 Quantum Sorting Algorithm

 Wallace and Narayanan (2001) proposed an interesting method for sorting integers based on

superpositional permutation searching, which uses Grover‟s (1996) foundational quantum

algorithm‟s principles. The algorithm takes as input an unsorted list of n items in arbitrary order

and outputs a sorted list of n items in a sorted sequence. The method used by Wallace and

Narayanan‟s algorithm is a derivative of Grover‟s unstructured search algorithm with the

assumption that a quantum gate Q, which implements the function f(x) is defined as:

 , 0 x, (x)F xQ f

In a classical sort algorithm, a common procedure would be to inspect each integer and rearrange

them based on a specific sort solution into a final sorted order. This algorithm uses an alternative

approach using quantum mechanical principles to recast the sort process as a search for a

particular permutation sequenced in the desired sort order. As an example, the following table is

a listing of all the permutations of the integers 3,6,1,8:

3 6 1 8 3 6 8 1

3 1 6 8

3 1 8 6

3 8 6 1

3 8 1 6

6 3 1 8

6 3 8 1

6 1 3 8

6 1 8 3

6 8 3 1

6 8 1 3

“1 3 6 8”

1 3 8 6

1 6 3 8

1 6 8 3

1 8 3 6

1 8 6 3

8 3 6 1 8 3 1 6

8 6 3 1

8 6 1 3

8 1 3 6

8 1 6 3

The number of permutations on a set of n distinct integers is given by n factorial (n!) so in this

example with four integers there are 4! = 24 permutations of {3,6,1,8}. The marked permutation

Table 1: Permutations of 3,6,1,8

82

illustrated above in quotes is the sorted permutation as its ordered set is {1, 3, 6, 8}.

 Grover (1996) used quantum principles to produce a drastic improvement in searching an

unstructured database for a specific item or multiple items. The key principle to Grover‟s faster

search is the quantum principle of superposition. This quantum speedup occurs because a

quantum computer can exist in more than one state at a time and in Grover‟s case search

different parts of a database at the same time. A quantum computer would need only 1,000 steps

to find a correct solution in a database with a million entries since

 n N

where n is the number of steps needed by Grover‟s algorithm and N is the number of items in an

unstructured database.

 Grover‟s algorithm starts out by initializing a quantum register into a superposition of all

possible items in a database. Observing the register at this point would reduce the probability of

selecting the right answer although the register contains the right answer. Instead, Grover‟s

algorithm involves a sequence of quantum operations on the register‟s state similar to the wave

phenomena in quantum physics, that is that all the desired results will interfere constructively

and all the others will interfere destructively cancelling each other out. By manipulating the

phases using quantum computing operations, it‟s possible to obtain an estimate of the mean,

derived from the quantum state of the entire system, in fewer steps than other algorithms.

Although Grover‟s algorithm requires a quantum computer, these operations can be simulated on

a conventional computer as this research has done by using the Quantum Computational

Language (QCL).

 Wallace and Narayanan‟s (2001) algorithm integrates Grover‟s procedures into their sorting

algorithm when searching for the marked sorted permutation. The database described by

83

Grover‟s algorithm becomes a list of all n factorial permutations where one permutation

represents a sorted list of integers. The listing of their quantum sorting algorithm can be found in

the appendixes as well as in screenshots of the code highlighting view of QuAL. The quantum

sorting algorithm starts off by initializing the number of qubits and iterations required to find a

solution. Qubits were defined in Chapter 2 of this final report as the basic building blocks of

quantum information. The maximum number of permutations determines the number of qubits

required to sort four integers. Since 4! = 24 and 24 is not a power of two, the setup for QuAL

will have to include 52 or 32 values in order to hold all of the permutations required to animate

the sorting of four integers. The number of iterations is defined as 2n times. It has been

proven that this is the number needed to provide the best possible solution as running the

algorithm more times will reduce the probability of finding the correct solution as well as

running it less times (Yanosfsky & Mannucci, 2008). Once these values are initialized two

quantum registers are created to store the superpositional permutations and to hold temporary

values during the quantum operations. The Wallace and Narayanan (2001) algorithm begins

using Grover‟s (1996) principles by creating a superposition containing all the possible

permutations of the original four integers {6,2,1,9} with their initial states (amplitudes) equally

set to 1/ 32 or 0.17678. Superposition is created by using a QCL external subroutine creating

a Hadamard gate, which can be generalized to:

/2 (,):| 2 (1) |

n

n
n i j

j B

H i j

The Hadamard gate is a generalized qubit rotation and defined by the transformation matrix:

84

1 11

1 12
H

The QCL syntax looks like this (Oemer, 1998):

 extern operator H(qureg q); // Hadamard gate

and sets the predefined qubit register q into a superposition of states. The main loop begins by

running the query function. Figure 12 contains QCL‟s predefined query function for Grover‟s

operations:

This query function allows formulation of the problem within the realms of classical boolean

logic to solve the equation f(x) = 1. If the desired results are found, the quantum NOT gate

interferes constructively, if they are not the desired results interference occurs destructively

cancelling each other out and increasing the probability of a correct solution. The Not() function

flips the value of a bit while the CNot (f, x) function tests the value of x and if it‟s “1”, it flips the

value of f. The main loop of Grover‟s algorithm utilizes two other predefined procedures from

QCL, a controlled-phase-gate:

,:| , | ,x yCPhase x y i x y

qufunct query(qureg x,quvoid f,int n) {

 int i;

 for i=0 to #x-1 {

 // x -> NOT (x XOR n)

 if not bit(n,i) { Not(x[i]); }

 }

 CNot(f,x); // flip f if x=1111..

 for i=0 to #x-1 {

 // x <- NOT (x XOR n)

 if not bit(n,i) { !Not(x[i]); }

 }

}

Figure: 12 QCL‟ s query

function

85

and a diffusion operator:

 | |ij

ij

D i d j

 The CPhase () function takes a classical floating point number as its first operator and a qubit

as its second argument. For this sorting quantum algorithm, the code will use a predefined

constant pi as the floating point number and one of the qubit registers as the second argument.

CPhase (pi, f) will alter the amplitudes of the machine basis states where f is |1 multiplying

them by cos sinie i = -1, which flips the sign of the |1 component.

 The diffusion operator uses the Hadamard Transform and the conditional phase rotation to

perform another main quantum operation used by Grover. This operation is referred to as

inversion about the mean or inversion about the average (Yanofsky & Mannucci, 2008). This

operation boosts the separation of phases in which amplitudes from the unmarked element are

transferred to the marked element. Yanofsky and Mannucci (2008) provide a good example

explaining this operation in terms of a sequence of integers. Suppose we have five integers: 51,

37, 15, 20, and 72. The average of these integers is 39. We can represent these numbers as an

image like this:

Figure 13: Integers and their Average

 51

 37
 15 20

 72

 39

86

 The image displays the principle that the average is the number such that the sum of the

lengths of the lines above the average is the same as the sum of the lengths of the lines below.

Grover‟s average about the mean then changes the sequence to a new condition where each

element of the original sequence above the average would be the same distance from the average

only below the line. This is also true for the elements below the line changing to their

appropriate distance from the average but above the line. Mathematically we are simply

inverting each value around the mean calculating them like this: 51 is considered to be 39 – 51 =

-12 units away from the average so then by adding 39 to -12 we get the new element 27. The

next element 37 would then become 39 + (39 – 37) = 41. This is the new image displaying all

the changed elements:

Grover has formalized this process as 2v v a with the average of the sequence remaining at 39

but the sequence changes to 27, 41, 63, 58 and 6. By combining the phase inversion and the

inversion about the mean, the whole process becomes an effective operation separating the

amplitude of the marked state from the unmarked states.

 27

 41
 63 58

 6

 39

Figure 14: Average about the mean

87

 The procedure wallace () was created from the grover () procedure predefined by Omer

(1998) as:

QuAL‟s wallace () is the main function stored in the wallace.qcl file executed by QuAL to

output data captured by CmdExec.java. As the data is calculated, QuAL utilizes the appropriate

procedure wallace(int n) {
 int l = 5; // no. of qubits
 int m=ceil(pi/8*sqrt(2^l)); // no. of iterations
 int x;
 int i;
 qureg q[l]; //setup qubit registers q and f
 qureg f[1];
 print "qubits:",l,":",m,":iterations";
 {
 reset;
 H(q); // prepare superposition
 print "Initial Amps:";
 dump;
 print "Initial Probs:";
 dump q;
 for i= 1 to m { // main loop
 query(q,f,n); // calculate C(q)
 print "Pass#:",i,":probs:";
 dump q;
 CPhase(pi,f); // negate |n>
 !query(q,f,n); // undo C(q)
 print "AfterNegate:Amps:";
 dump;
 print "AfterNegate:Probs:";
 dump q;
 diffuse(q); // diffusion operator
 print "Diffusion:Amps:";
 dump;
 print "Diffusion:Probs:";
 dump q;
 }
 measure q,x; // measurement
 print "measured:",x;
 } until x==n;
 reset; // clean up local registers
}

Figure 15: wallace () procedure

88

amplitudes and probabilities to animate them in action displaying the increase in probability of

the marked item and showing the phases of Grover‟s inversion about the mean operations.

QuAL’s Animations

 QuAL contains multiple views of the quantum sorting algorithm‟s operations. The first

view is the textual display of Wallace and Naraynan‟s algorithm with the executing line

highlighted to provide the user with an illustration of moving from statement to statement as the

animations change. Here is a screenshot of the textual view:

Figure 16: Code Highlighting View

89

The highlighted code is line number 12 in this screenshot. The highlighting moves from

statement line to statement line as the algorithm executes the code and loops until the initialized

value ends the procedures and the value is measured. The animator is setup to continue looping

until the user exits the program. This allows the user a chance to consider all views as they

execute or change the speed for faster or slower viewing.

 The next view is the animation of the probability distributions:

This view provides a look at the algorithm‟s probability distribution as each point represents a

different basis state. Since we initialized 5 qubits we see 32 or 52 values displayed in this

animation sorting four integers. As stated above, recall that the amplitudes start out with the

same value 1 divided by the square root of the number of basis states or 1/ 32 in this initial

setup and the probability of being in state |1 is |amp²| so the probabilities are initialized to

0.031249 at the start of the algorithm‟s execution. As the phase inversion and inversion about

the mean‟s operations continue and new values are calculated the amplitude of the marked basis

state will be amplified and the probability of that state will also increase as shown in the

Figure 17: Probability Distributions

90

screenshot above. Different colors portray the changes as the algorithm loops through the

operations and the probability spikes. The animator is limited to sorting four integers at this

point as sorting more would require 5! = 120 or 6! = 720 values needing 72 or 128 and 102 or

1024 qubits respectively and would require more space allotted for this view or smaller visuals.

 The amplitude view provides a look at Grover‟s inversion about the mean as it provides the

user with a demonstration of the different phases of that operation. The first animation is shown

here:

This animation has all the amplitudes initialized to equal values with the red bar indicating the

marked amplitude. In a conventional computer the state of the machine is a single string of ones

and zeros, but the state of a quantum computer is a vector with components for every possible

string of ones and zeros. These strings of ones and zeros form the basis for a vector space and in

this first amplitude animation, this machine state is captured by QuAL with the following vector

space:

Figure 18: Initial Amplitudes

91

The next animation of the amplitudes exhibits the negation phase where CPhase() has flipped

the marked amplitude shown in Figure 20 with Figure 21 containing the represented data:

: Initial Amps:

: STATE:

0.17678 |0> + 0.17678 |1> + 0.17678 |2> + 0.17678 |3> + 0.17678 |4> + 0.17678 |5>

+ 0.17678 |6> + 0.17678 |7> + 0.17678 |8> + 0.17678 |9> + 0.17678 |10> + 0.17678

|11> + 0.17678 |12> + 0.17678 |13> + 0.17678 |14> + 0.17678 |15> + 0.17678 |16> +

 0.17678 |17> + 0.17678 |18> + 0.17678 |19> + 0.17678 |20> + 0.17678 |21> +

0.17678 |22> + 0.17678 |23> + 0.17678 |24> + 0.17678 |25> + 0.17678 |26> +

0.17678 |27> + 0.17678 |28> + 0.17678 |29> + 0.17678 |30> + 0.17678 |31>

Figure 19: Initial Vector State

Figure 20: Negation Phase

92

 Figures 22 - 29 exhibit the animation as the algorithm calculates the average of the

amplitudes and flips the marked amplitude using the formulas defined by Grover‟s algorithm.

The series is animated by QuAL and runs for three iterations before repeating the entire

procedure. The corresponding probabilities run concurrently exhibiting the elevation of the 14
th

state with every iteration of the loop.

: Negate Amps:

: STATE:

0.17678 |0> + 0.17678 |1> + 0.17678 |2> + 0.17678 |3> + 0.17678 |4> + 0.17678 |5>

+ 0.17678 |6> + 0.17678 |7> + 0.17678 |8> + 0.17678 |9> + 0.17678 |10> + 0.17678

|11> + 0.17678 |12> + 0.17678 |13> - 0.17678 |14> + 0.17678 |15> + 0.17678 |16> +

0.17678 |17> + 0.17678 |18> + 0.17678 |19> + 0.17678 |20> + 0.17678 |21> +

0.17678 |22> + 0.17678 |23> + 0.17678 |24> + 0.17678 |25> + 0.17678 |26> +

0.17678 |27> + 0.17678 |28> + 0.17678 |29> + 0.17678 |30> + 0.17678 |31>

Figure 21: Negate Phase Data

Figure 22: Calculating the Average

93

Figure 23: Amplification

Figure 24: Repeat Negate

94

Figure 25: Repeat Average

Figure 26: Repeat Amplify

95

Figure 27: Final Negate

Figure 28: Final Average

96

 The final components of QuAL provide a textual representation of important concepts

enhancing the two animation views and code highlighting. The input box is non-editable and

displays the initial set {6,2,1,9} representing the integers in an unsorted permutation and the

speed control provides the ability to change the speed of all the views.

Case Study Results

 The main goal of this research was to develop a quantum algorithm animator. A secondary

goal was to use it in an educational setting with computer science students to investigate its

usefulness in learning about quantum concepts and to collect feedback about its interface and

animations. QuAL was used by 11 computer science students in a case study that took place at

Wayne State College in Wayne, NE. Twenty students participated in the study.

 Common computer science teaching instruments will typically include lectures with or

without visuals, textbooks, and lab exercises or experiments. Algorithm animators have been

added to this list of tools and have become an effective means of presenting visualizations of

algorithmic concepts to students (Stasko, 1997). Badre et al. (1991) performed a survey of

Figure 29: Final Amplification

97

computer science instructors and found out that 81% of these instructors use at least one of these

methods to teach algorithm principles to students. Urquiza-Fuentes and Velazquez-Iturbide

(2009) in their survey of successful algorithm animation systems, discovered in their

experiments that viewing animations can improve knowledge acquisition but animation systems

should include additional text or narrative contents.

 This study used QuAL in an educational setting to validate the hypothesis that visualizations

are beneficial pedagogical tools when using them to teach quantum algorithm concepts. The

hypothesis was that students would learn more effectively using QuAL than from simply

listening to a lecture, as indicated by their performance in pre-tests and post-tests. This research

compared student performance after they interacted with QuAL and listened to a quantum

computing lecture that included some visualizations but no animation. Two groups were formed

after the lecture material was presented to the twenty participating students with Group A taking

the post-test, exit survey only, and Group B interacting with QuAL and then taking the post-test

and exit survey.

 The animator was developed as a Java applet, which is a special kind of Java program that a

browser enabled with the Java Plug-in software can run. This method allowed students to access

QuAL from any location with Internet access. The case study was presented to students in the

Computer Technology and Information Systems (CTIS) lab located at Wayne State College and

accessed QuAL‟s code residing on the CTIS server. This method would provide beneficial

results for any educational setting to allow portability and access from any computer running any

operating system. The lab computers are running Microsoft Windows XP and the subjects were

allowed to use any browser of their choice. Firefox, Internet Explorer, and Chrome are the

browsers installed on all of the lab computers. To access QuAL during the case study, Group B

98

was instructed to open a browser and type in the following URL:

 http://bst-lab-net.wsc.edu:280/~lnichols/QuAL

 Appendix C contains the data recorded from grading the pre-tests taken by all twenty

students. The subjects were given one ID number when they entered the lab, labeling all their

material ranging from 831001 – 831020. The subject ID number is in the first column with the

question numbers in subsequent columns. The number one was placed in the row when a subject

answered a question correctly with the total number correct at the end of each row. The total

number at the end of each column contains the correct answers for each question. Figure 30

provides an overview of the correct answers:

Group A and Group B results divide the post-test data. Appendix D provides an overview of

both Group A and B post-test results. Figure 31 displays an overview of the post-test correct

answers:

0 5 10 15 20

1

3

5

7

9

11

13

15

17

19

Pre-Test

Pre-Test

Figure 30: Pre-Test Correct Answers

http://bst-lab-net.wsc.edu:280/~lnichols/QuAL

99

Figure 32 displays Group A‟s pre-test / post- test comparison scores:

0 5 10 15 20

1

3

5

7

9

11

13

15

17

19

Post-Test

Post-Test

0% 20% 40% 60% 80%

1

2

3

4

5

6

7

8

9

Post-Test Score

Pre-Test Score

Figure 31: Post-Test Correct Answers

Figure 32: Group (A) Pre-Test / Post Test Comparisons

100

Figure 33 displays Group B‟s pre-test / post-test comparison scores:

Data tables for both Group A and Group B‟s pre-test and post-test scores are shown in the

following Tables 2 and 3:

QuAL Case Study
 Group A Pre-Test Score Post-Test Score Improvement

831001 25% 60% 35%

831002 45% 65% 20%

831007 25% 40% 15%

831008 50% 50% 0%

831010 65% 55% -10%

831012 60% 55% -5%

831014 45% 45% 0%

831016 45% 45% 0%

831018 35% 25% -10%

Mean 44% 49% 5%

Median 45% 50% 0%

0% 20% 40% 60% 80% 100%

1

2

3

4

5

6

7

8

9

10

11

Post-Test Score

Pre-Test Score

Figure 33: Group (B) Pre-Test / Post Test Comparisons

Table 2: Group (A) Pre-Test / Post-Test Data

101

QuAL Case Study
 Group B Pre-Test Score Post-Test Score Improvement

831003 55% 55% 0%

831004 45% 35% -10%

831005 35% 35% 0%

831006 20% 55% 35%

831009 60% 60% 0%

831011 65% 35% -30%

831013 55% 70% 15%

831015 50% 25% -25%

831017 40% 60% 20%

831019 60% 70% 10%

831020 75% 80% 5%

Mean 51% 53% 2%

Median 55% 55% 0%

 Examining the preliminary data shows a slight increase in the mean post-test score taken by

Group B as opposed to the mean post-test score of Group A, with only a 2% improvement in pre-

test versus post-test scores. Group A results show a 5% improvement in pre-test versus post-test

scores. Further examination using the dependent t-test statistical process produces the following

results:

Table 3: Group (B) Pre-Test / Post-Test Data

102

QuAL Case Study

t-test: Two-Sample Assuming Equal Variances

 Group A Post-Test Group B Post-Test

Mean 9.777777778 10.54545455

Variance 5.694444444 12.67272727

Observations 9 11

Pooled Variance 9.571268238
 Hypothesized Mean Difference 0
 df 18
 t Stat -0.552072677
 P(T<=t) one-tail 0.293844216
 t Critical one-tail 1.734063592
 P(T<=t) two-tail 0.587688432
 t Critical two-tail 2.100922037

Analysis of the t-test data using the following steps provides a similar assumption. The null

hypothesis asserts that Group A post-test scores will be equal to or show no difference when

compared to Group B post-test scores or 0 1 2:H . The alternative hypothesis asserts that

Group A post-test scores will be lower than Group B post-test scores or 1 1 2:H . The above

data states that t= -0.552, df=18 so we could reject 0H if the value of t is <= -1.734. The t value

is not less than the t Critical one-tail value therefore we cannot reject our null hypothesis

suggesting that there is not sufficient enough evidence to claim that Group B benefited more by

using QuAL. The mean post-test scores are slightly higher so some impact may have occurred

but a significant improvement was not found in this study.

Table 4: t-Test Results

103

 A comparison of exam questions looking for a particular concept improvement provided the

following data shown in Table 5:

QuAL Correct Answers

Case Study Pre-Test Group A Post-Test Group B Post-Test Total Two Groups

1 7 2 6 8

2 12 8 9 17

3 14 4 2 6

4 8 6 7 13

5 7 3 8 11

6 11 6 8 14

7 14 7 3 10

8 11 8 9 17

9 11 4 6 10

10 14 6 9 15

11 16 3 4 7

12 8 4 6 10

13 12 5 7 12

14 15 4 8 12

15 7 2 2 4

16 5 4 3 7

17 12 2 6 8

18 5 2 2 4

19 4 6 9 15

20 7 2 2 4

Table 5: Question Group Comparisons

104

This data was used to compare the sections defined in the case study design and shown here in

Table 6:

QuAL Case Study

Totals

Pre-Test Post-Test

Section A Basic QC Knowledge 1,5,9,13,17 49 49

Section B Quantum States 2,6,10,14,18 57 62

Section C Classical / Quantum Sorting 3,7,11,15,19 55 42

Section D Quantum Algorithms 4,8,12,16,20 39 51

The above data suggests that basic quantum computing knowledge was common to the students

before the listening to the lecture or using QuAL but participation in the case study improved

their knowledge of quantum states as well as quantum algorithms. This data was collected to

provide feedback for potential improvement areas in future versions of QuAL focusing on the

conceptual lessons rather than the aesthetics of its features. Figure 34 provides a visual

representation of the data from Table 5:

0 10 20 30 40 50 60 70

Section A

Section B

Section C

Section D

Post-Test

Pre-Test

Table 6: Section Results

Figure 34: Pre-Test / Post-Test Question Comparisons

105

Figure 35 provides a comparison of post-test results between Group A and Group B students.

The final data collection gathered during this case study was acquired by asking the students to

complete an exit survey. The exit survey given to the subjects can be found in Appendix F with

the data results found in Appendix E. This survey asked questions concerning the material

presented during the lecture and about the use of QuAL as well as asking the user to type in

additional comments. Most users found the lecture material very challenging but found it

increased their interesting in quantum computing. Group B answered the questions concerning

the use of QuAL with 72% finding the interface easy to use, 92% found the features useful for

understanding quantum algorithms, and 100% of the users thought it supplemented the lecture

material. Other interesting findings included 90% of the users thought that the animator

increased their basic algorithmic knowledge and 82% agreed that it increased their interest in

quantum computing. Some of the consistent comments made by users of QuAL were that

Section C (the view that animated the amplitudes) could display longer. Several thought it

blinked too quickly from view not giving them enough time to concentrate on its principles.

0 10 20 30 40

Section A

Section B

Section C

Section D

Group B

Group A

Figure 35: Group A / B Question Comparisons

106

Others thought the animator was helpful and would like to spend more time using it and about

quantum computing concepts.

Summary of Results

 The research goal of developing a quantum algorithm animator was actualized by the

development of QuAL as described in this section. Java classes interacted with the quantum

simulator QCL to animate the algorithm‟s operations using a data-driven approach. Wallace and

Narayanan‟s quantum sorting algorithm promoted the concepts of quantum computing during

execution captured and displayed by QuAL. Probability distributions and amplitudinal changes

were mapped to views that provided a graphical representation of the interesting data structures

of the algorithmic code. The sorting quantum algorithm‟s state changes were reflected in the

graphical interpretations of QuAL‟s code as it ensured consistent communication by all views

including the highlighted code view. Although this research used many of the exploratory

study‟s findings of successful features and operations, QuAL is still only an initial prototype of a

quantum algorithm animator pedagogical tool. Interface concerns, adding features and student

comments after usage will be a topic for future research.

 To summarize the overall case study findings, small gains were found in the mean scores of

Group B‟s post-test results but t-test results found them to be insufficient enough to claim

without a doubt that QuAL assisted with quantum computer learning. There were key findings

within quantum concept learning but several perplexing concerns emerged from the final

tabulated results. Several students did well in pre-test scores but dropped drastically in post-test

scores in both groups. All materials used by this case study as well as some of QuAL‟s code can

be found in the Appendix section of this final report.

107

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

 The primary goal of this research was to develop a quantum algorithm animator. A

secondary goal to use it in an educational setting was realized to gain information about how to

improve it and how effectively it could be used to teach quantum concepts to computer science

students. Furthermore, a hypothesis was proposed based on the success found by classical

algorithm animators, that QuAL would improve quantum concept learning when used as a

pedagogical tool along with supplementary material. The three stages of this research were

undertaken to gather information about classical algorithm animators and quantum concepts, use

this information to design and develop a quantum algorithm animator, and then use QuAL as a

pedagogical tool.

 The sorting quantum algorithm used by QuAL and developed by Wallace and Narayanan

(2001), provided an elegant solution to the sorting problem using a derivative of Grover‟s (1998)

foundational quantum algorithm. Grover‟s algorithm provides an efficient solution to database

searching and Wallace and Narayanan incorporate these principles into their sorting algorithm

altering a search solution into a search then find the correctly sorted permutation solution.

Quantum algorithms can be challenging to learn but comparing their concepts to classical

concepts assist student learning. The sort problem provided that connection between the quantum

realm and classical realm in learning quantum computing principles.

 The case study statistics show that there are no differences in performance on the post-tests

between subject groups A or B. Thus, the addition of a quantum algorithm animator offers no

108

significant performance gains over presenting only a quantum computing lecture. The research

hypothesis had predicted gains in the group using the animator, but the t-test stats showed a

different interpretation. The null hypothesis could not be rejected therefore no appreciable

difference was measured in the post-tests of the two subject groups. This does not mean that the

animator group did not perform better as the mean values claim, but statistically the research

cannot claim a significant difference.

 A reason for the low gains from the animator groups may have been the difficulty of the test.

Examining the pre / post-test improvement results show six students achieving lower scores on

post-tests than on the pre-tests from both groups. Did they just guess at answers on the pre-test?

Did they doubt their answers on the pre-test and „over-think‟ answers on the post-test or did

using the animator present the material differently? None of the members of either groups taking

pre or post-tests attained a perfect score. A member of the animator group scoring 80% on the

post-test achieved the best score and four out of the top five scores were achieved by members of

the animator group. The mean differences between the pre and post-test by both groups was less

than 5% so, on average, neither group had a significant change in test scores after listening to the

lecture and / or interacting with the animator.

 Another possible reason for low gains by the animator group is that the test may not have

been a good indicator of how well students understood quantum concepts. The concepts are

challenging as many of the students noted in their comments and they are new concepts to many

computer science students. The students may have heard about the quantum concepts but none

of the students in the case study had ever researched the topic beyond basic curiosity.

 An interesting finding about individual quantum concepts emerged from the data collected

concerning those five groups:

109

1. Section A: Basic QC Knowledge

2. Section B: Quantum States

3. Section C: Quantum Sorting

4. Section D: Quantum Algorithms

Basic quantum knowledge did not seem to increase but remained the same from pre-test to post-

test results. Quantum states and classical / quantum sorting had a mild increase and decrease but

questions relating to quantum algorithms increased by 13%.

 Student comments concerning QuAL were positive and constructive in nature. A prevailing

comment made by several students asked for a reduction in animation timing between views of

the quantum algorithms amplitudes. Many claimed the animator increased their interest in the

quantum computing field and stated that they would continue their own personal research. The

interface aesthetics did not receive any student comments. The animator seemed to operate

appropriately except for the timing issue mentioned in the comment section of the exit survey.

Implications and Recommendations

 QuAL is in need of some modifications before using it as a pedagogical tool in a computer

science course but this initial design has fulfilled the goal of this research. The timing issues

could be implemented quickly and the class structure is setup for the addition of new quantum

algorithms but additional testing should be used to determine whether the pre / post-tests, the

student tutorial, or the lecture material need to be adjusted. The post-test scores could have been

improved by modifying and coordinating the material or incorporating the use of QuAL into a

course where more preparation time could be dedicated to its use.

 The case study could have been modified to run over two days instead of one day. The first

day could have been dedicated to presenting the lecture material and then have one group return

110

on a second day to interact with the animator. Perhaps the timeframe and the material presented

lost some validity as student retention dropped after a long day of work or school. This could

explain the decrease in pre-test versus post-test scores recorded by both groups. The following is

a list of suggested changes gathered during this research:

1. Slow change time in amplitude animations.

2. Alternate the probability distribution animations enhancing changes in data.

3. Add more algorithms and different illustrations to provide another look at the

quantum concepts.

4. Add step button and backtracking capabilities.

5. Allow user input to change sorted integers.

Summary

 To summarize the overall findings of this research, the gains found by using QuAL in an

educational setting were slight but QuAL did provide a small advantage over just listening to the

lecture material. QuAL‟s performance during the case study was acceptable as the Java applet

executed its operations as coded without any errors or issues. It is difficult to design effective

animations especially when attempting to illustrate quantum principles and further research in

refining these designs and concepts and testing them through empirical studies of quantum

algorithm animation is recommended. Longer or more extensive studies may offer better

statistical outcomes. This research was interested in the fundamental question of whether

animations can assist students learn and understand quantum algorithms. Although case studies

such as the one performed by this research cannot answer that fundamental question, they can

supply future research with data on how students interact with different animations and provide

potential learning strategies used by students.

111

 Finally, attempting to illustrate concepts from a designer‟s perspective may not be conveyed

properly through the external representation of the animations to map into the viewers‟ internal

representation. In other words, quantum computing is a complex topic and there is no simple

means of designing effective visualizations. A main objective described by this research was to

entice students into wanting to learn more about quantum computing and QuAL has successfully

accomplished this task as shown by student comments received in the case study‟s exit survey.

112

Appendix A

Wayne State College IRB Approval

Wayne State College

Internal Review Board

1111 Main Street

Wayne, NE 68787

May 26, 2010

Lori Nicholson

IRB Proposal #49

Wayne State College

CTIS Department

Gardner Hall

Dear Lori:

I have reviewed your research proposal and find that it meets the criteria for exempt status.

Good luck on your research. It sounds like an interesting study.

Sincerely,

JoAnn Bondhus

WSC IRB Committee Member

113

Appendix B

Nova Southeastern University IRB Approval

To: Lori Nicholson

From: Ling Wing, Ph.D.

 Internal Review Board

Date: July 20, 2010

Re: Quantum Algorithm Animator

IRB Approval Number: wang06151001

I have reviewed the above-referenced research protocol at the center level. Based on the

information provided, I have determined that this study is exempt from further IRB review. You

may proceed with your study as described to the IRB. As principal investigator, you must

adhere to the following requirements:

1) CONSENT: If recruitment procedures include consent forms these must be obtained in

such a manner that they are clearly understood by the subjects and the process affords

subjects the opportunity to ask questions, obtain detailed answers from those directly

involved in the research, and have sufficient time to consider their participation after

they have been provided this information. The subjects must be given a copy of the

signed consent document, and a copy must be placed in a secure file separate from de-

identified participant information. Record of informed consent must be retained for a

minimum of three years from the conclusion of the study.

2) ADVERSE REACTIONS: The principal investigator is required to notify the IRB chair

and me (954-262-5369 and 954-262-2020 respectively) of any adverse reactions or

unanticipated events that may develop as a result of this study. Reactions or events may

include, but are not limited to, injury, depression as a result of participation in the study,

life-threatening situation, death, or loss of confidentiality/anonymity of subject.

Approval may be withdrawn if the problem is serious.

3) AMENDMENTS: Any changes in the study (e.g., procedures, number or types of

subjects, consent forms, investigators, etc.) must be approved by the IRB prior to

implementation. Please be advised that changes in a study may require further review

depending on the nature of the change. Please contact me with any questions regarding

amendments or changes to your study.

The NSU IRB is in compliance with the requirements for the protection of human subjects

prescribed in Part 46 of Title 45 of the Code of Federal Regulations (45 CFR 46) revised June

18, 1991.

114

Appendix C

Case Study Overall Pre / Post Test Results

QuAL Case Study Results Correct

Pre-Test Answers

Q-No's 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 831003

1 1 1 1

1 1 1 1

1 1

1

11

831004 1 1

1

1 1

1 1

1

1 9

831008

1 1

1 1

1 1

1 1 1

1

10

831014

1

1 1 1 1

1

1

1 1 9

831005

1

1 1 1 1 1

1

7

831009

1 1

1 1 1 1 1 1

1 1 1

1

1 13

831015

1

1 1 1 1 1 1 1

1

1 10

831002

1

1 1 1 1

1

1

1

1

9

831006 1 1 1 1 1 1

1 1 1 1

1

1

12

831007

1

1 1

1 1

5

831016

1 1

1 1

1 1 1

1

1

9

831012

1 1

1 1

1 1 1 1 1 1

1 1

12

831018 1

1

1

1 1 1

1

7

831017

1 1

1 1 1 1 1

1

8

831010 1 1 1

1 1 1

1

1 1

1 1

1 1 13

831019 1 1 1 1

1 1 1 1 1 1

1 1

12

831013 1 1

1 1

1 1

1

1 1

1

1

11

831020 1 1

1 1 1 1 1 1

1

1 1 1

1 1

1 15

831001

1

1

1

1

1

5

831011

1 1 1

1 1

1 1

1 1

1 1 1 1 13

Totals Correct Per Question 7 12 14 8 7 11 14 11 11 14 16 8 12 15 7 5 12 5 4 7

115

Appendix D

Case Study Post-Test Results

QuAL Case Study Results

Correct

Post-Test

Answers

Q-No's 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 Group A

 831010

1 1 1

1 1 1

1

1

1

1 1 11

831018

1 1

1

1

1

5

831014

1

1

1 1

1 1

1 1

1

9

831012

1

1 1

1 1 1 1 1 1

1

1

11

831001 1 1 1 1

1 1 1 1 1

1

1 1

12

831002 1 1 1 1 1 1 1 1

1 1

1 1

1 13

831008

1

1

1

1 1 1 1

1 1 1

10

831007

1 1

1

1

1

1

1 1

8

831016

1

1

1 1 1 1 1

1 1

9

Total Correct Per Question 2 8 4 6 3 6 7 8 4 6 3 4 5 4 2 4 2 2 6 2

 Group B
 831015

1 1 1

1 1 5

831013 1 1

1 1 1

1 1 1 1 1 1

1 1 1

14

831004 1

1 1

1 1

1

1

7

831005 1 1

1

1

1 1

1

7

831011

1

1

1

1

1

1

1

7

831019 1 1

1 1 1

1 1 1

1

1

1 1 1 1 14

831017

1 1 1 1 1 1 1

1 1 1

1

1

12

831003

1

1 1 1

1 1 1

1 1

1

1

11

831006 1 1 1

1 1

1 1 1

1

1

1

11

831009

1

1 1 1

1

1 1 1 1 1 1

1

12

831020 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1

1

16

Total Correct Per Question 6 9 2 7 8 8 3 9 6 9 4 6 7 8 2 3 6 2 9 2

116

Appendix E

Exit Survey Results and Comments

 QuAL Exit Survey
 Strongly Agree Agree Neutral Disagree Strongly Disagree SA A N D SD

1 12 8

60% 40%
 2 17 3

85% 15%

 3 10 7 3

50% 35% 15%
 4 11 7 2

55% 35% 10%

 5 3 6 2

27% 55% 18%
 6 5 3 3

46% 27% 27%

 7 2 4 4 1

18% 36% 36% 10%
 8 2 7 2

18% 64% 18%

 9 6 5

55% 45%
 10

1 6 4

10% 55% 35%

11

1 6 4

10% 55% 35%

12 4 5 2

36% 46% 18%
 13 2 8

1

18% 72%

10%

 14 2 8 1

18% 72% 10%

Comments:

Analogies used helped me understand the material.

Interesting concepts that challenges the conventional way of thinking and

knowledge we have.

Material can be understood with more time.

Would like to see more of the Math taking place.

Animator worked well, however, Region C did not stay visible long enough.

I prefer the images stay up longer to be able to read the explanation as well as

view the picture to understand the concepts.

Many new confusing concepts in a short amount of time.

Very confusing at first, but did understand a little of the algorithms at the end.

Section C could display longer.

I wish I had the time to learn about quantum algorithms, but you covered the

basics very well.

The lecture increased my interest to research more.

117

Appendix F

Case Study Exit Survey

Quantum Algorithm Animator
Nova Southeastern University

Dissertation Research

Lori Nicholson

Please answer the following questions as instructed.

Group A – answer questions 1 – 4 (add comments at the end of the survey). Group B – answer all questions

(add additional comments at the end of the survey).

Exit Survey ID

Member of Group (A) or (B)

 Strongly

Agree
Agree Neutral Disagree

Strongly
Disagree

1. The lecture material presented was challenging.

2. The lecture material reflected research goals.

3. The lecture material increased interest in quantum
computing.

4. The lecture material provided an organized view of
quantum computing.

Group B Only

5. The quantum algorithm animator’s interface was easy
to use.

6. The time allotted was adequate to understand the
quantum algorithm animator’s interface.

7. The time allotted was adequate to understand quantum
computing concepts presented in the lecture.

8. The quantum algorithm’s user features were useful for
understanding quantum algorithms.

9. The quantum algorithm animator supplemented the
lecture material.

10. The lecture material did not help me learn about
quantum computing.

11. The quantum algorithm animator did not help me learn
about quantum computing.

12. The quantum algorithm animator increased interest in
quantum computing.

13. The quantum algorithm animator increased basic
algorithm knowledge.

14. The quantum algorithm animator’s features were easy
to use.

118

Appendix G

Case Study Pre / Post Test

Quantum Algorithm Animator

Nova Southeastern University

Dissertation Research

Lori Nicholson

Pre-Post Study Test (Key – correct answers bolded)

Circle : Pre / Post

TestID:

Please answer the following questions to the best of your abilities:

1. In the field of quantum computing, what is superposition?

a. By measuring some qubits, others automatically reach the desired position

b. A quantum computer in many states simultaneously

c. A complex number whose absolute value squared represents a probability

2. How many quantum states can a quantum computer (unmeasured) be in at once?

a. One

b. Many

c. Seven

3. Does quantum sorting provide more efficient solutions to classical sorting?

a. In some cases

b. Never

c. Always

4. Which of the following foundational quantum algorithms could potentially break our current

encryption scheme?

a. Grover’s

b. Shor’s

c. Deutch’s

119

5. In the field of quantum computing, what is entanglement?

a. A quantum computer in many states simultaneously.

b. A complex number whose absolute value squared represents a probability.

c. By measuring some qubits, others automatically reach the desired position.

6. What happens when we measure a quantum computer while it is in superposition?

a. Nothing

b. It does not provide an output

c. It collapses to a single position

7. How can quantum sorting algorithms provide more efficient solutions than their classical

analogues?

a. Wallace and Narayanan’s solution was to exploit superposition permutation-based

representations for list searching

b. Shi uses the decision tree model to propose a more efficient solution

c. Both a and b are correct

8. A quantum computer using superposition that can search all entries of an unordered array

simultaneously and find the object in √n queries is an example of which of the following

foundational quantum algorithms?

a. Shor’s

b. Grover’s

c. Deutch’s

9. In the field of quantum computing, what is the probability amplitude?

a. A quantum computer in many states simultaneously.

b. A complex number whose absolute value squared represents a probability.

c. By measuring some qubits, others automatically reach the desired position.

120

10. The input / output of a quantum computer is the same as a classical computer, the

difference is during computation and is said to be, at times, a black box.

a. True

b. False

11. One of the basic concepts of sorting is to:

a. Search for a particular item in a listing of items

b. Place items in some order with two basic operations: compare and swap

c. Match an item with other items in the list

12. This foundational quantum algorithm demonstrates the power and usefulness of quantum

computing for factoring numbers:

a. Grover’s

b. Deutch’s

c. Shor’s

13. What is a qubit?

a. It is the quantum analogue to the classical bit and the basic unit of quantum

information.

b. It is the basic unit in a classical computer.

c. It is the quantum analogue to the classical byte.

14. The classical computer will be in either a 0 or 1 state but the quantum qubit can be in:

a. 0 or 1 or anywhere in between

b. Only 0 or 1

c. Only 1

15. A common classical sort algorithm is:

a. Bubble

b. Hirschberg’s

c. Hungarian

121

16. All quantum algorithms work with the following basic framework except:

a. System will start with the qubits in a particular classical state

b. A measurement will never take place

c. System will be put into a superposition of many states

17. The main barrier to the development of a quantum computer is decoherence. What is

decoherence?

a. The loss of purity of the state of a quantum system as the result of entanglement with

the environment.

b. It is when a qubit is in both '0' and '1' states simultaneously.

c. It is the ability of the quantum system to reach a desired outcome.

18. Any quantum state can be expressed in terms of a sum of:

a. many complex numbers

b. only one state

c. basis states

19. The quantum sorting algorithms you were shown today were commonly based on which

foundational quantum algorithm?

a. Shor’s

b. Deutch’s

c. Grover’s

20. Which foundational quantum algorithm solves a slightly contrived problem?

a. Grover’s

b. Deutsch’s

c. Shor’s

122

Appendix H

Case Study Consent Form

Consent Form for Participation in the Research Study Entitled
Quantum Algorithm Animator

Funding Source: None.

IRB protocol # TBD

Principal investigator Co-investigator
Lori Nicholson Michael Laszlo, Ph.D.
1111 Main St GH 206K 3301 College Avenue
Wayne, NE 68787 Fort Lauderdale, FL 33314
(402) 375-7017 (954) 262-2076

For questions/concerns about your research rights, contact:
Human Research Oversight Board (Institutional Review Board or IRB)
Nova Southeastern University
(954) 262-5369/Toll Free: 866-499-0790
IRB@nsu.nova.edu

Or
Institutional Review Board
Wayne State College
402-375-7000

Site Information
Wayne State College
Gardner Hall
Wayne, NE 68787

What is the study about?

You are invited to participate in a research case study. The goal of this study is to test
the comparative efficiency of a quantum algorithm animator.

Why are you asking me?

We are inviting you to participate because you are currently enrolled in Wayne State
College as a computer science or computer information systems major.

What will I be doing if I agree to be in the study?

You take a pre-study test and then attend a 30-minute lecture. After listening to a
lecture you be assigned to either Group A or Group B. Group A students will be asked

mailto:IRB@nsu.nova.edu

123

to take a 30 minute post-study exam and then fill out an exit survey. Group B students
will be asked to interact with a quantum algorithm animator for 30 minutes and then take
the post-study exam followed by an exit survey.

Is there any audio or video recording?

This research project will not include any audio or video recordings.

What are the dangers to me?

There are no identifiable risks to participating in this case study.

Are there any benefits to me for taking part in this research study?

You will learn about quantum computing concepts.

Will I get paid for being in the study? Will it cost me anything?

There are no costs to you, you will receive food, and snacks to enjoy while participating
in this case study.

How will you keep my information private?

No tests and survey instruments used in this study will require your name or any private
information.

What if I do not want to participate or I want to leave the study?

You have the right to leave this study at any time or refuse to participate. If you do
decide to leave or you decide not to participate, you will not experience any penalty or
loss of services you have a right to receive.

125

Other Considerations:

If the researchers learn anything which might change your mind about being
involved, you will be told of this information.

Voluntary Consent by Participant:

By signing below, you indicate that

 this study has been explained to you

 you have read this document or it has been read to you

 your questions about this research study have been answered

 you have been told that you may ask the researchers any study related
questions in the future or contact them in the event of a research-related
injury

 you have been told that you may ask Institutional Review Board (IRB)
personnel questions about your study rights

 you are entitled to a copy of this form after you have read and signed it

 you voluntarily agree to participate in the study entitled Quantum
Algorithm Animator

Participant's Signature: ___________________________ Date:

Participant’s Name: ______________________________ Date:

Signature of Person Obtaining Consent: _____________________________

Date: ___________________________

126

Appendix I

Case Study Student Tutorial - QuAL

Dissertation Case Study using QuAL (Quantum Algorithm Animator)
Lori Nicholson
Nova Southeastern University

Student QuAL Tutorial

1) The Interface

Region A – Is the box containing the algorithm’s text. It will highlight the appropriate
line of code as the graphics are updated with the excuted code.

Region B – Is the probability of obtaining the correct solution for f(x) = 1 or our sorted
permutation. The basis states are located on the x-axis with their related probabilites
on the y-axis.

Region C – Contains the graphical representations for the amplitudes. The amplitudes
will switch from Original -> Negate -> Average about the Means -> Flip illustrating the
different amplitudes found as the quantum algorithm computes these values.

A

B

C

D

F

E

127

Region D – This text box will provide the user with additional information specific to the
highlighted line of text in Region A.

Region E – This region will exhibit the main loop interations, the title for the appropriate
amplitude and the sequence of integers being sorted by the quantum algorithm.

Region F – This is the speed control. Moving the slider to the left will slow the
animation for easier assessment of the quantum algorithm’s operations.

2) A Sample Run of Wallace – Narayanan Quantum Sorting Algorithm (Wallace &
Narayanan, 2001)

The animator will start by highlighting the first lines of pseudocode in Section A.
These steps initialize all the variables and put the register of qubits into a superposition
of all states.

The proposed algorithm exploits the quantum principles of Grover’s foundational
algorithm using permutation-based representations for list searching.

 - Input: An unsorted list of N items in arbitrary order;
 - Output: A sorted list of N items in a specific sequence;
 - Method: A derivative of Grover’s algorithm for unstructured database search;

128

Grover’s algorithm has been proven to provide an efficient method for searching
unstructured databases by simultaneously examining multiple items in a database in
order to answer a single item query. Wallace’s algorithm utilizes these foundation
quantum principles to search a list of N! permutations, or possible orderings of the N
items, where each instance is a single permutation or possible ordering of the N items.
The ‘marked’ permutation satisfies the desired sort sequence.

In this sample run the integers 1,2,6, & 9 are submitted as an unsorted list – [6,2,9,1].
The aim behind this sample run is to use Grover’s unstructured search algorithm to carry
out an ascending sort of any unordered list by amplifying the desired state (or ‘marked’
permutation) which represents the ascending sorted list. The function used f(x) will
return the value 1 (or true) when the values are sorted in the desired output sequence
and it will return 0 (or false) otherwise.

In quantum computing, all search space operations are contained within a blackbox
therefore we measure the probability of obtaining the correct response and repeat the
algorithm typically for Grover’s solution sqrt(2^n) times. This has provided the most
efficient response. Running the algorithm too many times will lower the chances just as
running it too few times will provide a lower probability of finding the correct ‘marked’
response.

Starting a sample run:

129

The basis states are calculated with the following initial probabilities:

: Initial Probs:
: SPECTRUM q: <0,1,2,3,4>
0.03125 |0>, 0.03125 |1>, 0.03125 |2>, 0.03125 |3>, 0.03125 |4>, 0.03125 |5>,
0.03125 |6>, 0.03125 |7>, 0.03125 |8>, 0.03125 |9>, 0.03125 |10>, 0.03125 |11>,
0.03125 |12>, 0.03125 |13>, 0.03125 |14>, 0.03125 |15>, 0.03125 |16>, 0.03125 |17>,
0.03125 |18>, 0.03125 |19>, 0.03125 |20>, 0.03125 |21>, 0.03125 |22>, 0.03125 |23>,
0.03125 |24>, 0.03125 |25>, 0.03125 |26>, 0.03125 |27>, 0.03125 |28>, 0.03125 |29>,
0.03125 |30>, 0.03125 |31>

Five qubits with three interations are used as a superpostion of all states provides the
following initial amplitudes:

STATE: 6 / 32 qubits allocated, 26 / 32 qubits free
:Initial Amplitudes:
0.17678 |0> + 0.17678 |1> + 0.17678 |2> + 0.17678 |3> + 0.17678 |4> + 0.17678 |5> +
0.17678 |6> + 0.17678 |7> + 0.17678 |8> + 0.17678 |9> + 0.17678 |10> + 0.17678 |11>
+ 0.17678 |12> + 0.17678 |13> + 0.17678 |14> + 0.17678 |15> + 0.17678 |16> +
0.17678 |17> + 0.17678 |18> + 0.17678 |19> + 0.17678 |20> + 0.17678 |21> + 0.17678
|22> + 0.17678 |23> + 0.17678 |24> + 0.17678 |25> + 0.17678 |26> + 0.17678 |27> +
0.17678 |28> + 0.17678 |29> + 0.17678 |30> + 0.17678 |31>

The ‘marked’ amplitude is designated by the red bar while all the other amplitudes are
blue. This provides a graphical representation showing how the amplitude is treated
during the run of the quantum algorithm.

The main idea behind Grover’s algorithm is to magnify the amplitude of the ‘marked’
number until the probability that it will be our solution is greater then 50%. To do this
we use phase inversion and negation to find the ‘marked’ solution and then Grover’s
inversion about the mean operation. This operation is repeated until the desired
amplitude is reached.

130

This screen provides a visual of the first interation of probabiliies and amplitudes after
the Negate phase with the following amplitude values:

: AfterNegate:Amps:

0.17678 |0> + 0.17678 |1> + 0.17678 |2> + 0.17678 |3> + 0.17678 |4> + 0.17678 |5> +

0.17678 |6> + 0.17678 |7> + 0.17678 |8> + 0.17678 |9> + 0.17678 |10> + 0.17678 |11>

+ 0.17678 |12> + 0.17678 |13> - 0.17678 |14> + 0.17678 |15> + 0.17678 |16> +

0.17678 |17> + 0.17678 |18> + 0.17678 |19> + 0.17678 |20> + 0.17678 |21> + 0.17678

|22> + 0.17678 |23> + 0.17678 |24> + 0.17678 |25> + 0.17678 |26> + 0.17678 |27> +

0.17678 |28> + 0.17678 |29> + 0.17678 |30> + 0.17678 |31>

With the following probabilities:

 : AfterNegate:Probs:

 0.03125 |0>, 0.03125 |1>, 0.03125 |2>, 0.03125 |3>, 0.03125 |4>, 0.03125 |5>,

0.03125 |6>, 0.03125 |7>, 0.03125 |8>, 0.03125 |9>, 0.03125 |10>, 0.03125 |11>,

0.03125 |12>, 0.03125 |13>, 0.03125 |14>, 0.03125 |15>, 0.03125 |16>, 0.03125 |17>,

0.03125 |18>, 0.03125 |19>, 0.03125 |20>, 0.03125 |21>, 0.03125 |22>, 0.03125 |23>,

131

0.03125 |24>, 0.03125 |25>, 0.03125 |26>, 0.03125 |27>, 0.03125 |28>, 0.03125 |29>,

0.03125 |30>, 0.03125 |31>

The amplitudes squared provide the probabilities of measuring those numbers.

The next step is inversion about the mean operations. Here is a screen shot of how each

will respond to this calculation:

The dashed red line in the Amplitude graph denotes the average.

132

In this screen shot, the probabilities are spiking for the ‘marked’ solution and the

amplitude is amplified for the ‘marked’ solution after the average about the mean

operation.

 : Diffusion:Probs:

 0.023926 |0>, 0.023926 |1>, 0.023926 |2>, 0.023926 |3>, 0.023926 |4>, 0.023926 |5>,

0.023926 |6>, 0.023926 |7>, 0.023926 |8>, 0.023926 |9>, 0.023926 |10>, 0.023926

|11>, 0.023926 |12>, 0.023926 |13>, 0.2583 |14>, 0.023926 |15>, 0.023926 |16>,

0.023926 |17>, 0.023926 |18>, 0.023926 |19>, 0.023926 |20>, 0.023926 |21>,

0.023926 |22>, 0.023926 |23>, 0.023926 |24>, 0.023926 |25>, 0.023926 |26>,

0.023926 |27>, 0.023926 |28>, 0.023926 |29>, 0.023926 |30>, 0.023926 |31>

133

 These procedures are repeated three iterations for this algorithm until the final screen

shot provides:

 With the following results:

: Diffusion:Amps:

-0.05766 |0> - 0.05766 |1> - 0.05766 |2> - 0.05766 |3> - 0.05766 |4> - 0.05766 |5> -

0.05766 |6> - 0.05766 |7> - 0.05766 |8> - 0.05766 |9> - 0.05766 |10> - 0.05766 |11> -

0.05766 |12> - 0.05766 |13> - 0.94707 |14> - 0.05766 |15> - 0.05766 |16> - 0.05766

|17> - 0.05766 |18> - 0.05766 |19> - 0.05766 |20> - 0.05766 |21> - 0.05766 |22> -

0.05766 |23> - 0.05766 |24> - 0.05766 |25> - 0.05766 |26> - 0.05766 |27> - 0.05766

|28> - 0.05766 |29> - 0.05766 |30> - 0.05766 |31>

134

 : Diffusion:Probs:

 0.0033246 |0>, 0.0033246 |1>, 0.0033246 |2>, 0.0033246 |3>, 0.0033246 |4>,

0.0033246 |5>, 0.0033246 |6>, 0.0033246 |7>, 0.0033246 |8>, 0.0033246 |9>,

0.0033246 |10>, 0.0033246 |11>, 0.0033246 |12>, 0.0033246 |13>, 0.89694 |14>,

0.0033246 |15>, 0.0033246 |16>, 0.0033246 |17>, 0.0033246 |18>, 0.0033246 |19>,

0.0033246 |20>, 0.0033246 |21>, 0.0033246 |22>, 0.0033246 |23>, 0.0033246 |24>,

0.0033246 |25>, 0.0033246 |26>, 0.0033246 |27>, 0.0033246 |28>, 0.0033246 |29>,

0.0033246 |30>, 0.0033246 |31>

 Our probability is now greater than 50% so we can measure our system :

 : measured: 14
 [0/32] 1 |0>
 Checking our permutations classically – the sorted sequence is:

(0) 6 2 1 9
(1) 6 2 9 1
(2) 6 1 2 9
(3) 6 1 9 2
(4) 6 9 2 1
(5) 6 9 1 2
(6) 2 6 1 9
(7) 2 6 9 1
(8) 2 1 6 9
(9) 2 1 9 6
(10) 2 9 6 1
(11) 2 9 1 6
(12) 1 6 2 9
(13) 1 6 9 2
(14) 1 2 6 9
(15) 1 2 9 6
(16) 1 9 6 2
(17) 1 9 2 6
(18) 9 6 2 1
(19) 9 6 1 2
(20) 9 2 6 1
(21) 9 2 1 6
(22) 9 1 6 2
(23) 9 1 2 6
(24) null
(25) null
(26) null
(27) null
(28) null
(29) null
(30) null
(31) null

135

Appendix J

Wallace and Narayanan‟s Quantum Sorting Algorithm

1.0 Initialize m=1 and set lambda = 8/7 (Any value of lambda
 between 1 and 4/3) m is an arbitrary positive integer
 used to determine j and is the number of iterations
 of the main loop.

2.0 Choose j uniformly at random among the nonnegative
 integers smaller than m.

3.0 Apply j iterations of Grover's algorithm to the state
 created in 3.1.

 3.1 Take a register of qubits and create a superposition
 that contains all possible permutations of the N
 nodes. Each permutation will have the same amplitude.

 3.2 Compute F(x) on the register by applying Q (the
 quantum gate(s) that implement the specified F(x)
 function) to the register containing the superposition.

 3.3 Invert the sign of the amplitude from + to - for all x
 where F(x) = 1, i.e. for ascending ordered list
 permutation.

 3.4 Apply Grover's "inversion about the average" operator
 (as in Grover's algorithm)to increase the amplitude
 for all x with F(x) = 1.

 3.5 Repeat steps 3.2 to 3.4 so that the amplitude of those
 x where F(x) = 1 (our sorted permutation) is increased,
 and the amplitude of all other x is decreased until the
 absolute amplitude of the ascending ordered permutation
 is near 1.

4.0 Measure the register and read the result. Check
 classically that the result is an ordered list (by checking
 that it matches a sequence of a <=b < =c ... <=i(n) for
 all N items in the original list. If so - exit.

5.0 Otherwise, set m to min(lambda(m), sqrt(N)) and go back to
 step 2.0.

136

Appendix K

UML Class Diagram of QuAL

137

Reference List

Aharonov, D. (1998, December 15). Cornell University Library. Retrieved November 1,

 2010, from arXiv.org: http://arxiv.org/abs/quant-ph/9812037

Aharonov, D., & Ta-Shma, A. (2003). Adiabatic quantum state generation and statistical

zero knowledge. Proceedings of the thrity-fifth annual ACM symposium on Theory of

computing (pp. 20-29). San Diego: ACM.

Aharonov, y. D., & Zagury, N. (1993). Quantum random walks. Phys. Rev..

Ambainis, A. (2005, October 19). Cornell University Library. Retrieved January 28,

2010, from arXiv.org: http://arxiv.org/PS_cache/quant-ph/pdf/0311/0311001v8.pdf

Ambainis, A. (2000). Quantum lower bounds by quantum arguments. 32nd ACM

Symposium on Theory of Computing , 636-643.

Ambainis, A., Kempe, J., & Rivosh, A. (2005). Coins make faster quantum walks.

Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms ,

1099-1108.

Ayellet, T. (1994). Animation and visualization of geometric algorithms. Princeton

University. Available from Dissertations and Theses database.

Bacon, D., & Leung, D. (2007). Toward a World with Quantum Computers.

Communications of the ACM , 50 (9), 55 - 59.

Badre, A., Beranek, M., Morris, J., & Stasko, J. (1991). Assessing program visualization

systems as instructional aids. Georgia Institute of Techology GVU-91-23 .

Baecker, R. (Director). (1981). Sorting out sorting [Motion Picture].

Bell, J. (1964). On the Einstein-Podolsky-Rosen Paradox. Physics, 195-200.

Bennink, R. (2008). Quantum information: opportunities and challenges or "what's this

quantum stuff and what does it have to do with cyber security". Proceedins of the 4th

annual workshop on Cyber security and information intelligence research: developing

strategies to meet the cyber security and information intelligence challenges ahead (p.

27). Oak Ridge: ACM.

Brassard, G. (1997). Searching a quantum phone book. Science , 627 - 628.

Brassard, G., & Hoyer, P. (1997). An Exact Quantum Polynomial-Time Algorithm for

Simon's Problem. Proceedings of the Fifth Israeli Symposium on Theory of Computing

and Systems (ISTCS'97) .

http://arxiv.org/abs/quant-ph/9812037
http://arxiv.org/PS_cache/quant-ph/pdf/0311/0311001v8.pdf

138

Brassard, G., Hoyer, P., & Tapp, A. (1997). Quantum algorithm for the collision

 problem. ACM SIGACT News , 14-19.

Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000). Quantum amplitude

 amplification and estimation. quant-ph/0005055 .

Brown, M. (1988). Exploring algorithms with Balsa-II. Computer , 14-36.

Brown, M., & Hershberger, J. (1991). Color and sound in algorithm animation.

Proceedings of the 1991 IEEE Workshop on Visual Languages (pp. 10-17). Los

Alamitos: IEEE CS Press.

Brown, M., & Hershberger, J. (1991). Zeus: a system for algorith animation. Proceedings

IEEE Workshop in Visual Languages (pp. 4-9). Los Alamitos: IEEE CS Press.

Brown, M., & Sedgewick, R. (1974). A system for algorithm animation. Proceedings of

ACM SIGGRAPH '84 (pp. 177-186). New York: ACM.

Bryne, M., Catrambone, R., & Stasko, J. (1999). Evaluating animation as student aids in

learning computer algorithms. Computers and Education , 253-278.

Buhrman, H., & de Wolf, R. (2002). Complexity measures and decision tree complexity:

a survey. Theoretical Computer Science , 21-43 .

Buhrman, H., & Spalek, R. (2005). Quantum verification of matrix products. In

Proceedings of the 17th annual ACM-SIAM symposium on Discrete Algorithms, p.880.

Buhrman, H., Durr, C., Heiligman, M., Hoyer, P., Magniez, F., Santha, M., et al. (2001).

Quantum algorithms for element distinctness. Proceedings of the 16th Annual

Conference on Computational Complexity (CCC’01) .

Cattaneo, G., Ferraro, U., Italiano, R., & Scarano, V. (2002). Concurrent algorithms and

data types animation over the internet. Journal of Visual Languages & Computing ,

391-419.

Chen, T., & Sobh, T. (2001). A tool for data structure visualization and user-defined

algorithm animation. Frontiers in Education Conference, 31st Annual (pp. 2-7). IEEE.

Ciesielski, V., & McDonald, P. (2001). Using animation of state space algorithms to

overcome student learning difficulties. Proceedings of the 6th annual conference on

Innovation and technology in computer science education (pp. 97-100). Canterbury:

ACM.

Crescenzi, P., Demetrescu, C., Finocchi, I., & Petreschi, R. (1997). LEONARDO: a

softward visualization system. Proceedings 1st Workshop on Algorithm Engineering,

(pp. 146-155). Venice.

139

Creswell, J. (2002). Educational research: Planning, conducting, and evaluating

quantitative and qualitative approaches to research. Upper Saddle River, NJ: Merrill /

Pearson Education.

Creswell, J. (2003). Research design: Qualitative, quantitative, and mixed methods

approaches (2nd Edition ed.). Thousand Oaks, CA: Sage Publications.

Demetrescu, C., Finoci, I., & Stasko, J. (2001). Specifying algorithm visualizations:

Interesting events or state mapping? In S. Diehl, Software Visualization: International

Seminar (pp.16-30). Dagstuhl,Germany:Springer.

Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal

quantum computer. Proceedings of the Royal Society of London, Series A, (pp. 97-117).

London.

Deutsch, D., & Jozsa, R. (1992). Rapid solution of problems by quantum computation.

Proceedings of the Royal Society of London, Series A, (pp. 553- 558). London.

Dickau, R.M. (1996). Permutation Diagrams. Retrieved November 1, 2010 from

http://mathforum.org/advanced/robertd/permutation.html.

Diehl, S. (2007). Software Visualization: Visualizing the Structure, Behaviour, and

Evolution of Software. New York: Springer.

Dobkin, D. (1992). Computational geometry and computer graphics. Journal

Proceedings of the IEEE , 80 (9), 1400-1411.

Durr, C., & Hoyer, P. (1999, January 7). University of Cornell Library. Retrieved

November 1, 2010, from axtiv.org: http://arxiv.org/abs/quant-ph/9607014.

Einstein, A., Podolsky, B., Rosen, N.(1935). Can Quantum-Mechanical Description of

Physical Reality Be Considered Complete? Physical Review, pp. 777.

Emberson, P. (2002). An introduction to quantum algorithm design. Heslington:

Department of Computer Science, University of York.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of

Reusable Object-Oriented Software. Reading: Addison Wesley.

Gloor, P. (1997). Elements of hypermedia design. Boston: Birkhäuser.

Grillmeyer, O. (2001). Designing Effective Animations for Computer Science

Instruction. Berkeley: University of California.

http://arxiv.org/abs/quant-ph/9607014

140

Grisson, S., McNally, M., & Naps, T. (2003). Algorithm visualization in computer

science education: comparing levels of student engagement. SoftVis '03: Proceedings of

the 2003 ACM symposium of Software Visualization (pp. 87-94). San Diego: ACM.

Grover, L. (1996). A faster quantum mechanical algorithm for database search. STOC

'96: Proceedings of the 28th Annual ACM Symposium of Theory of Computing (pp.

212-219). New York: ACM.

Gurka, J. (1997). Pedagogic aspects of algorithm animation. University of Colorado.

Boulder: Available from Dissertations and Theses database.

Hansen, S., Schrimpsher, D., & Narayanan, N. (1998). Empirical studies of animation-

embedded hypermedia algorithm visualizations. Auburn: Auburn University.

Hardy,Y., & Steeb, W.(2001). Classical and Quantum Computing. Basel, Switzerland:

Birkhauser Verlag.

Heer, J., Card, S., & Landay, J. (2005). prefuse: a toolkit for interactive information

visualization. Proceedings of the SIGCHI conference on Human factors in computing

systems (pp. 421-430). Portland: ACM.

Hey, T., Walters, P.(1987). The Quantum Universe. Cambridge: Cambridge University

Press.

Hogg,T. (1997, January 13). Cornell University Library. Retrieved November 1, 2010,

from http://arxiv.org/abs/quant-ph/9701013v1

Hopgood, F. (1974). Computer animation used as a tool in teaching computer science.

Proceedings of the IFIP Congress (pp. 889-892). Stockholm: IFIP.

Hoyer, P., Neerbek, J., & Shi, Y. (2002). Quantum complexities of ordered searching,

sorting, and element distinctness. Algorithmica , 429-448.

Hundhausen, C., Douglas, S., & Stasko, J. (2002). A meta-study of algorithm

visualization effectiveness. Journal of Visual Language Computation , 13 (3), 259–290.

Jackson, D., & Fovargue, A. (1997, May). The use of animation to explain genetic

algorithms. SIGCE '97 .

Jones, D., & Newman, A. (1996). RCOS.java: an animated operating system for

computer science education. Annual Joint Conference Integrating Technology into

Computer Science Education, (p. 233). Bracelona.

Jorrand, P. (2007). Quantum information processing and communication: the computer

science perspective. Proceedings of the 45th annual southeast regional conference (p.

509). Winston-Salem: ACM.

http://arxiv.org/abs/quant-ph/9701013v1

141

Kasivajhula, S. (2006). Quantum Computing: A Survey. ACM SE 2006 , 248-253.

Kehoe, C., & Stasko, J. (1996). Using animations to learn about algorithms: an

ethnographic case study. Atlanta: Georgia Institute of Technology.

Kehoe, C., Stasko, J., & Taylor, A. (2001). Rethinking the evaluation of algorithm

animations as learning aids: an observational study. International Journal of Human-

Computer Studies , 265-284.

Kerran, A., & Stasko, J. (2002). Algorithm Animation: Introduction. In S. Diehl,

Software Visualization (pp. 1-15). Springer-Verlag.

Kitchenham, B., Pickard, L., & Pfleeger, S. (1995). Case studies for method and tool

evaluation. IEEE Software , 52-62.

Klauck, H. (2003). Quantum time-space tradeoffs for sorting. STOC’03 .

Koldehofe, B., Papatriantafilou, M., & Tsigas, P. (2006). LYDIAN: An extensible

educational animation environment for distributed algorithms. ACM Journal on

Educational Resource in Computing , 6 (2), 1-21.

Laszlo, M. (2002). Object-oriented programming featuring graphical appliations in

Java. Boston: Addison Wesley.

Latombe, J. (1991). Robot Motion Planning. Kluwer Academic Publishers.

Leung, K. (2005). Animation of linux processor scheduling algorithm, master's degree

thesis. Sacramento: Department of Computer Science, California State University.

Levitin, A. (1999). Do we teach the right algorithm design techniques? The proceedings

of the thirtieth SIGCSE technical symposium on Computer science education (pp. 179-

183). New Orleans: ACM.

Magniez, F., Santha, M., & Szegedy, M. (2005). Quantum algorithms for the triangle

problem. In Proceedings of the 16th Annual ACM SIAM symposium on Discrete

Algorithms , 1109.

Mermin, D. (2006). Breaking RSA encryption with a quantum computer: Shor's factoring

algorithm. Ithaca: Cornell University.

Nielsen,M., & Chuang,I.(2000). Quantum Computation and Quantum Information. New

York:Cambridge University Press.

Omer, B. (1998). A Procedural Formalism for Quantum Computing. Vienna:Department

of Theoretical Physics, Technical University of Vienna.

142

Plaisant, C., & North, C. (2007). Reflections on Human-Computer Interaction.

International Journal of Human-Computer Interaction , 23 (8), 195 - 204.

Plaisant, C., & Vinit, J. (1994). Dynamaps: dynamic queries on a health statistics atlas.

Conference companion on Human factors in computing systems (pp. 439-440). Boston:

ACM.

Price, B., Baecker, R., & Small, I. (1998). An introduction to software visualization. In J.

 Stasko, J. Domingue, M. Brown, & B. Price, Software Visualization (pp. 3-27).

Cambridge: MIT Press.

Rasala, R., Proulx, V., & Fell, H. (1994). From animation to analysis in introductory

computer science. Proceedings of the twenty-fifth SIGCSE symposium on Computer

science education (pp. 61-65). Phoenix: ACM.

Rieffel,E.,&Polak,W.(2000). An Introduction to Quantum Computing for Non-Physicists.

ACM Computing Surveys, pp. 300-325.

Robling, G., Schuer, M., & Freisleben, B. (2000). The ANIMAL algorithm animation

tool. Annual Joint Conference Integrating Technology into Computer Science (pp. 37-

40). Helsinki: ACM.

Robson, C. (2002). Real World Research (2nd Edition ed.). Blackwell.

Rose, A., Shneiderman, B., & Plaisant, C. (1995). An applied ethnographic method for

redesigning user interfaces. DIS '95: Proceedings of the 1st conference on Designing

interactive systems: processes, practices, methods, & techniques (pp. 115 - 122). Ann

Arbor: ACM.

Runeson, P., & Host, M. (2008, 12 19). Retrieved November 1, 2010, from

Springerlink.com: http://www.springerlink.com/content/t22r8l65q7h31636/

Saeedi, M., Zamani, M., & Sedighi, M. (2008). Moving forward: a non-search based

synthesis method towards efficient CNOT-based quantum circuit synthese algorithms.

Proceedings of the 2008 Asia and South Pacific Design Automation Conference (pp.

83-88). Seoul: IEEE Computer Society Press.

Sangwan, R. (1997). Algorithm animation using self-visualizing C. Temple University.

Available in the dissertation and thesis database.

Schwartz, J., & Yap, C. (1987). Advances in Robotics 1: Algorithmic and Geometric

Aspects of Robotics. Hillsdale, N.J.: Lawrence Erlbaum Associates.

Shi, Y. (2001, September 22). Cornell University Library. Retrieved November 1, 2010,

from arXiv: http://arxiv.org/abs/quant-ph/0009091

http://www.springerlink.com/content/t22r8l65q7h31636/
http://arxiv.org/abs/quant-ph/0009091

143

Shi, Y. (2002). Entropy lower bounds of quantum decision tree complexity. Information

Processing Letters , 23-27.

Shneiderman, B. (1983). Direct manipulation: a step beyond programming languages.

IEEE Computer , 57-69.

Shneiderman, B. (1973). Polynomial Search. Software: Practice and Experience , 5-8.

Shneiderman, B., & Plaisant, C. (1998). Information visualization advanced interface and

web design. CHI 98 conference summary on Human factors in computing systems (pp.

18-23). ACM.

Shneiderman, B., Plaisant, C., Cohen, M., & Jacobs, S. (2009). Designing the User

Inteface: Strategies for Effective Human-Computer Interaction (5 ed.). Addison-

Wesley Publishing Company.

Shor, P. (1994). Algorithms for Quantum Computation: Discrete Logarithms and

Factoring. Proceedings of the 35
th

 IEEE Symposium on Foundations of Computer

Science (pp. 124-134). IEEE Computer, Society Press.

Shor, P. (1997). Quantum Algorithms. (P. Arneson, Ed.) Journal of ACM , 1 (2), 16-24.

Shor, P. (2003). Why haven't more quantum algorithms been found? Journal of the ACM,

87-90.

Simon, D. (1997). On the power of quantum computation. SIAM Journal on Computing ,

1474-1483.

Smith, S.,& Mosier,J. (1986). Guidelines for Designing User Interface Software.

Available from National Technical Information Service. Springfield,VA:MITRE

Corporation.

Stasko, J. (1995). POLKA animation designer’s package. Atlanta: Georgia Institute of

Technology.

Stasko, J. (1990). TANGO: a framework and system for algorithm animation. Computer,

27-39.

Stasko, J. (1997). Using student-built algorithm animations as learning aids. Proceedings

of ACM SIGSE Technical Symposium on Computer Science Education (pp. 25-29).

New York: ACM Press.

Stasko, J., Badre, A., & Lewis, C. (1993). Do algorithm animations assist learning? An

empirical study and analysis. Proceedings of the INTERACT '93 and CHI '93

Conference on Human Factors in Computing Systems (pp. 61-66). Los Angeles: ACM.

144

Stasko, J., Dominque, J., Brown, M. H., & Price, B. A. (1997). Software Visualization.

Massachusetts Institute of Technology.

(2002). Theory of quantum computing and communication. Elmsford: National Science

Foundation.

Toussaint, G. (1986). New results in computational geometry relevant to pattern

recognition in practice. Pattern Recognition in Practice II , 135-146.

Tory, M., & Moller, T. (2004). Human Factors in Visualization Research. IEEE

Transactions on Visualization and Computer Graphics.10, pp. 72-84. IEEE.

Tudoreanu, M., Wu, R., Hamilton-Taylor, A., & Kraemer, E. (2002). Empirical evidence

that algorithm animation promotes understanding of distributed algorithms.

Proceedings of the IEEE 2002 Symposium on Human Centric Computing Languages &

Environment (p. 245). Arlington: IEEE.

Urquiza-Fuentes, J., & Velazquez-Iturbide, J. (2009). A survey of successful evaluations

of program visualizations and algorithm animation systems. ACM Transactions on

Computer Education TOCE , 9 (2).

Vrachnos, E., & Jimoyiannis, A. (2008). DAVE: A Dynamic Algorithm Visualization

Environment for Novice Learners. 2008 Eighth IEEE International Conference on

Advanced Learning Technologies (pp. 319-323). Cantabria: IEEE Computer Society.

Wallace, J., & Narayanan, A. (2001). Quantum sorting and route finding. Computing

Anticipatory Systems: CASYS 2001. American Institue of Physics.

Walsham, G. (1993). Interpreting information systems in organizations. London: John

Wiley and Sons.

Ware, C. (2000). Information visualization: perception for design. San Franciso: Morgan

Kaufmann Publishers Inc.

Wiggins, M. (1998). A comparative study of two algorithm animation tools as aids in

algorithm understanding. University of Southern Mississippi, UMI No. 9840847.

Available from Dissertations and Theses database.

Yanofsky, N., & Mannucci, M. (2008). Quantum Computing for Computer Scientists.

New York: Cambridge.

Yao, A. (1994). Near optimal time-space tradeoffs for element distinctness. SIAM

Journal on Computing , 996-975.

Yin, R. (2003). Case study research (3rd Edition). London: Sage.

145

Zhou, X., Li, W., Xian, H., Lai, T., & Liang, H. (2008). Towards context modeling for

algorithm animation. 32nd Annual IEEE International Computer Software and

Applications Conference (pp. 279-286). IEEE.

	Nova Southeastern University
	NSUWorks
	2010

	Quantum Algorithm Animator
	Lori Eileen Nicholson
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1444354927.pdf.hv_k9

