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The design and development of quantum algorithms present a challenge, especially for 

inexperienced computer science students.  Despite the numerous common concepts with 

classical computer science, quantum computation is still considered a branch of 

theoretical physics not commonly used by computer scientists.  Experimental research 

into the development of a quantum computer makes the use of quantum mechanics in 

organizing computation more attractive, however the physical realization of a working 

quantum computer may still be decades away. 

 

This study introduces quantum computing to computer science students using a quantum 

algorithm animator called QuAL.  QuAL‟s design uses features common to classical 

algorithm animators guided by an exploratory study but refined to animate the esoteric 

and interesting aspects of quantum algorithms. 

 

In addition, this study investigates the potential for the animation of a quantum sorting 

algorithm to help novice computer science students understand the formidable concepts 

of quantum computing.  The animations focus on the concepts required to understand 

enough about quantum algorithms to entice student interest and promote the integration 

of quantum computational concepts into computer science applications and curricula. 

 

The experimental case study showed no significant improvement in student learning 

when using QuAL‟s initial prototype.  Possible reasons include the animator‟s 

presentation of concepts and the study‟s pedagogical framework such as choice of 

algorithm (Wallace and Narayanan‟s sorting algorithm), design of pre- and post tests, and 

the study‟s small size (20 students) and brief duration (2 hours).  Nonetheless, the 

animation system was well received by students.  Future work includes enhancing this 

animation tool for illustrating elusive concepts in quantum computing. 
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Chapter 1 

Introduction 

Problem Statement and Goal 

 In the early 1970s, theorists researched the possibilities that a quantum computer could be 

faster than a conventional computer for solving intractable problems. Academic curiosity 

encouraged these observations without notice until Shor (1997) attracted attention to the field of 

quantum computing with the development of a polynomial time algorithm for factoring large 

numbers.  Shor‟s discovery launched interest in quantum computing and encouraged research 

into the development of an operational quantum computer.   Current quantum computer research 

is still theoretical and functionally impractical but in the next few decades, quantum computers 

are likely to move out of research labs and into practical applications.  Bacon and Leung (2007), 

provide a summary of the broad range of experimental methodologies used by researchers to 

build quantum computer‟s calling this quest one of the greatest technological races of the 21
st
 

century.  

 Similar to their classical counterpart, quantum algorithms predate the actual development 

of a practical quantum computer.  Quantum algorithm research has provided solutions for many 

computational problems and in some cases, provided more efficient solutions than classical 

algorithms. Grover‟s (1996) algorithm uses quantum concepts to search an unsorted database 

faster than its classical equivalent. Searching an unsorted database using a classical search 

algorithm requiring a linear search runs in ( )O N  time to find the requested input in a database of 

N entries.  Grover‟s algorithm provides a solution to the same problem in ( )O N  time 
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(Brassard, 1997).  Shor‟s (1997) algorithm, with its simplification of factoring, could cause 

issues for public-key cryptography systems or move that technology into a new realm for 

information security.  These foundational algorithms provide solutions that are more efficient for 

many of today‟s practical computing applications like database searches, data mining procedures 

and prime number factoring by utilizing the enigmatic principles of quantum mechanics. 

        Quantum programming is different from classical program development.  In classical 

programming, knowledge of the underlying computer architecture is not required.  Abstraction 

insulates the programmer from machine architecture.  In contrast, quantum programming 

requires an understanding of the implications of quantum mechanics to quantum computation.  

Classical algorithms are written to accept some value, or set of values, as input and produce 

some value, or set of values, as output.  The typical classical algorithm is a sequence of 

computational steps that transition from one state to the next in either a deterministic or a 

probabilistic procedure.  Quantum algorithms typically start with a particular state similar to 

classical algorithms but from there they transition into a superposition of many states.  A 

sequence of quantum state transformations leads to a measurement of the system.  The likelihood 

of the system being in one state or another or in both is what defines the power and usefulness of 

quantum computing. 

       Shor (2003) examined the question of why there were so few classes of quantum algorithms 

since early foundational quantum algorithms were developed.  Shor provided several reasons for 

this situation, one being that quantum computers are functionally different from conventional 

computers.  Techniques used for developing classical algorithms and classical intuitions for 

understanding the process of computation no longer work in the quantum environment. Quantum 

physics has been a developing science for several decades, yet computer science has only just 
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begun to incorporate the use of quantum mechanics into their field.  Shor suggests that future 

computer scientists will build upon early foundational research to discover numerous new and 

significant quantum algorithmic techniques. 

       Current work on the development of a practical quantum computer, active research in the 

area of quantum algorithms, and the inherent difference between conventional and quantum 

computing concepts establish a need for computer science programs to integrate quantum 

concepts into their curricula.  Although many institutions have added courses and content related 

to quantum computing, there is a paucity of introductory tools available to promote the 

understanding of quantum computing and assist students in learning about quantum algorithms.  

       Educators in computer science departments have used algorithm animation as an 

introductory tool to present visualizations and organized animations to students.  Numerous 

animation systems have been developed to aid students in experimenting with and understanding 

classical algorithms. These systems provide a means of displaying events as they occur in 

various phases of the algorithm and show basic operations of the algorithm. By illustrating how 

objects change, presenting modifications to internal data structures and exposing hidden 

algorithm properties, these systems provide an educational tool for learning algorithmic 

concepts. 

       This research provided a solution to the lack of introductory quantum algorithm pedagogical 

tools, using data gathered from classical algorithm animator systems to create a quantum 

algorithm animator.  Information about existing classical algorithm animators along with 

research into quantum concept learning was used to design this quantum algorithm animator. A 

case study followed involving twenty computer science students to test the animator‟s 

effectiveness in learning quantum computing concepts and acquiring aesthetic and interface 
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suggestions for future improvements or alternative design considerations. 

       The goal of this research was to create a quantum algorithm animator designed to provide an 

interactive learning environment for students.  The quantum algorithm animator was developed 

and entitled QuAL (Quantum Algorithm Animator).  QuAL‟s main objective was to provide 

visualizations of quantum computing concepts that may lead to a better understanding of 

quantum algorithms.  This thesis investigates how animations can be an effective means of 

conveying the dynamic behavior of quantum algorithms by using QuAL in the case study. 

       This research was accomplished in three stages.  First, an exploratory study gathered 

information about existing classical animation systems and compiled a listing of successful 

approaches.  Algorithm animators have been used as pedagogical tools since the early 1980s and 

their effectiveness has been an active research topic (Stasko, Badre, & Lewis 1993;  Kehoe & 

Stasko, 1996;  Gurka, 1997;  Hansen, Schrimpsher, & Narayanan, 1998;  Bryne, Catrambone, & 

Stasko, 1999;  Ciesielski & McDonald, 2001;  Vrachnos & Jimoyiannis, 2008;  Urquiza-Fuentes 

& Velazquez-Iturbide, 2009).  The results from these various research projects have concluded 

that algorithm animators can provide positive learning experiences. 

       After gathering the data from the exploratory study, this research utilized successful 

components from classical animators to determine initial design criteria for QuAL. Classical 

animators have taken numerous approaches to visualizing the internal operations of algorithms 

and this research segment focused on those techniques that provide appropriate visualizations for 

quantum computing concepts. Design criteria, user interface issues, and the creation process for 

the production of quantum algorithms were refined by this research to provide an effective 

learning environment. Techniques such as scaffolding, animation chunking, multiple levels of 

granularity, interactivity, and promoting critical thinking have been integrated into many of the 
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existing classical animator‟s frameworks.  Did they support quantum algorithm learning and 

animate the concepts of quantum computing?  Certain design criteria were found to be effective 

but inefficient when dealing with quantum computing concepts.  Allowing the manipulation of 

input values was restricted during this initial prototype phase due to exponential growth when 

qubit registers were put into a superposition of states.  The number of steps to complete a 

solution was redefined but the addition of code highlighting was added along with the ability to 

control the speed of the animation.  Additional findings  are described in greater detail in Chapter 

4 of this disseration report. 

       Finally, this stage of the research investigated the architectures used to implement algorithm 

animation systems.  Which architecture provided  a rich, interactive learning environment for 

QuAL?  Diehl (2007) examines the following architectures that have been used to create many of 

the existing classical algorithm animation systems: 

1. Ad hoc: A single algorithm is animated and implemented from scratch. 

2. Libraries: Single algorithms are implemented using existing libraries with built-in 

graphical abstractions, control elements, etc. 

3. Special datatypes: Datatypes with built-in visualizations are used to program 

algorithms. 

4. Postmortem: Separate applications are used for the algorithm and visualization tool. 

5. Interesting events: Annotations are used at essential program points in the algorithm 

to display interesting events. 

6. Declarative: Similar to interesting events except that the annotations and algorithm 

code are separated. 

7. Semantics-directed: A visual interpreter or debugger is used to execute the 
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algorithm. 

Gloor (1997) provided a „recipe‟ for designing an algorithm animator.  He proposes a seven-step 

process for taking pseudocode of an algorithm to animation.  Gloor‟s process begins at stage one 

with the creation of a script.  Typically this is the algorithm‟s pseudocode describing the high-

level action occuring in the animation.  Stage two builds a storyboard, which is a series of 

visualizations that illustrate the previous script or pseudocode.  Next, in the layout stage, the data 

structures to be animated are graphically specified.  If sound is used it must be incorporated into 

stage four which occurs directly before the final animation is created.  Animation follows in 

stage five of this seven-step process: computer animation packages may be used, or scripting 

languages, or existing animation system frameworks.  The final two stages consist of 

inbetweening and editing.  Inbetweening is a technique used to smooth the transitions between 

keyframes and editing produces the finalized algorithm animation system.   

       Experimenting with the data discovered in the second stage of this research provided 

solutions for QuAL‟s design.  Quantum computing concepts such as amplitude, state transitions, 

probability distribution, qubit registers, entanglement, and unitary operations, were integrated 

into QuAL to provide the student with the knowledge they will need to understand quantum 

algorithms.  QuAL will only animate one sorting quantum algorithm in this research‟s initial 

prototype and case study. 

       The final stage of this research presents a framework for using QuAL as a pedagogial tool 

and a case study was performed experimenting with QuAL in an educational setting.  QuAL is 

conceived as a tool to help students form an effective bridge between textual material and the 

application of quantum theory commonly used to develop quantum algorithms.  The results of 

the case study discussed in Chapter 4 provided preliminary conclusions to QuAL‟s effectiveness 
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as a pedagogical tool and information for future modifications to its functionality, interface, and 

design.  Chapter 3 contains an outline of the case study preformed by this research. 

Relevance and Significance 

       Algorithms are considered the cornerstone of computing (Levitin, 1999). Their concepts 

have been introduced in many computer science programs as well-defined computational 

procedures that may be considered tools for solving computational problems. Student 

understanding of algorithmic concepts is important to the field of computer science but learning 

to develop and understand algorithms may be difficult because the algorithm is a static 

description of a dynamic process. 

     Algorithm learning has been researched for many years as educators pursue a methodology 

that might help students learn these concepts more efficiently and completely.  Animating 

algorithms is one method that has been used to visualize their internal operations and display 

concepts using graphical representations.  Animations were the logical next step to illustrations 

of data structures and algorithm workings found in earlier computer science textbooks and they 

provided a means of manipulating or controlling the display.   

       Animating algorithms for educational purposes has motivated the development of animation 

systems starting in the early 1970s (Hopgood, 1974).  Baecker (1981) was the first to introduce 

video as a medium for illustrating a number of different sorting algorithms running on both small 

and large datasets.  His 30 minute video entitled “Sorting Out Sorting” was a color film that 

added a new dimension to teaching algorithms and was the first to use sound.  The video worked 

so well that students were able to watch the animations and successfully program some of the 

algorithms described without any further instructional information.  These animations were 

viewed by students of various levels of computer expertise in this case study, but were mostly 
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used in introductory courses on algorithms and problem complexity (Stasko, Dominque, Brown, 

& Price, 1997).  

        Building on this foundational research, Brown and Sedgewick (1984) at Brown University 

developed BALSA-I which was the first interactive algorithm animation system supporting 

multiple simultaneous views of an algorithm‟s data structures.  Stasko (1990) followed with the 

development of TANGO, an animation system that introduced the path-transition model.  Many 

other systems began to emerge providing different approaches to animating algorithms like 

BALSA-II (Brown, 1988), CAT (Brown & Najork, 1993) and more current systems such as 

CATAI (Cattaneo, Ferraro, Italiano & Scarano, 2002), ANIMAL (Robling, Schuer & Freisleben, 

2000), and LEONARDO (Crescenzi, Demtrescu, Finocchi & Petreschi, 1997). 

       Subsequent research following the development of animation systems focused on providing 

evidence of the benefits of using algorithm animation as an educational tool (Byrne, Catrambone 

& Stasko, 1999; Hansen, Schrimpsher & Narayanan, 1998; Kehoe, Stasko & Taylor, 2001).  

Mixed pedagogical results were found but the majority recorded slightly better results in 

situations using visual animations.  According to Tudoreanu, Wu, Hamilton-Taylor and Kraemer 

(2002), using animation as a learning tool does provide benefits for understanding algorithmic 

computations but they speculate that the animation system should avoid unrelated activity and 

focus on using graphics that are self-explanatory and allow the user to connect directly to the 

computation.  In addition to teaching algorithmic concepts, animations have relevance in other 

areas of computer science.  Jones and Newman (1996), utilized animation techniques as an 

instructional tool to teach operating system concepts, and Leung (2005), developed a 

visualization tool for learners to gain insight on the Linux scheduling algorithm. 

       Diehl (2007) describes several scenarios that have been developed to achieve higher learning 
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involvement particular to algorithm animation.  The first explores the functional structure 

supporting exploratory learning by only providing the primary building blocks of the algorithm.  

In using this type of an application the user actively reinvents fragments of an algorithm 

providing the student with an educational experience that finds the steps of a function for a 

specific data input.  The next scenario consists of visualized path testing that focuses the user on 

finding input data for an algorithm that satisfies precise criteria rather than reconstructing the 

algorithm.  This type of an application would provide certain visualization tools allowing for 

specified criteria and performance tasks. 

       Research in human-computer interaction (HCI)  has lead to the emergence of a field of study 

called information visualization.  This field has added interesting tools and techniques for the 

development of interfaces with special attention focused on the relationship between the user and 

visual representations of abstract data.  Shneiderman (1973) pioneered visualization research 

techniques as a path to concept discovery when he developed a polynomial viewer that used an 

interactive visualization interface.  Continuing his research, Shneiderman (1983) introduced a 

concept called direct manipulation which provided an interface style involving the continuous 

representation of objects of interest with fast, reversible, incremental actions and feedback.  

Many of Shneiderman‟s visualization methods are still used as powerful components visualizing 

technology in professional and educational settings (Plaisant & North, 2007).   

       Data gathered from studies in this area have provided principles and guidelines for 

improving the development of high quality interface designs.  Shneiderman and Plaisant (1998) 

present the future of interfaces with regard to higher resolution screens and the web as well as 

provide insight into redesign issues with workplace software using ethnographic studies (Rose, 

Shneiderman & Plaisant, 1995).   Some of the tools that have been developed based on early 
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information visualization research have provided user-controlled applications making the 

creation of dynamic visualizations quick and effective (Plaisant & Vinit, 1994; Heer, Card & 

Landay, 2005). 

       Shneiderman, Plaisant, Cohen and Jacobs (2009) continue HCI research by discussing 

dramatic changes in user-interface design that can assist the learner in visualizing and interacting 

with different concepts.  Specifically for information visualization, their research claims that 

techniques can be used to provide graphical presentations and user interfaces for manipulating 

data with a larger number of items.  Quantum mechanical concepts can become complicated by 

the fact that many mathematical manipulations utilize matrix multiplication that may produce a 

large amount of information. Visualization of this data may have to rely on Shneiderman et al.‟s 

techniques.  Their research will also provide useful HCI techniques for analyzing and interacting 

with QuAL. 

       Scientific discovery learning can be a highly self-directed process and students may learn 

more by using familiar concepts as building blocks to understanding new or unfamiliar concepts.  

Sorting data has historically been a fundamental problem discussed in many introductory 

computer science curriculums.  Sorting algorithm research has added a significant number of 

solutions to this problem which has created a broad range of learning tools for this topic.  This 

research used sorting concepts as a means of bridging the gap between classical and quantum 

algorithm understanding.  The main purpose for using sorting concepts in this research is not to 

learn about sorting algorithms as students using QuAL should already have acquired this 

information from another source.  The typical user of QuAL will be a first or second year 

computer science major with a basic understanding of the foundational principles of classical 

algorithms.  Therefore sorting concepts will be used to cover the principles of algorithm design 
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and analysis using an extremely intuitive problem (i.e. sorting).  Visualizations of sorting 

algorithms have been a very popular research topic.  Grissom et al. (2003) compared levels of 

student learning engagement in their research by using the sorting problem as a simple learning 

algorithm.  Grissom‟s group concluded that visualizations of the sorting algorithm did indeed 

assist students in learning about algorithmic procedures.  In another article Rasala, Proulx and 

Fell (1994), used sorting algorithms to provide students with a comparative approach to 

algorithm analysis.  Rasala et al. decided to use the sorting problem in their research because 

students learn simple sorting concepts early in their course work, sorting concepts are easy to 

visualize as they are familiar to students, and there are many sorting algorithms.  With many 

different sorting algorithms, animations can provide comparisions by illustrating more efficient 

techniques, benchmarking different solutions, and running side-by-side simulations.        

       Quantum sorting algorithms have been a topic covered by past and present research with a 

common finding that many classical sorting algorithms are just as efficient as quantum 

algorithms.  Klauck (2003) found this to be only when the analysis was based on the number of 

comparisons alone.  Hoyer, Neerbek and Shi (2002), provided evidence that no comparison-

based quantum sorting algorithm could outperform a classical sorting algorithm.  Yet, in space 

bounded sorting, Klauck (2003) found that quantum computers outperform conventional 

computers significantly and when lower bounds techniques are used to solve quantum sorting 

problems, quantum search and sorting algorithms provide more efficient solutions than classical 

algorithms (Yao, 1994; Ambainis, 2000; Buhrman & de Wolf, 2002).  The efficiency of quantum 

sorting algorithms will not affect the outcome of this research as the reason for using the sorting 

problem is not based on comparison benchmarking rather on the common foundational 

knowledge that it provides between classical and quantum algorithmic concepts. 
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       Current quantum computing research focuses on varying approaches towards developing a 

practical quantum computer, the study of quantum information, and optimizing established as 

well as developing new quantum algorithms.  Bennink (2008) discusses the field of quantum 

information and presents concerns on how secure encryption methods would be if a quantum 

computer were developed but at the same time claims that quantum communication would 

provide significant advances in information security.  From a computer scientist‟s perspective, 

Jorrand (2007) provides insights into the quantum information processing concepts that should 

interest academia and industry.  Jorrand claims that with current breakthroughs in quantum 

concepts, the transition from classical to quantum has great potential for future research 

especially for the computer science field.  Quantum algorithm research is also actively pursuing 

new and innovative solutions.  Saeedi, Zamani and Sedighi (2008) have proposed a new 

algorithm entitled MOSAIC, which they postulate is more efficient, producing results in fewer 

steps when compared to recent search-based synthesis methods.  Designing quantum algorithms 

can be a difficult process but Aharonov and Ta-Shma (2003) have introduced a new approach 

they define as Adiabatic State Generations (ASG).  This new approach may bring new insights 

and methods into quantum algorithm development. 

       These articles provide just a few examples of current quantum computing and information 

research. A National Science Foundation report stated “NSF should fund continual research into 

understanding the ultimate algorithmic power of quantum computing along three fronts: 

Developing new algorithms, understanding and developing new techniques used by quantum 

algorithms and optimizing and extending current algorithms” (Theory of quantum computing 

and communication, 2002, p. 3).  This statement along with the above research provide evidence 

that quantum algorithm development is an active research topic, therefore computer science 
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curriculums should add these concepts into their current coursework to promote student interest 

in quantum computing. 

       Computer science continues to evolve as new innovative ideas emerge from scientific 

research.  Conceptual shifts have occurred throughout computer science history.  Programmers 

changing from structural to object oriented programming or single to multi-threading have added 

fuel to this evolution.  Academia has responded by developing and using tools to assist students 

in learning these new concepts as the scientific community provides evidence that knowledge in 

these areas advances the field.  Quantum computing is one of those areas that may alter the 

approach used by computer scientists to develop new and efficient algorithms.  It has united the 

disciplines of physics and mathematics; understanding its concepts is becoming an important 

addition to expanding computer science student‟s horizons. 

Barriers and Issues 

       Research in quantum computation is theoretical and there is no practical implementation of a 

quantum computer to date.  Consequently, the amount of literature supporting the research and 

development of a quantum algorithm animator is limited.  A few introductory teaching tools that 

animate certain aspects of quantum algorithms and several animation systems that incorporate 

quantum computing concepts exist but animating quantum algorithms has room to grow. 

       Emberson (2002) conceived the idea of using a quantum algorithm designer as a pedagogical 

tool for understanding quantum computer concepts in his Master‟s thesis.  He entitled his 

application Quantum Algorithm Design (QAD) and developed it to allow users the ability to 

design and simulate quantum algorithms using quantum network gates with the circuit model of 

quantum computation.  The user would be required to understand certain quantum mechanical 

principles before being able to design their first quantum algorithm.  Hogg (2000) also 
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demonstrated the use of animation with a tool that used Mathematica as an interesting 

environment for animating Grover‟s search algorithms and comparing it to other quantum search 

algorithms. 

       Emberson and Hogg‟s research rely on special environments, software, and toolsets for their 

animations to function and assume knowledge of quantum physics.  Knowledge of these 

environments or acquisition of these applications makes their animations less portable and 

perhaps costly to utilization in a classroom situation.  Both designs also require precursory 

knowledge of hefty quantum mechanical concepts requiring the need for additional physics 

classes or curriculum adjustments.  One of the goals for this research project was to identify the 

best choice for developing an animation system that provided ease of use, portability for 

educational effectiveness, and the appropriate development environment for introductory 

quantum concept visualizations.   

       One of the challenges that this research had to overcome was to depict the quantum 

computational process in a way that elucidates that process.  Many resources currently available 

to the student assume or provide knowledge of quantum mechanics at levels that may deter a 

beginning learner away from these concepts.  Quantum mechanical concepts are important in the 

development of quantum algorithms and this research had to balance the addition of certain 

quantum mechanical and quantum computing concepts with the presentation of material in order 

to encourage student curiosity.  This balancing act was achieved by providing only what is 

needed for a basic understanding of quantum computing as the foundation for introducing 

quantum algorithms.  Two objectives that helped to support this design goal: 

1.  Provide students with an introduction to basic quantum computing concepts i.e. 

entanglement, quantum state, interference, amplitude, and probability distribution. 
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2. Give students a clear understanding of the steps required by a quantum algorithm to 

solve a specific problem. 

       The development environment for this animation system utilized quantum computing 

concepts in a conventional computer environment in order to animate the quantum algorithm 

selected by this research.  Quantum mechanics states that until they are observed, particles exist 

only as a discontinuous probability function.  This situation is often visualized by 

conceptualizing the state of an unobserved particle as an overlay of all its possible states 

simultaneously.  As an example consider a particle that might be observed in state X, Y, or Z. 

When it is not being observed, quantum mechanical principles claim that this particle may exist 

in three states simultaneously.  The unobserved particle is said to be in a superposition of states.  

Current quantum computer simulators create an environment where particle superposition 

provides a reliable format in which an individual bit is stored as some measurable property of a 

qubit and can store bits that are simultaneously 1 and 0, unlike conventional computers where at 

any given time, a bit is either 1 or 0 but not both.  These simulators can construct quantum logic 

gates based on the interactions of one or more qubits and depending on such processes as 

interference or entanglement, can be used to perform logical or mathematical operations on 

qubits executed in parallel.  This research incorporated a quantum simulator into the 

development of this animator as a means of providing qubit registers, quantum data structures 

and pre-developed quantum functions.  Quantum Computing Language (QCL) was used to 

provide this environment and is easily installed on a Linux system.  Developing the animator as a 

Java applet provided easy interaction with QCL and did not reduce the importance of portability. 

Chapter 3 contains more information on the specific functionality of QCL (Omer, 1998).   
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Delimitations and Limitations of the Study 

       Delimitations of the study include: 

1.   The case study employed twenty computer science students from Wayne State College 

located in Wayne, Nebraska.  The uniqueness of the study within a specific context makes it 

difficult to replicate the use of the prototype or travel to another location in another context 

(Creswell, 2003). 

2.   The study gathered only the students‟ perspective of the quantum animator‟s effectiveness 

through their personal experiences when using the animator. 

3.   The quantum animator was developed for educational purposes as an initial prototype not for 

professional developer purposes. 

4.   The quantum animator prototype developed concentrated animating one sorting quantum 

algorithm.  Future developments may include other foundational as well as different classes 

of algorithms.       

      Limitations of the study include: 

1.    Because of the convenience sampling used, the researcher cannot say with confidence the 

sample used during the case study phase, will be representative of the population (Creswell, 

2002). 

2.    Due to the nature of qualitative research, the data obtained during the case study phase may 

be subject to different interpretations by different readers. 
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Definition of Terms 

Amplitude:   Complex numbers used to express the quantum system (Yanofsky & Mannucci, 

2008).  

Animation chunking: Animations are broken up into meaningful smaller sized components 

(Diehl, 2007). 

Decoherence:  The quantum phenomenon that can cause random errors in a quantum system as a 

result of entanglement with the environment (Yanofsky & Mannucci, 2008).  

Distributed Algorithms: Algorithms that run concurrently on many interconnected processing 

elements called processors (Koldehofe, Papatriantafilou, & Tsigas, 2006). 

Interference:  In wave theory, it is the effect of producing a new wave pattern when two or more 

waves collide and combine.  This same effect can occur in the quantum world when amplitudes 

instead of heights interfere. Amplitudes are complex numbers and when interference occurs, they 

can add up in ways that cancel out (Yanofsky & Mannucci, 2008).  

Hadamard Gate: A special quantum gate representing the building blocks of quantum circuits 

represented by the Hadamard matrix which is a unitary matrix (Omer, 1998). 

Permutation:  A rearrangement of elements in an ordered list into a one-to-one correspondence 

with itself.  The number of permutations on a set of n elements is given by n! (Dickau, 2010). 

Superposition:  When a quantum system is in more than one quantum state at a time it is said to 

be in a superposition of states.  Once the system is observed, the superposition will collapse into 

a measured state (Yanofsky & Mannucci, 2008).  

Scaffolding (animation):  Different techniques used to provide instructions for using interfaces or 

features.  They may take many forms such as; guided tours, maps or overview diagrams, tables 

of contents, dynamic overviews (Diehl, 2007). 
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Transition State:  In quantum mechanics, the state in which a quantum machine cannot be 

observed or measured (Yanofsky & Mannucci, 2008).  

Quantum Entanglement:  In quantum theory, when two or more object‟s interact with each other 

in such a way that their two quantum state‟s become entangled or act as if they were one single 

state.  This entangled state results in a connection between the two objects, no matter how far 

apart they are taken (Yanofsky & Mannucci, 2008).  

Quantum State:  In quantum computation, is any possible state in which a quantum computer can 

be.  They are described by state vectors and can be a 1, 0 or a probability of all possible states 

(Yanofsky & Mannucci, 2008).  

Qubit:  A qubit or quantum bit is the smallest unit of information describing a two-dimensional 

quantum system.  Their classical counterpart is the bit, which describes a two-dimensional 

classical system (Yanofsky & Mannucci, 2008).  

Summary 

       The purpose of this study was to examine the use of animation as a teaching tool for 

quantum algorithm behavior and develop a prototype for use in an educational setting.  There has 

been limited work in this area with most of the work focusing on a specific development 

environment or requiring advanced knowledge in quantum principles. 

       Quantum mechanics has been an emerging discipline for many fields for some time but the 

computer science field is just beginning to embrace its properties.  Several of these properties 

may provide efficient solutions to existing problems as well as provide the tools needed to 

promote new discoveries that may lead to faster database searches, better security protocols, and 

other interesting technological advancements. 

       Algorithm animators have provided visual representations for classical algorithms and have 
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been used by academia as a successful tool for teaching their concepts.  The complexity of 

quantum algorithms may inhibit early computer science students from understanding the abstract 

behaviors thereby deterring interest in this field of study.  Animation may reduce student fears by 

visualizing quantum behavior that introduces them to a different problem-solving paradigm.   

       This research gathered data from existing classical animation systems and incorporated them 

into a quantum animator called QuAL using principles that provide visualizations specific to 

quantum concepts.  A case study methodology was utilized to assess the proposed educational 

framework from a student‟s perspective. 

 

 

 

  



20 

 

 

 

 

Chapter 2 

Review of Relevant Literature 

Classical Algorithm Animation Research 

       Animating algorithms has been an accepted method for teaching algorithmic concepts to 

computer science students despite mixed pedagogical successes.  Most researchers have agreed 

that the benefits of past, present and future animation systems are dependent on the 

circumstances of the learning environment.  Stasko (1997) claimed that students are enthusiastic 

about using visualizations, but studies have not provided enough evidence that animations have 

significantly improved their ability to learn certain concepts (Badre et al., 1991; Bryne, 

Catrambone, & Stasko, 1999;  Stasko, Badre, & Lewis, 1993). 

       Although this early research did not provide clear results as to whether animations were 

effective pedagogical tools for algorithm learning, other research attempted to focus on finding 

out how animations could become effective pedagogical tools. Hundhausen et al. (2002) 

presumes that the way students use visualizations is more important than the animations systems 

themselves.  Hansen, Schrimpsher, and Narayanan (1998) conclude that animations are an 

effective teaching medium but a rethinking of algorithm animation design is required.  They 

continue by presenting a framework called Hypermedia Algorithm Visualization (HalVis) that 

utilizes multiple media, semantic links and numerous cognitive devices, which help students 

visualize algorithms specifically sorting algorithms.  Hansen et al.‟s conclusions provide 

evidence that designing an animation system to support incremental learning with real world 

analogies, which transition to algorithm concepts, assist students more than just providing some 
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textual feedback.  Access to fundamental algorithmic building blocks and a learning objective-

based design approach allowed their design to divide dynamic information into more manageable 

pieces that uses animation chunks.  Features such as pause / repeat procedures, animation chunks 

presented in synchrony, three animation views (analogical, micro-level and macro-level), the 

ability to change inputs, performance predictions, and pop-up reflections, all contribute to a 

better learning environment. 

       Urquiza-Fuentes and Velazquez-Iturbide (2009) furnish readers with a comprehensive 

survey of successful algorithm animation systems along with main features that contribute to 

their success.  The researchers added specifics on the educational effectiveness of certain 

features based on the conclusion that educational improvements could also depend on system-

specific features.  Urquiza-Fuentes et al. classified their evaluations by two criteria: abstraction 

level and implementation approach.  Price et al.‟s (1998) software visualization taxonomy 

defined the criterion of the abstraction level as:  algorithm visualizations and program 

visualizations.  The implementation criterion were defined as three systems: script-based, 

interface, and compiler-based.  This study found that most animations systems contained two 

common properties: first, all systems were interactive and second that all focused on usability. 

These were important concepts for Urquiza-Fuentes et al. especially since they were evaluating 

these systems for educational purposes.  Urquiza-Fuentes et al.‟s recommendations for the design 

of algorithm animations based learning experiences are as follows: 

1. Viewing animations provides more effective knowledge acquisition. 

2.  Include additional text and narrative comments. 

3. Explicit feedback is very important when students are answering questions. 

4. Provide the ability to change inputs with advanced features such as different execution 
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scenarios, integration with an IDE, and a manipulation interface . 

Conclusions of this study find that script-based systems are more suitable for viewing and 

responding levels and compiler-based systems are more effective for changing, construction, and 

presenting levels. 

       Wiggins (1998) performed an interesting comparative study between two algorithm 

animation tools.  Wiggins compared a textual based tool with a more graphical based tool both 

containing a graphical user interface and looked for a difference between student understanding 

using both the tools and a difference in student preference for either tool.  The assessments used 

in this study were short answer exams, free response exams, and a preference questionnaire.  

Conclusions from data collected in this study found that there was no significant difference in 

student understanding but students tended to prefer the textual based system over the more 

graphical based system. 

       Historically, algorithm animation began by providing static illusions demonstrating the 

algorithm‟s concepts.  The early versions of these pictorial representations could be manipulated 

to provide a high level of abstraction hiding details not relevant to the current concept.  This 

process helped students step through certain details of the algorithm before adding more 

advanced items that might confuse them.  These static visual representations became the 

precursor to dynamically animating algorithms which were represented, at first, as a sequence of 

illustrations (Gurka, 1997). 

       Once algorithm animation systems were introduced, research moved towards developing 

new more effective systems varying in their capabilities, platforms, support, animation libraries, 

target audiences, and user interfaces.  Algorithm animation systems were also built for specific 

algorithm domains.  Ayellet (1994) developed an animation system for use with geometric 
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algorithms.  Geometric algorithms are used for solving geometric problems and are important for 

computer graphics, robotics, and pattern recognition applications (Dobkin, 1992; Latombe, 1991;  

Schwartz & Yap, 1987; Toussaint, 1986).  Ayellet‟s system called GASP demonstrates the 

techniques used to present complex ideas in an aesthetic format for user appreciation of 

complicated mathematical notions.  GASP animates highly complex geometric algorithms easily 

without precursory knowledge of computer graphics and is oriented towards the knowledge of 

the users.  GASP‟s conceptual model includes three tasks: implementation of the algorithm 

annotated with interesting events to be animated, design and implementation of the animation, 

and interactive exploration of the algorithm.  GASP also contains four components:  the 

animation system, algorithm implementation, hooks to the system, and style files.  An important 

concept that GASP demonstrates is that picking and well-defining a small domain makes it easier 

to create an animation system that enables ease of use and effective visualizations.   

       Jackson and Fovargue (1997) used the XTANGO software system to animate genetic 

algorithms (Stasko, 1990).  Genetic algorithms are used to to find solutions to combinatorially 

hard problems.  The difficulty in understanding genetic algorithms comes from the fact that their 

behavior is difficult to predict as their operations are driven by evolutionary principles as they 

attempt to solve highly mathematical problems.  Jackson et al. developed a set of animation 

sequences specific for genetic algorithms used with lecture based materials to teach students 

about these interesting concepts.  Their system is based on the assumption that students will be 

introduced to evolutionary concepts before using the animations.  An important component of 

their teaching framework is the fact that they attempt to use an application that is simple enough 

to animate but realistic enough to capture the student‟s interest.  Pedagogical considerations 

assisted with the design of the algorithm animations, the algorithm should be simple keeping just 
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the concepts needed to provide an introductory understanding of genetic algorithms as well as 

keep the genetic concepts simple.  They excluded advanced genetic concepts in an attempt to 

softly introduce these difficult behaviors to the student and simply promote algorithmic 

understanding and interest.  Jackson et al. didn‟t feel that execution speed or optimal solutions 

were important but focused instead on demonstrating significant genetic algorithm properties 

with trends and acceptable solution visualizations.  The dynamic animation used by their system 

provided chromosomal visualization simulating real-world genetic properties as well as the 

addition of color to highlight their problem principles.  User input provided the ability to change 

parameters such as number of chromosomes and genes, the probability of mutation and other 

important genetic algorithm parameters. 

       Tudoreanu, Wu, Hamilton-Taylor, and Kraemer (2002) provide evidence that algorithm 

animation promote the understanding of distributed algorithms in their research using 3-D 

visualization and legends.  The methodology employed to assess student learning allowed users 

to view the visualizations while answering questions supplied by this study, which helped to 

promote their goal of testing effectiveness of the visualizations instead of the testing 

environment.  The legends designed for their visualizations provide the student with a pictorial 

bridge between the encoded algorithm properties and the graphical features they represent.  This 

allowed the system to be presented to the student without any explanation except for what the 

algorithm does.  The classical termination detection algorithm for distributed systems was used 

in this empirical study to provide a distributed computation problem.  Prior to testing, the 

students were shown a powerpoint presentation that explained the experimental environment and 

a textual document containing a description of the algorithm.  The data collected by this study 

provided some evidence of the benefits to using visualizations in distributed algorithm 
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animation.  Students did gain a more accurate understanding of the algorithmic concepts used in 

this study with the research results recommending the importance of reducing cognitive load to 

improve effectiveness.   

       Another study using distributed algorithms was completed by Koldehofe, Papatriantafilou, 

and Tsigas (2006) who entitled the environment LYDIAN.  This environment provided support 

for teaching and learning a collection of distributed algorithms used in an undergraduate 

computer science class.  LYDIAN provided students with the ability to write their own 

algorithms or select from one stored in a database allowing teachers to use LYDIAN in 

numerous formats with different levels of student expertise.  The user interface was developed 

using TCL/TK with protocol-defined events written into a trace file.  The user can choose 

between graphical or textual output and view all relevant information in one window.  The 

objectives of this development were to provide the student with key concepts concerning 

distributed algorithms, change timing and workload to demonstrate different behaviors, and 

display communication and time complexities of the selected algorithm.  Stasko (1995) 

developed animation libraries called POLKA that were used for this study and claimed to 

provide portability, friendly interface, and good visualization features like multiple views, speed 

tuning, step-by-step execution, and callback events.   

       Animation techniques as they relate to the art of dynamic algorithm visualizations have been 

a popular research topic as each new study attempts to provide more insight into the design of 

more effective dynamic graphics.  New techniques versus modified older techniques have been 

manipulated and enhanced in an attempt to find the best mix for an effective animation system.  

Early in classical algorithm animation history,  Brown and Hershberger (1991) demonstrate the 

importance of the use of sensory tactics by describing techniques that focus on the addition of 
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color and sound.   Early versions of animators would use textual based displays falling into one 

of two categories.  Monolithic view, which concentrates all of the algorithm‟s concepts into one 

dynamic view.  These displays were successful for simple algorithms but would fail when 

attempting to portray complicated processes due to the fact that they had to encode so much 

information that the user would become confused or quickly tire of its details.  And the other 

category, multiple views, which became the technique of choice as they allowed the user to see 

limited information about a few aspects of the algorithm.  These views were easy to comprehend 

with the composition of several views more manageable and understandable than the sum of 

their individual views.  With this in mind they provide summaries of several different systems 

and the techniques used to promote more effective visualizations.  Zeus used a multilevel 

adaptive hashing technique that provided  menus for the selection of algorithm, views, and input 

data (Brown & Hershberger, 1991).  The control panel format provided multiviews with 

snapshot and restore capabilities, start/stop/step-thru buttons, as well as a slider for execution 

speed control.  Color was added to several speciality views to provide differentiation of 

important concepts.  Sound effects were also added to provide concept specific tones when 

elements were changed or simulated collisions occurred.   

        Sangwan (1997) built upon Brown and Hershberger‟s research by developing an animation 

system using self-visualizing C.  This research highlights animation techniques such as: 

1. Multiple views:  several views providing significant aspects of the algorithm 

2. State cues:  the display contains changes in the state of the algorithm portrayed by 

changes in their graphical representation typically using a change of color or shape. 

3. Static history:  static material similar to the approach used by textbooks to convey the 

dynamic behavior of the algorithm. 
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4. Input data:  data in the form of small input data,  pathological data, or cooked data that 

helps the user step through concepts with visual displays. 

5. Continuous versus discrete:  small data sets support a continuous change while larger 

data sets favor discrete change. 

6. Multiple algorithms:  comparisons of several algorithms synchronously help the user 

compare and contrast specific concepts. 

7. Color:  the use of many united multiple views by representing similar or related objects 

or features.  May also be used to highlight areas of interest, capture history, or reveal the 

state of an algorithm. 

8. Sound:  used to enhance visual views or signal omissions. 

9. 3D:  may be used to with objects or concepts that are inherently 2D. 

10.  Fisheye views: used to display large information structures. 

The use of self-visualizing C in this research enables the animations to be written in C and the 

language itself adds a self-animating data type int that corresponds to C‟s int data type.  The 

benefits of using this language provided ease of algorithm development and animations by both 

the researcher and the users of the animation system. 

       Current animation systems have used differing tactics to continue building more efficient 

visualizations and also focus more on the student learning environment.  Chen and Sobh (2001) 

combined the visualization of data structures with the ability for user-defined algorithm 

animations in their software application for use by their introductory computer science students.  

Their software contained the following observable data structures: array, stack, queue, binary 

search tree, heap and graph.  The user-defined component of their applicaton allowed creation of 

algorithms using the JavaMy language, which was used to visualize the execution of the 
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algorithm as well.  The bubble sort algorithm was used to demonstrate the JavaMy code.  An 

example of the translated bubble sort algorithm into JavaMy code (refer to Figure 1). 

 

 

        

        

 

 

 

 

 

The application in this research provides a built-in code editor or the user can write the code in 

any text editor of their choice.  Once developed the user can build and run the code to view the 

animation.  The animation frame consists of visualizations of the algorithm along with the 

control panel and a textual view of the code.  The control panel provides the user with the ability 

to run the animation as a continuous or systematic (step-by-step) animation.  A slider bar 

provides access to the execution speed control.  The JavaMy code is very similar to the Java 

programming language except that a class definition is not a requirement for proper execution.  

When developing code in the JavaMy language, the user can select which of the data structures 

they want to animate and the language provides the required data types.  Once written the code is 

parsed and compiled and the animation runs.  One limitation of this research‟s application is that 

it only contains code for the most common data structures.   

           A unique technique used by Zhou, Li, Xian, Lai, and Liang (2008) attempts to provide a 

public static void main(String[] args) { 

final int SIZE = 8; 

MyArray intArray = new MyArray( 

AnimatorFrame.ARRAY-POSITlON,SIZE); 

for (int i=O; i<SlZE; i++) { 

 intArray.setValue( 

  ScreenPanel.getRandom(10,100 ), i); 

} 

for (int i=SIZE; i > 1;  i- -) { 

 for (int j=O; j< i-1;  j++) { 

   if(intArray.getInt ( j ) > intArray.getlnt  ( j+ 1)) 

     in tArray.swap ( j, j + 1); 

   } 

 } 

} 

 

Figure 1:  JavaMy Language Code 
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solution to the reuse of algorithm system implementations using a context-aware methodology.  

Algorithm contexts hide its execution and the change in contexts drive the visualizations making 

an algorithm implementation independent of its animation and thereby creating a reusable 

system.  Zhou et al. reference an important task to consider when developing an algorithm 

animation system as the specifications on how the visualization is connected and applied to the 

algorithm (Kerran & Stasko, 2002).  Two approaches suggested by this research are event-driven 

and data-driven approaches.  Event-driven techniques typically identify interesting events that 

correspond to relevant actions of the algorithm visualized by the approach.  These interesting 

events turn into graphical events that execute as animation routines.  Data-driven techniques use 

a mapping approach of the computational states into the graphical scenes.  This approach uses a 

technique that declares attributes of object code to depend on variables of the program code.  

Stasko‟s (1995) POLKA libraries were also used in this research to provide examples of how 

current animation systems identify events and then compare this technique to their own context 

model.  Zhou et al.‟s results provide three advantages to using a context-aware method over an 

implicit approach: 

1.  Algorithm implementation is independent of algorithm animation. 

2.  Middleware for supporting the interaction between algorithm and animation is easier 

to develop and reusable. 

3. The algorithm context model is reusable. 

They conclude by stating that their context model is maintainable and reusable for a wider range 

of algorithm animations.  Future work would include the development of an algorithm and 

animation repository and better design of the middleware to support more complex context 

management. 
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 Human Computer Interaction (HCI) – Interface Design 

        Shneiderman, Plaisant, Cohen, and Jacobs (2009) suggest a sample of interface design 

guidelines to use when initializing development of a user interface: 

1. Navigating the interface 

2. Organizing the display 

3. Getting the user‟s attention 

4. Facilitating data entry 

Navigation is essential to user comfort and there are several rules to keep in mind as the interface 

materializes: standardize task sequences, be descriptive when using embedded links, headings 

should be unique, radio buttons work well for single choice items, develop printable pages, and 

thumbnail images provide quick references for larger images. 

       Effective display organization may require the design to follow one or many of the 

following principles (Smith & Mosier, 1986): 

1.  Standardization of display data 

2. Familiar features for display of information 

3. Don‟t require the user to remember in between screens 

4. Consistent input / output of information 

5. User control of display data 

       User attention can be difficult to attract especially if there might be information overload or 

complicated design strategies.  To minimize this interaction and maintain user attention, 

Shneiderman et al. recommend the use of these techniques:  

1.  Use high intensity sparingly with only two intensity levels  

2.  Use markings where appropriate 
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3.  Larger sizes attract more attention, use up to four sizes 

4.  Up to three fonts 

5.  Add inverse coloring 

6.  Don‟t use blinking displays 

7.  Add up to four standard colors 

8.  When using audio choose soft tones and avoid harsh sounds 

       Data-entry is another important activity that should be considered in user interface design.   

When designing this component considered using similar action sequences, less user input 

actions, minimize user memory load, input / output of data should be linked, and allow user 

control of data display.   

       With respect to the design tools for user interface development Shneiderman et al. suggest 

using the “Java Look and Feel Design Guidelines” (Sun Microsystems, 2001) as a reference on 

user-interface design.  These guidelines provide assistance for designers and developers to apply 

Java classes to develop consistent, compatible, and easy to use applications.  They use the Java 

Foundation Classes (JFC) to provide a pluggable Java look and feel architecture that assists the 

developer in Graphical User Interface (GUI) design focusing on: design considerations, visual 

design, application graphics, and behavior.   

       Visualization may be defined in application development as “a graphical representation of 

data or concepts” or an “external artifact supporting decision making” (Ware, 2000, p.2).  It is an 

important consideration when developing applications for human use as it assists with analysis 

and concept understanding by representing information visually.  This technique of assistance is 

called cognitive support.  Tory and Moller (2004) explore current human factors research as it 

applies to concept visualization.  They introduce two new concepts called continuous model 
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visualization, that covers the visualization of algorithms that use a continuous model of the data 

and the discrete model visualization.  Discrete model visualization refers to the algorithm 

visualizations that use discrete data models.  Tory and Moller augment their research with a 

connection between visualizations and human factors-based design.   Human factors-based 

design involves the use of design principles that focus on usability and usefulness of the intended 

user group.  The researchers claim this concept is overlooked when developers initiate interface 

design and should be incorporated into applications that require users to view information or 

manipulation of data.  A human factor can be physical or cognitive property of a single entity or 

social group but with regard towards visualization tends to be more cognitive.  HCI 

methodologies that provide possible approaches for human factors-based design include: 

1.  User motivated design 

2. User and task-based design 

3. Perception and cognition-based design 

4. Prototype Implementation 

5. Testing – functionality and ease of interaction 

6. User-centered design 

Quantum Theory for Computer Scientists 

       Physicists endeavor to understand quantum mechanics completely but for computer 

scientists to contribute to the theory of quantum computation only a partial understanding of 

quantum mechanics is required.  The question becomes “how much knowledge of quantum 

mechanics is enough?”  Mermin (2006) describes two reasons why computer scientists can 

quickly understand the necessary quantum mechanical principles.  He first describes a quantum 

computer as being a simple example of a physical system that is discrete, made up of a finite 
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number of units, and whose behavior is constrained and specified.  Focusing on this two-state 

system can help avoid the peculiarities of quantum mechanics but should provide enough 

understanding relevant to basic quantum computation. 

       The most difficult part about learning quantum mechanics is the understanding of the 

difference between the essential and the inessential quantum phenomena that will be represented 

in an abstract model.  Physicists take years to master this intuition but for an understanding of 

quantum computation, the only important part is the abstract model, or the product of the 

physicist‟s work.  Mermin (2006) makes note of the fact that understanding quantum 

computation is simply the knowledge of the capabilities of the quantum computer not the need to 

understand how to build one. 

        A brief survey of several computer science programs concerning their introduction to 

quantum computer science curriculums find these popular textbooks as required reading for the 

course (Nielsen & Chuang, 2000; Mermin, 2006; Hardy & Steeb, 2001; Yanofsky & Mannucci, 

2008).  The researcher will refer the reader to these textbooks to provide a broader introduction 

on quantum mechanical concepts.  This research will focus on the basic notions of quantum 

computing with particular emphasis on quantum algorithms, the fundamental concepts needed to 

introduce quantum algorithms to computer science students, and those concepts incorporated into 

the design of QuAL. 

A Brief Survey of Quantum Mechanics 

       Quantum mechanical phenomena are difficult to understand since they exist at a molecular 

level and cannot be characterized by common experiences.  Instead, mathematical formulas and 

natural associations create visualizations to assist with understanding these abstract principles 

and theorems.  The best way to illustrate the fundamental concepts supporting quantum physics 
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is by using the two-slit experiment.  Figure 2 displays a common depiction of the first setup 

using bullets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the left, there is an object firing bullets at the wall with two slits. Behind the wall is another 

wall capable of measuring the number of bullets that go through the slits and measuring where 

they land.  The graph to the far right will display the probability distribution for the bullets 

measured by the middle wall.  In the first run of this experiment the top slit is opened, the graph 

shows the bullet‟s distribution is normal.  Then the bottom slit is opened and the top slit closed.  

Once again, the graph displays a normal distribution.  Finally, both slits are opened and bullets 

 

   

 

 

 

 
 

Figure: 2 Bullets – Two Slit Experiment 
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hit the middle wall in a pattern that displays the distribution as the sum of the two previous 

distributions.  The results show that the bullets go through one slit or the other in this 

demonstration of the two slit experiment. 

       In the next experiment, the object will emit sound waves instead of shooting bullets.  Figure 

3 illustrates this setup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

With sound waves the distribution is the same when only one slit is open but when two slits are 

open, the waves go through both slits at once interfering with one another and a sine wave 

distribution is measured by the middle wall.  The next setup will examine the distributions of 

electrons as displayed in Figure 4. 

 

 

 

 

 

   

       

    

Figure: 3 Sound Waves – Two Slit Experiment 
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When only one slit is open the distribution is similar to the bullet‟s measurements shown in a 

normal distribution curve but when both slits are open, an unpredictable distribution occurs.  The 

electron distribution is similar to the sine wave distribution.  It appears that the each electron, 

shot one at a time to avoid interference, goes through the two slits at the same time and upon 

exiting, cancels itself out.  This illustrates the quantum principle of superposition.  The electron 

is not in a single position; rather it is in many positions at the same time.  One limitation is that 

the electron cannot be viewed, as it exists in these multiple states.  The middle wall measures the 

   

 

 

 

  

Figure: 4 Electrons – Two Slit Experiment 
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electron‟s position and in doing so causes the positions or superpositions to interfere with each 

other, and collapse yielding a result.  These elementary principles apply to the quantum bit or 

qubit, which is the basic building block of quantum information. 

       The mathematical formulas for this phenomenon are described in terms of the energy of a 

wave as measured by its height (Hey & Walters, 1987).  

     
2I h  

where I is energy and h represents the height of the wave.  Energy depends on the square of the 

maximum height of the wave.  Waves can fluctuate up and down, therefore h can be represented 

by a positive or negative value.  When a wave goes through the two slits, the total disturbance 

12h , when both slits are open, is calculates as the sum of the disturbances caused by the waves 

from each slit.  Slit (1) is represented here as 1h and slit (2) is 2h so: 

 12 1 2h h h  

Calculating the corresponding energy from the above formula gives us: 

 
2

12 12I h  

and then 

 
2

12 1 2( )I h h   

The wave amplitude is represented by 12I , expanding the right-handed component of this formula 

looks like this: 

     2 2

12 1 1 2 22I h h h h  

Interference occurs when two slits are open as the waves go through each slit and recombine on 

the other side.  This same mathematical principle can be used to describe the electron 

phenomenon that occurred in the two slit experiment except that the energy becomes the 
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probability of the electron arriving at a specific point on the middle detector wall and the height 

becomes the amplitude.  P represents the probability and a in this formula represents the 

amplitude: 

 
2

12 1 2( )P a a  

 The probability is related to the amplitudes as the sum of the amplitudes squared, which 

describes one of the basic principles of quantum computation. 

       The probability of an electron being at a certain point on the detector wall might be 20% at 

one point and 10% at another but quantum mechanics has shown in the previous illustrations that 

there is the potential of interference.  In the quantum world, this means the potential of canceling 

itself out or a negative probability.  The core of quantum theory explains this by using complex 

numbers that can cancel each other out and lower their probability.  The probabilities of a 

quantum system are measured by the square of the amplitudes, which are complex numbers 

(Yanofsky & Mannucci, 2008).    As an example, assume that there is a 1/ 2 chance of the 

electron being at point (0,2) and a 1/ 2 chance of it begin at point (1,2).  The square of 1/ 2  

is 1/ 2  and of 1/ 2 is also 1/ 2  so there is a .50 chance of it being at point (0,2) and a .50 

chance of it being at (1,2).  The probabilities add up to 1.  Now using complex numbers the 

computation could be / 2i chances that it will be at (0,2) and a / 2i  chance of being at (1,2).  

The probability in this case would be the absolute value of the complex number squared or .25 in 

both cases. Quantum mechanics states that the probabilities of the states and transitions are 

complex numbers c such that 
2| |c is a real number between 0 and 1.  

Quantum Bits 

        Quantum computing at its basic level is very similar to classical computing.  The basic unit 

for classical systems is the bit, considered the basic building block of computing information.  
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The classical bit is considered to be in one of two states, either on or off, and is represented as a 

0 or 1.   

       Quantum mechanical laws specify rules in quantum computation where a qubit is the basic 

building block of computing information.  A qubit can be in a basis state of 0 or 1 but the 

difference and power of a qubit comes from the fact that it can also be in a superposition of states 

between 0 and 1.  This means that a qubit can be in all possible states between 0 and 1 

simultaneously.  When the qubit is in superposition the measurement of this system will result in 

the collapse of the system to a single state.  Before measuring the system, an outcome can 

predicted with some probability.  The two computational basis states for a qubit are | 0  and |1 , 

expressed in Dirac notation or also called bra / ket notation.  The ket notation | x  denotes 

column vectors or states and the bra notation, |x  denotes the conjugate transpose of  | x .  A 

qubit is a unit vector in a two dimensional complex vector space with the state | 0 represented by  

      
1

0
 

and the state |1  represented by  

      
0

1
 

and typically denoted by {| 0 ,|1 } .  Qubits in superposition of the two basis states such as  

a | 0  + b |1  where a and b are complex numbers that specify the probability amplitudes such 

that
2 2| | | | 1a b , when measured will have a probability of being in state | 0 as 

2| |a  and a 

probability of being in state |1  as
2| |b . 

       A quantum state denoted in this paper as |  is a linear combination of all the states, 

0 1 2 1| ,| ,| ,...,| nx x x x  with complex weights, 
0, 1, 2, 1..., nc c c c  such that 
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   0 0 1 1 2 2 1 1| | | | ... | .n nc x c x c x c x  

or as: 

 2| | 1ic  

where 2ci  is probability of finding each state.   As an example, consider the following 

theoretical analogy, suppose our quantum system has three variables f = 0 if the f is false or f = 1 

if f is true, and b = 0 if 5b  or b = 1 if b = 5, and the third variable s = 0 if s is > 32 or s = 1 if s 

<= 32.  Our state vector would be [fbs] with eight possible states since 32 = 8 describing a system 

of n qubits having a state space of 2n dimensions.  If f = 1, b = 0, and s = 0 indicating that f is 

true, 5b  and s is > 32, we would have the state [100]. We use only three numbers to define a 

state in this analogy.  Next, suppose that we do not know what the exact values of f, b or s are at 

any given time.  The probability of finding the describe state is: 

 .1[000] + .2[001] + .3[010] + .4[110] + .3[100] + .6[101] + .4[110] + .3[111] 

This expression states that the complex weights are .1, .2 … to .3 for [111] and so the probability 

of getting the described state of [100] is 2.3 = 0.09.  The sum of all the probabilities is exactly 

1.0, which means that there is a 100% certainty that the described state exists. Unobserved, the 

values exist in all possible states but once the values are measures they collapse to one particular 

state.  The assigned weights, provide a probability that our values will be in a specific state with 

[100] being measured 9% of the time and [001] 4% of the time.  The exact state cannot be 

measured but a prediction of the probabilities can provide a possible solution. If one of the 

probabilities is near one and the others nearly zero, then the state nearing one will be considered 

a high-probability state and if one measures exactly one, then that state will be the one measured 

all of the time.  A multiple qubit system such as the one describe above, can be assembled using 
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quantum registers similar to classical registers.  Qubits are assembled into quantum registers with 

the tensor product expressed as: 

     0 1 2  

for a three qubit system.  So the state space for a three qubits, each with the basis {| 0 ,|1 , has 

basis {| 0 | 0 ,| 0 |1 |1 | 0 ,|1 |1 }or expressed as{| 00 ,| 01 |10 ,|11 } more 

compactly.  A basis state for a three qubit system is:        

                           {| 000 ,| 001 ,| 010 ,| 011 ,|100 ,|101 ,|110 ,|111 }  

and in general an n qubit system has 2n basis vectors.  This exponential growth of the quantum 

system‟s state space defines the power of quantum computation. 

       A geometrical representation of a two-level quantum system is visualized with a Bloch 

Sphere: 

      

 

 

According to Figure 5, only two real numbers are needed to identify a qubit, therefore we can 

map it to an arrow from the origin to the 3-D sphere of radius 1.  Within this sphere context, 

qubits can be represented by two angles that correspond to the latitude (Θ) and the longitude (Φ) 

similar to a position on Earth.  This quantum state would be represented by   

  Figure 5: Bloch Sphere 

(http://www.quantiki.org/wiki/index.php/Bloch_sphere) 
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with             

                                  

In this notation, the North Pole represents the state | 0  and the South Pole represents the state 

|1 .  The equator corresponds to a superposition of both the basis states with equal weights, and 

different phases.  Representing a pure quantum state, the Bloch Sphere displays the fact that 

given any state on the sphere, the diametrically opposite points to one possible outcome of 

measurement on the system.  This is a useful means of visualizing the state of a single qubit. 

Quantum Entanglement 

       Entanglement is a quantum phenomenon that solves the measured outcome situation by 

claiming that the individual states of two particles are related or entangled, even if they are light 

years apart.  Entangle pairs or EPR pairs are created and permitted to exist in a particular 

configuration, so if one particle is measured, the other one simultaneously yields a similar state. 

The benefit of this quantum principle is that a measurement can be extracted of the quantum 

system to form a basis without collapsing the system.  

       Einstein, Podolsky, and Rosen (1935) proposed an experiment commonly referred to as the 

EPR paradox.  The implications of this experiment rocked the foundation of quantum theory at 

the time and reinforced the esoteric and unusual behaviors of quantum mechanics.  This research 

paper contained the first definition of physical reality stating, in non-physicists‟ terms, that if a 

physical property of an object can be known without it being observed, then that property could 

not have been created by observation therefore if it was not created by observation, it must have 

existed as a physical reality before its observation.  A common example used to visualize this 
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property is to consider two entangled particles
1 1

| 00 |11
2 2

, one is sent to observer Alice, 

and the other to observer Bob.  Alice and Bob may be arbitrarily far apart.  When Alice measures 

her particle and finds it to be in state | 0  with a combined state of now | 00 , it is instantly 

known that Bob‟s particle will also be in state | 0 .  If Alice were to have found her particle in 

state |1 , then Bob would also have observed |1 .  An important note is that Bob has not actually 

measured his system but only observed it.  Bob has not collapsed the quantum system state but 

when Alice measures her state both particles collapse. Quantum theory states that before Bob‟s 

system is measured, his particle can have no defined value for its state, it is in a superposition 

state.  Only when measured does its value become physically real and this occurs when Alice 

measures her state.  Einstein‟s explanation of this paradox was to assume Bob‟s particle 

possessed some kind of hidden fixed properties.  The best that can be done to determine Bob‟s 

state is to give probabilistic predictions.  This theory is commonly known as a hidden variable 

theory and claims that the simplest hidden variable theory for an EPR pair is that the particles are 

either both in state | 0  or both in state |1 .  Einstein believed that there was no mysterious 

communication between the two particles; rather the particle properties were set when they were 

created.  Bell‟s inequality experiment reveals the converse to be true.  Bell proved that there is a 

strange connection between the particles, which instantaneously informs the undisturbed particle 

of the state change of the other entangled particle (Bell, 1964). 

Quantum Decoherence 

       Quantum entanglement provided the proof that it is not possible to separate a particle being 

measured from the entity performing the measurement.  In a quantum environment, the particle 

and its environment are bound together as one system.  Both the measured particle and the 
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measuring device will have to be considered when attempting to understand and measure the 

quantum system. 

       The peculiarities of quantum mechanics create many questions affecting quantum 

computation.  When a measurement of a quantum system is performed, what causes the quantum 

state to appear to “jump” to a particular eigenstate?  Why can‟t a quantum system be viewed as a 

superposition of many other states?  Recall the double-slit experiment described earlier in this 

section.  In this experiment, the superposition of many other states is observed as constructive 

and destructive interference effects.  Why do these interference states disappear in the quantum 

system? 

       First, recall how a quantum state is expressed as a linear combination of components of 

other states as the previous example showed here: 

 .1[000] + .2[001] + .3[010] + .4[110] + .3[100] + .6[101] + .4[110] + .3[111] 

or expressed as 

    1 2 30.5 0.83 0.24s  

where a superposition state , s , is the sum of components of other states and their probabilities 

sum to one.  In the double-slit experiment, interference components possess the same phase as 

they combine to produce the interference effects.  This is also true for the superposition state, 

every component state must be in the same phase or coherent in order to achieve a superposition 

state. 

       In the real world, outside of our protected quantum environment, a particle is not completely 

isolated.  It interacts with the environment that may have an effect of the particle „being 

observed‟ by the environment and this could cause the quantum particle‟s component states to 

get entangled separately with different aspects of its environment.  Potentially, each component 
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of the quantum particle forms separate entangled states causing their phases to be altered, which 

destroys the coherent phase.  This principle is known as decoherence and describes how 

interference is lost.  The interference components do not disappear but are simply out of phase 

and are not visual at the macroscopic level.  Decoherence can be defined as the loss of 

information from a quantum system into the environment.  As an example, imagine throwing a 

rock into the sea off the coast of Florida.  After the initial splash, the waves dissipate and 

disappear from view.  In actuality, they do not disappear but decrease in size, and get mixed into 

and interfere with other waves.  Decoherence explains why states appear to jump since it 

happens so fast.  It also explains why a superposition of states cannot be viewed, as decoherence 

has taken place long before measurement of the system. 

Simple Quantum Gates 

       Up to this point, this section has described static quantum systems that change only when 

measured.  Classical systems use boolean logical gates as a way of manipulating bits and in the 

quantum world, many of these same gates will apply with the exception that all operations that 

are not measurements are reversible and are presented by unitary matrices. These matrices 

represent quantum gates as counterparts to the classical gates similar to the logical AND or OR 

gates.  Quantum gates can be visualized as rotations of the quantum state on the Bloch Sphere.   

Examples of common single-qubit quantum state transformations are displayed in Figure 6: 
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I is the identity transformation, which does not change its inputs.  X is the negation 

transformation, Z is a phase shift operation, and Y is a combination of Z and X.  X, Y, and Z are 

known as the Pauli Gates.  Pauli-X gate is the quantum equivalent of a NOT gate and acts on a 

single qubit.  Pauli-Y gate also acts on a single qubit and equates to rotation of pi around the Y-

axis of the Bloch Sphere.  Pauli-Z gate equates to the rotation of the Bloch Sphere around the Z-

axis and acts on a single qubit. 

       Another important single qubit transformation is the Hadamard Transformation defined by 

(Rieffel & Polak, 2000):  
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Figure 6: Common Single-Qubit State Transformations 
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This transformation is used generate a superposition of all 2n possible states which can be 

viewed as the binary representation of the numbers 0 to 2 1n  (Rieffel & Polak, 2000). 

 ( ... ) | 00...0H H  
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((| 0 |1 (| 0 |1 ... (| 0 |1 )
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All five of the above transformations are unitary.  Let 
*M define a conjugate transpose of the 

matrix M , the definition of unitary for any matrix M states that if M is unitary, then  

*MM = I .  Unitary transformations are considered as being rotations of a complex vector 

space.  If M is filled with only real numbers, then 
*M is just TM , or the transpose of M . 

Quantum Parallelism 

       In addition to entanglement, quantum computers are faster at some computations due to 

another quantum mechanical principle called quantum parallelism.  True quantum parallelism is 

defined as the ability of a quantum computer to perform multiple computations simultaneously 

(Deutsch, 1985).  It arises from the ability of a quantum memory register to exist in a 

superposition of base states.  It is different from classical parallelism in that classical computing 

requires multiple processors linked together to perform parallel operations while the processors 

are performing other computations as well.  The computational space increases exponentially 

with the number of particles in a quantum system, contrary to classical systems where an 

exponential decrease in time requires and exponential increase in the number of processors. 

This is an important concept to quantum algorithm development as it represents the fundamental 
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difference between classical and quantum computing (Kasivajhula, 2006).   

       Many quantum algorithms take advantage of quantum parallelism to achieve the desired 

results with high probability.  The algorithms take advantage of the principle that allows 

quantum computers to evaluate a function f(x) for many different values of x simultaneously.  

Two common techniques used by quantum algorithms are (Rieffel & Polak, 2000): 

1.  Amplify the output values of interest or the „marked‟ value.  

2. Find common properties of all the values of f(x). 

The next subsection provides examples of how quantum algorithms manipulate quantum 

parallelism principles to solve many computational problems. 

Quantum Algorithms  

       Reversibility, superposition, and parallelism are the three major differences between 

classical and quantum operations (Omer, 1998).  Reversibility is important in quantum 

computing as it provides the ability of the quantum operations to harness the power of quantum 

computation.  Any classical subroutines performed in a quantum computation must be performed 

reversibly.  Decoherence is a problem associated with quantum computers so to keep quantum 

computation coherent, quantum registers must be isolated avoiding entanglement with the 

environment.  Deterioration of a quantum system has to remain constant since no heat dissipation 

is possible, therefore state changes have to be adiabatic.  This means that with rapidly varying 

conditions, a quantum mechanical system must adapt its functional form.  For this reason, all 

quantum computations must be reversible.  Theoretical physics states that every operation on 

quantum bits must be undoable meaning enough information must be kept to work any operation 

backwards.  Typical classical operations such as relational equivalence, Boolean AND, and 

Boolean OR, have to be modified for use in quantum computing.  The quantum gates described 
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in the previous subsection provide a straightforward formula for converting irreversible classical 

operations to quantum operations.  In addition, the NOT and CNOT gates provide classical 

Boolean functionality on a qubit. 

       Superposition and parallelism have been discussed in detail earlier in this paper and their 

importance to quantum computing explained.  The ability for quantum registers to be placed in a 

superposition of states defines a powerful principle used by many quantum algorithms.  

Exploiting this quantum mechanical principle places a quantum bit in two different values at the 

same time.  Quantum parallelism provides the ability to apply all the basis vectors in 

superposition simultaneously and supports the generation of a superposition of all the results. In 

this way, it is possible to compute f(x) for n values of x in a single application of a unitary 

transformation. 

       These quantum principles are exploited by the following quantum algorithms either all 

together or separately to solve intractable problems simply.  When developing a quantum 

algorithm, a researcher has to think in terms of probabilistic factors, a conceptual change for 

many computer science programmers.   

Deutsch’s Quantum Algorithm 

       Deutsch (1985) developed one of the first examples of how a quantum algorithm can exploit 

quantum computational power.  He presents an efficient quantum solution to a simple problem 

that requires an exhaustive search to solve deterministically without error on a conventional 

computer.  In the Deutsch problem, a black box quantum computer is used to implement the 

function  f: {0, 1}
 
  {0, 1} in which the input is known to produce one of two outputs: balanced 

or constant.  The function f(x) takes a one bit argument and returns one bit but can only be 

evaluated not altered as the definition of f(x) is immutable.  One more criterion is that f(x) will 
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only be evaluated once.  Classically, this problem would require at least two evaluations. 

       The Deutsch algorithm is based upon a quantum version of the classical Fourier transform 

that maps one complex-valued function of a real variable to another. This transformation 

typically maps the time domain to the frequency domain.  Fourier transforms map functions of 

period r to functions that have non-zero values only at multiples of the frequency
2

r
.  On a 

classical computer, this operation takes time ( log )O n n but on a quantum computer can take time

2(log )O n . 

       Four possible functions fit the requirements of the Deutsch problem:  

1. f(x)  0 //constant zero result 

2. f(x)  1 //constant one result 

3. f(x)  x // identity function 

4. f(x)  ~x // boolean negation 

The first two are constant, which means they output the same value regardless of the input 

values.  The last two are balanced because the output is zero half the time and one the other half 

of the time.  Superposition and parallelism are the key quantum principles used by the Deutsch 

algorithm to determine whether a function is balanced or constant.  Two qubits would be 

required putting four basis states: f(00), f(01), f(10), f(11), into a superposition to start, with the 

goal to determine whether f(x) is balanced or constant.  The amplitudes start with positive values 

where f(x) = 0 and negative amplitudes where f(x) = 1.  Recall that the sum of the squares of the 

absolute values of the amplitudes always sums to one.  A quantum boolean exclusion operator is 

used to move each input value to and output qubit basically by swapping basis vectors around 

without changing the amplitudes.  After this operation, there are still two positive values and two 

negative values. Quantum parallelism principles allow a query to all possible outputs 
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simultaneously or the combined state as a single operation.  The resulting output would either 

print balanced or constant depending on which f(x) started as input when the quantum system is 

finally measured.   

Simon’s Quantum Algorithm 

       Simon‟s periodicity problem is a generalization of Deutsch‟s problem but instead of 

assessing whether a function is balanced or constant; it finds patterns in functions (Simon, 1997).  

Simon‟s algorithm is another black box problem that demonstrates quantum algorithms 

advantage over classical algorithms but does not solve a very difficult problem. 

Assume a function :{0,1} {0,1}n nf  that is evaluated not altered in the black box quantum 

computer.  The function f obeys the property that there exists a string 0 1 2 1... nc c c c c such that for 

all strings , {0,1}nx y , we have ( ) ( )f x f y  if and only if x y c , where  is the bitwise 

exclusive-or operation.  This means that values of f repeat themselves in some pattern and the 

pattern is determined by c, which is known as the period of f (Yannofsky & Mannucci, 2008).  

Simon‟s algorithm will solve the problem by finding the string c using a combination of classical 

and quantum procedures.  An example of a function that satisfies the property follows assuming 

n = 3: 

 

 

 

 

 

Consider c = 110.  Every output of f occurs twice, and the two input strings corresponding to any 

one given output have bitwise exclusive-or (XOR) equal to c = 110.  Illustrating these 

x f(x) 

000 101 
001 010 
010 000 
011 110 
100 000 
101 110 
110 101 
111 010 

 



52 

 

 

calculations: 

 

 

 

 

 

Hadamard operations prepare the initial state and then call the black box to transform the state. 

Hadamard transforms convert the state performing simultaneous measurements on both registers.  

Given enough values, the algorithm can solve the n-1 basis vectors, and compute string c that 

satisfies c · y = 0, where y is the string measured by the quantum operations. 

       The classical operations are involved in the post-processing calculations where a classical 

algorithm uses the quantum results to solve linear equations.  A pointwise exclusive or is used to 

add the binary strings and conclude the final result of c.   

Shor’s Quantum Algorithm 

       Simon‟s algorithm is of little practical use but does provide an exponential speedup over any 

classical algorithm.  Its importance is often realized as the inspiration to Shor‟s polynomial-time 

factorization algorithm that stimulated the field of quantum computing. 

Shor‟s (1994) factoring algorithm is a significant foundational quantum algorithm as given a 

practical quantum computer, Shor‟s algorithm would make many present cryptographic methods 

obsolete.  The algorithm is probabilistic and based on the fact that the factoring problem can be 

reduced to the problem of finding the period of a function.  Quantum parallelism is used in 

Shor‟s algorithm to obtain a superposition of all the values of the function similar to Simon‟s 

algorithm, in one step.  A quantum Fourier transform, similar to the classical Fourier transform, 

000  110 = 110; so, f (000) = f (110). 

001  110 = 111; so, f (001) = f (111). 

010  110 = 100; so, f (010) = f (100). 

011  110 = 101; so, f (011) = f (101). 

100  110 = 010; so, f (100) = f (010). 

101  110 = 011; so, f (101) = f (011). 

110  110 = 000; so, f (110) = f (000). 

111  110 = 100; so, f (111) = f (100). 
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puts all the amplitude of a function into multiples of the reciprocal of the period.  The resulting 

measurement of the state that yields the period is found with high probability and is then used to 

factor an integer or long list of digits.  One issue with Shor‟s algorithm is that since the quantum 

Fourier transform is based on the fast Fourier transform, the process gives only approximate 

results in many applications. 

       Similar to Simon‟s algorithm, Shor‟s process uses both quantum and classical operations. 

Rieffel and Polak (2000) provide an outline of Shor‟s algorithm where M is the number factored:   

1.  When two numbers are coprime it means their greatest common divisor is 1. The first 

step in Shor‟s algorithm is to determine if M is a prime, an even number, or an integer 

power of a prime number. If yes to any of these then classical solutions are more 

efficient, there is no reason to use Shor‟s algorithm. 

2. If no to any of those in step 1 then a quantum solution is more efficient and so step 2 

states to obtain classically a random integer a, that is the power of 2 such that: 

    
2 22M a M  

3. Still using classical methods find an arbitrary integer p such that p and M are coprime. 

4. Using quantum parallelism, compute ( ) modxf x a M for all integers from 0 to (a-1). 

5. This step will prepare the amplitude function for use in step 7.  In order to use the 

quantum Fourier transform, a state is constructed whose amplitude function has the same 

period as f.  To accomplish this step, a random value r is obtained using the measurement 

of the qubit register from step 4.  The value of r is inconsequential in itself.  The 

importance is the effect of the measurement on the set of superpositions.  What this 

means is that after measurement of this first qubit register we obtain a value for r and the 

other qubit register still in superposition when plugged into function f, will produce r.  
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Since modxa M is a periodic function, it is known that the unmeasured superposition 

state after measurement is 

           ( ) | ,
x

C g x x r  

              for some scale factor C where      

 
1 if  ( )

( )   
0 otherwise

f x r
g x  

6. Now apply a quantum Fourier transform to the state obtained in step 5. 

7. Measure the state of the qubit register left in superposition to extract the period of 

function f, calling it m.  m has a very high probability of being a multiple of a / t, where t 

is the desired period. 

8. Using m, and moving over to a classical environment, use the Euclidean algorithm to 

efficiently check for a non-trival common factor with M. 

9. Repeat the algorithm, if necessary.  Shor claims that a few repetitions of this algorithm 

yield a factor M with high probability. 

Grover’s Quantum Algorithm 

       Grover (1996) developed a less spectacular but easier to implement quantum algorithm that 

has many applications to database theory.  He proposed an efficient solution using quantum 

concepts to the searching problem, although there are other applications of this technique.  

Grover‟s algorithm is also probabilistic similar to Shor‟s, meaning that the probability of failure 

for both algorithms can be decreased by repeating the algorithm. (Yanofsky & Mannucci, 2008) 

state that the number of repeats is significant and proven to be 2n times for Grover‟s algorithm.  

       Grover‟s algorithm returns to the black box context similar to Deutch‟s and Simon‟s 

previously defined algorithms.  This searching problem is unstructured, which means that no 
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assumptions are used on the function f.  A structured search, like searching an alphabetized list, 

is where information is known about the search space and f.  Consider a function 

:{0,1} {0,1}nf  that is implemented by a reversible transformation.  Since this search is 

unstructured, there are no promises on the function f, so it is not possible to use a binary search 

or other methods to efficiently solve this classically. 

       Grover‟s algorithm is simple to implement with the following steps: 

1. Begin with an n-qubit register in the starting state of | 0
n

.  

2.  Apply a Hadamard transform 
nH on the n-qubit register.   

3.  Repeat  2n
 times: 

 3a.)  Apply phase inversion operation:  ( )fU I H
    

    3b.)  Apply the inversion about the mean operations: 2I A  

4.  Measure the qubits. 

Summarizing the implementation of Grover‟s algorithm, step one and two are standard 

operations for many quantum algorithm‟s, which first initializes a qubit register to a starting state 

and then using the Hadamard transform puts the qubit register into a superposition of all input 

states.  Step 3 contains the difficult task of attempting to obtain a useful result from the 

superposition.  The trick is to change the quantum state so as to greatly increase the amplitude of 

the marked state and decrease the amplitude of all other states to improve the probability of 

finding the correct search element.  The phase inversion operation should provide the initial state 

change and inversion about the mean should amplify the marked state moving its probability 

higher with each iteration of the loop in step 3.  If all works correctly step 4‟s measurement 

should provide the correct solution in the least amount of time.  Classically repeating a search 
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process over and over should provide a better solution but Grover‟s algorithm can provide worse 

results if executed too many or too few times.   

       Wallace and Narayanan‟s (2001) used a derivative of Grover‟s algorithm in their quantum 

sorting algorithm that is animated by this research.  Steps 3a and 3b are discussed in detail in 

Chapter 4 of this final report, as Grover‟s algorithm is important to the design and 

implementation of QuAL. 

A Survey of Other Interesting Quantum Algorithms 

        Current quantum research has taken these foundational algorithms and modified them to 

achieve greater efficiency, enhanced them to solve broader classes of problems, or adapted them 

to other types of problems.  Brassard and Hoyer (1997) propose a new quantum algorithm that 

combines the techniques of Simon and Grover‟s algorithms to solve a decision problem in exact 

quantum polynomial time.  Quantum computation theory challenges the corollary of the  

Church-Turing thesis that states that anything that can be computed in polynomial time on a 

physical device could be computed in polynomial time on a probabilistic Turing machine.  

Simon‟s algorithm provided a solution that may be solved in polynomial time on a quantum 

computer, but its classical counterpart would require exponential time when the data was 

supplied in a black box.  Exact quantum polynomial time pertains to problems that quantum 

computers can solve in guaranteed worst-case polynomial time. 

       Buhrman et al. (2001) provide a generalization to Brassard, Hoyer and Tapp (1997) 

algorithm, which was one of the earliest applications of Grover‟s (1996) algorithm. Buhrman et 

al. utilize quantum amplitude amplification to solve the element distinctness problem.  The 

problem of elemental distinctness attempts to find out if all the elements in a list are distinct.  

The classical version of this algorithm can provide a solution in ( log )n n while Buhrman et al.‟s 
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solution can solve the problem faster in 
3/4( )n queries.  Ambianis (2005) developed an even 

faster solution for this problem in 
2/3( )n  queries by using quantum walks.  Quantum random 

walks have been a very popular concept in developing new quantum algorithms.  Physicists first 

described them in 1993 (Aharonov, 1998) and they became an important computational tool 

when interest in quantum computers increased.  Quantum random walks provide illustrations for 

the quantum concept of interference, which is one of the concepts that computer scientists should 

understand when attempting to understand quantum algorithm development.  The quantum walk 

problem is similar to classical random walks, which uses the analogy of a person walking along a 

straight line and assessing the direction of their next step.  In the classical version, a probability 

distribution describes the walker‟s current state that refers either to the fact that they have a 

choice to go forward or backwards with equal probability.  In the quantum walk version, the 

walker is in a superposition of all positions measured by the amplitudes instead of the probability 

of taking a step forward or backwards.  Recall that amplitudes in quantum computing measure 

the probability of being in one state or the other and in this analogy, they determine the walker‟s 

next step but it is not just forward or backwards but a superposition of both choices.            

       Mathematically, because amplitudes use complex numbers, this could mean that our 

directions cancel each other out.  Typically, in a classical situation, the probability of reaching 

zero position is the sum of the two probabilities with equal probability of going in two different 

directions, but in the quantum world, research has found a different scenario.  Amplitude 

measurements do not have to be positive numbers. A negative result may occur causing a 

number greater than unity.  This effect is known as quantum interference.  Ambainis, Kempe and 

Rivosh (2005) provide a solution to the problem of interference by using a quantum coin flip in 

their quantum walk algorithm.  The quantum walk‟s performance is improved to ( )n searching 
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a spatially d-dimensional space.  Quantum walks have also been used to improve upon triangle 

finding and verifying matrix products (Magniez & Santha & Szegedy, 2005; Bhurman & Spalek, 

2005). 

        Shi (2001) uses concepts from Grover‟s (1996) algorithm and Ambainis‟ (2000) research to 

prove that ( log )n n  comparisons are necessary for quantum sorting algorithms that use only 

comparisons. Ambainis‟ previous lower bound was (log )n . Shi‟s improved lower bounds 

mean that the best comparison-based quantum sorting algorithm can be no better than a constant 

time faster than its classical counterpart can.  In another paper, Shi (2002) worked to improve 

searching, sorting and element distinctness with quantum concepts.  Brassard et al. developed a 

quantum algorithm that traverses a binary search tree using quantum routines more efficiently 

than classical algorithms.  Once again using the black box model so that the only way the 

algorithm can obtain information about the input data is via queries.  The use of binary search 

trees is different from others who base their quantum algorithms on Fourier transforms and 

amplitude amplification (Brassard, Hoyer, Mosca & Tapp, 2000).   

       Using the sequential quantum circuit‟s model, Klauck (2003) examined the complexity of 

sorting proving that quantum sorting algorithms are more efficient in a space bound setting.  

Klauck confirmed this theory by claiming that the quantum complexity of sorting is different 

from classical complexity.  Using Grover‟s search algorithm and Durr and Hoyer‟s (1999) 

quantum algorithm for finding minimum, Klauck demonstrates the following theorem: “For all 

S in [ (log ),..., ( / log )]n n n  there is a quantum circuit with space S that, given a comparison 

oracle for n numbers, outputs the sorted sequence, and uses time
3/2 3/2( log / )n S .  The entire 

output is correct with probability 1 -  for an arbitrarily small constant  0.”   
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       This research focused on Wallace and Narayanan‟s (2001) algorithm to animate the quantum 

sorting concept. The main purpose of using a sorting quantum algorithm was the connection to 

classical sorting concepts and the use of comparisons to bridge the gap between lecture and 

animator usage.   

       Wallace and Narayanan (2001) use superpositional permutation searching to propose two 

new quantum algorithms for sorting and routing.  The sorting quantum algorithm uses input of an 

unsorted list of n items in random order to obtain an output of a sorted list of n items in a specific 

sequence by using a derivative of Grover‟s search algorithm.  Their research uses an alternative 

approach to the classical sequential inspection and rearrangement, by recasting the sort process 

as a search for a particular permutation of the list items sequenced in the desired sorting order 

amongst all possible permutations of the list items.  This quantum algorithm is discussed further 

in Chapter 4 along with the derivative of Grover‟s algorithm used in their research. 

Summary of Knows and Unknowns 

      Quantum algorithm research is expanding its boundaries from the early historical discoveries 

with the innovation of new algorithms, enhancements to foundational quantum algorithms and 

broader problem solutions.  Whether a quantum computer will emerge as the next new 

technological revolution has yet to be determined but quantum computing concepts are 

furnishing improved solutions to classical problems and computer scientists are beginning to 

realize the value of these concepts. Quantum theory lags behind universal theory but quantum 

computer scientists are hoping for a time when they can develop quantum algorithms that will 

someday run on a universal quantum computer. 

       Historical classical animator research has covered a broad range of theoretical topics and 

proven that with certain parameters, animations are an effective means of conveying algorithm 



60 

 

 

concepts. Techniques such as speed control, visualizing code sequence, addition of colors, along 

with supplemental lecture material were used by this research to contribute to QuAL‟s aesthetic 

enrichment.  QuAL‟s interface followed a few foundational guidelines by providing familiar 

features, user control, consistent input / output, and added inverse coloring. 

       Mermin (2006) claims that computer scientists do not need to understand how to build a 

quantum computer but should comprehend the quantum mechanical properties required to 

interact with one.  Developing new quantum algorithms may require knowledge of entanglement, 

quantum superposition, qubits, amplitudes, and distribution probabilities.  An introductory 

understanding of these properties could entice student interest in quantum computing and 

promote its usage into more computer science applications. 
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Chapter 3 

Methodology 

Research Goal and Design Objectives 

       The primary goal of this research was to design and develop an application that animates 

quantum algorithms.  Computer science students to promote learning quantum concepts and 

entice student interest in quantum computing can then use this animator in an introductory 

computer course.  A design objective for this research was to develop an application that has an 

easy to use interface providing animations of quantum concepts such as; entanglement, 

probability distribution, amplitudes, qubits, quantum states, and superposition. Another design 

objective was to provide animator features that promote a clear understanding of the steps 

required by a quantum algorithm to use quantum concepts in solving a sorting problem.  Sorting 

concepts were used to promote a connection between a student‟s classical algorithmic knowledge 

and the quantum concepts promoted by these animations. 

       Three stages were used in this research; an exploratory stage, a design and development 

stage, and finally the case study.  The exploratory stage gathered data from classical algorithm 

animation research and compiled a list of common features that could be used in the design of 

QuAL.  Quantum algorithms have similar operations to classical algorithms by requiring an 

input, stepping through code statements, and then producing an output.  Many of today‟s 

quantum algorithms will use principles designed by classical algorithms but enhance those 

procedures with quantum mechanical principles to provide faster, more efficient solutions.  

Wallace and Narayanan‟s (2001) algorithm animated by this research utilized classical sorting 
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concepts to check the final product produced by their sorting quantum algorithm, testing to 

assure ascending sort order.  The main difference between classical and a quantum algorithmic 

procedure is that you cannot see or measure the operations of a quantum algorithm. They operate 

in a blackbox environment and only when observed does the state collapse to a specific 

measurement.  As an example, the common bubble sort algorithm can be animated by visualizing 

blocks of different heights moving from one position to the next as the algorithm processes the 

ascending sort order.  The quantum sorting algorithm cannot be measured during the sort 

operation so the procedures themselves cannot be animated during the sorting process. The 

quantum concepts can be animated by checking quantum states or amplitudes and probability 

distributions as the algorithm‟s methods calculate them. 

 Exploring Classical Algorithm Animators 

       The literature review provided research topics and data covering many classical algorithm 

animators.  The past and present research focused on user interfaces, design features, animation 

theory, and algorithm understanding.  Concepts and components that worked for the classical 

environment may not provide enhanced interaction or design improvements in the quantum 

environment due to the differences in procedures between the classical and quantum algorithms.   

        The exploratory study discovered animator strengths and shortcomings. Animations 

developed based on just aesthetics instead of concentrating on what a student needs to aid 

understanding failed in student comprehension of presented material. Algorithm animation is 

also plagued by the simple fact that animating abstract data has many different possibilities 

depending on the requirements of the algorithms.  Multiple views can also complicate learning 

by becoming too confusing for the student but need to be used in order to display all the required 

concepts for algorithm understanding.  The user should not be left wondering why an animation 
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is moving, what values is it attempting to display, and how did the algorithm accomplish its final 

steps. This research found that effective animators used many of the following findings: textual 

annotations to assist students in associated mapping, expression of conspicuous or important 

features, explain cause and effect clearly, dynamic instead of static images using clear 

visualizations of cause and effect, multiple representations, and factual representations to reduce 

complexity (Grillmeyer, 2001). 

       This research found that no one path or environment used in the classical algorithm 

animation realm would completely define the initial design of QuAL and its features.  The 

abstruse principles of quantum mechanics could not be animated by simple classical algorithm 

animations but the animations could be defined by the complex numbers (amplitudes) and 

probability distributions calculated during the course of the quantum algorithm‟s execution. 

QuAL‟s initial design would incorporate text and graphical chart representations showing 

algorithm progress described by Wallace and Narayanan‟s (2001) pseudocode, highlighting each 

statement as it progresses through its operations, using a bar chart to represent amplitude changes 

and a line chart plotting the dynamic activity of the probability distributions. Textual changes are 

incorporated into this initial design to display important concepts associated with specific 

quantum algorithm sorting processes. 

       QuAL‟s interface was designed to provide a clearer, more accessible representation of the 

information and interactions occurring in the animations.  Different colors portray the dynamic 

changes occurring with the probabilities and the color red was used to highlight the „marked‟ 

amplitude.  A speed control slider provides the user with a chance for slowing or speeding up of 

the animations and moving the control to the left end will slow the speed enough to follow each 

animation systematically.  Multiple views can be confusing but the user can gain an appreciation 
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for the algorithm‟s processes by examining one view at a time and then a combination as 

animator understanding increases.  The input window is non-editable in this initial prototype to 

control qubit register growth, future versions will allow user input.  The interface background 

colors white, light grey and blue are used to provide a calm learning environment as quantum 

concepts can be frustrating to learn. 

QuAL: Design and Documentation 

        The programming design of QuAL used an object-oriented development approach (OODA), 

which followed the traditional five phases of analysis, specification, design, implementation, and 

evolution.  These phases provided feedback into one another in an iterative approach as changes 

in design and specifications were required during implementation.  Figure 7 provides a diagram 

of this iterative process: 

 

     

 Figure 7:  OODA Process 
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During the OODA process, the Object-Oriented application framework was used to guide the 

development of QuAL‟s graphical user interface (GUI) using the Java programming language.  

(Laszlo, 2002) furnishes a survey of framework characteristics stating one of the main benefits of 

using object-oriented code is its support for reuse.  Other benefits of using a framework for the 

development of GUI-based programs are: 

1.  Frameworks provide generic components allowing the developer to focus on other 

application features. 

2. The developer will customize the framework by adding application-defined classes that 

connect to the framework. 

3. Frameworks are responsible for flow of execution focusing the development effort on 

other design elements. 

4. The framework assists the development process by defining interfaces for components 

providing the developer with a mechanism for customizing new components but still may 

use the components provided by the framework. 

5. The framework may contain design patterns. 
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QuAL’s Class Diagrams and Summaries 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 8 shows several of QuAL‟s interesting animation classes.  This class diagram 

generated with Dia, represents the class AnimationDisplay and its subclasses 

AnimationDisplayAmps, AnimationDisplayAlg, and PermutationDisplay.   AnimationDisplay is 

an abstract class that extends Canvas and is defined within the core package.  It holds the basic 

display methods for QuAL‟s animations.  The three subclasses extend its parent class and further 

define methods specific to the types of animations they represent.  AnimationDisplayAmps 

contain the methods and attributes for animating the quantum sorting algorithm‟s amplitude data, 

AnimationDisplayAlg holds the methods and attributes for animating the probability data and 

 

Figure 8: UML Class Diagram for QuAL‟s Amplitude and Probability Animations 
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PermutationDisplay will hold future methods for adding more animation specific to the different 

permutations.  Appendix K provides a complete UML class diagram containing all of QuAL‟s 

classes and their relationships.         

       The next class diagram displayed in Figure 9 shows the parent and child classes responsible 

for the control of the animation and main graphical user interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

QuSort extends AnimationAlgorithm to control the coordination of the different animation views 

 

Figure 9: UML Class Diagram of Animation Control and GUI Classes 
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and contains the initial setup for the main graphical user interface.  It initializes methods in the 

parent class AnimationAlgorithm upon execution of the Java Applet with the location of the 

textual file containing the quantum sorting algorithm‟s pseudocode and other essential starting 

values. It also defines the wallaceSort method used to provide feedback and fire events when the 

algorithm updates probabilities and amplitudes and sends that information to the class called 

AnimationAlgorithm that coordinate the algorithms state with each of the views.      

       The AnimationAlgorithm class implements runnable and SpeedChangeListener as the main 

animation control class.  Its methods control animation speed, determine which algorithm is 

animated, and initializes the speed control, line change, and frame listeners.  It contains methods 

that watch for events as the algorithm‟s pseudocode highlighting is changed and coordinates the 

changes of those lines of code.  The initial prototype of QuAL animates the Wallace and 

Narayanan (2001) sorting quantum algorithm but this system has been developed so that future 

versions could quickly introduce other algorithms via the addition of new packages.  The main 

package core, shown in Figure 10, contains the foundational classes for the animation of 

quantum algorithms.  A second package core.quantSort, displayed in Figure 11, contain the 

classes specific to animating the Wallace and Narayanan sorting algorithm.  Additional classes 

could be added to animate other algorithms by simply adding a new package and adding a 

switching component to the main interface allowing the user to select between different 

algorithms. Future additions to QuAL could animation other sorting algorithms or other classes 

of quantum algorithms. 
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       The constructor of the AnimationAlgorithm class initializes listeners as vectors and sets up 

initial values for the CodeWatcher, CodeExplain and SpeedControl classes. The 

AnimationDisplay class is an abstract class that extends Canvas and its bare methods provide a 

basic starting point for the graphical setup of the animations.  LineChangeEvent is used to 

control the movement from line to line of the highlighted pseudocode text and to coordinate the 

addition of comments in the text box provided during animation execution. The CodeWatcher 

 

Figure 10: core Package Classes 
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class implements a LineChangeListener and its methods provide updates to other classes by 

exchanging messages between the classes. The SpeedChangeEvent class extends EventObject 

and controls the value to increase or decrease the speed of the animation if the speed control 

slider is modified during algorithm execution.   

       QuAL‟s  listener interfaces are implemented by several classes and provide the simple task 

of maintaining the line-changing event, the speed-changing event and the future addition of 

backtracking to add the reversible functionality to QuAL.  The ability to go backwards is not 

functional in this initial prototype but may be added to future additions to allow the user to work 

backwards through algorithm execution. 

       The SpeedControl class contains the layout instructions for the speed control slider and its 

methods are responsible for calculating the time to sleep if the speed is increased or decreased, 

adding a speed change listener or removing it, and firing a speed event when the slider is moved.  

The CodeExplain class implements a LineChangeListener and contains the methods that setup 

the components for the textual changes in the code text box.  This class also sets the static values 

for non-editable input values of “6, 2, 9, 1” which are the integers sorted by the quantum 

algorithm.  In future versions this class will contain the text boxes that allow the user to enter 

different and additional integers to display.  The LineChangeListener coordinates the changing 

of the code text box with the highlighted pseudocode changes. 

     In Figure 11, AnimationDisplayAlg class is responsible for the probability distribution 

animation view.  This class extends the abstract model class AnimationDisplay with the 

implementations of paint( ) and updatedisplay( ), coordinating changes of the probabilities with 

the amplitude view and code highlighting view.  It contains methods that control the 

randomization of colors for the probability changes assisting the user with viewing the subtle 



71 

 

 

changes as the algorithm executes its code.  The paint ( ) method uses a PAD variable set to 

control the height and width of the animation so that is maintains an appropriate size as the 

animation changes and values increase and decrease. AnimationDisplayAmps is similar to the 

AnimationDisplayAlg class except it contains the code required to display the amplitudes and 

their changes during algorithm execution.  The PermutationDisplay class is a bare bones class 

intended to display permutations changes in future versions of QuAL. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
 

Figure 11: core.quantSort Package Classes 
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       QuSort and QuantAL classes are the main applet classes. QuantAL contains the applet 

initialization methods that start the applet with a small popup window that automatically starts 

the applet but if the user stops the applet it displays a button to restart the animation if needed.  

QuSort describe above extends AnimationAlgorithm and initializes classes as it coordinates the 

flow of data collected from QCLDataRead.   

       The data gathered during the exploratory stage provided options for quantum algorithm 

development as well as classical animator information.  Initially a simulator was not going to be 

used in the design of QuAL but development of quantum data structures were cumbersome and 

the Java programming language did not support some of the functionality required to develop 

quantum algorithms.  Bernhard Omer (1998) developed the Quantum Computation Language 

(QCL) as part of his Ph.D. work at the Technical University of Vienna. QCL was selected due to 

its easy installation in a Linux environment and since it functioned as an interpreter, starting the 

application could be achieved at any location on the server by simply typing the command „qcl‟ 

at the command prompt.   

       The data class QCLDataRead was added in order to utilize QCL. QCLDataRead‟s main 

purpose is to parse the data generated dynamically as the algorithm executed its procedures. 

Initially code was parsed via the Java file I/O procedures using streams and channels until it was 

executed as a Java applet and web browser security issues forced a change into using the class 

URL representing a Uniform Resource Locator. The URL object pointed to the file located 

within the same web readable directory on the server.  Using the URL class and the StringBuffer 

class allowed the transfer of material to occur without security restrictions or causing browser 
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certificate failures.  

       Animation mapping in QuAL uses the data-driven approach that relies on the assumption 

that observing how variables of an application change provides information to the actions 

performed by the underlying algorithm (Demetrescu, Finocchi, & Stasko, 2001).  This method 

worked well with the hidden components of quantum algorithms allowing QuAL to animate 

based on capturing and monitoring data changes rather than on processing interesting events.     

          QCLDataRead class parses the dynamically generated text files using a regular expression 

focused on finding the amplitude and probability calculations generated by calls sent to the QCL 

interpreter by a helper class called CmdExec.  The CmdExec class opens an input / output stream 

sending commands to QCL and recording the data retrieved as the algorithm executes its 

procedures.  The Wallace and Narayanan (2001) sorting algorithm was coded using QCL and 

stored as a .qcl file so that the CmdExec class could easily send commands to the QCL 

interpreter as strings. Typical classical algorithm animations record each step of the algorithm 

results in a transition from one state to another. The state is then mapped into a visual 

representation and usually shows the transitions as animations between these visualizations.  

QuAL and its quantum algorithm animation is designed using a similar process but instead of 

mapping the transition from one state to another it maps the data gathered by inserting a print 

command into the wallace.qcl algorithm file capturing, via stream output commands, the 

calculations.  Data is stored in arrays by the QCLDataRead class and mapped to the animations 

views. Probabilities are displayed using the plot charts and amplitudes are displayed using a bar 

chart as the algorithm incorporates Grover‟s (1996) code to find the „marked‟ value. A Perl 

script, called by CmdExec calculates the specific permutations of the values “6,2,1,9” and stores 

them in an array.  The index of the “1,2,6,9” permutation indicates a sorted element and if it 
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matches the value sent as the „marked‟ value to wallace.qcl then the animator knows the 

quantum algorithm found the correct sorted solution.   

       The Java Applet was compiled and runs on a Linux server running Debian 2.6.26-24. Java 

version 1.6.0.20, QCL version 0.6.3 , and Perl version 5.10.0 were used to develop and execute 

QuAL. 

       The initial proposal research intended to include the Template Method pattern into the 

design of QuAL as a method of defining an algorithm (Gamma et al., 1995).  The Template 

Method would have executed the algorithm, which calls one or more hook methods.  The pattern 

would not have achieved any benefit within the quantum algorithm environment since QCL 

provided the basic algorithmic design steps and the implementation was accomplished by the 

QCL interpreter. 

The Case Study 

       The case study was performed in stage five of this research. Walsham (1993) claims that 

“the most appropriate method for conducting empirical research in the interpretive tradition is 

the in-depth case study” (p. 14).  In the previous section, Creswell (2003) recommends a 

qualitative approach, including the use of case studies as a qualitative methodology.  Yin (2003) 

writes that a case study is defined as “an empirical inquiry that investigates a contemporary 

phenomenon within its real-life context, especially when the boundaries between phenomenon 

and context are not clearly evident” (p. 13).    

       Runeson and Host (2008) provide guidelines for case study research with reference to 

software engineering.  They support the use of case studies claiming that it studies contemporary 

phenomenon in a natural context and expand the characteristics of research methodologies by 

using Robson‟s (2002) classifications of the four types of purposes for research: 
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1.  Exploratory – answering the question of what is happening, creating new insights and 

then generating ideas and hypotheses 

2. Descriptive – portraying a situation or phenomenon 

3. Explanatory – looking for an explanation of a problem 

4. Improving – attempting to improve something of the studied phenomenon 

Yin (2003) provides evidence that case studies are common to the fields of psychology, 

sociology, political science, social work, business, and community planning.  These case studies 

are conducted to increase knowledge about many different entities and social behaviors or 

cultural events so it seems reasonable to compare these processes to the field of software 

engineering (Runeson & Host, 2008).   

    This research followed the suggested guidelines of Kitchenham et al. (1995) to plan and 

design, execute, and analyze the results of this case study: 

1.  Define the hypothesis 

2. Select the pilot projects 

3. Identify the method of comparison 

4. Minimize the effect of confounding factors 

5. Monitor the case study against the plan 

6. Analyze and report the results 

The main research goal was to build a quantum algorithm animator with a hypothesis that using 

it as a pedagogical tool will help computer science students understand quantum computing 

concepts more than lecturing to them. This case study used computer science students entering 

their sophomore or junior year of school to test this hypothesis. 
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Planning: The Subjects 

       This case study was carried out at Wayne State College in Wayne, Nebraska during the 

summer academic semester with the participation of 20 students from a variety of Computer 

Science courses. Participation in this research was strictly voluntary and none of the students 

were currently enrolled in classes instructed by this researcher.  The participants were mainly 

male computer science majors within their first or second year as a major. This gender ratio is 

typical of many computer science courses taught here at Wayne State College. Participation was 

on a voluntary basis, and motivated by the prospect of curricular improvement. 

Planning: The Object 

       QuAL is the developed quantum algorithm animator and will be the object used to determine 

if students learn more about quantum concepts than students who just listen to a quantum 

computing lecture. The case study aims at answering the following research questions: 

1.  Will using QuAL provide better post-test results? 

2.  Will the students consider QuAL helpful or user-friendly? 

3. What quantum concepts will both groups grasp and what concepts will be improved by 

using QuAL? 

Planning: The Project 

       Twenty students volunteered their time to participate in this case study.  Pre-test containing 

questions about initial quantum computing and algorithm knowledge, began the study with every 

student taking the same test at the same time.  A quantum computing lecture followed that 

presented a brief overview of basic quantum mechanical principles, quantum computing 

concepts, classical versus quantum comparisons, and information about foundational quantum 

algorithms. Students did not know which group they would be assigned to until the lecture was 
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completed in order to partially minimize the effect of confounding factors. Once they were 

assigned a group letter A or B, they were asked to move to a common side of the lab.  Group B 

students were asked to leave the room for a short break while Group A students completed the 

post-test and exit survey.  Once Group A finished completing the documents they were asked to 

leave the lab and Group B members were asked to return.  Group B members used the QuAL 

tutorial and were allowed to interact with the animator and ask questions before taking the post-

test.  No time limit was specified and most students used another hour to interact with QuAL and 

ask questions about its operations. Group B was then asked to complete the post-test and exit 

survey.  A hypothesis for this research was that algorithm animations should assist student 

learning so Group B students should achieve better scores on the post-test. 

Execution: Methods of Comparisons 

       The comparisons were accomplished by using the pre-tests to determine initial quantum 

computing knowledge and comparing them with their specific post-test results. Data was also 

gathered comparing Group A pre-test / post-test results to Group B‟s pre-test / post-test results. 

Exit survey results were used to assess aesthetic, interface, and other helpful information about 

their experiences with QuAL. 

Execution: Minimize the Effects of Confounding Factors 

       Knowledge of group assignments was addressed only after the pre-test and lecture was 

completed. This should minimize knowledge or assumption of group assignments that might 

introduce errors.  Using summer session students who volunteered provided a normal 

distribution of student representation to minimize the effect of differences in response variables.  

A confounding factor that may introduce issues is the fact that Group B was not able to learn 

about the tool and evaluate the tool in separate activities.   
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Execution: Monitor the Case Study against the Plan 

     The study‟s progress and results were compared to the plan. The case study was executed 

correctly with no external factors causing result bias.  All student volunteers remained as planned 

and executed the required steps as described, no changes were recorded.   

Analysis: Data Collection 

       The results of this case study are presented in the next Chapter of this report. Collection of 

the data was accomplished by gathering the pre-tests / post-tests and exit survey once both 

groups completed them.  Copies of the exit survey and the corrected pre / post-test are found in 

appendix F and G respectively.  The tests contained all the same questions and were divided into 

the following four sections: 

1.  Basic quantum computing knowledge: questions 1,5,9,13,17 

2. Quantum states: questions 2,6,10,14,18 

3. Quantum sorting: questions 3,7,11,15,19 

4. Quantum algorithms: questions 4,8,12,16,20 

These sections were used to determine knowledge of a specific quantum concept in order to 

determine and cross-reference concept learning. Test questions were crafted based on findings 

from the exploratory study using questions common to classical algorithm animations and from 

research material presented to introduce quantum concepts. No partial credit was given as all 

questions have only one right answer. All the questions in the tests were multiple choice and 

were constructed to measure understanding of the concepts presented in the lecture. Both groups 

answered the exit survey but Group A only answered the first four questions. Group B answered 

all the questions, as 5 – 14 were specific to QuAL. 
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Summary 

       The design of the quantum algorithm animator (QuAL) was guided by data collected during 

the exploratory stage of this study. Several of the concerns addressed during the design and 

development stage, were to provide a clear mapping between accumulated data and animations, 

clearly illustrating the most noticeable aspects of the system, and reduction of complexity.   

       QuAL was implemented using a variety of methods including textual annotations, color, 

movement, multiple views, and code highlighting.  All of QuAL‟s animations were designed to 

expand students‟ knowledge of quantum computing and entice interest in quantum algorithms. 

       The case study was performed at Wayne State College in Wayne, Nebraska and results were 

compiled and assessed.  All of the data was collected as written test results then tabulated and 

graphically presented using PASW Statistics 18 release 18.0.0 and Microsoft Excel. 

 

 

 

 

 

 

 

 

 

 

 



80 

 

 

 

 

Chapter 4 

Results 

Introduction 

       This chapter covers an in-depth look at QuAL‟s animations focusing on how they work, and 

how they illustrate the different concepts of quantum computing.  The design and presentation of 

these animations were influenced by the exploratory study of past and present classical algorithm 

animators and on prior quantum computing work.  The details of the design of these animations 

and QuAL‟s inner Java code interactions are given in Chapter 3. 

       QuAL was used in the case study introduced in Chapter 3 and the details of that study are 

analyzed and presented in this section.  Students were divided into two groups with both groups 

listening to the quantum computer lecture and only one group using the animator.  The 

instructional framework in which the students preformed the case study work was organized to 

simulate a common classroom setting at Wayne State College.  Typical classroom diversity 

would be higher male to female ratio and would include lecture, lab, and time for questions.  The 

case study volunteers were all 18 years or older and majored in computer science entering either 

their sophomore or junior year in the program.  

       The quantum sorting algorithm animated was Wallace and Narayanan‟s (2001) algorithm 

that used principles of Grover‟s (1996) foundational searching quantum algorithm to locate the 

permutation matrix that represented an ascending sort order of four integers.  The sorting 

problem should be a familiar classical concept to first or second year computer science students 

who should have a preliminary knowledge of the classical approach.   
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The Quantum Algorithm Animator (QuAL) 

 Quantum Sorting Algorithm 

       Wallace and Narayanan (2001) proposed an interesting method for sorting integers based on 

superpositional permutation searching, which uses Grover‟s (1996) foundational quantum 

algorithm‟s principles.  The algorithm takes as input an unsorted list of n items in arbitrary order 

and outputs a sorted list of n items in a sorted sequence.  The method used by Wallace and  

Narayanan‟s algorithm is a derivative of Grover‟s unstructured search algorithm with the 

assumption that a quantum gate Q, which implements the function  f(x) is defined as: 

 , 0 x, (x)F xQ f  

In a classical sort algorithm, a common procedure would be to inspect each integer and rearrange 

them based on a specific sort solution into a final sorted order.  This algorithm uses an alternative 

approach using quantum mechanical principles to recast the sort process as a search for a 

particular permutation sequenced in the desired sort order.  As an example, the following table is 

a listing of all the permutations of the integers 3,6,1,8: 

 

3 6 1 8 3 6 8 1 
 

3 1 6 8 
 

3 1 8 6 
 

3 8 6 1 
 

3 8 1 6 
 

6 3 1 8 
 

6 3 8 1 
 

6 1 3 8 
 

6 1 8 3 
 

6 8 3 1 
 

6 8 1 3 
 

“1 3 6 8” 
 

1 3 8 6 
 

1 6 3 8 
 

1 6 8 3 
 

1 8 3 6 
 

1 8 6 3 
 

8 3 6 1 8 3 1 6 
 

8 6 3 1 
 

8 6 1 3 
 

8 1 3 6 
 

8 1 6 3 
 

 

 

The number of permutations on a set of n distinct integers is given by n factorial (n!) so in this 

example with four integers there are 4! = 24 permutations of {3,6,1,8}.  The marked permutation 

Table 1: Permutations of 3,6,1,8 



82 

 

 

illustrated above in quotes is the sorted permutation as its ordered set is {1, 3, 6, 8}. 

       Grover (1996) used quantum principles to produce a drastic improvement in searching an 

unstructured database for a specific item or multiple items.  The key principle to Grover‟s faster 

search is the quantum principle of superposition. This quantum speedup occurs because a 

quantum computer can exist in more than one state at a time and in Grover‟s case search 

different parts of a database at the same time.  A quantum computer would need only 1,000 steps 

to find a correct solution in a database with a million entries since  

 n N  

where n is the number of steps needed by Grover‟s algorithm and N is the number of items in an 

unstructured database. 

       Grover‟s algorithm starts out by initializing a quantum register into a superposition of all 

possible items in a database. Observing the register at this point would reduce the probability of 

selecting the right answer although the register contains the right answer.  Instead, Grover‟s 

algorithm involves a sequence of quantum operations on the register‟s state similar to the wave 

phenomena in quantum physics, that is that all the desired results will interfere constructively 

and all the others will interfere destructively cancelling each other out.  By manipulating the 

phases using quantum computing operations, it‟s possible to obtain an estimate of the mean, 

derived from the quantum state of the entire system, in fewer steps than other algorithms.  

Although Grover‟s algorithm requires a quantum computer, these operations can be simulated on 

a conventional computer as this research has done by using the Quantum Computational 

Language (QCL). 

       Wallace and Narayanan‟s (2001) algorithm integrates Grover‟s procedures into their sorting 

algorithm when searching for the marked sorted permutation.  The database described by 
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Grover‟s algorithm becomes a list of all n factorial permutations where one permutation 

represents a sorted list of integers.  The listing of their quantum sorting algorithm can be found in 

the appendixes as well as in screenshots of the code highlighting view of QuAL.  The quantum 

sorting algorithm starts off by initializing the number of qubits and iterations required to find a 

solution.  Qubits were defined in Chapter 2 of this final report as the basic building blocks of 

quantum information.  The maximum number of permutations determines the number of qubits 

required to sort four integers. Since 4! = 24 and 24 is not a power of two, the setup for QuAL 

will have to include 52 or 32 values in order to hold all of the permutations required to animate 

the sorting of four integers.  The number of iterations is defined as 2n  times.  It has been 

proven that this is the number needed to provide the best possible solution as running the 

algorithm more times will reduce the probability of finding the correct solution as well as 

running it less times (Yanosfsky & Mannucci, 2008).  Once these values are initialized two 

quantum registers are created to store the superpositional permutations and to hold temporary 

values during the quantum operations.  The Wallace and Narayanan (2001) algorithm begins 

using Grover‟s (1996) principles by creating a superposition containing all the possible 

permutations of the original four integers {6,2,1,9} with their initial states (amplitudes) equally 

set to 1/ 32  or 0.17678.  Superposition is created by using a QCL external subroutine creating 

a Hadamard gate, which can be generalized to:  

   
/2 ( , ):| 2 ( 1) |

n

n
n i j

j B

H i j  

The Hadamard gate is a generalized qubit rotation and defined by the transformation matrix:
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1 11

1 12
H  

The QCL syntax looks like this (Oemer, 1998): 

   extern operator H(qureg q);  // Hadamard gate 

 

and sets the predefined qubit register q into a superposition of states.  The main loop begins by 

running the query function.  Figure 12 contains QCL‟s predefined query function for Grover‟s 

operations: 

 

 

 

 

 

 

 

 

This query function allows formulation of the problem within the realms of classical boolean 

logic to solve the equation f(x) = 1.  If the desired results are found, the quantum NOT gate 

interferes constructively, if they are not the desired results interference occurs destructively 

cancelling each other out and increasing the probability of a correct solution.  The Not( ) function 

flips the value of a bit while the CNot (f, x ) function tests the value of x and if it‟s “1”, it flips the 

value of f.  The main loop of Grover‟s algorithm utilizes two other predefined procedures from 

QCL, a controlled-phase-gate: 

 
,:| , | ,x yCPhase x y i x y  

qufunct query(qureg x,quvoid f,int n) { 

    int i; 

    for i=0 to #x-1 {  

    // x -> NOT (x XOR n) 

 if not bit(n,i) { Not(x[i]); } 

    } 

    CNot(f,x); // flip f if x=1111.. 

    for i=0 to #x-1 {  

 // x <- NOT (x XOR n) 

 if not bit(n,i) { !Not(x[i]); } 

    } 

} 

 
Figure: 12 QCL‟ s query 

function 
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and a diffusion operator:  

 | |ij

ij

D i d j   

 The CPhase ( ) function takes a classical floating point number as its first operator and a qubit 

as its second argument.  For this sorting quantum algorithm, the code will use a predefined 

constant pi as the floating point number and one of the qubit registers as the second argument.  

CPhase (pi, f) will alter the amplitudes of the machine basis states where f is |1  multiplying 

them by cos sinie i   = -1, which flips the sign of the |1  component.   

       The diffusion operator uses the Hadamard Transform and the conditional phase rotation to 

perform another main quantum operation used by Grover.  This operation is referred to as 

inversion about the mean or inversion about the average (Yanofsky & Mannucci, 2008).  This 

operation boosts the separation of phases in which amplitudes from the unmarked element are 

transferred to the marked element.  Yanofsky and Mannucci (2008) provide a good example 

explaining this operation in terms of a sequence of integers.  Suppose we have five integers: 51, 

37, 15, 20, and 72.  The average of these integers is 39.  We can represent these numbers as an 

image like this: 

 

 

 

 

 

Figure 13: Integers and their Average 

 

  51 

  37 
  15   20 

  72 

  39 
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       The image displays the principle that the average is the number such that the sum of the 

lengths of the lines above the average is the same as the sum of the lengths of the lines below.  

Grover‟s average about the mean then changes the sequence to a new condition where each 

element of the original sequence above the average would be the same distance from the average 

only below the line.  This is also true for the elements below the line changing to their 

appropriate distance from the average but above the line.  Mathematically we are simply 

inverting each value around the mean calculating them like this: 51 is considered to be 39 – 51 = 

-12 units away from the average so then by adding 39 to -12 we get the new element 27.  The 

next element 37 would then become 39 + (39 – 37) = 41.  This is the new image displaying all 

the changed elements: 

 

 

 

 

 

 

Grover has formalized this process as  2v v a  with the average of the sequence remaining at 39 

but the sequence changes to 27, 41, 63, 58 and 6.  By combining the phase inversion and the 

inversion about the mean, the whole process becomes an effective operation separating the 

amplitude of the marked state from the unmarked states. 

 

 

  27 

  41 
  63   58 

   6 

  39 

Figure 14: Average about the mean 
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       The procedure wallace ( ) was created from the grover ( ) procedure predefined by Omer 

(1998) as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

QuAL‟s wallace ( ) is the main function stored in the wallace.qcl file executed by QuAL to 

output data captured by CmdExec.java.  As the data is calculated, QuAL utilizes the appropriate 

procedure wallace(int n) { 
  int l = 5;   // no. of qubits 
   int m=ceil(pi/8*sqrt(2^l));     // no. of iterations 
   int x; 
   int i; 
   qureg q[l];   //setup qubit registers q and f 
   qureg f[1]; 
  print "qubits:",l,":",m,":iterations"; 
  { 
     reset; 
     H(q);               // prepare superposition 
 print "Initial Amps:"; 
 dump; 
 print "Initial Probs:"; 
 dump q; 
     for i= 1 to m {     // main loop 
        query(q,f,n);     // calculate C(q) 
  print "Pass#:",i,":probs:"; 
  dump q; 
        CPhase(pi,f);     // negate |n> 
        !query(q,f,n);    // undo C(q) 
  print "AfterNegate:Amps:"; 
  dump; 
  print "AfterNegate:Probs:"; 
  dump q; 
        diffuse(q);       // diffusion operator 
  print "Diffusion:Amps:"; 
  dump; 
  print "Diffusion:Probs:"; 
  dump q; 
               } 
     measure q,x;        // measurement 
     print "measured:",x; 
  } until x==n; 
  reset;                // clean up local registers 
} 

Figure 15: wallace () procedure 
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amplitudes and probabilities to animate them in action displaying the increase in probability of 

the marked item and showing the phases of Grover‟s inversion about the mean operations. 

QuAL’s Animations 

       QuAL contains multiple views of the quantum sorting algorithm‟s operations.  The first 

view is the textual display of Wallace and Naraynan‟s algorithm with the executing line 

highlighted to provide the user with an illustration of moving from statement to statement as the 

animations change.  Here is a screenshot of the textual view: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Code Highlighting View 
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The highlighted code is line number 12 in this screenshot.  The highlighting moves from 

statement line to statement line as the algorithm executes the code and loops until the initialized 

value ends the procedures and the value is measured.  The animator is setup to continue looping 

until the user exits the program.  This allows the user a chance to consider all views as they 

execute or change the speed for faster or slower viewing. 

       The next view is the animation of the probability distributions: 

 

 

 

 

 

 

 

 

 

This view provides a look at the algorithm‟s probability distribution as each point represents a 

different basis state.  Since we initialized 5 qubits we see 32 or 52  values displayed in this 

animation sorting four integers.  As stated above, recall that the amplitudes start out with the 

same value 1 divided by the square root of the number of basis states or 1/ 32  in this initial 

setup and the probability of being in state |1  is |amp²| so the probabilities are initialized to 

0.031249 at the start of the algorithm‟s execution.  As the phase inversion and inversion about 

the mean‟s operations continue and new values are calculated the amplitude of the marked basis 

state will be amplified and the probability of that state will also increase as shown in the 

 

Figure 17: Probability Distributions 
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screenshot above.  Different colors portray the changes as the algorithm loops through the 

operations and the probability spikes.  The animator is limited to sorting four integers at this 

point as sorting more would require 5! = 120 or 6! = 720 values needing 72  or 128 and 102  or 

1024 qubits respectively and would require more space allotted for this view or smaller visuals.  

       The amplitude view provides a look at Grover‟s inversion about the mean as it provides the 

user with a demonstration of the different phases of that operation.  The first animation is shown 

here: 

 

 

 

 

 

 

 

  

This animation has all the amplitudes initialized to equal values with the red bar indicating the 

marked amplitude.  In a conventional computer the state of the machine is a single string of ones 

and zeros, but the state of a quantum computer is a vector with components for every possible 

string of ones and zeros.  These strings of ones and zeros form the basis for a vector space and in 

this first amplitude animation, this machine state is captured by QuAL with the following vector 

space: 

 

 

 

Figure 18: Initial Amplitudes 
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The next animation of the amplitudes exhibits the negation phase where CPhase( ) has flipped 

the marked amplitude shown in Figure 20 with Figure 21 containing the represented data: 

 

 

 

 

 

 

 

 

 

 

 

 

: Initial Amps: 

: STATE:  

0.17678 |0> + 0.17678 |1> + 0.17678 |2> + 0.17678 |3> + 0.17678 |4> + 0.17678 |5>  

 

+ 0.17678 |6> + 0.17678 |7> + 0.17678 |8> + 0.17678 |9> + 0.17678 |10> + 0.17678  

 

|11> + 0.17678 |12> + 0.17678 |13> + 0.17678 |14> + 0.17678 |15> + 0.17678 |16> + 

 

 0.17678 |17> + 0.17678 |18> + 0.17678 |19> + 0.17678 |20> + 0.17678 |21> +  

 

0.17678 |22> + 0.17678 |23> + 0.17678 |24> + 0.17678 |25> + 0.17678 |26> +  

 

0.17678 |27> + 0.17678 |28> + 0.17678 |29> + 0.17678 |30> + 0.17678 |31> 
 

Figure 19: Initial Vector State 

 

Figure 20: Negation Phase 
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       Figures 22 - 29 exhibit the animation as the algorithm calculates the average of the 

amplitudes and flips the marked amplitude using the formulas defined by Grover‟s algorithm.  

The series is animated by QuAL and runs for three iterations before repeating the entire 

procedure.  The corresponding probabilities run concurrently exhibiting the elevation of the 14
th

 

state with every iteration of the loop. 

 

 

 

 

 

 

 

 

: Negate Amps: 

: STATE:  

0.17678 |0> + 0.17678 |1> + 0.17678 |2> + 0.17678 |3> + 0.17678 |4> + 0.17678 |5>  

 

+ 0.17678 |6> + 0.17678 |7> + 0.17678 |8> + 0.17678 |9> + 0.17678 |10> + 0.17678  

 

|11> + 0.17678 |12> + 0.17678 |13> - 0.17678 |14> + 0.17678 |15> + 0.17678 |16> +  

 

0.17678 |17> + 0.17678 |18> + 0.17678 |19> + 0.17678 |20> + 0.17678 |21> +  

 

0.17678 |22> + 0.17678 |23> + 0.17678 |24> + 0.17678 |25> + 0.17678 |26> +  

 

0.17678 |27> + 0.17678 |28> + 0.17678 |29> + 0.17678 |30> + 0.17678 |31> 

Figure 21: Negate Phase Data 

 

Figure 22: Calculating the Average 
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Figure 23: Amplification 

 

Figure 24: Repeat Negate 



94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Repeat Average 

 

Figure 26: Repeat Amplify 
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Figure 27: Final Negate 

 

Figure 28: Final Average 
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       The final components of QuAL provide a textual representation of important concepts 

enhancing the two animation views and code highlighting.  The input box is non-editable and 

displays the initial set {6,2,1,9} representing the integers in an unsorted permutation and the 

speed control provides the ability to change the speed of all the views.   

Case Study Results 

     The main goal of this research was to develop a quantum algorithm animator. A secondary 

goal was to use it in an educational setting with computer science students to investigate its 

usefulness in learning about quantum concepts and to collect feedback about its interface and 

animations. QuAL was used by 11 computer science students in a case study that took place at 

Wayne State College in Wayne, NE.  Twenty students participated in the study. 

       Common computer science teaching instruments will typically include lectures with or 

without visuals, textbooks, and lab exercises or experiments. Algorithm animators have been 

added to this list of tools and have become an effective means of presenting visualizations of 

algorithmic concepts to students (Stasko, 1997). Badre et al. (1991) performed a survey of 

 

Figure 29: Final Amplification 
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computer science instructors and found out that 81% of these instructors use at least one of these 

methods to teach algorithm principles to students. Urquiza-Fuentes and Velazquez-Iturbide 

(2009) in their survey of successful algorithm animation systems, discovered in their 

experiments that viewing animations can improve knowledge acquisition but animation systems 

should include additional text or narrative contents. 

       This study used QuAL in an educational setting to validate the hypothesis that visualizations 

are beneficial pedagogical tools when using them to teach quantum algorithm concepts.  The 

hypothesis was that students would learn more effectively using QuAL than from simply 

listening to a lecture, as indicated by their performance in pre-tests and post-tests.  This research 

compared student performance after they interacted with QuAL and listened to a quantum 

computing lecture that included some visualizations but no animation.  Two groups were formed 

after the lecture material was presented to the twenty participating students with Group A taking 

the post-test, exit survey only, and Group B interacting with QuAL and then taking the post-test 

and exit survey.   

       The animator was developed as a Java applet, which is a special kind of Java program that a 

browser enabled with the Java Plug-in software can run.  This method allowed students to access 

QuAL from any location with Internet access.  The case study was presented to students in the 

Computer Technology and Information Systems (CTIS) lab located at Wayne State College and 

accessed QuAL‟s code residing on the CTIS server.  This method would provide beneficial 

results for any educational setting to allow portability and access from any computer running any 

operating system.  The lab computers are running Microsoft Windows XP and the subjects were 

allowed to use any browser of their choice.  Firefox, Internet Explorer, and Chrome are the 

browsers installed on all of the lab computers.  To access QuAL during the case study, Group B 
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was instructed to open a browser and type in the following URL: 

   http://bst-lab-net.wsc.edu:280/~lnichols/QuAL  

       Appendix C contains the data recorded from grading the pre-tests taken by all twenty 

students.  The subjects were given one ID number when they entered the lab, labeling all their 

material ranging from 831001 – 831020.  The subject ID number is in the first column with the 

question numbers in subsequent columns.  The number one was placed in the row when a subject 

answered a question correctly with the total number correct at the end of each row. The total 

number at the end of each column contains the correct answers for each question. Figure 30 

provides an overview of the correct answers: 

 

  

  

 

Group A and Group B results divide the post-test data.  Appendix D provides an overview of 

both Group A and B post-test results. Figure 31 displays an overview of the post-test correct 

answers: 
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Figure 30: Pre-Test Correct Answers 

http://bst-lab-net.wsc.edu:280/~lnichols/QuAL


99 

 

 

  

 

 

Figure 32 displays Group A‟s pre-test / post- test comparison scores: 
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Figure 31: Post-Test Correct Answers 

Figure 32: Group (A) Pre-Test / Post Test Comparisons 
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Figure 33 displays Group B‟s pre-test / post-test comparison scores: 

  

 

Data tables for both Group A and Group B‟s pre-test and post-test scores are shown in the 

following Tables 2 and 3:  

QuAL Case Study 
   Group A Pre-Test Score Post-Test Score Improvement 

831001 25% 60% 35% 

831002 45% 65% 20% 

831007 25% 40% 15% 

831008 50% 50% 0% 

831010 65% 55% -10% 

831012 60% 55% -5% 

831014 45% 45% 0% 

831016 45% 45% 0% 

831018 35% 25% -10% 

Mean 44% 49% 5% 

Median 45% 50% 0% 
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Figure 33: Group (B) Pre-Test / Post Test Comparisons 

Table 2: Group (A) Pre-Test / Post-Test Data 
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QuAL Case Study 
   Group B Pre-Test Score Post-Test Score Improvement 

831003 55% 55% 0% 

831004 45% 35% -10% 

831005 35% 35% 0% 

831006 20% 55% 35% 

831009 60% 60% 0% 

831011 65% 35% -30% 

831013 55% 70% 15% 

831015 50% 25% -25% 

831017 40% 60% 20% 

831019 60% 70% 10% 

831020 75% 80% 5% 

Mean 51% 53% 2% 

Median 55% 55% 0% 

 

      

 

       Examining the preliminary data shows a slight increase in the mean post-test score taken by 

Group B as opposed to the mean post-test score of Group A, with only a 2% improvement in pre-

test versus post-test scores.  Group A results show a 5% improvement in pre-test versus post-test 

scores.  Further examination using the dependent t-test statistical process produces the following 

results: 

 

 

 

 

 

 

Table 3: Group (B) Pre-Test / Post-Test Data 
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QuAL Case Study     

t-test: Two-Sample Assuming Equal Variances   

  Group A Post-Test Group B Post-Test 

Mean 9.777777778 10.54545455 

Variance 5.694444444 12.67272727 

Observations 9 11 

Pooled Variance 9.571268238 
 Hypothesized Mean Difference 0 
 df 18 
 t Stat -0.552072677 
 P(T<=t) one-tail 0.293844216 
 t Critical one-tail 1.734063592 
 P(T<=t) two-tail 0.587688432 
 t Critical two-tail 2.100922037 
  

  

Analysis of the t-test data using the following steps provides a similar assumption.  The null 

hypothesis asserts that Group A post-test scores will be equal to or show no difference when 

compared to Group B post-test scores or 0 1 2:H .  The alternative hypothesis asserts that 

Group A post-test scores will be lower than Group B post-test scores or 1 1 2:H . The above 

data states that t= -0.552, df=18 so we could reject 0H if the value of t is <= -1.734.  The t value 

is not less than the t Critical one-tail value therefore we cannot reject our null hypothesis 

suggesting that there is not sufficient enough evidence to claim that Group B benefited more by 

using QuAL.  The mean post-test scores are slightly higher so some impact may have occurred 

but a significant improvement was not found in this study. 

       

 

 

Table 4: t-Test Results 
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        A comparison of exam questions looking for a particular concept improvement provided the 

following data shown in Table 5: 

 

QuAL Correct Answers 

Case Study Pre-Test Group A Post-Test Group B Post-Test Total Two Groups 

1 7 2 6 8 

2 12 8 9 17 

3 14 4 2 6 

4 8 6 7 13 

5 7 3 8 11 

6 11 6 8 14 

7 14 7 3 10 

8 11 8 9 17 

9 11 4 6 10 

10 14 6 9 15 

11 16 3 4 7 

12 8 4 6 10 

13 12 5 7 12 

14 15 4 8 12 

15 7 2 2 4 

16 5 4 3 7 

17 12 2 6 8 

18 5 2 2 4 

19 4 6 9 15 

20 7 2 2 4 

  

 

 

 

 

 

 

 

Table 5: Question Group Comparisons 
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This data was used to compare the sections defined in the case study design and shown here in 

Table 6: 

QuAL Case Study 
 

Totals 
 

   
Pre-Test Post-Test 

Section A Basic QC Knowledge 1,5,9,13,17 49 49 

Section B Quantum States 2,6,10,14,18 57 62 

Section C Classical / Quantum Sorting 3,7,11,15,19 55 42 

Section D Quantum Algorithms 4,8,12,16,20 39 51 

 

 

The above data suggests that basic quantum computing knowledge was common to the students 

before the listening to the lecture or using QuAL but participation in the case study improved 

their knowledge of quantum states as well as quantum algorithms. This data was collected to 

provide feedback for potential improvement areas in future versions of QuAL focusing on the 

conceptual lessons rather than the aesthetics of its features.  Figure 34 provides a visual 

representation of the data from Table 5: 

 

  

 

0 10 20 30 40 50 60 70

Section A

Section B

Section C

Section D

Post-Test

Pre-Test

Table 6: Section Results 

 

Figure 34: Pre-Test / Post-Test Question Comparisons 
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Figure 35 provides a comparison of post-test results between Group A and Group B students. 

  

 

The final data collection gathered during this case study was acquired by asking the students to 

complete an exit survey.  The exit survey given to the subjects can be found in Appendix F with 

the data results found in Appendix E.  This survey asked questions concerning the material 

presented during the lecture and about the use of QuAL as well as asking the user to type in 

additional comments. Most users found the lecture material very challenging but found it 

increased their interesting in quantum computing.  Group B answered the questions concerning 

the use of QuAL with 72% finding the interface easy to use, 92% found the features useful for 

understanding quantum algorithms, and 100% of the users thought it supplemented the lecture 

material. Other interesting findings included 90% of the users thought that the animator 

increased their basic algorithmic knowledge and 82% agreed that it increased their interest in 

quantum computing.  Some of the consistent comments made by users of QuAL were that 

Section C (the view that animated the amplitudes) could display longer.  Several thought it 

blinked too quickly from view not giving them enough time to concentrate on its principles. 

0 10 20 30 40

Section A

Section B

Section C

Section D

Group B

Group A

Figure 35: Group A / B Question Comparisons 
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Others thought the animator was helpful and would like to spend more time using it and about 

quantum computing concepts. 

Summary of Results 

       The research goal of developing a quantum algorithm animator was actualized by the 

development of QuAL as described in this section.  Java classes interacted with the quantum 

simulator QCL to animate the algorithm‟s operations using a data-driven approach.  Wallace and 

Narayanan‟s quantum sorting algorithm promoted the concepts of quantum computing during 

execution captured and displayed by QuAL.  Probability distributions and amplitudinal changes 

were mapped to views that provided a graphical representation of the interesting data structures 

of the algorithmic code. The sorting quantum algorithm‟s state changes were reflected in the 

graphical interpretations of QuAL‟s code as it ensured consistent communication by all views 

including the highlighted code view. Although this research used many of the exploratory 

study‟s findings of successful features and operations, QuAL is still only an initial prototype of a 

quantum algorithm animator pedagogical tool.  Interface concerns, adding features and student 

comments after usage will be a topic for future research. 

       To summarize the overall case study findings, small gains were found in the mean scores of 

Group B‟s post-test results but t-test results found them to be insufficient enough to claim 

without a doubt that QuAL assisted with quantum computer learning.  There were key findings 

within quantum concept learning but several perplexing concerns emerged from the final 

tabulated results.  Several students did well in pre-test scores but dropped drastically in post-test 

scores in both groups. All materials used by this case study as well as some of QuAL‟s code can 

be found in the Appendix section of this final report. 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

Conclusions 

       The primary goal of this research was to develop a quantum algorithm animator.  A 

secondary goal to use it in an educational setting was realized to gain information about how to 

improve it and how effectively it could be used to teach quantum concepts to computer science 

students. Furthermore, a hypothesis was proposed based on the success found by classical 

algorithm animators, that QuAL would improve quantum concept learning when used as a 

pedagogical tool along with supplementary material. The three stages of this research were 

undertaken to gather information about classical algorithm animators and quantum concepts, use 

this information to design and develop a quantum algorithm animator, and then use QuAL as a 

pedagogical tool. 

       The sorting quantum algorithm used by QuAL and developed by Wallace and Narayanan 

(2001), provided an elegant solution to the sorting problem using a derivative of Grover‟s (1998) 

foundational quantum algorithm.  Grover‟s algorithm provides an efficient solution to database 

searching and Wallace and Narayanan incorporate these principles into their sorting algorithm 

altering a search solution into a search then find the correctly sorted permutation solution.  

Quantum algorithms can be challenging to learn but comparing their concepts to classical 

concepts assist student learning. The sort problem provided that connection between the quantum 

realm and classical realm in learning quantum computing principles. 

       The case study statistics show that there are no differences in performance on the post-tests 

between subject groups A or B. Thus, the addition of a quantum algorithm animator offers no 
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significant performance gains over presenting only a quantum computing lecture. The research 

hypothesis had predicted gains in the group using the animator, but the t-test stats showed a 

different interpretation.  The null hypothesis could not be rejected therefore no appreciable 

difference was measured in the post-tests of the two subject groups.  This does not mean that the 

animator group did not perform better as the mean values claim, but statistically the research 

cannot claim a significant difference. 

       A reason for the low gains from the animator groups may have been the difficulty of the test. 

Examining the pre / post-test improvement results show six students achieving lower scores on 

post-tests than on the pre-tests from both groups.  Did they just guess at answers on the pre-test?  

Did they doubt their answers on the pre-test and „over-think‟ answers on the post-test or did 

using the animator present the material differently?  None of the members of either groups taking 

pre or post-tests attained a perfect score.  A member of the animator group scoring 80% on the 

post-test achieved the best score and four out of the top five scores were achieved by members of 

the animator group. The mean differences between the pre and post-test by both groups was less 

than 5% so, on average, neither group had a significant change in test scores after listening to the 

lecture and / or interacting with the animator. 

       Another possible reason for low gains by the animator group is that the test may not have 

been a good indicator of how well students understood quantum concepts. The concepts are 

challenging as many of the students noted in their comments and they are new concepts to many 

computer science students.  The students may have heard about the quantum concepts but none 

of the students in the case study had ever researched the topic beyond basic curiosity.  

       An interesting finding about individual quantum concepts emerged from the data collected 

concerning those five groups: 
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1.  Section A: Basic QC Knowledge 

2. Section B: Quantum States 

3. Section C: Quantum Sorting 

4. Section D: Quantum Algorithms 

Basic quantum knowledge did not seem to increase but remained the same from pre-test to post-

test results.  Quantum states and classical / quantum sorting had a mild increase and decrease but 

questions relating to quantum algorithms increased by 13%.  

      Student comments concerning QuAL were positive and constructive in nature.  A prevailing 

comment made by several students asked for a reduction in animation timing between views of 

the quantum algorithms amplitudes.  Many claimed the animator increased their interest in the 

quantum computing field and stated that they would continue their own personal research.  The 

interface aesthetics did not receive any student comments.  The animator seemed to operate 

appropriately except for the timing issue mentioned in the comment section of the exit survey. 

Implications and Recommendations 

      QuAL is in need of some modifications before using it as a pedagogical tool in a computer 

science course but this initial design has fulfilled the goal of this research.  The timing issues 

could be implemented quickly and the class structure is setup for the addition of new quantum 

algorithms but additional testing should be used to determine whether the pre / post-tests, the 

student tutorial, or the lecture material need to be adjusted.  The post-test scores could have been 

improved by modifying and coordinating the material or incorporating the use of QuAL into a 

course where more preparation time could be dedicated to its use. 

       The case study could have been modified to run over two days instead of one day.  The first 

day could have been dedicated to presenting the lecture material and then have one group return 
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on a second day to interact with the animator.  Perhaps the timeframe and the material presented 

lost some validity as student retention dropped after a long day of work or school.  This could 

explain the decrease in pre-test versus post-test scores recorded by both groups.  The following is 

a list of suggested changes gathered during this research: 

1. Slow change time in amplitude animations. 

2. Alternate the probability distribution animations enhancing changes in data. 

3. Add more algorithms and different illustrations to provide another look at the 

quantum concepts. 

4. Add step button and backtracking capabilities. 

5. Allow user input to change sorted integers. 

Summary 

       To summarize the overall findings of this research, the gains found by using QuAL in an 

educational setting were slight but QuAL did provide a small advantage over just listening to the 

lecture material. QuAL‟s performance during the case study was acceptable as the Java applet 

executed its operations as coded without any errors or issues. It is difficult to design effective 

animations especially when attempting to illustrate quantum principles and further research in 

refining these designs and concepts and testing them through empirical studies of quantum 

algorithm animation is recommended.  Longer or more extensive studies may offer better 

statistical outcomes. This research was interested in the fundamental question of whether 

animations can assist students learn and understand quantum algorithms. Although case studies 

such as the one performed by this research cannot answer that fundamental question, they can 

supply future research with data on how students interact with different animations and provide 

potential learning strategies used by students. 
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    Finally, attempting to illustrate concepts from a designer‟s perspective may not be conveyed 

properly through the external representation of the animations to map into the viewers‟ internal 

representation.  In other words, quantum computing is a complex topic and there is no simple 

means of designing effective visualizations. A main objective described by this research was to 

entice students into wanting to learn more about quantum computing and QuAL has successfully 

accomplished this task as shown by student comments received in the case study‟s exit survey. 
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Appendix A 

Wayne State College IRB Approval 

 

Wayne State College 

Internal Review Board 

1111 Main Street 

Wayne, NE 68787 

May 26, 2010 

Lori Nicholson 

IRB Proposal #49 

Wayne State College  

CTIS Department 

Gardner Hall 

 

Dear Lori: 

I have reviewed your research proposal and find that it meets the criteria for exempt status.    

Good luck on your research. It sounds like an interesting study. 

 

Sincerely, 

 

JoAnn Bondhus 

WSC IRB Committee Member 
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Appendix B 

Nova Southeastern University IRB Approval 

 

To: Lori Nicholson 

From: Ling Wing, Ph.D. 

           Internal Review Board 

Date: July 20, 2010 

Re: Quantum Algorithm Animator 

IRB Approval Number:  wang06151001 

I have reviewed the above-referenced research protocol at the center level.  Based on the 

information provided, I have determined that this study is exempt from further IRB review.  You 

may proceed with your study as described to the IRB.  As principal investigator, you must 

adhere to the following requirements: 

1) CONSENT:  If recruitment procedures include consent forms these must be obtained in 

such a manner that they are clearly understood by the subjects and the process affords 

subjects the opportunity to ask questions, obtain detailed answers from those directly 

involved in the research, and have sufficient time to consider their participation after 

they have been provided this information.  The subjects must be given a copy of the 

signed consent document, and a copy must be placed in a secure file separate from de-

identified participant information.  Record of informed consent must be retained for a 

minimum of three years from the conclusion of the study. 

2) ADVERSE REACTIONS:  The principal investigator is required to notify the IRB chair 

and me (954-262-5369 and 954-262-2020 respectively) of any adverse reactions or 

unanticipated events that may develop as a result of this study.  Reactions or events may 

include, but are not limited to, injury, depression as a result of participation in the study, 

life-threatening situation, death, or loss of confidentiality/anonymity of subject.  

Approval may be withdrawn if the problem is serious. 

3) AMENDMENTS:  Any changes in the study (e.g., procedures, number or types of 

subjects, consent forms, investigators, etc.) must be approved by the IRB prior to 

implementation.  Please be advised that changes in a study may require further review 

depending on the nature of the change.  Please contact me with any questions regarding 

amendments or changes to your study. 

The NSU IRB is in compliance with the requirements for the protection of human subjects 

prescribed in Part 46 of Title 45 of the Code of Federal Regulations (45 CFR 46) revised June 

18, 1991. 
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Appendix C 

Case Study Overall Pre / Post Test Results 

 

QuAL Case Study Results                                          Correct 

Pre-Test                                          Answers 

Q-No's 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
 831003 

 
1 1 1 1 

   
1 1 1 1 

 
1 1 

 
1 

   
11 

831004 1 1 
    

1 
  

1 1 
 

1 1 
  

1 
  

1 9 

831008 
  

1 1 
  

1 1 
 

1 1 
 

1 1 1 
 

1 
   

10 

831014 
   

1 
 

1 1 1 1 
 

1 
    

1 
  

1 1 9 

831005 
         

1 
 

1 1 1 1 1 
 

1 
  

7 

831009 
 

1 1 
  

1 1 1 1 1 1 
 

1 1 1 
 

1 
  

1 13 

831015 
 

1 
   

1 1 1 1 1 1 1 
 

1 
     

1 10 

831002 
  

1 
 

1 1 1 1 
 

1 
 

1 
  

1 
 

1 
   

9 

831006 1 1 1 1 1 1 
 

1 1 1 1 
 

1 
   

1 
   

12 

831007 
  

1 
         

1 1 
 

1 1 
   

5 

831016 
  

1 1 
  

1 1 
 

1 1 1 
   

1 
 

1 
  

9 

831012 
 

1 1 
  

1 1 
 

1 1 1 1 1 1 
  

1 1 
  

12 

831018 1 
 

1 
   

1 
  

1 1 1 
  

1 
     

7 

831017 
 

1 1 
    

1 1 1 1 1 
 

1 
      

8 

831010 1 1 1 
 

1 1 1 
 

1 
   

1 1 
 

1 1 
 

1 1 13 

831019 1 1 1 1 
 

1 1 1 1 1 1 
 

1 1 
      

12 

831013 1 1 
  

1 1 
 

1 1 
 

1 
 

1 1 
  

1 
 

1 
 

11 

831020 1 1 
 

1 1 1 1 1 1 
 

1 
 

1 1 1 
 

1 1 
 

1 15 

831001 
  

1 
 

1 
 

1 
   

1 
  

1 
      

5 

831011 
 

1 1 1 
 

1 1 
  

1 1 
 

1 1 
  

1 1 1 1 13 

Totals Correct Per Question 7 12 14 8 7 11 14 11 11 14 16 8 12 15 7 5 12 5 4 7 
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Appendix D 

Case Study Post-Test Results 

 

QuAL Case Study Results 
                    

Correct 

Post-Test 
                    

Answers 

Q-No's 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
 Group A 

                     831010 
 

1 1 1 
 

1 1 1 
 

1 
   

1 
 

1 
  

1 1 11 

831018 
      

1 1 
   

1 
    

1 
 

1 
 

5 

831014 
 

1 
 

1 
  

1 1 
  

1 1 
  

1 1 
  

1 
 

9 

831012 
 

1 
  

1 1 
 

1 1 1 1 1 1 
  

1 
  

1 
 

11 

831001 1 1 1 1 
 

1 1 1 1 1 
 

1 
     

1 1 
 

12 

831002 1 1 1 1 1 1 1 1 
    

1 1 
 

1 1 
  

1 13 

831008 
 

1 
 

1 
 

1 
 

1 1 1 1 
 

1 1 1 
     

10 

831007 
 

1 1 
 

1 
 

1 
  

1 
  

1 
    

1 1 
 

8 

831016 
 

1 
 

1 
 

1 1 1 1 1 
  

1 1 
      

9 

Total Correct Per Question 2 8 4 6 3 6 7 8 4 6 3 4 5 4 2 4 2 2 6 2 
 

                      Group B 
                     831015 
      

1 1 1 
         

1 1 5 

831013 1 1 
 

1 1 1 
 

1 1 1 1 1 1 
   

1 1 1 
 

14 

831004 1 
        

1 1 
 

1 1 
 

1 
  

1 
 

7 

831005 1 1 
  

1 
    

1 
  

1 1 
    

1 
 

7 

831011 
 

1 
 

1 
 

1 
 

1 
 

1 
   

1 
 

1 
    

7 

831019 1 1 
 

1 1 1 
 

1 1 1 
 

1 
 

1 
  

1 1 1 1 14 

831017 
 

1 1 1 1 1 1 1 
   

1 1 1 
  

1 
 

1 
 

12 

831003 
 

1 
 

1 1 1 
 

1 1 1 
  

1 1 
 

1 
  

1 
 

11 

831006 1 1 1 
 

1 1 
 

1 1 1 
 

1 
    

1 
 

1 
 

11 

831009 
 

1 
 

1 1 1 
 

1 
 

1 1 1 1 1 1 
 

1 
   

12 

831020 1 1 
 

1 1 1 1 1 1 1 1 1 1 1 1 
 

1 
 

1 
 

16 

Total Correct Per Question 6 9 2 7 8 8 3 9 6 9 4 6 7 8 2 3 6 2 9 2 
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Appendix E 

Exit Survey Results and Comments 

  QuAL Exit Survey 
           Strongly Agree Agree Neutral Disagree Strongly Disagree SA A N D SD 

1 12 8 
   

60% 40% 
   2 17 3 

   
85% 15% 

   3 10 7 3 
  

50% 35% 15% 
  4 11 7 2 

  
55% 35% 10% 

  5 3 6 2 
  

27% 55% 18% 
  6 5 3 3 

  
46% 27% 27% 

  7 2 4 4 1 
 

18% 36% 36% 10% 
 8 2 7 2 

  
18% 64% 18% 

  9 6 5 
   

55% 45% 
   10 

  
1 6 4 

  
10% 55% 35% 

11 
  

1 6 4 
  

10% 55% 35% 

12 4 5 2 
  

36% 46% 18% 
  13 2 8 

 
1 

 
18% 72% 

 
10% 

 14 2 8 1 
  

18% 72% 10% 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comments: 

Analogies used helped me understand the material. 

Interesting concepts that challenges the conventional way of thinking and 

knowledge we have.   

Material can be understood with more time. 

Would like to see more of the Math taking place. 

Animator worked well, however, Region C did not stay visible long enough. 

I prefer the images stay up longer to be able to read the explanation as well as 

view the picture to understand the concepts. 

Many new confusing concepts in a short amount of time. 

Very confusing at first, but did understand a little of the algorithms at the end. 

Section C could display longer. 

I wish I had the time to learn about quantum algorithms, but you covered the 

basics very well. 

The lecture increased my interest to research more. 
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Appendix F 

Case Study Exit Survey 

Quantum Algorithm Animator 
Nova Southeastern University 

Dissertation Research 

Lori Nicholson 

Please answer the following questions as instructed. 

Group A – answer questions 1 – 4 (add comments at the end of the survey).  Group B – answer all questions 

(add additional comments at the end of the survey). 

Exit Survey ID  

Member of Group (A) or (B)  

 
 Strongly 

Agree 
Agree Neutral Disagree 

Strongly 
Disagree 

1.  The lecture material presented was challenging.       

2.  The lecture material reflected research goals.       

3.  The lecture material increased interest in quantum 
computing. 

     

4.  The lecture material provided an organized view of 
quantum computing. 

     

Group B Only       

5.  The quantum algorithm animator’s interface was easy 
to use. 

     

6.  The time allotted was adequate to understand the 
quantum algorithm animator’s interface. 

     

7.  The time allotted was adequate to understand quantum 
computing concepts presented in the lecture. 

     

8.  The quantum algorithm’s user features were useful for 
understanding quantum algorithms. 

     

9.  The quantum algorithm animator supplemented the 
lecture material. 

     

10. The lecture material did not help me learn about 
quantum computing.  

     

11. The quantum algorithm animator did not help me learn 
about quantum computing. 

     

12. The quantum algorithm animator increased interest in 
quantum computing. 

     

13. The quantum algorithm animator increased basic 
algorithm knowledge. 

     

14. The quantum algorithm animator’s features were easy 
to use.  
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Appendix G 

Case Study Pre / Post Test 

Quantum Algorithm Animator  

Nova Southeastern University 

Dissertation Research 

Lori Nicholson 

Pre-Post Study Test (Key – correct answers bolded) 

Circle : Pre / Post 
 

TestID:  

Please answer the following questions to the best of your abilities: 
 

1. In the field of quantum computing, what is superposition?  

a. By measuring some qubits, others automatically reach the desired position 

b. A quantum computer in many states simultaneously 

c. A complex number whose absolute value squared represents a probability 

2. How many quantum states can a quantum computer (unmeasured) be in at once? 

a. One 

b. Many 

c. Seven 

3. Does quantum sorting provide more efficient solutions to classical sorting? 

a. In some cases 

b. Never 

c. Always 

4. Which of the following foundational quantum algorithms could potentially break our current 

encryption scheme? 

a. Grover’s 

b. Shor’s 

c. Deutch’s 
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5. In the field of quantum computing, what is entanglement? 

a. A quantum computer in many states simultaneously. 

b. A complex number whose absolute value squared represents a probability. 

c. By measuring some qubits, others automatically reach the desired position. 

6. What happens when we measure a quantum computer while it is in superposition? 

a. Nothing 

b. It does not provide an output 

c. It collapses to a single position 

7. How can quantum sorting algorithms provide more efficient solutions than their classical 

analogues? 

a. Wallace and Narayanan’s solution was to exploit superposition permutation-based 

representations for list searching 

b. Shi uses the decision tree model to propose a more efficient solution 

c. Both a and b are correct 

8. A quantum computer using superposition that can search all entries of an unordered array 

simultaneously and find the object in √n queries is an example of which of the following 

foundational quantum algorithms? 

a. Shor’s 

b. Grover’s 

c. Deutch’s 

9. In the field of quantum computing, what is the probability amplitude? 

a. A quantum computer in many states simultaneously. 

b. A complex number whose absolute value squared represents a probability. 

c. By measuring some qubits, others automatically reach the desired position. 
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10. The input / output of a quantum computer is the same as a classical computer, the 

difference is during computation and is said to be, at times, a black box. 

a. True 

b. False 

11. One of the basic concepts of sorting is to: 

a. Search for a particular item in a listing of items 

b. Place items in some order with two basic operations: compare and swap 

c. Match an item with other items in the list 

12. This foundational quantum algorithm demonstrates the power and usefulness of quantum 

computing for factoring numbers: 

a. Grover’s 

b. Deutch’s 

c. Shor’s 

13. What is a qubit? 

a. It is the quantum analogue to the classical bit and the basic unit of quantum 

information. 

b. It is the basic unit in a classical computer. 

c. It is the quantum analogue to the classical byte. 

14. The classical computer will be in either a 0 or 1 state but the quantum qubit can be in: 

a. 0 or 1 or anywhere in between 

b. Only 0 or 1 

c. Only 1 

15. A common classical sort algorithm is: 

a. Bubble 

b. Hirschberg’s 

c. Hungarian 
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16. All quantum algorithms work with the following basic framework except: 

a. System will start with the qubits in a particular classical state 

b. A measurement will never take place  

c. System will be put into a superposition of many states 

17. The main barrier to the development of a quantum computer is decoherence.  What is 

decoherence? 

a. The loss of purity of the state of a quantum system as the result of entanglement with 

the environment. 

b. It is when a qubit is in both '0' and '1' states simultaneously. 

c. It is the ability of the quantum system to reach a desired outcome. 

18. Any quantum state can be expressed in terms of a sum of: 

a. many complex numbers 

b. only one state 

c. basis states 

19. The quantum sorting algorithms you were shown today were commonly based on which 

foundational quantum algorithm? 

a. Shor’s 

b. Deutch’s 

c. Grover’s 

20. Which foundational quantum algorithm solves a slightly contrived problem? 

a. Grover’s 

b. Deutsch’s 

c. Shor’s 
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Appendix H 

Case Study Consent Form 

Consent Form for Participation in the Research Study Entitled 
Quantum Algorithm Animator 

 
Funding Source: None.  
 
IRB protocol # TBD 
 
Principal investigator     Co-investigator 
Lori Nicholson     Michael Laszlo, Ph.D.  
1111 Main St GH 206K     3301 College Avenue  
Wayne, NE 68787      Fort Lauderdale, FL 33314  
(402) 375-7017      (954) 262-2076 
  
For questions/concerns about your research rights, contact:  
Human Research Oversight Board (Institutional Review Board or IRB)  
Nova Southeastern University  
(954) 262-5369/Toll Free: 866-499-0790  
IRB@nsu.nova.edu  
 
Or 
Institutional Review Board 
Wayne State College 
402-375-7000 
 
Site Information  
Wayne State College 
Gardner Hall 
Wayne, NE 68787 
 
What is the study about?  
 
You are invited to participate in a research case study. The goal of this study is to test 
the comparative efficiency of a quantum algorithm animator. 
 
Why are you asking me?  
 
We are inviting you to participate because you are currently enrolled in Wayne State 
College as a computer science or computer information systems major. 
 
What will I be doing if I agree to be in the study?  
 
You take a pre-study test and then attend a 30-minute lecture.  After listening to a 
lecture you be assigned to either Group A or Group B.  Group A students will be asked 

mailto:IRB@nsu.nova.edu
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to take a 30 minute post-study exam and then fill out an exit survey.  Group B students 
will be asked to interact with a quantum algorithm animator for 30 minutes and then take 
the post-study exam followed by an exit survey.  
 
 
Is there any audio or video recording?  
 
This research project will not include any audio or video recordings.  
 
What are the dangers to me?  
 
There are no identifiable risks to participating in this case study. 
 
Are there any benefits to me for taking part in this research study?  
 
You will learn about quantum computing concepts. 
 
Will I get paid for being in the study? Will it cost me anything?  
 
There are no costs to you, you will receive food, and snacks to enjoy while participating 
in this case study. 
 
How will you keep my information private?  
 
No tests and survey instruments used in this study will require your name or any private 
information. 
 
What if I do not want to participate or I want to leave the study?  
 
You have the right to leave this study at any time or refuse to participate. If you do 
decide to leave or you decide not to participate, you will not experience any penalty or 
loss of services you have a right to receive.  
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Other Considerations:  
 
If the researchers learn anything which might change your mind about being 
involved, you will be told of this information.  
 
Voluntary Consent by Participant:  
 
By signing below, you indicate that  

 this study has been explained to you  

 you have read this document or it has been read to you  

 your questions about this research study have been answered  

 you have been told that you may ask the researchers any study related 
questions in the future or contact them in the event of a research-related 
injury  

 you have been told that you may ask Institutional Review Board (IRB) 
personnel questions about your study rights  

 you are entitled to a copy of this form after you have read and signed it  

 you voluntarily agree to participate in the study entitled Quantum 
Algorithm Animator 

 
Participant's Signature: ___________________________ Date: 
________________  
 
Participant’s Name: ______________________________ Date: 
________________  
 
Signature of Person Obtaining Consent: _____________________________  
 
Date: ___________________________  
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Appendix I 

Case Study Student Tutorial - QuAL 

Dissertation Case Study using QuAL (Quantum Algorithm Animator) 
Lori Nicholson 
Nova Southeastern University 
 
Student QuAL Tutorial 
 

1) The Interface 
 

 
 
 
Region A – Is the box containing the algorithm’s text.  It will highlight the appropriate 
line of code as the graphics are updated with the excuted code.  
 
Region B – Is the probability of obtaining the correct solution for f(x) = 1 or our sorted 
permutation.  The basis states are located on the x-axis with their related probabilites 
on the y-axis. 
 
Region C – Contains the graphical representations for the amplitudes.  The amplitudes 
will switch from Original -> Negate -> Average about the Means -> Flip illustrating the 
different amplitudes found as the quantum algorithm computes these values. 
 

A 

B 

C 

D 

F 

 

E 
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Region D – This text box will provide the user with additional information specific to the 
highlighted line of text in Region A. 
 
Region E – This region will exhibit the main loop interations, the title for the appropriate 
amplitude and the sequence of integers being sorted by the quantum algorithm. 
 
Region F – This is the speed control.  Moving the slider to the left will slow the 
animation for easier assessment of the quantum algorithm’s operations. 
 
 

2) A Sample Run of Wallace – Narayanan Quantum Sorting Algorithm (Wallace & 
Narayanan, 2001) 
 

 
 
The animator will start by highlighting the first lines of pseudocode in Section A. 
These steps initialize all the variables and put the register of qubits into a superposition 
of all states. 
 
The proposed algorithm exploits the quantum principles of Grover’s foundational 
algorithm using permutation-based representations for list searching.   
 
 - Input: An unsorted list of N items in arbitrary order; 
 - Output: A sorted list of N items in a specific sequence; 
 - Method: A derivative of Grover’s algorithm for unstructured database search; 
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Grover’s algorithm has been proven to provide an efficient method for searching 
unstructured databases by simultaneously examining multiple items in a database in 
order to answer a single item query.  Wallace’s algorithm utilizes these foundation 
quantum principles to search a list of N! permutations, or possible orderings of the N 
items,  where each instance is a single permutation or possible ordering of the N items.  
The ‘marked’ permutation satisfies the desired sort sequence.   
 
In this sample run the integers 1,2,6, & 9 are submitted as an unsorted list – [6,2,9,1].  
The aim behind this sample run is to use Grover’s unstructured search algorithm to carry 
out an ascending sort of any unordered list by amplifying the desired state (or ‘marked’ 
permutation) which represents the ascending sorted list.  The function used f(x) will 
return the value 1 (or true) when the values are sorted in the desired output sequence 
and it will return 0 (or false) otherwise. 
 
In quantum computing, all search space operations are contained within a blackbox  
therefore we measure the probability of obtaining the correct response and repeat the 
algorithm typically for Grover’s solution sqrt(2^n) times.  This has provided the most 
efficient response.  Running the algorithm too many times will lower the chances just as 
running it too few times will provide a lower probability of finding the correct ‘marked’ 
response. 
 
Starting a sample run: 
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The basis states are calculated with the following initial probabilities: 
 
: Initial Probs: 
: SPECTRUM q: <0,1,2,3,4> 
0.03125 |0>, 0.03125 |1>, 0.03125 |2>, 0.03125 |3>, 0.03125 |4>, 0.03125 |5>, 
0.03125 |6>, 0.03125 |7>, 0.03125 |8>, 0.03125 |9>, 0.03125 |10>, 0.03125 |11>, 
0.03125 |12>, 0.03125 |13>, 0.03125 |14>, 0.03125 |15>, 0.03125 |16>, 0.03125 |17>, 
0.03125 |18>, 0.03125 |19>, 0.03125 |20>, 0.03125 |21>, 0.03125 |22>, 0.03125 |23>, 
0.03125 |24>, 0.03125 |25>, 0.03125 |26>, 0.03125 |27>, 0.03125 |28>, 0.03125 |29>, 
0.03125 |30>, 0.03125 |31> 
 
Five qubits with three interations are used as a superpostion of all states provides the 
following initial amplitudes: 
 
STATE: 6 / 32 qubits allocated, 26 / 32 qubits free 
:Initial Amplitudes: 
0.17678 |0> + 0.17678 |1> + 0.17678 |2> + 0.17678 |3> + 0.17678 |4> + 0.17678 |5> + 
0.17678 |6> + 0.17678 |7> + 0.17678 |8> + 0.17678 |9> + 0.17678 |10> + 0.17678 |11> 
+ 0.17678 |12> + 0.17678 |13> + 0.17678 |14> + 0.17678 |15> + 0.17678 |16> + 
0.17678 |17> + 0.17678 |18> + 0.17678 |19> + 0.17678 |20> + 0.17678 |21> + 0.17678 
|22> + 0.17678 |23> + 0.17678 |24> + 0.17678 |25> + 0.17678 |26> + 0.17678 |27> + 
0.17678 |28> + 0.17678 |29> + 0.17678 |30> + 0.17678 |31> 
 
The ‘marked’ amplitude is designated by the red bar while all the other amplitudes are 
blue.  This provides a graphical representation showing how the amplitude is treated 
during the run of the quantum algorithm. 
 
The main idea behind Grover’s algorithm is to magnify the amplitude of the ‘marked’ 
number until the probability that it will be our solution is greater then 50%.  To do this 
we use phase inversion and negation to find the ‘marked’ solution and then Grover’s  
inversion about the mean operation.  This operation is repeated until the desired 
amplitude is reached. 
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This screen provides a visual of the first interation of probabiliies and amplitudes after 
the Negate phase with the following  amplitude values: 
 
: AfterNegate:Amps: 

0.17678 |0> + 0.17678 |1> + 0.17678 |2> + 0.17678 |3> + 0.17678 |4> + 0.17678 |5> + 

0.17678 |6> + 0.17678 |7> + 0.17678 |8> + 0.17678 |9> + 0.17678 |10> + 0.17678 |11> 

+ 0.17678 |12> + 0.17678 |13> - 0.17678 |14> + 0.17678 |15> + 0.17678 |16> + 

0.17678 |17> + 0.17678 |18> + 0.17678 |19> + 0.17678 |20> + 0.17678 |21> + 0.17678 

|22> + 0.17678 |23> + 0.17678 |24> + 0.17678 |25> + 0.17678 |26> + 0.17678 |27> + 

0.17678 |28> + 0.17678 |29> + 0.17678 |30> + 0.17678 |31> 

With the following probabilities: 

 : AfterNegate:Probs: 

 0.03125 |0>, 0.03125 |1>, 0.03125 |2>, 0.03125 |3>, 0.03125 |4>, 0.03125 |5>, 

0.03125 |6>, 0.03125 |7>, 0.03125 |8>, 0.03125 |9>, 0.03125 |10>, 0.03125 |11>, 

0.03125 |12>, 0.03125 |13>, 0.03125 |14>, 0.03125 |15>, 0.03125 |16>, 0.03125 |17>, 

0.03125 |18>, 0.03125 |19>, 0.03125 |20>, 0.03125 |21>, 0.03125 |22>, 0.03125 |23>, 
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0.03125 |24>, 0.03125 |25>, 0.03125 |26>, 0.03125 |27>, 0.03125 |28>, 0.03125 |29>, 

0.03125 |30>, 0.03125 |31> 

The amplitudes squared provide the probabilities of measuring those numbers. 

The next step is inversion about the mean operations.  Here is a screen shot of how each 

will respond to this calculation: 

 

 

 

The dashed red line in the Amplitude graph denotes the average. 
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In this screen shot, the probabilities are spiking for the ‘marked’ solution and the 

amplitude is amplified for the ‘marked’ solution after the average about the mean 

operation. 

 : Diffusion:Probs: 

 0.023926 |0>, 0.023926 |1>, 0.023926 |2>, 0.023926 |3>, 0.023926 |4>, 0.023926 |5>, 

0.023926 |6>, 0.023926 |7>, 0.023926 |8>, 0.023926 |9>, 0.023926 |10>, 0.023926 

|11>, 0.023926 |12>, 0.023926 |13>, 0.2583 |14>, 0.023926 |15>, 0.023926 |16>, 

0.023926 |17>, 0.023926 |18>, 0.023926 |19>, 0.023926 |20>, 0.023926 |21>, 

0.023926 |22>, 0.023926 |23>, 0.023926 |24>, 0.023926 |25>, 0.023926 |26>, 

0.023926 |27>, 0.023926 |28>, 0.023926 |29>, 0.023926 |30>, 0.023926 |31> 
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 These procedures are repeated three iterations for this algorithm until the final screen 

shot provides: 

 

  

 With the following results: 

: Diffusion:Amps: 

-0.05766 |0> - 0.05766 |1> - 0.05766 |2> - 0.05766 |3> - 0.05766 |4> - 0.05766 |5> - 

0.05766 |6> - 0.05766 |7> - 0.05766 |8> - 0.05766 |9> - 0.05766 |10> - 0.05766 |11> - 

0.05766 |12> - 0.05766 |13> - 0.94707 |14> - 0.05766 |15> - 0.05766 |16> - 0.05766 

|17> - 0.05766 |18> - 0.05766 |19> - 0.05766 |20> - 0.05766 |21> - 0.05766 |22> - 

0.05766 |23> - 0.05766 |24> - 0.05766 |25> - 0.05766 |26> - 0.05766 |27> - 0.05766 

|28> - 0.05766 |29> - 0.05766 |30> - 0.05766 |31> 
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 : Diffusion:Probs: 

 0.0033246 |0>, 0.0033246 |1>, 0.0033246 |2>, 0.0033246 |3>, 0.0033246 |4>, 

0.0033246 |5>, 0.0033246 |6>, 0.0033246 |7>, 0.0033246 |8>, 0.0033246 |9>, 

0.0033246 |10>, 0.0033246 |11>, 0.0033246 |12>, 0.0033246 |13>, 0.89694 |14>, 

0.0033246 |15>, 0.0033246 |16>, 0.0033246 |17>, 0.0033246 |18>, 0.0033246 |19>, 

0.0033246 |20>, 0.0033246 |21>, 0.0033246 |22>, 0.0033246 |23>, 0.0033246 |24>, 

0.0033246 |25>, 0.0033246 |26>, 0.0033246 |27>, 0.0033246 |28>, 0.0033246 |29>, 

0.0033246 |30>, 0.0033246 |31> 

 Our probability is now greater than 50% so we can measure our system : 

 : measured: 14 
 [0/32] 1 |0> 
 Checking our permutations classically – the sorted sequence is: 

(0)  6 2 1 9 
(1)  6 2 9 1 
(2)  6 1 2 9 
(3)  6 1 9 2 
(4)  6 9 2 1 
(5)  6 9 1 2 
(6)  2 6 1 9 
(7)  2 6 9 1 
(8)  2 1 6 9 
(9)  2 1 9 6 
(10)  2 9 6 1 
(11)  2 9 1 6 
(12)  1 6 2 9 
(13)  1 6 9 2 
(14)  1 2 6 9 
(15)  1 2 9 6 
(16)  1 9 6 2 
(17)  1 9 2 6 
(18)  9 6 2 1 
(19)  9 6 1 2 
(20)  9 2 6 1 
(21)  9 2 1 6 
(22)  9 1 6 2 
(23)  9 1 2 6 
(24) null 
(25) null 
(26) null 
(27) null 
(28) null 
(29) null 
(30) null 
(31) null 
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Appendix J 

Wallace and Narayanan‟s Quantum Sorting Algorithm 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0 Initialize m=1 and set lambda = 8/7 (Any value of lambda 
     between 1 and 4/3) m is an arbitrary positive integer 
     used to determine j and is the number of iterations 
     of the main loop. 
 
2.0 Choose j uniformly at random among the nonnegative 
     integers smaller than m. 
 
3.0 Apply j iterations of Grover's algorithm to the state 
     created in 3.1. 
 
    3.1 Take a register of qubits and create a superposition 
          that contains all possible permutations of the N 
          nodes.  Each permutation will have the same amplitude. 
 
    3.2 Compute F(x) on the register by applying Q (the 
          quantum gate(s) that implement the specified F(x) 
          function) to the register containing the superposition. 
 
    3.3 Invert the sign of the amplitude from + to - for all x 
          where F(x) = 1, i.e. for ascending ordered list 
          permutation. 
 
    3.4 Apply Grover's "inversion about the average" operator 
          (as in Grover's algorithm)to increase the amplitude 
          for all x with F(x) = 1. 
 
    3.5 Repeat steps 3.2 to 3.4 so that the amplitude of those 
          x where F(x) = 1 (our sorted permutation) is increased, 
          and the amplitude of all other x is decreased until the 
          absolute amplitude of the ascending ordered permutation 
          is near 1. 
 
4.0 Measure the register and read the result.  Check 
      classically that the result is an ordered list (by checking 
      that it matches a sequence of a <=b < =c ... <=i(n) for 
      all N items in the original list.  If so - exit. 
 
5.0 Otherwise, set m to min(lambda(m), sqrt(N)) and go back to 
      step 2.0. 
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Appendix K 

UML Class Diagram of QuAL 
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