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Yersinia Virulence Factors 2 

Abstract 

Several Gram-negative pathogenic bacteria have evolved a complex protein secretion 

system termed the Type Three Secretion System (TTSS) to deliver bacterial effector 

proteins into host-cells that then modulate host-cellular functions. These bacterial devices 

are evolutionarily related to the flagellar apparatus. Although the TTSSs are substantially 

conserved among different species, the effector molecules they deliver are species-

unique. There exist three human pathogenic Yersiniae. Yersinia enterocolitica and 

Yersinia pseudotuberculosis cause self-limiting gastro-enteric diseases and infect 

mesenteric lymph nodes, while Yersinia pestis is transmitted by fleas and can be 

aerosolized, causing the lethal disease known as plague (also known as Black Death). 

The TTSS is composed of over 20 proteins making up the injectisome (inserted directly 

into the host-cell), in addition to translocator, regulator, and modulator proteins, as well 

as chaperones for several effector proteins. Today, plague is still a health concern due to 

the ability of Y. pestis to be aerosolized. No effective vaccines are currently available to 

the public. However, research is being implemented to create a vaccine that can be 

widely used. The purpose of this paper is to update the state of the Yersiniae TTSSs by 

providing a review of recently published primary articles. 
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Yersinia Virulence Factors 3 

Yersiniae Virulence Factors: Type III Secretion System 

 Of three human pathogenic Yersiniae, Y. enterocolitica and Y. pseudotuberculosis 

enter their hosts via the oral-fecal route of infection and are self-limiting enteric 

pathogens, which infect the mesenteric lymph nodes (14). In contrast, Y. pestis is 

transmitted by fleabite or via the aerosol route and infect regional lymph nodes or lungs 

leading to the lethal disease known as plague (14). 

 Y. pestis is thought to have evolved from Y. pseudotuberculosis relatively recently 

(27). Molecular clock estimates, based on mutational differences, place Y. pestis’ 

emergence as recently as 9,000 to 40,000 years ago. In comparing Y. pestis and Y. 

pseudotuberculosis, Y. pestis has two additional plasmids and has lost some chromosomal 

genes by deletion or inactivation. These differences enable Y. pestis to survive in its 

vector, the flea, and account for Y. pestis’ unique route of infection (27).  

 Common to all three pathogenic Yersiniae is the presence of type III secretion 

system (TTSS) (14, 8). The TTSS is encoded on an approximately 70-kb virulence 

plasmid termed pYVE or pCD1 (8). The TTSS functions to inject bacterial effector 

proteins directly into the host-cell cytoplasm and has thus been referred to as an 

injectisome (8). This system can also be found in several Gram-negative bacteria, and 

although the systems are highly conserved, the effector molecules delivered into targeted 

host-cells are unique for each bacterial species (8).  

 The TTSS functions by means of a secretion apparatus composed of 20-25 

different Yersinia secretion proteins (Yscs) (8, 18, 23). In fact, all 25 Yscs are required 

for a fully functioning secretion apparatus (14). It is believed that these injectisomes are 

environmental sensory receptors that sense the 37 C, low intracellular calcium 
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Yersinia Virulence Factors 4 

concentration of the host-cell, which induces the expression of the effector proteins from 

TTSS operons. This response is known as the low-calcium response (14). Interestingly, 

Ysc proteins that comprise the TTSS’s injectisome are homologous to flagellar proteins 

and therefore are thought to have evolved divergently from the flagellar proteins (Figure 

1).  

 Regulation and function of the Yersiniae TTSSs have been extensively studied. A 

detailed description of the TTSS and the Gram-negative bacteria who posses it was 

published in 1998 by Hueck (14). A more recent description of the Yersinia Outer 

Proteins (Yops) was published in 2005 by Viboud and Bliska (36). The aim of this paper 

is to update the state of the Yersiniae TTSSs. 

 There are 13 Yops, which are secreted by the TTSS injectisome. These proteins 

are grouped roughly into the following categories: (i) translocatory proteins involved in 

the translocation process, (ii) regulatory proteins, and (iii) effector proteins with direct 

anti-host functions. Interestingly, three of the effector proteins with direct anti-host 

functions, YopH, YpkA (YopO in Y. enterocolitica), and YopM, which are translocated 

into the host cytoplasm, are homologous to eukaryotic proteins and are thought to have 

been acquired from the eukaryotic host-cells. For example, YopH is a protein with 

tyrosine phosphatase activity and is homologous to the eukaryotic protein tyrosine 

phosphatase (PTPase) (11). The Yersiniae utilize YopH to dephosphorylate several 

macrophage proteins, thereby evading phagocytosis (14).  

Plague continues to be a determent to our society. Between 1987 and 2001, 36, 

876 cases of plague with 2,847 deaths were reported to the World Health Organization 

(WHO) (27). Closer to home, in 1992, there was an outbreak in which a plethora of 
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Yersinia Virulence Factors 5 

chipmunks were found dead in the four corners region of the United States: New Mexico, 

Arizona, Utah, and Colorado. Another reason the plague continues to be a health concern 

is because of Y. pestis’ unique ability to be aerosolized (communicated via respiratory 

droplets) and potentially be weaponized by bioterrorists (27).  While much has been 

accomplished in determining Y. pestis’ mechanism of action in causing plague, more still 

needs to be discovered to produce an adequate vaccine.  

 At present, no effective plague vaccines are available. Those previously 

developed and used in humans confer low levels of protection, have numerous side 

effects, and require frequent boosting to develop immunity (27). However, LcrV is an 

effector protein translocated along with other Yops by the TTSS and is now being 

targeted as a vaccine candidate (26). 

Injectisome: The TTSS needle 

 The TTSS employs a needle-like apparatus, termed the injectisome, to translocate 

effector proteins directly into the cytosol of a targeted host-cell (8). The injectisome is 

composed of about 25 Yscs and uses three translocator Yops, YopB, YopD and LcrV, to 

form a pore in the host-cell for the translocation of the effector Yops across the target cell 

membrane (8, 18, 23) (Refer to Yersinia outer proteins section below). Injectisomes 

consist of a basal body spanning both the inner and outer bacterial membranes and a 

needle (23). 

 Recently, many of the proteins that make up the injectisome have been shown to 

be homologous to flagellar proteins (14). A possible explanation for the evolution of the 

TTSS needle is that it divergently evolved from the basal body of the flagellar apparatus 

(14). After its evolution, several Gram-negative bacteria could have acquired the system 
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Yersinia Virulence Factors 6 

by horizontal genetic transfer. Although the secretion apparatus is highly conserved 

among many Gram-negative bacteria, the effector molecules that they deliver are unique 

to each bacterial species. Therefore, the needle complex may have divergently evolved 

from the flagellar proteins, whereas the effector molecules were not. 

A comparison of the flagellar protein FliN and injectisome protein Ysc Q showed 

that FliN carries a carboxy-terminal domain of 60 amino acids that is homologous to a 

respectively located domain in the members of the YscQ family (14). It was also shown 

that FliF shares a domain with YscJ (14) (Figure 1). 

 

Structural homologs suggest common evolutionary heritage. 
 

(a). FliN_Y. pestis:     61-123 
      YscQ_Y. pestis:    236-298 

 

FliN_Y. pestis             I P V K L S V E L G R T K M T  I   K E L L R L S Q G S V V S L D G L A G  E P L D I  L  I  N G Y L I  A Q   
YscQ_Y. pestis           LP V Q V S F E V G R Q I  L  D W H T L T S  L E P G S  L I  D L T T  P V D G E V R L L A N G R L L G H   

 

FliN_Y pestis  G E V V V V A D K Y G V R I 
YscQ_Y. pestis  G R L V E  I  Q G R  L G V R  I 

 

(b). FliF Y. pt:      56-242 
       YscJ Y. pt:     23-213 

 

FliF Y. pt  L Y S N L S D R D G G D I  V T Q  L T Q L N I  P Y  –  R F A D N G G A -  -  L L  I  P A E K V H E T R L   
YscJ Y. pt  L Y T G I  S Q K E G N E M L A L  L R Q E G L S A D K E P  D K D G K I K L L V E E  S D V A Q A I  D  

  

 
FliF Y. pt  R L A Q Q G L P  K G G A V G F E  L L D Q E  K F G I S Q F S E Q I  -  -  -   N Y Q R A L E G E L S R T I   

YscJ Y. pt  I  L K R K  G Y P H E  S F  S  T L Q D V F P  K D G L I S S  P I  E E L A R L N Y A K A Q E  -  -  I S R T L  

 
FliF Y. pt  G T L G P V L N V R V H  L A M P K P S L F V  R E Q K  S P  T A S V T L A L Q P G R A L D – D G Q I  

YscJ Y. pt  S  E I  D G V L V A R V H V V L  P E E Q – N N K G K K G V A A S A S V F I  K H A A D I Q F  D T Y I  

 
FliF Y. pt   N A I V Y M V S  S S V A G L P P G N V T V V D Q T G R L L T Q S D S A G R D L N A S Q L K F T S  E 

YscJ Y. pt   P  Q I K Q L  V N N S I  E G L A Y D R I  S V  I  L V P S V D V R Q S S H L  P R N T S  I  L S  I Q  V S E E 

 
Figure 1. The amino acid sequences for these proteins were obtained from the National Center for Biotechnology Information (NCBI) 

database and compared using Basic Local Alignment Search Tool (BLAST) (7, 24). Dark blue indicates identities. Aqua indicates 

amino acid similarities. (a)Analysis of FliN_Y. pestis flagellar motor switch protein and YscQ_Y. pestis Yop protein translocation 
protein Q reveals 33% identity and 53% amino acid similarity. (b) Analysis of FliF_Y. pseudotuberculosis (Y. pt) flagellar motor 

switch protein and YscJ_Y. pt Yop protein translocation protein Q reveals 23% identity and 46% amino acid similarity.  

 

The end of the needle-like structure is made up of YscF, with YopN possibly 

acting as a “plug”(33). The role of LcrV, YscF, and YopN in the formation of the pore 

required by the injectisome to deliver the Yops in macrophages was tested by monitoring 
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Yersinia Virulence Factors 7 

the release of the low-molecular-weight fluorescent dye BCECF (2′, 7′-bis- (2-

carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester, 623 Da) and of the 

high-molecular-weight lactate dehydrogenase (LDH, 135 kDa). Bacteria producing 

normal Ysc injectisomes, including the YscF needle but no translocators, did not form 

pores, indicating that the needle is not sufficient by itself for pore formation. YopN might 

form a link between the needle and the pore, guiding the effectors (18). 

 In a more recent study, it was found that the length of the injectisome is 

genetically defined (2). The length of the needle is determined by YscP, which acts as a 

molecular ruler (3). It is found that a minimal needle length was required for efficient 

functioning of the Y. enterocolitica injectisome and the minimal needle length correlated 

with the length of the major adhesin at the bacterial surface. The needle may be required 

for triggering type III secretion, suggesting that needle length may have evolved to match 

specific structures at both the bacterial and host-cell surfaces (22). YscP is also secreted 

and was found to be required for Yop secretion by a systematic deletion analysis where 

the specific region required for Yop secretion (between residues 405 and 500) was 

accurately localized (2).  

 YscU, also a key component of the TTSS injectisome, undergoes auto-cleavage of 

an N-terminal transmembrane domain and a long cytoplasmic C-terminal domain at a 

NPTH site (32). A yscUN263A mutant makes needles without the LcrV tip complex, 

essential to pore formation, and could not form translocation pores. The yscUN263A 

mutant was also shown to export less amounts of YscP (the molecular ruler) and 

consequently, made longer needles (32).  

  It was recently shown by electron microscopy (EM) analysis that the tip of 
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Yersinia Virulence Factors 8 

needles that protrude from the bacterial surface contained a distinct structure caused by 

LcrV bound to YscF (19). This unique localization of LcrV may explain its crucial role in 

the translocation process and its efficacy as the main protective antigen against plague as 

a vaccine candidate.  

Yersinia Outer Proteins (Yops) 

 The Yops (toxic effector proteins) are encoded on several operons on the 

virulence plasmid, and their expression is induced after a temperature shift from 25ºC to 

37ºC, but at 27ºC in the presence of Ca
2+ 

the system remains repressed (14, 41). Normal 

growth of Y. pestis occurs at 25ºC to 27ºC (ambient temperature in flea gut). Eventually, 

this temperature shift and contact with the mammalian cell (low calcium), leads to the 

injection of the effector Yops from the bacterium into the host cell (41). 

 The Yops and other proteins secreted by Yersinia TTSS have been roughly 

grouped into three categories: (i) translocatory proteins involved in the translocation 

process and pore formation (YopB, YopD, and LcrV), (ii) proteins with direct anti-host 

function and are translocated directly into the eukaryotic cytosol (YopH, YopM, YopE, 

YopT, and YopJ) (16), and (iii) regulatory proteins, which mediate cell contact (YopN 

and YopK) (14, 36) (Table 1). 

Table 1. Yops and Other Proteins Secreted by Yersinia TTSS (13, 15, 33) 

(i) Translocatory Proteins 

YopB, YopD, 

and LcrV Are involved in the translocation process and pore formation 

(ii) Proteins with direct anti-host function 

YopH Is a tyrosine protein phosphatase 

YopM Binds to -thrombin and blocks platelet activation 

YopE Directly polymerizes actin microfilaments 

YopT Is similar to YopE, YpkA/YopO are a serine/threonine protein kinases 

YopJ                                                         

Interferes with mammalian signaling pathways leading to the inhibition of phagocytosis, 

modulation of cytokine production, and induction of apoptosis 

(iii) Regulator Proteins 

YopN Is surface exposed and involved in the low-calcium response 

YopK Seems to regulate the amount of effector Yops translocated 
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Yersinia Virulence Factors 9 

YopB, YopD, and LcrV: Translocators 

 YopB and YopD are encoded in the lcrGVH-yopBD operon and their transcription 

is induced by temperature (37 C) and millimolar concentrations of calcium (low-calcium 

level, mimicking the internal host-cell environment) (14).  It has been shown that YopB, 

YopD (14), and LcrV are translocator proteins (33, 36). While these proteins are involved 

in translocation, they are not actually translocated into the targeted host-cells. It has also 

been suggested that these proteins make up the “translocation channel” in the host-cell 

membrane (pore-formation) mainly because of their hydrophobic domains. However, 

LcrV is the exception being a dimer in solution (36). The hydrophobic domains found in 

YopB and YopD, suggested that they are probably transmembrane proteins. Interestingly, 

YopB has been shown to independently disrupt artificial membranes, whereas YopD 

cannot. YopB may achieve this by virtue of its two hydrophobic regions (residues 166 to 

188 and 228 to 250). Recently, YopB’s ability to disrupt membrane was characterized by 

altering the hydrophobic domains of YopB and then studying the change in the virulence 

of the mutant strain containing the altered YopB protein (30).  

 In the aforementioned experiment, a helix-disrupting double consecutive proline 

substitution in the center of the transmembrane domain of YopB proteins was 

constructed. Either both hydrophobic domains were disrupted or only one hydrophobic 

domain was disrupted. Y. pseudotuberculosis expressing the mutant proteins was used to 

infect macrophage or epithelial cells. As it turned out, YopB with two disrupted domains 

resulted in a non-functional protein, which was not secreted and the YopB with only one 

disrupted hydrophobic domain had partially disrupted function. Ultimately, all three 

9
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Yersinia Virulence Factors 10 

functions of YopB, translocation, pore formation, and signaling, require these 

hydrophobic domains for insertion into the host-cell membrane (30).  

 The ability of YopB to insert into the host-cell membrane creating a channel 

along YopD explains how the injectisome can maintain contact with the host-cell without 

disrupting the integrity of the host-cell membrane. Furthermore, LcrV has also been 

found to form channels in lipid bilayers and is believed to be part of the pore-formation 

process making up the channel in which effector proteins are translocated (36). Also, it 

has been found that the interaction of YopB with the host-cell triggers a pro-

inflammatory signaling response in epithelial cells infected with y. pseudotuberculosis 

(35). In fact, it was recently suggested that YopB could potentially be used to enhance the 

immune response in eukaryotic cells (5).  

YopH, YopO (YpkA), YopE, YopT, YopM, YopJ (YopP): Effectors  

 The most pronounced effects by the TTSS involves the action of several effector 

Yops, such as YopE, YopH, YopO/YpkA, and YopT, which disrupt the target cell-

signaling network and cytoskeleton rearrangement by targeting monomeric GTPases of 

the Rho family (8, 41). YopH, YopO (YpkA in Y. pseudotuberculosis), YopE, YopM, 

and YopJ (YopP in Y. enterocolitica) are directly translocated into the host-cell 

cytoplasm by the TTSS. Interestingly, three of these effector proteins have been found to 

be homologous to eukaryotic proteins (Figure 2). 

YopH: A Tyrosine Protein Phosphatase 

 It is believed that several of these translocated effector Yops have been acquired 

from the host itself. The yersiniae are able to use these homologous host proteins, to their 

advantage. For example, YopH is a 468 amino acid long protein with tyrosine 
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Yersinia Virulence Factors 11 

phosphatase and its carboxy terminal is homologous to the eukaryotic protein tyrosine 

phosphatase (PTPase). In fact, YopH was shown to be the most active tyrosine 

phosphatase known (11). The Yersiniae utilize YopH to dephosphorylate several 

macrophage proteins contributing to their resistance to phagocytosis. One way in which 

YopH has been shown to evade phagocytosis has been by inhibiting the invasin 

interaction activated,  1 integrin pathway. YopH has two substrate recognition sites 

(11). The presence of two substrate recognition sites is believed to be the evidence for 

why this PTPase-like protein has evolved a highly complex mechanism to locate 

substrates in the complex environment of the host-cell (36). 

 In a recent study, the factors important for growth during lung infection were 

determined (9). Using a YopH mutant strain of Y. pseudotuberculosis, mice were infected 

intra-nasally and growth was monitored in lungs and systemic tissues. As it turned out, 

the YopH mutant failed to proliferate at wild-type levels four days after intranasal 

inoculation. This study concluded that YopH, together with YopB, was essential for 

development of a Y. pseudotuberculosis murine lung infection (9).   

YpkA/YopO: A Serine/Threonine Protein Kinase 

 YpkA (YopO in Y. enterocolitica), approximately 730 amino acids, is transcribed 

on an operon together with YopJ/YopP (14). YpkA has a serine/threonine kinase catalytic 

site on the N-terminal half of the protein that is homologous to the eukaryotic 

serine/threonine protein kinase (36). Like YopE and YopT, YpkA interacts with 

RhoGTPase and thereby disrupts the actin cytoskeleton of cultured cells to prevent 

phagocytosis (1). Because YpkA is weakly expressed, and the effector proteins, YopE 

and YopH, mask its activity, a mutant with the deletion of these other two effector 
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Blanco: Yersiniae Virulence Factors: Type III Secretion System

Published by NSUWorks, 2008



Yersinia Virulence Factors 12 

proteins has to be made in order to detect the activity of YpkA (14, 36, 39). It was 

recently shown that a Y. pseudotuberculosis YpkA mutant with a deletion of its kinase 

domain was greatly attenuated in a murine model of infection (39).   

YopE: A GTPase Activating Protein (GAP) 

 YopE, 219 amino acids, is highly conserved amongst all three pathogenic Yersiniae 

(14). YopE has been found to induce cytotoxic effects on host cells (4, 14, 36, 37). It was 

proposed that YopE exhibits GTPase-activating protein (GAP) activity towards Rac1, 

RhoA and Cdc42 and is essential for induction of the cytotoxic phenotype on HeLa cells 

(rounding, etc.) and virulence (38). Although it had been demonstrated that the 

cytotoxicity of YopE was due to its GAP activity toward the small GTP binding proteins, 

RhoA, Rac-1, and Cdc42, in vitro (1) there was no formal evidence for a direct 

interaction between YopE and any of these three RhoGTPases during an in-vivo 

infection. In an effort to understand the functional role of YopE in vivo, its GAP activity 

in infected eukaryotic cells was found to inactivate Rac1 as early as 5 minutes after 

infection. On the other hand, RhoA was downregulated approximately 30 minutes post 

infection and YopE had no apparent effect on the activation state of Cdc42 in infected 

cells. This study demonstrated that Cdc42 is not an in vivo target for YopE, and that 

YopE preferentially interacts with Rac1, and to a lesser extent with RhoA, within 

targeted host-cells (4). Ultimately, the major function of YopE is thought to be its 

contribution to the overall antiphagocytic activity of the Yersiniae TTSS (37).  

YopT: Like YopE, also Downregulates Rho GTPase  

 YopT, 322 amino acids, is not expressed by sero-type strains of Y. 

pseudotuberculosis and was therefore, the last effector protein identified in 2002 (8, 14). 

12
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In 2003, a yopE null (complete knock-out) Y. pseudotuberculosis mutant was found to be 

much more attenuated than the Y. enterocolitica yopE mutant. This was most likely due 

to Y. pseudotuberculosis lacking YopT. More importantly, RhoA modification was 

shown to be strictly dependent on YopT without the need of any additional effector Yops 

(18). More recently, YopE and YopT were shown to have some level of functional 

redundancy by sharing overlapping virulence functions (37). Observations such as the 

disruption of stress fibers, cell rounding, and inhibition of phagocytosis by YopE and 

YopT led to this assumption (36).  

 In order to explore this assumption, the contributions of YopE and YopT to the 

pathogenesis of Y. pseudotuberculosis were studied in a mouse infection and tissue 

culture infection model. A YopE
+
T

- 
strain and a YopE

+
T

+
 strain colonized spleens of 

mice at similar levels after four days of oral infection. This observation suggests that 

YopT is not required for virulence. In sharp contrast, spleen colonization by a YopE
-
T

-
 

strain was significantly reduced. However, a YopE
-
T

+
 strain colonized spleens at levels 

comparable to those of the YopE
+
T

-
 strain. These data suggest that YopT can promote 

virulence in the absence of YopE (37).  

 Furthermore, infection of HeLa cells with YopE
-
T

-
H

-
J

-
 strain expressing either 

YopE or YopT showed that YopE had a stronger antiphagocytic activity than YopT. This 

study concluded that YopE is a potent inhibitor of infection-induced signaling cascades, 

and YopT can only partially compensate for the loss of YopE (37), which explains why a 

Y. enterocolitica yopE mutant, still experiences attenuated virulence.  

YopM: Blocks Platelet Activation by Binding Thrombin 

 YopM, 376 amino acids, contains variable numbers of leucine rich repeat motifs 
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and is the only Yersiniae TTSS effector Yop that does not encode an enzymatic activity 

(36). YopM is homologous to the thrombin-binding domain of the  chain of human 

platelet surface glycoprotein Ib (GPIb ). This protein is also homologous to a portion of 

von Willebrand factor, which apart from its many functions, serves as a carrier of clotting 

factor VIII (14) (Figure 2). Purified YopM was shown to bind thrombin and to inhibit 

platelet aggregation in vitro (14). Although it is known that YopM plays an important 

role in pathogenesis, the significance of thrombin binding for Y. pestis pathogenesis is not 

clear (12). It is believed that YopM may compete with platelets for thrombin binding in 

vivo and that the resulting prevention of blood clot formation could enhance the 

dissemination of the bacteria throughout the body (14). Interestingly, YopM is 

translocated into the cytosol of the host-cell and has been shown to localize to the nucleus 

of the target cell (8), but it is not known how nuclear localization is related to the function 

of YopM (36). The most recent data indicated that YopM targets the innate immune 

system, as it was required for depletion of NK cells after intravenous infection of mice 

with Y. pestis (15). Studies in which gene regulation by YopM was examined, gave 

contradictory results as well as murine infection data (36). Figure 2 illustrates the 

alignment of y. pestis’ YopM with human platelet glycoprotein Ib  (GP-Ib ). 

Structural homologs suggest common evolutionary heritage. 

 

(a). GP-Ip :                43-132 
      YopM_Y. pestis:    273-353 

 

GP-Ip    P D L P K D T T  I  L H L S E N L L Y T F S L A T  L M P Y T R L T Q  L N L D R C E L T K L Q V 
YopM_Y. pestis  P E  L P Q S  L T F L D V S E N I  -   -  - F S G L  S E  L  P  – P N L Y Y L N A S S  N E I  R S L  -  - 

 

 

GP-Ip                D  G T  L P V L G T L D  L S H N Q L Q S L P L L G Q T L P A L T V L D V S F N R L T  S L  P 

YopM_Y. pestis  C  D  L P P  S L  E E L N V S N N K L  I  E L P A L P  -  -  -  P R L E R L  I  A S F N H L A E V P 

 

 

Figure 2. The amino acid sequences for YopM and GPIb  were obtained from the NCBI database and compared using BLAST (20). 
Dark blue indicates identities. Aqua indicates amino acid similarities. (a)Analysis of human platelet glycoprotein Ib  (GP- Ib ) and 
Y. pestis Yop protein translocation protein M reveals 36% identity and 50% amino acid similarity.  
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YopJ: A Cysteine Protease 

 YopJ (YopP in Y. enterocolitica), 264 amino acids, has been shown to induce 

apoptosis in cultured murine macrophages (21). More recently, YopJ was found to cause 

apoptosis by inhibiting the mitogen-activating protein kinase (MAPK) and nuclear factor-

B (NF- B) signaling pathways of the host-cell and blocking host proinflammatory 

response by suppressing cytokine production (36), and interfering with ubiquitination 

(tagging of proteins to be destroyed) (14). Yops counteract the MAPK and NF- B 

signaling pathways of the host-cell by acting like a protease by means of binding and 

blocking activation of the MAPK kinases and IKK (36, 42).  Because NF- B promotes 

cell survival, a recent study set out to determine whether inhibition of NF- B by YopJ 

was enough to cause apoptosis (42). In order to accomplish this, macrophages expressing 

NF- B inhibitors were infected with Y. pseudotuberculosis strains either expressing YopJ 

or not. As it turned out, the Y. pseudotuberculosis strains expressing YopJ were more 

effective in causing apoptosis than the strains that were not expressing YopJ, suggesting 

that deactivation of both NF- B and MAPK pathways are necessary for Yersinia to cause 

rapid apoptosis (42). YopJ has also been shown to be a deubiquitinating enzyme that 

negatively regulates signaling by removing ubiquitin moieties from critical proteins. In 

that regard, an in vitro assay demonstrated the deubiquitinating activity of purified YopJ 

(43).  

 When YopP was directly coupled to YopJ, YopP was secreted more readily than 

YopJ (41). Recently, a YopJ-deleted mutant strain of Y. pestis expressing YopP was 

shown to provide a better apoptotic potential. In J774A.1 cells (a BALB/c murine 

macrophage strain usually used for the production of monoclonal antibodies), RAW264.7 
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cells (a murine macrophage strain that does not demonstrate
 
the prostaglandin (PG)-

dependent autocrine regulation of tumor
 
necrosis factor- (TNF-) secretion observed in 

primary resident
 
peritoneal macrophages (RPMs)), and primary murine macrophages, 

better than even the most virulent strains of Y. pestis, EV76 and Kimberley 53 (35).  It 

has been proposed that perhaps Y. pestis expressed YopJ instead of YopP because in Y. 

pestis’ early stages of infection it propagates in macrophages, and, therefore, it is more 

advantageous for Y. pestis if these host-cells stay alive (41).  

 Still, the YopJ contribution to Y. pestis virulence is not clear. A recent study 

concluded that YopJ suppresses tumor necrosis factor  (TNF- ) induction and 

contributes to apoptosis of immune cells in the lymph node but is not a virulence factor in 

a rat model of bubonic plague (17). Following intra-dermal infection with a fully virulent 

Y. pestis strain or an isogenic yopJ mutant, it was determined that the deletion of yopJ 

resulted in a two-fold decrease in the number of apoptotic immune cells in the bubo, a 

swollen lymphnode, and a threefold increase in serum tumor necrosis factor  levels but 

did not result in decreased virulence, systemic spread, or colonization levels in the spleen 

and blood. Ultimately, the data suggest that YopJ is not essential for bubonic plague 

pathogenesis, but rather, the effects of YopJ appear to overlap and augment the 

immunomodulatory effects of other Y. pestis virulence factors (17).  

 More recently, YopJ was shown to exert its deleterious effect by catalyzing the 

acetylation of two serine residues in the activation loop of the MAP kinase kinase, 

MEK2, thereby preventing the phosphorylation of these serine residues required for 

activation of MEK2 and downstream signal propagation. YopJ has been shown to 

acetylate a threonine residue in the activation loop of both the  and  subunits of the 
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NF- B pathway kinase, IKK (21). In addition, YopJ was found to not only inhibit 

production of the inflammatory cytokine tumor necrosis factor  (TNF- ), but also was 

found to inhibit the anti-inflammatory cytokine, interleukin-10 (IL-10) expression (6). 

YopN and YopK: Regulator and Modulator 

YopN and YopK are considered to be regulatory proteins because they mediate 

cell contact and also have regulatory involvement (14). YopN is surface exposed and is 

involved in the low-calcium response (14). TTSS secretion channels shut in the presence 

of millimolar concentrations of Ca
2+

 found in mammalian blood (18). YopN mutants 

were found to secrete large quantities of Yops even in the presence of Ca
2+

. For this 

reason, YopN is thought to act as a “plug”. In the presence of an appropriate secretion 

signal (low calcium concentration), YopN is secreted into the supernatant by the Yersinia 

TTSS followed by the other effector Yops (18).  

 Unlike YopN, YopK seems to regulate the amount of effector Yops that are 

translocated by acting as a modulator (13). YopK is encoded outside the lcrG-lcrV-sycD-

yopBD operon, and its expression is also regulated by temperature and calcium levels. 

YopK is not translocated, but appears to be located in the vicinity of cell-associated 

bacteria during the infection process (14). YopK was shown to play a modulatory role in 

the translocation process when a YopK mutant expressed hypertranslocation (14).  

Other Virulence Associated Factors: PNPase 

 Recently, it has been found that the exoribonuclease, polynucleotide 

phosphorylase (PNPase) is required for the optimal function of the Yersiniae TTSS (29). 

HeLa cells were used to examine the cytotoxic effect of Y. pseudotuberculosis and Y. 

pestis pnp mutants by comparing mutant strain cytotoxicity to that of the wild-type 
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strains. The kinetics of the HeLa cell cytotoxicity induced by pnp strains appeared 

delayed, thereby indicating that the pnp strain had compromised TTSS activity (29). 

More importantly, it was also shown that complementing the mutant strains with the S1 

RNA-binding domain of PNPase could restore the optimal TTSS function. Furthermore, 

a murine infection using the above mentioned strains recapitulated attenuated virulence in 

the pnp strain (28).  

Chaperones 

 Yops are translocated through a narrow hollow hole in the injectisome in an 

unfolded state, suggesting that proteins may be secreted before acquiring their native 

conformations (40). Some of these translocated or secreted proteins have been shown to 

require small, usually acidic, accessory proteins with binding specificity towards each 

individual secreted protein that maintains them in an unfolded conformation required for 

passing through the needle (14, 40). These small chaperone proteins are required for 

presecretory stabilization (14). The TTSS chaperones appear to keep secreted proteins 

from prematurely interacting with translocatory proteins, fulfilling their role as 

bodyguards (their second name) (14).   

 Chaperones have been described for the effector proteins YopE, YopT, and 

YopH. SycE is the chaperone for YopE, SycT is the chaperone for YopT, and SycH is the 

chaperon for YopH (34). SycD is the chaperone for both YopB and YopD (10, 24, 35), 

while ScyN uses YscB (an injectisome protein) as a co-chaperone for secretion of YopN 

in Y. pestis (35). Recently, two crystal structures of YopN in complex with its 

heterodimeric secretion chaperone, SycN–YscB, and also the co-regulatory protein, 

TyeA, were solved. These two structures were combined to construct a theoretical model 
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of the YopN–SycN–YscB–TyeA complex (31). However, no chaperones had been 

described for YopO, YopP, YopQ (YopK in Y. pseudotuberculosis), and YopM.  More 

recently, though, it was shown that these proteins did not require the assumed chaperones 

(35).    

Infection still a problem 

 Bubonic plague is a lethal disease caused by Yersinia pestis. The Japanese 

weaponized Y. pestis from 1932 until the end of the Second World War when they used 

Y. pestis-flea bombs on civilians and prisoners (27). Instead of using the flea as a vector, 

some countries began to try aerosolizing Y. pestis. After 1969, the U.S. unilaterally 

ceased in the production of biological weapons. Although not proven, it is believed that 

the former Soviet Union created large facilities whose sole purposes were to find a way 

to deliver Y. pestis strains by aerosol (27).  

 The U.S. national laboratory response network detects biological terrorism agents 

such as Y. pestis. Once possible uses of biological weapons are found, they are referred to 

the Center for Disease Control (CDC) and the American Society for Microbiology to 

identify and confirm the Y. pestis strains (27). Streptomycin is traditionally regarded as 

the most affective treatment for Y. pestis, 1g (twice daily) for ten days and was the first 

antimicrobial shown to be affective against the pneumonic plague. Another drug that has 

been found to be affective is aminoglycosidegentamycin. Although very rare, it has been 

found that some strains of Y. pestis are antibiotic resistant, but luckily they have only 

been reported in Madagascar (27). Unfortunately, the plasmid responsible for the 

resistance has been reported to be self-transferrable to other bacteria (27).  
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Vaccine Production  

 Killed-whole-cell vaccines and live-attenuated vaccines have been created in the 

past, but have been found to be less than adequate. Not only do both vaccines only 

provide a short duration of protective immunity, but also the killed-whole-cell vaccine 

did not protect against primary pneumonic plague, while the live-attenuated vaccines 

maintained enough virulence to be unsuitable and excessively dangerous for public use 

(27). They offer low levels of protection, have numerous side effects, and require 

frequent immunization (26). 

 As a result, researchers are looking towards subunit vaccines as the answer. LcrV 

is an effecter protein translocated along with several Yops by the TTSS. This protein 

suppresses the host’s immune system response. A subunit vaccine in development is 

based on LcrV (also known as the (V) antigen). In a recent study, an adenovirus-based 

vaccine vector expressing the V-antigen was used to immunize mice. The experimental 

findings were that mice immunized with a single intramuscular dose of the vaccine were 

protected from a lethal intranasal challenge of Y. pestis (26). Therefore, hope for an 

effective mechanism whereby infection can be halted may be on the horizon. 

Conclusion 

 There are three human pathogenic Yersiniae, which share a common virulence 

factor termed the Type Three Secretion System present on an approximately 70-kb 

virulence plasmid. Many other Gram-negative bacteria possess this system, which allows 

them to transfer effector proteins directly into the host cell. The proteins that make up the 

apparatus “injected” into the host cell termed the injectisome are homologous in all the 

species that posses this system. However, the effector proteins are species-unique and are 
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believed to have been acquired from the hosts each species infect. There is still a health 

concern associated with Yersiniae especially with the plague-causing Y. pestis and its 

ability to be aerosolized, making it a potential bioterrorist weapon. Understanding the 

biology of the virulence factors of Yersiniae will allow for the development of novel 

preventative and therapeutic strategies to cope with Yersiniae infections.  
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