
Nova Southeastern University
NSUWorks

Chemistry and Physics Faculty Articles Department of Chemistry and Physics

6-23-2014

Glycosylation Modulates Melanoma Cell α2β1 and
α3β1 Integrin Interactions with Type IV Collagen
Maciej J. Stawikowski
Torrey Pines Institute for Molecular Studies

Beatrix Aukszi
Nova Southeastern University, ba285@nova.edu

Roma Stawikowska
Torrey Pines Institute for Molecular Studies

Mare Cudic
Nova Southeastern University

Gregg B. Fields
Torrey Pines Institute for Molecular Studies

Follow this and additional works at: https://nsuworks.nova.edu/cnso_chemphys_facarticles

Part of the Chemistry Commons

This Article is brought to you for free and open access by the Department of Chemistry and Physics at NSUWorks. It has been accepted for inclusion in
Chemistry and Physics Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Stawikowski, M. J., Aukszi, B., Stawikowska, R., Cudic, M., & Fields, G. B. (2014). Glycosylation Modulates Melanoma Cell α2β1 and
α3β1 Integrin Interactions with Type IV Collagen. Journal of Biological Chemistry, 289, (31), 21591 - 21604. https://doi.org/
10.1074/jbc.M114.572073. Retrieved from https://nsuworks.nova.edu/cnso_chemphys_facarticles/6

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fcnso_chemphys_facarticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fcnso_chemphys_facarticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fcnso_chemphys_facarticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cnso_chemphys_facarticles?utm_source=nsuworks.nova.edu%2Fcnso_chemphys_facarticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cnso_chemphys?utm_source=nsuworks.nova.edu%2Fcnso_chemphys_facarticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cnso_chemphys_facarticles?utm_source=nsuworks.nova.edu%2Fcnso_chemphys_facarticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=nsuworks.nova.edu%2Fcnso_chemphys_facarticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
 https:/doi.org/10.1074/jbc.M114.572073
 https:/doi.org/10.1074/jbc.M114.572073
https://nsuworks.nova.edu/cnso_chemphys_facarticles/6?utm_source=nsuworks.nova.edu%2Fcnso_chemphys_facarticles%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nsuworks@nova.edu


Glycosylation Modulates Melanoma Cell �2�1 and �3�1
Integrin Interactions with Type IV Collagen*
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Background: The influence of collagen glycosylation on integrin binding has not been studied previously.
Results: Glycosylation affected �3�1 integrin binding more strongly than �2�1 integrin binding.
Conclusion: Glycosylation modulated integrin/collagen interactions.
Significance: If changes in collagen glycosylation occur in malignancy, then metastasis may be altered by these changes.

Although type IV collagen is heavily glycosylated, the influ-
ence of this post-translational modification on integrin binding
has not been investigated. In the present study, galactosylated
and nongalactosylated triple-helical peptides have been con-
structed containing the �1(IV)382–393 and �1(IV)531–543
sequences, which are binding sites for the �2�1 and �3�1 integ-
rins, respectively. All peptides had triple-helical stabilities of
37 °C or greater. The galactosylation of Hyl393 in �1(IV)382–
393 and Hyl540 and Hyl543 in �1(IV)531–543 had a dose-depen-
dent influence on melanoma cell adhesion that was much more
pronounced in the case of �3�1 integrin binding. Molecular mod-
eling indicated that galactosylation occurred on the periphery of
�2�1 integrin interaction with �1(IV)382–393 but right in the
middle of �3�1 integrin interaction with �1(IV)531–543. The pos-
sibility of extracellular deglycosylation of type IV collagen was
investigated, but no �-galactosidase-like activity capable of colla-
gen modification was found. Thus, glycosylation of collagen can
modulate integrin binding, and levels of glycosylation could be
altered by reduction in expression of glycosylation enzymes but
most likely not by extracellular deglycosylation activity.

Despite the continuous advances made, patients suffering
from advanced stage melanoma still face a rather bleak progno-
sis. Melanoma remains unpredictable in its biological behavior,
with a high risk of recurrence and a 50% chance to develop
metastases in lymph nodes after recurrence (1). To support
advances in treatment and detection, attention has turned to
locating and identifying key elements that could be utilized
either as possible therapeutic targets or as potential markers for
the different stages of the disease. Metastasis occurs via a series
of linked steps (2, 3). Tumor cells need to extravasate through
the endothelium of the lymph node or blood vessel and become
anchored in the local extracellular matrix (ECM)3 to initialize

secondary growth formation. The principal proteins of the
ECM are laminins and collagens, the latter of which serves as a
lattice network to create the cellular microenvironment. Type
IV collagen is the most important structural component of the
basement membrane (BM), which is a specialized form of the
ECM.

Metastasis requires a subtype of tumor cells capable of
enduring release from the primary tumor site and traveling
through the lymphatic or vasculatory system while evading
killer cells and/or platelet aggregation. This process requires an
altered phenotype, which allows cells to quickly adhere to and
release from the BM to promote a faster migration. These phe-
notypic changes are most easily defined by changed expression
profiles of transmembrane receptors, such as integrins, respon-
sible for the rolling motion cells display during migration (4).
Integrins are the foremost contributors in mediating cell-cell
and cell-ECM adhesions. Interactions between integrins and
ECM proteins, such as collagen, are crucial for adherence,
migration, and invasion of tumor cells (5).

Integrins are heterodimers of noncovalently associated � and
� subunits. In vertebrates, there are 18 � and 8 � subunits that
can assemble into 24 different receptors with unique binding
properties and tissue distributions (6, 7). Based on the struc-
tural characteristics of their � and � subunits, integrins are
classified as either an I-domain or a non-I-domain, which sig-
nals a fundamentally different association mechanism between
the two groups of receptor types and their respective ligands (6,
8 –12). I-domain-containing integrins preferentially bind to
ligands via their I-domain, which is located on the � subunit,
providing a more approachable binding site and a more relaxed
spatial arrangement, whereas non-I-domain integrins carry out
binding partly by another portion of the � subunit and partly by
the � subunit, which sterically places the ligand in a more con-
fined space and makes the binding site less approachable and
possibly less favorable (10, 12). The I-domain contains a con-
served MIDAS that binds divalent metal cations. Ligand bind-
ing alters the coordination of the metal ion and shifts the
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I-domain from a closed, resting state to an open, active confor-
mation, which results in increased ligand affinity and promotes
subsequent integrin activation (13). Four I-domain � subunits
(�1, �2, �10, and �11) associate with �1 and form a distinct
collagen-binding subfamily. The structural basis of the interac-
tion of these integrins with their ligand is a Glu residue within a
collagenous Gly-Phe-Hyp-Gly-Glu-Arg motif, providing the
cation coordination (9).

The � subunit plays an important role in ligand binding when
� subunits lack the I-domain. Integrin � subunits contain an
ion binding site homologous to MIDAS with a sequence motif
of Asp-Xaa-Ser-Xaa-Ser. Mutation of any of these ion-coordi-
nating residues within the �1, �2, �3, or �5 subunits ablated
ligand binding to the respective integrins (14 –16). In �� integ-
rin heterodimers, ligands bind to a crevice in the head domain
between the �� subunit interface. In many cases the ligand
interacts with the metal ion-occupied MIDAS located within
the � subunit and the propeller domain of the � subunit (17).
The �3�1 integrin is a non-I-domain integrin that binds colla-
gen and laminin (18 –20). More specifically, the �3�1 integrin
binds type IV collagen (21) and contributes to melanoma cell
migration on this ligand (22, 23). Thus, collagen receptors
include both � I-domain and non-I-domain integrins, implying
differing binding mechanisms at play.

Tumor cell adhesion to the triple-helical domain of BM (type
IV) collagen occurs at several different regions (24). Type IV
collagen cyanogen bromide fragment 3 (CB3(IV)), which in-
cludes �1(IV) residues 388 –551 and �2(IV) residues 407–570,
was reported to contain the individual binding sites for the
�1�1 and �2�1 integrins (25, 26). The �1�1 integrin simulta-
neously binds Asp441 from two �1(IV) chains and Arg458 from
the �2(IV) chain (27–31). The Gly-Phe-Hyp-Gly-Glu-Arg rec-
ognition motif for the �2�1 integrin is located within the
�1(IV)382–391 sequence (32). A THP model of �1(IV)382–393
binds to melanoma cells (33).

The �1(IV)531–543 sequence promotes adhesion and
spreading of melanoma and other cell types (34). The �3�1
integrin was identified as the receptor that binds to type IV
collagen via this sequence (35). Interestingly, peptides pro-
moted adhesion of melanoma cells in single-stranded and tri-
ple-helical conformation (34), thus providing the first evidence
for existence of triple-helix-independent integrin binding sites
within the collagenous domain.

An essential characteristic of native type IV collagen is the
high level of Lys hydroxylation and subsequent Hyl glycosyla-
tion present in each � chain. These post-translational modifi-
cations are carried out on almost all Lys residues present in type
IV collagen, compared with the relatively low level (�10%) of
modification that is present on types I and II collagen (36, 37).
Prior research conducted in our laboratory indicated an
altered affinity of a cell surface proteoglycan, CD44, toward
binding sites in type IV collagen based on Hyl glycosylation
(38). However, prior studies have not considered how Hyl gly-
cosylation impacts integrin recognition of collagen. To specifi-
cally examine the possible modulation of integrin function by
glycosylation, THPs with Lys substituted by glycosylated Hyl
for Lys543 and Lys540 from the human �1(IV)531–543 gene
sequence (�3�1 integrin-specific) and Lys393 from the human

�1(IV)382–393 gene sequence (�2�1 integrin-specific) were
synthesized. These ligands were utilized to compare the pro-
motion of melanoma cell adhesion, to observe the effects of
ligand glycosylation. Cellular integrin concentrations were
quantified utilizing immunocytochemistry. Alternative recep-
tors were examined for recognition of glycosylated collagen.
We also tested the possibility of melanoma cell modulation of
collagen glycosylation by examining extracellular �-galactosid-
ase-like activity.

MATERIALS AND METHODS

All chemicals were molecular biology or peptide synthesis
grade and purchased from ThermoFisher Scientific (Waltham,
MA) or Sigma-Aldrich.
Synthesis of Fmoc-D,L-Hyl[(5-O-�-Gal(Ac4))(N�-Cbz)]-OPfp
Building Block

The synthesis of Fmoc-D,L-Hyl[(5-O-�-Gal(Ac4))(N�-Cbz)]-
OPfp was performed in six steps, starting from the racemate
of D,L-5-Hyl (Sigma-Aldrich). The synthetic approach has
been described previously (39), and analytical data (1H NMR,
13C NMR, and mass spectra) of all intermediates and the
desired product were in accordance with published ones (40).
For example, MALDI-TOF MS of Fmoc-D,L-Hyl[(5-O-�-
Gal(Ac4))(N�-Cbz)]-OPfp yielded m/z � 1037.7535 (calculated
for C49H47F5N2NaO16

�, m/z � 1037.2738). RP-HPLC reten-
tion time � 19.745 min using a Vydac C18 column (5 �m, 300
Å, 150 � 4.6 mm), analytical gradient of 2–98% B in 20 min
(where A was 0.1% TFA in H2O and B was 0.1% TFA in aceto-
nitrile), with a flow rate of 1 ml/min and detection at � � 220
and 280 nm.

Synthesis of (Glyco)peptides

The (glyco)peptide sequences were based on type IV collagen
motifs possessing integrin recognition sites (see Table 1).
(Glyco)peptides were synthesized by Fmoc solid phase chemis-
try using TentaGel S Ram resin (Advanced ChemTech, Louis-
ville, KY) with a substitution level of 0.26 mmol/g. Peptide syn-
thesis was carried out on the Liberty (CEM, Matthews, NC)
automated microwave-assisted peptide synthesizer equipped
with a Discover microwave module. Fmoc amino acids were
coupled using 5 eq of each amino acid, 4.9 eq O-(1H-6-chloro-
benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluoro-
phosphate, and 8 eq N-methylmorpholine (microwave power
of 25 W at 50 °C, 300 s). Fmoc-D,L-Hyl[(5-O-�-Gal(Ac4))(N�-
Cbz)]-OPfp was incorporated manually using 3 eq of amino
acid and 6 eq N,N-diisopropylethylamine with a reaction time
of 17 h. The N termini of the peptides and glycopeptides were
modified by coupling with n-dodecanoic acid.

In the case of glycopeptide �1(IV)382–393(Gal), part of the
peptidyl-resin was N-terminally modified with biotin contain-
ing a 20-atom PEG spacer (instead of n-dodecanoic acid). N-Bi-
otinyl-NH-(PEG)2-COOH (EMD Millipore, San Diego, CA)
was coupled manually using 3 eq molar excess along with 3 eq
of O-(1H-6-chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluro-
nium hexafluorophosphate and 6 eq of N-methylmorpholine in
DMF for 90 min. Biotinylated �1(IV)382–393(Gal) THP was
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utilized for �-galactosidase studies because of its favorable RP-
HPLC elution profile.

Removal of side chain protecting groups and peptide-resin
cleavage were carried out as reported previously (41) for 3 h in
an atmosphere of ambient gas (Ar) using 7 ml of cleavage mix-
ture (5% H2O, 5% thioanisole, 2.5% phenol, and 2.5% 1,2-eth-
anedithiol in TFA). Cleaved (glyco)peptides were precipitated
in cold methyl tert-butyl ether, centrifuged, and lyophilized.
Crude glycopeptides were subjected to Ac protecting group
removal from sugar moieties using 0.1 M NaOH solution for 15
min. After this time the glycopeptide solution was neutralized
with HCl and lyophilized.

Crude (glyco)peptides were purified using RP-HPLC on an
Agilent 1260 Infinity series preparative HPLC equipped with a
Vydac C18 column (15–20 �m, 300 Å, 250 � 22 mm). The
elution gradient was 5–50% B in 60 min (where A was 0.1% TFA
in H2O, and B was 0.1% TFA in acetonitrile), with a flow rate of
10 ml/min and detection at � � 220 and 280 nm. The HPLC
fractions were combined, frozen, and lyophilized.

A portion of the biotinylated glycopeptide �1(IV)382–
393(Gal) (2.5 mg) was subjected to selective N-acetylation of
the Hyl residue. Briefly, the glycopeptide was dissolved in 1 ml
of 50 mM ammonium carbonate solution, and 100 �l of acetic
anhydride was added. The reaction progress was monitored by
RP-HPLC and MALDI-TOF MS, and upon completion the
reaction mixture was frozen and lyophilized.

(Glyco)peptide purity was evaluated on an Agilent 1260
Infinity analytical HPLC using a Vydac C18 column (5 �m, 300
Å, 150 � 4.6 mm), analytical gradient 2–98% B in 20 min, with
a flow rate of 1 ml/min and detection at � � 220 and 280 nm.
MALDI-TOF MS analysis was performed using an Applied Bio-
systems Voyager DE-PRO Biospectrometry work station
(Carlsbad, CA) with a �-cyano-4-hydroxy-cinnamic acid/2,5-
dihydroxybenzoic acid matrix.

CD Spectroscopy

Peptides were dissolved in 0.5% acetic acid and equilibrated
at 4 °C (�24 h) to facilitate triple-helix formation. Peptide
concentrations were determined using a Thermo Scientific
NanoDrop 1000 (Waltham, MA) via absorbance at � � 280
nm, �Tyr � 1490 M�1 cm�1. Triple-helical structure was evalu-
ated by near UV CD spectroscopy using a Jasco J-810 spectro-
polarimeter (Easton, MD) with a path length of 1 mm. Thermal
transition curves were obtained by recording the molar elliptic-
ity ([�]) at � � 225 nm with an increase in temperature of
20 °C/h in a range of 5– 80 °C. Temperature was controlled by a
JASCO PTC-348WI temperature control unit. The THP melt-
ing temperature (Tm) was defined as the inflection point in the
transition region (first derivative). The spectra were normal-
ized by designating the highest [�]225 nm as 100% folded and the
lowest [�]225 nm as 0% folded.

Cell Culture

The M14#5 human metastatic melanoma cell line was gen-
erously provided by Dr. Barbara Mueller (Torrey Pines Institute
for Molecular Studies, La Jolla, CA). The WM-115 (primary
melanoma), WM-266-4 (metastatic melanoma), and SK-MEL-
2 (metastatic melanoma) cell lines were obtained from Ameri-

can Type Culture Collection (Manassas, VA). For cell adhesion
assays, cells were grown in EMEM with L-Gln (American Type
Culture Collection) supplemented with 10% fetal bovine sera
(HyClone), 50 units/ml penicillin, and 0.05 mg/ml streptomy-
cin using 175-cm2 flasks. At �80% confluency cells were sub-
cultured (1:3 ratio for SK-MEL-2, 1:6 for the other cell lines).
For cell detachment 0.25% trypsin-EDTA solution was used
(Invitrogen). Flasks were kept in a humidified incubator con-
taining 5% CO2, and cells were passaged only eight times to
avoid genetic drifts and other variations.

Immunocytochemistry

Biotinylated mouse antihuman integrin �3 subunit (CD49c,
clone IA3, catalog number BAM1345) and biotinylated mouse
anti-human integrin �2 subunit (CD49b, clone HAS3, catalog
number BAM1233) mAbs were purchased from R&D Systems
(Minneapolis, MN). Biotin-SP-conjugated ChromPure mouse
IgG, whole molecule (product code 015-060-003), and mouse
serum and the Cy3-conjugated (indocarbocyanine) streptavi-
din (product code 016-160-084) were purchased from Jackson
ImmunoResearch Laboratories, Inc. (West Grove, PA). Immu-
nocytochemistry experiments were carried out according to
the direct detection method employing working concentra-
tions based on the manufacturer’s recommendation. The spec-
ificities of the integrin antibodies were previously established
(42, 43). Briefly, cells were plated in a 96-well Costar plate
(Corning No. 3632; Fisher Scientific) at 20,000 – 40,000 cells/
100 �l growth medium and allowed to become 70 – 80% con-
fluent overnight. Growth medium was removed, and cells were
rinsed with 1� PBS. Cells were fixed by incubation with 4%
paraformaldehyde/PBS for 20 min at room temperature. The
plate was blocked against nonspecific binding with 1% mouse
serum, 1% BSA/PBS for 1 h at room temperature. Biotinylated
anti-integrin �3 or �2 mAbs were diluted in 1% mouse serum,
1% BSA/PBS to 25 �g/ml, added to the cells, and incubated for
1 h at room temperature. As a negative control, biotin-SP-con-
jugated mouse IgG was utilized, diluted to 25 �g/ml in 1%
mouse serum, 1% BSA/PBS. Following incubation with the
antibodies and/or mouse IgG, cells were rinsed three times with
1 � PBS and subsequently incubated for 1 h at room tempera-
ture in the dark with Cy3-conjugated streptavidin diluted to 2
�g/ml in 1% mouse serum, 1% BSA/PBS. Background fluores-
cence was established by incubating the cells with the Cy3-
streptavidin solution for 1 h at room temperature in the dark.
The plate was washed with 1� PBS, and bound Cy3 was
detected using the red filter on an Olympus IX70 inverted flu-
orescence microscope camera. Semi-quantitative image analy-
ses were carried out using the Quantity One� v.4.2.2 software
(Bio-Rad) on quadruplets of 16 cell/image areas. Cells were
counted in selected areas using photos taken at bright light at a
visible range wavelength, and then, after switching on the red
filter, the selected areas were photographed to determine fluo-
rescence. Exposure times were 250, 400, or 666 ms. Because of
either cellular accumulation or entrapped dye, some areas indi-
cated artificially high levels of fluorescence. Those “bright
spots” were not utilized for quantification purposes.
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Adhesion Assays

The melanoma cell adhesion assay was performed as de-
scribed previously (44). Peptide ligands (see Table 1) were dis-
solved in 40% ethanol in PBS and further diluted to desired
concentrations in PBS. Pro-BindTM 96-well plates (BD Biosci-
ences, San Jose, CA) were coated with 100 �l of desired peptide
and incubated at 4 °C overnight. Nonspecific binding sites were
blocked with 2 mg/ml BSA in PBS for 2 h at 37 °C (200 �l/well).
Cells were split 1–2 days before the experiment and were
washed with PBS (without Ca2� and Mg2�) and then released
with Accutase (Invitrogen). Cells were then washed and resus-
pended to 75,000 cells/well in adhesion medium (20 mM

HEPES, 2 mg/ml albumin in RPMI 1640 medium). Cell suspen-
sion was added to the plate (100 �l/well), and plates were incu-
bated for 60 min at 37 °C. All nonattached cells were removed
by washing three times with warm adhesion medium. Adherent
cells were counted using CellTiter-Glo luminescent cell viabil-
ity assay (Promega, Madison, WI) and quantitated with a Syn-
ergy H4 Hybrid multimode microplate reader (BioTek, Win-
ooski, VT).

AlphaScreen Assay

The AlphaScreen assay was performed accordingly to
recently published methodology (45). His-tagged galectin-3
(1.25 �l) and biotin-ASF (1.25 �l) were added to wells contain-
ing varying concentrations of �1(IV)382–393 and �1(IV)382–
393(Gal) THPs (2.5 �l, 0 –1 mM final concentration) in opti-
mized assay buffer (25 mM HEPES, 100 mM NaCl, 0.05% Tween
20, pH 7.4). Because of the low solubility of the peptides at
higher concentrations, final solutions contained 1% DMSO.
The nonbiotinylated ASF was used as a control. The final con-
centration of His-tagged galectin-3 was 100 nM and biotin-ASF
5 nM. The reaction mixture was incubated for 1 h at room tem-
perature, and then 5 �l of nickel-chelate Acceptor and 5 �l
streptavidin-conjugate Donor beads were simultaneously
added to a final concentration of 25 �g/ml. Incubation pro-
ceeded for 1 h in the dark at room temperature, and the assay
plate was subsequently read at 22 °C in the AlphaScreen mode
on a Synergy H4 Hybrid multimode microplate reader.
AlphaScreen signal counts (cps) versus log [ligand] (M) were
expressed as the mean of five replicate measurements. The IC50
values were obtained by nonlinear regression analysis using the
Graph Pad Prism 5.04 software.

Molecular Modeling

To generate a model of �1(IV)382–393(Gal) THP interacting
with the �2�1 integrin, a homology modeling approach was
utilized. Briefly, starting structure 1DZI was used as a template
(9). Collagen-like peptide residues were mutated manually in
PyMOL (46) and UCSF Chimera software (47). Residues were
mutated using Dunbrack backbone-dependent rotamer library
(48). Charges were added using AMBER ff12SB force field, and
for unknown residues (Gal) were calculated using AM1-BCC
model (49). Mutated residues were subjected to minimization
using the antechamber program (50) included in Chimera.

The �3�1 integrin model was built using the �5�1 integrin
x-ray crystallographic structure (51). The �5 subunit was
replaced with �3 by homology modeling using the Modeler

program (52) and subsequent minimization steps of �3/�1
interface residues using the antechamber module of the Chi-
mera package. Next, docking of �1(IV)531–543 single-
stranded peptide was performed using Autodock Vina (53).
Because the geometry of the �1(IV)531–543 peptide backbone
is unknown, we have selected three different combinations of
�/	 torsion angles within the polyproline type II family, namely
�/	 of �60°/150°, �70°/160°, and �75°/175°. Three separate
docking runs were performed and compared. In each docking
the peptide backbone was kept rigid, and side chains contained
rotatable bonds. The docking site was chosen arbitrarily and
contained the top of the �3�1 interface along with the MIDAS
site in the �1 subunit.

�-Galactosidase Activity Assessment

Isolated �-Galactosidase with Synthetic Substrate—Esche-
richia coli �-galactosidase (EC 3.2.1.23, grade VIII) was pur-
chased from Sigma-Aldrich. Enzymatic assays were performed
in 100 mM phosphate buffer, pH 7.2, supplemented with 10 mM

MgCl2 and 5 mM 2-mercaptoethanol (added freshly before the
assay). The enzyme activity was determined using the fluoro-
genic substrate MUG (Sigma-Aldrich) at �excitation � 365 nm
and �emission � 445 nm. �-Galactosidase activity was measured
using the Synergy H4 Hybrid Multi-Mode Microplate Reader
over a period of 1 h, with occasional shaking to assure even
substrate distribution.

Isolated �-Galactosidase with Peptide Substrates—�1(IV)382–
393(Gal) THP was selected as a model putative substrate. To
determine the influence of the Hyl �-NH2 group on �-galacto-
sidase activity, an acetylated version of �1(IV)382–393(Gal)
THP, �1(IV)382–393(Gal)-Ac THP, was prepared (see earlier
description).

�1(IV)382–393(Gal) and �1(IV)382–393(Gal)-Ac THPs (46
�g each) were incubated at 37 °C with 100 U of �-galactosidase
in 100 mM phosphate buffer, pH 7.2, supplemented with 10 mM

MgCl2 and 5 mM 2-mercaptoethanol. After 4 and 24 h, aliquots
were taken and analyzed using RP-HPLC/MALDI-TOF MS.

Melanoma Cells with Synthetic Substrate—Extracellular
�-galactosidase activity was assessed using a whole cell assay
with primary and metastatic melanoma cells. The WM-115 and
WM-266-4 cell lines were plated in 24-well plate format at
50,000 cells/well (Corning CellBIND, Corning) and cultured
overnight (24 h) using four different media types: EMEM,
EMEM supplemented with HI-FBS, OptiMEM, and
OptiMEM with HI-FBS. The HI-FBS concentration was 5%
(v/v), and the total volume of the media was 500 �l. After 24
or 48 h, MUG was added to a final concentration of 30 �M,
and �-galactosidase activity was measured using the Synergy
H4 Hybrid multimode microplate reader over a period of
1 h, with occasional shaking to assure even substrate
distribution.

Melanoma Cells with Peptide Substrates—The WM-115 and
WM-266-4 cell lines were plated in 24-well format at 50,000
cells/well and cultured overnight (24 h) using four different
media types: EMEM, EMEM supplemented with HI-FBS,
OptiMEM, and OptiMEM with HI-FBS. The HI-FBS concen-
tration was 5% (v/v), and the total volume of the media was 500
�l. Cells were grown overnight, and THPs were added to a final
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concentration of 35 �M. The incubation was carried out for 24
and 48 h. Aliquots of media were taken, filtered through a
0.22-�m HPLC filter, and subjected to RP-HPLC analysis. All
fractions were then collected and analyzed using MALDI-
TOF MS.

Released Melanoma Cells with Synthetic and Peptide
Substrates—CUG synthetic substrate (Invitrogen) was diluted
to a 60 �M in 1 � PBS. To test cell suspensions, subconfluent
cells were rinsed with 1 � PBS and released with 5 mM EDTA/
PBS. Cells were washed and rediluted to 2 � 10�5–1 � 10�6

cells/ml in PBS containing 10 mM MgCl2 and 5 mM 2-mercap-
toethanol. 100 �l of cells were combined with 50 �l of CUG,
and enzymatic activity was measured for 30 –90 min, with
recurring agitation to maintain the cells in suspension, at
�excitation � 400 nm and �emission � 450 nm on a SpectraMAX
GeminiEM 96-well plate spectrafluorometer and quantified by
the SoftMax Pro 4.3LS software. As a positive control, 50 �l of
�-galactosidase and 50 �l of CUG were added to 100 �l of PBS
containing the activators and tested simultaneously.

RESULTS

Synthesis of Galactosylated Hyl Building Block—To prepare a
galactosylated Hyl building block, we utilized a synthetic
approach developed by Kihlberg and co-workers (39), in which
9-BBN simultaneously protects the carboxyl and amino func-
tionalities of amino acids (54). 9-BBN was used for regioselec-
tive protection of the �-amino and �-carboxyl groups of D,L-5-
Hyl. The resulting 9-BBN complex was then employed in
transformations such as �-amino group protection and O-gly-
cosylation. Further manipulations led to preparation of the
Fmoc-D,L-Hyl[(5-O-�-Gal(Ac4))(N�-Cbz)]-OPfp building block,
suitable for direct use in peptide synthesis under standard Fmoc
chemistry conditions. The Cbz group was chosen instead of
tert-butyloxycarbonyl for �-amino group protection of Hyl
because it is more acid stable during O-glycosylation condi-
tions. Fmoc-D,L-Hyl[(5-O-�-Gal(Ac4))(N�-Cbz)]-OPfp was
obtained in six steps, with a yield comparable with previously
published ones (39).

(Glyco)peptide Synthesis and Characterization—D,L-Hyl[(5-
O-�-Gal(Ac4))(N�-Cbz)] was incorporated into THPs possess-
ing sequences from the �1(IV) collagen chain recognized by
�2�1 and �3�1 integrins. We prepared two sets of peptides
containing either the Hyl(O-Gal) residue or its Lys counterpart
(Table 1). The Hyl(O-Gal) residue was incorporated manually,
whereas other amino acids were incorporated using an auto-
mated synthesizer under microwave conditions. The N termini

of all (glyco)peptides were modified with n-dodecanoic acid to
ensure triple-helical character of the (glyco)peptides and to
facilitate their attachment to plastic surfaces during the adhe-
sion assay (55, 56).

All peptides were characterized by RP-HPLC and MALDI-
TOF MS (Table 1), with appropriate purity and mass values
observed. The triple-helical character of the peptides was ana-
lyzed by CD spectroscopy, in the range of � � 250 –180 nm (Fig.
1). All peptides had characteristic triple-helical spectra, with a
positive peak at � � 222 nm and a negative peak at � � 205 nm.
Thermal transition curves were obtained by recording molar
ellipticity ([�]) at � � 225 nm as a function of increasing tem-
perature (Fig. 2). The melting point (Tm) was defined as the
inflection point in the transition region (Table 1). All peptides
exhibited good triple-helix stability, with Tm values ranging
from 37 to 45 °C. Galactosylation of Hyl had a destabilizing
effect on the triple-helix, because the glycopeptides had Tm

values 6 – 8 °C lower than the corresponding nonglycosylated
peptides. This could be caused by the presence of racemic D,L-
5-Hyl used in the present study.

Immunocytochemistry—The cell surface concentrations of
the �2 and �3 subunits of the �2�1 and �3�1 integrins were
evaluated for all melanoma cell lines by immunocytochemistry.
Image analysis for each cell line for both receptor subunits (Fig.
3A) provided semiquantitative numerical information on cellu-
lar integrin concentrations. Numerical values reflected relative
fluorescence intensities of the same cell number, normalized by
area measured, and by subtraction of the autofluorescence of
the cells (Fig. 3B). All four cell lines showed abundant levels of
both integrin subunits, with somewhat higher levels for the �2
subunit compared with the �3 subunit (Fig. 3B). The primary
cell line (WM-115) had lower levels of the �2 and �3 subunits
compared with the metastatic cell lines. Overall, integrin levels
were sufficient to investigate melanoma-ligand interactions.

Melanoma Cell Adhesion—The influence of glycosylation on
melanoma cell adhesion was examined over a THP concentra-
tion range of 0 –50 �M (Fig. 4). All melanoma cell lines exhibited
similar binding curves to each of the nonglycosylated peptides,
�1(IV)382–393 THP and �1(IV)531–543 THP (Fig. 4, top left
and bottom left). Adhesion to �1(IV)382–393 THP was ob-
served at the lowest peptide concentration tested (0.1 �M),
whereas adhesion to �1(IV)531–543 THP initiated at 1.0 �M

and reached a maximum at 10 �M (Fig. 4, top left and bottom
left). The �1(IV)531–543 THP dose dependence mirrors that
reported previously (34). Although adhesion to �1(IV)382–393

TABLE 1
Sequences, analytical data, and thermal stabilities of THPs used in this study

Peptide designation Sequence
Integrin
binding

[M�H]�

observed (calculated)
RP-HPLC

RTa Tm

min °C
�1(IV)382–393 C10- (Gly-Pro-Hyp)4-Gly-Ala-Hyp-Gly-Phe-Hyp-Gly-Glu-

Arg-Gly-Glu-Lys- (Gly-Pro-Hyp)4-Tyr-NH2

�2�1 3687.4666 (3687.7796) 13.31 43

�1(IV)382–393(Gal) C10-(Gly-Pro-Hyp)4-Gly-Ala-Hyp-Gly-Phe-Hyp-Gly-Glu-
Arg-Gly-Glu-Hyl(Gal)-(Gly-Pro-Hyp)4-Tyr-NH2

�2�1 3865.1714 (3865.8273) 11.32 37

�1(IV)531–543 C10- (Gly-Pro-Hyp)5-Gly-Glu-Phe-Tyr-Phe-Asp-Leu-Arg-
Leu-Lys-Gly-Asp-Lys- (Gly-Pro-Hyp)5-NH2

�3�1 4414.0239 (4414.1941) 12.38 45

�1(IV)531–543(Gal)(Gal) C10-(Gly-Pro-Hyp)5-Gly-Glu-Phe-Tyr-Phe-Asp-Leu-Arg-
Leu-Hyl(Gal)-Gly-Asp-Hyl(Gal)-(Gly-Pro-Hyp)5-NH2

�3�1 4770.0703 (4770.2896) 11.74 37

a Using a gradient of 2–70% B in 20 min under conditions given under “Materials and Methods.”
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THP has been reported previously (32, 33), the present results
are the first dose dependences.

In the case of �1(IV)382–393 THP, glycosylation of Hyl393

had modest influence on cell adhesion (Fig. 4, top right). Non-
glycosylated �1(IV)382–393 THP promoted cell adhesion over
the whole range of concentrations studied (0.1–50 �M). The
glycosylated �1(IV)382–393(Gal) THP showed reduced adhe-
sion levels in the lower THP concentration range (5 �M and
below) with the most pronounced difference for the M14#5
metastatic cell line (Fig. 4, top right).

All cell lines were very sensitive toward the glycosylation of
the �1(IV)531–543 sequence (Fig. 4, bottom right). Cells were
adherent to �1(IV)531–543 THP in a range of 1–50 �M (Fig. 4,
bottom left). The glycosylation of Hyl540 and Hyl543 dramati-
cally decreased adhesion (Fig. 4, bottom right). Cells were
adherent to �1(IV)531–543(Gal)(Gal) THP only at the highest
concentration tested (50 �M).

Galectin-3 Interaction with THPs—Galectin-3 is known to
mediate cell binding to galactosylated ligands (57). Thus, we
examined the possibility that glycosylation may result in a
switch of receptor binding, in that galectin-3 may mediate bind-
ing to glycosylated THPs. Binding was tested using a galectin-3
AlphaScreen assay (45) with �1(IV)382–393 and �1(IV)382–
393(Gal) THPs along with ASF as a control (Fig. 5). Only non-
specific binding of the THPs with galectin-3 was observed (IC50
in the millimolar range) with no difference between glycosy-
lated and nonglycosylated ligands. Thus, galectin-3 does not
appear to be involved in binding to these ligands.

Molecular Modeling of integrin�THP Complexes—To further
investigate the influence of glycosylation of �1(IV)382–393 and
�1(IV)531–543 THPs on binding to their respective integrins,
molecular modeling was performed. Models for both integrin�
THP complexes were prepared (Figs. 6 and 7).

For the �2�1 integrin, a model was generated using the x-ray
crystallographic structure of the �2 I-domain in complex with a
THP (PDB: 1DZI) (9). The Hyl393 glycosylation site is located
four residues away from the Glu389 responsible for binding to
the MIDAS of the I-domain. It appears that the Hyl393 site is at
the outer interface of the integrin interaction site, and thus
mono-glycosylation does not impact binding significantly (Fig.
6). When the disaccharide-containing residue (Glc-Gal)Hyl is
considered, glycosylation of Hyl393 will interfere with binding
to the �2 integrin because the binding site is masked by the
sugar moiety (data not shown). Thus, the effect of glycosylation
on �2�1 integrin binding to type IV collagen may very well
depend on whether monosaccharide or disaccharide glycosyla-
tion has occurred.

The recognition site for the �3�1 integrin is much different
from �2�1 because there is no homology between the peptide
ligand sequences. Also, the �1(IV)531–543 sequence does not
have the classic -Gly-Xaa-Yaa- repeat required for stabilization
of the triple-helix, but rather has a noncollagen-like insertion/
break region of n � 7 (58). The break region within �1(IV)531–
543 is anticipated to have some strand separation, based on
prior studies of break regions within THPs (59, 60). Conversely,
the �1(IV)531–543 break region does not possess either Pro or
Hyp and nor do the flanking regions, and thus the break is not
anticipated to significantly affect the triple-helical structure of
the remainder of the THP (61, 62). In addition, the presence of
hydrophobic residues within the break region further aids in
the stability of the THP (62).

For molecular modeling studies, it was assumed that the
�1(IV)531–543 region possesses a polyproline type II-like
structure (Fig. 7A). Single-stranded �1(IV)531–543 was used
for molecular docking purposes. Three different sets of poly-
proline type II-like torsion angles, �/	 � �60°/150°, �70°/160°,
and �75°/175°, were considered, and the peptide backbone was
kept rigid upon docking (Fig. 7B). Previous studies revealed the

FIGURE 1. CD spectra of THPs. THPs were dissolved in 0.1% acetic acid to a
final concentration of 50 �M. Scans were taken over the range of � � 180 –
250 nm.

FIGURE 2. Thermal transition curves of THPs obtained by recording the
molar ellipticity ([�]) at � � 225 nm with a temperature change of 20 °C/h
over the range of 5– 80 °C and normalized to fraction folded. The THP
melting temperature (Tm) was defined as the inflection point in the transition
region (first derivative).
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crucial role of both Asp residues of the �1(IV)531–543
sequence for binding to the �3�1 integrin (34). Taking this into
account, another set of docking was performed where the
Gly541 and/or Gly544 residues were allowed flexibility around
the C� atom. In each docking result the lowest energy ligands
were obtained by having the Asp542 residue in close proximity
of the MIDAS (Fig. 7C). The docking studies revealed that gly-
cosylation of Hyl540 and Hyl543 occurred right in the middle of
key electrostatic/metal binding interactions and thus would
dramatically impact the binding of the �3�1 integrin to the
�1(IV)531–543 THP.

�-Galactosidase Activity Evaluation—Knowing that glyco-
sylation could negatively impact integrin binding to type IV
collagen, we next examined whether melanoma cells could mod-
ulate O-glycosylation of the microenvironment. Initially, E. coli
�-galactosidase was tested with the �1(IV)382–393(Gal) THP.
Different enzyme concentrations (1–100 units) were compared
using incubation at 37 °C for up to 72 h. At certain time points
aliquots were taken and subjected to RP-HPLC/MALDI-TOF MS
analysis. No hydrolysis of Gal by E. coli �-galactosidase was
observed (data not shown). Activity of the �-galactosidase was
confirmed with MUG fluorogenic substrate (data not shown).

FIGURE 3. The cell surface concentrations of the �2 and �3 subunits of the �2�1 and �3�1 integrins evaluated for melanoma cell lines by immuno-
cytochemistry. A, image analysis for each cell line for both receptor subunits and IgG background. Bars indicate 100 �m. B, semiquantitative numerical values
for cellular integrin concentrations, obtained by relative fluorescence intensities of the same number of cells, normalized by area measured and by subtraction
of the autofluorescence of the cells. Conditions are given under “Materials and Methods.”
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The influence of the �-amino group of Hyl on �-galactosidase
activity was then tested. Prior studies indicated that �-galacto-
sidase was effective in cleaving the Gal moiety from (Gal)Hyl
only if the �-amino group was acetylated (63– 65). No cleavage
of the sugar moiety was observed when �1(IV)382–393(Gal)
THP, in either nonacetylated or acetylated (�1(IV)382–
393(Gal)-Ac THP) form, was treated with �-galactosidase (data
not shown). Although this result is in contrast to the results
obtained by Spiro (63– 65), the prior study tested the enzyme
activity on isolated (Gal)Hyl moiety only.

Whole cell assays were next performed. Two cell lines were
selected: primary (WM-115) and metastatic (WM-266 – 4)
melanoma obtained from the same patient. Different cell cul-
ture media (EMEM and OptiMEM with or without HI-FBS)
were also tested. In the first experiment, cells were grown for 24

or 48 h, and then MUG was added and activity monitored for
1 h (Fig. 8). There was no activity present in EMEM and
OptiMEM media (Fig. 8, A and C). In contrast, media contain-
ing HI-FBS possessed some �-galactosidase activity (Fig. 8, B
and D). In the case of OptiMEM � HI-FBS, the activity was
associated with the presence of serum, because control (with-
out cells) also exhibited this activity (Fig. 8D). However, both
WM-115 and WM-266-4 exhibited some activity toward MUG

FIGURE 4. Adhesion of melanoma cells as a function of �1(IV)382–393 THP (top left), �1(IV)382–393(Gal) THP (top right), �1(IV)531–543 THP (bottom
left), and �1(IV)531–543(Gal)(Gal) THP (bottom right) concentration. Cells were allowed to adhere for 1 h at 37 °C. All assays were repeated in triplicate.
Conditions are given under “Materials and Methods.”

FIGURE 5. Results of AlphaScreen assay for determination of the binding
of �1(IV)382–393 and �1(IV)382–393(Gal) THPs to galectin-3. ASF was
used as positive control.

FIGURE 6. Molecular modeling of �1(IV)382–393(Gal) THP interaction
with the �2 integrin subunit I-domain.
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above background in EMEM � HI-FBS (Fig. 8B). The results
from 48 h were identical (data not shown).

Next, WM-115 and WM-266-4 were incubated with
�1(IV)382–393 THP, �1(IV)382–393(Gal) THP, �1(IV)531–
543 THP, and �1(IV)531–543(Gal,Gal) THP. After 24 or 48 h of
incubation, an aliquot of culture media was taken and subjected
to HPLC/MALDI-TOF MS analysis. The nonglycosylated pep-
tides served as internal controls for determination of the
hydrolysis pattern. The RP-HPLC profiles of peptides incu-
bated with media served as a control. Interestingly, RP-HPLC
analysis showed that all peptides were stable in media contain-
ing HI-FBS (data not shown).

All peptides were clearly identified during RP-HPLC/
MALDI-TOF MS analysis of aliquots (Fig. 9). Under the
employed conditions, neither of the glycosylated THPs was
deglycosylated, as confirmed by MS analyses (data not shown).
It was also possible to perform MALDI-TOF MS analyses of
crude aliquots (without HPLC separation), and these results
confirmed that glycopeptides were unmodified (Fig. 10). The
results with cells in suspension were identical, in that (a) �-ga-
lactosidase activity could be observed with CUG and inhibited
by phenylethyl �-D-thiogalactopyranoside (a selective �-galac-

tosidase inhibitor) and (b) no degalactosylation of the THPs was
found (data not shown).

DISCUSSION

Tumor cells interact with type IV collagen at the site of
extravasation through distinct cellular receptors, including the
�1�1, �2�1, and �3�1 integrins. Integrins contribute to the
ability of melanoma cells to migrate, invade, and metastasize to
secondary sites (6, 66). Because they play a pivotal role in both
inside-out and outside-in signaling (67), integrins affect most
aspects of cell behavior, including shape, motility, differentia-
tion, proliferation, and survival. Thus, it is not surprising that
these receptors are also known to be differentially expressed in
tumors relative to normal cells, depending on tumor type and
stage of progression (4, 6, 66, 68, 69).

The types and concentration of cellular receptors has long
been a focus for finding indicators of disease progression. Test-
ing of 10 different human melanoma cell lines found that the
�2, �3, and �1 integrin subunits were expressed on all of them
(70). It is interesting to note that the �3 subunit showed the
highest expression profile, with subtle differences in regards to
the invasive profile of a given cell line. The same variation was

FIGURE 7. Molecular modeling studies of �3�1 integrin with �1(IV)531–543 peptide. A, a small deviation of �/	 angles (10°) caused by flexibility of this
region results in strand separation. B, docking studies of �1(IV)531–543 peptide using three different sets of �/	 angles. Docked peptide (backbone in gray, Lys
in blue, and Asp/Glu in yellow) binds across the �/� integrin interface (magenta/cyan, respectively). C, refined docking simulations where only Gly541 and/or
Gly544 were allowed to be flexible.
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observed for the �2 and �1subunits, showing higher expression
levels in more invasive tumor types, although the overall con-
centrations were somewhat lower than that of the �3 subunit.
In light of these prior results, the role of the associative relation-
ships between type IV collagen and �2�1 and �3�1 integrins
with regards to melanoma progression was examined here.

Prior research conducted in our laboratory indicated an
altered affinity of a cell surface proteoglycan, CD44, toward
binding sites in type IV collagen based on glycosylation (38).

This result led to us to consider whether hydroxylation/glyco-
sylation of Lys residues modulates ligand binding by other
receptors, such as integrins. Previous studies have not consid-
ered how Hyl glycosylation impacts on integrin recognition of
collagen. To specifically examine the possible modulation of
integrin function by glycosylation, THPs with Lys substituted
by glycosylated Hyl for Lys393 from the human �1(IV)382–393
gene sequence (�2�1 integrin-specific), and Lys543 and Lys540

from the human �1(IV)531–543 gene sequence (�3�1 integrin-

FIGURE 8. Evaluation of extracellular �-galactosidase activity using the fluorogenic substrate MUG with WM-115 and WM-266 – 4 melanoma cells.
After initial 24 h growth, cells were incubated with MUG, and activity was monitored using �excitation � 365 nm and �emission � 445 nm. Cell culture media tested
were EMEM (A), EMEM � HI-FBS (B), OptiMEM (C), and OptiMEM � HI-FBS (D). RFU, relative fluorescent units.

FIGURE 9. Representative example of RP-HPLC profile of crude media filtrate after incubation of WM-115 cells with THPs for 24 h in EMEM � HI-FBS
medium. �1(IV)382–393(Gal) THP (A), biotinylated �1(IV)382–393(Gal) THP (B), �1(IV)531–543 THP (C), and �1(IV)531–543(Gal)(Gal) THP (D) were identified by
retention time (indicated with arrow) following MALDI-TOF MS analysis. Similar profiles were obtained for all other tested media.
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specific) were synthesized. These ligands were utilized to com-
pare the promotion of cell adhesion.

Collagen glycosylation was found to modulate integrin bind-
ing. The integrins were affected differently, with only modest
inhibition of �2�1 binding (with the primary melanoma cell
line being least affected) and significant inhibition for �3�1
interaction.

Molecular modeling studies of the �2�1 integrin in complex
with the glycosylated ligand �1(IV)382–393(Gal) THP indi-
cated that (Gal)Hyl393 was at the outer interface of the integrin
interaction site, and thus galactosylation only slightly dimin-
ished binding (Fig. 6). However, for the cell lines tested herein,
the effects of ligand glycosylation on binding varied, with the
smallest effect on the primary melanoma cell line (WM-115)
and the largest effect on the highly metastatic M14#5 cell line
(Fig. 4, top right). Because the relative amount of �2�1 integrin
on each cell surface was similar (Fig. 3B), variations in activity
could be due to interactions of the glycosylated ligand with
different activation states of the �2�1 integrin or with different
cell surface complexes that incorporate the �2�1 integrin.

The simulations of interactions of the �3�1 integrin with
�1(IV)531–543 THP indicated that the relatively flexible 531–
543 region is capable of binding across the �3�1 interface with
Asp542 binding to the MIDAS motif within the �1 subunit (Fig.
7). Because the MIDAS motif is located in the �� interface
groove on � subunit, complexation of the Mg2� cation by the

Asp542 side chain is a primary driving force for binding the
peptide to the receptor (Fig. 7C). This model is with agreement
with previously published data identifying Asp542 as a critical
residue for �3�1 integrin binding to �1(IV)531–543 (34) and
consistent with several integrin x-ray crystallographic struc-
tures including �IIb�3 (71), �5�1 (51), and �v�3 (17). Glyco-
sylation within the �1(IV)531–543 sequence results in signifi-
cant inhibition of integrin binding, mostly likely because of the
proximity of the galactosylated residues (Hyl540 and Hyl543) to
the key electrostatic/metal binding interactions via Asp542.
Although inhibition caused by glycosylation is an uncommon
phenomenon, the presence of sialic acid on sialoglycoprotein
P2B reduced the binding of tumor cells to type IV collagen (72,
73).

The reduced binding of integrins caused by ligand glycosyl-
ation presents a possible “cryptic sites” mechanism by which
tumor cells may invade the BM (38). In the native, glycosylated
state, regions within type IV collagen may have minimal inter-
action with receptors such as the �3�1 integrin and CD44.
After tumor cells bind to type IV collagen (presumably via the
�2�1 integrin), cell surface or secreted glycosidases could lib-
erate the collagen-bound carbohydrates. This process would
expose cryptic sites for interaction with the �3�1 integrin,
CD44/CSPG, and/or other cell surface receptors.

Extracellular removal of carbohydrates could also occur
under other circumstances. Numerous bacterial pathogens
bind to collagen (74), with binding occurring at several sites
within the triple helix (75). The collagen binding protein from
Staphylococcus aureus has been identified as CNA, and its
mode of binding has been determined (76). Upon binding to
collagen, bacteria could secrete �-galactosidases that facilitate
deglycosylation. Reduced glycosylation could impact integrin
interactions, as well as other collagen-binding proteins. The
endocytic collagen receptor urokinase plasminogen activator
receptor-associated protein mediates glycosylated collagen
turnover (77). DDR1 binds to type IV collagen (78), and this
binding may be mediated by ligand glycosylation (79).

Ultimately, glycosylation could be modulated extracellularly
in similar fashion to intracellular protein dynamic glycosyla-
tion/phosphorylation (80, 81). The post-translational modifi-
cation of Hyl is catalyzed by two groups of collagen glycosyl-
transferases, Hyl galactosyltransferase (EC 2.4.1.50) and
(Gal)Hyl glucosyltransferase (EC 2.4.1.66), resulting in the
formation of (Gal)Hyl and (Glc-Gal)Hyl, respectively (82). The
Hyl galactosyltransferase activity has been ascribed to the mul-
tifunctional enzyme LH3 (83, 84) and/or GLT25D1 and
GLT25D2 (85). LH3 appears responsible for the (Gal)Hyl glu-
cosyltransferase activity (84, 86 – 89). LH3 can function extra-
cellularly, glycosylating native, triple-helical collagens (90, 91).
In fact, extracellular glycosyltransferase activity of LH3 is vital
for the cell growth and viability (92). A cell surface galactosyl-
transferase functions as a type IV collagen adhesion molecule
and galactosylates type IV collagen (93). Platelets can supply
sugar donor substrates for extracellular glycosylation (94). Col-
lagen Hyl residues can also be phosphorylated (95), and phos-
phorylation of collagen can occur extracellularly (96).

For dynamic modification of collagen to occur, carbohy-
drates would need to be removed from type IV collagen extra-

FIGURE 10. A, MALDI-TOF MS profile of �1(IV)531–543(Gal)(Gal) THP collected
from the indicated peak in Fig. 9D. An arrow indicates the m/z corresponding
to the glycopeptide, [M�H]� � 4772.38 (theoretical 4770.29). B, MALDI-TOF
MS profile of crude WM-115 cell filtrate after 24 h of incubation with
�1(IV)382–393(Gal) THP in EMEM � HI-FBS medium. An arrow indicates the
m/z corresponding to the biotinylated glycopeptide, [M�H]� � 4255.30
(theoretical 4254.97).
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cellularly. An age-dependent increase in �-galactosidase activ-
ity (at pH 6) has been reported (97), and a cell surface inactive
�-galactosidase functions as an elastin and laminin receptor
(98). An �-glucosidase that removes glucose from (Glc-Gal)Hyl
has been characterized (99). However, we found no evidence
that deglycosylation could be performed extracellularly, be-
cause triple-helical glycopeptides were not substrates for
purified �-galactosidase or melanoma cells. Thus, although a
deglycosylation/cryptic site mechanism provides interesting
speculation, it should also be noted that glycosylation is not
100% efficient; collagen O-glycosylation sites are found as mix-
tures of Lys, Hyl, (Gal)Hyl, and (Glc-Gal)Hyl (36, 89, 100, 101).
Thus, receptor interaction may just occur with the subpopula-
tion of type IV collagen that does not contain carbohydrate.

Alternatively, tumor cell binding may be mediated by differ-
ential glycosylation that is tissue-specific. For example, LH3 is
found extracellularly in kidney, spleen, and muscle (91). Thus,
�2�1 and �3�1 integrin binding may be regulated by different
levels of type IV collagen glycosylation as determined by LH3
activity. It is also possible that Hyl glycosylation enzymes are
decreased in cancer, in similar fashion to �3-N-acetylgluco-
saminyltransferase-1 (102), and this in turn could enhance
receptor association with type IV collagen.

The present study has focused on cellular interactions with
glycosylated collagen models. When one considers the BM
in vivo, variations in collagen glycosylation are generally
unknown. If the levels of glycosylation are indeed modulated,
tumor interactions with and response to the BM may be altered
or simply compensated for by adherence to other BM ligands
(i.e. laminin). Future studies may consider the complexities of
cell-BM interactions and the role of glycosylation within that
microenvironment.
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