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Abstract 

Fine-tuning criteria are frequently used to place upper limits on the masses of superpartners in supersymmetric extensions 
of the standard model. However, commonly used prescriptions for quantifying naturalness have some important shortcomings. 
Motivated by this, we propose new criteria for quantifying fine tuning that can be used to place upper limits on superpartner 
masses with greater fidelity. In addition, our analysis attempts to make explicit the assumptions implicit in quantifications 
of naturalness. We apply our criteria to the minimal supersymmetric extension of the standard model, and we find that the 
scale of supersymmetry breaking can be larger than previous methods indicate. 

1. Introduction 

One of the principle motivations for weak scale su- 
persymmetry is that it provides a framework that sta- 
bilizes the hierarchy between the weak scale and the 
Planck scale, or some other unification scale. In non- 
supersymmetric models, the mass renormalization of 
fundamental scalars is quadratically divergent. This di- 
vergence must be cancelled, or the fundamental scalar 
will have a renormalized mass on the order of the cut- 
off. In the standard model, if the Higgs boson remains 
a fundamental degree of freedom all the way up to 
some very heavy scale, we must fine tune a precise 
cancellation order by order in perturbation theory to 
maintain the lightness of the weak scale. 

*This work was supported in part by funds provided by the U.S. 
Department of Energy (DOE) under cooperative agreement DB- 
FCO2-94BR408 18 and by the Texas National Research Laboratory 
Commission under grant RGPY932786. 

1 E-mail address: anderson@mitlns.mit.edu. 
2 E-mail address: castaao@mithrs.mit.edu. 

Supersymmetry solves this problem because the 
renormalization effects of superpartners eliminate the 
quadratic divergences. But supersyrmnetry is at best 
a broken symmetry. There are no superpartners de- 
generate in mass with the particles that have been 
observed so far. These superpartners can have gauge 
invariant mass terms if supersymmetry is softly bro- 
ken, and these masses can be made arbitrarily large 
provided we increase the scale of supersymmetry 
breaking. There is a price for this. As the scale of 
supersymmetry breaking increases the weak scale can 
only remain light by virtue of an increasingly deli- 
cate cancellation. Eventually a point is reached when 
the model no longer appears to provide a complete 
explanation of why a light weak scale is stable. 

Attempts to pinpoint where and when our under- 
standing of weak scale stability is lost, or becomes 
incomplete, must of necessity quantify some intuitive 
notion of naturalness. Such a prescription for quanti- 
fying naturalness exists and is widely used in the lit- 
erature. If we demand that supersymmetric extensions 
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of the standard model should be “complete” in their 
explanations of this stability, we can place an upper 
limit on the scale of supersymmetry breaking. This 
can be translated into an upper limit on the masses of 
super-partners. 

In this paper, we examine the prescription that is 
currently used to place upper bounds on super-partner 
masses 3 . First, we wish to determine if these crite- 
ria accurately measure fine tuning. Second, we want 
to make explicit the assumptions implicit in any at- 
tempt to quantify naturalness. Upper limits on spar- 
title masses obtained from naturalness criteria influ- 
ence expectations of when and where sparticles will 
be discovered if supersymmetry is responsible for the 
stability of the weak scale. 

In Section 2 we make a critical examination of 
fine tuning, and we analyze the prescription now used 
to quantify naturalness. We critique this traditional 
method by examining a well known hierarchy. We find 
that this prescription is not completely satisfactory. 
The trouble is that the traditional prescription does 
not distinguish between instances of global sensitiv- 
ity and real instances of fine tuning. We argue that a 
reliable measure of fine tuning requires global infor- 
mation about the dependence of certain quantities on 
their arguments, and we show how the existing pre- 
scription can be augmented with this information to 
yield reliable measures of fine tuning. 

In Section 3 we systematically construct a family 
of prescriptions that coincide with the augmented pre- 
scriptions formulated in Section 2. Our construction 
clarifies the proper normalization of naturalness mea- 
sures and makes explicit the extent of theoretical prej- 
udice present in any such measure. 

In Section 4 we apply our prescription to the min- 
imal supersymmetric standard model (MSSM). We 
briefly discuss the level of fine tuning the MSSM re- 
quires in light of current experimental constraints, and 
we show how the current situation is much less fine 
tuned than it previously appeared. A more detailed and 
extensive application of our criteria to supersymmetric 
extensions of the standard model is in progress [ 11. 

3 Heavy superpartner masses can also be bounded, or at least 
restricted, by the requirement that the relic density of I.SPs does 
not over close the universe. These constraints provide interesting 
limits, but they do not provide an absolute upper limit on sparkle 
masses, and they involve model dependent assumptions concerning 
conserved R-parity. 

2. Traditional measures of fine tuning 

When parameters conspire by cancelling or adding 
in an unusually precise fashion, we think of an atyp- 
ical quantity that results as fine tuned. In such in- 
stances, the quantity, for example Mz, will exhibit a 
very strong dependence on its arguments [ 21. In super- 
symmetric extensions of the standard model, the weak 
scale depends on the soft supersymmetry breaking pa- 
rameters and other couplings through the renormaliza- 
tion group [ 31. In a seminal paper [ 41, Barbieri and 
Giudice used these features to place upper bounds on 
superpartner masses, and they popularized a prescrip- 
tion to quantify fine tuning that is now widely used. 
They looked for sensitivity in the 2 mass to variations 
in the values of supersymmetry breaking parameters 
and other couplings. They measured the sensitivity on 
a general parameter a by 

(2.1) 

Note that resealing the derivative by a/M; removes 
the dependence on the overall scale of a and Mz. 
Barbieri and Giudice argued that, if supersymmetry 
is responsible for stabilizing the weak scale, then 
c(Mi; a) must be less than some upper limit A, 
which they took to be 10. They used this criterion to 
place upper limits on supersymmetry breaking param- 
eters. This program has been subsequently adopted 
by many researchers. 

The application of Eq. (2.1) in obtaining upper 
bounds on superpartner masses raises several ques- 
tions. Do we know the normalization of Pq. (2.1) well 
enough to say that natural solutions should exhibit 
c( M$, a)% below 10 or any other particular value? 
Should we expect that a simple application of this for- 
mula will always give a reliable measure of fine tun- 
ing, and if not, can we construct alternative definitions 
that provide better measures of naturalness? We can 
apply lZq. (2.1) to a famous hierarchy in order to shed 
some light on these questions. 

The lightness of the proton in comparison to either 
the Planck scale or the grand unified scale is beauti- 
fully explained by the logarithmic running of the QCD 
coupling, as. At one loop, the scale dependence of the 
strong coupling constant can be expressed as 
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a3bu) = 
as(Mp1) 

1 - (b3/2r)as(MPl) ln(&l/pu). 
(2.2) 

For simplicity we take Mprot = A, where CQ (A ) = 1. A 
straight forward application of Eq. (2.1) to the proton 
mass yields 

4Z- 1 
C(~pr&&(~Pl)) = - 

b3 LY3(MPd 
2 100. (2.3) 

The large value of c(Mprot, gs( MPI) > occurs be- 
cause the proton mass is a very sensitive function of 
gs (Mpl). The lightness of the proton is, of course, 
not the result of a fine tuning. The proton mass would 
have exhibited this strong sensitivity no matter what 
its value was, so it makes no sense to say that a value 
near 1 GeV is fine tuned. This example illustrates our 
central point. Eq. (2.1) is really a measure of sensi- 
tivity, and sensitivity does not automatically translate 
into fine tuning. For example, the overestimate of 
fine tuning would have been even worse had we 
used Eq. (2.1) to study the naturalness of the tech- 
nicolour scale with respect to variations in the value 
of the technicolour gauge coupling at the extended 
technicolour scale 4. 

A reliable measure of fine tuning should give a large 
value when a quantity is fine tuned and at the same 
time reduce to something close to unity when it en- 
counters typical sensitivity. This suggests that we di- 
vide Eq. (2.1) by some measure of average sensitivity. 
The resulting ratio will still be large for solutions that 
are unusually sensitive, but in cases where solutions 
have a “typical” sensitivity the resulting ratio will be 
of order one. So a more reliable measure of fine tuning 
would be 

r(a) = 4x; a>/6 (2.4) 

where E is some average value of c( X, a). For exam- 
ple, 

(2.5) 

4 In these examples there are no cancellations that we can pre- 
cisely adjust to create a large fine tuning. However, even in in- 
stances of real fine tuning, the largeness of c( X; a) can be, in part, 
due to global sensitivity. As we will show in Section 4, c( M;; a) 
overestimates the amount of fine tuning needed to maintain a light 
Z mass in supersymmetric extensions of the standard model. 

or 

(2.6) 

If we apply this new criterion to. the lightness of the 
proton, we find that y is of order one. It is a simple 
matter to check that the ratio y gives a large value in 
legitimate cases of fine tuning. If we apply Eq. (2.4) 
to the weak scale hierarchy in a non-supersymmetric 
model, we get a number of order A/Mwea, where A 
is the scale of the cutoff. As we show in the following 
section, a ratio in a form of Eq. (2.4) can be deduced 
from very general considerations. 

3. Measuring fine tuning 

In this section we construct a family of quantita- 
tive measures of fine tuning that encompass Eq. (2.4), 
the augmented prescription we motivated in the pre- 
vious section. Our purpose is twofold. First, we wish 
to systematically clarify what measures of fine tuning 
best quantify our intuitive notion of naturalness and 
how these measures should be normalized. Second, we 
wish to make explicit the inherent, discretionary as- 
sumptions present in any standard that quantifies nat- 
uralness. Any measure of fine tuning that quantifies 
naturalness can be translated into an assumption about 
how likely a given set of Lagrangian parameters is. 
In the absence of a theoretical reason compelling us 
to choose a certain value, we can consider some sen- 
sible distribution of the parameter to study what are 
the natural predictions of the model. The “theoretical 
license” at one’s discretion when making this choice 
necessarily introduces an element of arbitrariness to 
the construction. 

Before we proceed to “derive” a quantitative mea- 
sure of fine tuning some comments are in order. We 
are motivated to quantify naturalness for tangible the- 
oretical reasons. A model that explains a phenomenon 
has more predictive power than a model that merely 
accommodates it. In addition, we understand why the 
proton can be naturally many orders of magnitude 
lighter than the Planck scale but the stability of a light 
scale in a theory of fundamental scalars is mysterious. 
We would like to understand how the weak scale re- 
mains light. Of course, at the level of low energy ef- 
fective theories, dismissing “unnatural” theories in the 
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quest for a “natural” explanation of weak scale sta- 
bility could be misguided. We certainly cannot prove 
that an explanation of the light weak scale was not 
butchered by the process in which we constructed our 
effective theory. For example, one-loop corrections to 
the cosmological constant from an effective theory 
with soft supersymmetry breaking generate contribu- 
tions that are many orders of magnitude greater than 
the experimental limit. Yet we often entertain the idea 
that the solution to this problem is not associated with 
our choice of a low energy Lagrangian. While we can- 
not elevate the prejudice of searching for natural the- 
ories above the level of an axiom, we can hope that its 
application will lead us to a more complete model that 
explains the stability of the weak scale. Such models 
will have testable predictions. 

In light of this, we proceed to deduce a measure 
of fine tuning from general principles. Provided we 
parametrize our assumptions about the likely distribu- 
tion for Lagrangian parameters, we should be able to 
derive a quantitative measure of naturalness. Assume 
the probability that a Lagrangian parameter lies be- 
tween a and a + da is 

dP(a) = 
f (a)da 

.ff(Wa’ (3.1) 

Consider a set of these Lagrangian parameters ui spec- 
ified at a renormalization scale that is the high energy 
boundary of our effective theory (e.g., ,u = Mom). 
A measurable parameter X (e.g., Mi) will depend 
on the ai through the renormalization group equations 
and possibly on a set of minimization conditions. We 
can recast Eq. ( 3.1) as a probability per unit X. Given 
a probability density f(a), the probability density per 
unit X is 

dP = p(X)dX, 

where 

(3.2) 

1 af(a> 
'(') = Xc(X;u) lf(u)du’ 

(3.3) 

In studies of naturalness, we may ask: If the fundamen- 
tal Lagrangian parameters at our high energy bound- 
ary condition are distributed like f(u), how likely is 
a low energy observable, X(u), to be contained in an 
interval u(X) dX about X? A quantity X is relatively 
unlikely to be in an interval proportional to u(X) dX if 

w >> 1 
U(X)P(X) ’ 

(3.4) 

where (up) = Jdau(X)p(X)/Jdu. 
If we are interested in studying the naturalness 

of a hierarchy like Mwe&/MGUT, Mprot/i&lanckr or 
M~/M&,,,, the interval that corresponds to the con- 
ventional sense of naturalness is 5 u(X) = X. 

If we define our measure of naturalness as 

Y = FwXP~ (3.5) 

fine tuning corresponds to y > 1. The definition of 
y in Eq. (3.5) necessarily implies that y is linearly 
proportional to c. For any realization of y, we define 
an average value of c( X, a) by 

y = c/E. 

This definition of E corresponds to 

(3.6) 

E-~ = ~d~~fWc(X;a)-’ 
j- dwf(4 * (3.7) 

The similarity between this definition of Z and the 
heuristic average posed in Section 2 is apparent. 

In order to make practical use of the prescription 
contained in Eqs. (3.4)-(3.7), we need to specify 
three things. First, our choice of f(u) reflects our 
theoretical prejudice about what constitutes a natural 
value of the Lagrangian parameter a. We will return 
to this point in Section 4. The two remaining choices 
are determined by the questions we wish to ask. Our 
choice of u(X) is determined by the quantity whose 
naturalness we wish to study. The conventional notion 
of naturalness for hierarchy problems suggests u(X) = 
X. Finally, our choice for the range of integration for a 
is related to the broadness of the question we wish to 
ask. This point will be elaborated upon in Section 4. 

5 Consider the hierarchy problem in an effective theory with a 
fundamental scalar defined below some scale At : rrzi = gzAf - Ai. 
The scalar mass can only remain light in comparison to the cutoff 
scale hl if we cancel the quadratic divergence against the bare 
term Ai. Note that the cancellation we need to place the scalar 
mass in a 1 GeV window at 1O1” GeV must be made with the 
same precision as the cancellation we need to place the scalar 
mass in a 1 GeV window at a 100 GeV. A small value of the 
scalar mass is unnatural in the sense that a small change in g leads 
to a large fractional change in WZ~ so that it is relatively unlikely 
to be found in an interval cc m’@z~ around m’$ 
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Before analyzing the naturalness of radiative sym- 
metry breaking in the supersymmetric standard model 
we specialize Eqs. (3.6) and (3.7) to two examples. 

Example I. Let us return to the hierarchy between 
the proton mass and the Planck scale discussed in Sec- 
tion 2. We will calculate y for two different choices 
for f(a). Integrating over g, (Mrt) in the range g- < 
g<g+ wefind 

y1 _ g++g-d+& 
4g g2 ’ 

for f(g) = 1 and 

lg2++g+g-+& 
Y2 = Fj 

s2 
, 

(3.8) 

(3.9) 

for f(g) = l/g. In each case we see that, if the strong 
coupling constant at the Planck scale is of order one, 
our measure indicates that a 1 GeV proton mass arises 
naturally. We have thus eliminated the problematic 
overestimate of fine tuning contained in the traditional 
prescription. In the following example we show that 
the new prescriptions still registers appropriately large 
values in realinstances of fine tuning. 

Example ZZ. Consider the gauge hierarchy prob- 
lem in a non-supersymmetric theory with fundamen- 
tal scalars. In this case, the one-loop correction to the 
scalar mass will be of the form 

m;(g) = g2hf - At, (3.10) 

where At is the ultraviolet cutoff of our effective the- 
ory, and A2 is a bare term chosen to keep the scalar 
mass light. If we calculate the sensitivity of the Higgs 
mass with respect to the coupling g, we find 

c(M$;g) =2-t& 
S 

(3.11) 

Integrating over g in the range g- < g < g+, we find 

,(9:-gl)-gln(81)], (3.12) 
1 g- 

for f(g) = 1 and 

(3.13) 

for f(g) = l/g. In each case 2 is of order one, while 
c(mi;g) is of order A2/mg. This gives y N A2/m$ 
which correctly reproduces the fine tuning needed to 
maintain light scalar masses. From these examples, we 
again see that the need to renormalize c( X, a) by E 
is important. When X depends very sensitively on a, 
c(X, a) will be large even if there is no fine tuning. 
A largely exaggerated value for the traditional fine- 
tuning measure, which can occur in the absence of fine 
tuning, can be removed by resealing by E. 

4. Naturalness and the MSSM 

There are two issues concerning naturalness that 
should be addressed for radiative electroweak symme- 
try breaking (EWSB) in supersymmetric extensions 
of the standard model. The first concerns the natu- 
ral value of the electroweak scale if electroweak sym- 
metry breaks. The second concerns the naturalness of 
the EWSB process itself. We will make no attempt 
to tackle the second problem in this paper, since this 
would require either knowledge of, or additional as- 
sumptions about, a more complete theory. 

As already noted, supersymmetry must be broken to 
reconcile the MSSM with the lack of experimental ev- 
idence for superparticles. Since no adequate model of 
spontaneously broken global SUSY exists, supersym- 
metry is customarily broken through the introduction 
of explicit soft terms that do not reintroduce quadratic 
divergences into the theory. Low energy supergravity 
provides the motivation for the introduction of these 
soft breaking terms. The most general form of the 
soft SUSY breaking potential, including gaugino mass 
terms, is 

+ mil&i12 + m@12 + rn$~l” + m$lz12 + m;~z~2 
_ - I _ 

+ A,Y,ii@,Q + AdYdd@‘dQ + A Y-a e.; d L 

+ $MIAIAl + h.c. (4.1) 

A generic feature of these SUGRA inspired models is 
universality in the soft terms. Therefore, one custom- 
arily assumes the following boundary conditions for 
the masses and trilinears at the gauge coupling unifi- 
cation scale, 
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mi = mo , A, = Ad = A, = A0 . (4.2) 

Some universality is important in avoiding unwanted 
flavor changing neutral current effects. Given the uni- 
fication of gauge couplings, it is natural to take the 
gaugino masses equal as well, 

M1=M2=M3=m,/2. (4.3) 

There are therefore five soft breaking parameters, mu. 
Ao, rn+ Bo, and ~0 in the simplest version of the 
MSSM. For simplicity and definiteness, we will con- 
centrate on this restricted version of the minimal su- 
persymmetric standard model in this paper, however, 
our naturalness criteria apply equally well to other sce- 
narios. 

In the MSSM, electroweak symmetry breaking pro- 
ceeds through radiative effects [ 3,571. The one-loop 
effective Higgs potential may be expressed as follows, 

&me-loo,,(Q) = VI(Q) + AN(Q) > (4.4) 

where Vo is the tree level potential, and AVl repre- 
sents the one-loop correction6 . Using the renormal- 
ization group, the parameters are evolved to low en- 
ergies where the potential attains validity. This renor- 
malization group improvement uncovers electroweak 
symmetry breaking. The exact low energy scale at 
which to minimize is unimportant as long as the one- 
loop effective potential is used and the scale is in the 
expected electroweak range. If we arbitrarily take the 
minimization scale to be Mz, then the two minimiza- 
tion conditions may be expressed as follows, 

-2 

~2Mz> = 
‘y1% -Ei;,tan2p 

‘M;, tan2p-1 -2 (4.5) 

B(Mz) = 
(z& + Fii, + 2p2) sin2P 

2~(Mz) ’ 
(4.6) 

where IZi.l = m& + 8AVr /&I~,~ and tan p is the 
ratio of the vacuum expectation values of the Higgs 
fields, u,/vd. Demanding correct electroweak symme- 
try breaking puts constraints on the parameters of the 
MSSM. For example, the top quark Yukawa coupling 
is one parameter that has to be large enough in order 
to achieve the desired radiative breaking. Rewriting 

6 The effect of including one-loop corrections to the effective 
potential on the numerical value of the Barbieri-Giudice parameter 
c(Mi,yr) was studied in Ref. [8]. 

JZq. (4.5) yields an equation for MZ as a function of 
the parameters of the MSSM, 

$4; = 4, -iigJan2p 2 

tan2p-1 -l” * 
(4.7) 

In the MSSM, the problem of fine tuning has been 
commonly treated using the prescription of Ref. [ 41, 
although the original bound of A = 10 has often been 
increased to as high as A = 100. However, as already 
discussed, it is difficult to ascertain what constitutes a 
reasonable bound in the absence of some comparative 
norm (normalization). A glaring example of this can 
be found in c( M$ ; a = gs ) . When applying the crite- 
rion of Ref. [ 41, one typically takes the a-parameter 
to be a soft breaking mass, such as mu, ml/z, ,UO, etc., 
or the top Yukawa. However, the strong coupling is 
also a parameter of the theory, and one can consider 
c( M$; g3). We find that over all the parameter space 
of the MSSM that we have so far explored, c( Mi; a) 
is the largest for a = gs. Since all the parameters are 
ostensibly on equal footing, imposing c( M:; g3) < 
A = lo-100 may be overly restrictive. 

We now apply the realization of y given in 
Eqs. (3.5)-( 3.7) to the MSSM. To use this pre- 
scription we must specify the range of the parameter 
a. We could simply choose this range by fiat (e.g., 
0 < mlp < 10 TeV), but this seems rather ad 
hoc. Instead we prefer that the choice of range be 
dictated by electroweak symmetry breaking. Other 
choices are possible. We will ask how natural the 
value MZ = 91.2 GeV is, given that the gauge sym- 
metry breaking occurs correctly. For this choice, the 
range of a should correspond to values for which 
SU(3)xSU(2)xU(l) isbrokentoSU(3)xU(l),. 
There are then finite limits to the range of a that 
come from two conditions on the value of Mz. The 
minimum value of Mz cannot be less than 0, and its 
maximum value cannot exceed some upper bound, 
often set by the requirement that sneutrino squared 
masses be positive. 

We display y(a) ‘s computed for two different 
choices of f(a). yt corresponding to the choice 
f(a) = 1, and y2 corresponding to f(a) = 1 /a. If we 
adopt ‘t Hooft’s notion of naturalness that Lagrangian 
parameters should not be small unless setting them 
to zero increases a symmetry, and we believe that the 
magnitude of supersymmetry breaking terms should 
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Fig. 1. (a) The fine-tuning parameters c(mtla) (solid) and 7(mt/a) (dashed) plotted as a function of ml/z for Ao = mo = 200 GeV, 
BO = 275 GeV and ,q = 585 GeV. The circles indicate the point with the correct value of MZ for this choice of Ao, Bo, mg, and m. (b) 
Same as (a) with A0 = mo = 100 GeV, Bo = 143 GeV and m = 305 GeV. 

---O--- Mid-SUSY 
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Fig. 2. (a) The fine-tuning parameter y( gs ) plotted as a function of gs (Mu) for three cases with increasing scale of supersymmetry. The 
circle, square, and diamond indicate the points with the correct value of Mz for the three cases. (b) Same as (a) but displays y(yt) as 
a function of yr (Mu) for the same three cases. 

be universal, we should choose f(a) = 1. However, 
we also consider f(a) = l/u to study the sensitivity 
of our criteria to the choice of f(a) and to allow for 
non-universality in the magnitude of soft supersym- 
metry breaking terms (see for example Ref. [9] ). 
Figs. l-3 show that, in the MSSM, the y’s are very 
insensitive to which choice of f(a) is made. 

In Figs. la and lb, we plot ~(mtlz) versus ml/p_ 
for two choices of the soft supersymmetry breaking 
parameters Ao, Bo, mo, and ,ua. On this scale, yr and 
7~2 are virtually indistinguishable so we only show yt . 
On the same plots we show, for comparison, the tra- 

ditional prescription c(~zt/~) as well. The range of 
ml/2 corresponds to the values of the common gaug- 
ino mass for which SU(3) x SU( 2) x U( 1) is broken 
to SU(3) x U(l),,. Note that the asymptotic, “natu- 
ral” value of c(q/2) for large ml/2 is order ten and 
not order one. This is another demonstration why it is 
necessary to rescale the c’s to achieve a sensible mea- 
sure of fine tuning. 

Figs. 2a and 2b show the effect of increasing the 
overall scale of soft symmetry breaking on fine tuning. 
In Fig. 2a the fine-tuning parameter y(gs) is plotted 
as a function of gs ( M~J), where Mu is the unification 
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Fig. 3. Curves representing lower envelope of regions defined by 
plot of m=Ic(ml$, C(W), c(Y~), c&3)) and m@n,z(ml~2), 

~l,z(mo), n,z(yd. w(g3)) versus tankOh). 

scale. We include three choices of AD, Bo, mo, and /.Q 
with different overall scales of soft symmetry break- 
ing. The square, circle, and diamond in each figure 
correspond to the point with the correct value of the 
Zboson mass for the cases (i) A0 = mo = mlp = 400 
GeV, Bo = 523 GeV, /..Q = 1125 GeV, (ii) AI-J = mo = 
ml/2 = 200 GeV, Bo = 275 GeV, ,XO = 585 GeV, and 
(iii) A0 = mo = rnlp = 50 GeV, Bo = 90 GeV, ~0 = 
154 GeV, respectively. The light case has a chargino 
with a mass less than Mz/2 and therefore is excluded 
experimentally. Fig. 2b is similar to Fig. 2a but dis- 
plays 74~~) versus YAWI). 

Fig. 3 displays how much fine tuning the MSSM 
currently requires in light of some general experimen- 
tal constraints. We consider a region of our input pa- 
rameter space defined by the ranges lAo\ 5 400 GeV, 
mo 5 400 GeV, and Irnlp[ 5 400 GeV. For values of 
the soft supersymmetry breaking parameters consis- 
tent with a neutral lightest SUSY particle (LSP) , with 
the current LEP measurement of the 2 width, with a 
Higgs mass heavier that 60 GeV, and with chargino 
masses heavier than Mz/2, we plot 

c = mdc(ml,2)‘, c(mo), dx> .493)}, 

91 =m~{yl(ml/2),Yl(mo),yl(yt),yl(g3)}, 

72 =maxirz(mll2>,~2(mo),1/2(~~).~2(93)} 

versus tan p( Mz). In the figure, we display curves 
representing the lower envelopes of the resulting re- 
gions. Notice that the original Barbieri and Giudice 

Table 1 

a c(a) Cl c2 Yl Y2 

ml/2 50.8 9.29 10.3 5.41 4.92 
mo 21.8 3.21 4.66 6.79 4.68 
ET3 209. 42.3 43.2 4.94 4.84 
Yf 32.5 4.92 5.77 6.61 5.63 

bound of c( a) < 10 has already been exceeded, while 
the new criteria show that weak scale stability can still 
arise naturally. 

Finally, in Table 1 we display the BG sensitivity 
parameters c(a) and the fine tuning parameters y(a) 
for various a in a representative case with A0 = mo = 
rnlp = 200 GeV, Bo = 275 GeV, and rug = 585 GeV. 
Note that the relative normalization of the sensitivity 
parameters, E(a), can be quite different. This means 
that we can not adopt a universal measure of fine tun- 
ing by appealing only to the c(a) ‘s (e.g., c < 100). 
A relative normalization for each c(a) must be com- 
puted in the manner described in Section 3. 

5. Conclusions 

Naturalness criteria are frequently used to place up- 
per bounds on superpartner masses in supersymmet- 
ric extensions standard model. We have analyzed the 
prescription popularly used to measure fine tuning. 
This prescription is an operational implementation of 
Susskind’s statement of Wilson’s sense of naturalness, 
“Observable properties of a system should be stable 
against minute variations of the fundamental parame- 
ters.” Because this prescription is only a measure of 
sensitivity, we found that it is not a reliable measure of 
naturalness. We then constructed a family of prescrip- 
tions which measure fine tuning more reliably. Our 
measure is an operational implementation of a modi- 
fied version of Wilson’s naturalness criterion: Observ- 
able properties of a system should not be unusually 
unstable against minute variations of the fundamen- 
tal parameters. Our derivation determines the normal- 
ization of naturalness measures and makes clear to 
what extent theoretical prejudice influences these mea- 
sures. The new prescriptions we construct allow up- 
per bounds on superpartner masses to be placed with 
greater confidence. By applying our prescriptions to 
the minimal supersymmetric standard model, we find 
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that the theory provides a much more natural expla- 
nation of weak scale stability than previous methods 
indicate. More importantly, we find that the scale of 
supersymmetry breaking can be significantly higher 
than previous naturalness criteria indicate. 
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