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PREFACE

This book is intended to serve as a text for a standard one-semester or
two-term course in differential equations following the calculus. The
author has given more than the usual emphasis to the mathematical ex­
planations, in the conviction that there is little value in learning techniques
by rote.

There is more material presented here than can be covered in two terms,
and the material ranges from routine calculations to moderately sophis­
ticated theorems. This variety allows the instructor a fair degree of
latitude in both the content and the level of the course to be taught.

The author would like to acknowledge his indebtedness to the Uni­
versity of Washington for the privilege of teaching from this text in a
preliminary form, and to the many colleagues and students who have
made helpful suggestions.

January, 1962

v

H. S. B.
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CHAPTER 1

FIRST ORDER EQUATIONS

1-1 Introduction. A differential equation is an equation containing an
"unknown" function and its derivatives. If the unknown is a function of
one variable, the equation is called an ordinary differential equation, and
if the unknown is a function of several variables so that the derivatives
are partial derivatives, then the equation is a partial differential equation.
We will be concerned exclusively with ordinary differential equations in
this book. We will study equations such as

4x3f"(x) - 2X[f'(X)]2 + f(x) - X2 = 0, (1)

. and ask what functions f satisfy the equation identically.
As an example of how a differential equation arises naturally in a

physical problem, consider an object of mass m falling through the air.
Suppose that the object is only slightly more dense than air (e.g., a balloon)
and that the air flows smoothly around the object as it falls. In this case
the force due to air resistance is proportional to the speed. If we let s(t)
be the distance the object falls in time t, then the speed is s'(t) and the
acceleration is s"(t). The forces acting on the object are the force of gravity,
mg, and the force of air resistance, ks'(t). According to Newton's law,
force equals mass times acceleration, .and the motion is described by the
differential equation

mg - ks'(t) = ms"(t). (2)

The highest order of the derivatives occurring in a differential equation
is called the order of the equation. Thus a first order equation is any
equation of the form

G(x,f(x),f'(x)) = 0.

We customarily use the symbol y for the unknown function, and for
simplicity in writing we omit the independent variable from the expres­
sions y(x), y'(x), etc. Hence a first order equation will appear as

G(x, y, y') = 0, (3)

and the second order equations (1) and (2) would ordinarily be written

4x3y" - 2x(y') 2 + y - x2 = 0,

mg - ks' = ms".
1

(4)

(5)
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A function is a solution of a differential equation on an interval I if the
function satisfies the equation identically on I. Thus a solution of (3) is
any function y such that

G(x, y(x), y'(x)) =: 0,

where U=:" is used to indicate that the equality holds for all values of x
in some interval. The function f defined by f(x) = x 2 is a solution of (1)
on the whole line, since

Similarly, the function set) = (mg/k)t is a solution of (2), since

mg - k (~g) =: m . O.

Notice that for any number c, the function set) = (mg/k)t + c is also
a solution of (2). This illustrates the fact that generally speaking a
differential equation does not have just one solution, but an infinite family
of solutions. This fact is familiar from the study of indefinite integration­
i.e., the study of differential equations of the form

y' = f(x).

We will say that two equations are equivdJent if any function which
satisfies either equation also satisfies the other. That is, two equations
are equivalent if they have the same sets of solutions. The following equa­
tions are easily seen to be equivalent:

The equations

y' + y = X,

xy' = x2 - xy,

eY(y' + y - x) = O.

yy' + y2 = xy,

(1 + y)(y' + y - x) = 0

(6)

(7)

(8)

are not equivalent to the equations (6), since each has a solution which
is not a solution of (6) (Problem 4).

PROBLEMS

1. Show that for any numbers CI and C2 the function set) = (mg/k)t + C1 +
C2e-(k/mlt is a solution of (5).

2. For what values of c is x 2 + c a solution of (4)?
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2. c = 0

3. (a) y = crx + C2
(c) Y = sin-rx+c

3. Solve the following equations.

(a) y" = 0 (b) y' 2 (c)
, 1

= sec x y =
VI - x 2

(d) y"
x+I (e) y'

1 (f) , 1
=--

= 4+ x 2
y =---

X x 2 - 9

4. Show that neither (7) nor (8) is equivalent to the equations (6). Are (7)
and (8) equivalent?

5. Show that the functions given below are solutions of the corresponding
differential equations. Find one more solution of each equation.

(a) x 2y' = xy - x, y = 2x + 1 (b) y" + y' = 0, y = 3 - 2e-X

(c) (x + I)y' = -y, Y = Ij(x+ 1) (d) y = (x + I)y', Y = x + 1
(e) y" + y = 0, y = cos x

ANSWERS

(b) y = tan x + c
(d) y = tx2 + x In Ixl + crx + C2

-1 X Ix - 31(e) y = t tan 2+ c (f) y = i In x + 3 + c

4. (7) has the solution y = 0, (8) has the solution y = -1; no.

5. (a) y = cx + 1 (b) y = C1 + C2e- X

(c) y = cj(x + 1) (d) y = c(x + 1)
(e) y = Cr cos x + C2 sin x

1-2 Variables separate. For any equation of the simple form

y' = f(x),

the solutions are obtained by integrating both sides. Thus

y = ff(x) dx + c.

(1)

(2)

That is, to solve (1) we are required to find each function y whose deriva­
tive equals f. If F is any function such that F'(x) = f(x), then any
function y satisfying (1) differs from F by a constant. Therefore, all
solutions of (1) must have the form

y(x) = F(x) + c. (3)

Conversely, any function y of the form (3) obviously satisfies (1), and
hence (3) characterizes the family of solutions of (1).
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Aside from the familiar equations of the form (1), the simplest differ­
ential equations are those of the form

g(y)y' = f(x). (4)

We will say that the variables separate in a differential equation if it is
equivalent to an equation of the form (4). We agree that theequation

g(y) dy = f(x) dx (5)

is equivalent to (4); i.e., we define y to be a solution of (5) if and only if y
is a solution of (4).

As an example of an equation in which the variables separate, consider

(6)

This is equivalent to

(4y 3 + l)y' = 1 - 3x2

and hence by definition to

(4y 3 + 1) dy = (1 - 3x2) dx.

If we integrate both sides of (7), we obtain

y4 + y = x - x 3 + c.

(7)

(8)

Two questions arise concerning this process. First, in what sense is (8) a
solution of (6), since (8) is not a family of functions but a family of
equations? The answer is that the solutions are the fu~ctions y which
satisfy an equation of the form (8); i.e., the functions y which are defined
implicitly by one of the equations (8). In many cases it is not possible to
write explicit formulas for the solutions, and we regard the differential
equation as solved if we can characterize the solutions in a manner not
dependent on their derivatives. The second question is whether the family
of equations (8) actually does characterize the solutions of (6); does every
solution of (6) satisfy one of the equations (8), and is every function
satisfying one of the equations (8) a solution of (6)? It is by no means
obvious that the formal process of integrating both sides of (7) solves the
differential equation; this process is justified by the following theorem.

THEOREM 1. If f and g are continuous, and F' = f, G' = g, and y is
any solution of g(y) dy = f(x) dx, then there is a constant c such that
G(y(x») = F(x) + c. Conversely, any differentiable function y which
satisfies G(y) = F(x) + c, for some c, is a solution of the equation
g(y) dy = f(x) dx.
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Proof. The second assertion, that any function satisfying an equation
G(y) = F(x) + c is a solution of the equation g(y)y' = f(x), is immediate
from the chain rule for differentiation. Hence, we need only prove that
there are no other solutions.

Let y be any solution of

so that

g(y) dy = f(x) dx,

g(y(x)y'(x) = f(x)

(9)

(10)

(12)

for all x. Let H(x) = G(y(x), where G is any antiderivative of g. Then
by the chain rule and the identity (10) we get

H'(x) = G'(y(x)y'(x) = g(y(x)y'(x) = f(x) = F'(x). (11)

That is, Hand F have the same derivative. It follows that there is a
constant c such that H(x) = F(x) + c, and hence that G(y(x) = F(x) + c.

EXAMPLE 1. (A) 2yy' = eX. G(Y

By the theorem, the solutions are just those functions y which satisfy
y2 = eX + c, for some number c.

Except for the possibility y = 0, this equation has the same solutions as
y-2y' = x2. We check that y = 0 is a solution, and integrate to solve
y-2y' = x2. The solutions of this equation are given by the equations
_y-l = !x3 + c, or

-3
y = x 3 + 3c'

Since c is arbitrary, this family of functions can be written

-3
y = x3 + c·

The solutions of i/ = X
2y2 are therefore the function y = 0 and the

functions (12).

(C) x dx + y dy = O.

Integration gives !x2 + ty2 = c, which is the same family of equations
as x 2 + y2 = C. Note that no real-valued function y satisfies this last
equation unless c > 0, so the solutions of (C) are also characterized by
the equations x2 + y2 = c2

.
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(D) x + 1 dx = (x z + 1) In Iyl dy.
y

Multiplying both sides by y, and dividing by x Z + 1, we obtain

x + 1
X Z + 1 dx = yIn Iyl dy.

Integrating the left side above, we get

f Cz ~ 1 + xZ ~ 1) dx = ! In (x
z+ 1) + tan-

1 x.
The right side can.be integrated by parts to give

f yIn Iyl dy = !yz In Iyl - f !yZ ~ dy

= !yZln Iyl - h Z.

The solutions of (D) are therefore the functions y defined implicitly by
the equations

2 In (X Z+ 1) + 4 tan -1 x = 2yz In Iyl - yZ + c.

A type of equation more general than that in which the variables
separate is the exact equation

1)F(x, y) = 0, (13)

or
Fx(x, y) + Fy(x, y)y' = O.

We agree that the following equation is equivalent to (13) or (14).

Fx(x, y) dx + Fy(x, y) dy = O.

As an example of an exact equation we consider

2x - 2xyy' - yZ = O.

This equation can be written

(14)

(15)

(16)

(17)

A function y is a solution of (16)-that is, by (17), a function such that

D(xZ - x[y(x)j2) == 0,
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, 8. y dx + x dy = 0
10. (y2 + 2x) dx + 2xy dy = 0

if and only if there is a constant c such that

In conventional form, therefore, the solutions of (15) are given by the
equations

An analysis similar to the foregoing, and to the proof of Theorem 1,
shows that the solutions of (13) or (14) or (15) are those functions iJ which
satisfy an equation of the form F(x, y) = c (Problem 12).

EXAMPLE 2. (A) xy' + 2yy' = x - y.

This equation can be written

(xy' + y) + 2yy' - x = 0,

or

The solutions are therefore given by

xy + y2 - !x2 = c.

(B) (y2 + 3x2) dx + 2xy dy = 0.

This is equivalent to

(y2 + 2xyy') + 3x2 = 0,

or

The solutions are determined by the equations

xy2 +'x3 = c.

Exact equations are studied in more detail in Section 2-2 and Section 2-3.

PROBLEMS

Solve the following equations.

-'1. y' = xjy2. xy dy + (x 2+ 1) dx = 0
3'. (1 - y2) dx - xy dy = 0 4. xy + VI + x2 y' = 0

5. (y + 1) dx + (y - 1)(1 + x2) dy = 0
6. (2x + l)y' + y = 0

7. y' - x 2 = x 2y
9. x2 dy + 2xy dx = x2 dx
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11. Show that any equation of the form f(x) dx + g(y) dy = 0 is exact.
12. Show that the solutions of (14) are the functions y defined implicitly by

an equation of the form F(x, y) = c.
13. Show that the equation y' + y = 0 becomes exact if multiplied by eX,

and solve it.
14. Show that the equation y - xy' = 2y3y' becomes exact if multiplied by

1/y2, and solve it.
15. Find each positive function whose derivative is the reciprocal of the

function.
16. Find all functions such that the square of the function plus the square of

the derivative is a given constant A 2.

17. Find all functions such that the derivative is the square of the function.
18. Find all functions with derivative one more than the square of the

function.

ANSWERS

1. y2 - x2 = c 2. x2 + y2 + 2ln Ixl = c
3. x2(1 - y2) = c 4. VI + x2 + In Iyl = c, y 0

5. tan-1x+ y - 2lnjy+ 1!- = c, y = -1
6. (2x + 1)y2 = c
7. 3ln 11 + yl = x3 + c, y = -1

8. xy = c 9. 3xy2 = x3 + c
10. xy2 + x2 = c 13. y = ce-:r:
14. x/y = y2 + c, y = 0 15. y V2x + c
16. y Asin(x+c) 17. y = -i/(x+c), y 0
18. y = tan (x + c)

1"';3 Geometric interpretation of first order equations. In Section 1-1
we saw how a differential equation arises in the attempt to solve the
physical problem of a falling body. Consider now a geometrical problem.
What functions, with graphs in the first quadrant, have the property that
for every tangent line the point of tangency bisects the segment cut off by
the coordinate axes (Fig. I-I)? For such a curve, the tangent at the'
point (x, y) must have slope -2y/2x = -y/x. Hence any such furiction'
must satisfy the differential equation

y' = -y,
x

y> 0, x > 0, (1)

and conversely, a function satisfying (1) satisfies the conditions of the
problem. The solutions of (1) (Problem 8, Section 1-2) are the functions
y = c/x, c > 0.

Any first order differential equation y' = F(x, y) admits a geometric
interpretation similar to that illustrated in the problem above. The equa­
tion y' = F(x, y) prescribes a tangent line at each point of the plane:
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(0,2y)

the line through (x, y) whose slope is F(x, y). The question posed by the
differential equation y' = F(x, y) is: What functions y have the tangents
prescribed by the function F at each point of their graphs? We can
visualize the situation by drawing short segments of the tangent lines
given by the equation at various points of the plane. Figure 1-2 shows
such a "tangent field" for the equation

y' ~ y - x, (2)
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FIG. 1-3. Tangent field for y'

with graphs of the solutions y = x + 1 + eX and y = x + 1 - eX. An
easy way to construct a graph of the tangent field is to draw all the seg­
ments with a given slope at the same time. This amounts to graphing the
curves F(x, y) = c [the lines y - x = c for (2)] and marking segments
with slope c at intervals along the curves. Notice that the linear solution,
y = x + 1, can be found by inspection of the tangent field for (2).

Figure 1-2 suggests that there is a solution, and only one solution,
through any given point in the plane. The solutions of (2) are the
functions

y = x + 1 + cex
, (3)

and it is easy to check that for any point (a, b), there is exactly one num­
ber c such that b = a + 1 + cea

. In other words, there is exactly one
solution curve through each point of the plane. It is true in general that
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if F is continuous, there is a solution to y' = F(x, y) through each point
(a, b). The solution through a given point is not necessarily unique without
further assumptions on F.

Let us examine in some detail the equation

(4)

The tangent field for (4) with the tangent segments drawn along the
hyperbolas 2~ = c is shown in Fig. 1-3. On any interval on which a
solution is never zero, we can separate variables in (4) and obtain the
equivalent form

(5)

According to Theorem 1, Section 1-2, we obtain an equivalent equation
by integrating both sides to get

or
(X

4
/

3 > c). (6)

Thus we have shown that any solution of (4) must have the form (6) on
any interval on which it is nonzero.

The curves (6) which intersect the x-axis (c 2: 0) are tangent to the
x-axis at the point of intersection, and hence satisfy (4) at this point
(since y = y' = 0). The function identically zero isa solution of (4) on
any interval. Hence any function whose graph follows one of the curves
(6) to the x-axis, and continues along the x-axis until it leaves by another
of the curves (6), isa solution of (4). There is a solution through every
point, and there are infinitely many solutions through any point on the
x-axis. As an example, the function

y(x)

x ~ 0

o < x < 1

1 ~ x

is a solution of the differential equation. The functions y(x) = x 2
,

y(x) = -x2
, y(x) = 0 are other solutions through the origin.

PROBLEMS

1. Find all curves such that for any point on the curve, the area bounded by
the ordinate line to the point, the x-axis, and the tangent line at the 'point is t.
Find the one of these curves through (0, 1).

2. Construct a tangent field for y' = 1 + x + y. Find a linear solution by
inspection of the tangent field and check it in the equation.
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3. Consider the curves such that the tangent at each point (x, y) of the curve
intersects the y-axis at (0, -y). Draw the tangent field in the upper half-plane
for the implied differential equation. [Hint: The tangent segment at each
point on y = 1 must point toward (0, -1), etc.] Write the differential equation,
find all such curves, and graph several of them on the tangent field.

4. (a) Construct a tangent field for y' = 2VY. (Note that necessarily
y ~ °and y' ~ 0.)

(b) Find all solutions of y' = 2vy as in the treatment of Eq. (4) in the
text.

(c) How many solutions are there through each point on the x-axis? Each
point off the x-axis? Explain.

5. Describe the solutions of y' = 3xy l/3.

ANSWERS

1. y = 1j(x + c), y 1j(x.+ 1)
2. y = -x - 2
3. y = cx2

4. The solutions are y = 0, and the functions Yc, where yc(x) = °if x :s; c
and yc(x) = (x - c)2 if x ~ c. There are infinitely many solutions through
each point on the x-axis, and one solution through each point in the upper half
plane.

5. The solutions are those continuous functions whose graphs lie always on
one of the curves y = (x2 + c)3/2, Y = 0, or y = -(x2 + c)3/2.

1-4 Existence and uniqueness theorem. The examples in the preceding
section lead us to ask for a general statement about the existence and
uniqueness of solutions of the first order equation

y' = F(x, y). (1)

The question we ask is this: If the function F satisfies certain conditions
near a point (a, b), is there a solution curve passing through (a, b)? If SO,

is there exactly one solution through (a, b)? In other words, we would
like to know that there is exactly one function y such that yea) = b, and
y'(x) == F(x, y(x)) on some interval around a.

There are several reasons for asking questions such as these. First of
course is the fact that before we look for solutions of a differential equa­
tion, we would like to be assured that "there are solutions to be found.
The uniqueness part of the theorem is also of more than academic interest.
We will illustrate below how the uniqueness of the solution through each
poin"t~can be used to show that a given family of solutions contains all
solutions.

We state here one convenient form of an existence and uniqueness
theorem for Eq. (1). The hypothesis we use is the continuity of F and
Fy = aFjay near a given point (a, b). In geometric terms, the fact that
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F is continuous means that the tangent field determined by F changes
direction smoothly as the point (x, y) moves in the plane near (a, b). We
will see in Chapter 6 that the continuity of F y rules out the sort of behavior
illustrated in Fig. 1-3, where solution curves are tangent to each other,
and there can be several solutions through a given point.

THEOREM 1. If F and Fyare continuous on some square S centered at
(a, b), then there is a function y defined on some interval I around a such
that y(a) = b and y'(x) = F(x, y(x) for all x in I. Moreover, if 9 is
any function such that g(a) = band g'(x) = F(x, g(x) for x in I, then
g(~) = y(x) for x in I.

This theorem is proved in Chapter 6.
Note that the existence theorem is local in character. If F is well behaved

near (a, b), then there is, on some interval I around a, a solution whose
graph goes through (a, b). The interval I may be small, even if F and Fy
are continuous on the whole plane (see Problem 1).

EXAMPLE 1. Consider the equation (cf. Fig. 1-2)

y' = y - x. (2)

This is of the form (1), with F(x, y) = y - x, and Fy(x, y) = 1. The
function's F and Fyare continuous everywhere, so there is a unique solu­
tion through each point (a, b). It is easy to verify (Problem 2) that for
any number c, the function

(3)

is a solution of (2). For any given point (a, b) there is a number c such
that

b = cea + a + 1.

That is, there is a solution from the family (3) through any given point.
Since by Theorem 1 there is only one solution through any point, the
solution through a given point must be the solution from the family (3).
In other words, the family (3) contains all solutions of (2).

EXAMPLE 2. Consider the equation (cf. Fig. 1-3)

(4)

Here F(x, y) = 2x1/ 3yl/3, and Fy(x, y) = ~Xl/3y-2/3. The function F is
continuous everywhere, but Fy is continuous only at points (x, y) with
y ~ O. There is a solution of (4) through every point (a, b), but not
necessarily a unique solution. If we restrict our attention to a square
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wholly above or below the x-axis, then there is in the square a unique
solution curve through each point.

There are existence theorems analogous to Theorem 1 for equations of
order higher than one. For example, for the second order equation

y" = F(x, y, y') (5)

the following is true. If F is a function of three variables which is con­
tinuous near the point (a, b, c) and has continuous partial derivatives with
respect to the second and third variables, then there is a unique function y

defined on some interval around a which satisfies the differential equation

y"(X) == F(x, y(x), y'(x)),

and satisfies the initial conditions

yea) = b, y'(a) = c.

PROBLEMS

1. Solve the equation y' = 100 + y2. Show that even though F(x, y) =

100 + y2 and Fy(x, y) = 2y are continuous everywhere, no function is a solu­
tion of the equation on any interval longer than 11'/10.

2. Verify that each function in the family (3) is a solution of the Eq. (2).
3. (a) Use Theorem 1 to show that y' = 1 + x - y has exactly one solution

through each point.
(b) Verify that y = x + ce-X is a solution for every number c.
(c) Show that for every point (a, b) there is a number c so that the solution

y = x + ce-X satisfies y(a) = b.
(d) Conclude from (a), (b), and (c) that the family y = x + ce-X is the

family of all solutions of y' = 1 + x - y.
4. Proceed as in Problem 3 to show that y' = 3x3 - 2xy has a unique

solution through each point, and that y = ce-x2 + x2 - 1 is the family of all
solutions.

5. Solve the following equations. Write the equations in the form y' = F(x, y)
and show by Theorem 1 that there is a unique solution through the given point
(a, b). Find the particular solution through the given point.

(a) x dy + y dx = x 2 dx; (a, b) = (1, 0)
(b) (1 + 2x2) dy - x(1 + y2) dx = 0; (a, b) = (0, 1)
(c) (l/x) dy - 4Vl + y dx = 0; (a, b) = (2,3)
(d) dy = 2xy dx; (a, b) = (1,0)

6. Solve the following second order equations and find the solution which
satisfies the given initial conditions.

(a) y" = y'; y(O) = 2, y' (0) = 1
(b) 2y'y" = 1; y(l) = 5, y' (1) = 2
(c) xy" + y' = x2; y(l) = 1, y'(I) = 1 [cf. Problem 5(a)]
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1. y = 10 tan (lOx + c)

5. (a) 3xy = x3 + c; c = -1
(b) 4tan-1 y = In (1 + 2x2 ) + c; c = 71"

(c) vI + y = x2 + c and y = -1; c = -2
(d) y = cex2

; c = 0

6. (a) y = CleX + C2, Y = eX + 1
(b) y = t(x + Cl)3/2 + C2, Y = t(x + 3)3/2 - !
(c) y = tx3 + ci In Ixl + C2, y = t x3 + tIn Ixl + ~

1-5 Families of curves and envelopes. We have seen that the set of
solutions of a differential equation can frequently be expressed as a single
formula with one or more arbitrary constants, or parameters. We will
consider now the problem converse to that of solving a differential equa­
tion; namely, given a family of functions, is there a differential equation
for which this family is the set of solutions? In other words, can we char­
acterize a family of functions with a single differential equation?

If we have a family of functions

y = F(x, e),

then each function in the family (1) must also identically satisfy

y' = Fx(x, e).

(1)

(2)

If we can eliminate e from these equations-that is, derive from (1) and
(2) an equation

G(x, y, y') = 0,

then this is a differential equation which is satisfied by every function in
the family (1).

Consider the family of functions

y = 1 + ex.

Each of the functions (3) satisfies y' = e, and hence the equation

y = 1+ xy'.

(3)

(4)

Equation (4) is therefore a differential equation whose solutions contain
all the functions (3). By separating variables and solving, one shows that
(4) has no solutions other than those from the family (3).

A two-parameter family of functions will be represented by a second
order equation. Differentiating the formula

(5)
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twice, we see that every function (5) satisfies the three equations

y = CIX + C2ex,

y' = Cl + C2eX,

y" = C2ex.

(6)

We can solve the third equation for C2, then the second for Cl, and substi­
tute these values in the first equation to obtain

y = (y' - y")x + y". (7)

We will be able to show in Chapter 3 that there are no other solutions
of (7) and hence that (7) does characterize the family (5).

It is not always the case, as we show next, that the differential equation
we derive from a family of functions has only solutions from this family.
Consider the family of lines tangent to the curve y = x 2 (Fig. 1-4). The
tangent line at (e, e2

) has the equation y - e2 = 2e(x - c), or

(8)

To obtain the differential equation of the family (8), we differentiate and
get y' = 2e. The differential equation of (8) is, therefore,

(9)

The equation (9) prescribes a slope for a solution curve at each point of
the plane. At each' point (x, x 2

), the curve y = x 2 has the same slope as
its tangent line, which is a solution of (9) by virtue of the way (9) was
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derived. Hence y = x 2 is a solution of (9), and (9) does not characterize
the family of lines (8).

The situation encountered above occurs whenever a family of curves
has an envelope. We will say that the curve y = q,(x) is an envelope of
the family of curves y = F(x, c) if at each point on y = q,(x) there is a
curve· from the family which is tangent there (Fig. 1-5). That is, for each
point (xo, q,(xo») there is a value of c, c = c(xo), such that y = q,(x) and
y = F(x, c(xo») are tangent at (xo, q,(xo»). We also suppose that c'(x)
exists and c'(x) ~ O. With these assumptions, we can give a simple test
for determining whether a family y = F(x, c) has an envelope, and we
can write a formula for the envelope if there is one. The facts are stated
in the following theorem.

THEOREM 1. The family of curves y = F(x, c) has the envelope y = q,(x)
if and only if there is a function c such that Fc(x, c(x») == 0, and
q,(x) = F(x, c(x»).

To restate the theorem: The envelope, if any, is the curve y = F(x, c(x»),
where c is defined implicitly by the equation Fc(x, c) = O. The equation
of the envelope is obtained by eliminating c between the equations

y = F(x, c), o = Fc(x, c).

Proof. Assume that y = q,(x) is an envelope of the family y = F(x, c).
Let c be the function such that y = q,(x) and y = F(x, c(xo») are tangent
at (xo, q,(xo»), for each xo. Since the curves y = q,(x) and y = F(x, c(xo»)
meet at (xo, q,(xo») , we have q,(xo) = F(xo, c(xo»), for each Xo; that is, we

-- have the identity
q,(x) = F(x,c(x»).

The condition that the curves be tangent implies that for each Xo

(10)
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FIGURE 1-6
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Hence we have the identity

ep(x) = Fx(x, c(x»).

If we compute ep' from (10), we get

ep'(x) = Fx(x, c(x») + Fc(x, c(x»)c'(x).

Comparing (11) and (12) we have, since c'(x) rf 0,

Fc(x, c(x») = 0.

(11)

(12)

(13)

Formulas (13) and (10) are the assertions of the theorem, if we assume
that there is an envelope.

The arguments above can be reversed to show that (13) and (10) are
sufficient for y = ep(x) to be an envelope of the family y = F(x, c). This
part of the proof is left as a problem (Problem 8).

EXAMPLE 1. Consider again the family

Equation (13) for this example is

2x - 2c = 0,

which defines the function c(x) = x.
[Formula (10)]

The envelope is therefore

EXAMPLE 2. Consider the family (Fig. 1-6)
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Partial differentiation with respect to c gives [Eq. (13)]

0= 3(x - C)2,

and hence c = x. There is, therefore, the envelope

y = (x - x) 3 = O.

For a family of curves given in the form

G(x, y, c) = 0 (14)

(15)Gc(x, Y, c) = o.

it can be shown that the envelopes, if any, are obtained by eliminating c
from (14) and

EXAMPLE 3. (x - C)2 + y 2 = 1.

We eliminate c between the equations

2(x - c)(-I) = 0

to obtain the equation of the envelope curves, y2 = 1.

Summary. To firid the differential equation of an n-parameter family
of curves, differentiate the given equation n times and eliminate all the
constants.

To find the envelope of a one-parameter family of curves, eliminate the
parameter between the given equation and that obtained from it by partial
differentiation with respect to the parameter.

PROBLEMS

1. Solve Eq. (4) and show that there are no solutions other than the
functions (3).

2. Find the differential equations of these families.·

(a) y = c + cx (b) y = C1 + c2e~

(c) y = x 2 + cx + c2 (d) y = C1 + C2X + C3X2

3. Considering (6) as three simultaneous linear (algebraic) equations in C1

and C2, the condition that the equations be consistent is that the following de­
terminant be zero:

~x e y

1 e~ y' = O.

o e~ y"

Expand the determinant to obtain (7).
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(b) y" = y'
(d) yll/ = 0

4. Proceed as in Problem 3 to find the differential equation of the family
y = ele-x + e2ex - x.

5. Show that each of the parabolas y = x2 + ex + *(1 - e)2 is tangent to
y = x. Find a first order differential equation for the family and verify that
y = x is also a solution.

6. Find the envelope of the family y = eX
-

C + e. Graph several of the curves
and the envelope. Find the differential equation of the family and verify that
the envelope is also a solution.

7. Find the envelope of the family y = 3e2x - 2e3 .

8. Show that if e is a differentiable function such that e' (x) ;;c 0 and
Fc(x, e(x») = 0, then y = F(x, e(x») is an envelope of the family y = F(x, e).
(See the proof of Theorem 1.)

9. Show that there is no envelope to the family of solutions of g(y)y' = f(x).
[Hint: Write the family of solutions and show that (15) is impossible.)

10. Solve 4y = y'2 by separating variables. Show that the family of solutions
has an envelope which is a solution. Reconcile these facts with Problem 9.

11. Show that every solution of (9) everywhere agrees with one of the func­
tions (8), or with y = x2 . [Hint: Differentiate (9) and examine the resulting
second order equation. Show that either y' is constant, and y is in the family (8),
or y = x2 + e with e necessarily zero.)

ANSWERS

2. (a) y = y' + xy'
(c) y = 3x2 - 3xy' + y'2

4. y" - Y - x = 0
5. y = x2 + (y' - 2x)x + HI - y' + 2X)2
6. y =. x + 1; Y = y' + x - In y'
7. y = x3

10. y = (x - c)2, Y = 0; the separated form is not equivalent to the
original.

1-6 Clairaut equations. Now we consider the differential equation of a
particularly simple family of curves-a family of straight lines. The
differential equation of such a family turns out to have an easily recog­
nizable form. We have, therefore, a class of differential equations for
which a family of solutions can be found by inspection.

The families of lines we consider are those which can be written in the
form

y = ex + gee). (1)

Differentiating (1), we obtain y' = e, and hence each of the functions (1)
must satisfy

y = xy' + g(y'). (2)
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Any equation of the form (2) is called a Clairaut equation. For any such
equation, we can write down by inspection the one-parameter family (1)
of solutions. There may be solutions of (2) not contained in the family (1),
and we know that any envelope of (1) would be such a solution.

EXAMPLE 1. The equation

y = xy' - i(y')2

is a Clairaut equation and therefore has the solutions

This family of lines has the envelope (cf. Section 1-5) Y = x 2
, which is

also a solution.

EXAMPLE 2. y = xy' + 2 + Y'

This equation is of the form (2), so we can write by inspection the solutions

Y = ex + 2 + e.

Differentiating this equation with respect to e we get 0 = x + 1, which
is obviously not satisfied by any function e. The family of solutions has
no envelope.

EXAMPLE 3. The equation

(y - y'x) 2 = 2y' + 1

is essentially a Clairaut equation and has the solutions

(y - ex) 2 = 2e + 1.

To check for an envelope, we differentiate with respect to e and obtain

2(y - ex) (-x) = 2, 1 + xyc= .
x 2

The family has the following envelope, which is a solution of the differen­
tial equation,

We have left unresolved the question of whether there are solutions of
(2) other than the family (1) and its envelopes. We can obtain other
solutions of (2) by piecing together functions from the family and the
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envelope at points of tangency. For example, the function

{

0,

y = 2x x
2

, 2,

x ~ 0
o ~ x ~ 1

1 ~ :t

(3)

is a solution of the equation of Example 1. The question is, therefore,
whether every solution of (2) must everywhere coincide either with one
of the functions (1), or with an envelope of the family (1). We show in
the following theorem that this is the case.

THEOREM 1. If Y is any solution of y = xy' + g(y'),then y ~·s everywhere
equal either to one of the functions y = ex + gee), or to an envelope of
this family.

Proof. If y satisfies the equation (2), then by differentiating and
simplifying, we see that y also satisfies the identities

y' = xy" + y' + g'(y')y",

y"[x + g'(y')] = o.

On any interval on which y" = 0, y' is some constant c, and from (2) we
conclude that

y = ex + gee).

If the other factor in (3) is zero,

x + g'(y') = 0,

then there is a function e = c(x) satisfying

(4)

(5)

(6)ao = ae [ex + gee)] = x + g'(e);

in fact, the function e(x) = y'(x) satisfies (6), by (5). Equation (6) is
just the condition of Theorem 1, Section 1-5, that the family (4) have an
envelope. By the theorem, the envelope function ep is given by

ep(x) = e(x)x + g(e(x)) = xy'(x) + g(y'(x)). (7)

Comparing (7) and the differential equation,

y = xy' + g(y'),

we see that the solution y is an envelope of the family (4), if y' satisfies (5).
To summarize, a function y which satisfies (2) is one of the functions

y = ex + gee) on any interval where y" = 0, and is an envelope of this
family where x + g' (y') = O.
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The technique of the proof above extends to equations other than the
Clairaut equation. Suppose we have any first order equation which can
be solved for y-that is, written in the form

y = F(x, y'). (8)

The solutions of (8) are given explicitly by the equation itself, once the
derivatives y' are known. If we differentiate (8), we obtain a second order
equation involving only x, y', and y". Such an equation can be regarded
as a first order equation in y'. If this derived equation can be solved for
y', then the solutions of (8) are obtained by substituting these values of y'
in (8).

EXAMPLE 4. Consider again (cf. Example 1) the equation

(9)

Differentiation gives the equation

y' = xy" + y' - !y'y",

y"[x - !y') = O.

Therefore we must have y' = c (if y" = 0), or y' = 2x. Substitution
in (9) gives all solutions,

or

EXAMPLE 5.
2

y = xy' +­
x

(10)

The variables cannot be separated in (10), nor is it exact or a Clairaut
equation. For any solution y, however, we must have

2
1" = xy" + y' - - ,v x2

y" = 2x-3.

Therefore y is a solution if and only if

y' = -X-,2 + e,

and the solutions are, by substitution in (10),

y = x(-x-2 + e) + ~ = ex +!.
x x
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1. Find all solutions, including envelopes.

(a) y = xy' + y' (b) yy' = x(y')2 + 1
(~) (y - xy')2 + 2y' = 0 (d) y - xy' = In y'
(e) y = xy' + (y')2

2. Solve the following equations by first differentiating, and then finding
all values of y'. (The solution for y' is frequently simpler if one substitutes u
for y', and u' for y" after differentiation.)

(a) 3y = xy' + 2x (b) y = x + y' + xy'
(c) y = xy' - In Ixl (d) y = (x + l)y' + x2

(e) y' = 1 + x - y (f) y + xy' = 2x + y'
(g) 2yy' = 3x + x(y')2 (h) y = y' - x + In Iy'l
3. (a) Show that the differential equation of the family y = eIn Ixl + g(e) is

y = xy'ln Ixl + g(xy').
(b) Show, as in the proof of Theorem 1, that the only solutions of the

differential equation of part (a) are the functions y = e In Ixl + g(e)
and the envelopes of this family.

4. Solve the following equations (see Problem 3). Show that the envelopes of
the families of solutions obtained by inspection-can also be found by differentiat­
ing the equation as in Problem 2.

(a) y = xy' In Ixl - (xy')2 (b) y = xy' In Ixl + 1 + 1/xy'

ANSWERS

1. (a) y = ex + e
(b) y = ex + lie, y2 = 4x
(c) (y - ex)2 + 2e = 0, y = 1/2x
(d) y = ex + In e, y = -1 - In (-x)
(e) y = ex + e2, y = -ix2

2. (a) y = x + ex3

(b) y = x + e(I + x) - (x + 1) In 11 + xl
(c) y = ex - 1 - In Ixl
(d) y = -x2 - 2x + 2(x + 1) In Ix + 11 + e(x + 1)
(e) y = x + ee-'"

e
(f) y = I_x+ x + I

(g) 2y = ex2+ 31e, y = ±V3 x
(h) y = ee'" + In lei, y = -(1 + x)

4. (a) y = e In Ixl - e2, y = i (In Ixl)2
(b) y = cln Ixl + lie, y = 2 (In Ixl)1/2 + 1



CHAPTER 2

SPECIAL METHODS FOR FIRST ORDER EQUATIONS

2-1 Homogeneous equations-substitutions. We can change the form
of a differential equation in the following way. If we let y be any SOhl­

tion of
y' = F(x, y)

and introduce a new (unknown) function u by an equation such as y(x)
g(u(x»), then u must satisfy the new equation

g'(u)u' = F(x, g(u»).

(1)

(2)

Conversely, if u satisfies (2), then y satisfies (1). This process of substitu­
tion is of course pointless Unless the resulting equation is simpler than the
original. We study here one type of equation for which a standard substi­
tution, y = xu, always gives an equation in which the variables separate.

A function F of two variables is homogeneous (of degree zero) if and only
if F(tx, ty) = F(x, y) for all numbers x, y, t. The following are examples
of homogeneous functions:

x+y--,
x

xy + x2 sin (y/x)
y2 (3)

If F is a homogeneous function, then F(x, y) depends only on the ratio y/x, .
and hence F can be considered as a function of a single variable u = y/x.
To see this, put t = 1/x in the definition to obtain

F(x, y) = F Gx, ~ y) = F (1, ~) = F(1, u).

The homogeneous functions (3), for example, can be written

x ~ y = 1 + (~),

x 3 + xy2 1 + (y/X)2
y3 + x2y (Y/X)3 + (y/x) ,

xy + x2 sin (y/x)
y2

25

(y/x) + sin (y/x)
(y/x) 2
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A homogeneous differential equation is an equation of the form y' = F(x, y),
where F is homogeneous of degree zero. If we make the substitution
u = y/x in a homogeneous equation, we get, since y' = u + xu' and
F(x, y) = F(l, y/x),

u + xu' = F(l, u).

The variables separate in (4) to give

u' 1
F(l, u) - u x

EXAMPLE 1.
, x + y 1 + (y/x)

y = x - y = 1 - (y/x) .

We let u = y/x, hence y' = u + xu', and the equation becomes

1 + u
u+xu'=--·

1 - u

Simplifying, and separating variables, we get

(4)

1 + u - u + u 2

xu' = --'-----,----'---
1 - u

(1 - u)u' 1
1 + u 2 X

Integration now yields

1 + u 2

1- u'

and hence the solutions of the original equation are given by

EXAMPLE 2. The equation

, x(y + 1) + (y + 1)2
Y = x 2

is not homogeneous, but becomes homogeneous after the substitution
vex) = y(x) + 1. In this case v' = y', and v must satisfy

v' = xv + v
2

= !!. + (!!.)2 .
x2 X X
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Now let u = vjx, and obtain

xu' + u = u + u 2
,

-u- 1 = In Ixl + c.

Reversing the two substitutions, we get

x- v= In Ixl + c,

-x = (y + 1) [In Ixl + c].

EXAMPLE 3. The equation

is not homogeneous, but becomes homogeneous if we consider the inde­
pendent variable to be x + 1 instead of x. If we let t = x + 1 and write
dyjdt = dyjdx, we get the -homogeneous equation

Now the substitution u = y/t, dy/dt = t(dujdt) + u, yields the equation

which gives
-!u-2 = In ItI+ c.

Finally, the solutions of the original equation are given by

1(x + 1)2 .-"2 -y- = In Ix + 11 + c.

The mechanical process of substituting t for x + 1, and dyjdt for
dyjdx = y' can be justified by making a proper substitution. We illus­
trate the argument for the very simple equation

y' = -y-.
x + 1

If (5) is written out completely we have

y'(x) = y(x) .
x + 1

(5)

(6)
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Since (6) is to be an identity for a solution y, the equation can be written
equally well as

'( 1) _ y(x - 1)Y x - - .
x (7)

[For this paragraph only, "y(x - 1)" means "y of x-I," etc.] In (7)
we make the substitution

vex) = y(x - 1),

and (7) becomes

v'(x) = y'(x - 1), (8)

v'(x) = vex) .
x

Separating variables and integrating, we get vex) = ex, whence [by (8)]
y(x - 1) = ex, and y(x) = c(x + 1). We clearly end up with the same
result with the formalism of Example 3. Let y = t + 1, dy/dt = dy/dx,
in (5) to get

dy Y
dt =-.

Integration gives y = et and, by substitution, Y = e(x + 1).
The equation

, ax+by+c
y = px+qy+r' (9)

with aq - bp ~ 0, can be made homogeneous by a substitution of the
form

vex) = y(x + a) - {3. (10)

As indicated above, we can accomplish the same thing as the substitution
(10) by writing

v = y - {3, t = x - a,
dv dy
dt dx' (11)

With the agreement (11), equation (9) becomes

dv
dt

at + bv + (aa + b{3 + e)
pt + qv + (pa + q{3 + r)

(12)

If aq - bp ~ 0, we can find numbers a and {3 such that

aa + b{3 + e = 0,

pa + q{3 + r = 0.
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For a and (3 which are solutions of these linear equations, equation (12)
is homogeneous:

dv
dt

at + bv
pt + qv

a + b(vlt)
p + q(vlt)

EXAMPLE 4.

, x + 2y - 4
y = .

2x-y-3

Let t = x - a, v = y - {3, dvldt = dyldx, and the equation becomes

, t + 2v + (a + 2{3 - 4)v = .
2t - v + (2a - (3 - 3)

The numbers a and {3 which satisfy

a + 2{3 = 4, 2a - {3 = 3

are a = 2, (3 = 1. The substitution t = x - 2, v = y - 1 [properly,
vex) = y(x + 2) - 1] gives the equation

, t + 2v 1 + 2(vlt)V=--= .
2t - v 2 - (vlt)

Now make the substitution u = vlt, v' = tu' + u, to obtain

u + tu' = 1 + 2u
2-u

Hence

tu' = 1 + 2u - 2u + u
2

,

2-u

(2 - u)u' 1
1 + u 2 = t'

Integration gives

2 tan- l u - ~ In (1 + u 2
) = In ItI + c,

and the solutions are given by

2 tan-
l (~) - ~ In (1 + ~:) = In ItI + c,

2 tan-
l
(; D- ~ In [1 + (~ ~rJ = In Ix - 2/ + c.
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PROBLEMS

y

x+y
3. y'

Solve the differential equations in 1 through 5.

1. y' = Y + x 2. y' = 2y - x
x Y

2 2
4. y' = X + y 5. y' = _x_

xy x+ y

6. Show that if y' = F(x, y) is a homogeneous equation, and y = g(x) is a
solution, then y = (l/a)g(ax) is a solution for any number a. Illustrate this
fact with the solutions of Problem 1. Interpret the result geometrically.

7. Find an appropriate substitution and solve (x - y)2y' = 1.
8. Find a substitution which transforms y2 = 2yy' (x + 1) + 1 into a

Clairaut equation and solve it.

Solve the differential equations in 9 and 10.

9 , =2x-5y +3 10 ,= x+y+2
.y 2x+4y-6 .y 2x+y-l

11. The procedure in the text for problems of the form

I ax+by+e
y = px+qy+r

fails if aq - bp = O. Show that in this case ax + by = k(px + qy), and the
substitution u = px + qy separates the variables.

12. Solve y'

ANSWERS

12. 1O(2x + y) + In /5(2x + y) + 71 = 25x + e

1. y = x (In Ixl + c) 2. x = (y - x) [In Iy - xl + c]
3. x = y (In Iyl + c) 4. y2 = 2x2 (In Ixl + c)

5. In 11 _.it - (.it)21_ ~ In 1V5 + 1 + (2y/x) I = -2 In Ixl + e
x x V5 V5 - 1 - (2y/x)

_ 1. Ix - y - 11 .
7. y - 2 In x _ y + 1 + c

8. l = ex + c + 1

9. (x - 1)3 [4 (~ =~) - 1] [~ _ ~ + 2J= e

y+5+1 V5
10. In 11 - y+ 5_ (y + 5YI +~ In ~ 2 - 2

x-3 x-3 V5 y+5+~+V5
x - 3 2 2

-21n Ix - 31 + c
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2-2 Exact equations. The first order equation

M(x, y) dx + N(x, y) dy = 0 (1)

is called exact if there is a function u of two variables such that
u",(x, y) = M(x, y) and uy(x, y) = N(x, y). That is, a function u such
that

du(x, y) = M(x, y) dx + N(x, y) dy. (2)

If there is a function u satisfying (2) for given functions M and N, then
except for an arbitrary additive constant, there is exactly one such func­
tion. We saw in Section 1-2 that the solutions of (1), if (1) is exact, are
just those functions y satisfying u(x, y) = c for some constant c. In this
section we find conditions on M and N which are necessary and sufficient
that (1) be exact and methods for finding the function u.

THEOREM 1 (Necessary condition for exactness). If (1) is exact and
My and N", are continuous, then My = N ",. Specifically, the equality
M y(x, y) = N ",(x, y) must hold for all (x, y) in any region on which there
is a function u satisfying the condition (2).

Proof. Suppose that u is a function satisfying (2); i.e., that '" = M
and Uy = N. The mixed second partial derivatives U",y and '" are equal
where they are continuous, so we must have

My(x, y) = U",y(x, y) = uy",(x, y) = N",(x, y).

The necessary condition My = N", is also sufficient if some geometric
restrictions are made about the region on which the condition holds. We
show this next for the special case in which the region under consideration
is a rectangle. The problem is treated in more generality in the next
section.

THEOREM 2 (A sufficient condition for exactness). If M, N, My and N",
are continuous, and M y(x, y) = N ",(x, y) for all (x, y) in some rectangle R,

R = {(x, y): a ::; x ::; b and c ~ y ::; dl,

then there is a function u defined on R such that u",(x, y) = M(x, y) and
uy(x, y) = N(x, y) for all (x, y) in R.

Proof. We will show that the following function u satisfies the conditions
of the theorem:

u(x, y) = fa'" M(t, c) dt +f N(x, t) dt. (3)

Note that u(x, y) is defined for every (x, y) in R, since the integrands in
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(3) are continuous (functions of t) on the intervals of integration (see
Fig. 2-1). We will need the following formulas from calculus:

iJ~ fa" M(t, c) dt = M(x, c),

iJiJ
x
iY

N(x, t) dt = faY N,,(x, t) dt,

iJiJy i Y

N(x, t) dt = N(x, y).

(4)

(5)

(6)

Using (4) and (5), and the assumption that My = N" within the rectangle,
we obtain* from (3)

u,,(x, y) = M(x, c) + leY N,,(x, t) dt

= M(x, c) + leY My(x, t) dt

= M(x, c) + M(x, t)I::
= M(x, c) + M(x, y) - M(x, c)

= M(x, y). (7)

Since the first integral in (3) does not depend on y, we get immediately
from (6)

uy(x, c) = N(x, y). (8)

* My is a function of two variables, and My(x, t) is the value of this function
at (x, t). Do not confuse My(x, t) with iJ/iJyM(x, t), which is zero.
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The first integral in (3) is the integral of M restricted to the line L 1

(Fig. 2-1) from (a, c) to (x, c), and the second is the integral of N re­
stricted to the line L 2 from (x, c) to (x, y). We need to know that the
functions are continuous, and the identity My = N x holds along the broken
-line path (L 1 and L 2) from (a, c) to any point (x, y) in R. If there were a
region in R where the conditions of the theorem failed (e.g., the shaded
region S of the figure), the argument above could not be used to show
du = M dx + N dy, even for points not in S.

Rather than use the formula of the theorem, it is frequently simpler to
deal with indefinite integrals. Formula (3) for u shows that if we integrate
N with respect to y, we obtain a function which differs from u by a func­
tion of x only [namely, the first integral on the right of (3)).

Schematically,

u(x, y) = JN(x, y) dy + cJ>(x).

To find cJ>, we use the fact that we must have

ux(x, y) = a~ !N(X, y) dy+ cJ>'(x) = M(x, y).

This gives a formula for cJ>'(x) from which cJ> can be found by integration.
Similarly, we can write

u(x, y) = JM(x, y) dx + cJ>(y)

and find cJ> from the condition

aa
y

! M(x, y) dx + cJ>'(y) = N(x, y).

EXAMPLE 1. 2xy dx + (x 2 + 2y) dy = O.

Since (a/ay)(2xy) = 2x = (a/ax)(x 2 + 2y), the equation is exact. Hence

u(x, y) = J2xy dx + cJ>(y)

= x2y + cJ>(y).

The condition uy(x, y) = x2 + 2y gives us

x2 + cJ>'(y) = x2 + 2y, cJ>'(y) = 2y.

Therefore, u(x, y) = x2y + y2, and the solutions of the differential equa­
tion are the functions satisfying x2y + y2 = C.
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u(x, y) = h'" M(t, 1) dt + ~y N(x, t) dt

= h'" 2t dt + ~y (x 2 + 2t) dt

= x 2 - .4 + x 2y + y2 - x 2 - 1

= x2y +y2 - 5.

The formula (3), with a = 2, C = 1, applied to the above problem
yields directly

The functions defined by the equations x 2y + y2 = C and x 2y + y2 ­
5 = c are of course the same..

PROBLEMS

Show that the following equations are exact and solve them.

1. y dx + (x + 1) dy = 0

2. sin y dx + (x cos y + 1) dy = 0
3. (2xy2 + 2) dx + 2x2y dy = 0

y 1
4. - dx = - dy

x2 X

5. [eX + y2 cos (xy)] dx + [sin (xy) + xy cos (xy)] dy = 0

6. (x2 + y2)(X dx + y dy) + 2 dx = 0

7. (In Iy + 11 + l) dx + (y ~ 1 + 2XY) diJ = 0

8. y' = _ 2x + y
x+ 2y

9. With the hypotheses of Theorem 2, show that the integral of N along the
segment from (a, c) to (a, y) plus the integral of M along the segment from
(a, y) to (x, y) gives a function v such that

dv = M dx + N dy.

Prove that v = u. [Hint: The functions u and v differ by a constant. Show that
u = vat some point and hence that the constant is zero.]

10. If du = M dx + N dy, then u is also given by

u(x, y) = 101

[xM(tx, ty) + yN(tx, ty)] dt.

Use this integral to solve the following equations:

(a) (1 + y) dx + x dy = 0
(b) (y2 + 1) dx + 2xydy = 0
(c) dx - sin y dy = 0
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ANSWERS

35

1. xy + y = e 2. x sin y + y = e
3. X2y 2 + 2x = e 4. x + y = ex
5. y sin (xy) + eX = e 6. (x2 + y2)2 + 8x = e
7. x In Iy + 11 + xy2 = e 8. x 2 + xy + y2 = e

10. (a) x + xy = e (b) x + xy2 = c (e) x + cos y - 1 = e

2-3 Line integrals. The concept of an integral along a curve in the plane
has many applications. We introduce the idea briefly here in order to
clarify the treatment of exact equations.

A curve is a set of points of the form

c = {(j(t),g(t)):a ~ t ~ bl, (1)

where j and g are functions with continuous derivatives on [a, b]. We will
say that .

x = jet), y = get), (a ~ t ~ b) (2)

are parametric equations for C. The curve C in (1) is closed if (j(a), g(a)) =
(j(b), g(b)) and is a simple closed curve if (j(tl), g(tl)) = (j(t 2 ), g(t2 ))

implies t l = a and t2 = b, or t 1 = band t2 = a. That is, a simple
closed curve does not intersect itself. (See Fig. 2-2.)

Simple closed curve Nonsimple curve

FIGURE 2-2

If M and N are functions of two variables which are continuous on the
__ curve C in (1), then we define the line integral of M(x, y) dx + N(x, y) dy

along C as

Ie (M(x, y) dx + N(x, y) dy)

= lab [M(j(t), g(t))f'(t) + N(j(t), g(t))g'(t)] dt. (3)
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A curve C can be represented parametrically by infinitely many pairs of
functions (f, g). The integral on the fight side of (3), however, will give
the same value for any pair of functions representing C if the curve is
traced out in a given direction for increasing parameter values. The
definition (3) therefore depends only on the set of points C, with a pre­
scribed direction or orientation along C, and not on the particular choice
of parametric functions for C.

The line integral (3) has the following physical interpretation. If M
and N are respectively the horizontal and vertical components of a force
field defined on the plane, then the integral (3) is the work done by this
force field on a particle moving over the curve C in the prescribed
direction.

As special cases (N(x, y) = 0 or M(x, y) = 0) of (3), we have the
formulas

fe M(x, y) dx = lab M(f(t), g(t»)f'(t) dt,

fe N(x, y) dy = lab N(j(t), g(t»)g'(t) dt.

(4)

(5)

EXAMPLE 1. The line segment C from (0, 0) to (1, 1) can be repre­
sented by the functions f(t) = t, g(t) = t, 0 ::; t ::; 1, and equally well
by the functions h(t) = t2

- 1, k(t) = t2
- 1, 1 ::; t ::; 0. We com­

pute f e (M dx + N dy) for the functions M(x, y) = x, N(x, y) = xy,
using both the above parameterizations, to illustra,te that the integral
depends only on C.

fe (x dx + xy dy) = fo 1

[t + t
2

] dt = ! + !" = i,

( (x dx + xy dy) = (,(2 [(t 2
- 1)2t + (t 2

- 1) 22t] dt
Je Jl .

= h,(2 (2t 5
- 2t3

) dt = t(8 - 1) - !(4 - 1) = l

E:xAMPLE 2. We compute fe -y dx, where C is the unit circle oriented
in the counterclockwise direction. A convenient parametric representation
is x = f(t) = cos t, Y = g(t) = sin t, 0 ::; t ::; 27l". We obtain

((2" (2"Je -y dx = J
o

-sin t (-sin t) dt = J
o

sin 2 t dt = 7l".

EXAMPLE 3. We compute fex dy, where C is the triangle consisting of
the segments C1 : (0,0) to (1, 0); C2 : (1,0) to (0, 1); and C3 : (0, 1) to (0, 0).
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The integral is the sum of. the separate integrals taken over C ll C2 , Ca.
We have

r xdy = 0,
lCI

or x dy = r x(-1) dx = i,
lC2 11

r x dy = O.
lCa

The first integral is zero since on C1 , y is constant, and dy = 0 (that is,
the function g in (5) is constant, and g'(t) == 0). The third integral is zero
since x = N(x, y) == 0 on Ca. For C2 we used x as the parameter, with
y = -x + 1, dy = (-1) dx, and x running from 1 to 0 to match the
orientation of C2 • A more formal procedure would be x = f(t) = 1 - t,
Y = get) = t, 0 :::; t :::; 1, giving

f 11 21
·x dy = (1 - t) dt = [t - it 10 = t.

C2 0

It is not accidental (cf. Problem 7) that the line integrals of Examples 2
and 3 give the areas bounded by the closed curves.

A domain is a set G of points in the plane such that (i) G is open-each
point of G is the center of a disc contained in G, and (ii) Gis connected­
any two points of G can be joined by a curve lying in G. The condition
that G be open means that the set G does not contain any of its boundary
points. For example, the set of points inside a simple closed curve, ex­
cluding the points of the curve itself, is a domain.

The next theorem shows that if M dx + N dy is an exact differential,
then the function u such that du = M dx + N dy can be found as a line
integral of M dx + N dy.

THEOREM 1. If M(x, y) dx + N(x, y) dy = du(x, y) for all (x, y) in a
domain G, then

Ic (M(x, y) dx + N(x, y) dy) = u(c, d) - u(a, b)

for every curve C in G from (a, b) to (c, d).

Proof. Let C be any curve in G from (a, b) to (c, d), and let

x = f(t), y = get),

be parametric equations for C. In particular, (j(a), g(a»)
(j(f3), g(f3») = (c, d). Define a function H on [a, f31 by

H(t) = u(j(t), get»).

(a, b), and
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By our assumption that U x = M, U y = N, we have

H'(t) = ux(j(t), g(t))f'(t) + uy(j(t), g(t))g'(t)

= M(j(t), g(t))f'(t) + N(j(t), g(t))g'(t).

It follows that [cf. (3)]

fe (M(x, y) dx+ N(x, y) dy) = laP H'(t) dt

= H({3) - H(a)

= u(j({3), g({3)) - u(j(a), g(a))

= u(c, d) - u(a, b).

For expressions M dx + N dy which are exact differentials, we will write

j (C,d) ( )
M(x, y) dx + N(x, y) dy

(a,b)

to indicate the line integral taken over any curve from (a, b) to (c, d). By
fixing a point (a, b), and taking any point (x, y) for (c, d) in (6), we get the
following representation for a function u such that du = M dx + N dy.

j (x,y) ( )
u(x, y) = M(x, y) dx + N(x, y) dy .

(a,b)
(6)

The formula given for u in Section 2-2 [Formula (3)] is just the line
integral along a broken line path from (a, c) to (x, y).

We return ~ow to the problem of determining to what extent the condi­
tion My = N x is sufficient that M dx + N dy be exact. The relevant
theorem depends on the following geometric notion. A domain G is
simply connected if the region bounded by any simple closed curve in G
contains only points of G. This says, roughly speaking, that G has no
holes in it; i,e., no curve in G can surround points which are not in G.
The following theorem is a conseqtlence of Green's theorem (see Problem 6),
and we will omit the proof.

THEOREM 2. If My(x, y) = Nx(x, y) for all (x, y) in a simply connected
domain G, then there is some function u defined on G such that du(x, y)
M(x, y) dx + N(x, y) dy for all (x, y) in G.

Once we know that there is a function u defined on G, the function can
be determined by the integral (6). The effect of picking different initial
points (a, b) is simply to change the function u by an additive constant.
The statements of Theorem 2, Section 2-2, are restricted to points within
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a rectangle. A rectangle is merely an example of a simply connected set,
and moreover one in which every point can be reached with the simple
broken line path used in that theorem. The formula of Problem 10,
Section 2-2, is the line integral over the line segment from (0,0) to (x, Y).

PROBLEMS

1. Compute the integrals for the curves specified.

(a) fe [(x + 1) dx - xy2 dy]; C is the parabola y = x2 from (-1, 1)
to (2,4).

(b) fe [(x2 + y) dx + (x + y) dy]; C is the closed curve consisting of the
arc of y2 = x from (1,1) to (1, -1), and the segment from (1, -1)
to (1,1).

(c) fe [x2y dx + Ij(x2 + 1) dy]; C is the boundary of the unit square
{(x, y) : 0 :$; x :$; 1, 0 :$; Y ~ I} oriented counterclockwise.

2. Calculate fe(x + y) dx for the two curves Cland C2. CI is the segment
from (0,0) to (1, 1), and C2 is the broken line from (0,0) to (1,0) and (1,0)
to (1, 1). Conclude that the hypothesis of Theorem 1 is necessary for a line
integral to be independent of path.

3. Calculate fial (2xy dx + x2 dy), where the integral may be computed
along any convenient curve.

4. (a) Is the domain Go consisting of all points of the plane except (0, 0)
simply connected?

(b) Is the domain G consisting of all points of the plane except those of
the form (x, 0), x :$; 0, simply connected? .

5. Verify that the exactness condition of Theorem 2 holds for

-y dx + x dy
x2 + y2 x2 + y2

except at (0,0). Calculate

1 -y X

2 + 2 dx + 2 + 2 dyex y x Y

for CI: the upper half of the unit circle from (1, 0) to (-1, 0) and for C2: the
lower half circle from (1,0) to (-1,0). Reconcile this with Theorems 1 and 2.

6. Green's theorem states that if M, N, My, and N", are continuous on the
set G consisting of a simple closed curve· C and its interior, and if C is oriented
in the counterclockwise direction, then

f£ [N",(x, y) - My(x, y)] dy dx = fe M(x, y) dx + N(x, y) dy.

Prove this for the case N(x, y) == 0, when C is the closed curve formed by
y = (I(x) and y = f(x), with (I(a) = f(a), (I(b) = feb), and (I(x) < f(x) for
a < x < b.
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7. Use Green's theorem (Problem 6) to show that fe-Y dx and fex dy give
the area bounded by the simple closed counterclockwise curve C.

8. Show that x = a cos t, y = b sin t, 0 ~ t ~ 211", are parametric equa­
tions of the ellipse x2ja2 + y2jb2 = 1. Use either formula of Problem 7 to
find the area bounded by this ellipse.

9. Solve the differential equations and specify the domains on which the solu­
tions hold.

I I
(a) dx - dy = 0vx=y vx-y

(
-1 Y xy ) x

2

(c) tan - - 2 + 2 dx + 2 + 2 dy = 0x x y x Y

10. The differential of Problem 5 is exact in the simply connected domain
bounded by the simple closed curve of Fig. 2-2. There is, therefore, a function u
defined on this domain such that u(l, 0) = 0 and du(x, y) = -yj(x2+ y2) dx+
xj(x2+ y2) dy. Find u(-I, 0) and u(-2, 0).

ANSWERS

1. (a) _41
5l 2. I, 2 3. x2y - 2

(b) 0
(c) -f

4. No, yes 5. 11", -11" 8. 1I"ab

9. (a) x - y c2 for points below y = x
(b) x2 + yIn Ixl = c for the right half-plane, or the left half-plane
(c) x tan-1 (yjx) = c for the right half-plane, or the left half-plane

10. u(-I,O) = -11", u(-2,0) = 11"

2-4 First order linear equations - integrating factors. A linear equation
is any equation of the form

y(n) + Pn_1(X)y(n-1) + ... + P1(X)Y' + Po(x)y = q(x).

We will study linear equations in detail in Chapters 3 and 4. Here we
treat the simplest case, the first order linear equation

y' + p(x)y = q(x). (1)

We assume that the functions P and q are continuous on some interval
[a, b]. With this assumption it follows from Theorem I, Section 1-4, that
there is a solution of (1) through each point (xo, Yo) such that a < Xo < b.
Although we cannot conclude from this theorem that the solutions of (1)
are defined on the whole interval [a, b], this is the case, as we show below.
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First consider the special case of (1) in which q(x) == 0,

y' + p(x)y = O. (2)

In (2) we can separate the variables and solve as follows;

y = 0;or

y = 0;or-p(x),
y'
-=
y

In Iyl = - J p(x) dx + In c (c > 0),

Iyl = ce-fp(X) dx (c > 0), or y = 0;

y = ce-fp(X) dx (c arbitrary).

If we write the solutions in the form

yefP(X) dx = c,

then differentiation gives

y'efP(x)dx + p(x)yefp(x)dx = o.

That is, Eq. (2) becomes exact if multiplied by

fp(x)dxe . (3)

If a differential equation becomes exact after multiplication by some
function, such as (3), this function is called an integrating factor for the
equation.

Now return to equation (1), and multiply both sides of this equation
by the function (3). We get the equivalent equation

y'efP(x)dx + p(x)yefP(x)dx = efP(x)dxq(x). (4)

The left side of (4) is an exact differential, as we have seen. Since the right
side of (4) does not involve y, it also is an exact differential, and therefore
efP(x)dx is an integrating factor for (1) as well as (2). The solutions of (4),
and hence (1), can be written

yefP(x)dx = JefP(X)dXq(x) dx + c,

or, in explicit form,

y = e-fp(x)dx [JefP(x)dxq(x) dx + cJ. (5)
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We assemble these facts in the following statement.

. THEOREM 1. If p and q are continuous on [a, b], and PI(x) = p(x) for
all x in [a, b], then eP(x) is an integrating factor for (1). The solutions
of (1) are defined on all of [a, b], and are the functions

y(x) = e-P(X) Lt eP(t)q(t) dt + cl
EXAMPLE 1. y' + 2xy = 3x.

We can write the solutions directly from Formula (6).

y = e-f2xdx [!ef2XdX3x dx + c]
= e-

x2 [fe
x2

3x dx + c]
2 2= e-x [feX + c]

.a + _x
2

= 2 ce .

Alternatively, we find the integrating factor ef2x dx = ex2 and write

eX2 yl + yeX22x = ex23x.

Integration gives

EXAMPLE 2.
1 2

y' - - y = .x - x 2

The integrating factor is

Multiplying by l/x, we get

1 I 1xy - x 2 Y =

and hence the solutions are given by

2--,
x 3

1 1
-y=-+c
X x2 '

1 c
y = - +-.

x x
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N ow we look at an example of an integrating factor for a nonlinear
equation.

EXAMPLE 3. Y dx + (2xy2 + x) dy = O.

This equation is not exact (My = 1 ;= N x = 2y 2 + 1) and is not linear,
since y2 appears. We write the equation iIi the form

x dy + y dx + 2xy2dy = O.

The part x dy + y dx = d(xy) will remain exact if multiplied by any
function of xy. The remaining term, 2xy2dy, becomes an exact differential
if multiplied by (xy)-l, which is therefore an integrating factor. The
equation becomes

(xy)-I(X dy + y dx) + 2y dy = 0,

or
d [In Ixyl + y2] = O. (6)

Notice that y = 0 is a solution of the original equation, but not of (6).
The solutions therefore satisfy

y = 0, or In Ixyl + y2 = C,

which can be expressed in the single formula

Finding integrating factors is gE:meraJly just a matter of recognizing the
common differentials. However, we can determine whether a first order
equation has an integrating factor which depends only on x and give a
formula for the integrating factor in this case.

Suppose the equation

M(x, y) dx + N(x, y) dy = 0 (7)

has the integrating factor jl(x); that is, suppose the following equation is
exact.

jl(x)M(x, y) dx + jl(x)N(x, y) dy = O.

- By the results of Section 2-2, we must have

a a
ay [jl(x)M(x, y)] = ax [jl(x)N(x, y)],

or
jl(x)My(x, y) = jl'(x)N(x, y) + jl(x)Nx(x, y).

(8)
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Rearranging this, we get

J.L'(x) My(x, y) - Nx(x, y)
J.L(x) = N(x, y) (9)

Hence (9) is a necessary and sufficient condition that (8) be exact. Since
the left side of (9) depends only on x, it follows that the right side of (9)
must be a function of x only.

Hence !J. must satisfy

My(x, y) - Nx(x, y)
N(x, y)

q,(x) .

from which we get

J.L'(x)
J.L(x)

q,(x),

We have proved the following theorem.

THEOREM 2. If [My(x, y) - Nx(x, y)]jN(x, y) = q,(x) , a function of
x only, then e/</>(x) dx is an integrating factor for Eq. (7).

EXAMPLE 4. (y2 + 1 + x) dx + 2y dy = O.

The condition of Theorem 2 is satisfied, since

2y - 0
2y

1,

which does not involve y. Therefore e/ldx = eX is an integrating factor,
and

is exact. The solutions are

PROBLEMS

1. Solve the following equations:

(a) y' + (ljx)y = 4x2

(c) y' + 2xy = 2x3

(e) y' + (cot x)y = 3 sin x cos x

(b) y' + y = e"
(d) (x - l)y' + xy = e-"
(f) y" + 2y' = 4x
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2. Show that l/x2, l/y2, and 1/(x2 + y2) are integrating factors for
x dy - y dx = O.

3. Find an integrating factor and solve.

(a) 2y dx + x dy = 0
(b) 2xy2 dx + 3x2y dy = 0
(c) (x - y) dx + x dy = 0
(d) (2y3 + 6xy2) dx + (3xy2 + 4x2y) dy 0
(e) (x in Ixyl + x) dx + (x2/y) dy = 0
(f) (-vi" + y) dx + 2x dy = 0

4. An equation of the form

y' + p(x)y = q(x)yn,

or (m = -n),
ym y' + p(x)ym+l = q(x),

is called a Bernoulli equation. Find a substitution which transforms a Bernoulli
equation into a linear equation in a new unknown.

5. Solve the following equations:

(a) yy' - (2/X)y2 = 1
(b) y' + y = 3exy3

6. Show directly from Theorem 1, Section 1-4, that if y is a solution of (2)
and y(xo) = 0 for some xo, then Vex) == o.

7. Assume Yo is a nonzero solution of (2), and Yi is a solution of (1).

(a) Show by substitution that Yi + eyo is a solution of (1) for every
number e.

(b) Show by Theorem 1, Section 1-4, that every solution y of (1) can be
written y = y~ + eyo for some e.

8. Assume that Yi and Y2 are distinct solutions of (1), and let yO = Yi - Y2.

(a) Show that Yo is a solution of (2).
(b) Write all solutions of (1) in terms of Yi and Y2 (cf. Problem 7).

9. Check that the functions below are solutions of the given linear equation,
and write all solutions of each equation by the method of Problem 8.

(a) 1 - e-x , 1 + 2e-x ; y' + y = 1
(b) x - l/x, x + l/x; y' + (l/x)y = 2
(c) x, x2; (x2 - X)y' + (1 - 2x)y = -x2

10. Show that if Yo is a nonzero solution of (2), then (1) can be solved by the
substitution Vex) = yo(x)v(x), and the solutions are y = Yo[f(q/yo) dx + e].
(This method, called "variation of parameters," extends to higher order linear
equations.)

11. Solve the equations of Problem 9 by the variation of parameters method
(Problem 10).
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ANSWERS

3. (a)x 2y = c
(b) x2y3 = c
(c) V/x + In Ixl = c
(d) x 2y3 + 2x3y2 = c
(e) xIn Ixyl = c
(f) x + 2yVx = c

8. (b) Y = YI + C(YI - Y2)

1. (a) Y = x3 + c/x
(b) y = tex + ce-X

(c) y = x2 - 1 + ce-x2

(d) eX(x - l)y = x + c
(e) y = sin2 x + c esc x
CO V = x2 - X + cIe-2x + C2

5. (a) y2 = -~x + cx4

(b) y2(6eX + ce2x) = 1, Y = 0

9. (a) y = 1 + ce-X

(b) y = x + c/x
(c) y = x + c(x2 - x)

y' = F(x, y)

2-5 Orthogonal families. We will say that two curves are orthogonal if
and only if their tangents at points of intersection are perpendicular lines.
Two families of curves are orthogonal if and. only if every curve of the
first family is orthogonal to every curve of the second family, and vice
versa. Given a family of curves, the orthogonal fam~'ly, or family of orthog­
onal trajectories, is the set of all curves which are orthogonal to every
curve in the given family.

Orthogonal· families of curves occur frequently in physical situations.
For example, the lines of force in a two-dimensional force field are orthog­
onal to the equipotential curves. In the study of heat conduction, one
finds that the isothermal curves are the orthogonal trajectories of the lines
of heat flow.

If

,_ 1
y - - F(x, y)'

is the differential equation of a family of curves, then the line tangent to
one of these curves at a point (x, y) has slope F(x, V). For an orthogonal
trajectory of the family, the tangent line at (x, y) must have slope
-l/F(x, V), since lines are perpendicular if and only if their slopes are
negative reciprocals. Hence the differential equation of the family of
orthogonal trajectories is

There are two steps in finding the family orthogonal to a given one­
parameter family of curves. First, find the differential equation of the
family by differentiating and eliminating the constant. We repeat:
eliminate the constant. Second, replace y' by -l/y' to obtain the differen­
tial equation of the orthogonal family and solve this differential equation.

EXAMPLE 1. Find the family orthogonal to y = cx2
•
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y = txy'.

or

Differentiation gives y' = 2cx, or c = y' j2x. Substituting this value
of c in the original equation, we obtain the differential equation of the
family,

The differential equation of the orthogonal family is therefore

y = ~x (- ~,),

4yy' + 2x = O.

The orthogonal family is the family of ellipses (see Fig. 2-3),

2y2 + x 2 = c2.

EXAMPLE 2. Show that the family y2 = 2cx + c2 is self-orthogonal~

Differentiating, we get 2yy' = 2c, or c = yy'. Therefore, the differential
equation of this family is

y2 = 2xyy' + (yy') 2.

Substituting -ljy' for y' we obtain the differential equation of the
orthogonal family

or

Since this last equation is the same as that for the given family, the
family is self-orthogonal.
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PROBLEMS

[CHAP. 2

Find the orthogonal families and sketch both families in Problems 1 through 5.

2. y = ex4

5. y = ee"

6. Sketch the self-orthogonal family of curves of Example 2.
7. Show that if every curve in the family of rectangular hyperbolas xy = e

is rotated 45°, the resulting family is orthogonal to the original.
8. Show that x2je + y2j(e - a 2) = 1 is a family of ellipses and hyperbolas

with foci at (±a, 0). Show that the differential equation of the family is
(x + yy')(x - yjy') = a 2, and hence that the family is self-orth~gonal.

ANSWERS

1. y = ex 2. x2+ 4y2 = e2

4. y2 = In Ixl + tx2+ C

3. x2+ (y - e)2 = e2

5. y2 = -2x + e

2-6 Review of power series. An indicated infinite sum of the form

<Xl

L anxn = ao + alx + a2x2 + ... ,
n=O

or of the form

(1)

<Xl

L an(x - c)n = ao + al(x - c) + a2(x - C)2 + ... (2)
n=O

is called a power series. We recall a few of the basic facts about power
series.

The series (1) converges at Xo to f(xo) if and only if

(3)

If the limit (3) fails to exist, the series (1) diverges at Xo. If (1) converges
at Xo and IXll < Ixol, then (1) converges at Xl. If (1) diverges at Xo and
IXll > Ixol, then (1) diverges at Xl' It follows that (1) converges only at
zero, or converges everywhere, or there is a positive number r such that
(1) converges on (-r, r) and diverges outside [-r, rl. The number r is
called the radius of convergence, and the interval (-r, r) is called the
interval of convergence of (1). A series mayor may not converge at either
endpoint of its interval of convergence. For a series of the form (2), the
interval of convergence is an interval of the form (c - r, c + r).
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Power series converge absolutely on their intervals of convergence; that is

and
00

L: lan(x - ctl
n=O

converge on the intervals of convergence of

and
00

L: an(x - c)n.
n=O

This insures that we can rearrange the terms of a power series without
affecting the convergence, or the value of the sum. Another consequence
of absolute convergence is that one can multiply two power series by
writing down in any order all products containing one term from each
series.

Power series converge uniformly on any closed interval in the interval of
convergence, but not in general on the whole interval of convergence.
That is, if (-r, r) is the interval' of convergence of

00

L: anxn = f(x),
n=O

and -r < a < b < r, then for every E > 0, there is some No not de­
pending on x, such that

for all x in [a, b), whenever N 2:: No. In other words, the polynomial
which is the Nth partial sum of the series will be uniformly close to f(x)
on [a, b), provided N is sufficiently large. If the series converges on the
whole. line, then it converges uniformly on any finite interval [a, b).

If f(x) = L~=O anxn for x in the interval of convergence, (-r, r), then
f is continuous and has derivatives of all orders on (-r, r). The derivatives
of f are given by the series obtained by termwise differentiation of the
series for f. That is, termwise differentiation does not change the interval
of convergence of a series, and if

00

f(x) = L: anx
n
, x in (-r, r), (4)

n=O
then

00

f'(x) L: n-l xin(-r,r). (5)nanx ,
n=l
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A power series may be integrated term by term over any closed interval
within the interval of convergence. Thus if f is given by (4), r is the
radius of convergence of the series, and -r < a < b < r, then f~f(x) dx
exists since f is continuous on [a, b]. Moreover, the series (of constants)

will converge, and the following identity holds:

By integrating over the interval [0, x], or [x, 0], for Ixl < r, we can obtain
indefinite integrals (antiderivatives) of 1:

-r < x < r.

The series on the right above, obtained by termwise integration of the
. series for f, will have the same radius of convergence as the series for f.

We will say that f is (real) analytic on an interval (a, b) if there is a
.series of the form (2) which converges to f on some interval around c, for
each c in (a, b). Any function given by a convergent power series is analytic
on the interval of convergence of th{) series. Thus if f(x) = L:anxn for
Ixl < r, and lei < ~,there is a series L:bn(x - c)n which converges tof(x)
on some interval around c.

The common functions eX, sin x, and cos x are analytic on the whole
line; their series at zero converge for all x:

sin x = t (_I)n+l 1 x 2n-\
n=l (2n - 1)1

. f... ( l)n 1 2n
cos X = L..J - (2 ') x .

n=O n.

(6)

(7)

(8)

The function vx is analytic on (0, (0). If c > 0, there is a series for vx
of the form L:~=o an(x - c)n which will converge on (0,2c). The function
1/(1 + x 2

) is analytic on the whole line. Thp series for 1/(1 + x 2
) at zero

is the geometric series 1 - x 2 + x 4 - x 6 + ... which converges on
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(-1, 1). The series at the point c will have radius of convergence VI + c2

(the distance between the complex numbers c and i = v=I).
The simplest way of determining the radius of convergence is the ratio

test. If

lim I~I- rn-+co a,,+l - ,

then r is the radius of convergence of (1) or (2). If

1· lan+l! 0Im--=,
n~oo an

(9)

(10)

[note that the ratio in (10) is the reciprocal of that in (9)], then the series
converges for all x.

If the ratio test fails because Ianian+II fails to converge, one can
frequently use the following comparison test. If lanl :s; Ibnl for all n, and
:Ebnxn has radius of convergence r, then :Eanxn has radius of con­
vergence at least r. For example, the ratio test fails for the sine series (7)
since every other coefficient is zero, but the series can be shown to converge
everywhere by comparison with the exponential series (6).

If a function j is analytic on an interval around c, then the coefficients
in the series for j at care .

1a = - j(n)(c)
n n! '

and hence the series is

n = 0, 1, 2, ... , (11)

PROBLEMS

1. Find the interval of convergence for

2. Find the series and its interval of convergence for the indicated function
about the given point.

1
(a) 1 _ x' c = 0 (b) VX, c = 1

(c) In x, c = 1 (d) In lxi, c = -1
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3. Use the geometric series Problem 2(a) to find series for these functions.
Give the interval of convergence in each case.

1 1
(a) 1 _ x 2 (b) 1 + 2x (c) In (1 + 2x)

. 2x 1 I
(d) (1 _ x 2)2 (e) 2 + x (f) tan- x

4. Use (6), (7), and (8) to find series for

(a) ex2 (b) sin (2x) (c) cos vi; (d) sin (x - 1).

5. Derive formula (11). [Hint: If f(x) is given by (4), then f(O) = ao. Since
j'(x) is given by (5),1'(0) = aI, etc.]

6. Suppose Lanxn converges if and only if -1 ::; x < 1. For what values
of x do the following converge?

ANSWERS

1. (a) (-1,1) (b) x = 0 (c) (-2,2) (d) (-1,1)

00

(b) L: (-"-2tx
n

,

n=O

00

2. (a) L: x
n

, (-1,1)
n=O

(b) 1 + t (_I)n+I 1· 3·5 . ',~~2n - 1) (x _ I)n,
n=I n.

00 ( )n+I
(c) L: -In (x - I)n, (0,2)

n=I

(d) t -1 (x+ l)n, (-2,0)
n;"1 n

3. (a) t x
2n

, (-1,1)
n=O

(0,2)

(c) t ~~): xn+I, (-t, t) (d) t 2nx
2n

-
I
, (-1,1)

n=O n=O

00 (_I)n n (f) ~ (-It 2n+I (-1 1)
(e) L: 2n+I x, (-2,2) L.J2n+l x "

n=O n=O
00 2n 00 22n-I

4. (a) L: x
nl

(b) L: (-It+ I
x

2n
-

I

n=O " n=I (2n - I)!

(c) L:noo=o (-It (2
1
n)! x

n
(d) t (-It+

I
1 (x - 1)2n-I

n=I (2n - I)!

6. (a) 1 ::; x < 3 (b) -4 < x ::; -2 (c) -1 < x < 1
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2-7 Series solutions. Even the simplest type of differential equation
may have solutions which cannot be written in terms of elementary func­
tions, such as polynomials, exponentials, trigonometric functions, etc.
For example, the solutions of

(1)

are simply the antiderivatives of e-:z:
2

, but we cannot express these with a
simple formula. We can, however, write a power series for each solution
of (1). Since

:z: + 1 2+ + 1 n+e=l+x -x ... -x ...
2! n!

for all x, it follows that

e-:z:
2= 1 _ x 2 + ~ x4 _ ••• + -!.- (_x 2 )n + . . . (2)

2! n! '

and hence the solutions of (1) are given by

1
:z:

_~ 3 1 5c+ e dt=c+x-tx +--x - ....° 5· 2!

In general we do not know whether the solutions of a given differential
equation are analytic, so we proceed as follows. We suppose that a dif­
ferential equation has a series solution,

(3)

and substitute the series in the equation to determine what the coefficients
must be. That is, we find conditions on ao, at, a2, ... , which are necessary
for (3) to be a solution of the given equation. Then we must check whether
the series found in this way converges, and whether it is in fact a solution.

EXAMPLE 1. Suppose that

y' + 2xy = 1 (4)

has a solution y which is analytic on some interval around zero. Thus

(5)

We know that y' is given on the same interval by the series



54 SPECIAL METHODS FOR FIRST ORDER EQUATIONS [CHAP. 2

Therefore (5) is a solution of (4) if and only if

al + 2a2X + ... + nanXn- 1 + ...
+ 2x(ao + alX + ... + nanXn + ...) = 1 (7)

(8)

is an identity on some interval around zero. Collecting terms, we see that
(7) is equivalent to '

al + (2ao + 2a2)X + (2al + 3a2)X2 + ...
+ (2an_2 + nan)Xn- 1 + ... = 1.

Since two power series converge to the same function if and only if the
corresponding coefficients are equal [by (ll), Section 2-6), and the right
side of (8) can be regarded as the series with coefficients 1, 0, 0, 0, ... ,
it follows that (8) is equivalent to the relations

al == 1,

2ao + 2a2 = 0,

2al + 3aa = 0, (9)

2an_2 + nan =,0.

The recursion relation

(n ~ 2), (10)

determines an, for n\ odd, in terms of al = 1. Thus aa = -i, as = ls,
and in general "., . -

(-lt2n

a2n+l = (2n + 1)(2n - 1) ... 5·3

(-1)n2n(2 . 1)(2 . 2) ..• (2· n)
(2n + I)!

(_I)n2 2nn!

(2n+l)!

Similarly, (10) determines an,fo~ in terms of ao, which is arbitrary
We find that . (' n .

-1) ao ( )
a2n = n! ' n ~ 1 .

Hence y is an analytic solution of (4) if and only if y is given by

_ ~ (_I)n 2n +~ (_I)n2 2nn! 2n+l
y - ao L..J n! x L..J (2n + I)! x .

n=O n=O

(ll)
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The ratio test shows that both series in (11) converge for all x. Therefore
our thus far formal manipulations are justified, and there are analytic
solutions-of (4). The treatment of Section 9 would give us the solutions (11)
in the form

EXAMPLE 2. Find the series in (x - 1) for the solutions of

y' = y + x 2
.

Suppose that (12) has an analytic solution

y = ao + al(x - 1) + a2(x - 1)2 + ....
The function x 2 has the following series in powers of (x - 1):

(12)

(13)

Hence (13) is a solution of (12) if we have the identity

al + 2a2(X - 1) + 3a3(X - 1)2 + ...
= ao + al(x - 1) + a2(x - 1)2 + ... + 1 + 2(x - 1) + (x - 1)2

(ao + 1) + (al + 2)(x - 1)

+ (a2 + l)(x - 1)2 + a3(x - 1)3 + ....
The coefficients must satisfy the relations

al = ao + 1,

2a2 = al + 2, a2 = !(ao + 3),

1
a3 = 3! (ao + 5),

1
a4 = 4! (ao + 5),

1
an = ,- (ao + 5), ·(n :2: 3).n.

Conversely, if the series with the coefficients determined above converges,
then it is a solution. The series is

y = ao + (ao +l)(x - 1) + !(ao + 3)(x - 1)2

'" 1+ L ,- (ao + 5)(x - l)n, (14)
n=3 n.

which converges for all values of x.
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The method of the preceding examples consists simply of substituting
an arbitrary series in the differential equation and determining the coef­
ficients. If only a few terms of the series are wanted, as an approximation
to the solution, it is frequently easier to determine the coefficients directly
from formula (11), Section 2-6.

EXAMPLE 3. Find the first five terms of the series in (x - 1) for the
solution y of

y' = x + y2, (15)

such that y(I) = 1.
Assuming that the solution of (15) such that y(I) 1 is analytic around

1, the solution must be

y = t -\ y(n)(I)(x - I)n.
n=O n.

The initial condition gives the first coefficient, ao = y(I) = 1. The second
coefficient, al = y'(I), can be determined from (15).

y'(l) = 1 + [y(I)]2 = 1 + 1 = 2.

By differentiating (15), we get

y' = x + y2,

y" = 1 + 2yy',

y'" = 2(y')2 + 2yy",

y(iv) ---.: 4y'y" + 2y'y" + 2yy"',

Hence the first five terms of the series are

y'(I) = 2,

y"(I) = 5,

y"'(I) = 18,
y(iv) (1) = 96.

y = 1 + 2(x - 1) + %(x - 1)2 + 3(x - 1)3 + 4(x - 1)4 + ....

PROBLEMS

1. Find the series in x for the solutions of y' = y.
2. Find the series in x for the solution of y' = y + x, yeO) = -1.
3. Use (14) to 'show that the solution of (12) such that y(l) = 0 is

y = 5e(%-I) - 5 - 4(x - 1) - (x - 1)2.
4. Find the series in x for the solutions of y' + xy = x. Show that the

solutions are

00 1 ( x
2)n _%2/2

y = 1 + (ao - 1) ?; n! - 2 = 1 + (ao - l)e .

5. Find the series in x for the solutions of (1 - x)y' + y = 2x. What is the
interval of convergence of the series?
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6. (a) Find all series in (x - 2) for solutions of (x - 2)y' + y = 2x - 1.
(b) Find all solutions, and explain why only one series is found in part (a).

7. Find the series in x for the solutions of y' + y = (x + 1)2.
8. Use (11), Section 2-6, to find the series in (x - 1) for the solution of

y' = x 2 - y such that y(I) = O. Show that the series equals _e-(x-l) +
(x - 1)2 + 1.

9. Use (11), Section 2-6, to find the first five terms of the series in x for the
solution of y' = x + y2 such that yeO) = 1.

10. Use (11), Section 2-6, to find the first three nonzero terms of the solution
of y' = 1 + y2, yeO) = O. Show that the solution is y = tan x and check the
result by evaluating the first five derivatives of tan x at O.

11. Find the series in x for the solutions of y" + y = 0, and show [cf. (7)
and (8) of Section 2-6] that they are y = ao cos x + al sin x.

ANSWERS

00 1
1. y = ao L - x

n

n=O n!

2. y = -1 - x
00 2 n

5. y = ao(I - x) + L n(n _ 1) x, -1 < x < 1
n=2

6. y = (x 2 - X + c)j(x - 2). The only solution analytic around 2 is
y = 3 + (x - 2).

. + + 1 + ) 2 ~ n+l 1 n7.y ao (I-ao)x 2(1 aox+(I-ao)~(-I) nIx

)+ 1 )2 +~ )n+l 1 n8. y (x - 1 -(x - 1 LJ (-1 - (x - 1)
2 n=3 n!

3 2 8 3 34 4
9. y 1 + x + 2! x + 3! x + 4! x + ...

2 3 16 5
10. y = x + 3! x + 5! x + ...

11. a2n = (_I)n (2:)! ao, a2n+l (_l)n (2n ~ I)! al



CHAPTER 3

LINEAR EQUATIONS

3-1 Introduction. A linear equation is one of the form

y(n) + Pn_l(X)y(n-O + ... + Pl(X)Y' + PO(X)y = q(x). (1)

We will always assume that Po, Pb ... , q are all defined and continuous
on some interval (a, b). If the right-hand member, q, in (1) is zero, we
say (1) is a homogeneous linear equation. The following are some examples
of linear equations:

y' + xy = eX,

y(iV)'+ 3y' + eXy = 0,

O"+!!:.-O,+q,O= 0
m 1 '

k
s"--s'=g

m '

y" = eX,

y" + eXy' + x2 y = sinx.

The class of linear equations is large enough to encompass a great many
of the most useful and frequently encountered differential equations. At
the same time, the linear equation is sufficiently specialized to admit a
very comprehensive and elegant theory. We will develop this theory in
detail and see that it provides simple methods of solving a large class of
of linear equations. Our principal tool will be the basic existence and
uniqueness theorem for linear equations. As we indicated in Section 1-4,
there is a general existence and uniqueness theorem for nth order equations
of the form

y(n) = F(x, y, y', ... ,y(n-O). (2)

However, Eq. (1) is much more restrictive than (2), and we should expect
a better theorem for linear equations because of the stronger hypotheses
inherent in the form of (1). Here is the theorem (to be proved in
Chapter 7) for .linear equations.

THEOREM 1. If Po, PI, ... , Pn-b q are continuous on (a, b), and Xo is
any number in the interval (a, b), and Yo, y~, ... , y(ij-l) are any numbers,

58
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(1)

then there is a unique function Y which is a solution of (1) on all of (a, b)
such that

y(xo) = Yo, y'(xo) = Yb, ... , y(n-l)(xo) = ybn-l).

The thing to note about this theorem is that it guarantees the existence
of a solution on the whole interval on which the coefficient functions are
continuous. Moreover, the uniqueness of the solution is an automatic
consequence of the form of the equation (compare with the examples of
Section 1-3).

We saw in Chapter 1 that the uniqueness aspect of such a theorem can
be used to show that a given family of solutions contains all solutions.
Theorem 1 says that there is exactly one solution Y of (1) for any initial
conditions

y(xo) = Yo, y'(xo) = Yb, ... , y(n-l)(xo) = ybn-l). (3)

If we find a family of solutions of (1) such that any initial conditions (3)
are satisfied by some member of the family, then the family contains all
solutions. This idea is central in our development of the theory of linear
equations.

PROBLEMS

1. The equ.ation y' 1 + y2 is not linear, but the function F(x, y) = 1+ y2
has all the continuity properties one could ask for. Show that nevertheless there
is no function which is a solution on the interval [0, 4]. [Hint: Solve the
equation.]

2. Suppose q(x) == 0 in (1) and y is a solution of (1) on (a, b) such that for
some Xo in (a, b).

y(xo) = y'(xo) = ... = y(n-l)(xo) = O.

Show that y(x) == 0 on (a, b).
3. Write out Theorem 1 specifically for the case n = 1 and prove it

(d. Section 2-4).
4. Write out Theorem 1 specifically for the case n = 2.

3-2 Two theorems on linear algebraic equations. In trying to satisfy
initial conditions for solutions of a linear differential equation we are forced
to consider simultaneous linear algebraic equations. The theorems that
are needed from algebra are given here.

Suppose aij for i = 1,2, ... ,n and j = 1,2, ... ,n are given numbers,
and bl , ... ; bn are given numbers. We want to know when there are
numbers CI, ... , Cn satisfying the equations

Clal1 + C2a l2 + + cnaln = bI,

Cla21 + C2a22 + + cna2n = b2,
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(2)

is called the determinant of the system (1).

THEOREM 1. If D ~ 0, there is a unique set of numbers CI, ... , en
satisfying (1).

If the numbers bl, ... , bn in (1) are all zero, then (1) is called a system
of homogeneous equations. Such a system always has at least the solution
CI = C2 = ... = Cn = O. This is called the trivial solution, and we are
generally interested in whether there are other (nontrivial) solutions.

THEOREM 2. If b i = b2 = ... = bn = 0, then (1) has a nontrivial
solution (some Ci ~ 0) if and only if D = O.

PROBLEMS

1. Show that half of Theorem 2 is a consequence of Theorem 1.
2. Consider the family of functions Clex + c2e-x • For what values of x is

there a function y in this family such that y(x) = 1, y'(x) = 2?
3. Consider the family of functions Clex + c2e-x + C3 cosh x. For what values

of x is there a function y in this family such that y(x) = 1, y' (x) = 0, and
y" (x) = O?

4. Solve the system
3Ci + C2 + C3 = 8,
CI - 2C2 + C3 = 0,

CI + C2 - C3 = 0.

5. Find a nontrivial solution of the system

Cl + 2C2 + C3 0,
2Cl - C2 - C3 0,

Cl + 7C2 + 4C3 = 0.

ANSWERS

2. All values of x
3. No values of x, since y"(x) == y(x) for every function in the family.
4. Ci 1, C2 2, C3 = 3

5. Cl = 1, C3 = -3, C3 = 5
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3-3 General theory of linear equations. We will consider the equation

yen) + Pn_I(X)y(n-lJ + ... + PI(X)Y' + Po(x)y = q(x),

where Po, PI, ... , Pn-l> q are defined and continuous on some interval
(a, b). For simplicity, the independent variable x will be omitted from the
coefficient functions Po, ... , Pn-l, q as well as from the dummy function
Y, and the equation will be written

yen) + Pn_Iy(n-l) + ... + PlY' + PoY = q.

The equation obtained from (1) by replacing q by zero,

yen) + Pn_Iy(n-l) + ... + PlY' + PoY = 0,

(1)

(2)

is called the reduced equation for (1), or the homogeneous equaMon associated
with (1).

In this section we will not be concerned with specific solutions to specific
examples of (1). Instead we investigate the general structure of the solu­
tions of (1) and find that there is a simple and elegant theory inherent in
the form of (1). We will show that to solve (1) it is necessary to find only
one solution of (1) and all solutions· of the reduced equation (2). Because
of the linear form of (2), and the fact that the right-hand member is zero,
any linear combination of solutions of this equation is again a solution.
Using Theorem 1 of Section 3-1, we show that the n-parameter family
which is the set of all linear combinations of any n "essentially different"
solutions of (2) is the family of all solutions.

We proceed to fill in the details.

THEOREM 1. If Yo and YI are any solutions of (1), then YI = Yo + u,
where u is a solution of (2).

Proof. Define u = YI - Yo. Then we must show that u is a solution
of (2). Since u' = y~ - vb, and u" = y~' - Y{{, etc., we obtain, upon
substituting u in the left side of (2),

(yin) - y\,n)) + Pn-l (yin-I) - y\,n-l)) + ... + PO(YI - Yo)

(yin) + Pn_Iyin- l ) + ... + POYl)

- (y\,n) + Pn_Iy\,n-l) + ... + PoYo)

= q - q = O.

THEOREM 2. If Yo is a solution of (1) and u is a solution of (2), then
Yo + u is a solution of (1).

Proof. Problem 1.
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The following is a restatement of Theorems 1 and 2:

If Yo is any solution of (1), then the set of solutions of (1) consists of all
functions of the form Yo + u, where u is any solution of (2). That is, to
find all solutions of (1) it 1'S necessary and sufficient to find one solution Yo
of (1) and all solutions u of (2).

The following example illustrates the ideas which are developed in the
sequel.

EXAMPLE 1. Consider the second order equation y" - y = 1 - x.
The function yo(x) = x-I is a solution. The reduced equation is
y" - y = O. By direct verification (Problem 2) one sees that clex + C2e-x
is a solution of the reduced equation for any numbers Cl and C2' To
determine that the family clex + C2e-x contains all solutions of the reduced
equation, we check to see that any initial conditions y(xo) = Yo,
y'(xo) = y~ are satisfied by some function in the family. For any numbers
xo, Yo, y~ there must be numbers Cl and C2 such that

Cle
xo + C2e- xo = Yo,

cle
xo

- C2e- xo = y~.

The determinant of this system is

I
eXo e-xo I
eXo _e-xo

-2 ~ 0,

so there is a solution for Cl and C2. Theorem 1 says there is exactly one
solution for any given initial conditions, and since there is one from the
family clex + C2e-x, this family contains all solutions of the reduced
equation. The solutions of y" - y = 1 - x are therefore the functions
x-I + clex + C2e-x.

The following theorem allows us to look separately at the individual
terms of the right-hand member q in finding a single solution of (1).

THEOREM 3 (Superposition principle) .. If q = ql + q2, and Yi is a solu­
tion of y(n) + Pn_ly(n-ll + ... + PoY = qi, (i = 1,2), then Yl + Y2
is a solution of (1).

Proof. If Yl + Y2 is substituted in the left side of (1), the terms con­
taining Yl and its derivatives can be separated from those containing Y2
and its derivatives. By hypothesis, the terms containing Yl add up to ql,
and those containing Y2 add up to q2.

Now we turn to the structure of the solutions of the reduced equation (2).
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THEOREM 4. If Yl, ... , Yk are solutions of (2), then any linear combina­
tion ClYI + ... + CkYk (Cl> ... , Ck constants) is also a solution of (2).

Proof. The theorem follows by induction once it is proved for any two
functions and any two constants. So assume YI and Y2 are solutions of (2)
and let u = CIYl + C2Y2' Then

U" = CIY'! + C2Y~, etc.

Substituting u in (2), we get

u(n) + Pn_lU(n-l) + ... + PoU

(clyin) + c2y~n» + Pn_I(CIyin- l ) + c2y~n-I» + ...
+ PO(ClYI + C2Y2)

= cI[yin) + Pn_Iyin- l ) + ... PoYtl

+ C2[y~n) + Pn_Iy~n-l) + ... + POY2]

= cIO + C20 = O.

EXAMPLE 2. The functions eX, e-x
, sinh x are solutions of Y'" - Y' = O.

By Theorem 4, any linear combination clex + c2e-x + Ca sinh x is also a
solution. However, anyone of the functions eX, e-x

, sinh x can be written
as a linear combination of the other two (e.g., sinh x = !eX

- !e-X
),

and the family of linear combinations is in reality a two-parameter family,

where C I = CI + !ca and C2 = C2 - !ca. A set of initial conditions
y(xo) = Yo, Y' (xo) = Yb, Y" (xo) = Yb' for this family would consist of
three linear equations in the two unknowns CI and C2 :

y'(xo) = Clexo
- C2e-xo = y~,

y"(xo) = CIexo + C2e-xo = y'r).

Such a system will not always have a solution, and the family does not
contain all solutions.

Now consider in general the problem of satisfying any initial conditions
with some function from a given family. Suppose YlI ... , Yn are solutions
of the homogeneous equation (2), so that each function in the family

Y = CIYl + ... + CnYn (3)
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is also a solution. Consider any set of initial conditions

Y(Xo) = Yo, (4)

If one of the functions (3) is to satisfy (4), we must have numbers Cll ... , Cn

satisfying

= Yo,

(5)CIy'1 (xo) + + cnY~(XO) = Yb,

cIYln-I)(xo) + + cny~n-l'(xo) = ybn- lJ •

According to Theorem 1, Section 3-2, the system (5) is satisfied for some
numbers Cll ... ,Cn provided the determinant of the coefficients is not
zero. For any set of (n - 1) times differentiable functions YI, ... , Yn, the
determinant

YI(X)

W(YI(X), ... , Yn(x)) = y)(x) y~(x)

Yln-l)(x) y~n-l)(x)

Yn(x)

y~(x)

y~n-l)(x)

is called the Wronskian of the functions. Restating the remarks above,
we see that the system (5) will have a solution for CI, ... , Cn provided
W(YI (xo), ... , Yn(Xo)) ,t. O. If the family (3) is to satisfy every set of initial
conditions (in particular, every xo), we must have W(YI (x), . .. ,Yn(X)) ,t. 0
for all x. The situation is actually somewhat simpler than indicated, as
the following definition and theorems show.

DEFINITION 1. Functions UI, ... , Uk are linearly dependent on an
interval I if there are numbers Cll ... ,Ck, not all zero, such that
CIUI(X) + ... + CkUk(X) == 0 on I. The functions UI, ... , Uk are
linearly independent on I if they are not linearly dependent; i.e., if
CIUI(X) + ... + CkUk(X) == 0 implies CI = C2 = ... = Ck = O.

EXAMPLE 3. Linearly dependent functions.

(A) eX, e-x , cosh Xi !eX+ !e-X - cosh x == 0

(B) 0, x, eX; 14·0 + 0 . x + 0 . eX == 0

(C) x + 1, 2x - 3, 5; 2(x + 1) - (2x - 3) - 5 == 0

(D) 2, sin 2 x, cos2 x; 1 ·2 - 2· sin 2 x - 2· cos2 X == 0

Linearly independent functions.

(E) 1, x, x 2
, x 3

(F) eX, e2"', e3x

(G) eX, xex , sin x

(H) 1, cos x
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THEOREM 5. If Ul, ... , Uk are any (k - 1) times differentiable functions
which are linearly dependent on I, then W(Ul(X), ... ,Uk(X)) = °on I.

Proof. Let CIUl(X) + ... + CkUk(X) = °on (a, b) with not all Ci = 0.
Differentiating (k - 1) times, we obtain the relations

CIUl (x) + + CkUk(X) = 0,

CIUi(X) + + ckuHx) = 0,

cluik-1\X) + + ckuick-I)(X) = 0.

(6)

For any fixed x, this is a system of homogeneous algebraic equations in
CI, ... ,Ck. By assumption, this system has a nontrivial solution for each x.
By Theorem 2, Section 3-2, the determinant W(UI(X), ... ,Uk(X)) = °
for all x.

COROLLARY. If the Wronskian of any set of functions is nonzero for
any Xo., then the functions are linearly independent on any interval con­
taining xo.

The converse of Theorem 5 is false for arbitrary functions Ul, ... , Uk
(Problem 7). However, if we have n functions which are solutions of the
nth order homogeneous equation (2), a statement even stronger than the
converse of Theorem 5 is true.

THEOREM 6. If Yl, ... , Yn are n solutions of the nth order homogeneous
equation (2), and W(Yl(XO),"" Yn(Xo)) = ° for some Xo in (a, b),
then Yl, ... ,Yn are linearly dependent on (a, b), and hence W(YI(X), ... ,
Yn(x)) = °on (a, b).

Proof. Recall (Problem 2, Section 3-1,) that the only solution of (2)
satisfying y(xo) = y'(xo) = ... = y(n-lJ(xo) = °is the function iden­
tically zero. Now suppose W(YI(XO), ... ,Yn(Xo)) = 0. Then the system

CIYl (xo)

CIyi(XO)

+ + cnYn(XO)

+ + cnY~(XO)

= 0,

= 0,
(7)

has a nontrivial solution, Cl, ... ,Cn not all zero. For any Cl, •.. , Cn

which are a nontrivial solution of (7), let Y = CIYI + ... + CnYn' Then
Y is a solution of (2), and by (7), we have y(xo) = y'(xo) = =
y(n-lJ(xo) = 0. Therefore Y is identically zero, which says that Yl, , Yn
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are linearly dependent on (a, b). By Theorem 5 the Wronskian of
Yll ... , Yn is identi?ally zero.

COROLLARY. The Wronskian of n solutions of (2) is identically zero,
or is never zero.

THEOREM 7. The nth order equation (2) has n solutions which are linearly
independent on (a, b). If Yll ... , Yn is any set of linearly independent
solutions of (2), then the family

contains all solutions.

ClYl + ... + CnYn (8)

Proof. The fact that (8) contains all solutions is immediate from the
Corollary to Theorem 6. The fact that the Wronskian is never zero for
independent solutions allows us to satisfy any set of initial conditions as
in (5). The uniqueness statement of Theorem 1, Section 3-1, shows that
the solution for any set of initial conditions is in the family (8), and thus (8)
contains all solutions. To see that there are n independent solutions, con­
sider the n solutions Yl, ... , Yn corresponding to the n sets of initial con­
ditions (i), ... , (n):

(i) y(xo) = 1, y'(xo) = y"(xo) = ... = y(n-l\xo) = 0,

(ii) y(xo) = 0, y'(xo) = 1, y"(xo) = ... = y(n-ll(xo) = 0,

The Wronskian of Yll ... , Yn at Xo is

1 0 0 0

010 o
1,

o 0 0 1

so these solutions are independent.
We will refer to (8) as the general solution of the homogeneous equation

(2). Any specific function Yo which is a solution of (1) will be called a
particular solution of (1). The expression

Yo + C1Y + ... + cnYn, (9)

which is the set of solutions of (1), will be called the general solution of (1).
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PROBLEMS
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1. Prove Theorem 2.
2. Verify (see Example 1) that cle" + C2e-x is a solution of y" - y = 0 for

all numbers CI, C2.

3. Show, as in Example 1, that every function in the family clex + C2xeX is
a solution of y" - 2y' + y = 0, and that the family contains all solutions.

4. The functions 2 + x, x - eX, and x + 1 + eX are solutions of a certain
nonhomogeneous second order linear equation.

(a) Find (Theorem 1) two solutions of the reduced equation, neither of
which is a constant multiple of the other.

(b) Write a two-parameter family of solutions of the reduced equation
(Theorem 4) and show that it contains all solutions of the reduced
equation (cL Example 1).

(c) Find all solutions of the given nonhomogeneous equation (Theorems
1 and 2).

5. (See Example 2.) Find by inspection a third solution U of y'" - y' = 0
which is not a linear combination of eX and e-x. Show that the family CIU +
c2ex + cae-x contains all solutions.

6. (a) Show that Ul, .•. , Uk are linearly dependent if and orily if some Uj

can be written as a linear combination of the remaining functions.
(b) Find three functions UI, U2, ua which are linearly dependent and such

that UI cannot be expre:;;sed as a linear combination of U2 and Ua.

(c) Show that any set of functions containing the function identically zero
is linearly dependent.

7. Show that x3 and Ixl 3 are not linearly dependent on [-1,1], but that
W(x3 , Ix1 3) == O. This shows that the converse of Theorem 5 is false.

8. Are x 3 and Ixl 3 solutions on [-1, 1] of (a) any second order homogeneous
linear equation? (See problem 7.) (b) any third order homogeneous linear
equation? (What is the third derivative of Ixl 3 at O?)

9. Which of these sets of functions are linearly dependent on the whole line?

(a) x - 3, 6 - 2x, eX (b) x + 1, 2x - 3, 3x + 4
(c) cos2 x, cos 2x, sin2 x (d) 1, ex, xeX

10. (a) Compute the Wronskians of the functions in (E), (F), (G), and (H) of
Example 3.

(b) Show (Theorem 6) that the functions in (H) are not solutions on
[-1,1] of any second order homogeneous linear equation.

(c) The functions of part (G) of Example 3 are solutions of y"" - 2y'" +
2y" - 2y' + y = O. The Wronskian vanishes (at 7r/2) but is not
identically zero. Why doesn't this contradict Theorem 6?

11. Suppose YI, ... , Yn are linearly independent solutions of (2), and Yo is a
solution of (1). Show directly that any initial conditions are satisfied by some
function in the family yo + ClYI + ... + CnYn.

12. Show that any n + 1 solutions of an nth order homogeneous linear equa­
tion are linearly dependent.
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4. (a) 2 + e", 1 + 2e"; the condition of the problem rules out the choice of
the zero function.

(b) CI + C2e"; any initial conditions can be satisfied with a function from
this family.

(c) x + C1 + c2e"
5. u(x) = 1
6. U2 andu3 must be linearly dependent
8. (a) No, (b) No
9. (a), (b), and (c)

10. (E) 12, (F) 2e6", (G) -2 cos xe2", (ll) -sin x

3-4 Second order equations with constant coefficients; One of the
simplest and most useful cases of the linear equation is the second order
equation

Y" + PlY' + P2Y = q(x), (1)

where PI and P2 are constants. We will examine this equation in some
detail and apply our results in Section 3-5 to some examples from me­
chanics, electricity, etc.

First, let us look at the reduced equation

y" + PlY' + P2Y = o. (2)

The problem is to find two linearly independent solutions. Since two
functions are linearly dependent only if one is a constant multiple of the
other (Problem 1), the check for independence can be made by inspection.

Substituting Y = eTX in the left side of (2), we get

Hence eTX is a solution of (2) if r is a root of the algebraic equation

r2 + Plr + P2 = O.

(3)

(4)

The equation (4) is called the auxiliary equation for (1) or (2). If (4) has
.two real roots, rl and r2, then eT1X and eT2X are the required two solutions
of (2). If (4) has only one real root, ro, then

r2 + Plr + P2 = (r - ro)2 = r2 - 2ror' + r~.

That is, PI = -2ro and P2 = r~. In this case the solutions of (2) are
eToX and xeToX (Problem 2). If (4) has no real roots, the roots are conjugate
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complex numbers, say a + ib, a - ib, and

r2 + Plr + P2 = [r - (a + ib)][r - (a - ib))

= r2 - 2ar + a2 + b2.

In other words,*

(5)

PI = -2a and (6)

One can verify by substitution (Problem 3) that the solutions of (2) m
this case are eax cos bx and eax sin bx.

To summarize, the family of solutions of (2) is

CleT1X + C2eT2X,
cleTox + C2xeT0X,

cleax cos bx + C2eax sin bx,

if r I and r2 are distinct real roots of (4),

if 1'0 is the only real root of (4),

if a ± ib are the roots of (4).

EXAMPLE 1. (A) y" + y' - 2y = O.

The auxiliary equation is r2 + r - 2 = 0, or (r + 2)(r - 1) = O. The
roots are 1 and -2, so the solutions of (A) are clex + C2e-2x.

(B) y" + 4y' + 4y = O.

The auxiliary equation is r2 + 4r + 4 = 0, or (r + 2) 2 = O. The single
root is -2, so the solutions of (B) are y = cle-2x + C2xe-2x.

(C) y" - 2y' + 5y = O.

The auxiliary equation is r2 - 2r + 5 = O. Since the discriminant is
(_2)2 - 4(1)(5) = -16 < 0, the roots are complex numbers a ± ib.
Comparing with (6), we see that a = -!(-2) = 1, and b = vl5 - 12 =2.
The solutions of (C) are y = clex cos 2x + C2ex sin 2x.

Having found all the solutions of (2), we are still faced with the problem
of finding one solution of (1). Later we will give the so-called variation of
parameters method for finding a solution of any linear equation when all
the solutions of the reduced equation are known. For now we consider the
simpler method of undetermined coefficients, which works whenever the
right member q of (1) has the form

P(x)eax cos bx + Q(x)eax sin bx, (7)

* Note that formulas (6) give an easy way to find a and b when (4) has the
complex roots a ± ib; a = -!PI, and b = VP2 - a2 •
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with P and Q polynomials. Some examples of functions of the form (7)
are:

x 3
- 2x + 1

(2 - x)eX

3 cos 2x

x 2 sin x

3 cos x - x sin x

2xeXcos 2x

(a = b = 0, P(x) = x 3
- 2x + 1),

(a = 1, b = 0, P(x) = 2 - x),

(a = 0, b = 2, P(x) = 3, Q(x) = 0),

(a = 0, b = 1, P(x) = 0, Q(x) = x 2
),

(a = 0, b = 1, P(x) = 3, Q(x) = x),

(a = 1, b = 2, P(x) = 2x, Q(x) = 0).

The facts behind the method of undetermined coefficients are stated in
the following theorem, which is proved later as a simple consequence of
the theory of operators.

THEOREM 1 (Method of undetermined coefficients). Let Pn, Qn, P~, Q~

be polynomials of degree n or less.
If q(x) = Pn(x)eaX, then (1) has a solution of the form y = xkP~(x)eaX,

where k is 0, 1, or 2; k = 0 if eax is not a solution of the reduced equation
(2); k = 1 if eax is a solution of (2) and xeax is not; k = 2 if both eax

and xeax are solutions of (2).
If q(x) = Pn(x)eaX cos bx, or q(x) = Qn(x)eaX sin bx, or q(x) =

Pn(x)eaX cos bx + Qn(x)eaX sin bx, with b ~ 0, then (1) has a solution
of the form y = xk(P~(x)eaX cos bx + Q~(x)eaX sin bx) where k is 0 or 1;
k. 0 if eax cos bx is not a solution of (2), and k = 1 if eax cos bx is a
solution of (2).

The "method" consists simply of substituting in the equation a function
of the appropriate form with arbitrary polynomials P~(x) = A o +
Alx + ... + Anxn, Q~(x) = B o + Blx + ... + Bnxn, and seeing what
the coefficients A o, AI, ... ,Bo, B I , ... must be for the function to be
a solution. Note that if q contains either a sine or a cosine term, the
trial function must contain both, and the polynomial coefficients P~,

Q~must both be of the degree which is the maximum of the degrees of
Pn and Qn. The conditions on the factor xk can be remembered as follows.
A trial solution of the same form as q is multiplied by x or x 2

, if necessary,
so that none of the terms of the resulting function are solutions of the re­
duced equation. For example, if q(x) = xex, the trial solution of the same
form is (A + Bx)ex. If eX is a solution of the reduced equation, there is no
point in including the term Aex in the trial function, and the appropriate
function is (Ax + Bx2 )ex. If both eX and xeXare solutions of the reduced
equation, the trial function should be
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EXAMPLE 2. (i) y" - y' - 2y = 1 - x2,

(ii) y" - y' = 1 - x 2
•

The solutions of the reduced form of (i) are cle-x + C2e2x. There is a
solution of (i) of the form

y = (A + Bx + Cx2)eOX = A + Bx + Cx2.

Substitution gives

2C - (B + 2Cx) - 2(A + Bx + Cx2)
or

(2C - B - 2A) + (-2B - 2C)x - 2Cx2.

We must have -2C = -1, -2B - 2C = 0, and 2C - B - 2A = 1.
This gives C = i, B = -i, and A = l The solutions of (i) are

y = i- - !x + ix2 + cle-x + C2e2x.

The solutions of the reduced form of (ii) are Cl + C2ex. Since constants
are solutions of the reduced equation, the trial solution for (ii) is y =
Ax + Bx2 + Cx3

. The coefficients A, B, C are evaluated as above.

EXAMPLE 3. (i) y" - y' - 2y = eX,

(ii) y" - y' - 2y = (1 + x2)eX,

(iii) y" - 3y' + 2y = 2ex,

(iv) y" - 2y' + y = (2 + x)ex.

In (i) and (ii), eX is not a solution of the reduced equation, and the trial
solutions are respectively y = Aex, and y = (A + Bx + Cx2)ex. In (iii)
eX is a solution of the reduced equation, and the trial solution is y = Axex.
In (iv), eX and xeXare solutions of the reduced equation, so the trial solu­
tion is y = x 2(A + Bx)ex. For example, in (iii), substitution of y = Axex

gives A(2 + x)eX - 3A(1 + x)eX+ 2Axex = -Aex. Therefore Axex is
a solution if A = -2, and the set of all solutions is (Cl - 2x)eX+C2e2x.

EXAMPLE 4. (i) y" - y' - 2y = cos x,

(ii) y" + y = cos x,

(iii) y" + y = x cos x.

Here cos x and sin x are not solutions of the reduced equation in (i),
but are in (ii) and (iii). The trial solutions for the three equations are

(i) y = A cos x + B sin x,

(ii) y = Ax cos x + Bx sin x,

(iii) y = (Ax + Bx2) cos X + (Cx + Dx2) sin x.
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EXAMPLE 5. (i) y" + y = eX sin 2x,

(ii) y" - 2y' + 5y = 3xex cos 2x,

(iii) y" - 2y' + 5y = xex cos 2x - eX sin 2x.

Here eX cos 2x and eX sin 2x are not solutions of the reduced equation
for (i), but are for (ii) and (iii). The trial solutions are

(i) y = Aex cos 2x + Bex sin 2x,

(ii) y = (Ax + Bx2 )eXcos 2x + (ex + Dx 2)eXsin 2x,

(iii) same as (ii).

The superposition principle (Theorem 3, Section 3-3) can be used to
extend the method of undetermined coefficients to any equation in which
the right member is a sum of functions of the form (7).

EXAMPLE 6. y" - y' - 2y = 1 - x 2 + 2eX - cos x.

We consider separately the equations y" - y' - 2y = 1 - x 2 [Example
2(i»), y" - y' - 2y = 2eX[Example 3(i»), and y" - y' - 2y = -cos x
[Example 4(i)]. Solutions of these three equations are respectively
! - !x + !x2

, -ex, and 1
3
0 cos x + lo sin x. The solutions of the given

equation are therefore

PROBLEMS

1. Show that two functions are linearly dependent if and only if one is a
constant multiple of the other.

2. Show that if (4) has only one real toot TO, then erox and xerox are solutions
of (2).

3. Show that if (4) has the roots a + ib and a - ib, so that (2) has the form
y" - 2ay' + (a2 + b2)y = 0, then eax cos bx and eax sin bx are solutions of (2).

4. Solve the following equations.

(a) y" + y' + y = 0

(b) y" - 3y' + 2y = 0

(c) y" + y' - 6y = 0

Find all solutions for the following and specify which solution satisfies the
given initial conditions.

5. (a) y" = 0, y(2) = 2, y' (2) = 3

(b) y" - 2y' + y = 0, yeO) = 1, y'(O) 2

(c) y" + 4y = 0, yeO) = 1, y'(O) = -2

(d) y" - 2y' = 0, yeO) = l,y'(O) = 4
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6. y" + 3y' = 6x, yeO) = 1, y'(O) = i
7. y" + y = e"', yeO) = 1, y'(O) = 0

8. y" - 2y' + y = -25 sin 2x, yeO) = -4, y'(O) = 8

9. y" - 2y' + y = e"', y(l) = ie, y'(!) = -ie

Find all solutions for Problems 10 through 14.

10. y" - 3y' + 2y = x2 + 1

12. y" + y' - 2y = e'"

14. y" - 2y' = 4x + e3",

11. y" + y' + y = x + 2 + 3e'"

13. y" - 2y' + 2y = e'" cos x

Write the form of a single solution for each of the following, but leave the
eoefficients undetermined.

15. y" - 4y = (x3 - 2x)e2", + x cos x

16. y" + 2y' - 3y = xe'" + e-3", sin x + e'"

17. y" + 4y' + 8y ;" xe-2"'(3 + sin 2x)

18. (a) Prove that if q(x) = ao + alX + + anxn, and P2 ~ 0, then (1)
has a solution y = Ao + AIX + + Anxn. [Hint: Start with the
coefficient of xn after substitution and work backwards.]

(b) Consider the cases P2 = 0, PI ~ 0, and PI = P2 = O.
(c) Show that if q(x) = (ao + alX + ... + anxn)eQ

"', the substitution
y(x) = ea",z(x) changes (1) to a linear equation in z with a polynomial
right member. Use this and parts (a) and (b) to prove the first half
of Theorem 1.

ANSWERS

4. (a) Y
-(112)", V3 + -(112)",. V3

= Cle cos "2 x C2e sm"2 x

(b) y = cle'" + c2i'" .
(c) y = cIl'" + c2e-3

",

5. (a) y = CI + C2X, Y = -4 + 3x
(b) y = (CI + c2x)e"', y = (1 + x)e'"
(c) y = CI cos 2x + C2 sin 2x, y = cos 2x - sin 2x
(d) y = CI + C2e2"" y = -1 + 2e2",

6. y CI + c2e-3", ~ ~x + x2, Y = 2 - e-3", - ~x + x2

7. y = Ci cos x + C2 sin x + !e"', y = !(e'" + cos x - sin x)
8. y = (Ci + c2x)eX - 4 cos 2x + 3 sin 2x,

y -4 cos 2x + 3 sin 2x + 2xe'"
9. y (CI + C2X + !x2)e"', y = (1 + !x2)e'"

10. y = :£ + ix + !x2+ cle'" + c2e2",

"'+ -(112)",( V3 . V3 )11. Y = 1 + x + e e CI cos "2 x + C2 sm"2 x
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12. Y (Cl + !x)ex + c2e-2x

13. y !xeXsin x+ eX(cl cos x + C2 sin x)
14. y -x - x2 + !e3x + Cl + c2e2x

15. y = x(A + Bx + Cx2 + Dx3)e2X + (E + Fx) cos x + (G + Hx) sin x
16. y = x(A + Bx)ex + Ce-3x sin x + De-3x cos x
17. y = x(A + Bx)e-2x sin 2x + x(C + Dx)e-2X cos 2x + (E + Fx)e-2x

3-5 Applications. Many of the common differential equations which
arise in applications are of the type

Y" + PlY' + P2Y = q(x) (PI, P2 constants), (1)

which was treated in the preceding section. In this section we will examine
the differential equations of some simple physical systems and try to
interpret the solutions in physical terms.

As a first example, consider a block of mass m attached to a spring and
sliding on a horizontal table (Fig. 3-1). Let the spring constant be b2 lb/ft
so that the spring exerts a force of -b2s lb when the spring is stretched
(s > 0) or compressed (s < 0) s ft. Assume that the assorted frictional
effects exert a force proportional to the speed s' = ds/dt, and of course
opposing the motion. This so-called damping force can be written -2as',
with a ~ O. Since mass times acceleration (s" = d2s/dt2

) equals the
total force, we have the equation ms" = -2as' - b2s, or

If
2a' b2

s" + - s' + - s = O. (2)
m m

(3)

/.C.. 2\ .

s" + 2a s' + ~·s = 1.. F(t).
m m m

If in addition some external force F(t) acts on the mass, the equation
becomes

As an example of (3), let the mass hang from the spring (Fig. 3-2), so
there is a constant force F(t) = mg exerted by gravity.

The equation (3) also appears in the study of electric circuits. The cur­
rent i in a series circuit containing a resistance R, inductance L, and

Motion-

1-Natural-I-s--l
length . I Forces:

F(t)­
_-b2s
--2as'

FIGURE 3-1
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capacitance C is determined by the equation

(4)

(5)E' = F,
1

C = b2 'L= m,R = 2a,

where E(t) is the electromotive force applied at time t. If we have the
equalities

(6)
mm

then Eqs. (3) and (4) are identical except for the dummy function used.
This formal similarity between electric circuits and vibrating mechanical
systems makes it possible to study the behavior of a mechanical system
by setting up the corresponding circuit {by (5)] and measuring the current
directly.

Now let us examine the solutions of (2), which will be added to any
particular solution of (3), or with the changes (5), to any solution of (4).
Physically, the solutions of (2) represent the motion which results if the
system of Fig. 3-1 is set into motion and then released with no further
force applied. These solutions are called transients, since the motion they
represent dies out as t increases. The roots of the auxiliary equation for (2)
are r-'

-a + Va2 - b2m -=-a - Va 2 - b2m
and

The nature of the solutions will depend on the sign of a2
- b2m; that is,

on the relative magnitudes of the damping force and the restoring force
times the mass. Let us consider separately the cases a2 > b2m,
a2 = b2m, and a2 < b2m.

Case I (a2 > b2m; overdamping). The roots (6) are distinct real
numbers, and the solutions of (2) are the functions

(
-a + va2

- b2m) (-a - Va 2
- b2m)

8 = Cl exp t + C2 exp . t.
m m (7)

Motion t Forces: mg

~

t

FIGURE 3-2
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Since a > y'a2
- b2m, both terms in (7) are of the form ce-pt

, p > 0,
and tend monotonically to zero as t ~ 00. The functions (7) change sign
once or not at all (Problem 1), depending on the initial conditions.

Case II (a2 = b2m; critical damping). The auxiliary equation has one
real root, -aim, and the solutions of (2) are

(8)

The exponential is always positive, so each function (8) changes sign at
most once. In both Cases I and II the damping force predominates, and
there is no oscillation. The mass of Fig. 3-1 crosses over the equilibrium
point at most once, then returns toward the equilibrium position. This
kind of behavior is illustrated by the wheels of an automobile acting under
the influence of the springs and shock absorbers.

. Case III (a2 < b2m; underdamping). The roots (6) of the auxiliary
equation are the complex numbers -aim ± iw, where

1
w = - Y mb 2 - a2 •

m
(9)

(10)

(11)C2
COS a = -;:.:::;::::==:::::

YC2 + c2
1 2

The solutions of (2) are

s = e-(a/m)t[Cl cos wt + C2 sin wt].

If we define new constants A and a by

. A = Yc2 + c2 sin a = Cl
1 2' YC2 + c2

1 2

then (10) can be written

s = Yc2 + c2 e-(a/m) t { Cl cos wt + C2 sin wt}
1 2 Y c2 + c2 Y c2 + c2

1 2 1 2 (12)
= Ae-(a/m)t sin (wt + a).

The solutions are damped sine curves (Fig. 3-3). The motion is an oscilla­
tion about the equilibrium point with the amplitude of the vibrations
decreasing to zero as t increases. The period of the vibration, or time re­
quired for a complete cycle, is 2'rr/w sec. The frequency is w/27r cps.

In case the damping effects are negligible, a = 0, we have what is called
simple harmonic motion. The equation (2) in this case is

b2

8"+-S=0
m '

(13)
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FIGURE 3-3

and the solutions are pure sine curves

bt . bt
8 = CI cos vm + Cz sm vm'

or

(14)

Now let us consider the situation in which the vibrations are forced,
as in (3) or (4). The solutions we have found for (2) describe transient
effects; the motion they represent is superimposed on the motion (a par­
ticular solution) which corresponds to the forcing function. The type of
forcing function which can realistically be considered in (3) or (4) is of
course limited; an unbounded function, for example, would not be reason­
able. We will consider a forcing function of the form F(t) = E sin (wot)
which is the case, for iristance, when an alternating electromotive force is
applied to the circuit (4). The equation we consider is therefore

2a bZ E.
8" + - 8' + - 8 = - sm (wot).

m m m

By Theorem 1, Section 3-4, there is a solution of (15) of the form

8 = Al cos (wot) + A z sin (wot),

(15)
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or equivalently, of the form

8 = A sin (wot - a).

Substitution of (16) in the left side of (15) gives

{
b2 - mw~ . 2awo }A m sm (wot - a) + ----:m:- cos (wot - a) "

Now let

1
= - v(b2 - mw2) 2 + 4a2w2mOo'

and write (17) in the form

{
b2 - mw~ . 2awo )}

AK mK sm (wot - a) + mK cos (wot - a "

The quantity K is chosen so that

(
b
2

- mw~)2 + (2awo)2 = 1
mK mK '

and hence there is a number a such that

(16)

(17)

(18)

b2
- mw~

cos a = mK

For this value of a, (18) becomes

and
. 2awo

sma= mK" (19)

AK sin (w.ot). (20)

Therefore (16) is a solution of (15) provided a is determined by (19) and
AK = Elm; that is, if

(21)

For a forcing function F(t) = E sin (wot), the solutions will all approximate,
as the transients die out, a sine curve with the same frequency wo/27r
as the forcing function. The maximum displacement, as one would expect,
will not occur at the same time as the maximum force, but will lag by an
interval of alwo seconds.
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If there is little damping (a is small) and the frequency wo/27r of the
driving force approaches the natural damped frequency w/27r [Formula (9)]
of the system, then the amplitude A can be very large. (See Problem 3.)
This is the phenomenon called resonance.

EXAMPLE 1. (See Fig. 3-2.) If a block weighing 32lb is suspended
from a spring, the spring stretches 16 in. (t ft). Suppose the damping force
in pounds equals twice the numerical value of the speed in feet per second.
Find the position of the block at time t if the block is released at t = °with
zero velocity and with the spring at its natural length.

The equation is (3) with F(t) = 32, 2a = 2, and m = 1 (taking
g = 32 ft/sec2). The spring constant b2 is given by tb 2 = 32. Hence
b2 = 24, and the equation is

s" + 2s' + 24s = 32,

with the initial conditions

s(o) = 0, s'(O) = 0.

The roots of the auxiliary equation are

-l+V23i and -1 - V23i,

and the solutions of the reduced equation are

A particular solution of the equation is clearly the constant s = t. When
t = 0, s = t + Cl = 0, so Cl = -l The velocity at time t is given by

s' = _~[_e-t cos (V23 t) - V23 e-t sin (V23 t)]

+c2[-e- t sin (V23 t) + V23 e- t cos (V23 t)].

When t = 0, s' =. -!(-1) + c2V23 = 0, so C2 = -4/(3V23). The
position s at time t is

s = ~ - ~e-t [cos (V23 t) + _~ sin (V23 t)].
v23

EXAMPLE 2. The forces on a pendulum of mass m and length L are
shown in Fig. 3-4. The force mg of gravity can be resolved into a compo­
nent along the length of the pendulum, and a component mg sin e in the
direction of the motion. We measure distance s along the arc of the
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FIGURE 3-4

F2 -

I-S1
~a-~a~

FIGURE 3-5

[CHAP. 3

pendulum, so s = LO, and s" = LO". If we assume that there IS no
friction, the equation is

ms" = -mg sin 0, or 0" + i sin 0 = o.

For small values of 0, sin 0 can usefully be approximated by 0, and we can
assume the pendulum satisfies the equation

0" + f 0 = O.

This is the simple harmonic motion of (13), and the motion is periodic
with constant frequency (27r.../L7(;)-1. To study motion other than small
oscillations about 0 = 0, the exact equation must be used.

EXAMPLE 3. A bar of weight W lies across two counter-rotating cylinders
as in Figure 3-5. If the coefficient of friction between the bar and the
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rollers is JJ., then the left cylinder exerts a horizontal force of JJ.F I, and the
right cylinder exerts a horizontal force of -JJ.Fz, where F l and Fz are the
vertical forces on the rollers due to the weight of the bar. Since F 1 +
Fz = W, and (a + s)F l = (a - s)Fz, the equation describing the posi­
tion of the bar's center of gravity is (Problem 5)

Sll + gJJ. S = 0,
a

and the motion is simple harmonic.

PROBLEMS

1. Show that the functions (7) change sign once for positive t if q/Cz < -1
and do not change sign if c11Cz ~ -1. [Hint: consider the function 8 = q e-pi+
cze-ql, where 0 < P <q, and write s = cle-PI[I + (cz!q)e(p-q)t].]

2. Suppose the mass of Fig. 3-1 satisfies equation (2) and aZ = bZm. Express
8 in terms of the initial position So and initial velocity s~. Suppose So > 0:
For what initial velocities 80 will the mass fail to cross the equilibrium point?

3. Find the amplitude A [formula (11)] of the solution of (15) when the
frequency wo of the driving force equals the natural damped frequency [formula
(9)] of the system.

4. Write the solution of the equation of Example 1 in the form 8 = !- +
Ae-i sin (v23 t + ex); that is, find A and ex so this formula satisfies the initial
conditions 8(0) = 0 = 8' (0).

5. Complete the derivation of the equation of Example 3. What is the maxi­
mum velocity the center of gravity of the bar can have midway between the
rollers without the bar falling off?

6. What length pendulum (Example 2) will swing from one side to the other
each second? (Take g = 32 ft/secz.)

7. A cylinder of mass m has a cross section area of 2 ftz. The cylinder floats
with its axis vertical in water of density p Ib/ft. Show that if the cylinder is
disturbed from equilibrium, it bobs up and down in simple harmonic motion.
Find the frequency of the motion. (The bouyant force is equal to the weight of
water displaced.)

8. A 16-ft chain weighing 21b/ft (total mass equals 1) rests on a table with
part of the chain hanging over the edge of the table. The coefficient of friction
between the chain and table is k, so that friction exerts a retarding force of
k· (16 - x) . 21b when x feet of chain are over the edge of the table. Suppose
the chain is released with 6 ft hanging over the edge. How long does it take the
chain to slide off?

9. A block weighing 641b hangs from a spring as in Fig. 3-2, and stretches
the spring 6 in. The block is also attached to a shock absorber which exerts a
force of 4v Ib, where v is the speed in feet per second. If the block receives an
impact giving it an initial velocity of 20 ft/sec downward at the equilibrium
position, find the position at time t. (Measure 8 downward from the natural
length of the spring, and use g = 32 ft/secz.)
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3. A

2. S = [SO + (Sb + a:) tJ e-<almlt;

Em

ava2 + 4m2w2
o

4. A - ~ ~ == -1.36, IX ==

5. Sb = va;;;;.
7.! IP cps

7l" '\j~

9. S = ~ +~ e-
t
sin (V63 t)

aso
m

1.37

6. 3.24 ft

8. ~ cosh-1 6 sec



CHAPTER 4

SPECIAL METHODS FOR LINEAR EQUATIONS

4-1 Complex-valued solutions. The treatment of homogeneous linear
differential equations with constant coefficients is much simplified if we
consider complex solutions. We first review some of the basic facts about
complex functions.

A complex-valued function f of a real variable is a rule which assigns a
unique complex number to each real number x in the domain of fi thus
for each x, f(x) = u(x) + iv(x), where u(x) and vex) are real numbers. A
complex-valued function therefore consists of a pair of real functions, u
and v, which are called respectively the real part of f and the imaginary
part of f. Limits are defined for complex functions in the same way as for
real functions, only replacing the notion of distance between real numbers
by the distance between complex numbers. If z = u + iv and w = r + is,
with u, v, r, s real, then the distance between z and w is

Iz - wi = v(u - r)2 + (v - S)2.

DEFINITION 1. If f = u + iv is a complex function, then

lim f(x) = Uo + ivo
x---+xo

(1)

if and only if for each positive number E, there is a positive number 0
such that If(x) - (uo + ivo)! = lu(x) + iiJ(x) - (uo + ivo)/ < E when­
ever 0 < Ix - xol < o.

From (1) it is clear that lu(x) + iv(x) - (uo + ivo) I is small if and
only if both lu(x) - uol and Iv(x) - vol are small. With this in mind,
the following theorem follows readily from the definition above.

THEOREM 1. Iff = u + iv, then lim:z;-+:z;of(x) = Uo + ivo if and only if
lim:z;-+:z;o u(x) = Uo and lim:z;-+:z;o vex) = Vo.

Proof. Problem 1.
The derivative of a complex-valued function of a real variable is defined

in the same way as the derivative of a real function, and we use the same
notation.

DEFINITION 2. If f = u + iv, then we define

Df(x) = f'(x) = lim f(x + h) - f(x) .
h->O h

83



84 SPECIAL METHODS FOR LINEAR EQUATIONS [CHAP. 4

The difference quotient for f can be written

f(x ~ h) -- f(x)
h

u(x + h) + iv(x + h) -- u(x) -- iv(x)
h

= u(x + h) -- u(x) + i vex + h) -- vex) .
h h

(2)

,Applying Theorem 1 to (2), we see that both expressions

u(x + h) -- u(x)
h

and vex + h) -- vex)
h

must approach limits if f is differentiable. Therefore f is differentiable if
and only if both u and v are, and we have the formula

Df(x) = f'(x) = u'(x) + iv'(x). (3)

The familiar theorems for derivatives of real functions go over unchanged
to complex functions (Problem 2). The sum, product and quotient rules,
and the chain rule, are exactly the same for real and complex functions.
For example,

D(j(x)g(x» = f(x)g'(x) + f'(x)g(x) ,

and
Df(g(x» = f'(g(x»g'(x),

whether f and g are real or complex.

EXAMPLE 1.

(i) D[x2 + x + i(x3 + cos x)] = 2x + 1 + i(3x2
-- sin x)

(ii) D[eX (sin x + i cos x)] = eX (cos x -- i sin x) + eX (sin x + i cos x)

= eX (cos x + sin x) + iex (cos x -- sin x).

Here we used the product rule with f(x) = e"', g(x) = sin x + i cos x.

(iii) D(x + iX 2
)2 = 2(x + ix2 )(1 + i2x)

= 2(x -- 2x3
) + i6x2

.

Complex functions have been introduced so we will have at our disposal
the complex exponential functions, erx

, with r complex. These functions,
defined next, are the basic solutions of the linear homogeneous equation.

DEFINITION 3. If a and b are real numbers, then

e(a+ib)x = eax cos bx + ieax sin bx. (4)
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The motivation for this definition is discussed in Problem 5. Let us
now compute the derivative of e(a+ib)x in accordance with (3).

De(a+ib)x = D[eax cos bx + ieax sin bx]

= aeax cos bx - beax sin bx + i(aeaX sin bx + beax cos bx)

(a + ib)eax cos bx + i(a + ib)eax sin bx

= (a + ib)[eax cos bx + ieax sin bx].

Comparing this formula with (4) we see that

whether r is real or complex.* (5)

Just as for real· functions, we say a complex-valued function is a solu­
tion of a differential equation if the equation becomes an identity when
the function and its derivatives are substituted. For example, if Y = eix,
then.y' = ieix, y" = _eix, and Y is a solution of y" + Y = O. We are
of course primarily interested in real solutions, and the following theorem
makes the connection between real and complex solutions of homogeneous
linear equations.

THEOREM 2. If Y = u + iv, where u and v are real functions, then Y is a
solution of

yen) + Pn_Iy(n-lJ + ... + PlY' + PoY = 0, (6)

where Po, ... ,Pn-l are real functions or real constants if and only if
u and v are solutions of (6).

Proof. The various derivatives of yare given by y(k) = U(k) + iv(k).
Substituting y into the equation and separating the real and imaginary
parts, we get the complex function

[u(n) + Pn_IU(n-lJ + ... + PIU' + Po]

+ i[v(n) + Pn_IV(n-lJ + ... + PIV' + Pov].

This function is identically zero if and only if its real and imaginary parts
are; i.e., if and only if both u and v are solutions of (6).

Returning to the exampl~ above, the fact that eix = cos x + i sin x is
a solution of y" + y = 0 gives us the real solutions cos x and sin x.

N ow let us try to find solutions of the form y = erx for any homogeneous
linear equation with constant real coefficients.

yen) + Pn_Iy(n-lJ + ... PlY' + PaY = O. (7)

* One way of defining the real exponential eax is to say that it is the solution
of y' = ay such that yeO) = 1. The fact that eTX

, with r complex, satisfies
y' = ry, yeO) = 1 is one justification of the definition (4).
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Substituting y = eTX
, r possibly complex, we get

which is equivalent to

rn+Pn_Irn - 1 + ... + Pir + Po = O.

(8)

(9)

Thus eTX is a solution of (7) if r is a real or complex root of (9). As in
Section 3-4, (9) will be called the auxiliary equation for (7). If (9) has a
complex root a + ib, then the conjugate complex number a - ib will also
be a root (Problem 6), since the coefficients Pi are real. For each pair of
conjugate complex roots a ± ib of (9) we have the two complex solutions
of (7), eax cos bx + ieax sin bx and eax cos bx - ieax sin bx, and the two real
solutions eax cos bx and eax sin bx. For each real root r, we have the real
solution eTX

•

Therefore, if the auxiliary equation has no repeated roots, the required n
real solutions are the exponential functions corresponding to the real roots, and
the real and imaginary parts of the exponential functions corresponding to the
complex roots. The proof that the n functions found in this way are linearly
independent, and the solution of (7) when the auxiliary equation has
repeated roots are given in Section 4-3.

EXAMPLE 2. y'" - 3y" + 7y' - 5y = 2 - 5x - 8e-x•

For this nonhomogeneous equation, we must find one particular solution
and the general solution of the reduced equation. The auxiliary equation
is r3

- 3r2 + 7r - 5 = O. By inspection, 1 is found to be a root of
the auxiliary equation, and therefore r - 1 is a factor of the left side.
Division by r - 1 gives the other factor r2

- 2r + 5. The remaining
two roots of the auxiliary equation are the roots of r2

- 2r + 5 = 0,
which are found by the quadratic formula to be 1 + 2i and 1 - 2i. The
complex function eO +2i

)x is a solution of the reduced equation, and eX cos 2x,
eX sin 2x are the corresponding real solutions. The general solution of the
reduced equation is therefore

To find a particular solution of the given equation, we try a function
of the form A + Bx to fit the term 2 - 5x, and a function of the form
Ce-x to fit the term -8e-x , Substitution of y = A + Bx + Ce-x gives
(7B - 5A) - 5Bx - 16Ce-x

. Therefore C = t, B = 1, and A = 1.
The general solution is
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PROBLEMS

1. Make a formal proof of Theorem 1 by filling in the details of this outline:
First, suppose limx->xo u(x) = Uo and limx->xo v(x) = vo. Let E > O. Choose
positive numbers (h, (52 such that lu(x) - uol < E/V2 if 0 < Ix - xol < lh
and Iv(x) - vol < e/V2 if 0 < Ix - xol < Oz. Show that If(x) - (uo + ivol < E

if 0 < Ix - xol < min (01, 02). Second, suppose limx->xof(x) = Uo + ivo. Let
E > O. Pick 0 > 0 such that If(x) - (uo + ivo)/ < E if 0 < Ix - xol < O.
Show that lu(x) - uol < E and Iv(x) - vol < E if 0 < Ix - xol < o.

2. Let f and g be differentiable complex functions with f = u + iv and
g = r + is. Use the differentiation formulas for real functions and (3) to verify
the following:

(a) D(f + g) = Df + Dg (b) D(cf) = cDf, c a complex constant.
(c) D(fg) = fDg + gDf (d) D(f/g) = (gDf - fDg)/g2

Note. Since the real functions are a subclass of the complex functions (they are
the complex functions u + iv with v = 0), these formulas hold if one function is
real and the other is complex.

3. (a) Differentiate eX sin x + iex cos x and check the result which was· ob­
. tained in Example l(ii) with the product rule.

(b) Expand (x + ix2)2 and then differentiate to check the chain rule
computation of Example l(iii).

4. Compute the following derivatives.

(a) D(x sin x + i(x2 + 1)) (b) D(x2 + 2ix + 1 - ix2)
(c) DV-1 - x2 (d) D[(x + ix2)(sin x + i cos x))

5. Show that the substitution of ib for x in the series for eX [(6), Section 2-6)
gives eib = cos b + i sin b. The property ePe q = ep +q is an algebraic property
of the series for eP, eq

, and ep +q and doesn't depend on whether P and q are real
or complex. This shows that ea+ib = eaeib = ea(cos b + i ~in b), and e(a+ib)x =

eax+ibx = eax(cos bx + i sin bx).
6. If z = a + ib, with a and b real, then the conjugate of z is the number

Z = a - ib. Let z = a + ib, and w = c + id be any complex numbers.

(a) Verify that z+ w = Z+ iii. (b) Verify that (zw) = ziii.
(c) Let P(z) = Po + PIZ + ... + Pnzn, with Po, ... , pn real. Show that

P(z) = P(z).
(d) Show that if Zo is a root of the polynomial equation P(z) = 0, P as in (c),

then zo is also a root.

7. Solve the following equations.
(a) y(iv) - y = 4 + e2x (b) y'" + 3y" + 4y' + 2y = 2x

(c) y'" + 4y" + Sy' = 5
(d) y'" - 6y" + 13y' - lOy lOx2 - 6x - 4

8. (a) Verify that 2 + 2i is a root of the equation

r4 - 5r3 + 40r - 96 = O.

(b) Solve the equation y(iv) - 5y'" + 40y' - 96y O.
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4. (a) x cos x + sin x + i(2x)
(b) 2x + i(2 - 2x)
(c) ix(1 + xZ) -lIZ

(d) -x cos x + (xZ+ 1) sin x + i[(xZ+ 1) cos x + x sin xl
7. (a) y = -4 + lsl1Z" + Cle" + cze-" + C3 cos X+ C4 sin x

(b) y = x - 2 + CIe-" + cze-" cos x + c3e-" sin x
(c) y = x + CI + cze-z" cos x + c3e-z" sin x
(d) y = -(x + 1)Z + eZ"(cl + Cz cos x + C3 sin x)

8. y = cle-3" + cze4" + c3ez" cos 2x + c4ez" sin 2x

4-2 Linear differential operators. An operator is a rule which associates
a unique function with each function in some set. An operator is therefore
itself a function, which is defined on some set of functions rather than
numbers, and whose values are functions. An operator A, like any other
function, can be defined by prescribing the value Ay of the operator at an
arbitrary function y. Thus the formula Ay = y' + 3y defines the operator
A just as the formula z(x) = x Z + 2 defines the function z. For the A
and z just defined, for example, (Az)(x) = 2x + 3(xZ + 2).

The operators of interest to us. here, generalizations of the familiar
derivative operators D, D Z

, etc., are those of the form

Ly = Pny(n) + Pn_ly(n-O + ... + PlY' + PoY (1)

or, equivalently,

where Po, PI, ... , Pn are constants. The operator L defined by (1) will
also be denoted by L(D) or by a formal polynomial in D,

L = L(D) = PnDn + Pn_lDn-l + ... + PID + Po. (2)

An operator of the form (2), as defined by (I), is called a linear differential
operator. The general linear differential equation, with constant coefficients,
can be written in operator notation as. follows:

Ly = L(D)y = q (Pn = 1), (3)

or

(Dn + Pn_IDn-l + ... + PID + Po)Y = q. (4)

The linearity properties of the operators (I) are expressed in the follow­
ing theorem.
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TIJEOREM 1. If L is a linear differential operator, then L(YI + Y2) =
LYI + LY2' and L(cy) = cLy for all functions y, Yl, Y2 and all constants c.

Proof. The first property has already been proved, with different nota-
tion, in Section 3-3 (the superposition principle). To show that L(cy) =
eLy, note that PkDk(cy) = cPkDky, so c can be factored from each term in
L(cy) to give eLy.

The advantage of the expression (2) lies in the fact that the ordinary
multiplication and addition of polynomials corresponds to the natural
operator multiplication and addition defined below. This allows us to
factor the polynomial (2) and so replace a homogeneous linear equation
with equations of smaller order. Although we are interested in equations
(4) with real coefficients, we may need to allow complex coefficients to
factor the operator (2). Since the rules for differentiation are the same for
real or complex functions and constants, it causes no difficulty to allow
the Pi in (2) to be complex and to admit complex-valued functions in the
definition (1).

For any operators A and B, we define new operators A + Band AB by

(A + B)y = Ay + By,

(AB)y. A(By).

(5)

(6)

For example, if Ay = y' + 3y and By = xy, then (A + B)y = y' +
3y + xy, and (AB)y = A(xy) = (xy)' + 3(xy) = xy' + y + 3xy. Note
that AB ~ BA in general; here, for instance, (BA)y = B(y' + 3y) =
xy' + 3xy ~ (AB)y.

THEOREM 2. If L1 and L2 are linear differential operators, then so is
L 1 + L 2 [defined in (5)] and the polynomial form (2) of L 1 + L 2 is the
ordinary formal sum of the polynomials for L 1 and L 2.

Proof. If

then

L 1 = PnDn + + PI D + Po,

L 2 = qmDm + + ql D + qo (say m < n),

(L 1 + L 2)y = L 1y + L 2y

= PnDny + ... + PI D y + PoY

+ qmDmy + ... + ql D y + qoY

= PnDny + ... + (Pm + qm)Dmy + ...
+ (PI + ql)Dy + (PO + qo)Y.
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This shows that L 1 + L 2 has the form (1) and is therefore a linear differ­
ential operator. Moreover, the polynomial form (2) of L 1 + L 2 is clearly
the sum of the polynomials for L 1 and L 2 •

Remark. The right side of (2) was introduced as a formal expression,
with the plus signs serving only to make spaces between the terms. By
virtue of Theorem 2 we can now regard the right side of (2) as a genuine
sum, as defined in (5), of the operators Po, P1D, etc., and this is consistent
with the definition (1).

Recall that the coefficients in a linear operator are always assumed to be
constants. Theorem 2 would still hold if the coefficients Po, PI, ... , Pn
were allowed to be functions, but Theorem 3 would definitely not be true
for nonconstant coefficients.

THEOREM 3. If L 1 and L 2 are linear differential operators, then so is
L 1L 2 and the polynomial form of L 1L 2 is the ordinary product of the
polynomials for L 1 and L 2 •

Proof. If L 1 and L 2 are as in Theorem 2, then

(L 1L 2 )y = L 1(L2y)

= L 1(f qjDjy)
J=O

= EPiDi (~ qjDjy)

n m

= L Pi L qjDi+jy
i=O j=O

n m

= L L PiqjDi+jy.
i=O j=O

The riglit side above is of the form (1), showing that L 1L 2 is a linear
differential operator. Also, the polynomial form of L 1L 2 is clearly the
formal product

of the polynomials for L 1 and L 2 .

COROLLARY. If L 1 and L 2 are linear differential operators, then

L 1L 2 = L 2L 1•

Proof. Problem 3(c).
The utility of the results above is illustrated in the following example.
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EXAMPLE 1. Consider the homogeneous linear equation

y'll - y" + y' - y = 0.

This can be written in operator notation as

(D 3 - D 2 + D - I)y = 0.

The polynomial D 3
- D 2 + D - 1 can be factored as

(7)

(8)

D 3
- D 2 + D - 1 = (D 2 + I)(D - 1) = (D + i)(D - i)(D - 1).

Because of Theorem 3, we can write (8) in any of the equivalent forms:

(D 2 + I)[(D - I)y] = 0,

(D - I)(D + i)[(D - i)y] = 0,

(D - I)(D - i)[(D + i)y] = 0.

(9)

For any linear operator L, it is clear from (1) that LO = 0, where "0"
denotes the zero function. It follows that y is a solution of (7), (8), or (9)
if y is a solution of any of the equations

(D - I)y = 0,

(D - i)y = 0,

(D + i)y = 0.

(10)

Thus the third order homogeneous equation (7) is reduced to the three
first order equations (10), whose solutions are e'X, eix = cos x + i sin x, and
e-ix = cos x - i sin x. From Theorem 2, Section 4-1, we know that the
complex functions are solutions of (7) only if their real and imaginary
parts are. So the required three real solutions of (7) are eX, sin x, and cos x.

EXAMPLE 2. (D 3
- 2D 2 + 2D)y = 0.

This equation can be written in either of the forms

D[(D2
- 2D + 2)y] = ° or (D 2

- 2D + 2)[Dy] = 0.

The solutions will be the solutions of Dy = 0, plus the solutions of
(D 2

- 2D + 2)y = 0. Instead of factoring the quadratic operator into
linear factors, D 2

- 2D + 2 = [D - (1 + i)][D - (1 - i)], as in
Example 1, we can use the method of Section 4-1. The roots of the auxil­
iary equation are 1 ± i, giving the real solutions eX cos x and eX sin x.

There is no real difference in the calculations involved in the methods
of Section 4-1 and the operator methods of this section as applied to
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homogeneous linear equations with constant coefficients. Factoring the
polynomial operator certainly amounts to the same thing as solving the
auxiliary equation. The operator methods, however, are the more flexible
and powerful. We will treat the case of repeated roots of the auxiliary
equation in the next section with operator methods. The next example
illustrates the use of operators to solve a nonhomogeneous equation.

EXAMPLE 3. y" - y' - 2y = xex
.

Let us write the equation in the form

(D - 2)[(D + l)y) = xex
•

Clearly y will be a solution of (11) if and only if y is a solution of

(D + l)y = u,

where u is a solution of

(D - 2)u = xeX
•

(11)

(12)

(13)

That is, we can replace the second order linear equations (11) by the pair
of simultaneous linear first order equations (12) and (13). Multiplying
(13) by the integrating factor e-2x, we get

and hence

ue-2x = Jxe-x dx + Cl·

Integration by parts gives

Jxe-x dx = -xe-x + Je-x dx

-e-X(x + 1),

and therefore the solutions u of (13) are·

u = -eX(x + 1) + cle2x. (14)

From (12) and (14), we see that y is a solution of (11) if and only if y is a
solution of

This linear first order equation has the integrating factor eX, and we get

eXy' + eXy = -e2X(x + 1) + cle3x.
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The solutions are given by

eXy = - f e2X(x + 1) dx + cle3x + Cz,

where cd3 has been replaced by Cl. Integration by parts gives

eXy = -teZX(x + 1) + f teZX dx + cle3x + Cz

-teZX(x + 1) + :i;e zx + cle3x + Cz.

The general solution of (11) is, accordingly,

y = -teX(2x + 1) + clezx + cze-x.

Note that the solutions cle zx + cze-x of the reduced equation appear
automatically, as they must since the procedure finds all solutions of (11).

EXAMPLE 4. (D - r)Zy = 0 (r is real.)

In Section 3-4 we introduced the solution of this equation and verified
that it worked. Let us now show how the method of Example 3 can be
used to derive the solution. The equation is equivalent to the system

(D - r)u = 0,

The solutions of the first equation are

(D - r)y = u.

and hence the second equation becomes

Multiplying by the integrating factor e-rx, we get

e-rxy, - re-rxy = ClI

ye-rx = ClX + Cz,

y = erx(clx + cz).

PROBLEMS

1. Let A and B be the operators defined by Ay = yZ + xy, By 2y'.
Compute the following:

(a) Axz (b) Bxz (c) (A + B)xZ

(d) A(BxZ) (e) B(AxZ)
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2. Verify the superposition principle, L(Yl + Y2) = LYl + LY2, for linear
differential operators L, using the polynomial notation for L (cL Theorem 3,
Section 3-3).

3. (a) Prove that operator addition (5) is commutative and associative:
A + B = B + A, and (A + B) + C = A + (B + C) for all oper­
ators A, B, C.

(b) Prove that operator multiplication is associative: (AB)C = A(BC) for
all A, B, C.

(c) Prove the corollary to Theorem 3.

4. Solve the following equations by the method of Example 1.

(a.) (D3 - 6D2 + 5D)y = 0 (b) y,It + 2y" - y' - 2y = 0
(c) (D2 - 1)(D2 + l)y = 0 (d) (D2 - 2D + 2)(D - l)y = 0

5. Show that if y is a solution of (D2 + l)y = e2x, then y is a solution of
(D - 2)(D2 + l)y = O. Solve both equations.

6. Suppose that L is a linear differential operator and L(cos x) ;t. 0,
L(sin x) ,t. O. Prove that the equation Ly = cos x has a solution of the form
A cos x + B sin x.

7. Write an equivalent system of first order equations, as in Example 3, -and
solve (D - 1)2y = eX.

8. Write as a system and solve (D + l)(D - l)y = x.
9. Solve (D - a)3y = 0 (a real) by changing to a system of three first order

equations.
10. Recall from Section 3-4 that (D - a)2xeax = 0 (a real).

(a) Show that if y is a solution of (i) (D - l)(D ~ 2)y 2xex, then y
is a solution of (ii) (D - 2)(D - 1)3y = O.

(b) Find all solutions of (ii) (see Problem 9).
(c) Find all solutions of the reduced form of (i).
(d) Find a particular solution of (i) by the method of undetermined

coefficients. Note that the form of your trial solution is determined
by your answers to (a), (b), and (c).

AJ.-"SWERS

1. (a) x4 + x3 (b) 4x (c) x4 + x3 + 4x
(d) 20x2 (e) 8x3 + 6x2

4. (a) y = CI + c2ex + c3e5x

(b) y = clex + C2e-x + c3e-2x

(c) y = CleX+ C2e-X+ C3 cos X+ C4 sin x
(d) y = clex + c2ex cos x + c3ex sin x

5. y = cle2x + C2 cos X+ C3 sin x
y = ie2x + CI cos x + C2 sin x

7. y -!x2ex + eX(CIx + C2)
8. y = -x + cle-x + c2ex

9. y = eax (clx 2 + C2X + C3)
10. (a) y = CIe2x + eX(c2x2 + C3X + C4)

(c) y = CIe2x + c2ex

(d) y = (-x2 - 2x)eX
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4-3 Homogeneous equations with constant coefficients. With the
methods now at our disposal we can finish the discussion of the linear
homogeneous equation with constant real coefficients

(Dn + Pn_IDn-1 + ... + PID + PO)y = O. (1)

First let us recall from the preceding sections some general facts about (1).
We know (Theorem 7, Section 3-3) that (1) has n linearly independent

solutions, and if YI, ... , Yn are any n linearly independent solutions, then
the family

CIYI + .:.+ CnYn (2)

is the set of all solutions of (1).
If f = u + iv is any complex valued solution of (1), then (Theorem 2,

Section 4-1) u and v are solutions of (1).
The operator L = Dn + ... + PID + Po in (1) can be factored into

linear factors

(3)

where rI, r2, ... , r. are distinct numbers. Some of the numbers rj may be
complex, and if so, the complex rj occur in conjugate pairs (Problem 6,
Section 4-1). All solutions of the equations

(4)

are (possibly complex) solutions of (1).
The attack on (3) will proceed as follows. If rj is real, we will find k j

real solutions of (4) which are necessarily also solutions of (1). If rj is
complex, then we find 2k j real solutions of

(5)

which are also solutions of (1). In this way we accumulate n real solutions
of (1). These solutions are linearly independent for any numbers rI, ... ,

r., and their linear combinations therefore constitute the general solution
of (1).

THEOREM 1. if m is a positive integer and r is a real or complex number,
then

(6)

Proof. Calculating according to (5), Section 4-1, and the product rule,
we see that

(D - r)xmer:· = D(xmerX ) - rxmerx

= mxm-Ierx + rxmerx _ rxmerx

= mxm-Ierx• (7)
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Using (7) again with m replaced by m - 1 gives

(D - r)2xmeTX = (D - r)mxm-1eTx

= m(D - r)xm-1eTx

= m(m - l)xm - 2eTx . (8)

It is clear that we can repeat this process as long as the exponent of x is
positive, and after m steps, we get

Hence,

(9)

(10)

COROLLARY 1. If P is any of the numbers 0, 1, 2, ... , lc - 1, then
(D - r)kxPeTX = O.

Proof. Problem 1.

COROLLARY 2. If P is any polynomial of degree k - 1 or less, then
(D - r)kP(x)eTX = O.

Proof. Problem 1.

From Corollary 1, we see that if r is real, then

(11)

is a set of k real solutions of

(12)

If (D - r)k is a factor of the operator (3), then the solutions (11) of (12)
are also solutions of (1). Thus we get k solutions of (1) corresponding to
each linear factor of multiplicity k in the operator.
. Now suppose?, is complex, r = a + ib, and (D - r)k is a factor of
(3). Then (D - 'F)k is also a factor ('F = a - ib). The equation

(D - r)k(D - 'Fly = 0 (13)

is a linear equation of order 2k with real coefficients (Problem 3). From
Corollary 1, this equation has the complex solutions

(14)

and also the solutions

(15)
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The real and imaginary parts of the functions (14) are the same, apart
from sign, as the real and imaginary parts of the functions (15); they are
the functions

eBX cos bx, xeBX cos bx, , xk-1eBX cos bx,

eBX sin bx, xeBX sin bx, , xk-1eBx sin bx.
(16)

These solutions of (13) are of course also solutions of (1), and we have
found 2k real solutions of (1) corresponding to each pair of linear factors
(D - r)k(D - r)k in the operator (3). Altogether we have found n real
solutions of the nth order equation (1).

THEOREM 2. Let Ly = 0 be an nth order linear equation with constant
real coefficients. Let

L = (D - rl)k1(D - r2)k2 (D - r.)k.,

where rl, ... , r. are distinct numbers.
If rj is real, then Ly = 0 has the solutions

If rj = aj + ibj, then Ly = 0 has the solutions

eBjX cos bjx, xeBjX cos bjx, , xkj-1eBjx cos bjx,

eBjX sin bjx, xeBjX sin bjx, , xkj-1eBjx sin bjx.

The n solutions of Ly = 0 given above are linearly independent for any
operator L, and the general solution of Ly = 0 is the set of all linear com­
binations of these n solutions.

Proof. The only statement in the theorem which has not yet been veri­
fied is the linear independence of the given solutions for any equation.
The proof of linear independence in general involves such complicated
notation that it becomes uninstructive, and we will prove the statement
only in the case where the operator can be factored into real linear factors,

with al> ... , a. distinct real numbers. The linear combinations of the
solutions found for Ly = 0 can be written

(17)

where Pl>"" p. are arbitrary polynomials with respective degrees
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k l - 1, ... , ks - 1. Let al be the largest of the distinct numbers aI,
... , as, so that aj - al < 0 for j = 2, ... , s, and eCaj-a1)x is a decreasing
function. Suppose that (17) is identically zero for some polynomials
PI, ... ,Ps• We must show that all the coefficients in each polynomial are
zero, which is the same as showing that each polynomial is the zero func­
tion. If (17) is identically zero, then multiplying by e-a1x and transposing
the first term, we get

For any exponential eqX
, q < 0, and any polynomial R(x), we have (Prob­

lem4)
lim R(x)eqX

= O.
x-.oo

This implies, in view of (18), that limx-.oo Pl(x) = O. However, the only
polynomial which tends to zero as x ~ 00 is the zero polynomial (Prob­
lem 5), so Pl(x) == O. Having shown that Pl(x) == 0, the assumption that
(17) is identically zero becomes

The same argument as above can now be used to show that P 2 (x) == O.
Continuing in this way, we see that (17) is identically zero only if all the
coefficients are zero, and the solutions found are linearly independent.

EXAMPLE 1.

(A) (D - 1)2(D2 - 2D + 2)y

= (D - 1)2[D - (1 + i)][D - (1 - i)]y = 0,

(B) (D + 2)(D2 - 4D + 13)2y

= (D + 2)[D - (2 + 3i)]2[D - (2 - 3i)]2y = 0,

y = cle-2x + C2e2x cos 3x + caxe2x cos 3x

+ C4e2x sin 3x + C5xe2x sin 3x

= cle-2x + e2x[(c2 + cax) cos 3x + (C4 + C5X) sin 3x].

(C) (D 2+ 4)2D2(D - l)y = (D + 2i)2(D - 2i)2D2(D - l)y = 0,

Y = (Cl + C2X) cos 2x + (ca + C4X) sin 2x

+ C5 + C6X + C7ex.
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EXAMPLE 2. Let us show that the solutions eX, xex
, eX cos x, eX sin x of

Example leA) are linearly independent. We could use the Wronskian test
(corollary to Theorem 5, Section 3-3), but the computations involved are
uninviting. Instead, we will argue directly from the definition. Suppose
that for some numbers Cl, C2, Ca, C4, we have

Then

Cl + C2X + Ca cos x + C4 sin x == 0.

For x = 0,271",471", etc., this becomes

The linear function (Cl + ca) + C2X is zero for more than one x only if it
is identically zero, so Cl + Ca = 0, and C2 = 0. For x = 71"/2, 71"/2 + 271",
etc.,

Cl + Ox + Ca cos x + C4 sin x = Cl + £:4 = 0.

From Cl + Ca = 0, Cl + c~ = 0, we get Ca = C4, and the original assump­
tion becomes

Cl + Ca (cos x + sin x) == 0.

This implies Cl = Ca = 0. Therefore, Cl = C2 = Ca = C4 = 0, and the
solutions are linearly independent.

PROBLEMS

1. Prove the corollaries of Theorem 1.
2. Are the functions e", (x - l)e", (x2 - x)e" solutions of (D - l)ay = O?

Is this set of functions linearly independent?
3. Show that (D - r)k(D - r)ky = [(D - r)(D - r)]ky = 0 is a linear

equation with real coefficients.
4. Let q < O. Use I'Hospital's rule to show that lim,,->co xeq

" = O. [Hint:
xeq" = x/e-q,,]. Prove by induction that lim,,->co xneq" = 0 for any positive
integer n. Show that lim,,->co R(x)eq" = 0 for any polynomial R.

5.·Show that if R is any nonconstant polynomial, then lim,,->co IR(x)1 = 00.

[Hint: If x > 0, then
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Show that if x is sufficiently large and pn ¢ 0, then the second factor on the right
is greater than IPnl!2, and IR(x)1 > iIPnlxn.]

6. Solve the following equations.

(a) (D - 1)2(D2 - 2D + 2)y = 0
(b) (D2 + 1)(D2 + 4D + 5)2y = 0
(c) (D2 - 1)(D2 + 5D + 4)2y = 0
(d) (D2 - 4)(D + 2)(D2 + 4)y = 0

(e) (D6 - l)y = 0 (f) (Da + D2 + iD)y = 0
(g) (D4 - D2)y = 0 (h) (D4+ 2Da+ 2D2+ 2D+ l)y = 0

7. Show that the solutions are linearly independent.

(a) solutions of Problem 6(a) (b) solutions of Problem 6(b)

8. Suppose Yo is a solution of Ly = 0, where L is a linear differential operator
(with constant coefficients). Prove that the following functions are necessarily
also solutions of Ly = 0 or give an example (of L and yo) to show they are not.

(a) yff - 2 (b) 3Yb + 2yo

ANSWERS

(c) xyo

6. (a) y = (CI + c2x)e" + cae" cos x + c4e" sin x
(b) y = CI cos x + C2 sin x + e-2"[(ca + C4X) cos x + (cs + C6X) sin x]
(c) y = CIe" + (C2 + cax + c4x2)e-" + (cs + c6x)e-4"
(d) y = cle2" + (C2 + cax)e-2" + C4 cos 2x + cs sin 2x

() "+ -"+ 0/2),,( V3 + . V3 )e y = cle c2e e ca cos 2 x C4 sm 2 x

+ -(112),,( V3 + . V3 )e .cs cos 2 X Cs sm 2 x

+ -(112)" ( X . X)(f) Y = CI e C2 cos 2+ Ca sm 2
(g) y = Cl + C2X + cae" + c4e-"
(h) y = (CI + c2x)e-" + ca cos x + C4 sin x

8. (b) L(3D + 2)yo = (3D + 2)Lyo = (3D + 2)0
(a) and (c) are not necessarily also solutions.

4-4 Method of undetermined coefficients. In the preceding section we
saw that the solutions of

and

(a real)

(r = a + ib)

(1)

(2)

are the functions

P(x)eax cos bx + Q(x)eax sin bx, (3)
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where P and Q are any polynomials of degree k - 1 and b = 0 in case (1).
Since any linear operator can be factored into operators such as those in
(1) or (2), it follows that all solutions of a linear equation Ly = 0 with
constant coefficients are sums of functions of the form (3). Now look at
these facts in this way: For any function q which is of the form (3), there
is a linear operator L such that Lq = O. This observation is the central
idea in the following theorem.

THEOREM 1. If L is a linear differential operator and P, Q are any given
polynomials, then the equation

Ly = P(x)eaX cos bx + Q(x)eaX sin bx

has a particular solution Yo which can be written

(4)

(5)Yo = P*(x)eaX cos bx + Q*(x)eaX sin bx

for some polynomials p* and Q*.

Proof. We give the proof for the case b ~ 0, and ask the student to
supply the proof for the case b = 0 (Problem 10).

Let k - 1 be the larger of the degrees of P and Q. Then by Corollary 2
of Theorem 1, Section 4-3,

[D - (a + ib)]k[D - (a - ib)]k(P(x)eaX cos bx + Q(x)eaX sin bx) = O.

It follows that every solution of (4) is a solution of

[D - (a + ib)]k[D - (a - ib)]kLy = O. (6)

We know what all the solutions of (6) are, so we know what form a solution
of (4) must take. Since we are looking for a particular solution of (4), we
can disregard solutions of (6) which are solutions of the reduced form of
(4) (i.e., of Ly = 0). The solutions of (6) which are not solutions of
Ly = 0 are among the solutions corresponding to the factors

[D - (a + ib)]k+i[D - (a - ib)]k+i, (7)

where we assume that [D - (a + ib)] occurs in L with multiplicity j
(j possibly zero). The solutions of (6) corresponding to the factors (7) are
the functions

P*(x)eaX cos bx + Q*(x)eaX sin bx, (8)

where p* and Q* are arbitrary polynomials of degree k + j - 1. Since
all solutions of (4) which are not solutions of Ly = 0 appear among the
functions (8), there will be some specific polynomials p* and Q* for which
(8) is a solution of (4). If [D - (a + ib)] does occur as a factor of L
(i.e., j ~ 0), then some of the terms in (8) will be solutions of Ly = O.
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We can ignore these and take p* and Q* of the form

EXAMPLE 1.

(D 3
- D 2 + D - l)y = (D - 1)(D2 + l)y = xex . (9)

Since (D - 1)2xeX = 0, all solutions of (9) are solutions of

Some particular solution of (9) therefore must be a solution of (D - 1)3y =
O. The solutions of this, omitting cex which is a solution of the reduced
form of (9), are the functions

y = (Aa: + Bx2)ex
•

The derivatives of the functions (10) are

y = [Ax + Bx 2]eX
,

Dy = [A + (A + 2B)x + Bx2]e"',

D 2y = [(2A + 2B) + (A + 4B)x + Bx2]ex
,

D 3y = [(3A + 6B) + (A + 6B)x + Bx2]ex
•

(10)

Substitution in (9) gives

[(2A + 4B) + 4Bx + Ox2]ex = xex
•

Therefore (10) is a solution of (9) if 4B = 1 and 2A + 4B = 0; that is,
if B = ! and A = -!. The general solution of (9) is

y = (Cl - !x + !x2)ex + C2 cos X + C3 sin x.

EXAMPLE 2.

(D 4 - D 3 + 4D2
- 4D)y = D(D - 1)(D2 + 4)y = x + cos 2x.

(11)
Since D 2x = 0, and (D 2 + 4) cos 2x = 0, we have

D 2 (D 2 + 4)(x + cos 2x) = O.

Therefore all solutions of (11) are solutions of

(12)
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The solutions of (12) which are not solutions of the reduced form of (11)
are

y = Ax + Bx2 + Cx cos 2x + Ex sin 2x. (13)

Therefore, for .some numbers A, B, C, E, determined by substitution in
(11), (13) will be a particular solution of (11).

The following theorem can frequently be used to simplify the computa­
tions involved in the method of undetermined coefficients.

THEOREM 2. If L = L(D) is a linear differential operator (with constant
coefficients) and F is any sufficiently differentiable function, then

Proof. Let L(D) be the operator

L(D) = PnDn + ... + PID + po.

(14)

(15)

By L(D + r) we mean the operator obtained by replacing D in (15) by
(D + r); that is,

L(D + r) = Pn(D + r)n + ... + PleD + r) + Po. (16)

Let us first calculate DerxF(x), D 2erxF(x), etc.

DerXF(x) = erxDF(x) + rerxF(x)

= erx(D + r)F(x).

Using (17) again we get

DVXF(x) = D[erx(D + r)F(x)]

= erx(D + r)2F(x).

Proceeding in this way, we find that

for all k. Therefore

(17)

(18)

(19)

L(D)erXF(x) = [PnDn + ... + PID + po]erxF(x)

= PnDnerxF(x) + ... + PIDerxF(x) + poerxF(x)

= Pnerx(D + r)nF(x) + ... + Plerx(D + r)F(x) + poerxF(x)

= erx[Pn(D + r)n + ... + PI (D + r) + Po]F(x)

= erxL(D + r)F(x).
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COROLLARY. L(D)eTX = eTXL(r).

Here L(r) is the number obtained by substituting r for Din (15) i that is,

L(r) = Pnrn + ... + Pir + Po.

The proof of the corollary is left to the student (Problem 11).

EXAMPLE 3. Let us use Theorem 2 to perform the calculations of
Example 1. We know there is a solution of (D - 1)(D2 + l)y = xex of
the form (Ax + Bx2)ex. The substitution can be effected as follows:

(D - 1)(D2 + l)eX(Ax + Bx2)

= eX[(D + 1) - l][(D + 1)2 + l)(Ax + Bx2)

= eXD(D2 + 2D + 2) (Ax + Bx2)

= eX(D2 + 2D + 2)(A + 2Bx)

= eX(4B + 2A + 4Bx).

EXAMPLE 4. Find a particular solution of D 2(D - 1)(D2+ 2)y = 3e2x.
By Theorem 1 there is a solution of the form Ae2x, and by the corollary
above,

D 2(D - 1)(D2 + 2)Ae2X = AD2(D - 1)(D2 + 2)e2X

= Ae2X22(2 - 1)(22 + 2) = 24Ae2x.

Therefore ie2x is a particular solution.

PROBLEMS

Solve the following equati<ms.

1. (D3 - D)y = 2e" 2. (D2 - 3D + 2)y = cosx
3. (D4 - l)y = xe" 4. (D3 + DZ - 2D)y = XZ

5. (D - 2)Z(D - l)y = 4e2" 6. (DZ + 4)(DZ + l)y = 5 sin x

7. (DZ + 1)(D - 1)(D - 2)y = (XZ+ l)e"
8. (D - 1)(DZ - 2D + 2)y = e" cos x
9. (D - 2)Z(D + l)y = 18xez"

10. Prove Theorem 1 for the case b = O.
11. Prove the corollary to Theorem 2.

ANSWERS

1. Y = xe" + C1 + c2e" + c3e-"
2. y = lo cos x - 1

3
0 sin x + cIe" + c2e2"

3. y = (-jx + txZ)e" + cIe" + c2e-" + C3 cos X + C4 sin x
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4. Y =-lx - !x2 - tx3 + C1 + c2ex + C3C2x

5. Y = 2x2e2x + clex + (C2 + c3x)e2x

6. Y = -ix cos x + Cl cos X+ C2 sin x + C3 cos 2x + C4 sin 2x
7. Y = (-x - tx3)ex + C1 cos x + C2 sin x + c3ex + C4e2x

8. Y = -!xex cos x + clex + c2ex cos x + c3ex sin x
9. y = (-x2 + x3)e2x + (Cl + c2x)e2x + c3e-x

4-5 Inverse operators. There are many manipulations with operators
which simplify the process of finding particular solutions for linear equa­
tions. We will look at a few techniques associated with the idea of an
inverse operator. One inverse operator, the indefinite integral, is familiar
from calculus. The notation ff(x) dx = F(x) is used to indicate that
DxF(x) = f(x); in this sense, f( ) dx is inverse to Dx. We extend this idea
and describe an inverse for any linear differential operator L(D).

AGREEMENT. We will write y = [l/L(D)]q(x) or y = L(D)-lq(X) if
L(D)y = q(x). That is, we write y = L(D)-lq(X) to indicate that y is
some particular solution of L(D)y = q(x).

We define the sum and product of two inverse operators in the natural
way,

[Ll(D)-l + L 2(D)-l]q(X) = Ll(D)-lq(X) + L 2(D)-lq(X), (1)

[L l (D)- lL 2(D)-l]q(X) = L l (D)-l[L2(D)-lq(X)]. (2)

The following formulas, which express the linear properties of inverse
operators, follow directly from Theorem 1 of Section 4-2.

L(D)-l[ql(X) + q2(X)] = L(D)-lql(X) + L(D)-lq2(X), (3)

L(D)-l[cq(X)] = cL(D)-lq(X). (4)

The commutative property (corollary to Theorem 3, Section 4-2) of
linear differential operators, and the definition (2) above yield the formula

[L l (D)L2(D)]-lq(X) = [L2(D)-lL l (D)-l]q(X)

= [L l (D)-IL2(D)-l]q(X). (5)

Recall from Section 2-4 that the first order linear equation

(D - a)y = q(x)

has a particular solution

(6)

(7)
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This fact can be written

Y = D ~ a q(x) = (D - a)-lq(x) = eaxfe-aXq(x) dx. (8)

From (8) and (5) it follows that a particular solution of

(D - a)(D - b)y = q(x)

can be written
y = (D - a)-I[(D - b)-lq(X)]

= eaxfe-a"[ebX f e-bXq(x) dxJ dx.

(9)

(10)

The method indicated in (10) of expressing a particular solution in terms
of repeated integrals can also be extended to equations of higher order.

EXAMPLE 1. (D - 2)(D - I)2y = eX.

A particular solution y can be obtained as follows:

y = (D - 2)-I(D - I)-I[(D - I)-leX]

(D - 2)-I(D - I)-I[eXf e-xex dx]

(D - 2)-I[(D - I)-I(xeX
)]

(D - 2)-I[eXfe-xxex dx]

(D - 2)-I[tx2eX]

= e2x f e-2Xtx2eXdx

te2Xf x2e-x dx

-teX (x 2 + 2x + 2).

If the inverse operators are applied in a different order, one gets a different
particular solution; for example (Problem 1),

These two solutions differ by -tex
, which is a solution of the reduced

equation (D - I)2(D - 2)y = O.
Note that the process illustrated in the example really amounts to

considering the system
(D - I)u = eX,

(D - I)v = u,

(D - 2)y = v,
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(11)A + B
D-a D-b

1
(D - a)(D - b)

as we did in Examples 3 and 4 of Section 4-2, except here we ask for only
one solution of each equation.

The method of Example 1 can be used to find a particular solution of
any equation L(D)y --.:. q(x), even if some of the linear factors of L(D) are
complex. In most cases, however, the integrations involved become so
involved that the method is not practical. The following theorem provides
a method which usually leads to simpler calculations than (10).

THEOREM 1 (Partial fractions method). If a and b are distinct real
numbers, then the following equation is an operator identity if 1:t is a formal
algebraic idenl1"ty:

Proof. The assumption is that A and B are the numbers such that·
A(D - b) + B(D - a) = 1. The assertion is that AYl + BY2 is a
solution of (D - a)(D - b)y = q(x) if Yl = (D - a)-lq(x) and
Y2 = (D - b)-lq(X). Let us assume, therefore, that Yl and Y2 are
particular functions satisfying (D - a)Yl = q(x), and (D -'- b)Y2 -:- q(x).
Then

(D - a)(D - b)[AYl + BY2]

= A(D - b)[(D - a)yd + B(D - a)[(D - b)Y2]

= A(D - b)q(x) + B(D - a)q(x)

= [A(D - b) + B(D - a»)q(x)

= [I)q(x) = q(x).

EXAMPLE 2. (D + 1)(D - 2)y = xex.

1 x [-i i] x
Y = (D + l)(D - 2) xe = D + 1 + D - 2 xe

1 1 x+l 1 x
-3D+l xe 3D_2 xe

-ie-xJeXxex dx + ie2xJe-2xxex dx

-ie-X[e 2X(!x - !») + ie2X[e-X(-x - 1»)

-neX(2x - 1) - neX(4x + 4)

= -!eX (2x + 1).

By way of review, let us check this last answer using (9) of Section 4-4.

(D + l)(D - 2)[-!eX(2x + 1»)

-!eX(D + 2)(D - 1)(2x + 1)

-!ex(D + 2)(2 - 2x - 1)

_!eX(-2 - 4x + 2) = xex.
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Theorem 1 extends to third and higher order operators. For example,
if a, b, and c are distinct numbers, and A, B, and C are the numbers such
that

1
(D - a)(D - b)(D - c)

is an algebraic identity, then

A + B + _C_ (12)
D-a D-b D-c

is a particular solution of (D - a)(D - b)(D - c)y = q(x) (Problem 3).
In the last sections we have derived the formulas

L(D)eTXF(x) = eTXL(D + r)F(x),

L(D)eTX = eTXL(r),

(D - r)kxkeTX = k!eTX .

The following formulas are simply restatements of those above in terms of
inverse operators.

1 TXF(') TX 1 F( )
L(D) e x = e L(D + r) x,

1 TX eTX
L(D) e = L(r) , (if L(r) ~ 0),

1 TX xkeTX

(D - r)k e = ----,cr.

EXAMPLE 3. (D - 2)3(D + 2)2(D - l)y = e2x.

A particular solution is given by

1 [ 1 ] 2x
Y = (D - 2)3 (D + 2)2(D - 1) e

1 [e 2X
]= (D - 2)3 16 [from (14)]

1 x 3e2x 1 3 2x= 16 3! = 96 x e [from (15)].

PROBLEMS

(13)

(14)

(15)

1. Find a solution of the equation of Example 1 by evaluating the inverse
operators in this order: (D - I)-I(D - 2)-I(D - I)-lex.

2. Use (10) to find a solution of (D + I)2y = e-X In Ixl and check your
answer.
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3. Show that (12) is an operator identity if it is an algebraic identity (compare
the proof of Theorem 1).

4. Use the partial fractions method (12) to solve

(D + 1)(D - I)(D - 2)y = eX.

5. Find a particular solution of (D - I)(D + 2)y = e-2x and use (14) of
Section 4-4 to check your answer.

(a) use formula (10) (b) use formula (13)

6. Use (14) and (15) to solve the following:

(a) (D - 2)2(D + l)y = e2x (b) D(D + I)(D - 2)2y = e-x.

7. Let r be a complex number and 'i' its conjugate. Show that formula (10)
can be used to find the real solutions

1 1
y = -= x + -_- (r + r)rr (rr) 2

of (D - r)(D - r)y = x.

8. Use the formula of Problem 7 to solve (D2 - 2D + 5)y = x.
9. Use Theorem 1 to find a particuiar solution of (D2 - 3D + 2)y = sin2x.

[Hint: !e
BX

sin
2

xdx = a2e: 4 [asin
2

x - 2sinxcosx+~J.J

ANSWERS

1. y = -!ex(x2 + 2x)
2. y = ix2e-X (2In Ixl - 3)
4. Y = -ieX (1 + 2x)
5. (a) and (b) y = -le-2x(3x + 1)
6. (a) y' = ix2e2x (b) y = -lxe-x

8. y = !x + 2
2
5

9. y = -lo sin2 x + 2
3
0 sin x cos x + l~

4-6 Variation of parameters method. In this section we give a method
for finding a particular solution of the linear equation

yen) + ... + PlY' + PoY = q (1)

whenever we have n linearly independent solutions of the reduced equation.
Here we are not assuming that the coefficients Po, PI, ... , Pn-l are con­
stants, but that these are arbitrary functions continuous on some common
interval. Since our concern so far has been primarily with equations with
constant coefficients, let us recall that the theory of Section 3-3 applies to
any linear equation, whether the coefficients are constants or functions.
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Thus to solve (1), we must find n linearly independent solutions of the
reduced equation and one solution of (1). Although we give no general
methods for solving the reduced equation if the coefficients are not con­
stant, the variation of parameters method insures that if we can solve the
reduced equation, then we can solve (1) for any right-hand member q.

Let us first illustrate the method for the second order equation.

y" + PlY' + PoY = q. (2)

The assumption is that we have two linearly independent solutions YI, Y2
of the reduced equation

y" + PlY' + PoY = O.

We try to find a solution Y of (2) in the form

(3)

(4)

where VI and V2 are functions to be determined. In general, there are many
functions VI, V2 such that VIYI + V2Y2 is a solution of (2) (see Problem 1).
Since it is reasonable to assume that we can put additional conditions on
VI and V2, we make an assumption which facilitates the computations.
We show that there are functions VI and V2 such that the function
Y = VIYl + V2Y2 is a solution of (2) and also satisfies the equation

(5)

This last assumption is clearly equivalent to the condition

Computing y" from (5), we get

y" = VIY'{ + V2Y'{ + yivi + Y~v~. (6)

Now we substitute Y, y', and y" as given by (4), (5), and (6) in Eq. (2)
and group the terms containing VI and those containing V2. The result is

The terms in brackets are zero, since YI and Y2 are solutions of (3), and the
condition that Y be a solution of (2) is therefore

yivi + Y~v~ = q.

That is, the function Y of (4) will have the derivative (5) and be a solution
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(8)

of (2), if VI and V2 satisfy the equations

Ylvi + Y2V~ = 0,

Yivi + y~v~ = q.

For each x, the equations (8) are simultaneous linear equations in v{(x)
and v~(x). The determinant of this system is the Wronskian of the two
known functions YI and Y2:

W(YI(X), Y2(X)) = IYI(X) Y2(X) I·
yi(x) y~(x)

Since YI and Y2 are linearly independent solutions of the reduced equation,
the Wronskian is never zero, and the equations (8) have the solutions

viex) = -Y2(X)q(X)/W(YI(X), Y2(X)),

v~(x) = YI(X)q(X)/W(YI(X), Y2(X)).
(9)

Since the functions on the right of equations (9) are continuous, they have
antiderivatives, and there are functions VI and V2 satisfying (9) and hence
(8). For these functions, VIYI + V2Y2 is a particular solution of (2), and
the general solution of (2) is

Y = (CI + VI)YI + (C2 + V2)Y2.

EXAMPLE 1. y" - Y = e2
"'.

Two linearly independent solutions of y" - Y = 0 are e'" and e-"'. Let
Y = VIe'" + V2e-"', and suppose that y' = VIe'" - V2e-"'; that is, suppose
that e"'v{ + e-"'v~ = O. Then

Substitution in the differential equation gives

In other words, Y will have the given derivative, and be a solution, if

and

Solving these equations, we get v{ = !e"', VI = !e"', and v~ = -!e3"',
V2 = -i-e3"'. The equation therefore has a particular solution
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EXAMPLE 2. Y" + Y = sec x.

Two solutions of the reduced equation are cos x and sin x. We set

Y = VI cos X + V2 sin x,

y' = -VI sin x + V2 cos x,

y" = -VI cos X - V2 sin x - vi sin x + v~ cos x.

Then y will be a solution with the derivatives given above if

vi cos x + v~ sin x = 0,

-vi sin x + v~ cos x = sec x.

The determinant of this system is W(cos x, sin x) = 1, and solving, we get

, 10 sin xl sin x
V I = sec x cos x = - cos x '

V' = I cos x ° I= 1
2 -sin x sec x .

Therefore VI = lnlcos xl, V2 = x, and a particular solution of the equation
is

y = cos x lnlcos xl + x sin x.

N ow we will generalize these ideas so that they apply to a linear equa­
tion of any order.

THEOREM 1. If YI, ... , Yn are linearly independent solutions of the
reduced form of

y(n) + Pn_Iy(n-ll + ... + PlY' + PoY = q,

then there are functions VI, . . . , Vn which satisfy

(10)

+ + Ynv~

+ + Y~v~

= 0,

= 0,

(11)

yin- 2)vi + + y~n-2)v~ = 0,

yin-l)vi + + y~n-l)v~ = q.

and for any such functions VI, .•• , Vn, thefunctiony = VlYI + ... + VnYn
is a solution of (10).

Proof. The system (11) of linear equations can be solved for v{, ... , v~,

since the determinant of the system is W(YI' ... ,Yn), which never van-
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ishes.Moreover, the solutions V{, ... , v~ can be written as quotients of
determinants whose entries are continuous functions. Hence the expres­
sions for V{, ... , v~ will be continuous, and will have antiderivatives
VI, ... ,Vn. Therefore, there are functions satisfying (11).

The first (n - 1) of the equations (11) are the conditions that the first
(n - 1) derivatives of yare those given below; the nth derivative of y is
simply calculated from y(n-ll without further assumptions.

+ ... + VnYn,

(12)y' = VlYS. + + vnY~,

y(n-l) = vlyin- l ) + + vny~n~1),

y(n) = vlyin) + + vny~n) + yin-l)vi + ... + y~n-l)v~.

Now substitute y, y', ... , y(n) from (12) into equation (10). The coefficient
of Vl after substitution is the first column of the array (12) with the appro­
priate coefficients; namely,

(13)

Since Yl is a solution of the reduced form of (10), the coefficient (13) of Vl
is zero. Similarly, the terms containing V2, ... , Vn drop out, since Y2, ... ,
Yn are solutions of the reduced equation. The condition that y be a solu­
tion of (10) is therefore simply

This equation is satisfied by the last of the assumptions (11), and hence
y is a solution of (10).

EXAMPLE 3. y'" - 3y" + 2y' = e-x.

The functions 1, eX, e2x are linearly independent solutions of the reduced
equation. We find the functions VI, V2, and V3 such that if

then
y' = V2ex + 2v3e2x

y" = V2ex + 4v3e2x

(that is, vi + eXv~ + e2zv3 = 0),

(that is, eXv~ + 2e2Xv3 = 0),

and
y is a solution
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Similarly, v~ = -2ex/(2e 3x) = -e-2X, and Va = 1/(2e3X) = !e-3x. Inte­
gration gives VI = -!e-X, V2 = !e-2x, and V3 = -i-e-3x. A particular
solution of the equation is therefore

PROBLEMS

1. Find functions VI and V2 such that vI(x)eX+ v2(x)e2x is a solution of
y" - 3y' + 2y = 4x - 4, and such that

(a) VI (x) = 0 (b) VI (X)YI (x) = V2(X)Y2(X)
(c) VI and V2 satisfy (10).

2. Write out in detail the statement and proof of Theorem 1 for the case n = 3.
3. Solve by variation of parameters: y" - y = xeX

•

4. Solve the equation y" + y = csc x.
5. Check that eX is a solution of (1 - x)y" + xy' - y = O. Find a second

(polynomial) solution of the reduced equation and solve (1 - x)y" + xy' - y =
(1 - x)2. [Caution: Do the equations (9) and (11) apply directly to the given
equation in its present form?]

6. Show that x and l/x are solutions of y" + (l/x)y' - (l/x 2)y = 0: Solve
by variation of parameters: y" + (l/x)y' - (l/x2)y = In x (x > 0).

7. Solve by variation of parameters: y'" - y" = x3 •

8. Solve by variation of parameters: y'" - 2y" - y' + 2y = eX.
9. If Yo is one solution of the reduced form of a linear equation, then the sub­

stitution y = YOu gives a linear equation in u in which u itself is missing. Thus
the order is effectively reduced by one (substitute V = u'). Illustrate this for
the second order equation y" + PlY' + POy = q.

10. Solve by the method of Problem 9.

(a) Problem 5, using Yo = ex; (b) Problem 6, using yo = x.

11. Use the substitution of Problem 9 to solve (x 2 - x)y' + (1 - 2x)y
-x2, after checking that Yo = x 2 - x is a solution of the reduced form.
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ANSWERS
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1. (a) V2(X) = (2x + 1)e-2"
(b) VI(X) = (x + !)e-"
(c) VI(X) = 4xe~", V2(X) = -(2x - l)e-2"

3. Y = cle" + C2e-" + -ke"(2x2 - 2x + 1)
4. Y = (CI - x) cos x + (C2 + In Isin xl) sin x
5. Y = cle" + C2X + 1 + x + x 2

6. VI = !x (In x-I), V2 = -tx3 In x + lsx3,
Y = CIX + C2/X + kx2 In x - t-x2

7. VI = ix
5

- tx4
, V2 = -tx4, V3 = e-"(-x3 - 3x2 - 6x _ 6),

Y = -iox5
- tx4

- x 3 - 3x2 - 6x - 6 + CI + C2X + c3e"
8. VI = -!x, V2 = l2e2", V3 = -!e-",

Y = cle" + C2e-" + c3e2" - te"(2x + 1)
11. Y = x + c(x2 - x)



CHAPTER 5

THE LAPLACE TRANSFORM

5-1 Review of improper integrals. The Laplace transform is defined
in terms of an improper integral, and we will review here some of the facts
we will need about such integrals.

Recall that the Riemann integral

lab f(x) dx

is initially defined only for finite intervals [a, b], and only for functions f
which are bounded on the given interval. This definition is then extended
to the so-called improper integrals, in which the integrand is unbounded
on some finite interval, or the interval of integration is infinite. We will
be concerned only with integrals which are improper because the upper
limit of integration is infinite. Specifically, we consider integrals of the
form

(1)

where f is continuous on [0, (0). The integral (1) is defined as the limit

(" f(x) dx = lim (R f(x) dx.
Jo R-+", Jo

(2)

If this limit exists, we say the integral (1) converges, otherwise we say the
integral diverges. The following comparison test, similar to that for series,
is a basic method for showing the convergence of (1).

THEOREM 1. If If(x) I ~ g(x) for all suffidently large x, and f~ g(x) dx
converges, then f~ f(x) dx converges.

Notice that, in particular, Theorem 1 says that f~ f(x) dx converges if
f~ If(x) Idx converges.

Now consider the case in which the integrand contains a parameter.
Suppose f(s, x) is continuous for a ~ S ~ {3 and x ~ 0 and that the
following integral converges for each s in [a, (3].

10'" f(s, x) dx = Ij!(s).

116

(3)
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If we write

REVIEW OF IMPROPER INTEGRALS

R
F R(S) = fo f(s, x) dx,
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(4)

then (3) is the same as saying that for each s in [a, til

lim FR(S) = ~(s).
R---+oo

(5)

That is, for each S in [a, mand every e > 0 there is a numb~rN (depending
on s and e) such that

(6)

whenever R ;::: N. The situation in (5), or (3), is similar to the convergence
of a sequence of functions {Fn I, except here we have a function FR for each
number R ;::: O.

The function ~ defined in (3) need not be continuous unless some
assumption is made about how the convergence of the integral depends on s.
We say the integral (3) converges uniformly for s in [a, til if for every e > 0
there is a number N (depending only on e) such that IFR(S) - ~(s)1 < e
for all s in [a, mif R ;::: N.

THEOREM 2. If the integral (3) converges uniformly for s in [a, til, then
~ is continuous on [a, m.
The following theorem provides a convenient test for uniform con­

vergence.

THEOREM 3 (Weierstrass M-test for integrals). If M is a continuous
function on [0, (0) such that J~ M(x) dx converges, and If(s, x)1 ~ M(x)
for all s in [a, mand all x ;::: 0, then J~ f(s, x) dx converges umformly on
[a,tll.

Uniform convergence is also the critical hypothesis for showing that the
function ~ of (3) is differentiable, and that ~/(S) can be found by differenti­
ating under the integral sign in (3).

THEOREM 4. If f.(s, x) is continuous for s in [a, mand x ;::: 0, and the
integral

converges umformly on [a, til, then ~ is differentiable and

~/(S) = 1000

f.(s, x) dx.
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Note that it is the integral of the partial derivative f8(s, x) which must
converge uniformly.

EXAMPLE 1. Find the values of s for which the integral

(7)

converges, and find a formula for cf>(s).

For s = 0, the integrand is identically one, and the integral diverges.
If s r! 0, then

r~ (1 + s2)e-8X dx = lim (1 + S2) rR
e-8X dx

Jo R->oo Jo

= lim _ (1 + S2) (e-8R _ 1).
R->oo S

This last limit exists if s > 0 (limR->oo e-8R = 0), and fails to exist if s < 0
(limR->oo e-8R = 00). Therefore the integral (7) converges if and only if
s > 0, and for these values of s

cf>(s) = (1 + S2) .
S

EXAMPLE 2. Show that the function cf> defined by

cf>(s) = 10'" e-8X dx

is defined and differentiable for s > O.

(8)

(9)

As in the example above it is easy to show that the integral in (8) con­
verges if and only if s > O. Since (a/as)e-8X = -xe-8X

, we want to show
that

cf>' (s) = 1000

_xe-8X dx

for any s > O. To verify (9), we show that the integral of (9) converges
uniformly on some interval [a,,8] around s, for each s > O. For any num­
bers a and ,8 with 0 < a < ,8 and any number s in [a, ,8], we have

I -8xl -8X < -ax-xe = xe _ xe ,

and the integral
(10)

converges (Problem 1). By Theorem 3, with M(x) .= xe-ax, the integral
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in (9) converges uniformly on [a, f3]. It then follows from Theorem 4 that
<p'(s) exists and is given by (9) for all s in [a, f3]. Since any number s > 0
is in some interval [a, f1] with a > 0, et/(s) exists for all s > 0.

PROBLEMS

1. Show that (10) converges, given that a > O.
2. Evaluate the integrals in (8) and (9), and verify that et/(s) is given by (9).
3. Let <p(s) = Jo'" xe-'''' dx. Show that <p(s) is defined for s > 0 and that

<p'(s) exists for s > O.
4. Let p be a fixed number with 0 < p < 1. Verify that the following integral

converges uniformly for s in [p, 1):

1'" sin (sx) -'" d---e x.
o s

5. Show that the integral of Problem 4 can be differentiated under the integral
sign for sin [p, 1).

5-2 The Laplace transform. Suppose that f is a function on [0, (0)
such that the following integral converges for some values of s.

(1)

The integral (1) depends on the function f and on the number s. We
regard (1) as determining a new function] associated with f, where] is
defined by

(2)

for those values of s for which the integral converges. The function] is
called the Laplace transform of f. We will also use the notation

.£(j(x) = ](s)

to indicate the relationship (2). Thus.£ is an operator, defined on a class
of functions f that we will call object functions, with values] which are
functions that we will refer to as transforms.

The following three theorems give properties of .£ which are of primary
importance in the application of Laplace transforms to linear differential

- equations.

THEOREM 1. .£ is a linear operator; i.e., for any s such that](s) and O(s)
are both defined, and any numbers a and b,

.£(af(x) + bg'x) = a.£(j(x) + b.£(g(x) = a](s) + bg(s).
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Proof. This theorem is just a restatement of the linear properties of the
defining integral (2).

The following theorem will be proved in the next section.

THEOREM 2. If f and g are contin'l,lous on [0, (0) and J(s) == O(s), then
f(x) == g(x).

The point of Theorem 2 is that the operator ..c sets up a one-to-one
correspondence between continuous object functions f and their transforms
1. In other words, if we can determine what J is, then we know what f
must be.

THEOREM 3. If f' is continuous on [0, (0) and limx_ oo e-SXf(x) = 0,
then ..c(j'(X)) exists at s if and only if ..c(j(x)) exists at s, and

..c(f'(x)) = s..c(j(x)) - f(O) = sJ(s) - f(O). (3)

Proof. Let s be any number such that limx _ oo e-SXf(x) = O. Integration
by parts gives the following formula for any number R > 0:

Since e-SRf(R) ~ 0 as R ~ 00 by hypothesis, we have

R R
lim r e-sx!'(x) dx = -f(O) + lim s r e-8Xf(x) dx.
R_oo Jo R_oo Jo

That is, if either limit above exists, so does the other, and the given equality
holds. This says that ..c(f'(x)) exists at s if and only if ..c(j(x)) does, and if
either transform exists, then (3) holds.

(4)..c (foX f(t) dt) = ~ ..c(j(x)).

COROLLARY. Assume f is continuous on [0, (0) and F(x) = fof(t) dt.
If J(s) exists and limx_ oo e-aXF(x) = 0, then Pes) exists and Pes) =

(1/s)J(s), that is,

Proof. This follows from Theorem 3, since F'(x) = f(x) and F(O) = O.

Note that differentiation of an object function corresponds to an alge­
braic operation (3) on its transform. We show below how this principle
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is used to solve a linear differential equation with constant coefficients.
First we compute the transforms of some simple functions in the following
examples.

EXAMPLE 1.

£(1) = .!.
8

for 8 > O.

Directly from the definition and the assumption that 8 > 0, we have

£(1) = t e-8x1 dx = lim - .!. (e- sR - 1) = .!..
} 0 R-+", 8 8

It is clear that the integral above diverges for 8 .:::; 0, so £(1) is defined
only for 8 > O.

EXAMPLE 2.
1

£(x) = -
8 2 and for 8 > O.

These formulas can be found directly from the definition as in the ex­
ample above, but we will instead derive them using the corollary of
Theorem 3. Let f(x) = 1, so that fof(t) dt = x = F(x). For every
8 > 0, limx-+", e-8XF(x) = limx-+", xe-sx = 0, so

1
£(F(x) = - £(j(X)i

8

that is,
- 1 1

£(x) = - £(1) = -.
8 8 2

Similarly, if f(x) = 2x, then F(x) = x 2
, and again

if 8 > o.

Hence

X-+'" X-+'"

1 2
£(x2

) = - £(2x) = - £(x)
8 8

2 1 2

The transforms of xn , n = 1, 2, 3, ... , can be calculated by repeating
this process (Problem 2).

EXAMPLE 3.

£(eX
) = _1_._

8 - 1 for 8 > 1.
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Assume that s > 1, so that e(l-slR ~ 0 as R ~ 00. Then we have

= lim _1_ (e(1-s)R _ 1) = _1_.
R-+oo 1 - s s - 1

Now we can illustrate how the Laplace transform is used to solve a
linear differential equation. Consider the equation

y' - y = 1 - x, yeO) = 2. (5)

Let y be the solution of (5), and assume* that £(y(x)) exists and
lim",-+oo e-S"'y(x) = 0 for all sufficiently large values of s. Then £(y'(x))
exists, and

£(y'(x) - y(x)) = £(1 - x),

£(y'(x)) - £(y(x)) = £(1) - £(x),

1 1
s£(y(x)) - yeO) -; £(y(x)) = - - 2'

s s

1 1
£(y(x))(s - 1) = -; - S2 + 2,

( )
s - 1 + 2s 2 1 2

£ y(x) = S2(S - 1) = S2 + S - l'

Since

£(x) = 1/s2
, and £(e"') = l/(s - 1),

we have

£(y(x)) = £(x + 2e"').

From Theorem 2 it follows that

y(x) = x + 2e"'.

The use of the transform to solve a linear equation, as illustrated above,
can be thought of in the following way. Imagine (Theorem 2) a table in
which we can find y(x) given yes). By Theorems 1 and 3, a constant co-

* We will show in the next section that these assumptions are always satisfied
for a solution of a linear equation with constant coefficients.
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efficient linear differential equation in y(x) is transformed into an algebraic
equation in yes), involving the given initial condition. We solve the
algebraic equation to find y(s) , consult the table to find y(x), and the prob­
lem is solved. Note that the particular solution for the given initial
condition is found without first finding the general solution. If we leave
the initial condition arbitrary, yeO) = c, then we obtain the general
solution y = x + ce".

PROBLEMS

1. Show by induction that if s > 0, then limx->oo xne-'X = 0 for all positive
integers n. [Hint: Write xn +1e-·x = xn +1Ie'" and use I'Hospital's rule.)

2. Use Problem 1 and Theorem 3 to prove that £(xn ) = n!jsn+1 for s > 0
and n = 0, 1, 2, ....

3. (a) Show that £(eax) = I/(s - a) if s > a.
(b) Find £(cosh ax) and £(sinh ax) from part (a) and Theorem 1.

4. Show directly from the definition (2) that

£(sin (ax)) = al(a2 + S2) if s > o.

5. Use Problem 4 and Theorem 3 to find £(cos ax).
6. Let f(x) = xeax, so that f'(x) = af(x) + eax, and £(f'(x)) = a£(j(x)) +

I/(s - a). Use this equation and Theorem 3 to find £(xeax) without integration.
7. (a) Find £(x2eax ) by the technique of Problem 6.

(b) Show by induction that £(xneax) = n!j(s - a)n for s > a, and
n = 1,2, ....

8. Solve the equation y' + y = 1, yeO) = 2, by showing that

1 + 2s 1 1
yes) = s(s + 1) = "8 + s + 1 .

[cf. Problem 3(a).]
9. Use the transform to solve y' - 2y = 1 - 2x, yeO) 1.

10. Show that with suitable hypotheses,

£(y"(x)) = s2£(y(x)) - sy(O) - y'(O).

11. Find yes) if y is the solution of y" + 2y' + y = eX + 1, yeO) 1,
y'(O) = O.

ANSWERS

3. (b) £ (cosh ax) = sl(s2 - a2), £ (sinh ax) = al(s2 - a2)

5. £ (cos ax) = sl(s2 + a2) 6. £(xeax) = 1/(s - a)2
7. £(x2eax) = 2/(s - a)3 8. y = 1 + e-X

9. y = x + e2x

11. yes) = (s3 + s2 - 1)/s(s - l)(s + 1)2
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5-3 Properties of the transform. The discussion of the preceding section
is largely formal, and in this section we prove the theorems which allow
us to deal with transforms in a systematic way.

.We will assume from the beginning that all object functions are con­
tinuous on [0, (0). This is not a necessary restriction, but it will simplify
the discussion. A continuous function will have a transform defined for
some values of s provided the function does not grow too rapidly as x --+ 00.

We say that f is of exponential order b if e-bXf(x) is bounded on [0, (0);
i.e., if there is a number B such that e-bXlf(x)! S B for all x ~ 0.

THEOREM 1. If f ~'s of exponential order b, then !(s) exists for all s > b.

Proof. If s > b, then s = b + p for some p > 0, and

Since p > 0, the integral

~oo Be-pxdx

converges, and therefore the integral. for !(s) converges by Theorem 1,
Section 5-1.

We restate Theorem 3 of the last section and its corollary here in terms
of our standard hypotheses of continuity and exponential order.

THEOREM 2. If f and f' are continuous and f is of exponential order b,
then £(j'(x) exists for s > b, and

£(j'(x) = s£(j(x) - f(O).

Proof. If f is of exponential order b, then limx-->oo e-SXf(x) = °for s > b
(Problem 1), and this is the condition of Theorem 3, Section 5-2.

COROLLARY. If f is of exponent~'al order b and

F(x) = Jof(t) dt,

then F ~'s of exponential order band

£(F(x) = (I/s)£(j(x).

Proof. By the corollary of Theorem 3, Section 5-2, it is sufficient to show
that F is of exponential order b. Write
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and conclude that
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IF(x) I s i X

Be
bt

dt = ~ (e
bx - 1).

Therefore, e-bXIF(x)! S B/lbl, and F is also of exponential order b.

If the functions f, f', f" etc., are all continuous and of exponential order
b, then by repeated applications of Theorem 2, we obtain the following
basic formulas for s > b:

.£(f'(x) = sJ(s) - f(O),

.£(j"(X) = S2J(S) - sf(O) - f'(0), (1)

.£(j/"(x) = s3j(s) - s2f(0) - sf'(O) - f"(0), etc.

THEOREM 3. If f 1'S of exponential order b, then e-aXf(x) is of exponen­
tial order b - a, and for s > b - a, we have

Proof. Problem 2.

.£(e-aXf(x) = J(s + a). (2)

(s > 0).

As an example of (2), consider the formula (see Problem 4, Section 5-2)

.£ (sin bx) = S2 ~ b2 '

From this and (2) we have immediately

( -ax . b) b
.£ e sm x = (s + a)2 + b2 '

Similarly, from
1

.£(x) = 2"' (s > 0),s

(s > -a) .

we get (with a = -1)

.£(xe
X
) = (s ~ 1)2' (s > 1).

Formulas (1) describe what happens to the transform when the object
function is differentiated. The next theorem describes what happens to
the object function when the transform is differentiated. More precisely,
we show that each transform J is differentiable, that its derivative J/ is
again a transform, and that

J/(s) = .£(-xf(x).

The proof of these facts depends on the following lemma.

(3)
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LEMMA 1. If f is of exponential order b, and n is a positive integer, then
£(xnf(x» exists for s > b, and the ~'ntegral for this transform converges
uniformly for s ~ bo, for any bo > b.

Proof. Problem 3.

Notice that the lemma above implies that the integral for £(xnf(x»
converges uniformly on some interval around s, for each s > b.

THEOREM 4. If f 1'S of exponential order b, then 1 has derivatives of all
orders for s > b, and

1'(s) = £( -xf(x» ,

1"(s) = £(x2f(x» ,

1 'I1 (s) = £(-x3f(x», etc.

(4)

Proof. The formulas (4) are obtained by repeatedly differentiating the
integral formula for l(s) under the integral sign. For example,

l(s) = 1000

e-OXf(x) dx,

1 ' (s) = 1000

e-OX (-x)f(x) dx.

(5)

(6)

(s > a).

Differentiation under the integral sign in (5) is justified by Theorem 4,
Section 5-1, since by the lemma we know that the resulting integral (6)
converges uniformly on some interval around each s > b.

As an example of how new transforms can be obtained from (4), consider
the formula (see Problem 3, Section 5-1)

£(eaX
) = _1_,

s-a

By differentiating the right side, we get

( ax) 1.
£ xe = (s _ a)2 '

and in general

n( n-l ax) (n - I)!
"'" X e = ,(s .,- a)n

In a similar way, we can start with

(s > a),

(s > a).

£(1)
1= -,
S

(s > 0)
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and obtain the formulas
n!=-,
Sn

(s > 0).

Since our purpose is to solve linear differential equations with constant
coefficients by means of transforms, we need to know that the solutions
we seek always have transforms. This question is settled by the following
lemmas and theorem.

LEMMA 2. If fI, ... ,fn are of exponential orders bl , ... , bn, respectt'vely,
then fx + ... + f n is of exponential order b = max IbI, ... , bn I.

Proof. Problem 4.

LEMMA 3. If q, g', q", ... , q(k) are continuous and of exponential order
b, and y is a solution of

(D - r)y = q, (7)

then y, y', ... , y(k+l) are continuous and of exponential order b' =

max Ib, rI·

Proof. Any solution y of (7) can be written

y(x) = cerx + erxlX e-rtq(t) dt.

The solution y will have the required properties if the integral

u(x) = { e-rtq(t) dt

(8)

(9)

has k + 1 continuous derivatives which are of exponential order b - r.
The function u itself is of order b - r, by the corollary of Theorem 2,
since the integrand in (9) is of order b - r. Also, u is differentiable (hence
continuous), and its derivatives are given by

u'(x) = e.-rXq(x) ,

u"(x) = e-rX[q'(x) - rq(x)),

u"'(x) = e-rX[q"(x) - 2rq'(x) + r2q(x)), etc.

(10)

From (10) it is clear that u, and hence y, has one more continuous deriva­
tive than q. From Lemma 2 and (10) we see that u', u", ... , U(k+ll are
of exponential order b - r, since the terms in brackets are of or{iler b.

If r is a complex number, we modify the proof above by c'onsidering
the real part of r, and the lemma holds for real or complex numbers r.
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THEOREM 5. If q is continuous and of exponent1'al order, and Y is a
solution of

y(n) + Pn_Iy(n-ll + ... + PlY' + PoY = q, (11)

where Po, PI, ... , Pn-l are constants, then Y, y', ... , y(n) are continuous,
and of exponential order.

Proof. We write Eq. (11) in the form

(D - rl)(D - rz) ... (D - rnlY = q (12)

and assum,e that Y is a given solution of (12). Define functions YI, Yz, ... ,
Yn-l by

(D - rz)(D - ra) (D - rn)y = YI,

(D - ra) (D - rn)y = Yz,

(D - rn)y = Yn-l.

From these equations, we have

(D - rl)YI = q,

(D - rZ)Yz = YI,

(13)

(D - rn-I)Yn-1 = Yn-Z,

(D - rn)y = Yn-l.

By Lemma 3 and the first of equations (13), YI and y{ are continuous and
of exponential order. From the second equation it then follows that
Yz, y~, and y~' are continuous and of exponential order. Continuing in
this way, we see that Yn-I, Y~-I, ... , Y~":.:il) are continuous and of expo­
nentialorder. The last equation in (13) and Lemma 3 then guarantee that
Y, y', ... ,y(n) are continuous and of exponential order.

COROLLARY. If q is cont1'nuous and of exponential order, and Y is a
solution of (11), then o£(y(x», o£(y'(x», ... , o£(y(n)(x» exist for all
sufficiently large values of s.

The fact that £ is a one-to-one operator is fundamental in our applica­
tions. Using the following theorem, we will prove this next.

THEOREM 6 (Weierstrass polynomial approximation theorem). If u is
cont£nuous on [0, 1] and E > OJ then there is a polynomial P such that
lu(x) - P(x)1 < E for all x in [0, 1].
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Theorem 6 is one of the most useful theorems of analysis. Although
the statement of the theorem is quite simple, the proof is complicated and
will be omitted.

COROLLARY. If u is continuous on [0, 1] and I5 xnu(x) dx = 0 for
n = 0, 1,2, ... , then u(x) == o.

Proof. Let E be any positive number, and let P be a polynomial such
that lu(x) - P(x)1 < E for all x in [0, 1). By the hypothesis,

10
1

P(x)u(x) dx = 0,

and hence

{I (I 1
1

0
u(x) 2 dx = 1

0
u(x)[u(x) - P(x)] dx :s; E10 lu(x)1 dx.

Since E is arbitrary, the integral of u(x) 2 is zero, and hence u(x) == O.

THEOREM 7 (.c is one-to-one). Iff and g are continuous on [0, 00) and
!(s) = O(s) for all s ?: so, then f(x) == g(x).

Proof. It is sufficient (Problem 6) to show that if h is any continuous
function such that h(s) = 0 for s ?: so, then hex) == O. Assume therefore
that h(s) = 0 for s ?: so, and in particular that h(so + n) = 0 for
n = 0,1,2, ... :

(14)

Define the function v as follows:

(15)

Note that v is continuous on [0, 00), with v(O) = 0 and lim"'....."" vex) =
h(so) = O. Now integrate (14) by parts, with u = e-n", and dv =
e-So"'h(x) dx, so that v is given by (15). We get

o = h(so + n) = lim [e-nRV(R) + n rR
e-nxv(x) dX]

R....."" 10

= n10"" e-nxv(x) dx;

that is, for n = 0, 1, 2, ... , we have

(16)
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We make a change of variable in (16), with e-X = t, e-nx = tn, X = In t-I,
dx = -(lit) dt, and let u(t) = v(ln t-I) = vex). As x ranges between °
and 00, t ranges between 1 and 0. If we let u(o) = 0, then u is continuous
on [0, 1], since vex) ~ °as x ~ 00 (t ~ 0). With this change of variable,
(16) becomes

fo 1
tn-Iu(t) dt = 0.

Therefore u(t) == °on [0,1), and vex) == °on [0, (0). Hence v/(x) =
e-SoXh(x) == 0, and hex) == 0.

Since £ is one-to-one, we can define the inverse operator £-1 which
maps transforms onto object functions. In other words,

£-l(4)(S)) = f(x)

if and only if £(J(x)) = 4>(s). It is easy to show (Problem ]2) that £-1
is also a linear operator; i.e., that

In some applications it is convenient to allow functions q in (11) which
have discontinuities. For example, such a function would arise in the
discussion of an electric circuit in which a constant voltage was applied
at some time to > 0. Although the theorems of this section are stated
and proved for continuous functions, they extend with only minor changes
to functions with jump discontinuities at isolated points.

PROBLEMS

1. Show that if f is of exponential order b, then limx-+oo e-Sxf(x) = 0 for all
s > b.

2. Prove Theorem 30
*3. Prove Lemma 1. [Hint: Assume that bo > b, and let p = bo - b > 00

Show that if s ~ bo, then e-Sxxnlf(x) I :s:; Be-pxxn. Then use Theorem 3, Section
5-1, and Problem 2, Section 5-2.]

4. Prove Lemma 20
50 Explain the difference between the Weierstrass polynomial approximation

theorem and the false statement that every continuous function has a power
series expansion.

6. (See Theorem 7.) Show that f(s) == O(s) implies f(x) == g(x) if and only
if h(s) == 0 implies hex) == o.

70 Show that £(e-X2 ) exists for every value of s. [Hint: Show that e-axe-x2 :s:;
e-X if x ~ lsi + 1, and use Theorem 1, Section 5-1.]

8. Show that £(eX2 ) does not exist for any value of s. [Hint: Show that for
every s, limx-+oo e-sxex2 = 00 0]
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9. For any number a > 0, let fa be defined as follows:

fa (x) = (f(X : a) if x 2': a,

if 0 ~ x < a.

Show that £ (ja(X)) = 1(s + a).
10. Let f be the function which is zero on [0, 1) and one on [1, 00). Find

£(j(x)).
11. All the formulas of Table 2, Section 5-4, can be derived from Formulas

1 and 9 and the theorems of this section. Without using the definition, derive

.(a) Formulas 2 through 4.
(c) Formulas 10 through 12.

(b) Formulas 5 through 8.
(d) Formulas 13 through 15.

12. Show that £-1 is a linear operator; i.e., verify formula (17).

5-4 Solution of equations by transforms. Table 1 is a list of the opera­
tional formulas which were proved in Section 5-3 under appropriate
assumptions, and one formula, (E), which is discussed below. Table 2 is a
short table of Laplace transforms of specific elementary functions. The
object functions listed in Table 2 are all of exponential order, and hence
each of the transforms is defined for all sufficiently large values of s. We
start with some examples to show how such a table is used to obtain solu­
tions of linear equations with constant coefficients and specified initial
conditions.

EXAMPLE 1. y" + 4y = x + sin 2x, y(O) = y' (0) = O.

Let y be the solution of this equation, and y be its transform. For sim­
plicity, we will write y instead of y(s) in the transformed equation in
the same way that y, y" are used for y(x), y"(x) in the differential equation

TABLE 1

A £(!'(x)) = sl(s) - f(O)

B £ (lX f(t) dt) = ~ l(s)

c £(e-axf(x)) = l(s + (I)

D £(-xf(x)) = 1 ' (s)

E £(f(xhg(x)) = j(s)g(s)
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TABLE 2

[CHAP. 5

l(s) f(x)

1
1

1-
s

1 1 n-l (n = 1,2,3, ...)2 - x
sn (n - I)!

1 ax
3 -- e

s-a

1 1 n-l ax
(n = 1,2,3, ...)4 X e

(s - a)n (n - I)!

5
1 1 . h

S2 - a2
- sm ax
a

6
s cosh ax

S2 - a2

1
(a ,e b) 1 [ ax bXj

7 -- e -e
(s - a)(s - b) a-b

8
s

(a ,e b) 1 [ax b bXj-- ae - e
(s - a)(s - b) a-b

1 1
9

S2 + a2 - sin· ax
a

s
10

s2 + a2
cos ax

1 1 ax sin bx11
(s - a)2 + b2 be

s - a ax cos bx12
(s - a)2 + b2 e

s 1
13 (s2 + a2)2

2a x sin ax

2 2
S -a

14
(s2 + a2)2

x cos ax

1 2~3 [sin ax - ax cos ax]15 (s2 + a2)2
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itself. The transform '0 must satisfy

8
2
'0 - 8Y(0) - y' (0) + 4'0 = 812 + 82 ~ 4 '

or, since yeO) = y'(O) = 0,

'0(8
2 + 4) = 8\ + 82~ 4 '

• 1 + 2
y = 82(82 + 4) (82 + 4)2

Hence

y = £-1 t2(8/+ 4)} + 2£-1 {(82 ~ 4)2} .

From Table 2 (#15), we find

2£-1 {(82~ 4) 2} = t [sin 2x - 2x cos 2x]. (1)

Since 1/82(82 + 4) does not appear in the table, we break this expression
into partial fractions:

1 A B C8 + D
82(82 + 4) = -i + 82 + 82 + 4

Equation (2) is an identity if

1 == (A + C)83 + (B + D)82 + 4A8 + 4B.

Hence B = 1, A = 0, D = -1, C = 0, and

1 1 1 1 1
82(82 + 4) = 4: 82 - 4 82 + 4 .

From the table (#2, #9), we get

-1 { 1 } _ 1. 1 1 . 2
£ 8 2(82 + 4) - 4"X - 4" 2" sm x.

Finally, from (1) and (3), we have

y = t [sin 2x - 2x cos 2x] + 1x - t sin 2x

= 1x - 1x cos 2x.

(2)

(3)
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EXAMPLE 2. y" + 2y' + 2y = 2e-x cos x, y(O) = 2, y'(O) = -2.

Taking the transform of both sides, using #12, we get

Collecting terms and simplifying, we obtain

A 2 2(8 + 1)
Y(8 + 28 + 2) = (8 + 1)2 + 1 + 2(8 + 1),

A 2(8 + 1) 2(8 + 1)
y = [(8 + 1)2 + 1]2 + (8 + 1)2 + 1

Note that the first term on the right of (4) can be written

(4)

2(8 + 1)
[(8 + 1)2 + 1]2

d -1
d8 (8 + 1)2 + 1

Therefore, using (D), then #11 and #12, we have

-1 { -1 } + 2£-1 { 8 + 1 }
y = -x£ (8 + 1)2 + 1 (8 + 1)2 + 1

= xe-x sin x + 2e-x cos x.

Instead of using (D) as above, we can use (C), and then #13, to obtain

-1 { 2(8 + 1) } 2 -x£-1 { 8 }
£ [(8 + 1)2 + 1]2 = e [82 + 1]2

Because of the form of the entries in Table 2, it is usually necessary to
break a transform into partial fractions before we can identify the inverse
transform. Next we give a simple method for effecting the partial fraction
decomposition for a rational function P(8)jQ(8) when Q(8) is a product of
distinct linear factors. Suppose that Tl, ... , Tn are distinct numbers, that

Q(8) = (8 - Tl) ... (8 - Tn),

and that P is a polynomial of degree less than n. Then there are numbers
A 11 ••. , An such that

P(8) =~ + ... +~.
Q(8) 8 - Tl 8 - Tn

(5)
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If we multiply both sides of (5) by s - Ti, and let s approach Ti, only Ai
remains on the right, and hence

Ai = lim (s - Ti)P(S) .
S->Ti Q(s)

Since Q(Ti) = 0, we can write (6) in the form

Therefore the decomposition (5) can be written

EXAMPLE 3. Express in partial fractions

S2 - 2s + 2

(6)

S3 - S2 - 4s + 4

Here Q(s) = S3 - S2 - 4s + 4 = (s - l)(s - 2)(s + 2), and Q/(s) =

3s2 - 2s - 4. Hence P(l)/Q'(l) = 1/(-3) = -t, P(2)/Q'(2) = t =
!, P(-2)/Q'(-2) = ~g = t, and

S2 - 2s + 2 = _ .!. _1_ + .!. _1_ + ~ _1_ .
S3 - S2 - 4s + 4 3 8 - 1 2 8 - 2 6 8 + 2

EXAMPLE 4. y" - 2y' - 3y = eX, yeO) = 1, y'(O) = 1.

Q(8) = 83 - 382
- 8 + 3, and Q/(8) =

P(l)/Q'(l) = -i, P(3)/Q'(3) = i,

Taking the transform of both sides and simplifying, we get

82y - 8 - 1 - 2(8Y - 1) - 3y = _1_ ,
8 - 1

A( 2 2 3) 1 + 1 8
2

- 28 + 2
ys - s- =8-1 s- = 8-1 '

A S2 - 28 + 2
Y = (8 - 1) (8 - 3) (8 + 1) .

Here P(8) = 82
- 28 + 2,

382
- 68 - 1. Hence

P(-l)/Q'(-l) = ~, and

A = 8
2

- 2s + 2 = _ .!. _1_ + ~ _1_ + ~ _1_.
Y (8-1)(8-3)(8+1) 48-188-388+1



136

Therefore

THE LAPLACE TRANSFORM [CHAP. 5

We continually use the linear properties of "c-that is, we continually
use the fact that "c is a mapping which preserves the operations of addition
of functions and multiplication of a function by a constant. There is a.
type of multiplication for object functions, denoted f*g, for which "c is also
a multiplicative mapping, in the sense that

"c[(f*g)(x») = "c(j(x»)"c(g(x»).

The product on the right above is the usual pointwise product of two
functions. The "product" f*g, called the convolution of f and g, is defined by

(7)

For convenience in discussing the convolution of particular formulas, we
will usually use the slightly improper Dotationf(x)*g(x) instead of (f*g) (x).

We give here without proof a formal statement of the multiplicative
property of "c with respect to convolution.

THEOREM 1. If f and g are conMnuous on [0, 00) and of exponenMal order
b,' then f*g is continuous and of exponent1"al order b, and for all s > b

"c[f(x)*g(x»). "c(j(x) )"c(g(x»). (8)

Convolution has the following properties, which justify considering this
operation as a type of product for functions.

f*g = g*f,

(f*g)*h = f*(g*h),

f*(g + h) = f*g + f*h,

(cj)*g . f*(cg) = c(f*g).

(9)

The formulas above can be derived directly from the definition (7), but
follow most easily from (8) and the fact that "c is one-to-one. For example,
from (8) we have

"c[f(x)*g(x») = "c(j(x) )"c (g (x) )

and

"c[g(x)*f(x») = "c(g(x»)"c(j(x»).
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The right sides of the two equations above are obviously equal, so

Since £ is a one-to-one operator, it follows that

We list next some examples of the convolution of two functions and the
parallel statements for their transforms.

14(x) = fo'" f(t) dt,

£(hf(x)) = £(I)£(J(x)) = .! £(J(x)).
8

x* sin x = fo'" (x - t) sin t dt = x - sin x,

£(x* sin x) = £(x)£ (sin x) = 812 8 2 ~ 1 = 812 - 82 ~ 1 .

x*e'" = 10'" (x - t)e t dt = e'" - x-I,

£(x*e"') = £(x)£(e"') = 1-. _1_ = _1__ 1- _ .!.
8 2 8 - 1 8 - 1 8 2 8

sin x* cos x = fo'" sin (x - t) cos t dt = !x sin x,

,£ (sinx* cos x) = £ (sinx)£ (cos x) = 82 ~ 1 . 82 ~ 1 = (82 ~ 1)2

(10)

(11)

(12)

(13)

(14)

EXAMPLE 5. y" + y = cos x, y(O) = y' (0) = O.

The transformed equation is

2. + . 8
8 Y Y = 82 + 1 '

or

y = 8 2 ~ 1 . 82 ~ 1 = £ (sin x)£ (cos x).

It follows from (8) and (14) that

y = sin x* cos x = !x sin x.
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EXAMPLE 6. y" - 5y' + 6y = e-2x,

The transformed equation is

yeO) = 0, y/(O) = -2.

YA(82 _ 58 + 6) = _1_ - 2
8 + 2 '

or

Y = (8 + 2)(8 -= 2)(8 - 3) - (8 - 2)2(8 - 3) . (1-5)

From Table 2 (#7), we get

-1 { 1 } 3x 2x
£ (8 - 2)(8 - 3) = e - e .

Therefore

-1 { 1 1} -2x [ 3x 2Xj
£ 8 + 2 . (8 - 2) (8 _ 3) = e * e - e

= lX e-2(x-t)[e3t - e2t j dt

= e-2xlX e2t[e3t - e2tj dt

= e-2X[ie 5X - t - i-e4X + il
_ .l.e3x 1 2x l -2x
- 5 - 4 e - 20e .

Combining the results of (15), (16), and (17), we have

_ £-1 { 1.}_2£-1 { 1 }
y- (8+2)(8-2)(8-3) (8-2)(8-3)

= te3X _ i-e 2x - -i'oe-2x _ 2[e3X _ e2X j

-te3X + ie2x - -i'oe-2x.

PROBLEMS

Solve the following equations using transforms.

1. y/ - Y = eX, yeO) = 1
2. y/ = X, yeO) = 1
3. y" - 3y' + 2y = e-x , yeO) = -1, y/(O) = 1
4. y" + 9y = sin 3x, yeO) = 1, y/(O) = 0
5. y" + 2y' + y = 1 + eX, yeO) = 1, y/(O) = 0
6. y" + y = x + eX, yeO) = 2, y/ (0) = 1
7. y" - 3y' + 2y = 2e3x, yeO) = 2, y/(O) = 3

(16)

(17)
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8. y'" - y' = e2x, yeO) = y' (0) = y" (0) = 0
9. y" + y' = 3x2 - 6, yeO) = 0, y'(O) = 1

10. y'" - y' = 2 sin x, yeO) = y' (0) = y" (0) = 0
11. y" + 2y' + 2y = 0, yeO) = y'(O) = 1
12. y" - 2y' + y = eX sin x, yeO) = y'(O) = 0
13. y" - 4y' + 5y = e2x cos x, yeO) = y'(O) = 0

14. Verify the convolution formulas in (10), (11), (12), (13), and (14). Check
in each case that £[!(x)*g(x)] = £(j(x»)£(g(x»).

15. Make the change of variable t = x - tt, dt = -du in (7) and verify
that !*g = g*f.

16. (a) Show that!(ax)*g(ax) = (l/a)(f*g)(ax).
(b) Use (a) and (14) to conclude that (sin 2x)* (cos 2x) = !x sin 2x.
(c) Use (b) to solve y" + 4y = cos 2x, yeO) = y' (0) = O.

17. (a) Use the definition (7) to show that

(sin axh (sin ax) = 2~ sin ax - !x cos ax.

(b) Derive the formula of (a) using transforms (#9 and #15 of Table 2).
18. (a) Use the definition (7) to show that

(cos axh (cos ax) = !x cos ax + 2
1
a sin ax.

(b) Derive the formula of (a) using transforms (#10, #14, and #15
of Table 2).

ANSWERS

1. y = (1 + x)eX

3. y = ie2x - ~ex + ie-x

5. y = 1 + i-ex - i-e-x - !xe-x

7. y = 2ex - e2x + e3x

9. y = 1 - 3x2 + x3 - e-X

11. y = e-Xcos x + 2e-Xsin x
13. y = !xe2x sin x

2. Y = 1 + !x2

4. Y = ls sin 3x+ cos 3x - ix cos 3x
6. y = x + !ex+ ~ cos x - ! sin x
8. y = ie2x - !ex - ie-x + !

10. Y = 2 - sin i + 2e - e-X

12. y = xeX - eX sin x
16. (c) y = i-x sin 2x
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CHAPTER 6

PICARD'S EXISTENCE THEOREM

6-1 Review. We will start this chapter with a review of some of the
basic definitions and theorems from calculus which will be used in the
existence proof.

A function f of one variable is continuous at a if for every E > 0 there is
a 0 > 0 such that If(x) - f(a) I < E whenever Ix - al < o. The func­
tion f is continuous on an interval I if f is continuous at each point of I. A
function F of two variables is continuous at (a, b) if for every E > 0 there
is a 0 > 0 such that IF(x, y) - F(a, b)1 < E whenever Ix - al < 0 and
Iy - bl < o. The function F is continuous on a set of points (e.g., a square)
S if F is continuous at each point of S.

THEOREM 1. A function of one variable which is continuous on (L closed
interval is bounded on that interval, and sim1'larly a function of two variables
which is continuous on a closed square (inCluding the boundary lines) 1'S
bounded.

We will use the notation

max If(t)!
tin [a,b]

for the least upper bound of the numbers If(t) I for t in [a, b].·
The student is familiar with the basic properties of the definite integral

lab f(t) dt. (1)

We recall that there are many functions f for which (1) is not defined, but
that (1) is defined for any function f which is continuous on [a, b] (or
[b, a], if b < a). The following is essentially the fundamental theorem of
calculus.

THEOREM 2. Iff is continuous on [a, b] and g is defined on [a, b] by

g(x) = {; f(t) dt,

then g 1'S differentiable, and g'(x) = f(x) for x in [a, b].

We will also use the following two integral inequalities.
140
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THEOREM 3. IJ J is continuous on [a, b] (or [b, a]), then

ItJ(t) dtl :::; It IJ(t)1 dtl

and

I(b J(t) dtl :::; Ib - aJ max IJ(t) I·
Ja tin [a,b]

(2)

(3)

The Picard method "constructs" a solution to the differential equation
in question as the limit of a sequence of functions. We turn to some facts
about sequences.

The sequence (of numbers) Ian} converges to a (denoted limn-->oo an = a)
if for every positive number EO there is an integer N such that Ian - al < EO

if n ~ N.
If IYn} is a sequence of functions defined on a given interval I, then

we can regard this as a family of sequences of numbers; i.e., for each fixed
x in I, we hav~ the sequence IYn(x)} of numbers. The limit of {Yn(x)}, if it
exists, will of course depend on x, and hence a function Y is defined by
y(x) = limn-->oo Yn(x). If the sequence of numbers IYn(x)} converges for
each x in I, we say that IYn} converges to Y pm'ntwise on I and denote this
limn-->oo Yn(x) = y(x) (x in I). Simply writing out the formal e-definition
gives us the equivalent statement: {Yn} converges to Y pointwise on I if for
every x in I and every positive number EO, there is an integer N (depending
on both x and EO) such that IYn(x) - y(x)1 < EO if n ~ N.

Now we forget temporarily the preceding definition and ask what kind
of geometric interpretation should go with the idea of convergence of a.
sequence of functions. One reasonable idea is that the graphs of the func­
tions Yn should approach the graph of the limit function y. This is a sensible
idea, but it is not a consequence of the definition of pointwise convergence.

G'l)
(to>!) I G.l) (1, 1)

(to, 0) a,o) (1,0) (2,0)

FIG. 6-1. Functions converging pointwise but not uniformly.
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EXAMPLE 1. (d. Fig. 6-1.) Let Yn (n= 1,2, ...) be the function on
[0,2] whose graph consists of the line segments from (0,0) to (lin, 1),
from (lin, 1) to (2In, 0), and from (2In,0) to (2,0). This sequence con­
verges to the function identically zero on [0,2] (Problem 2), even though
each function is at some point one unit away from the x-axis.

We define next a type of convergence for sequences of functions which
is a formalization of the statement that the graphs of the individual
functions approach the graph of the limit function.

The sequence IYn l of functions on I converges to y uniformly on I if for
every positive number E, there is an integer N (which depends on E but not
on x) such that IYn(x) - y(x) I < E for all x in I, if n ~ N.

It is clear that uniform convergence is a stronger hypothesis than
pointwise convergence. Some of the convenient properties of uniform
convergence-and significant reasons for making such a definition-are
given in the next two theorems.

THEOREM 4. If IYn l is a sequence of continuous functions on [a, b] which
converges uniformly on [a, b] to Y, then Y is cont1'nuous on [a, b].

This theorem is not true for pointwise convergence (Problem 4).

THEOREM 5. If IYnl is a sequence of continuous functions on [a, b] which
converges uniformly on [a, b] to Y, then

b lb!~ fa Yn(t) dt = a y(t) dt.

This theorem also is false with the weaker hypothesis of pointwise
convergence (Problem 3). The student is asked to supply a proof of
Theorem 5 in Problem 6.

Now recall the connnection between series (infinite sums) and sequences.
We say the series I::=l ak converges to a (denoted I::=l ak = a) if the

sequence ISn l converges to a, where

Sn = al + a2 + ... + an'

The sequence ISnl is called the sequence of partial sums of 2::=1 ak·
If IUk l is a sequence of functions defined on some interval I, we can

form the series with these terms, I::=l Uk. The convergence of a series
of functions depends in the obvious way on the convergence of the sequence
ISnl of functions which are the partial sums: Sn(x) = Ul(X) + ... + un(x)
for x in I. Thus we agree that I::=l Uk converges pointwise on I if the
sequence ISnl converges pointwise on I, and I::=l Uk converges uniformly
on I if ISnl converges uniformly on I. We will use the following compari­
son test.
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THEOREM 6. If for each k, Uk is a non-negat?'ve function on I, and L:=l Uk
converges uniformly on I, and IYk(X) I ::; Uk(X) for each k and each x in I,
then L:=l Yk converges uniformly on I.

PROBLEMS

1. Show (given E > 0, find 0 > 0) that if J is continuous at a, and J(a) = b,
and F is continuous at (a, b), and get) = F(t,JCt), then g is continuous at a.

2. (a) Show that the sequence of functions {Ynl given in Example 1 converges
pointwise to the function identically zero on [0, 2]; that is, give an inte­
ger N", for each x in [0, 2] such that IYn(x) - 01 < E if n ~ N ",. [Hint:
it is sufficient to give an N", such that Yn(X) = 0 if n ~ N",.]

(b) Show that if the functions of Example 1 are changed in any way on
the intervals on which they are positive (but only there), the new
sequence still converges to zero.

3. Modify the functions of Example 1 to obtain a sequence {Yn I of functions
such that limn->oo Yn(X) = 0 (x in [0, 2]), and nYn(X) dx = 1 for all n [cf.
Problem 2(b)].

4. Let Yn be the sequence of functions on [-1,1] defined by

0 if -1 ~x ~ 0,

Yn(X) if 0 ~x
1

nx ~ -,
n

1 if
1
-~x~ 1.
n

Graph YI, Y2, Y3, and Y4. Show that {Ynl converges on [-1, 1]. Graph the limit
function. Does the sequence converge uniformly on [-I, I]?

5. Give an example to show that the outside absolute value signs on the right
side of (2) are necessary. [Hint: When is J~ IJ(t)1 dt negative?]

6. Show that if {Ynl is a sequence of continuous functions on [a, b] which
converges uniformly on [a, b] to y, then

l~ t Yn(t) dt= t Yet) dt.

[Hint: Use (3) with J replaced by Yn - y. Compare this result with Problem 3.J
7. Let {8nl be any sequence. Find aI, a2, ... such that {8nl is the sequence

of partial sums for the series L,::=l ak.
8. Show that if Uk is a continuous function on [ for each k, and L,::=l Uk

_ converges uniformly on [ to the function u, then U is continuous on [.
9. Show that if IYk(X)/ ::; /xJk/k! for all x in [-I, IJ and all k, then L,::=l Yk

converges uniformly on [-I, IJ.
10. Let Yn(X) = xn, Zn(X) = xn/n! Discuss the intervals on which the

sequences IYn I and {zn I converge and the intervals on which the sequences
converge uniformly.
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6-2 Outline of the Picard method. We will prove in this section and
the next the existence and uniqueness. of a solution of the equation

y'(x) = F(x, y(x»), y(a) = b. (1)

The equation (1) can be written in an equivalent integral form, as we show
in Theorem 1, and it is this integral form which is principally used in the
rest of the chapter.

THEOREM 1. If F is continuous on the square S = {(x, y): Ix - al :::; h
andly - bl :::; h} andyisacontinuousfunctiononI = {x:lx - al:::; h}
whose graph.is contained in S, then y is a solution of (1) on I if and only if
y satisfies the following equation ident~'cally on I:

y(x) . b + f; F(t, y(t») dt. (2)

Proof. Notice that the integral on the right side of (2) exists for all x
in I, since the integrand is continuous on I (see Problem 1, Section 6-1).

First assume that y satisfies (2) identically on I. Then in particular

y(a) = b + faa F(t, y(t») dt = b, (3)

so y satisfies the initial condition of (1). From the continuity of the inte­
grand in (2) we can conclude that y is differentiable on I (Theorem 2,
Section 6-1) and that

y'(x) = F(x, y(x») (4)

for each x in I. That is, (4) is an identity on I, and y satisfies (1) on I.
Now suppose y satisfies (1) on I. The integrals of equal functions are

obviously equal, so we have

f y'(t) dt = fax F(t, y(t») dt (5)

for all x in I. The left side of (5) can be integrated to obtain y(x) - y(a) =
y(x) - b, so y satisfies (2) on I.

We can now outline the basic i«iea of the Picard method. Define a
sequence of functions IYn} as follows:

Yo(x) . b,

Yl(X) = b +f F(t, b) dt,

Y2(X) = b + fax F(t, Yl (t») dt,

etc.

(6)
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Suppose there is a limit function Y such that

lim Yn+l(X) = y(x)
n->oo

and

(7)

(9)

(10)

Since the left sides of (7) and (8) are equal by definition (6), it follows that
the limit function Y satisfies

y(x) = b +f; F(t, y(t)) dt

and hence is a solution of (2) and (1).
The following three questions must be resolved for this approach to

work:

I. Does the scheme (6) actually define all the functions Yn on some
fixed interval 10 around a?

II. Does the sequence defined by (6) converge on I o?
III. Does the sequence of functions f~ F(t, Yn(t)) dt converge on 10 as

required by (8)?

Our proof of the existence of a solution will consist in verifying conditions
I, II, and III under appropriate assumptions on F.

EXAMPLE 1. Consider the equation y'(x) = 2xy(x) , y(O) = 1: The
equivalent integral form is

y(x) = 1 + foX 2ty(t) dt.

We let yo(x) = 1, Yl(X) = 1 + f o2tdt, and in general

Yn+l(X) = 1 + foX 2tYn(t) dt.

Here the function F(x, y) = 2xy is continuous everywhere, so all the
integrals in (9) exist for all x, and all the functions Yn are defined every­
where (Condition I). We get the following formulas:

Yl(X) = 1 + fo'" 2t1 dt = 1 + x Z,

yz(x) = 1 + foX 2t(1 + tZ) dt = 1 + XZ + tx4,

y (x) = 1 + XZ + !x4 + _1_ x 6 + ... +..!.. XZn
n 2 3·2 n!

~ 1 Z k= LJ k! (x ) .
k=O
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The functions Yn form the sequence of partial sums of the series for ex2
•

This series converges everywhere, which means the sequence {Yn(x) I con­
verges to ex2 for each x. Condition II is therefore satisfied on any interval
around zero.

Condition III requires that

fx Irx t2 2lim 2tYn(t) dt = 2te dt = eX - 1
n--->oo 0 0

for all x in some interval around zero. By (10)

('" 2tYn(t) dt = ('" 2t :t ;, t2k

Jo Jo k=O'

= :t 2, ('" t2k+1 dt
k=O k. Jo

f-- 2 1 2k+2

= 6 k! 2(k + 1) x

_ f-- 1 ( 2)k+l
- L.J (k + I)! x

k=Q

(11)

(12)

y(x) + 2f yet) dt = 1.

~1
= 6 k! (x

2
)k.

The functions (12) are the partial sums of the series for ex2
- 1, and

therefore converge to this function on every interval as required in (11).
Condition III is satisfied and the limit ex2 of the sequence {Yn(x) I is a
solution.

PROBLEMS

1. Write a first order differential equation with initial condition which is
equivalent to

2. Write a second order differential equation with initial conditions which is
equivalent to

[X 2
y(x) + x

10
Yet) dt = x + 1.

3. Find the differentiable function y which satisfies

[X 2
(a) 10 Yet) dt = x - y(x), r'" 2(b) xy(x) +11 yet) dt = x .
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4. Compute the sequence {Ynl defined by (6) for the equation y/ - Y = 0,
yeO) = 1. Verify that conditions I, II, and III are satisfied for this sequence.

5. Compute the functions Yn defined by

{

YO(X) = 0,

Yn+l (x) = 1 + fox F(t, Yn(t)) dt,

where F(x, y) = y. Compare with Problem 4.
6. Find the sequence {Ynl defined by (6) for the equation y/ = Y - x,

yeO) = 1. Verify I, II, and III for any finite interval [-r, r].
7: Use the Picard method, as in Problem 6, to solve y/ = x2 - 1 - Y,

.y(0) = 1.
8. Show that III is not an automatic consequence of II. [Hint: Let F(x, y) = Y

and use the sequence {Yn} of Problem 3, Section 6-1.]
9. Let {Yn} be a sequence of continuous functions on [0, 1] which converges

uniformly on [0, 1] to the function y. Let F(x, y)= xv. Show that for x in [0, 1],

lim r F(t, Yn(t)) dt = r F(t, y(t)) dt.
n~ooJo Jo

(See Problem 6, Section 6-1.)

ANSWERS

1. y/ + 2y = 0, y(l) = 1
2. y" + xy/ + 2y = 2, yeO)

3. (a) vex) = 2x - 2 + 2e-x

1
(b) Vex) = ix + 3x2

n

4. Yn(X) = L: x
k /k!

k=O

1, y/(O) = 0

n-l

5. Yn(X) = L: x
k/k! (n ~ 1)

k=O

) + 1 n+l ( ) ( 26. Yn(X = 1 x - (n + I)! x 7. y x = 1 - x)

6-3 Proof of existence and uniqueness. Theorems 1, 2, and 3 of this
section verify the conditions I, II, III of the preceding section and thus
constitute a proof of the existence of a solution of

y/(x) = F(x, y(x)), yea) = b, (1)

- or equivalently

y(x) = b + LX F(t, Yet)) dt. (2)

The uniqueness of the solution is proved in Theorem 4, and the results of
the chapter are summarized in Theorem 5 (Picard's theorem).
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b+h

b

b-h

PICARD'S EXISTENCE THEOREM

I- 10 '1
a-h a-ho a a+ho a+h

I· I ·1
FIGURE 6-2

[CHAP. 6

The notation introduced next and illustrated in Fig. 6-2 is used through­
out this section.

LetS = {(x,y): Ix - al ::s; hand Iy - bl ::s; hI·

Let [ = {x: Ix - al ::s; hI·

We will always assume that the function F in (1) and (2) is continuous
on S, and it follows that F is bounded on S. Assume henceforth that
IF(x, y) I < M for (x, y) in S.

Draw the lines through (a, b) with slopes ±M, and let T be the shaded
double-triangle region between these lines and within S.

Let [0 be the interval around a which is the projection of T on the x-axis.
Let ho(ho ::s; h) be the half-length of [0, so that

[0 = {x: Ix - al ::s; hoI
and

T = {(x, y) : x in [0 and Iy - bl ::s; M Ix - all. (3)

We recall the inductive definition of the approximating sequence {Ynl.

Yo(x) = b,

Y"n+l(X) = b + fax F(t, Yn(t») dt.
(4)
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THEOREM 1 (Condition I). If F is continuous on S, and IF(x,Y)1 < M
for (x, y) in S, and 10, T are as indicated above, and IYn I is the sequence
defined by (4), then each function Yn is defined on 10 , and has its graph in T.

Proof. The proof is inductive. The function Yo obviously has its graph
over 10 in T, so Yl is well defined on 10 by (4). Also,

IF(t, yo(t»1 = IF(t, b)j < M

for all tin 10 . For x in 10 ,

IYl(X) - bl = I.f F(l, Yo(t» dtl

~ IfMdtl

= Mix - aj. (5)

(6)

The inequality (5) is just the condition (3) that (x, Yl (x» be in T for x
in 10 . Now suppose that above 10 the graph of Yn(n ;::: 1) is in T. In
particular, F is continuous on the graph of Yn and so Yn+l is defined for x
in 10 . Also IF(t, Yn(t» I < M for t in 10 , and hence

IYn+l(X) - bl = I.f F(t, Yn(t» dtl

~ Mix - al·

Thus Yn+ 1 also has its graph in T by (3). This completes the proof by
induction.

COROLLARY. Under the hypotheses of Theorem 1,

IYm(x) - Yn(x)/ ~ 2Mlx - al

for all m and n and all x in 10 .

Proof. Problem 1.

(7)

We have shown that the scheme (4) does define a sequence of functions
on some fixed interval 10 around a. We will need an additional assumption
on F to show that the sequence converges.

DEFINITION. The function F satisfies a Lipschitz condition on S if
there is a number A such that

(8)

for all points (x, Yl) and (x, Y2) in S.
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The Lipschitz condition can be interpreted geometrically by saying that
along any given vertical line (any fixed x), the function F(x, y), considered
as a function of the single variable y, nowhere increases more rapidly than
the linear function Ay. This is true, for example, of the function F(x, y) =
x 2 + xy on any region on which x is bounded. On the other hand, the
function F(x, y) = 2"yxy (cf. Section 1-3) does not satisfy a Lipschitz
condition in any region around (1,0). Here Formula (8) would require, in
particular (x = 1), that

IF(1, y) - F(I, 0)1 = 12~1 ::::; AIY - 01 = AIYI
for all y in some interval around zero. This would say that for some con­
stant A and all small values of y,

1 2~1 = 2-2/3 < Ay y -,

which is impossible.

THEOREM 2 (Condition II). IfF is continuous on S, and IF(x, Y)I <M
for (x, y) ~'n S and F satisfies the Lipschitz condition (8), then the sequence
{Yn I defined by (4) converges uniformly on 10 ,

Proof. We will consider instead of the sequence {Yn I, the series whose
nth partial sum, for each n, is Yn. The uniform convergence of the sequence
{Yn I is by definition equivalent to the uniform convergence of this series.
We show that the terms of the series are smaller than the corresponding
terms of a uniformly convergent power series, and thus complete the proof.

Recall the identity (cf. Problem 7, Section 6-1)

Yn(x) = Yo(x) + [Yl(X) - Yo(x)] +... + [Yn(x) - Yn-l(X)]. (9)

The sequence {Yn I is the sequence of partial sums of the series

00

Yo(x) + L: [Yn+l(X) - Yn(x)].
n=O

We will show inductively that

(10)

(11)

for all x in 10 , The terms on the right of (11) are the terms of the series

(12)
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The series (12) converges uniformly on every finite interval-in particular
on Io-and hence the inequality (11) shows that (10) converges uniformly
on 10 ,

To prove (11), first consider n = 2:

!Y2(X) - Yl(X)/ = I.f; [F(t, Yl(t») - F(t, Yo(t»)] dtl

~ I..CAIYl(t) - Yo(t)1 dtl

~ Ii'" A2Mlt - al dtl

2MAlx - al 2
= 2! .

In (13) we used the Lipschitz condition (8) to show that

jF(t, Yl(t») - F(t, Yo(t»)1 ~ AIYl(t) - Yo(t)1

and (7) to see that

!Yl(t) - Yo(t) I ~ 2Mlt - al·

Now suppose that (11) holds for some n ~ 2. Then

IYn+l(X) - Yn(X) I = Ii'" [F(t;Yn(t») - F(t,Yn_l(t»)]dtl

~ Ii'" AIYn(t) - Yn-l(t)1 dtl

11'" 2MAn-llt - aln I
~ A I dt

a n.

2MAnix - aln +l

(n + I)!

(13)

(14)

Thus if (11) holds for n, it holds for n + 1 and, by induction, the inequality
holds for all n ~ 2. Since the series (12) converges uniformly on 10 , the
smaller series (10) converges uniformly on 10 , which is the same as saying
the approximating sequence (YnJ converges uniformly on 10 ,

COROLLARY. If Y is the limit on 10 of (Yn J then Y is continuous on 10

and has its graph in T.

Proof. Problem 2.
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THEOREM 3 (Condition III). If F is continuous on S and IF(x, y)1 < M
for (x, y) in S, and F satisfies the Lipschitz condition (8) on S, and Y is the
limit of {Yn} on 10 , then

l~ f F(t, Yn(t» dt = f F(t, y(t» dt

for all x in 10 ,

Proof. The equality above can be written

By (8) we have

If IF(t, Yn(t» - F(t, y(t»1 dtl

~ If AIYn(t) - y(t)1 dtl

~ Alx - al max IYn(t) - y(t)1
. tin 10

~ Aho max IYn(t) - y(t)l·
tin 10

(15)

(16)

(17)

Since Yn converges uniformly on 10 to Y, for any E > 0 we can find N such
that

E
max IYn(t) - y(t)1 < Ah

otin 10

for all n 2: N. Hence for n 2: N,

Ii'" [F(t,Yn(t» - F(t,y(t»ldtl < E

which verifies (16) and completes the proof.
Theorems 1, 2, and 3, together with our observations of Section 6-2,

complete the proof of the existence of a solution. We proceed to the proof
that the solution is unique.

The following lemma shows that any solution of (1) or (2) has its graph
in T. We will need this in Theorem 4 (proof of uniqueness) so we can
apply the Lipschitz condition to any solution g, whether it arises as the
limit of a Picard sequence or not.

LEMMA 1. If F is continuous on S, and IF(x, y) I < M for (x, y) in S,
and g is a solution of (1) or (2) on 10 , then the graph of g is in T.
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s

Contradiction:
g'(xo) =F(xo, y(xo») =M

but
F(xo, y(xo») < M

1----10 -----..·1

FIG. 6-3. The graph of a solution lies in T.

Proof. If g is a solution on 10 , then g/ (a) = F(a, b) and hence Ig' (a) I < M.
It follows (Problem 4) that the graph of g starts into T; that is, that

Ig(x) - bl < Mix - al

for all x in some interval (a - 0, a + 0). If the graph of g leaves T, say
to the right of a, then by the continuity of g (Problem 5) there will be a
smallest number c > a where the graph crosses one of the diagonal lines
(Fig. 6-3). That is, c will be the first number to the right of a such that

Ig(c) - bj = Mlc - al·

By the Mean Value Theorem, there is a number Xo in (a, c) such that

Ig(c) - g(a)1 = Ig/(xo)llc - al·

By the definition of c, (xo, g(xo) is in T, and hence

From (19), we conclude that

Ig(e) - bl < Mlc - aj

which contradicts (18). Therefore the graph of g cannot leave T.

(18)

(19)
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THEOREM 4 (Uniqueness of the solution). If F' is continuous on S and
IF(x, Y)I < M for (x, y) in S, and F satisfies the Lipschitz condition (8)
on S and y, g are any two solutions of (2) over the interval 10 , then y(x) =
g(x) for all x in 10 ,

Proof. The hypothesis is that y(a) = g(a) = b, and

y/(x) = F(x, y(x),

g/(x) = F(x, g(x),

for all x in 10 , We show that if y and g have the same value at any point
Xo if 10 , then y(x) = g(x) on the interval [xo - 1/(2A), Xo + 1/(2A)]. By
starting at Xo = a, we get y(x) = g(x) on [a - 1/(2A), a + 1/(2A)].
Then taking Xo = a + 1/(2A), we get y(x) = g(x) on [a, a + 2/(2A)].
With a finite number of repetitions of this argument, we show that y(x) =
g(x) on all of 10 ,

Assume, therefore, that y(xo) = g(xo) for some Xo in 10 , and let h(x) =
y(x) - g(x). We have h(xo) = 0, and we must show that h(x) = 0 on
[xo - 1/(2A), Xo + 1/(2A)]. By Lemma 1, and (8), we have

Ih'(x)1 = Iy/(x) - g/(x)1

= IF(x, y(x) - F(x, g(x)1

~ Aly(x) - g(x)1

= Alh(x)l· (20)

Since h is continuous on [xo - 1/(2A), Xo + 1/(2A)], there is a point of
this interval where Ih(x) I assumes its maximum value-say Ih(Xl) I is this
maximum value. By the Law of the Mean and the fact that h(xo) = 0,
we have

Ih(Xl) I = Ih(Xl) - h(xo) I
= Ih'Wllxl - xol,

for some number ~ between Xl and xo. From (20) and (21) we get

/h(Xl)1 = Ih'Wllxl - xol
~ AlhWllxl - xol

1
~ Alh(Xl)1 2A

= tlh(Xl)['

(21)

The inequality Ih(Xl)1 S tlh(Xl)1 implies that the maximum value
/h(Xl)! = 0, and hence that h(x) == 0 on [xo - 1/(2A), Xo + 1/(2A)].
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We recapitulate the results of the preceding theorems in Theorem 5.

THEOREM 5 (Picard's Theorem). If F is cont£nuous on a square S with
center (a, b), and F satisfies (8) on S, then there is an interval 10 around a
such that there £s, on 10 , exactly one solution of (1).

COROLLARY. If F and F 71 are cont£nuous on a square S with center (a, b),
then on some interval 10 around a there is one and only one solution of (1).

Proof. The conclusion of the corollary is merely a paraphrase of the
conclusion of the Theorem. To prove the corollary is clearly sufficient to
show that the continuity of F71 implies that the Lipschitz condition (8)
holds. The student is asked to carry out the details in Problem 7.

PROBLEMS

1. Prove the corollary to Theorem 1.
2. Prove the corollary to Theorem 2. [Hint: Give a reason why each Yn is

continuous and cite the appropriate theorem from Section 6-1.]
3. Prove that the integral on the right side of (15) exists.
4. Assume the hypotheses of Lemma 1. Let f = M - IF(a, b)1 > O. There

is (why?) a positive number 0 such that

Ig(X) - b - F(a, b)! < M - IF(a, b)1
x-a

if 0 < Ix - al < o. Show that this implies, as stated in the proof of Lemma 1,
that Ig(x) ~ bl ~ Mix - al if Ix - al < o. [Hint: IA - BI < C is equivalent
to B - C < A < B + C, -M ~ F(a, b) - f, and -D ~ A ~ D is equiva­
lent to IAI ~ D.]

5. In the proof of Lemma 1, it is stated that g is continuous. Why is g con­
tinuous on 10?

6. Show that y(x) = x2 is not a solution on [0, 1] of any equation y' = F(x, y)
with IF(x, Y)I < 1 for 0 ~ x ~ 1, 0 ~ Y ~ 1.

7. Prove the corollary of Theorem 5. [Hint: By its continuity, F lI must be
bounded on S; say iFlI(x, Y)I < A for (x, y) in S. Use the Mean Value Theorem
for the function f(y) = F(x, y), x any fixed number in 1 (Fig. 6-2), to verify
that (8) holds on S.)

8. Show by the methods of this section that the equation y' = 1/(1 + y2),
y(O) = 1, has a solution on every interval 10 = [-ho, hoL and hence a solution
on the whole line.

9. Show that [-!, !) is the biggest interval around zero on which the methods
of this section will guarantee a solution to y' = 1 + y2, y(O) = O. [Hint: Show
that the optimum square S to start with has sides of length 2 (that is, h = 1).)
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6-4 Approximations to solutions. In many of the applications of
differential equations, the primary interest is in finding numerical values
of a given solution. Most numerical statements are statements of approxi­
mation (e.g., 7r = 3.1416, V2 = 1.414, sin 7r/4 = .707), and all of the
measured quantities which the scientist and engineer are concerned with
are approximations. For most numerical applications, therefore, there is
no useful distinction between an approximate solution and an exact solu­
tion, provided the approximation is sufficiently good. It should be noted
also that even when a differential equation can be solved exactly, the
numerical values of the solution may not be readily accessible. For ex­
ample, the equation

y3 + y = x (1)

characterizes the solution of

(2)y(O) = 0,
, 1

y = 3y 2 + l'

but the values of this solution y cannot be obtained from (1) without
further computation. Similarly, the solution of the linear equation

y' = 1 - 2xy, y(O) = 0 (3)

can be written
2 r' 2y = e-X J

o
et dt, (4)

but the Formula (4) by itself does not immediately yield numerical values
of y.

The Picard proof not only shows that there is a solution of the equation

y' = F(x, y), y(a) = b, (5)

but gives a theoretical method of calculating approximations to the solu­
tion. Usually, however, the successive integrals which define the approxi­
mating functions become unmanageable, and the Picard method is not an
effective way of obtaining approximations. The first proof of an existence
theorem for (5), due primarily to Cauchy, is not so elementary as Picard's
proof, but it does provide an effective way of finding approximations to the
solution. Cauchy's method of proof, like Picard's, consists in defining a
sequence of approximate solutions, showing that this sequence converges
on some interval, and proving that the limit function must be a solution.
The approximating functions of the Cauchy method are polygonal curves
obtained by following the direction field along short segments. The cal­
culations involved in finding these approximations are purely arithmetic,
and therefore well adapted to machine computation.
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To construct a polygonal approximation to the solution of (5) on an
interval [a, c], we proceed as follows. Let {xo, Xl, ... , xn} be a partition
of [a, c]; that is, let a = Xo < Xl < X2 < ... < Xn = c. Compute
F(a, b), and follow the line through (a, b) with slope F(a, b) until it inter­
sects the line X = XI, say at the point (Xl, YI). Then follow the line through
(Xl, YI) with slope F(xI, YI) until it intersects the line X = X2' Continuing
in this way, we obtain a sequence of points (a, b), (Xl, YI), ... , (xn, Yn);
the broken line path joining these points is the polygonal approximation for
the partition {xo, XI, . • . , xn}. If we let Yo = b, then we can write

k = 0, 1, ... , n - 1.

Since Yn = Yo + [YI - Yo] + ... + [Yn - Yn-tl, we have also

n-l
Yn = Yo + L F(Xk, Yk)(Xk+1 - Xk).

k=O
(6)

A polygonal approximation to the solution on an interval [d, a] to
the left of the initial point can be constructed in a similar way.
If d = Xn < Xn-l < ... < Xl < Xo = a, then the vertices (Xk, Yk) of
the approximation are determined by

k = 0, 1, ... , n - 1,

and again we have

Yk+l = Yk + F(Xk' Yk)(Xk+1 - Xk).

In general, one gets better approximations by taking finer partitions, and
for any partition the approximation is likely to be best close to a.

For the sake of completeness we will state without proof* a theorem
which indicates how polygonal approximations can be used to show the
existence of a solution of (5).

THEOREM 1. Assume F satisfies the hypotheses of Section 6-3. Let Pn be
a sequence of partitions of 10 = [a - ho, a + ho] such that if IIPnIl1's the
maximum distance between pQ1'nts of Pn, then limn-->oo IIPnl1 = 0. If YP is
the polygonal approximation for Pn, then the sequence {yP } converges ;;ni­
formlyon 10 , and the limit function is a solution of (5). n

The following example shows a tabulation of the computations involved
in finding a polygonal approximation. We will find two approximations

* For a proof and further discussion see, e.g., Hurewicz, Lectures on Ordinary
Differential Equations (New York: John Wiley and Sons, Inc., 1958), pp. 1-12.
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to the solution of (3) on the interval [0, 2], using two different partitions
of the interval.

EXAMPLE 1. y' = 1 -2xy, yeO) = O.

TABLE 1

Partition 10, 0.5, 1.0, 1.5, 2.0 I

Xk 0 0.5 1.0 1.5 2.0
Yk 0 0.5 0.75 0.5 0.25

F(Xk, Yk) = 1 - 2XkYk 1 0.5 -0.5 -0.5
l:1Yk = !(1 - 2XkYk) 0.5 0.25 -0.25 -0.25

Yk + l:1Yk = Yk+l 0.5 0.75 0.5 0.25

TABLE 2

Partition 10,0.25,0.5,0.75,1.0,1.25,1.5,1.75, 2.0}

Xk 0 0.25 0.50 0.75
Yk 0 0.25 0.4688 0.6016

F(Xk, Yk) = 1 - 2XA;yk 1 0.875 0.5312 0.0976
l:1Yk = t(l - 2XkYk) 0.25 0.2188 0.1328 0.0244

Yk + l:1Yk = Yk+l 0.25 0.4688 0.6016 0.6260

Xk 1.0 1.25 1.5 1.75 2.0
Yk 0.6260 0.5630 0.4611 0.3653 0.2956

F(Xk, Yk) = 1 - 2XkYk -0.2520 -0.4075 -0.3833 -0.2789
l:1Yk = HI - 2XA;yk) -0.0630 -0.1019 -0.0958 -0.0697

Yk + l:1Yk = Yk+l 0.5630 0.4611 0.3653 0.2956

The graphs of these two approximations are shown in Fig. 6-4. Although
one cannot conclude directly from Theorem 1 that the polygonal approxi­
mations will converge on an interval as large as [0, 2], this can be shown
by a more careful examination of the particular function F in this example.

It is not easy to make a precise estimate of the accuracy of an approxi­
mation. Suppose one requIres, for example, accuracy to two decimal
places. The usual procedure is to compute approximations for finer and
finer partitions until two successive approximations agree to two decimal
places. Since the error from rounding off decimals may well accumulate
from step to step in computing an approximation, it is usually necessary
to carry several more decimal places in the calculations than the accuracy
desired.
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FIG. 6-4. Polygonal approximations for y'

PROBLEMS

1 - 2xy, yeO) = o.

1. Find a polygonal approximation on [0, ~] of the solution to y' = 1 - 2xy,
yeO) = O. Use first the partition {O, 0.1, 0.2, 0.3, 0.4, 0.5} and then the partition
{O, 0.05, 0.1, 0.15, ... ,0.45,0.51.

2. Find polygonal approximations to the solution of y' = x + y2, yeO) = 0,
on the interval [0, 1]. Partition the interval into subintervals of length 0.2 and
then into subintervals of length 0.1. Plot the two approximations on the same
graph.

3. Find and graph the polygonal approximation to the solution of
y' = Ij(x + y), y(I) = 1.

(a) Use the partition {I,Ll, 1.2, 1.3, 1.4, 1.5} of [1,1.5].
(b) Use the partition {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} of [0.5,1].
4. Let YP be the polygonal approximation to the solution of y' = f(x), yea) = 0,

for the partition p = {a = xo, xl, ... ,Xn = c} of [a, c]. Show that yp(c)( = Yn)
is a Riemann sum approximation to J~f(x) dx [cf. Formula (6)].

5. Compute an approximate value for eO. l by finding the polygonal
approximation to the solution of y' = y, yeO) = 1 for the partition
{O, 0.01, 0.02, ... , 0.09, O.I} of [0,0.1]. Carry five decimal places. (To four
decimal places, eO. l = 1.1052.)

6. Find the polygonal approximation on [1, 2] of the solution of y' 2 - yjx,
y(l) = 2. Use

(a) the partition {I, 1.2, 1.4, ,1.8, 2.0}
(b) the partition {I,Ll, 1.2, , 1.9, 2.0}.

Solve the equation and plot the solution and the two approximations on the same
graph.

7. The solution of the problem of Example 1 is analytic [cf. Formula (4)],
and the Picard approximations are the partial sums of the power series for the
solution. Find the Picard approximations Yo, Yl, Y2, Y3, Y4, and evaluate Y4(0.5).
Show that Y4(0.5) is accurate to within 0.000033. [Hint: The series is alternating,
so the error is less than the first term omitted: 16(~)9j3·5·7· 9).) Also find
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Y4(1), Y4(2), estimate the error and compare these values with the polygonal
approximations of Table 2.

8. Use the differential equation (2) and the partition 10, 0.1, 0.2, ... , 0.9, 1.0I
to obtain an approximate graph over [0,1] for the function y defined by (1). Let
x = 1 and solve (1) for y to three decimal places by trial and error.

ANSWERS

1. 1st partition Yk: 0, 0.1, 0.198, 0.2901, 0.3727, 0.4429
2nd partition Yk: 0, 0.05, 0.0998, 0.1488, 0.1966, 0.2427, 0.2866, 0.3280,

0.3665, 0.4018, 0.4337
2. 1st partition Yk: 0, 0, 0.04, 0.1203, 0.2432, 0.4150

. 2nd partition Yk: 0, 0, 0.01, 0.0300, 0.0601, 0.1005, 0.1515, 0.2138,
0.2884, 0.3767, 0.4809

3. (a) 1, 1.05, 1.097, 1.141, 1.182, 1.221
(b) 1, 0.950, 0.896, 0.837, 0.772, 0.699

5. 1.1046
6. (a) 2, 2, 2.07, 2.17, 2.30, 2.44

(b) 2, 2, 2.02, 2.05, 2.09, 2.14, 2.20, 2.26, 2.33, 2.40, 2.47
Solution: y = x + l/x

7. Y4(0.5) = 0.42441, max error 0.000033
Y4(1) = 0.525, max error 0.017
Y4(2) = -4.6, max error 8.7

8. 0, 0.1, 0.197, 0.287, 0.367, 0.438, 0.501, 0.558, 0.610, 0.657, 0.701;
y(l) = 0.682 by trial



CHAPTER 7

SYSTEMS OF EQUATIONS

7-1 Geometric interpretation of a system. In this chapter we will
treat systems of several simultaneous differential equations in several
unknown functions. We first consider the case in which there are two
unknown functions, y and z, and try to interpret the situation geometri­
cally. The systems we want to consider are those of the form

y' = F(x, y, z)

z' = G(x, y, z)

(Y' = ~~),

(z' = :;).

(1)

A solution of (1) is a pair of functions, (f, g), which satisfy (1) identically
on some interval. That is, (f, g) is a solution of (1) on the interval I if
for all x in I,

j'(x) = F(x,f(x), g(x)),

g'(x) = G(x,f(x), g(x)).
(2)

It is convenient to indicate solutions of a system with a pair of equations;
thus we write

y = f(x),

z = g(x)
(3)

to indicate that (f, g) is a solution of (1).
Now let us ask whether we can reasonably expect the system (1) to

have solutions. First consider the geometric interpretation of the equations
(3). The graph of·y = f(x) in three dimensions is a cylindrical surface
consisting of the points covered by a line parallel to the z-axis moving along
the curve y = f(x) in the xy-plane (see Fig. 7-1). Similarly, the graph of
the equation z = g(x) is a cylinder consisting of lines parallel to the
y-axis. The graph of the pair of equations (3) is the curve which is the
intersection of these two surfaces. Hence we can picture a solution of
the system (1) as being a curve in space.

Now let us ask what the system (1) demands of a curve in order that it
be a solution. Recall that the line tangent to the curve (3) at a point

161
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(x,!(x), g(x)) has direction numbers (1, f'(x) , g'(x)). Comparison with
(2) and (1) shows that in effect the system (1) prescribes at each point
(x, y, z) a tangent line for a solution curve; namely, the line through
(x, y, z) with direction numbers (1, F(x, y, z), G(x, y, z)). Thus the system
(1) describes a tangent field in space, just as the single equation y' =

F(x, y) describes a tangent field in the plane. It is true, as one would
expect, that if F and G are continuous, then there is a solution curve
for (1) through each point in space. In other words, starting at any point
the tangent field described by (1) "directs" through space a curve which
represents a solution. We will prove an existence theorem to this effect
in Section 7-4 under an additional assumption (a Lipschitz condition)
which allows us also to prove that the solution curve through any point
is unique.

EXAMPLE 1. y' = y/ x, z' = x - yz.

The first equation does not involve z and can readily be solved by sepa­
rating variables. Accordingly, we know that for y and z to satisfy the
system, we must in particular have y = C1X. Therefore z must satisfy

z' = x - C1XZ,

Z' + C1XZ = x.
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The function e1/ Z
(c 1x

2
) is an integrating factor for this linear equation,

so z is given by

(if CI ~ 0).

If CI = 0, so that y = 0, then z' = x, and z = !XZ+ Cz.

EXAMPLE 2. y' = y - z, z' = y - z.

Here both unknowns occur in both equations, so we cannot solve either
equation by itself. However, y' = z' if (y, z) is a solution, so we must.
have y - z = CI for any solution. Therefore y and z must satisfy

y' = CI,

Y = CIX + Cz,

z' = CI,

The argument above shows that the last equations are necessary for a
solution, but not that they are sufficient. If we substitute the functions
given above in either equation of the system, we get

Therefore Cl, Cz, and Ca are not independent, and the solutions of the
system are given, for example, by

EXAMPLE 3. y' = z + x, z' = 2z - y + xz.

Here we can use the technique of solving one equation for one unknown
and substituting in the other. From the first equation, we have

and hence

z = y' - x,

z' = y" - 1.

(4)

Substitution of these values for z and z' in the second equation of the
system gives

y" - 1 = 2(y' - x) - y + x 2
,

(5)
y" - 2y' + y = X

Z
- 2x + 1.
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The solutions of (5) are

y = Cle'" + C2xe'" + x2 + 2x + 3. (6)

From (6) and (4) it follows that if (y, z) is a solution of the system, then
we must have

y = cle'" + C2xe'" + x2 + 2x + 3,

z = cle'" + C2(X + l)e'" + x + 2.
(7)

11. y' = z,
z'=2e"'-y

13. y' = x2 + !z,
z' = 3x2 + 6y + z

Conversely, it is easy to show (Problem 8) that if y is a solution of (5)
and z satisfies (4), then (y, z) is a solution of the system. That is, all pairs
(y, z) given by (7) are solutions of the system.

Let us make use· of the example above to note the connection between
the existence theorem for second order equations and that for first order
systems. Since z determines y' and vice versa by (4), there is a unique
solution of (5) for any initial conditions yea) = bo, y'(a) = bl if and only
if there is a unique solution of the system for any initial conditions
yea) = bo, z(a) = bl . We will use this sort of argument in Section 7-5
to prove the existence theorem for a single nth order equation, after having
proved an existence theorem for first order systems.

PROBLEMS

1. Show that each line in the tangent field of the system y' = y/x, z' = z/x
points toward the origin. Describe the solution curves.

2. Describe the tangent field and solution curves of the system y' = -x/y,
z' = O.

3. Find the lines through the origin (y = ax, z = bx) which are solution
curves of the system y' = xy/z2, Z' = yz/2x2.

4. Find the curves of the form y = ax2, z = bx which are solutions of the
system y' = (y + z2)/x, Z' = (3z2 - 2xz)/y.

5. Solve the system, and check your answer. y' = z + y/x, z' = (x + z)/x.
6. Solve the system, and check your answer. y' = y + z, z' = y + z.

Give an example to show that the following is false: (y, z) is a solution if and only
if y - z = c.

7. Solve the sys~em and check your answer. y' = 3x2 + y - z, z' = y - z.
[Hint: Subtract the equations.]

8. Show that if y is a solution of (5), and z is given by (4), then (y, z) is a
solution of the system of Example 3.

Solve the following systems.

9. y' = z, 10. y' = y - z,
z' = y z' = x - 2y

12. y' = y + z + x,
z' = 4y + z + x + 4e'"
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1. All lines through the origin except those in the yz-plane
2. The solutions are the circles parallel to the xy-plane with centers on the

z-axis.
3. y = 2x, z = x; y = 2x, z = -x
4. y = xz; z = x; y = 4xz, z = 2x
5. y = xZ (In Iczxl - 1) + ClX, z = x In Iczxj
6. y = czezx + !Cl, z = czezx - !Cl
7. y = x3 + :1x4 + CIX + cz, z = :1x4 + CIX + Cz - Cl
9. y = clex+ cze-x, z = Clex - cze-x

10. y = cle-x+ czezx + !x - :1, z = 2CICx
- czezx + !x - i

11. Y Cl cos X+ Cz sin x + eX, z = -Cl sin x + Cz cos x + eX
12. y Cle-x+ cze3x - !- - ex, z = -2Cle-x+ 2cze3x + !- - x
13. Y Clezx + cze-x - x + !, z = 6clezx - 3cze-x - 3 - 3xz

7-2 Other interpretations of a system. A system of two first order
equations has interpretations other than the geometric one given in the
preceding section. To see how such a system might arise in mechanics,
consider a particle moving in the xy-plane and write x = x(t), y = yet)
for the coordinates of the particle at time t. Suppose that we know the
velocity (speed and direction) that the particle must have if it passes
through the point (x, y) at the time t. That is, we assume that we know
the x-component dx/dt and the y-component dy/dt of the velocity in terms
of x, y, and t. This gives· us equations of the form

dx
dt = F(t, x, y),

dy
dt = G(t, x, y).

(1)

This system is identical to system (1) of the preceding section, except we
have relabeled the independent variable t, and the unknown functions
x and y.

Although the situation outlined above does occur, it is not typical in
problems of motion. One is more likely to know the forces on a particle,
in terms of position, time, i'tnd velocity, than to know the velocity in
terms of position and time. In this case, the motion is described by the
system of two second order equations obtained by equating m(dzx/dtZ)
and m(dZy/dtZ) to the horizontal and vertical forces.

Another interpretation of (1) results if we regard t simply as a parameter,
and a solution

x = f(t), y = get)

of (1) as being the parametric equations of a plane curve. For example,
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FIG.·7-2. The catenary.

in setting up the differential equation of a curve it may be easier to de­
termine the components dx/dt and dy/dt of the tangent vector in terms of
a parameter t than it is to find dy/dx in terms of x and y. The following
example illustrates this procedure of describing a plane curve by a pair
of differential equations involving a parameter.

EXAMPLE 1. Find the equation of the curve (called a catenary) .formed
by a flexible cable suspended from two points (Fig. 7-2).

Let the linear density of the cable be w, and let the tension in the cable
at the low point (A) be H. Define a by the equation H = aw. It is con­
venient to introduce coordinates so that the coordinates of the point A
are (0, a). We will find the coordinates (x, y) of any point B on the curve
in terms of the length s of the arc from A to B.

Let T be the tension in the cable at B. The arc from A to B is in
equilibrium, so the horizontal component of T must equal the horizontal
component H of the tension at A. Also, the vertical component Vof T
must equal the weight ws of the arc AB. Since dx/ds and dy/ds are the
components of a unit tangent vector at B, it follows that T (dx/ds) = H,
and T (dy/ds) = V. We have the following formulas:

dx H dy V
ds = T' ds = T' (V = W8, H = wa),

T = VH2 + V2 = wva2 + 82•

The system of equations which describe the curve is

dx
d8

a dy
d8

8

(2)
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Integration of these equations gives

x = a sinh-1 ~,
a

(3)

where both constants of integration are zero because of the way the coordi­
nates were chosen. The parameter s can be eliminated (Problem 2) from
equations (3) to give

y = a cosh ~.
a

PROBLEMS

(4)

1. Solve the system (2) and obtain (3). [Hint: Use the substitution 8 =
a sinh () to integrate the first equation.]

2. Eliminate the parameter 8 from equations (3) to obtain (4). [Hint: Solve
both equations for 82 .]

3. In Example 1, the arc length 8 of the curve from A(O, a) to B(x, y) is given
by 8 = fo Y!1 + y'2 dx (y' = dy/dx). Show that y' = V /H = 8/a and that
the curve can be described by ay' = fo Y!1 + y'2 dx. Differentiate this equation
and solve the resulting second order equation.

4. A curve through (0, 1) is such that the slope of the tangent line at any point
(x, y), x 2: 0, is equal to twice the length of the arc from (0, 1) to (x, y). Find
the equation of the curve. Find the coordinates of the point on the curve whose
distance from (0, 1) along the curve is one unit.

and dy/ ds = dy = 28 ]
dx/d8 dx .

5. A marble is propelled up in a vacuum at an angle a from the horizontal,
with initial velocity v. Find the position at time t and show the path is parabolic.

6. A bomb of mass m is dropped from an airplane flying horizontally at speed v.
The horizontal and vertical components of the force of air resistance are respec­
tively a(dx/dt)2 and a(dy/dt)2, where a is constant. Take the origin as the drop
point, with the positive y-axis pointing down, and show that the trajectory is
described by the system

d
2
x

= -: (~:Y (x 0,
dx

when t = O}
dt2

- = v
dt

d
2
y a (dYY

(y
dy

= ° when t = O}dt2 = g -:;:;; dt dt

Find x and y at time t.
7. An object slightly heavier than water is released under water by a sub­

marine moving horizontally at small velocity v (so there is nonturbulent flow
through a somewhat viscous medium). The force of water resistance in this case
has components a(dx/dt) and a(dy/dt). If the object has mass m, and weight
in water W, find the parametric equations of the path.
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3. y = a cosh (~)

4. x = t sinh-1 2, y = ~ + v:: ;y = HI + cosh 2x)

5. x = (v cos a)t, Y = (v sin a)t - !gt2

6. x = ~ln[~vt+ 1]' Y = ~lncosh(~t)
7. x = mv (1 _ e-<alm)!), y = Wm (e-<alm)! _ 1) + W t

a ~ a

7-3 A system equivalent to M(x, y) dx + N(x, y) dy = O. We have
seen that the solutions of the system

dx
dt = F(t, x, y),

(1)
dy
dt = G(t, x, y)

can be interpreted as a family of plane curves given in parametric form.
Weare familiar with the fact that the solutions of

M(x, y) dx + N(x, y) dy = 0 (2)

form a family of curves. It is natural to ask whether one can always find
a parametric system (1) which has the same solution curves as any given
equation -(2). If so, we would expect the system in some cases to be
easier to solve than (2), since many curves are more simply described
parametrically than by an equation in x and y. We can in fact show that
the equation (2) is equivalent to the system

dx
N(x, y)

which we agree is the same as

dy = dt
-M(x, y)

dx
dt = N(x, y),

(3)

dy M(-dt = - x, y).

Here "equivalent" means that every solution curve y = hex) of (2) has
a parametric representation x = J(t), Y = get) which constitutes a solu-
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tion of (3), and vice versa. Formally, this says that if x = f(t), Y = g(t) is
a solution of (3), and h is a function such that g(t) == h(j(t»), then
y = h(x) is a solution of (2). Conversely, if y = h(x) is a solution of (2),
then there is a solution x = f(t), Y = g(t) of (3) such that g(t) == h(j(t»).
These facts are proved in the following theorem.

THEOREM 1. If f and g satisfy

f'(t) == N(j(t), g(t»),

g'(t) == -M(j(t), g(t»),

and

g(t) == h(j(t»),

then h satisfies

M(x, h(x») + N(x, h(x)h'(x) == O.

(4)

(5)

Conversely, if h satisfies (5), then there are functions f and g satisfying (4)
such that g(t) == h(j(t»).

Proof. The first part of the proof is left to the student (Problem 1).
Let us show that every solution h of (2) has a parametric representation
satisfying (4). Assume therefore that h satisfies the identity (5). Let f
be a solution of the differential equation

f'(t) = N(j(t»), h(j(t»). (6)

Define g by the equation g(t) = h(j(t»). With this definition of g, (6) is
the first of equations (4), and we need only verify the second. From the
chain rule we have g'(t) = h'(j(t»)f'(t). Now rewrite the identity (5) by
substituting f(t) for x; by definition of g we can then write g(t) for h(x) =
h(j(t»), and g'(t)/f'(t) for h'(x) = h'(j(t»). The result is

g' (t)
M(j(t), g(t») + N(j(t), g(t») f'(t) == O.

By rearranging and comparing with (6), we get

f'(t) _ g'(t) == 1.

N(j(t), g(t») -M(j(t), g(t»)

Therefore g satisfies the second of equations (4). We have found a solu­
tion (f, g) of (3) such that x = f(t), Y = g(t) is a parametric representation
of the curve y = h(x).
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EXAMPLE 1. (2x - y) dx + VI - X 2 dy = O. The equivalent system
can be written

or

dx dy = dt
2x - y ,

dy
dt = Y - 2x. (7)

The variables separate in the first equation, and we can integrate to get

x = sin (t + Cl)'

Substitution in the second equation gives

dy
dt - Y = -2 sin (t + Cl)'

There is a particular solution of this linear equation of the form y =
A cos (t + Cl) + B sin (t + Cl), and we determine by substitution that
A = B = 1. The solutions of the system (7) are therefore

y = C2et + cos (t + Cl) + sin (t + Cl),

x = sin (t + Cl)'

Using the relations

cos (t + Cl) = VI - sin2 (t + Cl) = VI - x 2,

we can eliminate t to obtain

y = cesin-lx + vI - x 2 + x,

PROBLEMS

(8)

1. Prove that if f and g satisfy (4) and get) == h (j(t) ), then h satisfies (5).
2. The equation of Example 1 can be written y' = (y - 2x)/vl - x2 •

For what points (a, b) is there a solution y such that yea) = b? Check, by sub­
stitution, that the functions (8) are solutions of the equation. Use the uniqueness
theorem (Theorem 4 of Section 6-3) to show that the family (8) contains all
solutions.

3. List the various techniques of Chapter 1 for solving a first order equation
and see whether any of them apply to the equation of Example 1.
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Solve Problems 4 through 6 by the methods of Chapter 1, and also by writing
as a system. Reconcile the answers by eliminating the parameter from the solu­
tion of the system.

4. xy dx + e-'" dy = O.
5. (e'" + y) dx + e-'" dy = O. [Hint: To integrate fee"'e2'" dx, let u = e"',

dx = (lju) du.]
6. [-(x4 + y2)jx2]dx + (yjx) dy = O. [Hint: To solve directly, try the

substitution y = ux.]

Write an equivalent system and solve.

7. (2Y +Ddx + (x + 2y2) dy = O.

8. (y + sin-Ix) dx + VI - x2 dy = O.
9. (y - 2x) dx + (1 + y) dy = O.

10. (2y - 2y2) dx + (2X - ; + 1) dy = 0
1 du 1

[Hint: Let u = -, - = -"2 (dyjdt).]
y dt y

ANSWERS

2. Any point (a, b) with lal < 1
4. x = In (t + Cl), In Iyl = (t + cr)[1 - In (t + Cl)] + C2;

In Iyl = (1 - x)e'" + C

5. x = In (t + cr),y = c2e-t - t - cr + 1;
y = ce-e'" - e'" + 1 (c = C2e-C1)

6. x = cret + c2e-t, y = x(clet - cze-t);
y2 = X2(X2 + c), (c = -4ClC2)

7. 2y2 + 1 = cre4t, x = -!cle-4t - 1 + c2e-t

8. x = sin (t + cr), y = C2e-t + t - 1 + cr
9. x = clet + c2e-2t - !, y = cret - 2c2e-2t - 1

10. y = (cle2t + 1) -1, X = (C2 - crt)e2t

7-4 Existence and uniqueness theorems. In this section we prove an
existence and uniqueness theorem for a pair of simultaneous first order
equations in two functions. The theorem states that for appropriate F
and G there is one and only one pair of functions (y, z), defined on some
interval around a, which satisfy the equations

y'(x) = F(x, y(x), z(x),

z' (x) = G(x, y(x), z(x),

yea) = b,

z(a) = c.
(1)

The method of proof is the Picard method of Chapter 6, with only the
modifications required to treat two equations simultaneously.
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We first rewrite the system (1) as an equivalent pair of integral equa­
tions:

Next we define inductively two sequences IYn} and IZn} by the equations

y(x) = b +f F(t, yet), z(t) dt,

z(x) = c + f; F(t, yet), z(t) dt.

Yo(x) = b,

zo(x) = c,

Yl(X) = b +f' F(t, b, c) dt,

Zl(X) = c + f' G(t, b, c) dt,

Yn+l(X) = b + LX F(t, Yn(t), Zn(t) dt,

Zn+l(X) = C + LX G(t, Yn(t), Zn(t) dt.

(2)

(3)

I

I

I

I

I

I

I

I

The proof consists in showing that these sequences IYn} and Izn} converge
and that the limit functions constitute a solution. If there are limits Y
and Z of the respective sequences IYn} and Izn} such that

l~ LX F(t, Yn(t), Zn(t) dt = f F(t, Yet), z(t)) dt,

lim r G(t, Yn(t), zn(t) dt = (X G(t, yet), z(t)) dt,
n~ooJa Ja

(4)

it is clear that these limits satisfy (2), because of the defining relation (3).
As in the proof of Picard's theorem for a single equation, there are three

things which must be checked to make a proof along the lines indicated.
We must show that

I. The scheme (3) defines all Yn and Zn on some common interval
10 around a.

II. The sequences IYn} and Izn} converge on 10 to some limits Y and z.
III. The integrals in (4) converge as indicated for all x in 10 •

We state next the hypotheses on F and G under which we can verify
the conditions I, II, and III; these assumptions will be used throughout
this section.
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The functions F and G are assumed to be continuous on some cube S
with center at (a, b, c):

S = {(x, y, z) : Ix - al ~ h, Iy - bl ~ h, Iz - cl ~ hI.

Since F and G are continuous on the closed bounded set S, they are
bounded on S. Let M be a number such that 1 ~ M, and IF(x, Y, z)1 < M,
IG(x, Y, z)1 < M for all (x, Y, z) in S. Let ho = hiM, so that ho ~ h,
and Mho = h. The interval 10 of conditions I, II, and III will be
[a - ho, a + hol. We assume that F and G are not only continuous, but
also satisfy the following Lipschitz condition on S: for some number A
and any two points (x, Y, z) and (x, Yb Zl) in S,

IF(x,y,z) - F(X'Yl,Zl)1 ~ A{ly - Yll + Iz - zllL

IG(x, Y, z) - G(x, Yb zl)1 ~ A{ly - Yll- Iz - zdl·

Now we proceed with the several parts of the proof.

(5)

IYn+l(X) - bl = ,lax F(t, Yn(t), zn(t)) dtl

~ Mix - aJ ~ Mho = h.

THEOREM 1 (Condition I). For each n, the functions Yn and Zn given by
(3) are defined on 10 , and for every x tOn 10 , the point (x, Yn(x), zn(X))
is in S.

Proof. (By induction.) The functions Yo and Zo are obviously defined
on 10 , and the points (x, Yo(x), zo(x)) = (x, b, c) are in S if x is in 10 .

Suppose that Yn and Zn are defined on 10 for some n, and that
(x, Yn(x), zn(x)) is in S for all x in 10 . Since F and G are continuous on
the points (t, Yn(t), Zn(t)), tin 10 , the integrals in (3) defining Yn+l(X) and
Zn+l(X) exist for all x in 10 ; that is, Yn+l and Zn+l are defined on 10 .

Using the fact that W(x, Y, z)1 < M for (x, Y, z) in S, we have, for every
x in 10 ,

Similarly,

for all x in 10 , and the point

is in S.

THEOREM 2 (Condition II). The sequences {Ynl and {znl converge uni­
formly on 10 .
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Proof. We will actually demonstrate the uniform convergence of the
two series whose respective nth partial sums are Yn and Zn. That is, we
write

Yn(X) = Yo(x) + [YI(X) - Yo(x)] + ... + [Yn(x) - Yn-I(X)],
(6)

Zn(X) = ZO(X) + [ZI(X) - ZO(X)] + ... + [Zn(X) - Zn_I(X)]

and prove that the following series converge uniformly on 10 ,

co

L: [Yn+I(X) - Yn(X)];
n=l

(7)
co

L: [Zn+I(X) - Zn(X)].
n=l

The Lipschitz condition (5) is used to estimate the size of the terms of the
series (7) as follows:

IY2(X) - YI(X)! = If' [F(t, YI(t), Zl(t») - F(t, yo(t), zo(t»)] dtl

::; If A{IYI(t) - Yo(t)1 + IZI(t) - zo(t)l} dtl

::; IL~ A{h + h} dtl

= 2Ahlx - al.

The same argument on G shows that

Using the inequalities just proved, we estimate IY3(X) - Y2(x)1 and
IZ3(X) - z2(~)I:

IY3(X) - Y2(X)!. = If' [F(t, Y2(t), Z2(t») - F(t, YI(t), Zl(t»)] dtl

::; Ii'" A{IY2(t) - YI(t)! + !Z2(t) - zl(t)l} dtl

::; Ii'" A{4Ahlt - al} dtl

= 4~;h Ix _ a1 2
•

Again the same argument on G shows that
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Continuing in this way, we see that for every n and every x in 10 , we have

(8)

Since the series :E:=l BnIn! converges for every number B, the estimates
(8) show that both series (7) converge uniformly on 10 . This is the same
as saying that the sequences of partial sums IYn} and IZn} converge
uniformly on 10 ,

THEOREM 3 (Condition III). If Y and Z are the limits of the sequences
IYn} and Izn} defined by (3), then for all x in 10

l~ f; F(l, Yn(t), Zn(t» dt = f F(t, y(t), z(t» dt,

and

l~ {' G(t, Yn(t), zn(t» dt = f G(t, Yet), z(t» dt.

Proof. We treat the first equation above, writing it in the form

l~ faX [F(t, Yn(t), Zn(t» - F(t, Yet), z(t»] dt = O. (9)

It is sufficient to show that the integrand in (9) can be made uniformly
small on 10 by taking n sufficiently large. From the Lipschitz condition
(5), we get

IF(t, Yn(t), Zn(t» - F(t, yet), z(t»1

~ AIIYn(t) - y(t)1 + IZn(t) - z(t)I}·

Since the sequences IYn} and Izn} converge uniformly on 10 to Y and z,
the right side above will be uniformly small on 10 for all sufficiently large n.
The second equality of the theorem follows from the same argument ap­
plied to G.

This completes the proof that there is a solution (y, z) of (1) on the
interval 10 , Notice that we can specify a minimum length for 10 , in
terms of the bound M for F and G on S, and that we can characterize
the functions Y and Z as limits of constructable sequences. It remains to
be shown that the pair of functions found above is the only solution of (1)
on 10 ,

In order to apply the Lipschitz condition in the uniqueness proof, we
need the following lemma, which states that any solution curve of (1)
must stay within S, for x in 10 ,
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LEMMA 1. If (YI, Zl) is any solution of (1) or (2) on 10 , then
(x, YI(X), ZI(X) is in S for all x in 10 .

Proof. If (x, YI (x), Zl (x) is not in S for some x in Io-say some x > a
-then by the continuity of YI and ZlJ there is a smallest number Xl
greater than a such that (Xl, YI (Xl), Zl (Xl) is on the boundary of S.
That is, IYI (Xl) - bl = h or IZI (Xl) - cl = h. To be specific, suppose
that IYI(XI) - bl = h and for all X between a and Xl, !YI(X) - bl < h
and IZI(X) - cl < h. By the Mean Value Theorem, there is a number Xo
between a and Xl such that

Since (Yb zd is assumed to be a solution of the system (1), we have, in
particular,

yi(xo) = F(xo, YI(XO), ZI(XO),

and hence ly{(xo)1 < M. Therefore, from (10), we get

In other words, the contradiction h < h follows from the assumption that
(x, YI(X), ZI(X) lies outside S for some X in 10 .

THEOREM 4 (Uniqueness of the ~olution). If (y, z) and (Yb Zl) are any
solutions on 10 of (1) or (2), then Y = YI and Z = ZIon 10 .

Proof. The proof is essentially the same as the proof of uniqueness for
a single equation (cf. Theorem 4, Section 6-3). We show that if y(xo) =
YI (xo) and z(xo) = Zl (xo) for some point Xo in 10 , then Y = YI and
Z = Zl and the interval [xo - 1/(2A), Xo + 1/(2A)], where A is the con­
stant of the Lipschitz condition. Since yea) = YI(a) = b, and z(a) =

Zl (a) = c, we can start the argument at Xo = a, and repeat it a finite
number of times to show that Y = YI and Z = zIon all of 10 •

Assume that y(xo) = YI (xo), and z(xo) = Zl (xo) for some Xo in 10 •

Let hex) = vex) - YI(X), and k(x) = z(x) - ZI(X), so that h(xo) =
k(xo) = o. We must show that hex) = 0 and k(x) = 0 for all X in
[xo - 1/(2A), Xo + 1/(2A)]. By Lemma 1 and the Lipschitz condition
on F and G, we obtain

Ih'(x)! = Iy'(x) - yi(x) I
= IF(x, Vex)~ - F(x, YI(x)1

~ Aly(x) - YI(X)!

= Alh(x)l, (11)
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(12)

Now let Ih(XI)1 and Ik(X2)1 be the maximum values that Ih(x)1 and Ik(x)1
assume on the closed interval [xo - 1/(2A), Xo + 1/(2A)]. By the Law
of the Mean,

and

for some h between Xo and Xl, and some b between Xo and X2' Using
(11) and (12) with the last equalities, and the fact that IXI - xol < 1/(2A)
and IX2 - xol < 1/(2A), we get

Ih(XI) I ~ A Ih(XI) Ilxl - xol < !lh(XI) I,
and

Hence Ih(XI)! = 0 and Ik(X2) I = 0, and since the maximum values of
Ih(x)1 and Ik(x)1 are zero, hand k are identically zero on [xo - 1/(2A),
Xo + 1/(2A)].

This completes the proof that the system (1), for suitable functions F
and G, has a unique solution on some interval around a. Our results are
restated, in slightly more convenient form, in the following theorem.

THEOREM 5 (Summary). If F, G, F II, Fz, Gil' Gz are continuous in some
cube containing (a, b, c), t1J,en there is, on some interval around a, one and
only one solution (y, z) of the system

y' = F(x, y, z),

z' = G(x, y, z)

such, that y(a) = b and z(a) = c.

Proof. The continuity of the partial derivatives of Ii' and G implies
that F and G satisfy the Lipschitz condition of the earlier theorems
(Problem 5).

The system (1) is called a linear system if the functions F and G are
linear in y and z; i.e., a linear system is one of the form

y' = Pll(X)y + P12(X)Z + ql(X),
(13)
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Linear systems allow the same sort of systematic treatment as single linear
equations and constitute the most important type of system. The exist­
ence theorem for single linear equations, which is the foundation for all of
Chapters 3 and 4, will be proved on the basis of the existence theorem for
linear systems.

If Pll, Pl2, P21> P22, q1> and q2 are all continuous on some interval I,
then the system (13) satisfies the hypotheses of Theorem 5 for any (a, b, c)
with a in I. However, we can obtain a much better result for (13) than for
the general system (1). Theorem 5 says that (1) has a solution on some
interval around a; this interval may be small even if the functions F and G
and their partial derivatives are continuous everywhere (see Problem 7).
For the linear system (13), we can show that there is a solution (y, z) de­
fined on all of any interval on which the coefficient functions are continuous.

THEOREM 6. If Pll, Pl2, ql, P21> P22, and q2 are continuous on [a, 13),
and a < a < 13, and b, c are any numbers, then there is one and only one
solution (y, z) of (13) on [a, I3l such that y(a) = b and z(a) = c.

Proof. The proof is as before, only now we can show that the sequences
IYn} and Izn} converge on the whole interval [a, 13). The integrals (3)
defining Yn and Zn l:\.re clearly defined for all x in [a, 13). (Condition I).
The rest of the proof of Theorem 5 was based only on the fact that the
points (x, Yn(x), zn(x) were in S, where the Lipschitz condition on F and
G was known to hold. For the linear case, the Lipschitz condition holds
on any set of points (x, Y, z) such that x is in [a,l3) [Problem 8(b)). The
convergence required in Conditions II and III now follows on all of [a, 13l,
as in the proofs of Theorems 2 and 3. Th~ student is asked to supply the
details of this argument in Problem 8.

PROBLEMS

1. Show that the system of integral equations (2) is equivalent to the system
(1).

2. Solve the following system by finding Yn(x), zn(x) for all n, and verifying
conditions I, II, and III directly.

y' = z, z' = Y;

y(O) = z(O) = 1.

3. Find Y2 and Z2 for the system y' = z - 1, z' = Y - Xi y(l) = 0, z(l) = 2.
4. Make a formal proof by induction of the inequalities (8).
5. Prove Theorem 5 from the preceding theorems; i.e., show that the conti­

nuity of FII, F., Gil' G. on S (and in particular the boundedness of these functions)
implies that F and G satisfy (5).

I

I

I

I

I

I
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6. (a) Show that the function G(x, y, z) = !z2/3 does not satisfy the Lipschitz
condition of (5) on any cube S containing (0,0,0). [Hint: If the con­
dition holds on S, then !G(O, 0, z) - G(O, 0, O)I/Iz - 01 is bounded
on S.] .

(b) Find two solutions of the system y' = yz, z' = !z2/3 such that yeO) =
z(O) = O.

7. Show that no solution of the following system is defined on an interval
longer than 11'/10: y' = 100 +y2, Z' = y.

8. Assume that the functions Pll, Pl2, ql, P21, P22, q2 of the linear system
(13) are continuous on [a, ~].

(a) Show that the sequences {Yn} and {Zn} given by (3) are defined on [a, {j].
(b) Show that (5) is satisfied on {(x, y, z) : a ::; x ::; {j}.
(c) Show that{Yn} and {Zn} converge uniformly on [a, {j].
(d) Show that the limits y and z of the sequences {Yn} and {Zn} are solutions

of (13) on [a, {j].
(e) Show that there is only one solution of (13) on [a, (j].
9. Show that y is a solution of the second order equation y" = G(x, y, y') if

and only if (y, y') is a solution of the system y' = z, z' = G(x, y, z). State and
prove an existence and uniqueness theorem for y" = G(x, y, y'), using Theorem 5.

10. State and prove an existence and uniqueness theorem for the linear
equation y" + PlY' + Poy = q, using Theorem 6.

ANSWERS

2. Yn(X) = zn(x) = 1 + x + x2/2! + ... + xn/n! y(x) = z(x) = eX
3. Y2(X) = 2(x - 1) - !(x3 - 1); Z2(X) = 2 - !(x2 - 1) - (x - 1)
6. (b) y = 0, z = 0; y = 0, z = x3

7. All solutions must satisfy y = 10 tan (lOx + c),
z = -In Icos (lOx + c)l, for some c.

7-5 Existence theorem for nth order equations.. In this section we will
extend the results of Section 7-4 to first order systems in n functions, and
examine the connection between such systems and nth order equations in
one function. The systems we consider are those of the form

Y) = Fl(x, Yll , Yn),

y~ = F 2 (x, Yll , Yn),
(1)

A solution of (1) is an n-tuple of functions, (Yll ... , Yn), such that on some
interval the following identities hold:

k = 1, ... , n.

If the functions F I , ... , Fn are sufficiently well behaved near a point
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(a, bl , ... ,bn ), then· there is, on some interval around a, exactly one
solution (Yl' ... , Yn) of (1) which satisfies the initial conditions

Yl (a) = bI, ... , Yn(a) = bn. (2)

Theorem 5 is a precise formulation of this statement for the case n = 2.
The existence theorem was proved for the special case n = 2, rather than
for the general system (1), so that the notation could be kept as simple as
possible, and the statements interpreted in familiar geometric terms.
Except for the welter of subscripts required, the proof of the existence
and uniqueness theorem for (1) is not essentially different from that given
in Section 7-4. The approximating sequences {Ylml, ... , {Ynml are de­
fined inductively as before by the formulas

YkO(X) = bk,
(3)

Yk,m+l(X) = bk +f' Fk(t, Ylm(t), ... , Ynm(t») dt (k = 1,2, ... ,n).

By the same methods used in Section 7-4 these sequences can be shown to
converge on some interval around a to functions YI, ... , Yn which consti­
tute a solution of (1) satisfying the initial conditions (2). We will not
repeat the details of the proof; the statement of the existence theorem
for (1) is as follows:

THEOREM 1. If FI, ... , Fn and the partial derivatives (iJjaYj)Fk
(j, k = 1, ... , n) are continuous on the set of points (x, YI, ... , Yn) such
that Ix - al ~ h, !Yl - bll ~ h, ... , IYn - bnl ~ h, then there is one
and only one solution (yI, ... , Yn) of (1) on some interval around a such
that Yl(a) = bI, ... , Yn(a) = bn.

A linear first order system in n functions is a system of the form

y~ = Pll(X)Yl + + Pln(X)Yn + ql(X),

y~ = P2l(X)Yl + + P2n(X)Yn + q2(X),
(4)

y~ = Pnl(X)Yl + ... + Pnn(x)Yn + qn(x),

The proof given in Section 7-4 for the existence of solutions to a linear
system in two functions also extends without essential change to the
general case. We therefore have the following theorem for the linear
system (4).

THEOREM 2. If the functions Pij, qi, for i, j = 1, ... , n, are continuous
on [a, m, and a, bI, ... , bn are any numbers, with a < a < (3, then (4)
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has a unique solution (Yl' ... , Yn) on [a,,8] such that Yl(a) = bl, ... ,
Yn(a) = bn.

Using Theorem 1, we can now give a very simple proof of the existence
theorem for a single nth order equation in one function (cf. Problem 9,
Section 7-4). To show that the equation

y(n) = F(x, Y, y', ... ,y(n-l») (5)

has solutions, we recast it as a first order system in the functions Y,
y', ... ,y(n-ll. To conform with the notation of Theorem 1, we- define
functions Y2, ... , Yn by

Y' = Y2, " (n-l)Y = Ya, ... , Y = Yn. (6)

With the agreement (6), Y is a solution of (5) if and only if (y, Y2, ... , Yn)
is a solution of the system

Y' = Y2,

y~ = Ya,

y~ = F(x, Y, Y2, ... , Yn).

Initial conditions for (5)

(7)

y(a) = bo, y'(a) = bl, ... ,y(n-l)(a) = bn- 1 (8)

correspond to the following initial conditions for (7).

y(a) = bo, (9)

The first n - 1 functions on the right of (7)-the functions F 1, ... , Fn-l
in the notation of Theorem I-satisfy the hypotheses of Theorem 1 for
any point (a, bo, ... ,bn - 1). Therefore (7) has a solution satisfying the
initial conditions (9) provided F satisfies the condition of Theorem 1. It
follows that (5) has a solution satisfying the initial conditions (8) if F
satisfies this condition, and we have proved the following theorem.

THEOREM 3. If F and its partial derivatives F II, F II" ... ,FII(n-ll are
continuous on the set of points (x, Y, y', ... , y(n-ll) such that Ix - al ~ h,
Iy - bol ~ h, IY' - b1 ! ~ h, ... , Iy(n-ll - bn- 1 1 ~ h, then there is,
on some interval around a, a unique solution Y of (5) satisfying the initial
conditions (8).

Remark. There is a certain amount of notational confusion in the
statement of the above theorem. Although the symbols x, Y, y', y", ... ,
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y(n-ll are not customarily used as dummy coordinates for a point in
(n + I)-dimensional space, they are used in this way in the statement of
the theorem to conform with the appearance of F in Eq. (5). Thus F is a
function of n + 1 variables, and Fy', for example, means the partial
derivative of F with respect to the third variable. The symbols y', y", etc.,
in (8) refer as usual to the derivatives of the solution y.

The same sort of argument used to prove Theorem 3 from Theorem 1
can be used to deduce Theorem 4 below from Theorem 2.

THEOREM 4. If Po, PI, ... , Pn-lI q are cont£n\uous on [a, {1], and a, bo,
bI, ... , bn- l are any numbers with a < a < (1, then the linear equation

y(n) + Pn~I(X)y(n-l) + ... + PI(X)y' + Po(x)y = q(x)

has a unique solution y on [a, (1] such that yea) = bo, y'(a) = bll ... ,

y(n-ll(a) =, bn- l .

Proof. Problem 4.

Systems of higher order equations can also be treated as first order
systems by introducing the derivatives as new functions. For example,
the system

y' = F(x, y, z, z'),
(10)

Z" = G(x, y, z, Z')

is equivalent to the first order system

Z' = w,

y' = F(x, y, z, w),

w' = G(x, y, z, w).

It follows that if F, G and their partial derivatives with respect to the last
three variables are continuous. in a region containing the point (a, b, c, d),
then there is a unique solution (y, z) of (10) on some interval around a
such that yea) = b, z(a) = c, and z'(a) = d.

PROBLEMS

1. Find the approximating functions YIO, Y20, Y30j ••• j Y13, Y23, Y33 as given
by (3) for the system

Y~ = Y2,
Y~ = Y3,
Y~ = -YI,

YI(O) = 1,
Y2(0) = 0,
Y3(0) = -1.
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2. Find the approximating functions Y13, Y23, Y33, as in Problem 1, for the
system

Y~ = Y2,
Y~ = Yl,

Y~ = Y2 + Y3,

Yl(O) = 1,
Y2(0) =' 0,
Y3(0) = 2.

3. For what numbers b1, b2, b3 is there a solution (Yl, Y2, Y3) of the following
system such that Yl(l) = bl, Y2(1) = b2, Y3(1) = b3?

Y~ XVY2 + Y3/Yl,
. Y~ = sin-1 Y3 + VYI -x,
Y~ = x In (Yl -:- Y2).

4. Use Theorem 2 to prove Theorem 4.
5. Write a first order system equivalent to

y" = xz' + y 2,

z" = Y' + xz.

What initial conditions can be prescribed for Y and z and their derivatives?
6. Write a first order system equivalent to

y" z' + yy',
z'" xz2 + Y' z" .

What initial conditions can be prescribed for Y and z and their derivatives?
7. State and prove, using Theorem 1, an existence and uniqueness theorem

for the system
y" = F(x, Y, y', z, z'),
z" = G(X,YiY',z,z').

8. Solve the system of Problem 2.
9. Solve the following system by first eliminating z to obtain a third order

equation in y.
y" 3y + z,
z' -2y.

10. Solve the following system by first eliminating z.

y" z - y',
z' 2z - 2y.

ANSWERS

1. Y13 = 1 ~ tx2 - ix3, Y23 = -x - tx2, Y33 = -1 - x + ix3

2. Y13 = 1 + tx2, Y23 = X - ix3, Y33 = 2 + 2x + ~X2 + !x3

3. 1 < bl, 0 < b2 < bl, Ib31 < 1
5. Y' = u, z' = v, u' = xv+ y2, v' = u+ xz; y(a), y'(a), z(a), z'(a) can be

prescribed arbitrarily for any a.
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6. y' = u, z' = v, v' = w, u' = v+yu, vl = xz2 +uw; yea), y'(a), z(a),
z'(a), z"(a) can be prescribed arbitrarily for any a.

7. If F, G, and their derivatives with respect to y, y', z, and z' are continuous
in a region containing (a, b, c, d, e), then there is a unique solution (y, z) such
that yea) = b, y' (a) = c, z(a) = d, z' (a) = e.

8. YI = cosh X, Y2 = sinh X, ya = eX + 1
9. y = cle-2x + c2ex + caxex, z = Cle-2x - 2c2ex + ca(-2x + 2)eX

10. y = clex+ c2e-V"2 X + cae-~ x,
z = 2Clex + (2 + V2)c2e~" + (2 - V2)cae-~"

7-6 Polygonal approximations for systems. In this section we will
give a method for obtaining polygonal approximations to the two functions
Y and Z which constitute the solution of the system

y' = F(x, Y, z),

Z' = G(x, Y, z),

yea) = b,

z(a) = c.
(1)

Since the sequences {Yn} and {zn} of the existence proof converge to the
solution functions, we already have one method of obtaining approximate
solutions of (1). The polygonal approximations, however, are generally
easier to calculate than the Picard approximations, ·even though the latter
are more convenient to use in the proof itself.

With each partition {a = xo, XI, ... , Xn = d} of an interval [a, d)
there is associated a polygonal approximation to each of the functions Y
and z satisfying (1). Over the interval [a, Xl] the approximations are just
the lines tangent to the solution curves at (a, b) and (a, c); i.e., the lines
through the points (a, b) and (a, c) with respective slopes F(a, b, c) and
G(a, b, c). Let (XI, YI) and (XI, Zl) be the points at which the two tangent
lines intersect the vertica,l line X = Xl' Compute F(XI' YI, Zl) and
G(XI, YI, Zl), and take the lines through (Xl, YI) and (Xl, Zl) with these
respective slopes for the approximations over the interval [XI, X2]. Con­
tinuing in this way we obtain a sequence of points (a, b), (Xl, YI), ... ,
(Xn, Yn), where the Yi are approximate values for Y(Xi) , and a similar
sequence for the z-curve. The polygonal curves joining these vertices are
the approximations to Y and Z for the given subdivision. At each stage
we have (letting Yo = b, Zo = c)

Yk+l = Yk + F(Xk, Yk, Zk)(Xk+1 - Xk),
(2)

Zk+l = Zk + G(Xk, Yk, Zk)(Xk+1 - Xk).

The method outlined above extends in the natural way to give polygonal
approximations to the functions in the solution of a first order system
in n functions. Since a second or higher order equation in one function
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can be considered as a first order system, we can also use this method to
obtain approximations to the solutions of such higher order equations.
Consider, for example, the second order equation

y" = G(x, y, y'),

We rewrite this as the system

y(a) = b, y'(a) = c. (3)

y' = z,

z' = G(x, y, z),

y(a) = b,

z(a) = c,

and use (2), with F(x, y, z) = z, to compute simultaneous approximations
to y and y'.

EXAMPLE 1. y' = z - 2,
z' = y + 3x,

y(O) = 1,
z(O) = O.

We compute the approximations to y and z over the interval [0, 1), using
the partition. {O, 0.2, 0.4, 0.6, 0.8, 1.0}. The calculations, to three deci­
mal places, are shown in Table 1. The solutions of this system are
y = eX - 3x, z = eX - 1. The approximate values from Table 1,
rounded off to two decimal places, are listed' in Table 2 with the correct
values for comparison. The graphs of the solutions and the approxi­
mations found are shown in Fig. 7-3.

EXAMPLE 2. y" = x + y, y(O) = 1, y'(O) = O. We treat this equa­
tion in the same way as the system y' = z, y(O) = 1; z' = x + y,
z(Q) = O. Let us again compute approximations on [0, 1), using the par­
tition {O, 0.2, 0.4, 0.6, 0.8, 1.0}. The calculations are listed in Table 3.
The correct solutions, y = eX - x, z = y' = eX - 1, and the approxi­
mations found above are shown in Fig. 7--4.

TABLE 1

Xk 0 0.2 0.4 0.6 I 0.8 I 1.0
Yk 1 0.6 0.24 -0.072 -0.326 -0.511
Zk 0 0.2 0.44 0.728 1.074 1.489

Zk - 2 -2 -1.8 -1.56 -1.272 -0.926
!!.Yk = !(Zk - 2) -0.4 ·-0.36 -0.312 -0.254 -0.185
Yk + !!.Yk = Yk+l 0.6 0.24 -0.072 -0.326 -0.511

Yk + 3x 1 1.2 1.44 1.728 2.074
!!.Zk = t(Yk + 3x) 0.2 0.24 0.288 0.346 0.415

Zk + !!.Zk = Zk+l 0.2 0.44 0.728 1.074 1.489
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x 0 0.2 0.4 0.6 0.8 1.0
Yk 1 0.60 0.24 -0.07 -0.33 -0.51

Y = e" - 3x 1 0.62 0.29 0.02 -0.17 -0.28
Zk 0 0.20 0.44 0.73 1.07 1.49

z=e"-1 0 0.22 0.49 0.82 1.23 1.72

TABLE 3

Xk 0 0.2 0.4 0.6 0.8 1.0
Yk 1 1.0 1.04 1.128 1.274 1.489
Zk 0 0.2 0.44 0.728 1.074 1.489

AYk = 1,-Zk 0 0.04 0.088 0.146 0.215
Yk + AYk = Yk+l 1 1.04 1.128 1.274 1.489

Xk + Yk 1 1.2 1.44 1.728 2.074
AZk = 1,-(Xk + Yk) 0.2 0.24 0.288 0.346 0.415

Zk + AZk = Zk+l 0.2 0.44 0.728 1.074 1.489

-0.5

FIG. 7-3. Polygonal approximations
for Y' = Z - 2, z' = .y + 3z, yeO) = 1,
z(O) = O.

FIG. 7-4. Polygonal approximations
for y" = X + Y, yeO) = 1, y'(O) = O.
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1. Compute approximations to the solutions of Example 1 using the partition
{O, 0.1, 0.2, ... , 0.9, 1.0 j. Compare your results with the correct values in
Table 2.

2. Using the following partitions, find an approximation to the solution of the
equation of Example 2.

(a) 10, 0.1, 0.2, ... , 0.9, 1.0 j of [0, 1],
(b) {-0.5, -0.4, -0.3, -0.2, -0.1, OJ of [-1,0].

3. For the system Y' = !Z, z' = -ty, yeO) = !, z(O) 1, find approxima-
tions to y and z for the partition {O, 0.2, 0.4, 0.6, 0.8, 1.0 j. Show that the
solution is y = !eX

, z = e-x , and plot the approximations and solution curves
on the same graph.

4. Find approximations to the solution curves of

y' = 2(1 - z)/x2 ,

Z' = -3y, z(l)

y(l)

0,

1,

(a) for the partition {0.2, 0.4, 0.6, 0.8, 1.0},
(b) for the partition {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0j.

Verify that the solution is y = x2, Z = 1 - x3, and plot these curves with the
approximations.

5. Plot approximations to the solution curves of the system of Problem 4 by
using the partition 10.1, 0.2, 0.3, 0.4, 0.51 of [lo, !l-

(a) Start with the initial values ym = 0.250, zm = 0.875.
(b) Start with the initial values y(lo) = 0.010, z(lo) = 0.999.

6. Graph the polygonal approximations to y and y', where y is the solution
of y" + y = 0, yeO) = 0, y'(O) = 1, for the partition

{O, 0.1, 0.2, ... , 1.5, 1.6, 1.71

of [0, 1.7]. What are the approximate values obtained for Y('/T/2)? for y'(7r/2)?

ANSWERS

1. Yk: 1, 0.800, 0.610, 0.431, 0.264, 0.110, -0.029, -0.152, -0.257, -0.343,
-0.407,

Zk: 0, 0.100, 0.210, 0.331, 0.464, 0.610, 0.771, 0.948, 1.143, 1.357, 1.593
2. (a) Yk: 1, 1, 1.010, 1.031, 1.064, 1.110, 1.171, 1.248, 1.343, 1.457, 1.593,

Zk: 0, 0.100, 0.210, 0.331, 0.464, 0.610, 0.771, 0.948, 1.143, 1.357, 1.593
(b) Yk: 1, 1, 1.010, 1.029, 1.056, 1.090,

Zk: 0, -0.100, -0.190, -0.271, -0.344, -0.410
3. Yk: 0.500,0.600,0.725,0.883, 1.085, 1.347,

Zk: 1.000, 0.800, 0.633, 0.495, 0.382, 0.290



188 SYSTEMS OF EQUATIONS [CHAP. 7

4. (a) Yk: 1, 0.600, 0.350, 0.306, 0.731
Zk: 0, 0.600, 0.960, 1.170, 1.354

(b) Yk: 1, 0.800, 0.627, 0.483, 0.372, 0.301, 0.289, 0.383, 0.743,
Zk: 0,0.300,0.540,0.728,0.873,0.985, 1.075, 1.162, 1.277

5. (a) Yk: 0.250, 0.150, 0.087, 0.076, 0.181,
Zk: 0.875, 0.950, 0.995, 1.021, 1.044

(b) Yk: 0.010, 0.030, 0.050, 0.079, 0.114,
Zk: 0.999,0.996,0.987,0.972,0.948

6. Yk: 0, 0.100, 0.200, 0.299, 0.396, 0.490, 0.580, 0.665, 0.744, 0.817, 0.882,
0.939, 0.987, 1.026, 1.055, 1.074, 1.082, 1.079,

Zk: 1, 1, 0.990, 0.970, 0.940, 0.900, 0.851, 0.793, 0.726, 0.652, 0.570, 0.482,
0.388,0.289,0.186,0.080, -0.027, -0.135
At 7r/2, v-approximation is 1.080, v'-approximation is 0.004.

7-7 Linear systems. We return now to the linear system (4), Sec­
tion 7-5, and indicate how the theory for such a system parallels that for
a single linear equation (cf. Section 3-3). The system in question is

y'l = PllYI + ... + PlnYn + qI,
(1)

y~ = PnlYI + ... + PnnYn + qn,

where the functions Pij and qi are assumed continuous on some interval
[a, (j). We know (Theorem 2, Section 7-5) that there is exactly one solu­
tion (YI, ... , Yn) of (1) on [a, (j] such that YI(a) = bl , ... , Yn(a) = bn
for any a in (a, (j) and any numbersbI, ... ,bn . If the functions qi are
all zero, then the system (1) is called homogeneous. The homogeneous
system

yi·= PIIYI +.,. + PlnYn,

(2)

y~ = PnlYI + ... + PnnYn

is called the reduced form of (1).
We define the sum of two solutions of (1) or (2), and a constant multiple

of a solution as follows:

(Yll, ... , YIn) + (Y21, ... , Y2n) = (Yll + Y2I, ... ,YIn + Y2n),

I t then makes sense to talk of linear combinations

of solutions. A set of solutions is linearly independent if no nontrivial
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linear combination is equal to the n-tuple (0, ... ,0). The Wronskian of
n solutions of (1) or (2) is the n-by-n determinant whose columns are the
given solutions:

W(X)

Yll(X) Y21(X)

YI2(X) Y22(X)

Yln(X) Y2n(X) Ynn(X)

With the above definitions for sum, linear combination, Wronskian, etc.,
all the theorems of Section 3-3 hold for the system (1). To solve (1), there­
fore, it is necessary and sufficient to find one particular solution of (1),
and all solutions of the reduced system (2). A linear combination of solu­
~ions of (2) is again a solution of (2). Any n solutions of (2) are linearly
independent if and only if their Wronskian never vanishes. The set of all
linear combinations of any n linearly independent solutions of (2) is the
family of all solutions of (2). If (YOI' ,Yon) is a particular solution
of (1), and (Yll, . .. , YIn), ... , (Ynl, , Ynn) are linearly independent
solutions of (2), then every solution (Yb , Yn) of (1) can be expressed
as follows.

YI = YOI + CIYll + + CnYnl,

Y2 = Y02 + CIYl2 + + CnYn2,

Yn = YOn + CIYln + ... + CnYnn.

(3)

Now we turn to the case in which the coefficients Pij are constants,
since this is the only case in which we have a systematic way of finding
solutions to specific problems. We consider the homogeneous system (2),
and illustrate the methods of finding solutions for the case n = 2:

y' = PIIY + P12z,
(4)

z' = P2lY + P22Z.

We must find two linearly independent solutions (YI, Zl), (Y2' Z2), and by
analogy with a single homogeneous linear equation, we try to find solutions
of the form (AeTX, BeTX ). Substitution of Y = AeTX , Z = BeTX in (4) gives
the equations

AreTX = PllAeTx + PI2BeTx,

BreTX = P2lAeTx + P22BeTX.

Hence (AeTX, BeTX ) is a solution of (4) if the numbers A, B, and r satisfy
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the following simultaneous equations:

(pu - r)A + P12B = 0,

P2lA + (P22 - r)B = O.
(5)

(6)

This system of linear equations in A and B has a nontrivial solution if
and only if the determinant equals zero; i.e., if the number r satisfies the
equation:

I
Pu- r Pl2 1=0.

P21 P22 - r

The quadratic equation (6) is called the auxihary equation for the system
(4). Suppose rl and r2 are distinct roots of (6), and AI, B I are numbers
which satisfy (5) when r = rb and A 2 , B 2 are numbers which satisfy (5)
when r = r2. Then (Aler1X, Bler1X ) and (A 2er2X, B 2er2X ) are solutions of
(4), and every solution (y, z) of (4) can be written

y = clAlerix + c2A2er2x,

z = clBlerlx + c2B2er2x.

If the auxiliary equation has only one root ro, then two solutions can be
found by trying functions of the form y = (AI + A 2x)erox , z =
(B I + B 2x)erox. If the roots of (6) are the complex numbers ro and 1'0,
then there will be complex numbers A o and B o satisfying (5) when r = ro.
The pair (Aoerox, Boerox ) is a complex solution, and the real and imaginary
parts are two real solutions.

The methods outlined above also extend to homogeneous systems in
three or more functions (see Example 4).

EXAMPLE 1. y' = y + 2z,

The auxiliary equation is

z' = 2y + Z.

1

1 - r 2 I = r2 - 2r - 3 = 0,
2 1 - r

with roots r = 3, and r = -1. For r = -1 the equations (5) are both
2A + 2B = 0, so we must have A = -B. We can take, for example,
A = 1 and B = -1, and (e-X

, -e-X
) is one solution of the system.

For r = 3 the equations (5) are both equivalent to A = B. Hence we
have the second solution (e 3x, e3x). Any solution (y, z) can therefore be
expressed

y = cle-x + C2e3x,

z = -cle-x + C2e3x.
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EXAMPLE 2. y' = 3y - 2z, z' = 2y - z.

The auxiliary equation for this system is

-2 I 2= (r - 1) = 0,
-1 - r

with the single root r = 1. Here we try solutions y = (Ai + A 2x)eX
,

z = (B l + B 2x)ex
. Substituting these functions in the system and divid­

ing out eX gives·

Ai + A 2 + A 2x = 3A l - 2Bl + (3A 2 - 2B2)x,

B l + B 2 + B 2x = 2A l - B l + (2A 2 - B 2)x.

For these equations to be identities, we must have

Ai + A 2 = 3A l - 2B l ,

A 2 = 3A 2 - 2B2,

B l + B 2 = 2A l - B l ,

B 2 = 2A2 - B 2.

The second and fourth equations reduce to A 2 = B 2 , and the first and
third equations both become 2A l - A 2 - 2B l = 0. We can take, for
example, Ai = B l = 1, A 2 = B 2 = 0, or Ai = 1, B l = 0, A 2 =
B 2 = 2. The solutions obtained for these values are (eX, eX) and
[(1 + 2x)eX, 2xeX]. All solutions of the system can be expressed

Y = clex + c2(1 + 2x)eX = (Cl + C2 + 2c2x)eX,

z = clex + C22xex = (Cl + 2c2x)ex.

EXAMPLE 3. Y' = Y - z, z' = y + z.

The auxiliary equation is r 2 - 2r + 2 = 0, with the complex roots
1 + i, 1 - 1. For r = 1 + i the equations (5) both read

[1 - (1 + i)]A - B = 0,

or A = iB. Taking B = 1, A = i, we get the complex solution
(ieO+ ilx, e(l+ilx), or

(ieXcos x - eX sin x, eX cos x + iex sin x).

The real parts and imaginary parts must also be solutions, and we have
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the two real solutions
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(-eX sin x, eX cos x),

The family of all solutions is

(eX cos x, eX sin x).

y = -Clex sin x + C2ex cos X,

Z = Clex cos x + C2ex sin x.

If the other root, r = 1 - i, of the auxiliary equation is used, one arrives
at the same pair of solutions.

EXAMPLE 4. To illustrate how these methods extend to three equations
in three functions, we consider the system

y' = y+w,

Z' = 2y - z,

w' = 2w.

There are solutions of the form (Aerx, Berx, Cerx ) for numbers r which
satisfy

1 - r

2

o

o
-1 - r

o

1

o
2 - r

-(1 - r)(1 + r)(2 - r) = O.

We treat the roots 1, -1,2 in turn. The triple (AeX, Bex, CeX) is a solu­
tion of the system if

OA + OB + 1C = 0,

2A - 2B + OC = 0,

OA + OB + 1C = O.

These equations are satisfied by A = B = 1, C = 0, and (eX, eX, 0) is a
solution. Similarly, if we substitute the functions y = Ae-x

, z = Be-X,
w = Ce-x in the system, we get the equations

2A + OB + lC = 0,

2A + OB + OC = 0,

OA + OB + 3C = 0,

which are satisfied by A = C = 0, B = 1. Thus (0, e-x , 0) is a second



7-7] LINEAR SYSTEMS 193

solution of the system. For r = 2, the condition that (Ae 2z, Be2z, Ce2z)
be a solution is

(-1)A + OB + 1e = 0,

2A - 3B + oe = 0,

OA + OB + oe = o.

We must have e = A, and B = ~A; taking A = 3 we get the third
solution (3e2z, 2e2z, 3e2z). Any solution (y, z, w) can be expressed as a
linear combination of (eZ, eZ, 0), (0, e-z, 0), and (3e2z, 2e2z, 3e2Z), and we
can express the solutions

PROBLEMS

Solve the following systems.

1. y' 2y + 3z, 2. y' = y, 3. y' 2y + 5z,
z' 2y+ z z' = -2z z' y - 2z

4. y' y, 5. y' =y-z 6. y' y - z,
z' 2y+ z z' = y+ 3z z' 2y - z

7. y' y - 2z, 8. y' = y+ 2w,
z' = y+ 3z z' = y+ 2z+ w,

w' = 3y
9. y' = 2y - 2z - 4w,

z' = 2y - 3z - 2w,
w' = 4y - 2z - 6w. The auxiliary equation is -(r + 2)2(r + 3) = O.

Show that there are three linearly independent solutions of the form

(Ale-2%, Ble-2%, Cle-2%), (A2e-2%, B2e-2%, C2e-2%),
(A3e-3%, B3e-3%, C3e-3%).

ANSWERS

1. cle-% + 3c2e4%, z = -Cle-% + 2c2e4%
2. y Cle%, z = c2e-2%
3. y = 5Cle3%- C2e-3%, z = Cle3%+ c2e-3%
4. y = cle%, z = cle% + 2c2xe%
5. y cle2

% + C2xe2%, z = -clez%- c2(l + x)e2%
6. y Cl cos x + C2 sin x, z = Cl (cos x + sin x) + C2 (sin x - cos x)
7. y -2cle2%cos x - 2c2e2%sin x

z cle2%(cos x - sin x) + c2e2%(cos x + sin x)
8. y = c2e3%+ 8c3e-2%, z = cle2%+ 2c2e3%+ C3e-2%, w = c2e3%- 12c3e-2%
9. (0, -2e-2%, e-2%), (e-2%, 2e-2%, 0), (2e-3%, e-3%, 2e-3%);

y = c2e-2%+ 2c3e-3%,
z = -2Cle-2%+ 2c2e-2%+ C3e-3%,

w = Cle-2%+ 2c3e-3%
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7-8 Operator methods. We have so.far considered only systems of equa­
tions of the simple form in which each derivative is expressed explicitly
in terms of the unknowns. It is frequently necessary to consider more
general systems, in which the derivatives of several functions occur in
each equation, and second or higher order derivatives appear. An example
of such a system is

2y" - 4y - z'·- 4x,

2y' + 4zi
- 3z. 0,

which can be conveniently written in operator notation as

(2D 2
- 4)y - Dz = 4x,

(1)
2Dy + (4D - 3)z = O.

We consider systems, such as (1) above, which are linear in the unknowns
and their derivatives and have constant coefficients. The general form of
such a system is

L ll (D)Yl + + L1n(D)Yn = qI,

L 21 (D)Yl + + L 2n (D)Yn = q2,

(2)

where the Lij(D) are linear operators with constant coefficients, and the
qi are arbitrary continuous functions.

Since our existence theorem (Theorem 2, Section 7-5) is stated for
linear systems in the simple form (4), Section 7-5, which we will call the
basic form, we ask when the system (2) is equivalent to a system of this
basic form. If we can solve (2) algebraically for the highest order deriva­
tives of Yl, ... , Yn which occur in the system, we can write an equivalent
system in the basic form by introducing the lower order derivatives as
new unknowns. To illustrate with the system (1), consider this as a linear
algebrat"c system in D 2y and Dz:

2D2y - Dz = 4y + 4x,
(3)

4Dz = -2Dy + 3z.

The determinant of this system is

10
2

-411 = 8 -,t. 0,
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so we can solve for D 2y and Dz, and we get

D 2y = -!Dy + 2y + iz + 2x,

Dz = -~Dy + iz.

If we let Dy = w, whence D 2y = Dw, we obtain the following system
in basic form which is equivalent to (1):

Dy = w,

Dw = -!w + 2y + iz + 2x,

Dz = -~+ iz.

(4)

It follows that (1) has solutions and that arbitrary initial conditions can
be prescribed for y, Dy, and z. The general solution of (4) will contain
linear combinations of three linearly independent solutions of the reduced
system. Therefore the general solution of (1) or (3) will have y and z
expressed as linear combinations involving three arbitrary constants.

If the system (2) cannot be solved algebraically for the highest order
derivatives which occur, it is not equivalent to a system in basic form and
may in fact be inconsistent. For example, the following system is in­
consistent.

(D 2 + 2D)y + (2D - 3)z = eX,

(D 2 + 2D)y + (2D - 3)z = O.

We will treat only those systems which can be put in the basic form, the
so-called nondegenerate systems.

Our methods of solving systems such as (1) frequently introduce ex­
traneous functions. That is, we obtain formulas for y and z which are
necessary conditions that (y, z) be a solution, but not sufficient. In prac­
tice, this means that the formulas contain more constants than they
should, and it is convenient to have a check on how many arbitrary
constants should appear. There will be as many arbitrary constants as
there are functions in the equivalent basic system, which introduces a new
function for each derivative occurring in the original system except those
of highest order. For example, suppose that D 3y and D 2z are the highest
order derivatives which appear in a system of two equations in y and z.

_ The equivalent basic system involves the five functions y, Y2 = Dy,
Y3 = D 2y, Z, Z2 = Dz, and there must be five arbitrary constants in the
solution. In general, the number of constants in the solution is the sum of the
highest orders of the derivatives which occur in the system.

The preceding discussion indicates generally what sort of solutions the
system (2) can be expected to have. Now we turn to the problem of
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finding the solutions. We proceed in much the same way as with algebraic
systems. From the given system, we obtain new equations by differenti­
ating and multiplying by constants, etc., so these -equations can be com­
bined to yield an equation in just one of the unknowns. This equation is
solved and the solution substituted in the system. The procedure is
illustrated in the examples below.

EXAMPLE 1.
y' = -y + z,

(5)
z' = -5y + 3z.

This system can be written in operator form

(D + l)y - z = 0,

5y + (D - 3)z = O.

Operating on (6) with (D - 3), we obtain

(D - 3)(D + l)y - (D - 3)z = O.

Adding (8) and (7), and simplifying, we get

[(D - 3)(D + 1) + 5]y = 0,

(D 2
- 2D + 2)y = O.

The solutions of (10) are

From (6), z = (D + l)y,or

z = Cle'" (2 cos x - sinx) + c2e"'(2 sin x + C08X).

(6)

(7)

(8)

(9)

(10)

Here the Eqs. (10) and (6) form a system equivalent (Problem 1) to the
original system (6) and (7), and there is no problem of extraneous solu­
tions. Note that the formulas for y and z contain two constants, as they
should.

EXAMPLE 2.
(D - l)y + (D + l)z = e-"',

(11)

To eliminate z, operate on the first equation with D and on the second
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D(D - l)y + D(D + l)z = -e-x ,

(D + 1) D 2y + (D + 1) Dz = O.

Subtracting the corresponding sides of equations (12), we get

[(D + I)D 2 - D(D - 1)]y = e-x ,

(Da + D)y = D(D2 + l)y = e-x
•

The solutions of (13) are

From the second of equations (11), we have

Dz = 2e-x - D 2y = !e-X + C2 cos X + Ca sin x,

z = -!e-X + C2 sin x - Ca cos x + C4.

(12)

(13)

(14)

(15)

Since D 2y and Dz are the highest order derivatives which appear, there
should be 2 + 1 = 3 arbitrary constants instead of four. The functions
y and z of (14) and (15) satisfy the second equation of (11) for all values
of Cl, C2, Ca, and C4. However, substitution in the first equation of (11)
shows that (y, z) is a solution if and only if Ci = C4. Hence the solutions
of (11) are given by

y = Cl + C2 cos X + Ca sin x - -!e-x
,

z = Cl + C2 sin x - Ca cos x - !e-x
•

EXAMPLE 3. We solve the system (1). Operating on the first equation
with (4D - 3), and on the second with D, we get

(4D - 3)(2D2 - 4)y - (4D - 3) Dz = 16 - 12x,

2 D 2y + D(4D - 3)z = O.

_ Adding these equations and simplifying, we obtain

2[(4D - 3)(D2 - 2) + D 2]y = 16 - 12x,

(2Da - D 2 - 4D + 3)y = 4 - 3x,

(2D + 3)(D - 1)2y = 4 - 3x.
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The solutions of this equation are

y = -x + Cle'" + C2xe'" + C3e-<3/2)",.

From the first equation of (1), we have

Dz = (2D 2 - 4)y - 4x

-2Cle'" + C2(-2x + 4)e'" + !C3e-<3/2)",.

Hence z must satisfy

z = -2cle'" + C2( -2x + 6)e'" - -!C3e-<3/2)", + C4.

Substituting y and z in the second of equations (1) gives 3C4 + 2 = 0,
so C4 = -~. Accordingly the solutions are given by

y = -x + cle'" + C2xe'" + C3e-<3/2)""

z = -~ - 2cle'" + C2(-2x + 6)e'" - -!C3e-<3/2)",.

PROBLEMS

1. Show that the system consisting of equations (10) and (6) is equivalent to
the system of equations (6) and (7). [Since (10) was derived from (6) and (7),
all that remains is to assume (10) and (6), and derive (7)].

2. Solve the system (5) of Example 1 by means of the auxiliary equation, as
in Section 7-7.

3. Substitute the formulas (14) and (15) in the system (11) of Example 2
and show that C1 = C4 is necessary for (y, z) to be a solution.

4. Show that the following system is nondegenerate. How many constants
must appear in the general solution?

D2y + (D + l)z + Dw = eX,

(2D + l)y + 2z + D2W = 1,

(D3 + D2)y + (D + 2)z + (D - 3)w = x.

5. (See Example 3.) Show that (y, z, w) = (-x, -~, -1) is a particular
solution of the basic system (4) which is equivalent to (1). Show that

7. D2y + (2D + 3)z 3x,
Dy+Dz=x-l

and

are solutions of the reduced form of (4).

Solve the following systems.

6. (D - l)y + z = ex,
-2y + (D + l)z = 1
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8. (D - I)y - Dz = eX,
2Dy - (D + I)z = 2eX

9. (D - I)y + (D2 - I)z
D2y + (D + I)z = 0

10. Show that the following system is degenerate and that there is exactly
one pair of functions which satisfies the system

(D2 - 2)y + Dz 2x,

3Dy + 3z = 1.

11. Show that the following system is inconsistent.

(D2 - D)y + (D + I)z + (D3 - D2)W eX,

(D + I)y + (D - I)z - (D3 + D)w = 1,

(D2 + I)y + 2Dz - (D2 + D)w = 2x.

Show that the system is consistent if the right member of the last equation is
changed to eX + 1. What can you say about the solutions?

ANSWERS

2. (e(l+i)x, (2 + i)e(l+i)x) is a complex solution.
4. six
6. y = !Cl (cos X - sin x) + !C2 (cos X+ sin x) + eX - 1,

z = Cl cos x + C2 sin x + eX - 1 ..
7. Y tx2 - 2x - Cle3x - c2e-x + C3,

Z = x-I + Cle3x + c2e-x

8. y = Cl cos x + C2 sin x,
z = Cl (cos X - sin x) + C2 (sin x + cos x) - eX

9. y = _e2x + Cle-x + c2ex + ~3xex,
z = !e2x - clxe-x - !C2eX - C3(!X + £)eX+ c4e-x

10. y = -x, z = !
11. If w is any function, there is a three-parameter family of solutions for y

and z in terms of w.

7-9 Laplace transform methods. The Laplace transform provides an
effective way of treating systems of linear equations with constant coef­
ficients, as well as single equations in one unknown. By taking transforms,
we convert a system of linear equations in y and z into an algebraic system
of linear equations in y and z. If the original system is consistent, .this
algebraic system can be solved for y and z, and then yand z can be deter­
mined by the methods of Chapter 5. As for a single equation, the Laplace
transform method gives directly the particular solution which corresponds
to a given ,set of initial conditions.

In this section we will illustrate how the transform method applies to
some of the examples of the precel1ing sections.
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EXAMPLE 1. (cL Example 1, Section 7-7.) We consider the system

y' = y + 2z,
(1)

z' = 2y + z, '

with the initial conditions

yeO) = 2, z(O) = O. (2)

Taking transforms of both sides of equations (1), we get

8'0 - 2 = '0 + 22,

82 - 0 = 2'0 + 2,

or
(8 - 1)'0 - 22 = 2,

-2'0 + (8 - 1)2 = o.

The determinant of the system (3) is

1

8- 1 -2 1 2= 8 - 28 - 3 = (8 - 3)(8 + 1).
-2 8 - 1

Hence '0 and 2 are given by

(3)

21 4o = (8 - 3)(8 + 1) .

~1~12 21'0 = (8 - 3)(8 + 1) o 8 - 1

2 = 7(8-~37"C{(;-8 ~+-1=) 18_/

28 - 2
= (8 - 3)(8 + 1) ,

From the last equation above and #7 of Table 2 (Section 5-4), we get

Z
= 4 [ 3% _ -%] _ 3% _ -%

3.- (-1) e e - e . e .

Using #8 and #7 of Table 2 in Section 5-4, and the formula above for '0,
we get

y = f[3e3
% + e-%] - f[e3

% - e-%]

= e3%+ e-%.

If, instead of the initial conditions (2), we take arbitrary initial condi­
tions yeO) = a, z(O) = b, then the method above gives the general
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solution of the system (1) in the form (Problem 1)

z = -!(a + b)e3z - !(a - b)e~z.

EXAMPLE 2. (cf. Example 4, Section 7-7.)

(4)

y' = y + w,

z' = 2y - z,

w' = 2w,

yeO) = 4,

z(O) = 2,

w(O) = 3.

(5)

The transformed equations for the system (5) are

8'0 - 4 = '0 + '111,

82 - 2 = 2'0 - 2,

sW - 3 = 2'111,

which can be written

(8 - 1)'0 + 02 - 1'111 = 4,

-2'0 + (8 + 1)2 + OW = 2,

0'0 + 02 + (8 - 2)'111 = 3.

From the last of equations (6), we get

A 3
w=--·

8-2

Substitution of this result in the first equation gives

A 4 3 1 3
y = --+ = --+-_.

8 - 1 (8 - 2)(8 - 1) 8 - 1 8 - 2

From the second of equations (6), we find that

2 = _2_+ 2 + 6
8 + 1 (8 - 1)(8 + 1) (8 - 2)(8 + 1)

Decomposing the terms above into partial fractions gives

2=_1 1_+_2_.
8-1 8+1 8-2

(6)
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With the formulas above forw, '0, and i, we can identify the solution as

y = eX + 3e2x
,

z = eX - e-X+ 2e2x
,

w = 3e2x
•

The next example shows how the transform method applies to the higher
order systems treated in Section 7-8. Notice how the operator manipula­
tions of Example 2, Section 7-8, parallel the algebraic operations in the
following example.

EXAMPLE 3. (cf. Example 2, Section 7-8.)

y' - y + z' + z = e-x
,

y" + z' = 2e-x
,

yeO) = 2,

z(O) = -1

y'(O) = t
(7)

The equations in '0 and i corresponding to (7) are

BY - 2 - '0 + 8i + 1 + i = _1_,
8+1

82•1 - 28 - 1. + 8i + 1 = _2_,
Y 2 8 + 1

which we write as

(8 - 1)'0 + (8 + l)i = 8 ~ 1 + 1 = : ~ ~ '

(8)

To solve for '0 and i, multiply the first of equations (8) by 8, and the
second by 8 + 1; this gives

(
. • _ ._ 82 + 28

8 S - l)y + 8(8 + l)i = 8 + 1 '

2, • 1 483 + 782 + 68 + 3
8.(8 +_l)y +.8(8-+ l)z.- 2 - - -8-+ ·1-- - .

Subtracting the corresponding sides of (9), we get

( 3 + )' _ (2 + 1) '_ .! 48
3

+ 58
2

+ 28 + 3
8 8Y-88 y-2 8+1 '

(9)
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or

Hence

1 48
3 + 58

2 + 28 +3! t 8 (10)
Y = 2 8(8 + 1)(82 + 1) = S - 8 + 1 + 82 + 1 .

Y = i - te-x + cos x,

Z=

which is Formula (14), Section 7-8, with Cl = -i, C2 = 1, and C3 = O.
From the second of equations (8), and (10), we obtain

.+2+ 2 t
-sy 8(8 + 1) - S

1 483 + 382 + 28 + 3 2
- 2 (8 + 1) (82 + 1) + 2 + 8(8 + 1)

1 82
- 28 - 1 2 _ ]:.

- 2 (8 + 1)(82 + 1) + 8(8 + 1) 8

Breaking the terms above iflto partial fractions, we get

. -t 1 2 2 t
z = 8 + 1 + 82 + 1 + s - 8 + 1 - s

_ -t +i+_1_.
- 8 + 1 8 82 + 1

Hence
z = --ie-x + i + sin x,

which is Eq. (15), Section 7-8, again with C2 = 1, and C3 = O.

PROBLEMS

1. Use transforms, with the initial conditions yeO) = a, z(O) = b, to obtain
the general solution (4) of the system (1).

2. Use transforms to solve the systems cited, for the given initial conditions:

. (a) System of Example 2, Section 7-7; yeO) = 0, z(O) = -1
(b) System of Example 3, Section 7-7; yeO) = 1, z(O) = 0
(c) System of Example 1, Section 7-8; yeO) = 1, z(O) = 2
Cd) Problem 6, Section 7-8; yeO) = 0, z(O) = 0
(e) Problem 7, Section 7-8; yeO) = 1, z(O) = -1
(f) Problem 8, Section 7-8; y(O) = 0, z(O) = 0

_ (g) Problem ll, Section 7-8; y.(O) .= =1, z(O)-= !
3. THEOREM: For any transform!, lim.->oo f(s) = o.

Use this fact to show that the system of Problem 10, Section 7-8, has only one
solution. [Hint: Let yeO) = a, y'(O) = b, z(O) = c be any initial conditions;
show that y = -1/s2 + ill - 3b - 3c], and hence that y = -x, etc.]
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ANSWERS

2. (a) y = 2xe"', x = -1 + 2xe'"
(b) y e'" cos x, z = e'" sin x
(c) y e'" cos x, z = e"'(2 cos x - sin x)
(d) y e'" - 1, Z = e'" - 1
(e) y -!x2 - 2x + 1, Z = x-I
(f) y sin x, z = sin x + cos x - e'"
(g) y -e2"', z = !e2'"
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Absolute convergence, 49
Analytic function, 50
Analytic solution, 53
Approximations,

Picard, 144
for systems, 172, 180

polygonal, 156-160
for systems, 184-187

Arbitrary constants, 195
Auxiliary equation, 68, 86

for a linear system, 190

Basic form of a linear system, 194
Bernoulli equation, 45

Catenary, 166
Cauchy's existence proof, 156
Clairaut equation, 20
Coefficients, undetermined, 100
Comparison test,

for improper integrals, 116
for power series, 51
for series of functions, 142

Complex conjugate, 87 (Prob. 6)
Complex exponential, 84
Complex function, 83
Complex solution, 85
Connected set, 37
Continuous function, 140
Convergence,

of improper integrals, 116
of power series, 48
of a sequence of functions, 141, 142
of a series of functions, 142

Convolution, 136
Critical damping, 76
Curve, 35
Curves, families of, see Families of

curves

D,88
Damping, 75, 76

Derivative of a complex function, 83
Determinant- of a system of equations,

60
Differential equations,

Bernoulli, 45
Clairaut, 20
equivalent, 2
exact, 6, 31
of families of curves, 15
homogeneous, 25
linear, see Linear differential

equations
order of, 1
ordinary, 1
partial, 1
solution of, 2
solvable for y, 23
systems of, see Systems of differen-

tial equations
Differential operators, 88-94
Distance between complex numbers, 83
Domain, 37

simply connected, 38

Electric circuits, 74
Envelopes, 17
Equations solvable for y, 23
Equivalent equations, 1
Exact equations, 6, 31
Existence and uniqueness theorem,

for first order equations, 12, 155
for first order systems, 177
for linear equations, 58, 179 (Prob.

10), 182
for linear systems, 178, 180
for nth order equations; 181

Exponential order, 124

Families of curves, 15
differential equations of, 16
envelopes of, 17
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orthogonal, 46
self-orthogonal, 47, 48 (Prob. 8)

Flexible cable, 166
Frequency, 76

natural damped, 79
Fundamental theorem of calculus, 140

General solution, 66
Green's theorem, 39 (Prob. 6)

Homogeneous algebraic system, 60
Homogeneous first order differential

equation, 26
Homogeneous function, 25
Homogeneous linear differential equa­

tion,95
Homogeneous system of linear differ­

ential equations, 188

Imaginary part, 83
Implicitly defined solutions, 4
Improper integrals, 116

uniformly convergent, 117
Integral form of a differential equa­

tion, 144
Integral inequalities, 141
Integrating factor,

depending on x only, 143
for first order linear equations, 4l

Interval of convergence, 48
Inverse operators, 105, 130

£,119
£-1,130
Laplace transforms,

defined, 119
properties of, 124-131
in systems, 199
table of, 132

Line integrals, 35
Linear algebraic equations, 59

homogeneous, 60
Linear dependence and independence,

64
Linear differential equations,

existence theorem for, 58, 179 (Prob.
10), 182

first order, 40
general solution of, 66
homogeneous, 58
particular solution of, 66
reduced form of, 61
second order, with constant coeffi­

cients, 68-73
Linear differential operator, 88
Linear systems,

auxiliary equation for, 190
basic form of, 194
homogeneous, 188
Laplace transform in, 199
nondegenerate, 195
reduced form, 188
theory of, 188
in two functions, 177

Lipschitz condition, 149, 173

Method of undetermined coefficients,
70,100

Method of variation of parameters, 109
Motion, of a particle, 165

simple harmonic, 76, 81
M-test, 117

Natural damped frequency, 79
Numerical methods, see Approxima­

tions

Object function, 119
Open set, 37
Operator methods, 88-94

for systems, 194-199
Operators, 88

inverse, 105
sum and product of, 89

Order of a differential equation, 1
Orientation of a curve, 36
Orthogonal families, 46
Overdamped system, 75

Parametric equations, 35, 168
of the catenary, 167

Parameters, variation of, 109
Partial fractions, 107, 134, 135
Particle, motion of, 165
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Particular solution, 66
Pendulum, 79
Period of a vibration, 76
Picard's method,

outline of, 144-147
for systems, 171-175

Picard's theorem, 155
Pointwise convergence, 141
Polygonal approximations, 157

for systems, 184
Power series, review of, 48-52

solutions, 53-57

Radius of convergence, 48
Ratio test, 51
Real part, 83
Reduced equation, 61, 188
Reduction of order, 114 (Prob. 9)
Resonance, 79

Separation of variables, 3-7
Sequences and series of functions, 141,

142
Series, power, 48-52

solutions in, 53-57
Simple harmonic motion, 76, 81
Simply connected domain, 38
Simultaneous equations,- see Systems
Solution, 1

general,66
particular, 66
of a system, 161

Spring-mass systems, 74
Substitution, 26
Successive approximations, see Picard's

method

Superposition principle, 62
System of differential equations, 161­

199
equivalent to a first order equation,

168
linear, see Linear systems
polygonal approximations for, 184
solution of, 161

Table of Laplace transforms, 132
Tangent field, 9

for a system, 162
Trajectory, orthogonal, 46
Transform, 119
Transients, 75

Underdamped system, 76
Undetermined coefficients, method of,

70, 100
Uniform convergence,

of improper integrals, 117
of power series, 49
of sequences of functions, 142

Uniqueness theorems, see Exist~~e

- and uniqueness theorems

Variables separate, 3-7
Variation of parameters, 109

Weierstrass M-test, for integrals, 117
Weierstrass polynomial approximation

theorem, 128
Work, 36
Wronskian, 64, 189
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