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1. Introduction

Fluxes of gases like CO2 across the sea surface con-
stitute an important part of the global climate. How-
ever, direct field measurements of these fluxes are prob-
lematic and much effort has been put into parameter-
izations of the mean air–sea gas exchange flux F in
terms of air–sea partial pressure differences Dp, gas
solubility a, and wind-speed-dependent transfer ve-
locity k (e.g., Liss and Merlivat 1986):

F 5 2kaDp. (1)

The transfer velocities are mostly derived from labo-
ratory studies. In a recent paper Wu (1996) attempts
to summarize available field data to derive two for-
mulas for k versus wind-speed-dependence discrimi-
nating situations found in the open ocean from those
in lakes. We differ from Wu (1996) on the following
assumptions:

1) The sudden increase of the air–sea gas transfer at
low wind speeds due to the abrupt onset of capillary
waves that is found in laboratory studies cannot be
transferred to the open sea when considering mean
fluxes as described by Eq. (1).

2) The bubble-mediated gas transfer is different for
different gases because of their different solubility.
The flux measurements performed with the dual-
tracer method cannot simply be extrapolated to
higher wind speeds. Conflicting opinions expressed
in the literature are not fully discussed.

3) The description of the air–sea gas exchange, which
is a complicated turbulent boundary-layer problem,
can no longer be simply based on wind speed alone
as done in the past 20 years. The knowledge of
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processes involved allows for more adequate par-
ameterizations today.

2. Sudden increase of the air–sea gas transfer at
low wind speeds

Wu (1996) refers to laboratory measurements re-
porting a rapid increase in the gas transfer rate coin-
cided with the onset of capillary waves on the water
surface (Kanwisher 1963; Broecker et al. 1978). After
a critical discussion of the laboratory findings Wu
(1996) adopts the idea of a sudden change of the gas
transfer rate due to the influence of the steep capillary
waves on the aqueous molecular sublayer.

The sudden change merely is a reaction to the en-
hanced roughness modifying the wind field than an
effect of the ripples on the molecular aqueous layer.
The change of roughness results in an increase of the
frictional velocity and hence in a sudden increase of
the air–water gas exchange. This is of course not a
direct influence of the capillary waves on the air–water
gas exchange. Csanady (1990) showed that for the mo-
lecular sublayers, the surface under capillary waves
still appear to be smooth from the water side. Unless
there are substantial divergences occurring in parts of
the wavelets as described for the rollers on top of short
gravity waves (Csanady 1990), this is hardly a direct
effect. Csanady estimated that the capillary waves do
not contribute substantially to the convergence in the
aqueous molecular sublayer. A more realistic expla-
nation is that the change of surface roughness influ-
ences the flow on the air side of the interface.

As seen on the surface, the capillary waves indeed
appear suddenly when the wind speed suddenly in-
creases by a gust. However, the wind speed has not
only a mean but also a variance that makes the sea
surface patchy with respect to the coverage with cap-
illary waves. Some areas are covered by capillary
waves, others are not. As the wind speed increases the
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area covered by ripples gradually increases so that the
surface averaged over a larger area should show a
smooth transition from no capillary waves to full cov-
erage without an obvious ‘‘jump.’’ This is relevant to
the mean gas transfer as described by the usual param-
eterization (1). The sudden increase should only be
observed on a small scale that might be relevant to
single surface renewals but not to the mean exchange.

Also, the sudden increase in gas transfer was ob-
served mainly (if not exclusively) in laboratory studies
where the natural variance of the wind speed and the
implied variance of the surface patches covered with
ripples does not occur. This is a difference between the
tank airflow and the field wind pattern. It is basically
because of the timescale difference in wind velocity
fluctuations in the laboratory and in the field condi-
tions.

In this respect it is also worthwhile to mention stud-
ies of a related phenomenon—the cool skin on the
ocean surface. The thermal (cool skin) and diffusion
(gas) sublayers are known to be governed by the similar
laws (Soloviev and Schluessel 1994). It is interesting
that the laboratory tank measurements of the cool skin
(Fedorov and Ginzburg 1992) also show a strong
change (decrease) of the temperature difference at on-
set of the steep capillary waves in the tank. However,
there are no reports in the literature about such sudden
change of the cool skin parameters during field studies.

3. Bubble-mediated gas transfer and dual-tracer
techniques

Another aspect of Wu’s (1996) analysis is that he
ignores the fact that the bubble-mediated gas transport
is different for different gases (because of their dif-
ferent solubility). Hence, the interpretation of the dual-
tracer gas flux measurements at medium and high wind
speeds cannot be so straightforward as in his analysis.
This is especially important in the application of the
results to well soluble gases like CO 2. The influence
of the bubble mediated gas transfer on the air–sea ex-
change of CO2 may start only at very high wind speed
conditions (Woolf and Thorpe 1991). So any extrap-
olation of the dual tracer techniques for the CO 2 should
be done very carefully.

4. Parameterization based on known physical
processes

The description of air–sea gas exchange is a com-
plicated turbulent boundary-layer problem. A realistic
parameterization of the air–sea gas exchange must
therefore include a comprehensive analysis of the main
physical processes involved. It should also be based
on dimensionless dependencies. The pure empiricism
presented in Wu (1996) will not help much to further
improve the parameterization of the gas transfer, es-
pecially in view of the small number of data available.

While during the past 20 years this empiricism was of
help to get an early insight into simple bivariate de-
pendencies, more recent studies show that the dynamic
processes involved require the inclusion of other vari-
ables than the wind speed to successfully parameterize
the gas flux at the sea surface. In particular, important
processes such as stabilization of the upper ocean by
insolation or transition from free convection at calm
seas to mechanical turbulence at higher wind speeds
are not only a function of wind speed (e.g., Woods
1980; Soloviev and Schluessel 1996). Apart from the
limited fetch over lakes, the main difference between
ocean and lakes certainly consists in the salinity. This
implies processes involving enhanced evaporation at
the surface during daytime that leads to an enrichment
of the salinity in the upper ocean, which in turn causes
increased convection. On the other hand, the negligible
salinity in lakes allows for an excessive stabilization
during strong insolation that might suppress the gas
transfer to a certain extent. Again, these known pro-
cesses do not depend only on the wind speed. Addi-
tional effects that have an impact on the air–sea gas
transfer include the cool-skin gas exchange effect due
to the temperature dependency of the solubility (Rob-
ertson and Watson 1992) and possible irreversible ther-
modynamics (Phillips 1994; Doney 1995).

5. Conclusions

Quantifying the air–sea gas exchange is a compli-
cated turbulent boundary-layer problem that cannot be
solved by simply relating the transfer velocity to only
one of many impact variables. While simple k versus
wind speed relationships were a first approach at their
time, new parameterizations should acknowledge the
physical processes involved. It has been shown that the
inclusion of processes driving the air–sea gas transfer
is necessary and possible and that the simple relation-
ship between transfer velocities and wind speed will
fail in many cases.

A serious problem is the absence of sufficient field
datasets. Moreover, most of the known datasets are not
accompanied by standard meteorological observations,
which are important for calculation of the air–sea gas
flux under low wind speed conditions (Soloviev and
Schluessel 1994). Unfortunately, existing gas-flux
measurement techniques are either nonapplicable for
the sea conditions or too complicated for collecting
statistically representative datasets. The development
of techniques for the measurement of gas fluxes at the
ocean–air interface is still a challenge. Unless such
measurements are performed on a more operational
basis significant progress can only be made by includ-
ing knowledge of the dynamical processes at the air–
sea interface in predictive models of the air–sea gas
flux.
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