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Tracking Transmission of Apicomplexan Symbionts in
Diverse Caribbean Corals
Nathan L. Kirk1*, Raphael Ritson-Williams2, Mary Alice Coffroth3, Margaret W. Miller4, Nicole D. Fogarty5,
Scott R. Santos1,6

1 Auburn University, Department of Biological Sciences and Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn, Alabama,
United States of America, 2 Smithsonian Marine Station, Fort Pierce, Florida, United States of America, 3 State University of New York at Buffalo, Department of
Geology, Buffalo, New York, United States of America, 4 National Oceanic and Atmospheric Administration, Southeast Fisheries Science Center, Miami, Florida,
United States of America, 5 Oceanographic Center, Nova Southeastern University, Dania Beach, Florida, United States of America, 6 Cellular & Molecular
Biosciences Peak Program, Auburn University, Auburn, Alabama, United States of America

Abstract

Symbionts in each generation are transmitted to new host individuals either vertically (parent to offspring),
horizontally (from exogenous sources), or a combination of both. Scleractinian corals make an excellent study
system for understanding patterns of symbiont transmission since they harbor diverse symbionts and possess
distinct reproductive modes of either internal brooding or external broadcast spawning that generally correlate with
vertical or horizontal transmission, respectively. Here, we focused on the under-recognized, but apparently
widespread, coral-associated apicomplexans (Protista: Alveolata) to determine if symbiont transmission depends on
host reproductive mode. Specifically, a PCR-based assay was utilized towards identifying whether planula larvae and
reproductive adults from brooding and broadcast spawning scleractinian coral species in Florida and Belize harbored
apicomplexan DNA. Nearly all (85.5%; n = 85/89) examined planulae of five brooding species (Porites astreoides,
Agaricia tenuifolia, Agaricia agaricites, Favia fragum, Mycetophyllia ferox) and adults of P. astreoides were positive
for apicomplexan DNA. In contrast, no (n = 0/10) apicomplexan DNA was detected from planulae of four broadcast
spawning species (Acropora cervicornis, Acropora palmata, Pseudodiploria strigosa, and Orbicella faveolata) and
rarely in gametes (8.9%; n = 5/56) of these species sampled from the same geographical range as the brooding
species. In contrast, tissue samples from nearly all (92.0%; n = 81/88) adults of the broadcast spawning species A.
cervicornis, A. palmata and O. faveolata harbored apicomplexan DNA, including colonies whose gametes and
planulae tested negative for these symbionts. Taken together, these data suggest apicomplexans are transmitted
vertically in these brooding scleractinian coral species while the broadcast spawning scleractinian species examined
here acquire these symbionts horizontally. Notably, these transmission patterns are consistent with those of other
scleractinian coral symbionts. While this study furthers knowledge regarding these symbionts, numerous questions
remain to be addressed, particularly in regard to the specific interaction(s) between these apicomplexans and their
hosts.

Citation: Kirk NL, Ritson-Williams R, Coffroth MA, Miller MW, Fogarty ND, et al. (2013) Tracking Transmission of Apicomplexan Symbionts in Diverse
Caribbean Corals. PLoS ONE 8(11): e80618. doi:10.1371/journal.pone.0080618

Editor: Mónica Medina, Pennsylvania State University, United States of America

Received July 16, 2013; Accepted October 4, 2013; Published November 19, 2013

Copyright: © 2013 Kirk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by grants from the PADI Foundation (http://www.padifoundation.org/ #4005 to NLK), National Science Foundation (http://
www.nsf.gov/: OCE-09-26822 to MAC), the NOAA Coral Reef Conservation Program (http://coralreef.noaa.gov/aboutcrcp/workwithus/funding/grants/) and
the MOTE protect our reefs grant (http://isurus.mote.org/Keys/reef_plate.phtml: POR–2010–29 to VP). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: kirknat@gmail.com

Introduction

Symbioses, defined here as the intimate association of two
different organisms [1], have helped shape the evolution of
eukaryotic life [2] and the ubiquity [3,4] and antiquity [5,6] of
these relationships demonstrates their widespread success in
general. Of importance to any symbiosis is continuity across
generations. In this context, symbionts may be passed

vertically from parents to offspring or acquired horizontally via a
vector or from the local environment. For the symbiont, there is
direct benefit from vertical transmission as a new host
individual is guaranteed. However, the fate of the symbiont is
often tied to the local extirpation or extinction of their host
species in strictly vertical systems [7–9]. On the other hand,
horizontal transmission includes the uncertainty of whether
suitable partners will encounter each other in subsequent
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generations. Given that vertical or horizontal transmission have
potential pitfalls for either (or both) of the partners, it is not
surprising that the specific mode varies between hosts and
their various symbionts and that symbionts can be acquired
through multiple routes. For many symbioses, however, the
transmission mode of particular symbionts remains to be
elucidated.

Serving as the foundation of the tropical reef ecosystem,
scleractinian corals within the phylum Cnidaria provide services
such as nutrition and shelter to a wide-range of other
organisms [10,11]. Scleractinian corals are an ideal system to
study modes of transmission as they harbor numerous, diverse
symbionts. Specifically, corals form symbioses with members
from all three domains of life: Eubacteria, Archaea, and
Eukaryota [12], with their most well-known relationship
involving dinoflagellates in the genus Symbiodinium, which
translocate photosynthetically-fixed carbon to the host [13].
Along with Symbiodinium, other mutualists and parasites of
scleractinian corals influence host health and physiology in
both positive and negative ways [14–18].

Given the importance of symbiont assemblages to
scleractinian corals, considerable work has been conducted
towards understanding their transmission dynamics. Generally,
symbiont transmission in scleractinian corals is related to the
reproductive mode of the host species [19,20], with different
modes dependent upon whether syngamy occurs internally or
externally of the maternal colony. For example, species
possessing internal fertilization produce planula larvae
(hereafter referred to as planulae) that develop within the
maternal colony prior to release, termed “brooding”. These host
species tend to provision symbionts like Symbiodinium
vertically [20]. Conversely, species releasing gametes into the
water column, in a process called “broadcast spawning”, have
external fertilization and the resulting planulae most often
obtain symbionts, such as Symbiodinium, horizontally as larvae
or upon settlement and metamorphosis [20–22]. Both possible
modes of transmission appear to broadly apply across a wide
taxonomic range of symbionts, from Eubacteria [23–25] to
eukaryotic stramenopiles (Protista: Chromista) [26].

Here we focus on elucidating the transmission mode of
another group of scleractinian coral symbionts, the eukaryotic
apicomplexans. Evolutionarily, this clade of ~6,000 described
species is sister to the dinoflagellates and almost exclusively
comprised of parasites, including the causative agents of
malaria and toxoplasmosis [27,28]. The first Apicomplexans
documented from coral hosts were described as a single
species, Gemmocystis cylindrus, based on morphology and
life-cycle [29,30]. Subsequently, apicomplexans and
apicomplexan-related lineages (ARL) have been detected in
numerous scleractinian corals and gorgonians using various
genetic approaches [31–36]. However, the impacts these
symbionts have on their scleractinian coral hosts, such as
fitness costs, remain unknown. Furthermore, their transmission
mode among host individuals, which could be vertical,
horizontal or both, remains unresolved. This study examined
the gametes, planulae, and adults from multiple species of
brooding and broadcast spawning scleractinian corals from
reefs in both the Florida Keys and Belize towards elucidating

transmission mode(s) of these under-recognized, but
apparently widespread, coral-associated symbionts.

Methods

Ethics Statement
Collection of all scleractinian coral gametes, planulae and

adult tissues was permitted through appropriate regulatory
bodies and in accordance to the permits and laws of the
issuing body. Specifically, Florida samples were collected in
accordance to the following permits from the Florida Keys
National Marine Sanctuary: 2010 Porites astreoides adult and
larvae colonies: (FKNMS–2010–039); 2011 P. astreoides
larvae: (FKNMS–2010–023): broadcast spawning gametes and
larvae (FKNMS–2009–081–A and FKNMS–2010–055). In
Belize, all colonies and larvae were collected by permit from
the Belize Fisheries and imported according to CITES permits
(131, 385, 1817, 1818).

Collection of Planulae and Adults from Brooding
Species

In May 2010, 30 colonies of the brooding scleractinian coral
Porites astreoides were collected from an artificial patch reef
established in 1986 in the Middle Keys (Bureau of Marine
Fisheries Management (1999); Rubble Piles [RP]: N
24.742778°, W 80.814722°, Figure 1). Larger (13.1 +/- 2.2 cm2

in diameter) colonies were chosen to maximize reproductive
probability [37] and collected 3 days prior to the new moon
when P. astreoides was predicted to release larvae [37,38]. As
few colonies released planulae in 2010 (see Results), the
experiment was repeated in 2011 in the lower Florida Keys
(Wonderland Reef [WR]: N 24.56028°, W 81.50127°, Figure 1).
There, fifty-one P. astreoides colonies were collected in April
2011, five days prior to the new moon (Figure 1). For both
years, colonies were placed into collection buckets daily and
prior to dusk [39,40] and released brooded planulae over
subsequent nights. Planulae were collected the morning of first
release and preserved in 95% ethanol for molecular analyses.
To determine whether apicomplexans were present in all
planulae or just in those released on the first day, collections
were made from five maternal colonies over three consecutive
days, which was the duration of the April 2011 reproduction
event. Additionally, ~1.0 cm2 tissue samples were removed
from the edge of all maternal colonies in 2010 and preserved
as above to test whether these reproductive adults harbored
apicomplexan symbionts.

To determine if apicomplexans were present in planulae of
additional Caribbean brooding corals, 15–40 colonies from four
other species as well as P. astreoides (Table 1) were collected
from reefs surrounding Carrie Bow Cay (CBC: N 16.80250°, W
88.08194°, Figure 1) on the Belizean Barrier Reef and kept in
individual collection buckets as described above. Specifically,
P. astreoides and Agaricia tenuifolia colonies were collected on
the day of the new moon (when both were predicted to spawn)
from the reef flat directly adjacent and northeast of CBC and
from a small patch reef ~200 m north of CBC, respectively. The
following day, colonies of Mycetophyllia ferox and Agaricia
agaricites were collected from the fore-reef ~200 m east of
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CBC. Colonies of Favia fragum were collected on 8 June and
again on 10 August from the same patch reef as A. tenuifolia.
This species was collected later in the lunar cycle when
individuals have a higher likelihood of releasing brooded
planulae [41]. All planulae were collected the morning following
release and preserved as described above.

Figure 1.  Map of coral reefs sampled in this study.  Inset
provides finer scale regional resolution for reefs in the Florida
Keys. Brooding scleractinian coral species were collected at
reefs indicated in red while broadcast spawning species were
collected at reefs indicated in black. Reefs denoted in blue
represent sites where species from both reproductive modes
were collected. Elbow Reef=EB, Horseshoe Reef=HR, Alligator
Reef=AR, Rubble Piles=RP, Looe Key=LK, Wonderland
Reef=WR. See Tables 1 and 2 for more detail.
doi: 10.1371/journal.pone.0080618.g001

Table 1. Information for the brooding scleractinian coral
species sampled in this study from Florida and Belize.

Species Locat1 Depth Collection Date2  Release Date3
No.
A4   No. R5

P. astreoides Florida 4-6 m 12 May, 2010 12-16 May 30 14

P. astreoides Florida 4-7 m 30 April, 2011
30 April- 2
May

51 50

P. astreoides Belize 1 m 2 June, 2011 3-8 June 22 6
A. agaricites Belize 10 m 2 June, 2011 3-6 June 14 5
A. tenuifolia Belize 1-3 m 1 June, 2011 3 June 12 2
M. ferox Belize 20 m 2 June, 2011 5 June 15 1
F. fragum Belize 1-3 m 9 June, 2011 11-14 June 21 6
F. fragum Belize 1-3 m 10 August, 2011 12 August 20 5
1 Location of collection
2 Date colonies were collected and brought to the lab
3 Date first brooded larvae were released by colonies
4 Number of adult colonies collected for each species
5 Number of adult colonies that actually released brooded planulae
doi: 10.1371/journal.pone.0080618.t001

Collection of Gametes, Planulae and Adults from
Broadcast Spawning Species in Florida and Belize

Gametes and planulae were collected from three and five
Caribbean broadcast spawning coral species in the Florida
Keys and Belize, respectively (Figure 1, Table 2). In August
and September 2011, gametes were collected 2–4 hours after
sunset by tenting individual colonies prior to release. Gamete
bundles were returned to the boat or laboratory, allowed to
break apart, and then mixed with bundles from different
colonies to increase fertilization success [42]. The only
exception was Orbicella (formerly Montastraea [43]) franksi,
which was from a reef ~1.5 km south of CBC (Table 2). In this
case, O. franksi colonies were transported to the lab and
placed in individual ~18 L containers similar to the brooding
species (see above). Planulae from all species were reared for
between 18 hrs and 9 days and preserved in 95% ethanol prior
to metamorphic competence. Gametes were also preserved
separately when they were collected in excess of what was
needed for crosses (Table 2, see below). Since gametes from
all adults were mixed during fertilization attempts, it was
impossible to track the exact parental colonies of the resulting
planulae.

The hypothesis that apicomplexans are transmitted
horizontally in broadcast spawning coral species assumes
adults in the population (including those not contributing to the
gametic pool) are associated with these symbionts. Thus, it
was necessary to screen adults in the population. In Florida,
however, it was not possible to sample the exact colonies
providing gametes for planula generation due to logistic
difficulties. Instead, single polyps from the top, middle and
bottom of 24 Floridian Orbicella (formerly Montastraea [43])
faveolata colonies were sampled at Alligator Reef (one of the
sites where gametes were collected) a few days after the
spawning event using the syringe technique of Correa et al.
[44] and preserved in 95% ethanol. At CBC in Belize, tissue
from the six Acropora cervicornis and three Acropora palmata
colonies that provided gametes for crosses were preserved in
CHAOS buffer [45]. Additionally, all A. cervicornis and A.
palmata individuals from the same reef flat as the colonies
providing gametes for crosses were sampled for other studies.
From these, 30 colonies of each Acropora species were
randomly selected to include those of reproductive age using a
colony size cutoff metric of 2,500 cm2 and 600 cm2 for A.
palmata and A. cervicornis, respectively. If the gamete-
providing colonies were not selected as part of this random
subset, they were also included, increasing the number of
individuals examined to 31 and 33 for A. palmata and A.
cervicornis, respectively.

DNA extraction and Presence/Absence Screening for
Apicomplexans

Preliminary experiments determined 3–5 brooding and 20
broadcast spawning planulae consistently provided ~5–10
ng/uL of template DNA, sufficient to produce a strong amplicon
via PCR with the three primer sets and thermocycling
conditions (see below) employed in this study. Therefore, DNA
was extracted from single batches of either 5 planulae for each
adult sampled of all brooding species or 20 planulae for each
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conducted cross of gametes from broadcast spawning species.
Additionally, the presence of apicomplexans in gametes prior to
syngamy was assessed in Belize by combining and extracting
DNA from ~100 eggs or all sperm collected from an individual.
Most DNA extractions were done solely using 2X CTAB buffer,
with tissue homogenization by pestles and bead-beating prior
to phenol:chloroform extraction [46]. However, due to co-
precipitation of inhibitors, all P. astreoides adult samples were
also gel purified using Spin-X filters (Corning Costar®) following
2X CTAB extraction. For Acropora colonies from Belize, DNA
was isolated using the protocol described in Levitan et al. [47].
As a control for potential contamination during DNA isolation,
no-larvae controls were included during all extractions; these
controls utilized all the same buffers, plastic consumables, and
protocol steps except planulae or gametes were not included.

To determine whether DNA templates were free of PCR
inhibitors, the small subunit ribosomal DNA (18S rDNA) was
first amplified from all samples utilizing the “universal” primers
SS5 and SS3 [48], which amplifies cnidarians, Symbiodinium,
and other eukaryotes. Reactions were conducted in 10 μL
volumes containing 10 mM Tris HCL, 1.5 mM MgCls, 50 mM
KCl, 0.2 mM dNTPs, 0.3 μM of each primer and 1 U of Taq
polymerase [49] for 30 cycles of 94° C for 1 min, 56° C for 1
min, and 72° C for 1.5 min followed by a final 5 min extension
step at 72° C. This was followed by apicomplexan screening
via a presence/absence PCR based assay with the
apicomplexan-specific 18S rDNA primers 18N-F2 and 18N-R1
[31,35]. Here, 10 μL reactions (as above) were conducted
using a touchdown PCR protocol, starting with an initial
denaturing step of 95° C for 5 min followed by 10 cycles of 94°
C for 45 s, 60° C deceasing 1° C each cycle until 50° C was
reached, and a extension step of 72° C for 1 min. This was
immediately followed by 30 cycles of 94° C for 45 s, 50° C for
45 sec and 72° C for 1 min and a final extension at 72° C for 5

min. To ensure that these latter amplicons were derived from
apicomplexan template DNA, twenty samples from the brooded
planulae dataset and representative of all examined brooding
species were selected by a random number generator and
sequenced in the forward direction with the primer 18N-F2. As
an additional test of DNA template integrity, twelve gamete or
planulae samples were randomly selected from the Florida and
Belize broadcast spawning species and an ~710 bp fragment
of the coral mitochondrial cytochrome oxidase subunit I (COI)
gene amplified utilizing the “universal” metazoan primers of
Folmer et al. [50] and protocol of Craft et al. [51]. These twelve
samples were sequenced using the primer LCO1490 [50]. All
sequences were trimmed in Sequencher v5.0.1 prior to being
submitted to GenBank’s non-redundant (nr) database using
blastn [52] to identify their most similar matches. All generated
sequences longer than 200 bp were submitted to GenBank
under accession numbers (KF579883-KF579909). All
sequences are publicly available from http://www.auburn.edu/
~santosr/sequencedatasets.htm.

Statistical Analyses
Prevalence (i.e., calculated as the frequency at which

apicomplexan DNA was detected via the PCR assay divided by
the number of examined samples and expressed as a
percentage [53]) was calculated, along with 95% Confidence
Intervals (C.I.), using Sterne’s exact method in qp v3.0 [54].
Prevalence was compared among planulae of the brooding
coral species using Fisher’s exact test as there were few
samples where apicomplexans were not detected (see Results)
and significance was adjusted by the Bonferroni correction .
Likewise, prevalence was compared between all pairs of
broadcast spawning coral species in Belize from the
screenings of sperm, eggs, and/or adult colonies. Fisher’s

Table 2. Information for the broadcast spawning scleractinian coral species sampled in this study from Florida and Belize.

Location Species Fertilization1 P/E/S2 # Par3 Parental Reef4 GPS
Florida A. palmata 16-Aug, 2011 P/E 1 Elbow Reef N 25.139722°, W 80.294167°
 A. palmata 16-Aug, 2011 P/E 1 Horseshoe Reef N 25.1425°, W 80.25835°
 A. palmata 17-Aug, 2011 P 1 Molasses Reef N 25.01015°, W 80.37328°
 A. palmata 17-Aug, 2011 P 1 Horseshoe Reef N 25.1425°, W 80.25835°
 O. faveolata 20-Aug, 2011 P 3-5 Horseshoe Reef N 25.1425°, W 80.25835°
 O. faveolata 19-Aug, 2011 P 10-15 Looe Key N 24.544878°, W 81.409361°
 O. faveolata 19-Aug, 2011 P 10-15 Alligator Reef N 24.81285°, W 80.66945°
 P. Strigosa 19-Aug, 2011 P 2 Horseshoe Reef N 25.1425°, W 80.25835°

Belize A. cervicornis 17-Aug, 2011 P/E/S 6 CBC Reef N 16.8025°, W 88.08194°
 A. palmata 16-Aug, 2011 P/E/S 3 CBC Reef N 16.8025°, W 88.08194°
 O. faveolata 19-Sep, 2011 P/E/S 7 CBC Reef N 16.8025°, W 88.08194°
 O. franksi 19-Aug, 2011 E/S5 5 CBC Wall N 16.77972°, W 88.07528°
 P. Strigosa 19-Sep, 2011 P 3 CBC Reef N 16.8025°, W 88.08194°
1 Date of gamete collection and fertilization
2 Denotes which samples were collected from each reef: Planulae (P), Eggs (E), and sperm (S).
3 The number of parents (# Par) utilized in the gamete cross
4 Parental Reef with corresponding GPS coordinates.
5 no viable larvae obtained from O. franski.
doi: 10.1371/journal.pone.0080618.t002
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exact tests were also utilized to determine whether
apicomplexan prevalence between brooding and broadcast
spawning coral species were significantly different. Specifically,
comparisons were made between all brooding planulae (n =
89) and all sperm (n = 28), egg (n = 28) and batches of
planulae (n = 10) from the broadcast spawning species.

Results

Apicomplexan Screening of Brooders from Florida and
Belize

Template DNA from 4 of 30 adult P. astreoides colonies
collected in 2010 failed to amplify with either of two primer sets
(i.e., universal [SS5/SS3] and apicomplexan-specific [18N-
F2/18N-R1]). Following exclusion of these from further
analyses, 96.2% of the remaining colonies (n = 25/26; 81.2–
99.8% [95% C.I.]), including all (n = 14) that released planulae,
tested positive for the presence of apicomplexan DNA. For P.
astreoides planulae, apicomplexan DNA was detected via PCR
in all (n = 14/14; 76.2–100%) batches of 5 planulae from all
colonies that brooded in 2010. A similar pattern was identified
in the subsequent year, with 92.0% (n = 46/50; 81.2–97.2%)
apicomplexan prevalence in batches of planulae collected from
50 colonies and all batches (n = 5/5; 47.8–100%) of planulae
collected from five colonies on three consecutive mornings
testing positive for apicomplexan DNA. No significant
differences in apicomplexan prevalence were identified
between 2010 and 2011 (P = 0.57) or life stages (adult vs.
planulae; P = 1.00) of P. astreoides prior to or following
Bonferroni correction. Two and nine amplicons from the
apicomplexan-specific PCR reactions were sequenced for the
2010 and 2011 larvae, respectively, (Table S1) and all 11 were
most similar to that of the scleractinian coral-associated
apicomplexan from Toller et al. [31].

As in Florida, apicomplexan DNA was detected in all batches
(n = 6/6; 58.9–100%) of P. astreoides planulae from Belize.
Furthermore, batches of planulae from all colonies of four other
brooding species (i.e., A. Agaricites [n = 5/5; 50.0–100%], A.
tenuifolia [n = 2/2; 22.6–100%], F. fragum [n = 11/11; 73.4–
100%], and M. ferox [n = 1/1; 5.0–100%]) tested positive for
apicomplexans. There were no significant differences in
apicomplexan prevalence between the two locations (i.e.,
Florida and the Belize: P = 0.57) or among any of the brooding
species (P = 1.00 for all 10 pairwise comparisons). Again,
sequencing of nine randomly selected amplicons generated
with the apicomplexan-specific primer set were most similar to
the same GenBank accession (Table S1) from Toller et al. [31].
It should be noted that no amplicons were produced from either
the planulae-free extractions or negative (i.e., no template
added) PCR controls with either of the two primer sets
throughout this entire study.

Apicomplexan Screening of Broadcast Spawning
Species from Florida and Belize

Similar to the brooding species, the majority of adult colonies
from the broadcast spawning scleractinian coral species tested
positive for apicomplexans both in the Florida Keys and Belize.
For example, apicomplexans were detected in all O. faveolata

 colonies at Alligator Reef (n = 24/24; 86.1–100%) from at least
one of the three polyps sampled from different parts of the
same colony. More specifically, apicomplexan DNA was
detected in 21, 22, and 22 of each of 24 samples taken across
all O. faveolata colonies from the bottom, middle and top,
respectively, and apicomplexans were detected in at least two
of three sampled polyps in all but one colony (95.8%; n =
23/24; 78.9–99.9%). Likewise, apicomplexan DNA was
detected in 87.9% (n = 29/33; 71.5–95.8%) of the examined A.
cervicornis colonies from Belize, including 5 of 6 colonies
contributing gametes towards the generation of planulae. The
PCR assay for apicomplexans was also positive for 90.3% (n =
28/31; 74.5–97.3%) of A. palmata colonies on the same reef,
including all three colonies from which gametes were collected.
There was no significant difference between apicomplexan
prevalence in adults among the three species (P ≥ 0.38 for all
three pairwise comparisons).

In contrast to adult colonies of the three examined broadcast
spawning species as well as brooded planulae, apicomplexan
DNA was not detected via the PCR assay from single batches
of 20 planulae from the three broadcast spawning species (i.e.,
A. palmata, O. faveolata, and Pseudodiploria [formerly Diploria
[43]] strigosa) of the Florida Keys. This was also true in Belize
for batches of planulae from A. cervicornis, A. palmata, P.
strigosa, and O. faveolata. Apicomplexan DNA was, however,
detected in gametes collected from four of the Belize colonies,
including sperm from a single A. cervicornis colony, eggs from
an A. palmata colony, sperm from two O. faveolata colonies,
and eggs from one of these same colonies (Table 3). Unlike
with the apicomplexan-specific primer set, amplicons could be
generated from the above apicomplexan “negative” samples
using the “universal” 18S rDNA primers. This implies the
presence of sufficient, inhibitor-free DNA template in general
(e.g. coral and dinoflagellate) and an absence (or levels
incapable of initiating/sustaining a PCR) of apicomplexan DNA.
As an additional test of DNA template integrity, twelve samples
were randomly selected from the complete sample set of
broadcast spawning planulae and gametes for partial
sequencing of the metazoan mitochondrial COI gene.
Subsequent BLAST searches of these sequences found them
to be 100% identical to GenBank accessions for scleractinian
corals of their respective genera (Table S2), indicating the
presence of amplifiable host DNA template.

Statistical Comparison of Apicomplexan Prevalence in
Brooding vs. Broadcast Spawning Coral Species in Belize

While apicomplexan prevalence was not significantly
different between adult colonies and planulae of the brooding
scleractinian coral species (P = 1.00; see above), there was a
significant difference between these life stages in the broadcast
spawning scleractinian coral species (P = 3.5 x 10-9; Figure 2).
Overall, a significant difference in apicomplexan prevalence
was also apparent between planulae of the Caribbean brooding
and broadcast spawning species examined here (P = 6.4x10-11;
Figure 2).

No significant difference was identified between all broadcast
spawning species when comparing among gamete samples
(Table 4). Given this, cases of apicomplexan-positive results
per category were summed to compare total prevalence
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between planulae and/or gametes from all brooding and
broadcast spawning scleractinian coral species (i.e., brooded
planulae [total prevalence = 95.5%; n = 85/89, 88.9-98.5%],
broadcasted eggs [7.1%; n = 2/28, 1.3-22.9%], broadcasted
sperm [10.7%; n = 3/28, 3.0-28.2%], and broadcasted planulae
[0%, n = 0/10, 0.0-29.1%]). Significant differences in the
prevalence of apicomplexan DNA were identified between
brooded planulae relative to eggs (P < 2.2 x 10-16), sperm (P <
2.2 x 10-16), and planulae (P = 6.4 x 10-11) of the broadcast
spawning scleractinian coral species examined here (Figure 2).

Discussion

Here, apicomplexan DNA was detected from nearly all adult
Caribbean scleractinian colonies spanning multiple species and
years as well as two geographic locations. Prevalence among
colonies was high (88–100%) and consistent with histological
[29,30] and molecular [31,35] studies, implying apicomplexans
are common symbionts of Caribbean scleractinian corals.
Several mechanisms could explain the ubiquitous distribution
of these symbionts among diverse coral species. For example,
vertical transmission in brooding coral species could contribute
to high prevalence as apicomplexans were detected in the
majority (96%) of planulae sampled from five species. On the
other hand, apicomplexan DNA was not detected in planulae,
and only at low (7–11%) frequencies in gamete samples, from
five broadcast spawning coral species. This suggests
apicomplexans associated with broadcast spawning
scleractinian species are likely acquired horizontally, such as
from the sediment, the water-column, paratenic (i.e. transport)
and/or intermediate hosts, or via other avenues.

The PCR assay employed here is an indirect method of
assessing apicomplexans within coral larvae and false
positives and negatives are possible [55]. For example, false
positives might arise from contamination or non-specific
priming during PCR. Notably, all DNA extraction and PCR

Table 3. Number of instances where apicomplexan DNA
was detected in gametes from broadcast spawning coral
species sampled in this study from Florida or Belize.

Location Species Gamete Present1 Total2 95% C. I.3

Florida A. palmata Eggs 0 2  

Belize A. palmata Eggs 1 3 0-86.46%
 A. palmata Sperm 0 3  
 A. cervicornis Eggs 0 6  
 A. cervicornis Sperm 1 6 0-58.86%
 O. faveolata Eggs 1 7 0-55.42%
 O. faveolata Sperm 2 7 0-70.96%
 O. franksi Eggs 0 10  
 O. franksi Sperm 0 10  
1 Number of gamete samples possessing detectable apicomplexan DNA
2 Total number of colonies providing gametes that were tested (Total).
3 The 95% confidence interval (C.I.) for prevalence were calculated using Sterne’s
exact method for all colonies that were PCR positive for apicomplexan DNA in at
least one sample.
doi: 10.1371/journal.pone.0080618.t003

controls were negative in this study. This implies contamination
was not likely a contributing factor to the high incidence of
apicomplexan recovery from the planulae of the brooding coral
species as well as adults of P. astreoides or the broadcast
spawning coral species. As for primer specificity to

Figure 2.  Total apicomplexan prevalence among brooding
(grey bars) and broadcast spawning corals (white
bars).  Error bars represent 95% confidence intervals.
Statistical significance via Fisher’s exact tests is noted at P >
0.001. Species that were included in each of the categories are
as follows: Brooding adults: Porites astreoides. Brooding
planulae: Agaricia agaricites, Agaricia tenuifolia, Favia fragum,
Mycetophyllia ferox, P. astreoides. Broadcast spawning adults:
Acropora cervicornis, Acropora palmata, Orbicella faveolata.
Broadcast spawning planulae: A. cervicornis, A. palmata, O.
faveolata, Pseudodiploria strigosa. Broadcast spawning sperm:
A. cervicornis, A. palmata, O. faveolata, Orbicella franksi.
Broadcast spawning eggs: A. cervicornis, A. palmata, O.
faveolata, O. franksi.
doi: 10.1371/journal.pone.0080618.g002

Table 4. Pairwise comparisons of apicomplexan prevalence
between eggs (top) and sperm (bottom) of broadcast
spawning scleractinian coral species sampled in this study
from Belize.

 O. faveolata O. franksi A. cervicornis A. palmata
O. faveolata XXX 1.0001 1.000 1.000
O. franksi 0.205 XXX 1.000 0.177
A. cervicornis 1.000 0.483 XXX 0.258
A. palmata 1.000 1.000 1.000 XXX
1 P-values from Fisher’s exact test are presented. None were significant before or
after Bonferroni correction.
doi: 10.1371/journal.pone.0080618.t004

Assessing Apicomplexan Transmission in Corals

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e80618



apicomplexan 18S rDNA, sequences generated from 20
randomly selected amplicons here, as well as 100 randomly
selected amplicons from a previous study [35], were most
similar to a coral-associated apicomplexan they were designed
to target [31]. False negatives are also a possibility, as a
minimal DNA template concentration is needed in to order to
initiate a PCR. As such, we cannot discount whether
apicomplexans were present in broadcast spawning planulae
at abundances below such a threshold. However, total DNA
template concentrations were standardized between brooded
and spawned planulae and both were subjected to identical
PCR protocols utilizing the same primer sets. Lastly, while
mismatches between the primers and DNA template present in
the larvae of the broadcast spawners would produce a similar
pattern of apicomplexan “negative”, this seems highly unlikely,
particularly since adults of the same species are near
ubiquitously apicomplexan “positive”.

Vertical Transmission of Apicomplexans in Brooding
Corals

Apicomplexan symbionts were detected among brooded
planulae from a majority (n = 66/70, 94.3%) of P. astreoides
colonies sampled in two different years on Floridian and
Belizean reefs. Furthermore, a nearly identical pattern was
identified in four additional brooding scleractinian coral species
in Belize. This represents, to the best of our knowledge, the
first evidence in support of vertical transmission of
apicomplexans among brooding scleractinian coral species
along with extending the host range of these symbionts to F.
fragum, A. tenuifolia, and M. ferox. Notably, the presence of
apicomplexans in this early life stage appears temporally
consistent over a reproduction event since these symbionts
were detected from the brooded planulae of P. astreoides up to
three days following initial release.

Why might apicomplexans be vertically transmitted in
brooding scleractinian coral species? Given that planulae of
brooding corals are physically large [56], this may simply be a
function of sufficient volumetric space for the storage and
passage of symbionts and it is not uncommon to find such
planulae provisioned with a variety of other symbionts [20]. For
example, Symbiodinium was previously reported within the
planulae of the five brooding species examined in this study
[41,57–59] and bacterial symbionts [23] and ARLs [33] have
been similarly documented within larvae of P. astreoides. Thus,
vertical transmission of apicomplexans for these brooding
scleractinian coral species is parsimonious with both the
inheritance pattern of other symbionts as well as with other
host-apicomplexan systems in general [60,61]. In these latter
cases, apicomplexans are directly passed to zygotes and
larvae of other aquatic host species [62,63] and in one case,
the eugregarine Diplauxis hatti is capable of arresting
development to couple its reproduction with that of its annelid
host [62]. It remains to be determined, however, whether these
or other brooding scleractinian coral species have the ability to
acquire apicomplexan symbionts via horizontal transmission as
well.

Horizontal Transmission of Apicomplexans in
Broadcast Spawners

In contrast to the five brooding scleractinian coral species
examined here, apicomplexans were not detected from the
planulae of the four broadcast spawning scleractinian coral
species surveyed in Florida or Belize. Although viable planulae
were not obtained from O. franski, apicomplexans were not
detected in gametes from this species, consistent with this
pattern. While there is a possibility that broadcast spawning
planulae harbor apicomplexans below the threshold detection
limit of the employed PCR assay, such a situation is unlikely as
initial screenings of DNA extractions pooling up to 100
broadcast spawning planulae were also apicomplexan
“negative” (data not shown). Given that most (n = 106/114,
92.9%) adult colonies in this and other studies [30,31,35]
harbor these symbionts, broadcast spawning scleractinian
coral species most likely acquire apicomplexans via horizontal
transmission at a post-planula life stage. Again, this mirrors the
transmission mode of other symbionts from broadcast
spawning corals [20,24], including Symbiodinium and bacterial
symbionts for the five host species in this study [24,64–67]. In
the latter case, Eubacteria were not found within the tissues of
corals until after settlement occurred [24].

Horizontal transmission involves the encounter of a suitable
host and symbiont, either via environmental mechanisms
and/or through paratenic/intermediate hosts. For example,
apicomplexans were detected in a few (n = 5/54, 9.3%)
gametic samples from three of the broadcast spawning species
and this may represent one mechanism of horizontal
transmission. Specifically, all five broadcast spawning species
in this study are hermaphroditic, releasing positively buoyant
gamete bundles that break apart and cross-fertilize in surface
waters [68]. These bundles are bound in a mucous coating [69]
that may trap apicomplexan cells upon release from the
parental colony. Consequently, transmission of apicomplexans
between host individuals might be facilitated by corallivorous
fishes as a consequence of consuming broadcasted gamete
bundles [21,70] and defecation of viable cells, similar to the fish
fecal transmission hypothesized for Symbiodinium [71–73].
Furthermore, oocysts (i.e., resting stages) could be transmitted
directly among colonies trapped within mucous layers of
corallivorous fish mouths, as previously hypothesized by Upton
and Peters [30].

Regardless of transmission route, source populations of
apicomplexans are required to infect apparently aposymbiotic
planulae, be it from benthic substrates, the water column [74],
and/or established colonies. For the former case,
Symbiodinium capable of forming symbiotic relationships [75]
as well as the alveolate parasites of bivalves, Perkinsus spp.
[76–78], have been recovered from benthic reservoirs. Thus,
apicomplexans, either as physiologically active cells or oocysts,
may reside in the benthos until being horizontally acquired by
newly-settled planulae of broadcast spawning coral species.
Notably, the apicomplexan-related lineage (ARL) V has only
been found in coral tissue and not adjacent water, macroalgal,
or benthic samples [34], suggesting the persistence of coral-
associated apicomplexans in the environment may be short-
lived. Adult colonies also provide a potentially large source pool
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of apicomplexans to newly-settled and aposymbiotic planulae.
In this context, corals grow clonally and some colonies can
persist for hundreds of years [79], with consistent
apicomplexan prevalence across time [35]. Furthermore,
colony fragmentation, which can propagate clones of
scleractinian corals like A. palmata and A. cervicornis on a reef
[80,81], also increases the number of individuals harboring
these symbionts. High estimates of clonality at CBC for the two
Acropora species (Methods S1, Table S3) are consistent with
those from reefs in the Caribbean Sea [82,83] and nearly all
adult Acropora spp. examined here harbored apicomplexans.
Clonal transmission of symbionts has been documented in
other systems where the host undergoes asexual reproduction,
such as the bacterial symbionts of aphids and flatworms
[84,85]. Additionally, myxozoan parasites are propagated in
freshwater bryozoans by fragmentation of the host [86], leading
to high prevalence [87]. Thus, clonal propagation by a
scleractinian host could contribute towards the high
apicomplexan prevalence seen among adult colonies while
simultaneously increasing the source pool of these symbionts
for future generations.

Conclusions and Future Directions

This study demonstrates that Caribbean scleractinian corals
likely acquire their apicomplexan symbionts via different routes
of transmission (i.e., vertically and horizontally) depending on
the reproductive mode of the host species. While this
information furthers our knowledge regarding these apparently
widespread, but under-recognized, symbioses spanning the
Caribbean Sea [29,30,32] as well as the Eastern Pacific Ocean
[31], numerous questions remain to be addressed, including:
Are intermediate/paratenic hosts involved in these relationships
and, if so, do they transport these symbionts between and
among reefs? When apicomplexans are acquired by broadcast
spawning scleractinian coral species, does this occur following
planula settlement and metamorphosis or as adult colonies?
Do coral-associated apicomplexans exhibit host specificity or
are they “generalists” of both brooding and broadcast spawning
species? Finally, the exact nature of the interaction between
these apicomplexans and their coral hosts remains to be
determined. For example, plastid DNA from the apicomplexan
related lineage ARL-V has been detected in numerous
scleractinian corals, including P. astreoides planulae [33,34].
Interestingly, these symbionts were not found at depth (i.e., 20
m), prompting the yet untested hypothesis that they may have
photosynthetic capabilities. Unfortunately, since different
molecular markers were utilized, it is unclear whether the
apicomplexans detected here and ARL-V are (or belong to) the
same group of organisms, as was recently hypothesized [36].
Thus, further characterization of coral-associated
apicomplexans and ARLs will be required to elucidate the
relationship between these enigmatic taxa.
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