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RESEARCH ARTICLE Open Access

Genomic variation among populations of
threatened coral: Acropora cervicornis
C. Drury1, K. E. Dale1†, J. M. Panlilio1†, S. V. Miller1†, D. Lirman1, E. A. Larson2, E. Bartels3, D. L. Crawford1

and M. F. Oleksiak1*

Abstract

Background: Acropora cervicornis, a threatened, keystone reef-building coral has undergone severe declines (>90 %)
throughout the Caribbean. These declines could reduce genetic variation and thus hamper the species’ ability to adapt.
Active restoration strategies are a common conservation approach to mitigate species' declines and require genetic
data on surviving populations to efficiently respond to declines while maintaining the genetic diversity needed to
adapt to changing conditions. To evaluate active restoration strategies for the staghorn coral, the genetic diversity of A.
cervicornis within and among populations was assessed in 77 individuals collected from 68 locations along the Florida
Reef Tract (FRT) and in the Dominican Republic.

Results: Genotyping by Sequencing (GBS) identified 4,764 single nucleotide polymorphisms (SNPs). Pairwise nucleotide
differences (π) within a population are large (~37 %) and similar to π across all individuals. This high level of genetic
diversity along the FRT is similar to the diversity within a small, isolated reef. Much of the genetic diversity (>90 %)
exists within a population, yet GBS analysis shows significant variation along the FRT, including 300 SNPs with
significant FST values and significant divergence relative to distance. There are also significant differences in SNP
allele frequencies over small spatial scales, exemplified by the large FST values among corals collected within
Miami-Dade county.

Conclusions: Large standing diversity was found within each population even after recent declines in abundance,
including significant, potentially adaptive divergence over short distances. The data here inform conservation and
management actions by uncovering population structure and high levels of diversity maintained within coral collections
among sites previously shown to have little genetic divergence. More broadly, this approach demonstrates the power of
GBS to resolve differences among individuals and identify subtle genetic structure, informing conservation goals with
evolutionary implications.

Keywords: Genotyping by sequencing, Coral reefs, Population genomics, Restoration genetics, Florida reef tract

Background
Caribbean coral reef communities have lost nearly 80 %
of coral cover since the early 1980s [1] due to multiple
interacting factors such as overfishing, eutrophication,
climate change, storm damage, grazer die-off, and disease
[2, 3]. Amongst Caribbean corals, the genus Acropora has
experienced particularly large declines over the last
30 years, with losses exceeding 95 % in some areas [4] and
up to 90 % region-wide [5], a decline unparalleled in the

fossil record [6]. The staghorn coral Acropora cervicornis
is the fastest growing Caribbean coral [7] and is thought
to reproduce largely by fragmentation [8]. Thus, active
restoration propagates coral fragments in nurseries prior
to outplanting to depleted reefs and is an effective coral
restoration technique [9]. Active restoration is especially
important for reef-building corals that provide the bulk of
the three-dimensional complexity on reefs and support
critical ecological functions for many other reef-associated
species. Restoration efforts must consider how corals will
respond to changing environments in today’s oceans,
where organisms may rely on a variety of responses, in-
cluding physiological acclimatization or evolutionary
adaptation [10–13]. With the increase in the number
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and scope of reef and coral restoration programs around
the world, detailed knowledge is needed concerning the
role that genetic diversity can play in the survivorship or
remaining coral populations and the re-establishment of
depleted populations based on nursery propagation.
Recent bottlenecks in the abundance of A. cervicornis

can negatively impact this species’ genetic diversity. Re-
duced populations may lose uniquely adapted individuals
and rare alleles, each important for adaptation and potential
recovery. Reduced genetic diversity also can compromise
successful sexual reproduction by decreasing the potential
of cross-fertilization (acroporids have low self-fertilization
success [14]). Since A. cervicornis appears to undergo
limited sexual recruitment, in part due to spatial gaps
between existing populations, enhancing densities using
nursery-reared coral colonies has become a focal point
for increasing the chances of a successful mass-spawning
event [9]. To repopulate reefs and increase population
densities, greater knowledge on the genetic structure of A.
cervicornis is needed so management strategies can be tai-
lored to the appropriate areas and spatial scales. Specific-
ally since the potential for evolutionary adaptation is
related to genetic diversity and is critical for the survivor-
ship of any species in today’s changing environments
[10], evaluation of genetic variation is needed to help
recognize potential evolutionary outcomes and manage-
ment repercussions.
Genetic variation in A. cervicornis shows significant re-

gional structure (e.g., between Florida and the Bahamas)
for populations separated by more than 500 km in both
nuclear and mitochondrial genes, suggesting restricted
gene flow over large distances and potentially isolated
populations [15]. Yet, within a smaller region like the
Florida Reef Tract (FRT), analysis of A. cervicornis using
microsatellites showed little population differentiation and
no significant population structure [16]; these results were
confirmed with mitochondrial control region sequences
that showed no significant population structure for stag-
horn corals within the FRT based on data from 52 individ-
uals [17]. Although most genetic diversity is related to
large distances among regions, population structure was
detected over smaller spatial scales (as small as 2 km) in 3
of the 20 areas examined [15]. This rare, fine scale
structure was attributed to one-way introgression of A. pal-
mata into A. cervicornis [15]. The finding of moderate gen-
etic structure among regions in the Caribbean separated by
more than 500 km suggests that these distant areas require
independent conservation and management practices. Ap-
proaches that provide higher differentiation at smaller scales
would highlight the need for more local management and
restoration strategies. These approaches require new tech-
niques to resolve any meaningful genetic variation.
Recently, the ability to quantify genetic variation has

greatly improved with the use of next-generation

sequence technologies [18]. It is now possible to geno-
type large numbers of individuals at thousands of loci
using Genotyping by Sequencing (GBS) [19]. Here we
use GBS to investigate the genetic diversity within and
among A. cervicornis populations using individuals
collected throughout the FRT) with individuals from
the Dominican Republic used as an outgroup (Fig. 1; map
was drawn using ESRI ArcMap 10.2). All individuals
(except “Wild”) are harbored in a network of in-situ
nurseries, which represent critical repositories of gen-
etic data [20] and the sustainable source of coral tissue
being used for active restoration of this threatened
species.

Methods
Coral collections
A total of 77 samples were collected and analyzed: 66 in-
dividuals along the Florida Reef Tract and 11 individuals
from around the Dominican Republic (Table 1). Dominican
Republic corals were collected to serve as an out-group,
enabling comparisons within the FRT to be considered
relative to regional differences. Fifty-six FRT samples
were received directly from a network of in situ nurser-
ies harboring multiple corals originally collected from
at least 500 m apart in separate reefs and tracked dur-
ing propagation for active restoration efforts. Each of
the FRT nursery corals was a unique genotype [21],
which could potentially lead to an over-estimation of
genetic diversity. An additional ten samples were collected
from a single Miami-Dade county reef termed ‘Wild’ at
10-50 m intervals for a total of 66 colonies (Table 1) from
57 sites along the FRT. Nursery collections were used
because they represent past wide sampling effort, mak-
ing current collection efforts more efficient. Samples
were considered to be A. cervicornis based on morph-
ology and microsatellite tags, with the exception of the
‘Wild’ site, which was determined solely based on morph-
ology. Other studies have discovered significant one-way
introgression between A. palmata and A. cervicornis [15];
however the role of introgression is beyond the scope of
the present study as the use of several thousand loci pre-
cludes the ability to compare individual genes to known
A. palmata sequences. All corals were sampled by slicing
a ~0.5 cm apical tip with a clean razor blade and placing
the tip in 320uL of a chaotropic salt solution while in the
field (4.5 M guanadinium thiocynate, 2 % N-lauroylsarco-
sine, 50 mM EDTA, 25 mM Tris–HCl pH 7.5, 0.2 % anti-
foam, 0.1 M β-mercaptoethanol) [22]. Samples were
transported back to the University of Miami/RSMAS
and stored at 4 °C prior to processing.
Collections were made under the following permits: Con-

vention on International Trade in Endangered Species of
Wild Fauna and Flora Permits 11US835702/9, United States
Department of the Interior National Park Service Scientific
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Research and Collecting Permits BISC-2013-SCI-0010,
NOAA Florida Keys National Marine Sanctuary Re-
search Permit FKNMS-2011-150, and Florida Fish and
Wildlife Conservation Commission Special Activity
License SAL-13-1086-SCRP.

Genomic DNA and GBS
Genomic DNA was isolated using a silica column as
described in [23]. Isolated DNA quality was assessed via
gel electrophoresis and concentrations were quantified
using Biotium AccuBlueTM High Sensitivity dsDNA
Quantitative Solution according to manufacturer’s in-
structions. After quantification, 100 ng of DNA from
each sample was dried down in a 96-well plate. Samples
were then hydrated overnight with 5 ul of water before
restriction enzyme digestion and further processing.
GBS was preformed using the restriction enzyme ApeKI,
unique barcoded adapters (0.4pmol/sample) and 50 ng
of genomic DNA as described in [19]. A range of PCR
cycles was used to optimize the amplification of re-
striction fragments using primers that anneal to the
adapters. DNA from the 18-cycle run was pooled, and
the GBS library was sequenced (Illumina Hi Seq 2500,
100 bp single end reads; Elim Biopharmaceuticals, Inc.,
Hayward, CA).

Table 1 Sample collection locations for the 77 samples
analyzed

Region Population Samples Analyzed

Florida Broward (NSU) 23

Miami-Dade (UM) 10

Wild (Miami-Dade) 10

Monroe (MOTE) 23

Dom. Republic Punta Cana (PCEF) 11

Total 77

Parentheses indicate nursery management institution: Nova Southeastern
University, University of Miami – Rosenstiel School of Marine and Atmospheric
Science, Mote Marine Lab, Punta Cana Ecological Foundation

Fig. 1 Locations of coral collection sites in Broward, Miami-Dade, and Monroe counties Florida and Dominican Republic. Wild was a single coral
reef where all ten individuals were collected >50 m apart
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Data processing and analysis
Raw Illumina sequences were received from Elim Bio-
pharmaceuticals and processed using the GBS analysis
pipeline TASSEL 4.0 [24]. The TASSEL pipeline trims
sequence reads to 64 bp and removes reads that do not
contain a cut site and barcode (to remove barcode dimer
sequences); reads that did not meet these requirements
were discarded. Reads were then aligned to the A. digiti-
fera genome (the only published acroporid genome) to
prevent the inclusion of Symbiodinium DNA, which
would be present in background levels in any coral sam-
ple. Aligning to a genome also enhances the identifica-
tion of allelic SNPs at a specific locus because sequence
reads that match two or more locations in the genome
are discarded [24]. This selection of SNPs that align to
one location is only possible with a reference genome.
Alignment to the A. digitifera genome results in unique
sequence tags, which are aligned, 64 bp sequence reads
that have a unique genome location. The TASSEL pipe-
line with BWA and Bowtie was used to call SNPs with a
minimum allele frequency of at least 5 % and a mini-
mum of 5 reads per locus to reduce the impact of se-
quencing error (by ensuring minimum frequency and
number of reads the likelihood of false polymorphism
calls decreases). Only loci called by both alignment tools
were used to produce a conservative selection of loci for
analysis. Before downstream processing, SNPs were fil-
tered using an iterative progression to select individuals
with at least 70 % of the called loci and loci that were
present in at least 90 % of samples for analyses. Arlequin
v.3.11 [25] was used to test Hardy-Weinberg Equilibrium
and calculate genetic diversity among coral collections
by calculating the percentage of polymorphic SNPs, ob-
served heterozygosity (HO), expected heterozygosity (HE)
and fixation index (FST). Loci with significantly greater
observed than expected heterozygosity (p < 0.01) were
discarded from analysis, and loci with significant linkage-
disequilibrium (D’ p-value < 0.01, or an r2 > 0.20) were
identified using Tassel [24] with a 100 SNP sliding window
(where the order of SNPs are defined by the A. digitifera
genome) and removed.
For comparisons within populations, π, pairwise differ-

ences (different SNPs between samples/total SNPs*100),
was calculated using the ‘ape’ package in R [26]. SNP π
values were compared to more traditional measures of
DNA sequence variation by correcting for the number
of non-variable sites within each 64 bp sequence tag.
Specifically, there are, on average, 1.4 SNP per 64 bp per
sequence tag. Thus the average π * (1.4 SNP/64 bp se-
quence tag) provides an estimate of π when comparing
DNA sequences with both invariable and polymorphic
sites. For comparisons between populations, fixation
index deviations from zero were tested by 10,000 permu-
tations of alleles between individuals. To identify SNPs

with FST outlier values (values larger than expected
based on the observed data, [27]), the program LOSITAN
[28] was used to generate 100,000 simulated SNPs, pro-
viding an expected neutral distribution of FST values and
an estimate of P-values for each SNP. Structure [27] was
used to identify the number of groups with similar allele
frequencies (K). A model allowing admixture and corre-
lated gene frequencies was used to carry out a total of 49
runs with seven independent runs for each K-value from
1–7. Ten-thousand permutations with 11,121 initial runs
(burn-in) was used for each run. The K with the largest
rate of change in the probability between groups was used
to select the most parsimonious cluster [28]. RaXML was
used to build a maximum likelihood tree [29] with 100
rapid bootstrap inferences. The best maximum likelihood
tree (using a general time reversible model of nucleotide
substitution and the Γ model of rate heterogeneity with
ascertainment bias correction [30]) was selected and vi-
sualized using Dendroscope [31]. Discrimination analysis
and comparisons of genetic and geographic distances
(Mantel Test) were completed using ‘adegenet’ package in
R [32, 33]. The Mantel Test was completed using a matrix
of pair-wise differences in allele frequencies (Euclidean
distances) and a matrix of geographic distances calcu-
lated from collection coordinates. Discrimination ana-
lyses (DAPC) was conducted in R using ‘adegenet’ [34].
DAPC was used in addition to Structure because it pro-
vides another metric of population differentiation, which
does not assume un-relatedness, so potentially closely
related individuals may be included.

Results and discussion
Coral samples
Table 1 lists the sample size for the 5 collections (Fig. 1).
Along the Florida Reef Track, 56 individuals were sampled
from separate reefs in Broward (Brwd), Miami-Dade (MD),
and Monroe (Monr) Counties. We treated each county as a
population. In addition to these three collections, 10 individ-
uals were sampled from a single small reef in Miami-Dade
(Wild), and 11 individuals were sampled from 11 locations
in the Dominican Republic. Both Wild and the Dominican
Republic were treated as separate populations. In previous
studies [14, 15, 35] the FRT and DR would have been con-
sidered different regions, and the locations along the FRT
were considered populations. In this study, the only differ-
ence is our treatment of the single reef with ten individuals
sampled as a separate population (Wild). Although technic-
ally Wild is within Miami-Dade, the 10 individuals treated
as a separate population provide insight not possible if
merged with the 10 other individuals from separate reefs.

GBS samples and sequencing
Next-generation sequencing and identification of inform-
ative SNPs requires: i) filtering the data such that most
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SNPs occur in most individuals, ii) removing inappropri-
ate SNPs that represent nucleotide differences between
paralogs (different loci) versus polymorphisms between al-
leles and, iii) eliminating SNPs in linkage-disequilibrium
[18, 19, 36–40]. The results of this filtering are shown and
discussed below.
Sequencing data returned a total of 159,634,510 se-

quences and 91,643,894 (57.4 %) were retained because
they contained both the barcode and cut site. Then,
these retained sequences were aligned to the A. digitifera
genome [41]. Alignment to the A. digitifera genome was
used to remove Symbiodinium sequences. In total, 868,023
unique sequence tags (tags are aligned, 64 bp sequence
reads that have a unique genome location) aligned to the
published reference genome [41]. Sequence tags removed
due to lack of alignment with the A. digitifera genome were
not analyzed because of potential background symbiont or
bacterial DNA contamination. After preliminary filtering,
three individuals were discarded because they had less than
30 % of the sequence reads. It is possible that inefficiencies
during library construction led to low numbers of reads
in these individuals. The remaining 77 individuals had
400,000 to 2,300,000 reads per individual.
Short 64 bp sequences were aligned using two align-

ment tools, Bowtie [42] and BWA [43], to identify Single
Nucleotide Polymorphisms (SNPs). Bowtie identified
306,643 SNPs and BWA identified 178,644 SNPs, of
which 113,838 SNPs were called by both alignment tools.
These 113,838 SNPs were iteratively filtered to meet two
criteria: individuals with 70 % of all called SNPs and loci
that were present in 90 % of individuals. These criteria
produced a total of 5,230 SNPs. These differences in
alignment tools affect allele frequency, and for these
data, there was a substantial difference in the observed
heterozygosity: BWA identified many more loci with large
heterozygosity values. Only approximately 50 % of reads
shared alignments with these two tools, which has been
observed in other studies [44–46]. Taking a conservative
approach to avoid errors due to alignment tools, only
the 5,230 SNPs identified by both alignment tools with
similar or identical allele frequencies were considered.
An additional 466 SNPs were removed because of ex-
cessive observed heterozygosity or linkage to another
SNP, leaving 4,764 SNPs. SNPs that had observed het-
erozygosity significantly greater than expected (i.e., not
in Hardy-Weinberg equilibrium) were removed because
they most likely represent alignments between different
loci and not real polymorphisms at the same locus [47].
Eliminating these SNPs with excessive observed hetero-
zygosity was done to reduce the technical error caused
by mis-alignment. However this also could eliminate loci
strongly affected by balancing selection. Thus, we err on
the side of reduced technical error with the potential loss
of SNPs affected by balancing selection. We also removed

one of each pair of SNPs with significant linkage dis-
equilibrium (D’ p-value < 0.01, or an r2 > 0.20) [48]. Re-
moving SNPs in linkage-disequilibrium (LD) should not
bias the measure of variance unless SNPs in LD have
significantly greater or less variation. Strong LD is asso-
ciated with background selection or directional selec-
tion, both of which would reduce variation. Thus, our
SNP measurements may be conservative estimates of
the variation present. After removing loci not in HWE
and loci with significant linkage disequilibrium, 4,764
SNPs remained. These 4,764 SNPs were used for all
analyses.
There is an additional concern that Symbiodinium may

have conserved genes that could align to the A. digitifera
genome. This would seem unlikely because if there were
multiple types of Symbiodinium, these should have exces-
sive observed heterozygosity and would be filtered out.
Yet, to examine this possibility we used BLAST-N with all
sequence tags that define the 4,764 SNP against the Sym-
biodinium minutum Mf 1.05b.01 (taxid:1280413) genome.
Only one tag had an e-value < 10−5, and this sequence only
matched 83 % of the genome for 49 of the 64 bp (63 %
similarity for all 64 bp). Eight more tags had e-values <
1 %, but none of these matched more than half of the se-
quence tag. Thus, it seems unlikely that the alignments
contain Symbiodinium sequences.

Genetic diversity within populations
The genetic diversity within a population can be repre-
sented by π, the nucleotide diversity or number of nu-
cleotide differences among pairs of samples divided by
the number of SNPs. Here, these data are represented as
pairwise differences (π,) between samples. The π within
each FRT population (Broward, Miami-Dade, Wild, and
Monroe) averages 37 % with a range of 23.9–44.0 %
(Table 2). This indicates that among all SNPs, an average
of 37 % are different between any two individuals within
a single population. The differences within a population
are similar to the overall value when all 5 populations
(including DR samples) are used. While only the ‘Wild’

Table 2 Nucleotide diversity or pairwise differences (π) among
individuals within a population

π, Pairwise differences

Avg. Min. Max.

All Pops 0.392 0.235 0.440

Broward 0.383 0.350 0.412

Miami-Dade 0.383 0.235 0.416

Monroe 0.395 0.362 0.435

Wild 0.370 0.249 0.438

Dom. Republic 0.363 0.267 0.440

Average among all individuals and minimum and maximum differences for a
pair of individuals within a population
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site represented multiple individual colonies sampled from
a single reef, π in Wild remained high (average 37 %,
range 24.9 to 43.8 %) and in the range of π in the other
populations (23.5 % to 44.0 %). Among the three FRT
transects Broward and Monroe had an average π of
38.3 % and 39.5 %, respectively, but narrower range of π
(35 % to 41.2 %, 36.2 to 43.8 %) than Miami-Dade. This
was somewhat surprising because A. cervicornis in Bro-
ward County is growing at the edge of its spatial range, so
high diversity may be unexpected. Importantly, within
each population π measurements are comparable to π
across populations (Table 3), indicating that genetic di-
versity starts at the local level, including single reefs.
The measures presented here represent large enough
differences between individuals that each individual
collected represents a unique individual (minimum π:
23.5 %), including those from the single reef (‘Wild’).
Traditionally, A. cervicornis is thought to rely primarily

on asexual propagation, so single reefs have been be-
lieved to be monotypic or have few genets [7, 49]. The
observed level of diversity between individuals is also
unexpected because previous genetic analyses of A. pal-
mata indicate a high ramet/genet ratio where many reefs
may be populated by one or a few genets [50]. Even
though the dataset presented here only examines poly-
morphic sites, the similar levels of genetic variation
within and among populations indicates that much di-
versity occurs among individuals. Additional evidence
suggests that genetic diversity is occurring over even
smaller spatial scales, where multiple colonies in close
proximity (<5 m apart) show similar π and are likely
unique genets (Drury, unpublished data). This level of
genetic diversity is unlikely to be an artifact. All SNPs
were called in 90 % of all individuals with a minimum al-
lele frequency of 5 %. There was an average of 411 reads
per SNP and 69 reads per SNP for the minor allele. Fur-
thermore, 90 % of the minor alleles had more than 23
reads while the minimum number of reads for all SNPs
was 8. Thus it seems unlikely that the detected SNPs are
sequencing errors. Importantly, these measures are con-
servative because the sample size per population (n = 10
to 23) may overlook minor alleles and 5 % minimum al-
lele frequency will underestimate the genetic divergence.
Additionally, removing SNPs in LD and with excessive

heterozygosity could reduce these estimates of genetic
variation. Thus, our data are indicative of large standing
genetic variation within populations, but they may be
under-estimates.
Measures of π within A. cervicornis populations are

similar to values in other GBS studies on stickleback and
natural populations of Saccharomyces cerevisiae [51, 52].
Yet to compare our GBS measures directly to more trad-
itional π values for complete gene sequences requires the
frequency of SNPs and invariable sites within each tag.
This value is estimated by dividing number of SNPs on a
given tag by the length of reads; for all pooled poly-
morphic tags investigated here, there were an average of
1.45 SNPS per 64 bp equating to an adjusted π value of
0.9 %. This adjusted π value is similar to nucleotide diver-
sity across Caribbean populations for the three nuclear
genes in A. cervicornis [15], but nearly four times as large
as π among Florida populations, estimated as 0.002 using
the mitochondrial control region [17]. When compared
across a wide array of taxa, π = 0.9 % is a substantial level
of genetic variation relative to most animals [53].
The 57 individuals from the Florida nursery collections

(Broward, Miami-Dade and Monroe, but not Wild,
Table 1) were identified as unique genotypes by micro-
satellites within each population (Baums, unpublished
data). Among these individuals there was an average π
of 39.1 % (23.5 % to 43.5 %). Each of these samples was
a different individual with the minimum π of 23.5 % be-
tween individuals (i.e., two individual were different at
23.5 % of SNPs). This non-random collection could in-
flate π within each of these three populations but
should not inflate the variation among populations. Yet,
π among these 57 individuals is similar to that of the
single reef collection (Wild) and is similar to π among
all populations (Table 2). Thus, within each of the three
Florida transects, which were separate nursery collec-
tions, π was similar to that of a single reef and did not
exceed π between individuals in different transects.
This suggests that π is not greatly inflated by the selec-
tion of individuals with different microsatellite geno-
type. Although there may be a slight bias in π for the
three FRT nurseries, our data indicate large, standing
genetic variation among FRT corals and genetic vari-
ation within A. cervicornis populations along the FRT
similar to the variation across all populations. The amount
of variation discovered within and among A. cervicornis
populations is similar to the genetic variation found in
large outbred populations distributed over large geo-
graphic ranges [51–53]. Despite the dramatic decline in
the census population, this decline did not result in
substantial loss of genetic diversity, suggesting that
remaining corals are i) old individuals sampled from a
population with large diversity and a very large effective
population size, ii) new recruits from a wide variety of

Table 3 Pairwise differences (π) between populations

Broward Miami-Dade Monroe Wild Dom. Republic

Broward 0.383

Miami-Dade 0.389 0.383

Monroe 0.392 0.393 0.395

Wild 0.392 0.395 0.398 0.370

Dom. Republic 0.391 0.398 0.402 0.400 0.363

Average π among every individual from each population compared
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parental inputs, or iii) are affected by non-neutral
processes enhancing genetic diversity (e.g., divergent
selection on different habitats/reefs).

Genetic diversity among populations
Substantial genetic diversity within populations is ac-
companied by significant divergence among popula-
tions and is illustrated by the relationships among
individuals seen in the maximum-likelihood tree and
Structure Plot (Fig. 2a, b). The maximum likelihood
tree using 4,764 SNPs has six branches with over 70 %
bootstrap support, including all individuals from the
Dominican Republic in a single cluster with 100 % sup-
port on internal branches. Other branches with 100 %
bootstrap support include pairs of individuals from
Miami-Dade and two sets of colonies from the wild reef
(with two and five individuals respectively) (Fig. 2a).

Structure analysis suggests 3 or 4 groups of individuals
have similar minimum mean likelihood Fig. 2b). Each
column (Fig. 2b) represents an individual and the sum-
mary of allele frequencies for that individual. Based on
rate-of-change likelihood, separation into 3 groups is
the most parsimonious explanation for the data (Fig. 2c),
with Broward, Miami-Dade, and Monroe populations
sharing common allele frequencies while each is diver-
gent from the Wild population and the Dominican Re-
public samples. Regional differences, i.e., Florida vs.
Dominican Republic, agree with previous reports of
Caribbean-scale population structure in A. cervicornis
[16, 17]. Collections from the ‘Wild’ reef appear to
have 50 % of individuals with divergent ancestry from
other FRT (Fig. 2b) and share a well supported clade in
the maximum-likelihood tree (Fig. 2a). The phylogeny
and structure plots indicate differences within the FRT

Fig. 2 Maximum likelihood tree and Structure showing shared relationships among individuals based on 4.7 K SNP. a Maximum-likelihood tree with
100 bootstraps; only branches with >70 % support are enumerated. Taxa are color-coded (Broward: red, Miami-Dade: dark blue, Monroe: brown, Wild:
light-blue and Dominican Republic: green). Clades for Wild have blue branches and the clade for Dominican Republic has green branches (b) Structure
plot for five populations. Each individual is labeled with the color related to the predicted population. c Delta K; rate of change in the log probability
of data between successive K values [28]
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as a whole, but do not readily resolve differences
within the three sub-regions.
To further resolve differences among populations, we

applied four different analyses: 1) a hierarchical AMOVA
[54], 2) analysis of FST values across all loci, for individual
loci and for outlier FST values [55], 3) a Mantel test and 4)
discrimination analysis of principal components (DAPC).
An AMOVA of all 4,764 loci for two groups (Florida

and DR) with four populations within Florida (Broward,
Miami-Dade, Monroe and Wild) shows significant vari-
ation (p < 0.001) among groups, among populations
within Florida and within populations (Table 4). The
significant difference among groups confirms the re-
gional differences between the Dominican Republic and
Florida seen in the Structure analyses and maximum
likelihood tree (Fig. 2). Greater than 90 % of the ob-
served variance is within populations (Table 4), but
there are also significant differences among the FRT
nursery populations accounting for approximately 2 %
of the variation. The genome-wide FST values (Table 5)
are significant for all but Monroe and Broward pairwise
comparisons and represent the first genetic structure
formally resolved in Florida A. cervicornis. These FST
values are not large (range: 0.016 to 0.092), so they may
be more reflective of the statistical power of using many
loci [56] and less ecologically relevant; nevertheless
they represent a novel ability to distinguish between
sub-regions of the Florida Reef Tract, which has been
viewed as relatively homogenous in previous investiga-
tions [16, 17]. Interestingly, among the three Florida
transects, Miami-Dade exhibits significant divergence in
comparison to Monroe (~180 km) and Broward (~60 km)
samples, but the latter transects are not significantly
different despite larger spatial separation (~250 km).
Among the three Florida transects (i.e., Broward, Miami-

Dade and Monroe, without Wild), there are 300 SNPs with
significant FST values (p < 0.01; Fig. 3, Table 6). Most
SNPs with significant FST values among FRT transects
are not physically close to each other (average distance
is 88,235 bp), suggesting that most SNPs are evolving
independently and the differences among populations
are not due to one or a few linked loci. The average
distance to the next closest SNP is > 25 kb (although
many non-significant SNPs are often on the same

64 bp sequence tag). These close, non-significant SNPs
indicate lack of linkage or selective sweeps and high,
long-term standing genetic variation. The individuals
sampled from the Miami-Dade nursery should have
captured much of the local genetic variation as they
were initially collected from a large area (~35 km span),
collections were separated by at least 500 m, and all repre-
sent unique genets [57].
To further parse differences between sub-regions, a

Mantel Test was used to calculate the correlation between
genetic and geographic distance. Here, 377 SNPs with sig-
nificant FST values (from locus-specific FST values, Fig. 3)
were compared to geographic coordinates from the ori-
ginal collection sites. Among all populations, there is a
significant (p < 0.001) correlation between genetic vari-
ation and spatial distribution; this trend explains approxi-
mately 38 % of the genetic variation (R2 = 0.378) and is
driven mainly by the differences between Florida and the
Dominican Republic, supporting the regional structure
previously reported [15]. When examining only the corals
from the three Florida transects, the relationship is sig-
nificant but explains much less variation (R2 = 0.104).
Importantly, the genetic variation explained by geographic
separation increases if either Broward or Monroe (the
northernmost and southernmost Florida sub-regions, re-
spectively) is excluded, because these two most distant
sub-regions of the FRT are more similar to each other
than either is to the spatially intermediate Miami-Dade
corals. The results of the Mantel test support the pairwise
FST values, which indicate significant structure between
Miami-Dade and Monroe/Broward, but little genetic di-
vergence between Monroe and Broward.
Using DAPC with 4,764 SNPs shows that the first

discriminant function separates the Dominican Republic
from the Florida corals, while the second discriminant
function separates the four Florida populations (Fig. 4a).
When only the four Florida populations are analyzed
(Fig. 4b), there is clear discrimination among three of
the four populations, with little difference between the
Monroe and Broward (Fig. 4b), supporting conclusions
in the Structure and AMOVA analyses. Although the
Miami-Dade and ‘Wild’ individuals were collected from
the same area, they are more readily distinguished from
each other in comparison to the two most distant col-
lections (Broward and Monroe). Despite significant FST
value differences between the Miami-Dade nursery and
Miami-Dade ‘Wild’ collections, π is similar in both col-
lections (38.3 % vs. 37.0 %, respectively), suggesting a
change in allele frequencies associated with the local
environment. These data suggest there are many genetic
differences among populations and genetic diversity is
high in each of the three Florida transects. These data also
support the conclusion that the differences among col-
lections are not a linear function of geographic distance

Table 4 AMOVA design and results based on 4,764 SNPs

Source of variation Sum of
Squares

Variance
components

Percent
variation

Among Groups 1916.1 37.685 4.35

Among Pops within Groups 3101.2 627.813 2.16

Within Populations 85576.0 664.813 93.49

Total 90593.3 664.813

Groups are FL and DR, with four populations within FL (Broward, Miami-Dade,
Monroe and Wild)
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within Florida; geographically close collections may have
more differences that geographically dispersed collections.

Adaptive genes
Corals from the three Florida transects had 300 loci with
significant FST values. Half or 150 of these SNPs were out-
liers. Outlier SNPs have FST values with changes in allele
frequencies that are not found in 100,000 random permu-
tations of the data and are thought to be due adaptive evo-
lution [58, 59]. Although outlier tests suffer from both
type I and II errors [60], a stepping-stone model of di-
vergence is likely to be similar to the connectivity of
the FRT populations, and thus the outlier test we used
is unlikely to suffer from extensive type I errors [60].

Thus we conclude that some of the divergence among
the FRT populations likely reflects adaptive evolution.
It has not escaped our attention that the Wild collec-

tion of 10 individuals within a single reef within Miami-
Dade is different from the Miami-Dade transect collected
from the surrounding area. While these individuals from
Miami-Dade and Wild are phylogenetically similar to the
other samples (they share internal branches in the phylo-
genetic tree), the comparison between these two popula-
tions shows 260 SNPs with significant FST values (average
FST value = 0.232, range: 0.169 to 0.824). Each of these
SNPs has an average of 120 reads among the twenty indi-
viduals from Miami-Dade and Wild populations (range:
45 to 1,048) and over 350 reads among all individuals.
Two-hundred and thirty-four (89 %) of these SNPs with

Table 5 FST and P-values

Broward Miami-Dade Monroe Wild Dom. Republic

Broward ———— 0.009 0.839 0.000 0.000

Miami-Dade 0.016 ———— 0.000 0.009 0.000

Monroe 0.003 0.012 ———— 0.000 0.000

Wild 0.041 0.045 0.034 ———— 0.000

Dom. Republic 0.056 0.069 0.050 0.092 ————

FST values are based on all 4.7 K SNP. Below the diagonal are the FST values. Above the diagonal are the p-values for the specific comparisons; all comparisons are
significant except Broward vs. Monroe

Fig. 3 Locus specific genetic distance (FST value) by position relative to the A. digitifera genome. Significant FST values that are blue, and the subset
that are outliers (potentially adaptive) are in red. SNPs with non-significant FST values are green. Distance along the X-axis is the sum of distances
among the 4,765 scaffolds. a FST values for all five populations. b FST values for only the three Florida transects (i.e., Broward, Miami-Dade and Monroe,
without Wild)

Drury et al. BMC Genomics  (2016) 17:286 Page 9 of 14



Table 6 FST values and nucleotide distance for all five populations and three Florida transects

FST all SNP Significant FST Outlier FST Next non-significant FST Distance (bp) among
Significant FST SNP

Distance (bp) among
Outlier FST SNP

Distance (bp) between significant
and non-significant SNP

All 5 populations

Counta 4,762 141 17 108 23 0 108

Average 0.040 0.3018 0.4454 0.0989 75,876 N/A 31,576

95 % CIb 0.0383, 0.0424 0.2835, 0.3200 0.3607, 0.5300 0.0780, 0.1198 2,338, 14,9414 N/A 22,578, 40,573

Readc (range) 411 (125:4,142) 377 (198:1,097) 367 (256:679) 405 (251:841)

3 Florida Populations (Broward, Miami-Dade, and Monroe)

Counta 4,753 300 150 207 73 28 207

Average 0.012 0.1163 0.1165 0.0451 88,235 46,304 27,698

95 % CIb 0.0099, 0.014 0.1097, 0.1229 0.1046, 0.1283 0.0363, 0.0539 55,264, 12,1207 4,627, 97,235 20,523, 34,872

Readsc (range) 411 (125:4,142) 370 (125:967) 377 (167:967) 402 (208:947)
aCounts refer to the number of polymorphic SNPs used in the analyses or (for distance) the pair of SNPs that shared the same scaffold.
bCI is the 95 % confidence interval.
cReads are the average number of 64 bp reads for each SNP. “Significant” and “non-siginficant” refers to SNPs with statistically significant FST values
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significant FST values are significant outliers [55]. The di-
vergence between Wild and the Miami-Dade transect
could represent local adaptation or could arise if the Wild
individuals contained A. cervicornis – A. palmata hybrids.
Unlike the other collections, which were identified based
on morphology and microsatellite tags, the Wild collec-
tion was only identified by morphology. Although we have
no reason to believe that the Wild samples were hybrids,
the fine scale genetic divergence we found is similar to the
rare, fine scale structure that was attributed to one-way
introgression of A. palmata into A. cervicornis [15]. Thus
although it is intriguing that natural selection is acting on
a fine geographic scale, this conclusion may be prema-
ture until the species status of the Wild population is
investigated.

Implications for restoration
Data presented here suggest that there is potentially
much adaptive variation due to subtle environmental dif-
ferences influencing coral distribution and growth, in-
cluding temperature, water chemistry, light, nutrients,
and sedimentation. This variation may occur over spatial
scales as small as individual reefs. Due to the potential
for high adaptive variation, introducing a broad range of
genotypes along the FRT (such as those housed within
nurseries) would enhance the frequency of adaptive ge-
notypes and the subsequent rate of offspring survival.
This is especially true if crossings during mass spawning
events produce a larger range of genotypes able to take
advantage of a large breadth of ecological niches. Thus,
the best conservation and restoration strategy may be to

Fig. 4 Discriminant analysis of populations. Discriminant analysis of principal components [34] was used to define the similarity and differences
for (a) all five populations and (b) the four Florida populations. Populations are shown by different colors and inertia ellipses while dots represent
individuals: Broward: Brwd-red, Miami-Dade: MD, dark blue, Monroe: brown and Dominican Republic: DR, green
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increase genetic variation on all spatial scales (within
reefs, among populations) as much as possible to pro-
vide diversity to cope with changing conditions [10].
This study found substantial genetic variation within

existing staghorn populations being raised in coral nurser-
ies. These nursery corals are presently used for coral propa-
gation and outplanted to enhance population recovery of
the threatened staghorn coral reefs. Greater than 90 % of
the variation among all the samples is found within a
nursery’s collection of corals, indicating that these nur-
series have captured significant genetic diversity.
These GBS data indicate both large variation within

populations and adaptive divergence among populations,
and should help form policies that guide conservation
efforts to restore staghorn coral reefs. We suggest that
the caution against moving corals long distances during
restoration [61] should be tempered, because genetic
variation is very high within single reefs and among the
three populations along Florida transects. Previous con-
sideration of the implications of redistribution of corals
during restoration suggests that moving corals beyond
some ecologically relevant threshold may result in de-
creased fitness of a restored population due to founder
effects, genetic swamping and inbreeding/outbreeding
depression [61]. Here, we argue that the very high levels
of diversity found within nursery source materials and
on a single reef alleviate some concern. Very diverse as-
semblages on reefs targeted for restoration and in nur-
sery source corals will likely not undergo fitness declines
due to genetic swamping or outbreeding depression be-
cause there is much genetic variation within populations
and no unique alleles in any of the Florida populations.
Although there may be some reefs with one or few
remaining colonies that have unique adaptive alleles,
introducing genetically diverse corals would increase the
genetic variation of any resulting coral larvae, and this di-
versity is needed for adaptation. Similarly, the potential for
significant inbreeding depression would be decreased by
the introduction of diverse coral assemblages. Outbreed-
ing depression remains a concern. Yet in extant coral
reefs, large genetic variation occurs within and among
reefs. Thus, concerns about outbreeding depression for
sexually produced coral larvae that will disperse long dis-
tances and face changing environments seems misplaced.

Conclusions
The GBS approach produced genotype frequencies for
4,764 SNPs that allowed for the resolution of population
differences unavailable using other techniques [15–17].
Each SNP had an average of 411 reads/SNP with 69
reads/SNP for the minor allele, so genetic differences
likely represent real nucleotide divergence and not se-
quencing error. However, there are imperfections to this
approach, including the differences in heterozygosity

produced by different SNP alignment tools. Despite the
caveats with this method, GBS provides the ability to re-
solve previously undiscovered variation in populations of
A. cervicornis. Here, we show, for the first time, popula-
tion structure across the FRT and high diversity within
populations, including within a single reef evidenced as
the genetic structure between and among FRT popula-
tions. Previous work on A. cervicornis using mtDNA, a
few nuclear genes, and microsatellites found no differ-
ence among the FRT coral populations [15–17, 62].
To further develop effective conservation and manage-

ment plans for this species and other threatened corals
considered as candidates for active propagation and res-
toration, it is essential to understand the extent of gen-
etic variation within and among populations [15, 17].
Using a GBS approach, we highlight population differ-
ences by revealing many SNPs that have distinct allele
frequencies among populations including one hundred
and fifty SNPs, which have outlier FST values indicative
of adaptive difference. There are also significant differ-
ences over small spatial scales, exemplified by differences
between Wild and Miami-Dade individuals that were all
collected within the same area (Fig. 1). The high genetic
variation present in FRT A. cervicornis may allow this
species to endure the interacting threats posed by local
stressors and climate change factors such as temperature
anomalies and acidification Additionally, π pair-wise dif-
ferences) is large (37 %) for all collections and similar to
GBS measures of π in large outbred populations of 3-
spine stickleback or natural populations of yeast [51, 52].
The GBS methodology used here highlights the ability

to discover subtle changes in populations by using thou-
sands of loci and large numbers of individuals. Conser-
vation genetics using these high throughput techniques
provide a new lens for assessing management implications
and population connectivity via important increases in
resolution, but also in varied and specific genetic metrics
such as population structure, nucleotide diversity, and loci
that may be under selection. These data are particularly
important to active restoration projects as they give a bet-
ter understanding of population structure, how and where
to relocate coral, and potential repercussions of active
intervention. Furthermore, the ability to describe genetic
diversity over local to regional distributions enables
conservation practitioners to manage resources over ap-
propriate scales, becoming more efficient and effective.
GBS allows for increased restoration effectiveness through
conservation genetics, while developing a more thorough
understanding of threatened coral communities.

Availability of supporting data
Raw sequences have been submitted to NCBI as a Se-
quence Read Archive (SRA). The Acropora cervicornis
hapmap (DOI: 10.6070/H4FB50XX) and sequence tags
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database, accessions SAMN03295587 - SAMN03295662.
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