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extant cyrtocrinid Holopus mikihe (Crinoidea, 
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ABSTRACT.—The crinoid order Cyrtocrinida is known 
mainly from Mesozoic fossils; its few surviving members, 
all from bathyal environments, are among the most peculiar 
living crinoids. Cyrtocrinids attributed to Holopus mikihe 
Donovan and Pawson, 2008, have been observed in large 
numbers via submersible off the western coast of Roatán, 
Honduras, on vertical and overhanging walls at depths 
between 430 and 640 m. Observations in 2012, 2013, and 2014 
have permitted the first estimates of population structure, 
growth, and regeneration. Two size modes were observed; 
the flat barnacle-like “juvenile” stage resembles confamilial 
and co-occurring Cyathidium pourtalesi Améziane, 1999, 
whereas the larger “adults” elevate the crown on a stumplike 
calyx. The 99th percentile growth rate was 0.19 cm yr−1, giving 
a minimum predicted age of 16 yrs for the largest specimen 
and 8.7 yrs for the median specimen; the median growth rate 
was 0.04 cm yr−1, corresponding to 72 and 39 yrs. However, 
the slower rate of growth in juvenile compared to adult 
specimens means that these ages are underestimates; actual 
median age may be closer to 50 yrs. Arm regeneration rate is 
estimated at 0.6 cm yr−1, and 9.8% of adult individuals were 
visibly injured, giving an interval of about 1.4 yrs between 
arm loss events. No recruitment or mortality was observed, 
and aggregations of evenly-sized individuals were prevalent, 
consistent with sporadic local recruitment and mortality. 

Cyrtocrinids are a highly-derived order of sessile articulate crinoids characterized 
by cementation to a hard substrate, with the column either short or entirely absent 
(Hess et al. 2011). Although the origins of the group are obscure, they are thought 
to be monophyletic based on both morphological and molecular evidence, and to 
have diverged from their closest relatives, the hyocrinids, about 187 Ma (Rouse et 
al. 2013). Cyrtocrinids originated in the Triassic (Salamon et al. 2009), radiated dur-
ing the Middle Jurassic, and remained highly diverse and successful into the Early 
Cretaceous, with 15 families and numerous species (Hess et al. 2011), and habitats 
ranging from shallow (Baumiller and Gaździcki 1996, Donovan and Jakobsen 2004) to 
deep (Charbonnier et al. 2007, Wisshak et al. 2009) water. Figure 1 shows the generic 
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diversity of the order (A) and its three constituent superfamilies (B). Cyrtocrinids 
covered the gradient of habitat depth either until the end of the Mesozoic or well 
into the Paleogene, depending on paleoenvironment reconstruction (Donovan and 
Jakobsen 2004, Wisshak et al. 2009). If the former, they may have been driven out of 
shallow environments by further increases in predatory pressure from the Paleogene 
teleost radiation (Bottjer and Jablonski 1988, Vermeij 1993), possibly in combina-
tion with the end-Cretaceous extinction. If the latter, some may have remained in 
protected shallow-water relict communities. In either case, as a result of the poor 
fossilization potential of deep-water habitats, the fossil record of the cyrtocrinids is 
entirely unknown between the Miocene and the Recent.

Only three cyrtocrinid families are known to have survived beyond the Mesozoic. 
Four extant genera have been found, all living in deep water. Of these, Neogymnocrinus 
and Proeudesicrinus are known only from New Caledonia (Améziane-Cominardi et 
al. 1990); each is the sole post-Mesozoic representative of its family (Sclerocrinidae 
and Eudesicrinidae, respectively) (Hess et al. 2011). The two genera constituting 
Holopodidae are more widely distributed across the fossil record, as well as the mod-
ern ocean: living Holopus has been found in the Caribbean Sea, as well as in New 
Caledonia, and Cyathidium in the Caribbean Sea, the Azores, and the Comoros 
(Améziane-Cominardi 1999), and both are known from Jurassic through Miocene 
strata of Europe. 

Holopodidae are characterized by the lack of a column, cementation of the calyx 
directly onto a hard substrate, and the ability to coil the arms tightly. The skeletal 

Figure 1. Spindle diagram of cyrtocrinid generic diversity through time: (A) all cyrtocrinids, 
(B) all cyrtocrinids by superfamily. Vertical distance is proportional to time, with the height of 
the Holocene exaggerated by a factor of two for visibility; horizontal distance indicates generic 
diversity of the cyrtocrinids during each geologic stage. Extension into the Triassic, indicated by 
asterisk in (A), is based on ossicles of cyrtocrinid affinity reported from the Rhaetian (Salamon et 
al. 2009) and undescribed specimens from the Carnian reportedly resembling cyrtocrinids (Hess 
2006, Salamon et al. 2009). These Triassic specimens have not been identified to the superfamily 
level and are therefore not included in (B).
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and soft-tissue anatomy and histology of modern Holopus and Cyathidium have been 
described in great detail from collected specimens (Carpenter 1884, Grimmer and 
Holland 1990, Donovan 1992, Heinzeller and Fechter 1995, Améziane-Cominardi 
1999). Donovan and Pawson (2008) comment on the substrate affinities and direc-
tion of growth with respect to current in Holopus mikihe (see Appendix 1 for species 
authorities) and Holopus rangii. However, due to their cryptic habitat, there has been 
little other research on the ecology of these organisms, and most aspects of life his-
tory in extant cyrtocrinids remain largely unknown. 

Growth Rates and Regeneration Frequencies in other Crinoid Taxa.—
Directly measured growth rates of several non-comatulid crinoid species have been 
used to estimate individuals’ ages (Table 1). The methods used by Duco and Roux 
(1981) and Messing et al. (2007) yielded only a lower bound on the age of the oldest 
individuals, the former being based on the oldest single individual in the population 
and the latter on the stalk growth rate; other authors (e.g., Oji 1989, Roux 1976) esti-
mated a mean age for populations based on measurements of the whole population, 
as is done in the research presented here. 

Observations of autotomy behavior in the isocrinid Metacrinus rotundus from 
Japan indicate that they are fairly robust to mechanical stress: grasping the arm 
with forceps neither breaks arms nor induces autotomy (Oji and Okamoto 1994). It 
is therefore generally assumed that regenerating arms in fully-developed individuals 
indicate nonlethal interactions with predators and can be used to estimate predator 
encounter rates (Baumiller 2013a). Thus, if rates of regrowth are known, the frequen-
cy of nonlethal arm loss can be used to estimate the frequency of interaction with 
predators. In general, fewer injured individuals are seen in fossil assemblages than 
in living ones (Table 2). This is due to some combination of taphonomic effects, in 
which postmortem breakage tends to obscure the visibility of nonlethal injury, and 
genuinely higher frequencies of predation in present-day marine ecosystems than in 
similar environments in the geologic past. The magnitude of the former effect is usu-
ally on the order of 1% difference (Syverson 2014), whereas the latter is much more 
significant.

Specimens of the isocrinid Endoxocrinus  from the tropical western Atlantic 
show a significantly increased frequency of regenerating arms in shallower water. 
Individuals collected in depths >500 m (n = 75) had an average of 25% of their arms 
injured and regenerating, while those from >500 m depth (n = 79) had around 13% 
of arms injured (Oji 1996). The eastern Pacific ten-armed feather star, Florometra 
serratissima, also shows higher arm regeneration frequency in shallower water. In a 
sample from 79 m, an average of 18% of the arms of individuals were regenerating, 
compared to 4% at 208 m and 1% at 1143 m (Baumiller 2013b).

Table 1. Age estimates for extant stalked crinoids.

Taxon Depth (m) Mean age (yrs) Max age (yrs) Reference
Metacrinus rotundus 100–200 10 Oji 1989
Cenocrinus asterius 215 >20 Messing et al. 2007
Endoxocrinus wyvillethompsoni 1,420–2,615 15 >20 Roux 1976
Bathycrinus carpenteri 1,420–2,615 10–15 Duco and Roux 1981
Holopus mikihe 430–640 39 73 Present study
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The only cyrtocrinids in which injury has been observed are the fossil species 
Eugeniacrinites cariophilites and Pilocrinus moussoni from the Late Jurassic. Three 
of 36 cups (8.3%) had visible bite marks in P. moussoni, and “nearly 10%” of 470 cups 
of E. cariophilites were “mutilated”, a term which here includes swelling and atrophy, 
as well as injury; some, however, had visible bite marks (Hess 2014).

Although injury and regeneration are known from collected Holopus specimens 
[one specimen dissected by Donovan (1992) had a regrowing arm, and one pictured 
in Donovan and Pawson (2008) is visibly injured], no attempt has been made to es-
timate injury and regeneration frequency in Holopus. Here, we provide the first es-
timates of growth rates, lifespan, and injury frequency in H. mikihe based on in situ 
observations of a living population.

Methods

Location of Dives.—Data were collected in June 2012, July 2013, and May 2014. 
Video, still photographs, and several specimens were collected from the submers-
ible Idabel at approximately 16°18´N 86°36́ W off the coast of Roatán, Honduras, at 
depths between 430 and 640 m.

Holopus mikihe was observed on vertical and overhanging surfaces of boulders. 
Other crinoids collected or observed in the same area are listed in Table 3. Other 
hard-substrate organisms included a variety of hexactinellid sponges (e.g., Farrea), 
demosponges (e.g., Desmacellidae, Petrosiidae, Geodiidae, Spongosorites sp., 
Corallistes sp.), asteroschematid and other ophiuroids, echinoids (e.g., Calocidaris 
micans, Plesiodiadema antillarum), asteroids (e.g., Novodinia antillensis), 
scleractinian corals (e.g., Dendrophyllia alternata and numerous solitaries), 
antipatharians, octocorals (e.g., Primnoidae, Plexauridae, Ellisellidae), sea anemones, 
stylasterid hydroids, serpulid polychaetes, and various decapod crustaceans (e.g., 
Homola sp., Chyrostylidae). Relatively few bottom-associated fishes were observed, 
e.g., Synagrops bellus (Acropomatidae), Chaunax pictus (Chaunacidae), Ijimaia 
antillarum (Ateleopodidae), Grammicolepis brachiusculus (Grammicolepididae), 
Beryx decadactylus (Berycidae), Oxynotus caribbaeus (Oxynotidae), and Bythitidae.

Table 2. Comparisons of injury frequency among different crinoids and other echinoderms.

Taxon Time
Individuals 

injured
Arms 

injured Frequency (d) Reference
Endoxocrinus spp. Modern 71% 16%–61% Oji 1996
Florometra serratissima Modern 80% 27% Mladenov 1983
Florometra serratissima Modern 18% 1%–18% 650–850 Baumiller 2013a,b
Cenometra bella Modern 100% 29% 8–12 Baumiller and Gahn 2013
Eugeniacrinites cariophilites Jurassic 10% * # Hess 2014
Pilocrinus moussoni Jurassic 8.3% # Hess 2014
Rhodocrinites kirbyi Mississippian 26% 8% 30–42 Baumiller and Gahn 2013
Le Grand crinoid fauna Mississippian 9% Gahn and Baumiller 2005
Paleozoic crinoids Devonian–

Pennsylvanian
12% Baumiller and Gahn 2004

All echinoderms Modern 21%–72% Lindsay 2010
Holopus mikihe Modern 9.8% 2% 497–538 Present study
* Value is approximate.
# Cup only.
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Data Collection.—The submersible was equipped with a pair of parallel scaling 
lasers 10 cm apart. Specimen size was measured at the widest point of the calyx by 
importing the photograph or video frame into Adobe Illustrator®, taking measure-
ments by drawing vector lengths, and comparing calyx diameter measurements (Fig. 
2A) to the 10-cm scale bar formed by the lasers (Fig. 2B). The photographs and videos 
were taken at variable distance from the rock face, such that image scale varies from 
0.22 to 5.12 m in the horizontal dimension. In total, 817 measurements were taken 
over the 3 yrs combined: 273 from 2012, 344 from 2013, and 200 from 2014.

Sixty individuals were observed more than once over the 3 yrs of sampling. Growth 
rates were estimated by year-to-year changes in measurements of these individuals. 
Our ability to revisit sites was facilitated by two factors: the excellent knowledge of 
the localities by one of the authors (KS), whose experience includes piloting more 
than 1200 dives in the submersible at Halfmoon Bay, Roatan, since 1998, and the fact 
that the topography in these sites is highly irregular with many landmarks. Thus, 
while finding particular boulders with Holopus populations proved relatively easy, 
identifying specific individuals year after year required referring to close-up images 
from previous years while maneuvering the submersible. One individual with two 
arms completely missing in 2012 (Fig. 2C) was photographed in all 3 yrs; its visceral 
mass was apparently uninjured, allowing an estimate of arm regeneration rate alone. 
No new individuals appeared, and no individuals disappeared, at the revisited sites 
over the period of observation; therefore, no life table could be formulated. 

In each image measured, the number of visibly injured specimens was noted, along 
with the number with arms fully opened and the number in good close-up focus. 
To estimate the mean time between injuries, we followed the method of Baumiller 
(2013a). Total image area was calculated for each image, again using the 10-cm laser 
scale bar, which allowed computation of population density per image. All calcula-
tions were carried out in R (R Core Team 2014).

Table 3. Crinoid species identified in submersible trips off Roatán, Honduras, between 2012 and 
2014. 

Order/family Species/subspecies
Isocrinida

Isselicrinidae Cenocrinus asterius
Isselicrinidae Endoxocrinus parrae carolinae

Comatulida
Comatulidae (formerly Comasteridae) Comactinia meridionalis hartlaubi
Comatulidae Davidaster discoideus
Comatulidae Neocomatella pulchella
Charitometridae Crinometra brevipinna
Bourgueticrinidae Democrinus sp.
Atelecrinidae Unidentified genus and species

Cyrtocrinida
Holopodidae Holopus mikihe
Holopodidae Cyathidium pourtalesi
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Results

Size and Spatial Distribution.—The sizes of the measured H. mikihe speci-
mens followed a bimodal size distribution. Kernel density estimation, conducted us-
ing the R base function “density”, estimated the values of these modes at about 0.84 
cm and 1.79 cm (Fig. 3A). These size modes corresponded to two visually apparent 
life stages: the button-shaped “juveniles” (Fig. 3B, left), in which the calyx did not 
elevate the crown above the surface, but formed a flattened hemisphere attached to 

Figure 2. (A) Measurement of Holopus calyx size at widest point of calyx, demonstrated on a 
dead preserved individual. (B) Example of parallel lasers (white dots) used for size measurement 
of living specimens. (C) Individual with regrowing arms used in the calculation of arm regrowth 
rate and photographed in all 3 yrs. Note complete absence of radials in 2012. 
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the rock, and the fist-shaped “adults” (Fig. 3B, right), in which the calyx was taller 
than it was wide, and crown height reached a few centimeters above the surface. The 
minimum between the two modes was at about 1.14 cm, which was used as the divid-
ing line between adult and juvenile specimens for the remainder of the data analysis.

The total area of an image was negatively correlated with the population density at 
a rate of −0.041 individuals m−2 per square meter of image (R2 = 0.034, P = 0.0038); 
that is, closer-range images were likely to appear more densely populated. This was 
probably because the smallest individuals were not visible in the largest-scale images. 

Figure 3. (A) Size histogram and probability density curve (calculated by kernel density estima-
tion) for all 817 individuals, showing bimodal size distribution. Based on the density curve, “ju-
venile” size mode is at 0.84 cm, “adult” at 1.79 cm, and the minimum between them is 1.14 cm. 
(B) Example “juvenile” (top left) and “adult” individuals of Holopus mikihe, along with a large 
Cyathidium (dark with coiled arms) at upper right. White rings on substrate are bases of dead 
individuals, usually of indeterminate genus. Note similarity of calyx shape in juvenile Holopus 
and adult Cyathidium. 
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Growth and Regeneration Rates.—The 50th and 99th percentile growth rates 
among the sample of 60 specimens (or individuals) over the 3 yrs sampled were, re-
spectively, 0.044 cm yr−1 and 0.194 cm yr−1. The age estimates for very small, median, 
and very large specimens (1st, 50th, and 99th percentiles of size) in the sample of 817 
measured individuals are given in Table 4. As the errors resulting from this method 
of measurement are large relative to the growth rates, the left tail of the growth rate 
distribution is below 0, and so no minimum age estimates are given.

When growth rates among the repeatedly-sampled specimens are split by size 
class, using the value of 1.14 cm derived above from the larger set of body sizes and 
the mean size and growth rate of each individual over all years sampled, growth 
rates of juvenile and adult size classes differ significantly: adults grow faster than 
juveniles by a factor of about 2.5 [individuals ≤1.14 cm: mean = 0.026 (SD 0.069) cm 
yr−1; individuals >1.14 cm: mean = 0.063 (SD 0.045) cm yr−1, σ2=0.045; unpaired t-test: 
t = −2.419, P = 0.019]. If we take this slower juvenile mean growth rate at face value, 
we find that an individual would be approximately 44 yrs old when it reached 1.14 
cm. The modal 1.79-cm adult in our sample, after a further 0.65 cm of growth at the 
adult rate, would then be approximately 59 yrs old. However, the large variance in the 
juvenile growth rate suggests that it is near the lower boundary of detection by this 
method, and is probably not a reliable estimate.

Since the median adult in our sample is approximately 50 yrs old, if the popula-
tion size is stable, then it would take 50 yrs for complete population turnover, cor-
responding to a death rate of 100% in 50 yrs (= 2% yr−1). Therefore, we would expect 
to observe three or four deaths among our sample population of 60 during the 693 d 
separating the first and last observations. Dead Holopus are recognizable as empty 
calyx stumps, which are common and even abundant in some images. However, no 
individuals died or disappeared completely during this time period; the odds of this 
occurring with uniform 2% per year mortality risk are about 1 in 10, which means 
that the death rate was lower than expected given the age distribution. Similar rea-
soning applies to the lack of new individuals—although very young specimens may 
be unrecognizable in the images, we would expect some three or four individuals to 
pass into the visible size range and thus appear to be “born” during the approximate 
2-yr observation period, but we observed no such instances.

The rate of arm regeneration in the single individual in which it was measured 
was, on average, 0.6 cm yr−1 (i.e., 0.00167 cm d−1); this was about 10 times the median 
growth rate and four times the 95th percentile growth rate. 

Of all measured adults, 9.8% had visible injuries, an underestimate of the total in-
jury frequency, as many were photographed with arms closed, obscuring any injuries 
to the distal arms (see Fig. 4). Of the 54% that were photographed fully open with 
all arms visible, 18% exhibited visible injury. Also, large-scale images often did not 

Table 4. Age estimates for Holopus mikihe individuals of 1st, 50th, and 99th percentile sizes, based 
on 50th and 99th percentile growth rates.

Age (yrs), by growth rate percentile
Percentile Size (cm) 50th (0.044 cm yr−1) 99th (0.194 cm yr−1)
1st (smallest) 0.52 12.0 2.7
50th (median) 1.70 38.9 8.7
99th (largest) 3.12 71.5 16.1
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provide enough detail to identify injury. Accordingly, we used 9.8% as a minimum 
estimate of adult Holopus injury frequency. We observed no arm injuries in juveniles; 
either injury to such small specimens is rare, or most arms were either in unobserv-
able positions or were too small and unresolved in images. 

The average arm length in adults was approximately 4 cm. We assumed that in-
juries are evenly distributed over the length of the arm; that is, on average half the 
arm is lost. Then, following the equation in Baumiller (2013a), tr = (2 cm)⁄(0.00167 
cm d−1) and Pind = 0.098, so T = (−tr ln(Pind))

−1 = (0.00193 ± 0.00007 d−1)−1 = 517 ± 18 
d between injuries. Given the locations of specimens on vertical and overhanging 
rock faces protected from falling rock debris, we speculate that all arm injuries are 
predation-related.

Discussion

Growth and Life History.—The age of the average specimen of H. mikihe is 
probably comparable to, or greater than, that of other deep-water stalked crinoids 
(Table 1). Using a constant growth rate, the 99th percentile growth rate gives the 
median individual’s age at 8.7 yrs, which is lower than that estimated for either M. 
rotundus or Endoxocrinus spp. However, the 50th percentile growth rate gives a 
median age of 39 yrs, which is substantially older than the age estimates for any of 
the species in Table 1. Additionally, these ages do not take into account the differ-
ent growth rates in adults and juveniles. Regardless of the actual magnitude of the 

Figure 4. Different arm positions in adult Holopus mikihe: fully open (bottom right), mostly open 
with distal arm tips curled (top left), partially closed (bottom left), almost completely closed (right 
center). See Figure 1A for an example of the fully closed position (in a dead individual). These 
partially-closed postures would protect the distal arm tips and permit relatively quick movement 
to a fully closed position, while still allowing some food collection.
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difference between the juvenile and adult growth rates, the slower juvenile growth 
rate means that these ages for H. mikihe are underestimates.

Almost all extant crinoids develop a stalk following a planktonic or brooded larval 
stage. The feather stars, the majority of order Comatulida, pass through a stalked 
postlarval stage before taking up a free existence. Taxa that retain a stalk through-
out life (e.g., Isocrinida, Hyocrinida, Bourgueticrinidae) do not exhibit a well-defined 
postlarval stage. Among extant Cyrtocrinida, only members of Holopodidae (Holopus 
and Cyathidium) lack a stalk at any known developmental stage, although larvae, 
which exhibit an internally-developing stalk in other crinoid taxa, have not yet been 
observed in Holopodidae. In this case, juveniles of H. mikihe are morphologically sim-
ilar to adults of Cyathidium spp., which is consistent with the general assessment of 
Cyathidium as a paedomorphic relative to Holopus, although Améziane-Cominardi 
(1999) notes that tegminal characters of Cyathidium are peramorphic. Roux (1976) 
estimated that the isocrinid Endoxocrinus wyvillethompsoni passed through a 2.5-yr 
postlarval juvenile period, based on growth rates from a large Antarctic comatulid. 
However, the very slow growth rate documented here for H. mikihe indicates that the 
juvenile period may be much longer, possibly lasting decades. 

The observed arm regeneration rate of 0.6 cm yr−1 is much slower than the ex-
trapolated annual rate of 4.4–4.8 cm yr−1 estimated for a specimen of the isocrinid 
Neocrinus decorus at similar depths in The Bahamas (Messing et al. 2007) or the ini-
tial rate of 6.2 cm yr−1 recorded for aquarium-raised isocrinids, M. rotundus, that had 
autotomized their entire crown (Amemiya and Oji 1992). However, since the arms of 
H. mikihe are much more robust than those of either isocrinid, the volumetric rate of 
stereom addition may be more similar.

Crinoids appear to experience predator-related injuries less often in deep water 
than in shallow water (Oji 1996, Baumiller 2013a). Given the escalating pace of pred-
ator-prey relations that has been observed between the Mesozoic and the present by 
numerous authors (see Vermeij 2013), this is consistent with the pattern of migration 
from onshore to offshore environments over the history of the less-motile clades of 
modern crinoids (Bottjer and Jablonski 1988, Baumiller et al. 2010). As a result, deep-
water assemblages are often “archaic” in appearance, low in modern durophagous 
predators and dominated by sessile epifaunal suspension feeders (Aronson 1991, 
Améziane and Roux 1997). The comparatively low injury rates (Table 2) found here 
for H. mikihe are consistent with their low-energy, deep-water community. The in-
jury rates are lower even than those of some shallow-water Paleozoic crinoid popula-
tions (Gahn and Baumiller 2005). Assuming that most mortality in adults is caused 
by predatory interactions, an average adult age of 50 yrs means an average “waiting 
time” of 50 yrs for a lethal predatory encounter. Since our injury calculation above 
gave a waiting time of about 1.4 yrs, if injury frequency is independent of size among 
adult individuals, this means that about 3% of interactions between H. mikihe and its 
predators are fatal. Injury and fatality frequencies this low suggest that H. mikihe is 
not a major prey item for any predator in this locality.

The lack of new individuals during the observation period, in combination with 
the decreased size heterogeneity within more densely populated regions, suggests 
that recruitment occurs in local bursts either very rarely and/or sporadically. The 
pattern of juveniles growing more slowly than adults is known from other organisms. 
Trees in dense forests, for example, will remain sapling-sized for many years while 
waiting for a canopy opening, a pattern described as “advance regeneration” (Messier 
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et al. 1999). This is consistent with the very slow and temporally uneven death rate 
observed. However, in the focal system there is no known resource whose role is 
obviously comparable to that of sunlight in a forest canopy, as the Holopus popula-
tions do not appear dense enough to restrict access to current-borne food particles, 
and individuals living in regions of high population density did not have significantly 
stunted growth. Alternatively, growth rate may be governed purely by current veloc-
ity, which regulates food availability. Near the rock surface, currents are slowed by 
boundary effects; if juveniles are confined within this slow-flowing boundary layer, 
their food supply may thus simply be insufficient to allow rapid growth until the 
transition to their adult calyx shape elevates them into more turbulent water. In this 
case, a rapid change from slower to faster growth could produce the observed local 
minimum in size frequency around the size where the growth speed transition oc-
curs. It is also likely that different rates or causes of mortality apply to the juvenile 
and adult size classes; higher mortality in juveniles than in adults would accentuate 
the size frequency minimum between the two stages. 

Habitat and Behavior.—We observed no consistent current direction at crinoid 
sites during submersible dives; the trajectories of particles of marine snow indicated 
that the water moved slowly and changed direction frequently, although we observed 
apparently tidally-induced or influenced flow of up to approximately 50 cm s−1 and 
parallel to the local slope in other areas. Therefore, we observed no clear orientation 
of the oral disc, funnel, bivium, or trivium with respect to the current; instead, the 
arm funnels of all individuals were oriented normal to the rock face. While this is 
contrary to preliminary observations published elsewhere, it is not inconsistent with 
the proposition that unidirectional current flow produces asymmetries (Grimmer 
and Holland 1990). 

It has also been proposed that Holopus is a raptorial feeder, capable of contracting 
its arms very quickly to form a “cage” for large prey items (Grimmer and Holland 
1990). However, the individuals observed closing their arms all appeared to be re-
sponding to water movements generated by the approaching submersible (and not, 
apparently, to the submersible’s lights), and did so too slowly to capture actively 
motile organisms. Thus, we speculate that such arm closing is a defensive response. 
Moreover, the individuals observed with semi-closed arms did not appear to be in a 
cage-like position; instead, the center of the calyx’s oral surface was exposed and the 
arms were distally enrolled (Fig. 4). Anatomical comparisons to other raptorially-
feeding echinoderms, specifically the gorgonocephalid basket stars Gorgonocephalus 
caputmedusae (Emson et al. 1991, Rosenberg et al. 2005) and Astrophyton murica-
tum (Macurda 1976), are consistent with these inferences: no food-capturing hooks 
or similar articulated adambulacral structures have ever been described for any ho-
lopodid (Donovan 1992). On this basis, we found no evidence in favor of the raptori-
al-feeding hypothesis.
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Appendix 1. Species and authorities mentioned in the present study. 

Endoxocrinus (Annacrinus) wyvillethomsoni (Jeffreys, 1870)
Astrophyton muricatum (Lamarck, 1816)
Bathycrinus carpenterii (Danielsen and Koren, 1877) 
Beryx decadactylus Cuvier, 1829
Calocidaris micans (Mortensen, 1903)
Cenocrinus asterius (Linnaeus, 1767)
Comactinia meridionalis hartlaubi Messing, 1978
Crinometra brevipinna (Pourtalès, 1868)
Cyathidium pourtalesi Améziane, 1999
Davidaster discoideus (Carpenter, 1888)
Dendrophyllia alternata Pourtalès, 1880
Endoxocrinus parrae carolinae (AH Clark, 1934)
Endoxocrinus wyvillethompsoni (Jeffreys, 1870)
Eugeniacrinites cariophilites (von Schlotheim, 1813)
Florometra serratissima Clark, 1907
Gorgonocephalus caputmedusae (Linnaeus, 1758)
Grammicolepis brachiusculus Poey, 1873
Holopus mikihe Donovan and Pawson, 2008
Holopus rangii d’Orbigny, 1837
Ijimaia antillarum Howell Rivero, 1935
Metacrinus rotundus Carpenter, 1884
Neocomatella pulchella (Pourtalès, 1878)
Neocrinus decorus Thomson, 1864
Novodinia antillensis (A. H. Clark, 1934)
Oxynotus caribbaeus Cervigón, 1961
Pilocrinus moussoni (Desor)
Plesiodiadema antillarum (A. Agassiz, 1880)
Synagrops bellus (Goode and Bean, 1896)
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