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Determining the Extent and Characterizing Coral Reef
Habitats of the Northern Latitudes of the Florida Reef
Tract (Martin County)
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Abstract

Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention
focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts
due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in
the world, southeast Florida (25–27u N latitude) is a prime region to study such effects. Most of the shallow-water FRT
benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities
of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high
resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats.
Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive
accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new
coral reef ecosystem region designation was warranted. Of the 374 km2 seafloor mapped, 95.2% was Sand, 4.1% was Coral
Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of
94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated
that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem
region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR
morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions
may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the
benthic community composition of the northern FRT, serving as a baseline for future community shift and range expansion
investigations.
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Introduction

Effective marine resource management begins with knowing the

types, amounts, and spatial distribution of resources. Rigorously

ground-truthed benthic habitat mapping via geographic informa-

tion systems (GIS), a process by which remote sensing data are

interpreted into seafloor habitats, provides this valuable informa-

tion. Globally, benthic habitat mapping has been employed in

many coral reef ecosystems, utilizing various techniques and data

types including the interpretation of aerial photography, satellite

imagery, bathymetric data, in situ visual imaging, or a combination

thereof [1]. Currently across the ten United States coral reef

jurisdictions, over 12,100 km2 of shallow-water (, 30 m) coral

reef habitats have been mapped by this process [2].

Coral reefs thrive in warm tropical waters, therefore much of

the coral reef habitat mapping has focused on tropical and

subtropical areas with little regard for higher latitude temperate

regions even though coral communities may be present [3,4].

Climate change has recently been implicated in poleward shifts of

many tropical species including corals [5,6,7], thus attention

focused on higher latitude coral communities is warranted to

investigate possible range expansions and ecosystem shifts due to

global warming.

As the northern extension of the Florida Reef Tract (FRT),

southeast Florida is a prime region to study climate change effects.

The FRT, the third largest barrier reef ecosystem in the world

[8,9], spans approximately 595 km of linear coastline from the

Dry Tortugas in the southwest to Martin County in the northeast.

The 135 km southern portion resides in an east-west orientation

mostly at the same latitude (24.5u N) before it arcs northeast over a

245 km span (25.5u N). The final 215 km extends north to 27.25u
N. This northern extension transitions from a tropical to
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temperate Holdridge Life Zone [10] where several estuarine

biogeographic zones have been defined [11]. Recent analyses of

this northern extension identified several biogeographic spatial

barriers where the number of benthic habitats attenuated

northward along the coast and various habitat metrics differed

significantly between 5 sub-regions [12].

Most of the shallow-water FRT benthic habitats have been

mapped [12,13], however minimal data and limited knowledge

exist about the coral reef communities of its northernmost reaches

off Martin County. This study maps and characterizes the seafloor

in Martin County to provide benthic resource data. First benthic

habitat mapping was conducted using newly-acquired high

resolution LIDAR bathymetry and aerial photography where

possible to map the spatial extent of coral reef habitats.

Quantitative data were collected to characterize benthic cover

and stony coral demographics and a comprehensive accuracy

assessment was performed. The benthic mapping data were then

analyzed in the habitat biogeographic context of Walker [12] to

determine if the newly mapped habitat types and configurations

differ from those found further south. These data not only provide

new information on the little-studied benthic community compo-

sition, but they also serve as a baseline for future community shift

and range expansion investigations, assist resource managers in the

development of conservation action strategies, and enable

permitted activity impact avoidance enforcement.

Methods

No specific permissions were required for this study. The study

was observatory and did not include the disturbing or removal of

organisms other than those expected from normal SCUBA diving.

The study was approved by Florida Department of Environmental

Protection, Florida Fish and Wildlife Conservation Commission,

and the National Oceanic and Atmospheric Administration, with

the latter two providing the funding. A portion of the study

included the St. Lucie Inlet Preserve State Park, who also

supported the effort. The field studies did not involve endangered

or protected species at the time of the study.

2.1 Benthic habitat mapping
The marine benthic habitats in Martin County were mapped

using a combined technique approach similar to other southeast

Florida counties [1,12]. The area of interest covered approxi-

mately 350 km2 of seafloor from shore to the 30 m depth contour.

Image-based analyses in deeper water were not useful due to poor

water clarity; therefore, a high resolution (4 m) LIDAR bathy-

metric survey was conducted to image the sea floor. LIDAR were

acquired in December 2008 and 2009 by Blom Aerofilms, Ltd.

using an Airborne Hydrography AB Hawkeye II LIDAR [14].

The data were collected with a hydrographic accuracy of 6 2.5 m

horizontal and 6 0.25 m (rms) vertical (IHO order 1) at an

altitude of approximately 500 m, yielding a point spacing of

approximately 4 m. Cleaned and processed LIDAR point data

were then interpolated by nearest neighbor into high resolution

digital elevation models and hillshaded surfaces.

Benthic habitat maps were produced by visual interpretation of

the bathymetric LIDAR, aerial photography, and other data at a

1:6000 scale with a 0.4 hectare minimum mapping unit, classifying

seafloor features based on their geomorphology. Geomorphology

and depth were used as surrogates for differing benthic commu-

nities [15] based on previous regional mapping efforts [1,16,17]

and supplemental information. A comprehensive dataset from

previous work at the county, state, and federal level was assembled

in ArcGIS to aid in the seafloor feature identification. The high

resolution hillshaded LIDAR images were the primary data source

used to discriminate seafloor features. Additionally the interpre-

tation was supplemented by other datasets including Martin

County Property Appraisal aerial photography, Southeast Florida

Coral Reef Evaluation and Monitoring Program monitoring data,

and FWRI artificial reef location data. Conflicts between data

types were resolved by expert-driven interpretation based on the

agreement of the majority of data types with an emphasis on the

most recent data.

2.2 Classification scheme
The benthic habitat classifications conformed to the scheme

used in previous regional efforts [1,12] which were adopted from

NOAA hierarchical classification scheme used in Puerto Rico and

the U.S. Virgin Islands NOAA Technical Memorandum National

Ocean Service (NOS) National Centers for Coastal Ocean Science

(NCCOS) Center for Coastal Monitoring & Assessment CCMA

152 [18,19] with some modification. The habitats identified in the

mapping were as follows:

Coral reef and colonized hardbottom. Hardened sub-

strate of unspecified relief formed by the deposition of calcium

carbonate by reef building corals and other organisms or existing

as exposed bedrock. Habitats within this category have some

colonization by live coral.

Colonized pavement. Flat, low-relief, solid carbonate rock

with coverage of macroalgae, hard coral, gorgonians, and other

sessile invertebrates that are dense enough to partially obscure the

underlying carbonate rock.

Colonized pavement-shallow. Colonized pavement in

water shallower than 10 m. This category includes rubble in

many areas; however, consolidated rubble fields are a less frequent

feature in shallow water. Especially inshore of the ridge complexes,

limited rubble is found and a wide, contiguous area of pavement is

encountered. This area can have variable sand cover, which shifts

according to wave energy in response to weather. Thus, some of

the colonized pavement will always be covered by shifting sand

and the density of colonization will be highly variable.

Ridge. Linear, shore-parallel, low-relief features that appear to

be submerged cemented ancient shoreline deposits. Presumably,

they are an extension of the foundation upon which the linear reefs

grew further south and consist of early Holocene shoreline

deposits; however, verification is needed. The biological cover is

similar to that of colonized pavement with macroalgae, scleracti-

nians, gorgonians, and other sessile invertebrates that are dense

enough to partially obscure the underlying carbonate rock.

Ridge-deep. Linear, often shore-parallel, low-relief features

that mostly occur deeper than 20 m. It consists of hardbottom with

sparse benthic communities in most parts likely due to variable

and shifting rubble and sand cover. Some parts contain exposed

ledges where large fish (e.g. Goliath grouper, Nurse Shark) may

congregate.

Ridge-shallow. Ridges found in water shallower than 10 m

near shore that are geomorphologically distinct, yet their benthic

cover remains similar to the shallow colonized pavement

communities on the surrounding hard grounds.

Deep ridge complex. A complex of ridges found in deep

water in northern Palm Beach and Southern Martin Counties.

These features reside in depths from 20 to 35 m and are presumed

to be of cemented beach dune origin. Most of this habitat consists

of low cover, deep communities dominated by small gorgonians,

sponges, and macroalgae, but denser areas exist, especially near

areas of higher relief. Some areas, particularly between ridges,

may contain large areas of shifting unconsolidated sediments.

Characterization of the Northern FL Reef Tract
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Scattered rock in unconsolidated sediment (SCRUS)-
deep. Primarily sand bottom with scattered rocks that are too

small to be delineated individually in water deeper than 20 m.

SCRUS-shallow. Primarily sand bottom with scattered rocks

that are too small to be delineated individually in water shallower

than 20 m.

Unconsolidated sediments. Unconsolidated sediment with

less than 10 percent cover of submerged vegetation.

Sand. Coarse sediment typically found in areas exposed to

currents or wave energy.

Sand–deep. Sand deeper than the 25 m contour exposed to a

lower energy environment that can have finer grain size, sparse

Halophila spp., and a rubble component. This habitat can contain a

high cover of turf and low-lying benthos in some areas.

Sand–shallow. Shallow water (, 25 m) sediment exposed to a

higher energy environment. Large, mobile sand pockets are found

on the areas of consolidated hardgrounds. It is believed that the

sand movement is a deciding factor in the generation of benthic

patterns.

Other delineations
Artificial. Manmade submerged habitats such as wrecks,

portions of rip-rap jetties, and spoil piles.

Inlet jetty. Artificial structures placed at the inlet channel

primarily to block wave energy and reduce erosion.

Sand borrow area. Pits excavated during previous sand

dredging projects for beach nourishment.

2.3 In situ benthic characterization
Benthic characterization surveys were conducted in August

2012. Site locations were determined by a statistically robust

random sample design similar to Smith et al. [20] stratifying across

habitat classes throughout the county. The sites were distributed

across the seascape to provide data on all the main hardbottom

habitats and account for latitudinal variation. The data collection

methods were adopted from those used in the Mesoamerican

Barrier Reef System Project [21] and the widely used Atlantic and

Gulf Rapid Reef Assessment [22]. Data at each site were collected

on four 30 meter point-intercept transects at an intercept density

of 0.25 m for a total of 480 (12064) points per site. At each point,

divers identified the organism under the transect tape by major

functional groups (hard coral species, turf algae, macroalgae,

sponge, zoanthid, etc.) or bare substrate type. As underwater dive

limits permitted, all stony corals within 0.5 m of either side of the

transects were recorded for colony size (length, width, height), live

tissue area (length x width of live tissue), percent mortality,

presence of bleaching, and presence of disease. Finally rugosity

was estimated along each transect by measuring the distance along

the bottom contour to the linear distance. All four measurements

were combined to create a rugosity index for each site by dividing

the contour distance by the linear distance.

Multivariate analyses were performed in Primer v6. A cluster

analysis and corresponding non-metric multi-dimensional scaling

(MDS) plot was constructed using Bray-Curtis similarity indices of

the benthic cover data (square-root transformed) to evaluate

benthic cover between sites. A one-way analysis of similarity

(ANOSIM) was performed to statistically determine the strength of

the site categorization by habitat. ANOSIM is a permutation-

based hypothesis test analogous to univariate analyses of variance

(ANOVAs) that tests for differences between groups of (multivar-

iate) samples from different experimental treatments. The closer

the R statistic is to 1, the stronger the categorical groups. Its

strength is dependent on the number of samples per category

which defines the number of possible permutations. One-way

nonparametric ANOVA using the Wilcoxon method was used to

examine differences in rugosity and biological cover category data

(i.e., the number of major live functional group categories per site)

by habitat.

2.4 Map accuracy assessment
A map accuracy assessment (AA) was performed. Target

locations were determined by a GIS-based, stratified random

sampling technique used in other regional mapping efforts

[17,23,24]. The map proportions of all Coral Reef and Colonized

Hardbottom and Artificial habitats were used to determine the

percentage of assessment sites per habitat. An additional 33

Table 1. Martin County Benthic Habitat Areas (km2).

Habitat Type Modifier Modifier Area (km2) Type Area (km2) Habitat Area (km2)

Coral Reef and
Colonized
Hardbottom

Colonized Pavement Shallow 2.41 ; 0.64% 2.41 ; 0.64% 15.45 ; 4.13%

Ridge Deep 5.11 ; 1.36% 12.96 ; 3.46%

Shallow 4.57 ; 1.22%

Deep Ridge Complex 3.28 ; 0.88%

Scattered Coral/Rock in
Sand

Deep 0.05 ; 0.01% 0.05 ; 0.01%

Shallow 0.03 ; 0.01% 0.03 ; 0.01%

Unconsolidated
Sediment

Sand Deep 42.55 ; 11.36% 356.49 ; 95.21% 356.49 ; 95.21%

Shallow 313.95 ; 83.85%

Other Delineations Artificial 0.12 ; 0.03% 0.12 ; 0.03% 2.49 ; 0.66%

Inlet Jetty 0.02 ; 0.00% 0.02 ; 0.00%

Sand Borrow Area 2.35 ; 0.63% 2.35 ; 0.63%

Total Mapped Area
(km2)

374.43 ; 100.00%

doi:10.1371/journal.pone.0080439.t001

Characterization of the Northern FL Reef Tract
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locations were added to sand which is comparable to other efforts.

Four benthic habitat classes found in the draft benthic habitat map

were excluded from the accuracy analysis; the Inlet Jetty, Sand

Borrow Areas, Sand-Deep, and Deep Ridge Complex. The first

two were excluded because they are unnatural habitats, although

artificial was included because of their ecologic value. The Deep

Ridge Complex was excluded because it was mapped and assessed

during the Palm Beach mapping effort [16]. This yielded 199

stratified random accuracy assessment target locations to be visited

by drop camera and analyzed by confusion matrix approach [25].

Underwater video from a drop camera was taken at each AA

target location. This procedure involved the boat positioning itself

Figure 1. Martin County quantitative ground validation sites overlaying the benthic habitat polygons. Dives at sites 1, 2, and 7 were
abandoned due to strong current. Data sources: Land imagery is 2000 USGS Digital Orthophoto Quads mosaicked and provided by the South Florida
Water Management District. The habitat map was a result of this study. Grey hill-shaded lidar data were collected by Tenix LADS in 2002 and provided
by Palm Beach County Environmental Resource Management.
doi:10.1371/journal.pone.0080439.g001

Characterization of the Northern FL Reef Tract
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within 5 m of the target and lowering a Sea Viewer 950

underwater color video drop camera with a Sea-trak GPS video

overlay connected to a Garmin 76CSx GPS with WAAS

correction (,3 m accuracy) to the bottom. Color video was

recorded over the side of the stationary/drifting vessel approxi-

mately 0.5–2 m from the seafloor. Fifteen second to two minute

video clips were recorded directly to a digital video recorder.

Video length depended on the habitat type and vessel drift. Videos

of large expansive sand habitats were generally short (, 1 min)

while reef habitats, especially edges, were longer. Concurrent with

recording video, an observer categorized each site according to the

video and surrounding area into a database.

Statistical analyses to determine the thematic accuracy by

confusion matrix approach were derived from Congalton [26],

Hudson and Ramm [27], and Ma and Redmond [28]. Matrices of

user and producer map accuracy error, overall map accuracy

error, and the Tau coefficient were generated. The error matrices

were constructed as a square array of numbers arranged in rows

(map classification) and columns (true, or ground-truthed classi-

fication). The overall accuracy (Po) was calculated as the sum of the

major diagonal (i.e. correct classifications) divided by the total

number of accuracy assessment samples. The producer’s and

user’s accuracies are both category-specific. Each diagonal

element was divided by the column total to yield a producer’s

accuracy and by the row total to yield a user’s accuracy. The

producer’s and user’s accuracies provide different perspectives on

the classification accuracy of a map. The producer’s accuracy

(omission/exclusion error) indicates how well the mapper classified

a particular habitat (e.g. the percentage of times that substrate

known to be sand was correctly mapped as sand). The user’s

accuracy (commission/inclusion error) indicates how often map

polygons of a certain habitat type were classified correctly (e.g. the

percentage of times that a polygon classified as sand was actually

sand). The Tau coefficient (Te) is a measure of the improvement of

classification accuracy over a random assignment of map units to

map categories [28]. In this case, Te is simply an adjustment of Po

by the number of map categories. As the number of categories

increases, the probability of random agreement diminishes, and Te

approaches Po.

Direct interpretation of producer’s and overall accuracies can

be problematic, as the stratified random sampling protocol can

potentially introduce bias [29,30,31]. Stratification ensures ade-

quate representation of all map categories, by assigning an equal

number of accuracy assessment to each map category. This caused

small extent map categories to be sampled at a greater density

(observations per unit area) than large ones. The bias introduced

by differential sampling rates was removed using the method of

Card [32], which utilizes the known map marginal proportions,

i.e. the relative areas of map categories. The map marginal

proportions were calculated as the area of each map category

divided by the total area calculated from the Martin County

habitat map polygons. The map marginal proportions were also

utilized in the computation of confidence intervals for the overall,

producer’s, and user’s accuracies [32].

2.5 Spatial analyses
Benthic habitat polygons were tested for spatial autocorrelation

in ArcGIS using Moran’s Index to ensure the polygons did not

significantly differ from a random distribution. Map data were

then combined with the previous southeast Florida maps [12] and

statistically examined to determine where the number and size of

seagrass, coral reef, and colonized hardbottom habitats signifi-

Figure 2. Multidimensional scaling plot of percent cover data for all benthic characterization surveys.
doi:10.1371/journal.pone.0080439.g002

Table 2. One way analysis of similarity (ANOSIM) results of
benthic cover data by habitat types.

ANOSIM Pairwise Tests R Significance

Benthic Habitat Groups Statistic Level %

Ridge - Deep, Ridge - Shallow 0.257 3.2

Colonized Pavement - Shallow, Ridge - Deep 0.159 19.4

Colonized Pavement - Shallow, Ridge - Shallow 0.038 38.9

Bold type indicates a significant difference between groups. The R statistic
indicates the strength of the difference where 1 is the strongest and 0 is
weakest.
doi:10.1371/journal.pone.0080439.t002

Characterization of the Northern FL Reef Tract
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cantly differ. Two hundred and forty-eight parallel, cross-shelf

vector-line transects spaced 750 m apart were created in GIS

throughout the entire mapped region. An intersect was performed

between the vector-line transects and the benthic habitat polygons,

which broke the transect lines at each point where they intersected

with a habitat polygon. The length of each resulting line segment

was calculated to determine the linear cross-shelf distance of each

habitat (width). A cluster analysis and corresponding non-metric

multi-dimensional scaling (MDS) plot was then constructed using

Bray-Curtis similarity indices (PRIMER v6) of the cross-shelf

habitat width data (square-root transformed) to evaluate regions

with distinct habitat composition. The groups of transects that

occurred within the clusters with 60% similarity were then

categorized in GIS and visually examined to evaluate the clusters

for any spatial grouping consistency. Inspection of the benthic

habitats where MDS clusters split helped identify the key locations

in the habitat mapping data where the regional boundaries were

defined. After defining the boundaries, all cross-shelf transects

were categorized by the corresponding region. These categories

were imported in Primer as factors and a one-way analysis of

similarity (ANOSIM) was performed to statistically determine

their similarity. The factors were also displayed on the MDS plot

to see how the categorization related to the 60% MDS clusters.

Results

3.1 Habitat extents
Planar area of the mapping effort totaled 374.4 km2 in GIS of

which 95.2% was Sand, 4.1% was Coral Reef and Colonized

Pavement, and 0.7% was Other Delineations (Table 1). Hard-

bottom habitats were sparse outside of a shallow, near shore area

Figure 3. Percent benthic cover data averaged across all sites in the same mapped habitat. Error bars represent one standard deviation.
doi:10.1371/journal.pone.0080439.g003

Table 3. Error matrix for Major Habitat.

TRUE ( j )

MAJOR HABITAT Hard Soft ni -

USERS
Accuracy (%)

(
i

) Hard 114 24 138 82.6

M
A

P Soft 2 41 43 95.3

n- j 116 65 181 , = n

PRODUCERS
Accuracy (%)

98.3 63.1 Po 85.6%

Te = 0.713±0.102

The overall accuracy (Po) was 85.6%. The Tau coefficient for equal probability of
group membership (Te) was 0.713, with a 95% Confidence Interval of 0.611–
0.815.
doi:10.1371/journal.pone.0080439.t003

Characterization of the Northern FL Reef Tract
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around St. Lucie Inlet and a few thin deep ridge lines (Figure 1).

Although not confirmed by coring, these features are thought to be

cemented beach dunes submerged during the last Holocene sea

level transgression [12,33]. The most extensive deep hardbottom

was the northern end of the Deep Ridge Complex which extends

from Palm Beach into southern Martin for about 2 km before it is

covered with sediment. Only small, thin portions of the tallest

ridges are exposed further north. In southern Martin there are

three shore-parallel deep ridge lines. The first deep ridge, known

as Three-Holes reef, is located approximately 2 km from shore in

18 m water depth and extends approximately 3.5 km northward

in a mostly continuous arrangement. The second deep ridge

appears at the same latitude that Three-Holes terminates, but it is

approximately 6 km from shore in 22 m of water. This mostly

continuous feature extends northward for about 6 km. The third

deep ridge, known as Seven-Mile-Ledge, is the most conspicuous

deep (22 m) hardbottom feature. Despite its name, this feature is

located approximately 6 km (, 4 miles) from shore in southern

Martin. This is also its widest portion at just about 0.5 km. This

ridge extends northward over 23 km with relatively few (4) small

breaks or gaps. At its northern terminus, it is located about

12.8 km (8 miles) from shore in 25 m water depth.

The majority of shallow hardbottom habitats exists near St.

Lucie inlet (Figure 1). This is comprised of two habitats, Colonized

Pavement-Shallow and Ridge-Shallow. The differences between

their delineations were mainly morphological. The Ridge-Shallow

has an obvious linear morphology with higher relief at the feature

scale (1–10 ha). The Colonized Pavement-Shallow is typically

lower relief and has no distinct linear morphology. The

combination of these two habitats is referred to as the Nearshore

Ridge Complex [12,33]. The shallow Martin County ridges

extend 2.5 km north of the inlet and 11.5 km south in a shore-

parallel orientation. The eastern side resides in about 10 m depth,

it crests near 3 m and the western side remains shallow in some

parts and drops back to 10 m in others. The Colonized Pavement-

Shallow is located westward of the shallow ridge in waters 10 m to

4 m deep, sloping upward toward shore. These habitats terminate

at the shoreline. The northern terminus is known as Bath Tub

Reef and the southern end is covered by the shoreline just off

Bridge Road on Jupiter Island. Small portions of shallow ridge

appear north of the inlet off Jensen Beach.

Approximately 356.5 km2 were identified as unconsolidated

sediments part of which contained different sediment features that

were not part of the mapping. The most conspicuous features were

large sand dunes throughout the county extending to the

northeast. In the south, these dunes appear to be partially or

totally burying portions of deep ridge habitats and can be 11 m

high extending over 3.6 km wide [34]. Little is known about the

movement of these features, but given the dynamic environment

and the frequency of high currents, they may be migrating across

the seafloor, including over the deep ridges.

3.2 Benthic communities
Quantitative benthic characterization data were collected on 16

sites: 7 Ridge-Deep sites, 5 Ridge-Shallow sites, and 4 Colonized

Pavement-Shallow sites (Figure 1). A cluster analysis and

corresponding non-metric multi-dimensional scaling (MDS) plot

showed that the sites were more similar than not, yet subtle

distinctions were evident when the sites were categorized by

habitat (Figure 2). The Ridge-Deep sites all plotted on one side of

the graph and the two shallow habitats on the other, showing there

are likely differences between shallow and deep habitats.

Furthermore apart from one site, colonized pavement and shallow

ridge did not cluster, indicating a wide range of benthic

communities between shallow sites.

Multivariate differences of cover types and amounts among sites

were not statistically strong among the habitat categories. A one-

way analysis of similarity (ANOSIM) indicated the Ridge-Deep

and Ridge-Shallow were significantly different (p = 0.03),

supporting the MDS results, yet the difference was not very

strong (R = 0.257) (Table 2). Comparisons between Deep-Ridge

and Colonized Pavement-Shallow and between Colonized Pave-

ment-Shallow and Ridge-Shallow were not significant.

Differences of mean percent benthic cover by habitat were

evident, however, cover varied greatly within habitats and most

cover types were low (, 5%) (Figure 3). Turf algae were more

abundant on the shallow colonized pavement (41.4%611.1) and

ridge (52.4%619.6) than the deep ridge (19.1%69.5) and vice

versa for cyanobacteria. Sediment on Colonized Pavement -

Shallow sites ranged from , 5% to over 30% and macroalgal

cover varied from 17.9% to 53.8%. On the Ridge-Shallow sites,

macroalgae varied between 6.3% and 49.4%; Sediment ranged

from 0% to 36.3%; cyanobacteria ranged from 0.8% to 13.3%;

and the zooanthid Palythoa caribaeorum was only found at one

site but contributed 11.3%. The same was true in the Ridge-Deep

where macroalgae ranged from 11.9% to 56.7%, sediment ranged

from 6% to 49.8%, and cyanobacteria ranged from 3.3% to

69.6%. Cyanobacteria cover on the Ridge-Deep was significantly

higher (17.3766.2 SEM) than Colonized Pavement-Shallow

(0.9868.3 SEM) (p = 0.01).

Although the mean biotic cover categories (e.g. macroalgae,

hydroids, coral) was smaller on the Colonized Pavement-Shallow

(5.560.84 SEM), it was not significantly different from the Ridge-

Shallow (760.75 SEM) and Ridge-Deep (7.460.64 SEM).

Table 4. Error matrix for Major Habitat using individual cell probabilities (Pij).

TRUE ( j )

MAJOR HABITAT Hard Soft p i USERS Accuracy (%) USERS CI (± %)

(
i

) Hard 0.027 0.006 0.033 82.6 6.5

M
A

P Soft 0.045 0.922 0.967 95.3 6.4

n- j 0.072 0.928 1.000 , = n

PRODUCERS Accuracy (%) 37.8 99.4 Po 94.9%

PRODUCERS CI (± %) 32.5 0.2 CI (±) 6.2%

The overall accuracy, corrected for bias using the known map marginal proportions (pi), was 94.9% with a 95% Confidence Interval of 88.7% – 100%.
doi:10.1371/journal.pone.0080439.t004
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However, mean rugosity of the Ridge-Shallow (1.2560.07 SEM)

and Colonized Pavement-Shallow (1.0960.08 SEM) sites were

significantly higher than the Ridge-Deep (1.0460.06 SEM) (p =

0.03) indicating the Ridge-Deep sites were flatter.

A total of 553 stony coral colonies were identified, counted, and

measured. Nine species were found (Pseudodiploria clivosa,

Isophyllia sinuosa, Madracis decactis, Millepora alcicornis, Porites

astreoides, Oculina diffusa, Siderastrea siderea, Solenastrea

hyades, and Stephanocoenia intersepta), but Siderastrea siderea

(80.3%) and O. diffusa (15.9%) dominated the populations. Stony

coral density for all sites out of 1737 m2 surveyed was 0.32 m22,

equating to one coral every 3.1 m2. Although many corals were

counted, colony size was generally small. The estimated total area

of live tissue (max length * max width) – (max length * max width *

percent total mortality) for all 553 colonies was 2.8 m2. Three

species accounted for 97.7% of the total live coral tissue in the

transects; P. clivosa (42.9%), Siderastrea siderea (30.2%), and O.

diffusa (24.6%). Although only 8 P. clivosa colonies were counted,

they were the largest colonies and accounted for the most live

tissue area. Interestingly, S. siderea had the smallest mean length

(4.7 cm), yet was the second highest contributor to live tissue area

because of its high numbers (444).

Coral density and live tissue area varied between species by

habitat. Although not significant due to high variation, Ridge –

Deep habitats had the highest mean coral density (x2 = 0.4860.11

SEM) followed by Ridge – Shallow (x2 = 0.2960.13 SEM) and

Colonized Pavement – Shallow (x2 = 0.2260.14 SEM). S. siderea

and O. diffusa were the densest corals in all habitats. Although not

significant, mean S. siderea densities were highest in the deep ridge

(x2 = 0.4360.10 SEM), then shallow ridge (x2 = 0.2360.12

SEM), and were lowest on the shallow colonized pavement

(x2 = 0.1360.14 SEM). Mean O. diffusa densities were highest on

the shallow colonized pavement (x2 = 0.0860.04 SEM), lower on

Figure 4. Multidimensional scaling (MDS) plot of Bray-Curtis similarity matrix of 248 regional cross-shelf transects displayed using
the six final regional categories. The outlines represent 60% similarity from the cluster analysis.
doi:10.1371/journal.pone.0080439.g004

Table 7. A summary of the analysis of similarity (ANOSIM)
pairwise test between the six identified biogeographic
regions.

ANOSIM Pairwise Tests R Significance

Groups Statistic Level %

Biscayne, Broward-Miami 0.941 0.1

Biscayne, Deerfield 0.993 0.1

Biscayne, South Palm Beach 0.873 0.1

Biscayne, North Palm Beach 1 0.1

Biscayne, Martin 0.806 0.1

Broward-Miami, Deerfield 0.895 0.1

Broward-Miami, South Palm Beach 0.883 0.1

Broward-Miami, North Palm Beach 0.998 0.1

Broward-Miami, Martin 0.88 0.1

Deerfield, South Palm Beach 0.115 3.2

Deerfield, North Palm Beach 0.996 0.1

Deerfield, Martin 0.671 0.1

South Palm Beach, North Palm Beach 0.849 0.1

South Palm Beach, Martin 0.531 0.1

North Palm Beach, Martin 0.621 0.1

All tests were significant (p # 0.032). The R statistic indicates the strength of the
difference where 1 is the strongest and 0 is weakest.
doi:10.1371/journal.pone.0080439.t007
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Figure 5. Overview maps showing the cross-shelf transects symbolized by the 60% similarity MDS clusters (left) and the six
identified regions (right). BFZ = Bahamas Fault Zone. Data sources: Land imagery is 2000 USGS Digital Orthophoto Quads mosaicked and
provided by the South Florida Water Management District. The habitat map was a result of this and previous studies by the author (See Walker et al.
(2008) and Walker (2012)). Grey hill-shaded lidar data were collected by Tenix LADS in 2001 and 2002. Lidar data were provided by Miami-Dade
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the deep ridge (x2 = 0.0560.03 SEM), and lowest on the shallow

ridge (x2 = 0.0360.04 SEM). Mean estimated live tissue area was

not significantly different between habitats. Pseudodiploria clivosa had

the highest estimated mean coral live tissue, but it was only found

in the shallow ridge habitat.

Mean maximum coral length and height were low for most

species (less than 10 cm) and did not significantly differ between

habitats. There were one 12 cm P. astreoides and one 13 cm S.

intersepta. P. clivosa was the largest species found, with a mean max

length of 39.1 (623.2) cm out of 8 colonies that ranged from 33 to

County Environmental Resource Management, Broward County Natural Resources Planning and Management Division, Palm Beach Environmental
Resource Management, and Coastal Planning and Engineering. Martin lidar were collected as part of this study.
doi:10.1371/journal.pone.0080439.g005

Figure 6. Three-dimensional image of the Nearshore Ridge Complex ((NRC) Ridge-Shallow and Colonized Pavement-Shallow
habitats) south of St. Lucie inlet with the quantitative groundtruthing site locations. The depth profile shows a cross-shelf surface contour
of the flatter colonized pavement on the left (west), the ridge right of center, and the sand on the right (east). The ridge in this area exhibits a 7 m
drop in elevation over an 800 ft distance. Data sources: Grey hillshaded Lidar were created in this study. Imagery includes NASA Blue Marble: Next
Generation 500 m resolution imagery at small scales and i-cubed 15 m eSAT imagery at medium-to-large scales for the world. The map also includes
i-cubed Nationwide Prime 1 m or better resolution imagery for the contiguous United States. I-cubed Nationwide Prime is a seamless, color mosaic of
various commercial and government imagery sources, including Aerials Express 0.3 to 0.6 m resolution imagery for metropolitan areas and the best
available United States Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) imagery and enhanced versions of USGS
Digital Ortho Quarter Quad (DOQQ) imagery for other areas.
doi:10.1371/journal.pone.0080439.g006
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80 cm. Two of these colonies were also the tallest corals

encountered (25 cm). P. clivosa (11.669.9) was the only species

whose mean max height was above 10 cm.

3.3 Accuracy assessment
The assessment of major habitats yielded a high level of

accuracy as indicated by the overall accuracy (85.6%) (Table 3),

the overall accuracy adjusted for known map marginal proportions

(adjusted accuracy) (94.9%) (Table 4), and the Tau coefficient

(0.713). Of the 26 classification errors (which excluded artificial

sites), 24 were due to Unconsolidated Sediment being found in

polygons classified as Coral Reef/Colonized Hardbottom. This

yielded a low producer’s accuracy (63.1%) for soft bottom;

however correction to map marginal proportions yielded a much

higher result (99.4%). The converse was also true where a high

producer’s accuracy for hardbottom (98.3%) was drastically

reduced by map proportions (37.8%) due to its low spatial

coverage even though only 2 errors were found. The detailed

habitat accuracy was slightly lower than major habitat, as

indicated by the overall accuracy (85.0%) (Table 5), the overall

adjusted accuracy (91.5%) (Table 6), and the Tau coefficient

(0.828).

Figure 7. Illustration depicting the hydrodynamics along the southeast Florida coast. A combination of the Florida Current ushering the
warmest water offshore, frequent cold water upwelling, and relatively cooler coastal waters off north of Palm Beach County may inhibit a future coral
reef poleward shift. Data sources: Land is USGS/EROS Global 30 Arc-second elevation data. Florida Reef Tract is a combination of 2001 FWC-FWRI,
NOAA, and Dade County map and the maps created by Walker et al. (2008) and Walker (2012).
doi:10.1371/journal.pone.0080439.g007
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3.4 Spatial analysis
Five regions along the coast were previously identified using the

same methodology [12]. The purpose of repeating it here was to

evaluate if a new transition between North Palm Beach and

Martin was warranted. Spatial autocorrelation tests on the benthic

habitat polygon areas using Moran’s Index did not show a pattern

significantly different from random (Moran’s I 0.002; z-score 0.08;

p-value 0.94). Cluster analysis of the cross-shelf transects yielded

13 clusters at the 60% similarity level and the two dimensional

MDS plot showed a medium stress (0.15) (Figure 4). The Biscayne,

Broward-Miami, and South Palm Beach region MDS clusters

showed spatial groupings similar to the previous study. The

Deerfield region, which was the weakest result in the previous

study [12], was not evident in this analysis. The North Palm Beach

transects clustered into one group that was also spatially clustered

(Cluster A in Figure 5). The transects in Martin were members of

five MDS clusters, however all but Cluster B were exclusive to the

Martin area. This indicates that the seafloor habitat morphology

in Martin is distinctly different from areas further south and

represents a unique region.

The analysis of similarity (ANOSIM) performed to statistically

determine the similarity of the six final regions based on the cross-

shelf transect data showed strong differences (R statistic . 0.849)

between categories in 11 of the 15 pairwise tests (Table 7). The

weakest pairwise comparison was between Deerfield and South

Palm Beach regions (R = 0.115). Although not the strongest,

North Palm Beach and Martin comparisons were significantly

strong (R = 0.621) and justified the split. Visual inspection of the

transects in GIS revealed that weaknesses in the clusters were likely

due to the absence of certain habitats in specific transects that were

present at the larger scale, but were not captured along the

transect.

Discussion

4.1 Coral reef ecosystem regions
Recent analyses of habitat spatial distributions along the

southeast Florida coast identified 5 coral reef ecosystem regions

and potential biogeographic boundaries [12]. The northern extent

of these analyses and maps was in southern Martin County just

north of the Deep Ridge Complex. The addition of the Martin

County maps to these analyses justified the creation of a sixth

region north of the North Palm Beach region based on habitat

types and configurations (Figure 5). In contrast to reef regions

further south where coral reef habitat areas ranged from 13.93%

(South Palm Beach) to 52.6% (Broward-Miami) [12], the Martin

area contained 4.1% coral reef habitat, most of which was in a few

thin deep and shallow ridges. The types and extent of shallow-

water (, 30 m) coral reef habitats in the northern Florida Reef

Tract are now known and can be included in the spatial

assessment for coral reef ecosystem regions.

Differences in benthic cover indicate that the Martin region has

a biological composition different from other areas of the FRT. In

2007, a two-year detailed regional study on macroalgal commu-

nities showed that Martin County had the highest macroalgal

cover in southeast Florida [35]. Cross-shelf and latitudinal

differences were evident in algal populations that were not seen

solely by summing up the data for each county. In Martin, the

three shallow ridge sites had a large component of Phaeophyta

cover (. 50% during certain times) that was not present in the

deep habitats, where Chlorophyta was dominant. This was further

exemplified by the five sites on the deep ridge complex in north

Palm Beach that were dominated by Chlorophyta and Rhodo-

phyta and had very little Phaeophyta if any. Reefs further south in

the Broward region were dominated by Chlorophyta, had less

Phaeophyta, and had the highest percentage of Cyanophyta. Thus

the macroalgae community, which dominates southeastern Flor-

ida’s coral reef habitats, varied both latitudinally and across the

shelf, providing support for regional separation.

Comparisons of the coral communities also support regional

separation. Monitoring data of reefs in similar depths approx-

imately 75 km south (Broward County) found 2.8 times more

stony coral species [36]. Gilliam et al. (2010) reported 25 species of

coral present in 750 m2 of survey area, compared to nine found in

Martin in 1737 m2 of survey area. Similarly the Southeast Florida

Coral Reef Evaluation and Monitoring Project (SECREMP), a

regional coral reef monitoring program in place since 2003, found

9 species present in Martin compared to 25 species further south

[37]. They also reported Martin had the lowest number of species

per station (5.8). Coral density was much lower in Martin. In

Broward, coral density of 25 monitoring sites was 2.6 m22; 8.1

times greater than our density estimates in Martin (0.32 m22) [36].

Finally, Diadema were more abundant in the Martin County sites

than the sites in the other three counties (24 of the total 46 urchins

found) [37]. For comparison, the Florida Keys Coral Reef

Evaluation and Monitoring Project found a total of 38 coral

species with mean coral species richness of 13.660.44 (SEM) per

site in the Florida Keys and 19.260.84 in the Dry Tortugas [38].

This is not to diminish the importance of reef communities in

Martin, but rather to place them in context with the rest of the reef

tract. In total, a species list of occurrences has logged twenty-two

species of hard corals in Martin since the early 1980’s (although it

is unknown if all of these still occur locally) (Jeff Beal, pers. comm.).

They also host numerous reef fish species at high densities in

certain areas including large aggregations of Goliath grouper

(Epinephelus itajara) (Walker, pers. obs.).

4.2 Nearshore ridge complex cross-shelf patterns
Inspection of the benthic cover MDS plot (Figure 2) exhibited

subtler distinctions between sites that might explain the high

within-habitat variability on the shallow colonized pavement and

ridge habitats. The Nearshore Ridge Complex (NRC), a

combination of Ridge-Shallow and Colonized Pavement-Shallow

habitats, appeared to have cross-shelf community patterns. Site 19,

which was separated from all other sites in the MDS, was located

on the eastern side of the shallow ridge and had a distinct

community comprised mostly of macroalgae, turf algae, and

Palythoa (Figure 6). Sites 16 and 18, which were very similar to

each other in the MDS, were associated with the shallowest top

portion of the ridge, the crest. All of the other shallow sites (3, 4, 5,

6, and 17) were located on the western side of the shallow ridge

crest and grouped in a central axis in the MDS. A depth profile of

the NRC shows drastic changes in the seafloor depth over short

distances. Going from east to west (as wave energy does), the

seafloor rises 7 m in a distance of 800 ft (near site 19) to ,2 m

depth at the crest (Sites 16 and 18). The seafloor then drops down

over 4 m on the western side of the ridge (site 17) before rising and

flattening out over the shallow colonized pavement (near site 5 and

6). This type of profile is indicative of many shallow reef systems

where differences in communities are driven by light, depth, and

energy exposure to form fore-reef, reef crest, back-reef, and lagoon

communities. It is likely that although the structure is not

comprised of coral, the distinct profile is providing different

conditions across the shelf that are shaping the benthic commu-

nities. This could account for larger within-habitat variations

because the shallow ridge was not divided into separate habitats to

account for the differences across the fore-ridge, crest, and back-

ridge.
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4.3 Accuracy assessment
The overall accuracy for major habitat was similar to other

regional mapping efforts. Overall map accuracy in Martin was less

than Broward (89.6%) [1], Palm Beach (89.2%) [16], and Miami-

Dade (93.0%) [17], however it was higher than all of them after

adjusting for map marginal proportions. The other mapping

efforts did not account for this, but it is an important aspect in

Martin County given the disparity between hard and soft bottom

areas (95.2% vs. 4.13%). This is much different than Palm Beach

(63.9% soft, 35.02% hard), Broward (46.8% soft, 54.2% hard), and

Miami-Dade (50.47% soft, 29.65% hard) and likely had a

profound effect on the outcome. The map marginal proportion

correction was a necessary adjustment in this case and likely better

reflects the true map accuracy.

4.4 Coral reef range expansion considerations
The benthic habitats in the northern latitudes of the Florida

Reef tract off Martin County are distinctly different in both habitat

morphology and biological communities than the reefs further

south. The shelf is much wider, yet the amount of exposed

hardbottom habitat is much less. And, as reported in regional

monitoring studies, the number of coral species is reduced 77%

from 38 in the Florida Keys to 9. This pattern is similar to other

high-latitude reef systems located on eastern continental margins

[3,5,39,40,41].

Although the causes limiting coral reef growth are complex,

temperature is often used as a surrogate because of its high

correlations with many of the causative factors [3,42]. Thus

climate change has recently been implicated in poleward shifts of

tropical coral species, presumably due to increases in temperature

from global warming [5,6]. These shifts have been suggested [7]

but not documented for the modern Florida Reef Tract. This

study provides a baseline for future comparisons to help determine

the effects of global warming in this high-latitude community.

Historic information might give clues as to how present coral

reefs may respond to global warming [7]. Historic Holocene FRT

growth is evident in SE FL lidar bathymetry [33]. The new Martin

County lidar data showed no visual evidence of historic reef

growth. Historic reef growth as evidenced by lidar geomorphology

ends approximately 31 km south [12,33,43]. This historic reef

thrived during the Holocene between approximately 8–10,000

years ago [33,44,45] on the same deep ridge that extends into

Martin County today [12,33]. For that period, coring data and

climate models suggest that yearly mean sea surface temperatures

around Florida were warmer (,2uC) [46] and the climate was

much drier (,0.5 mm/day less precipitation) [47] than the

present. Therefore, although historical temperatures were much

warmer and coral reefs thrived nearby, they did not extend further

northward.

An explanation for the abrupt end to historic coral reef growth

might be evident along the coast today.

Martin County is situated just north of a distinct area along the

southeast Florida coast called the Bahamas Fault Zone [48]

(Figure 7). This location not only marks the end of historical outer

reef growth, but it is also where the shelf widens northward and

the Florida Current diverges from the coast [49]. This divergence

carries the warmest waters into the Gulf Stream and allows colder

northern water to bathe the coast. Here Gulf Stream boundary

eddies form and propagate northward along the coast [50,51] and

frequent upwelling occurs [52,53,54]. During upwelling events,

temperatures can fluctuate by 10uC for days to several weeks

[54,55] and have been implicated as a cause for latitudinal

differences in benthic communities [12]. SECREMP reef temper-

ature data show that more than ten such events occurred between

February 2007 and May 2009 in the Ridge–Shallow habitat [37].

Globally, the poleward distribution of coral reefs coincides with

the 18uC isotherm [42]. Temperatures near 16uC can cause stress

in most tropical coral species and lower temperatures can be fatal

depending on the duration of exposure [56,57]. At least five cases

of large scale coral mortality have been documented along the

Florida Reef Tract since 1960 when temperatures fell below these

thresholds [56,58,59,60,61,62]. The main corals unaffected by

these cold spells were Siderastraea and Oculina, which are known to

be cold tolerant [56,62]. During our study water temperatures on

the deep ridge sites were 15uC for at least several days, which may

explain why the Martin hard bottom habitats are dominated by

small Siderastraea and Oculina colonies, neither of which is

considered a major constructional component of tropical Carib-

bean coral reefs.

It is likely that intense, frequent, long-duration upwelling events

are inhibiting tropical coral reef communities from establishing in

the Martin region. Although it is unknown how climate change

will affect coastal currents and upwelling, historic reef growth in

Martin during warmer times is not visually evident. If the Gulf

Stream continues to carry the warmest water offshore and these

upwellings continue, conditions in Martin and further north will

not be conducive for coral reef development and may inhibit

poleward expansion of tropical coral reefs.
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