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Abstract 15 

Dixson et al.1 report that coral larvae navigate towards chemical cues associated with healthy 16 

reefs and avoid cues from degraded reefs. However, the swimming capabilities of coral 17 

larvae and well-established patterns of recruitment and reef hydrodynamics indicate that coral 18 

larvae will not be able to use these cues to recruit to healthy reefs. 19 

 20 

Main Text 21 

Dixson et al. (1) present a series of experiments suggesting that coral larvae can distinguish 22 

between chemical cues associated with healthy and degraded reefs, and subsequently imply 23 

that coral larvae will use these cues to navigate to healthy reefs. However, many of their 24 

results are contrary to our current understanding of coral larval swimming capabilities and 25 
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well-established patterns of recruitment in the field. In addition, the flow structure in their 26 

flume is likely to be more dynamic than suggested, making choice experiments with coral 27 

larval difficult to interpret. 28 

In a first set of flume experiments, larvae of three species of Acropora overwhelming 29 

preferred to spend time in water collected from areas of reefs protected from fishing when 30 

compared to water collected from areas lacking protection. However, coral larvae are very 31 

slow swimmers and based on previously published work are unlikely to be able to maintain 32 

their position in the flume for the 5 min duration of the experiment. The reported flow speed 33 

of 4.2 mms-1 is greater than the mean of all average swimming speeds reported to date, even 34 

when larvae are assisted by gravity (i.e., swimming downwards; Fig. 1). The maximum 35 

horizontal swimming speed recorded for a coral larva is 3.45 mms-1 (Table 1), which is well 36 

below the minimum speed required to maintain position in the flume, let alone navigate 37 

between the two water bodies. The remarkable consistency of larval behavior in the flume 38 

(Fig. 1A; Dixson et al.) is highly unusual and suggests that a physical rather than behavioral 39 

mechanism is operating. Indeed, the flow structure in their flume is likely to be much more 40 

complicated than they describe due to the presence of a barrier initially separating the two 41 

water sources and the barrier’s abrupt end at the beginning of the test section. It is highly 42 

unlikely that visual inspection of a dye plume would sufficiently characterize flow conditions 43 

experienced by such small larvae in this flume. Well established techniques such as particle 44 

image velocimetry, laser-Doppler velocimetry or planar laser-induced fluorescence (2) should 45 

have been used to verify that flow biases do not exist at the scale relevant to coral larvae.  46 

The spatial pattern in the recruitment of corals to settlement tiles are also highly 47 

unusual for a reef system that has a high number of reefs in close proximity, such as Dixson 48 

et al. sites in Fiji. Their results imply a strong positive correlation between adult coral cover 49 

and recruitment to settlement tiles. Indeed, not a single recruit was found on tiles placed in 50 
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the non-protected reef areas where coral cover was uniformly low. In contrast, in a two year 51 

study of 33 reefs spanning the length of Great Barrier Reef there was no correlation between 52 

adult abundance and coral recruitment to settlement tiles (3). Furthermore, only one of the 53 

132 sites (4 sites per reef and 8 tiles per site) had no recruits (3). The lack of an effect of algal 54 

clearance on juvenile recruitment to the substratum is also anomalous. In contrast, artificial 55 

exclusion of herbivores reduces rates of coral juvenile recruitment 3-fold, presumably due to 56 

dramatic increases in abundance of seaweeds in herbivore exclusion plots (4). 57 

Even if coral larvae can distinguish between chemical cues associated with healthy 58 

and degraded reefs it is highly unlikely they will be able to use this information to navigate 59 

against ubiquitous tidal and other currents to preferred reefs for recruitment. Currents 60 

connecting reefs rarely fall below 100 mms-1 (5), which is almost two-orders of magnitude 61 

greater than typical coral larval swimming speeds (Table 1; Fig. 1). All existing measures 62 

indicate that coral larvae are very slow swimmers and therefore will behave as passive 63 

particles relative to inter-reef hydrodynamic regimes (6). Perfuming degraded reefs, as 64 

suggested by Dixson et al., will not enhance recovery rather it will distract from the difficult 65 

task of reducing fishing effort and improving water quality. 66 

67 
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Table 1. Swimming speeds in mms-1 for hermatypic scleractinian coral larvae. n = number of 109 

larvae; SE = standard error; a = mean calculated as average of maximum and minimum 110 

value; b = mean calculated from larvae aged 2 to 7 days old. 111 

 112 

Species 
Swim 
direction Min Max Mean SE n 

Larvae 
length 
(mm) Reference 

Heliogungia actinoformis horizontal 1.15 1.90 1.57 0.09 8 0.50 (7) 
Pocillopora damicornisa horizontal 1.67 1.88 1.78 na na 1.00 (8) 
Pocillopora damicornisb horizontal 0.08 3.09 2.01 0.07 82 1.18 (9) 
Coelastrea asperaa horizontal 2.00 3.45 2.73 na na 0.47 (10) 
Heliogungia actinoformis up 0.90 2.65 1.66 0.09 18 0.50 (7) 
Agaricia teunifolia up 1.04 3.16 2.10 0.20 28 na (11) 
Galaxea horrescens up 1.32 3.33 2.41 0.15 20 2.30 (12) 
Pocillopora damicornis up 1.61 4.50 2.79 0.11 30 2.00 (13) 
Porties asteroides up 1.26 4.34 2.80 0.20 59 0.75 (11) 
Isopora bruggemanni up 1.10 4.55 2.86 0.24 20 2.50 (14) 
Seriatopora hystrix up na na 3.33 na na 1.50 (15) 
Heliogungia actinoformis down 1.97 3.80 2.76 0.17 9 0.50 (7) 
Isopora bruggemanni down 2.56 5.56 3.55 0.18 20 2.50 (14) 
Agaricia teunifolia down 2.01 5.19 3.60 0.30 28 na (11) 
Galaxea horrescens down 3.03 5.21 3.86 0.13 20 2.30 (12) 
Porties asteroides down 2.76 5.84 4.30 0.30 59 0.75 (11) 
Seriatopora hystrix down na na 4.44 na na 1.50 (15) 
Pocillopora damicornis down 3.68 6.49 4.79 0.13 30 2.00 (13) 
 113 

114 
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Figure 1. Coral larvae are notoriously slow swimmers. The minimum swimming speed 115 

required to hold position in the experimental flume used by Dixson et al. (4.2 mms-1, red star) 116 

is more than twice the mean horizontal swimming speed of larvae in other studies. Mean 117 

swimming speeds were taken from 14 studies representing over 450 speed measurements (for 118 

references see Table 1. The raw data is available at coraltraits.org).  An ANCOVA for log-119 

transformed speed data against larvae size and swimming direction found only a significant 120 

effect of direction (after dropping size: F2,15= 13.72, p < 0.001), where gravity-assisted 121 

swimming (downward) was significantly faster than other swimming directions (letters a and 122 

b denote significant differences at a = 0.05, post-hoc Tukey’s test). 123 

 124 

 125 
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