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Mammalian keratin associated proteins (KRTAPs)
subgenomes: disentangling hair diversity and
adaptation to terrestrial and aquatic environments
Imran Khan1,2, Emanuel Maldonado1, Vítor Vasconcelos1,2, Stephen J O’Brien3,4, Warren E Johnson5

and Agostinho Antunes1,2*

Abstract

Background: Adaptation of mammals to terrestrial life was facilitated by the unique vertebrate trait of body hair,
which occurs in a range of morphological patterns. Keratin associated proteins (KRTAPs), the major structural hair
shaft proteins, are largely responsible for hair variation.

Results: We exhaustively characterized the KRTAP gene family in 22 mammalian genomes, confirming the existence of
30 KRTAP subfamilies evolving at different rates with varying degrees of diversification and homogenization.
Within the two major classes of KRTAPs, the high cysteine (HS) subfamily experienced strong concerted evolution,
high rates of gene conversion/recombination and high GC content. In contrast, high glycine-tyrosine (HGT)
KRTAPs showed evidence of positive selection and low rates of gene conversion/recombination. Species with
more hair and of higher complexity tended to have more KRATP genes (gene expansion). The sloth, with long
and coarse hair, had the most KRTAP genes (175 with 141 being intact). By contrast, the “hairless” dolphin had 35
KRTAPs and the highest pseudogenization rate (74% relative to the 19% mammalian average). Unique hair-related
phenotypes, such as scales (armadillo) and spines (hedgehog), were correlated with changes in KRTAPs. Gene
expression variation probably also influences hair diversification patterns, for example human have an identical
KRTAP repertoire as apes, but much less hair.

Conclusions: We hypothesize that differences in KRTAP gene repertoire and gene expression, together with
distinct rates of gene conversion/recombination, pseudogenization and positive selection, are likely responsible
for micro and macro-phenotypic hair diversification among mammals in response to adaptations to ecological
pressures.

Keywords: Concerted evolution, Gene family, Keratin Associated Proteins, Keratin, Hair, Gene conversion,
Recombination, Positive selection

Background
Terrestrial life in extant vertebrates was accompanied by
the formation of diverse and rigid body coverings (scales,
feathers and hairs), along with other cornified appendages
(e.g. horns, hoofs, claws, nails), that evolved in response to
strong selective pressures. These body coverings helped
protect vertebrates and allowed them to successfully

adapt to environmental pressures like heat, ultra violet
radiation, water loss, and mechanical forces [1,2]. Since
keratinization helps protect the body by forming a bar-
rier between the body and outside world, genes in-
volved in keratinization evolve rapidly in response to
changing environment (e.g., KRTAP4-5 showed evidence
of positive selection in chimpanzee and hominids) [3].
Changes in gene family (gene gain, and gene loss/pseudo-
genization) are involved in adaptive evolution and changes
in gene family size could affect expression levels [4]. In
terrestrial vertebrates, the formation of hard cornified skin
appendages involves interactions between fibrous (keratin)
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and matrix proteins (KRTAPs) [5-7]. The fibrous alpha-
keratins, type I and II, appear to have evolved in stem
vertebrates [8,9] and recent studies suggest the pres-
ence of hair-specific alpha keratins orthologs in am-
phibians, reptiles, and birds [10-12]. However, there is
no evidence of KRTAPs proteins in fishes and amphib-
ians, suggesting that these proteins originated only after
the divergence of sauropsids (sKRTAPs/beta-keratins)
and mammals (mKRTAPs), leading to the formation
and diversification of hard keratin appendages, feather,
claw, scale in sauropsids, and hairs in mammals [5,6,11].
The structural and functional conservation of keratin
intermediate filaments (KIFs) within mammals contrasts
with the large diversity of mammalian hair phenotypes
[13-15] and highlights the importance of understanding
the molecular diversification of the keratin associated
protein (KRATP) multigene family.
Hair is a dynamic mini-organ formed by ectodermal-

mesodermal interactions [16-19] and is broadly divided
into the root sheath (outer and inner), hair shaft, and
matrix zone. Hair has microscopic differences (e.g., cu-
ticular, medullar and cross section), which have long been
used as forensic markers for identifying human ethnicity
and classifying mammalian species [20-23]. Hair-fiber for-
mation is a cyclical process, which involves growth (ana-
gen), regression (catagen), and resting phases (telogen),
followed by the shedding of the hair shaft. The process in-
volves the expression of both hair keratin intermediate
filament proteins and their keratin associated proteins
[24-28]. This cycle is of particular importance in diverse
processes such as determining hair size, shedding fur for
body surface cleansing, and changing the body cover to
adapt to changing environments, such as from hot sum-
mers to cold winters [29].
The current diversity of hair in extant mammals is due

to innovations and changes in numerous genes and their
corresponding proteins. Humans have 54 functional
alpha-keratin genes comprising 28 type I and 26 type II
keratins [30,31,13] arranged in two clusters on chromo-
somes 17q21.2 and 12q13.13 [32,33], which include 11
type I and 6 type II hair keratins [34,35]. Hair keratin
types I and II undergo higher-ordered copolymerization-
forming keratin intermediate filaments (KIFs) [36-39],
which are embedded into a matrix formed by keratin as-
sociated proteins (KRTAPs) involved in the formation of
hard cornified resilient hair shafts [40-42]. The KRTAP
multigene family is divided into two broad groups, high
cysteine and high glycine-tyrosine, which together com-
prise 30 subfamilies based on amino acid composition
and phylogenetic relationships [14]. In humans, KRTAPs
include approximately 100 gene members that are arranged
in tandem and are clustered on chromosomes 11p15.5,
11q13.4, 17q21.2, 21q22.1, and 21q22.3 [43,26,44-46,7,25].
Given the role of the KRTAP multigene family in formation

of hair morphology, we have characterized them in the
genomes of 22 diverse mammalian species to provide
insights on KRTAP evolution and diversification. We
found contrasting KRTAP gene family repertoires
among mammals, as well as differences in rates of gene
expansion, contraction and pseudogenization. The two
major groups of KRTAPs showed distinct evolutionary
patterns with high concerted evolution influencing species-
specific copy number variation and gene homogenization
in high cysteine KRTAPs. In contrast, high glycine-tyrosine
genes had more dynamic evolutionary patterns with less
gene conversion and recombination, lower GC content,
and evidence of positive selection (e.g. subfamily 20), which
may also have been an important force of the evolution in
subfamilies of high glycine-tyrosine.

Results
Genome scans
Advances in genome sequencing have made it easier to
explore multigene families across different genomes. Ex-
pansion, contraction and pseudogenization, along with
genomic/chromosomal organization (gene clusters) of
gene families, are important mechanisms driving gen-
ome evolution and influencing fitness within lineages or
species [47], as suggested by lineage- or species-specific
variations in genes involved in pathogen recognition,
stress response and structural proteins [48-51]. Here, we
explored the KRTAP multigene family in the genome as-
semblies of 22 mammalian species: (1) alpaca (Vicugna
pacos) low-coverage 2.51×, assembly, vicPac1, Jul 2008,
(2) armadillo (Dasypus novemcinctus) low-coverage 2×,
assembly, dasNov2, Jul 2008, (3) bushbaby (Otolemur
garnettii) low-coverage 1.5×, assembly, otoGar1, May
2006, (4) cow (Bos taurus) coverage 7×, assembly Btau_4.0,
Oct 2007, (5) dolphin (Tursiops truncatus) low-coverage
2.59×, assembly, turTru1, Jul 2008, (6) elephant (Loxodonta
africana) coverage 7×, assembly, Loxafr3.0, Jul 2009, (7)
gibbon (Nomascus leucogenys) whole genome coverage
5.6×, assembly, Nleu1.0, Jan 2010, (8) gorilla (Gorilla
gorilla) gorGor3, Dec 2009, (9) guinea Pig (Cavia porcel-
lus) high-coverage 6.79×, assembly, cavPor3, Mar 2008,
(10) hedgehog (Erinaceus europaeus) low-coverage 1.86×,
assembly, eriEur1, Jun 2006, (11) horse (Equus caballus)
coverage 6.79×, assembly, Equ Cab 2, Sep 2007, (12) mar-
moset (Callithrix jacchus), NCBI build 1.1, (13) megabat
(Pteropus vampyrus) low-coverage 2.63× assembly, pte-
Vam1, Jul 2008, (14) mouse Lemur (Microcebus murinus)
low-coverage 1.93×, assembly, micMur1, Jun 2007, (15)
orangutan (Pongo abelii) NCBI build 1.2, (16) panda
(Ailuropoda melanoleuca) high-coverage, assembly, ail-
Mel1, Jul 2009, (17) pig (Sus scrofa) from NCBI build 3.1,
high-coverage, assembly, Sscrofa10, Jun 27, 2011, (18)
rabbit (Oryctolagus cuniculus) high-coverage, assembly,
oryCun2, Nov 2009, (19) sloth (Choloepus hoffmanni)
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low-coverage 2.05×, assembly, choHof1, Sep 2008, (20)
tarsier (Tarsius syrichta) low-coverage, 1.82× assembly,
tarSyr1, Jul 2008, (21) tree shrew (Tupaia belangeri)
low-coverage 2×, assembly, tupBel1, Jun 2006, and (22) wal-
laby (Macropus eugenii) coverage 2×, assembly, Meug_1.0,
Dec 2008, available at Ensembl and NCBI websites
http://www.ensembl.org/ [52,53] and http://www.ncbi.
nlm.nih.gov/ [54].

Characterization of KRTAP gene family
The KRTAP multigene family consists of ~100-180 gene
members divided into two major classes, High Cystine
(HS) and High Glycine/Tyrosine (HGT), which in turn
are divided into many subfamilies with unique motifs
and sequence repeats. We assigned all KRTAP multigene
family members to their respective subfamilies following
previously published guidelines [14]. We built species-
specific phylogenetic trees to classify the gene subfam-
ilies for each genome (Additional file 1: Figures S1-21),
as well as a phylogenetic tree incorporating all members
belonging to the high glycine-tyrosine KRTAP multigene
family from 22 genomes (Figure 1 and Additional file 1:
Figure S24). We also observed that one-to-one ortholo-
gous relationships diminished as species diverged over
time (Additional file 1: Figures S22 and S23). We used
the amino acid composition, unique motifs and se-
quence repeats, as well as blast results, to classify intact
genes, partial genes and pseudogenes. The most-closely-
related subfamilies are generally located in close proxim-
ity and in tandem arrangements in the genome, as are
the members of the same subfamily. Due to the incom-
plete nature of the genomes analyzed, not all the genes
may have been retrieved. Therefore, in the dolphin and
other species of low genome coverage, we have assumed
that missing genes may be due to low coverage that will
be characterized by future research. However, we found
a large number of pseudogenes in the dolphin genome
compared with other low coverage genomes.
To prove the absence of KRTAP genes in high cover-

age genomes with intact gene clusters, we performed
synteny analysis and searched for human orthologs that
should be flanking the missing KRTAP genes. For ex-
ample, in pig the 5’ and 3’ human orthologs flanking the
KRTAP cluster 5 was missing, indicating that this region
has most-likely not been sequenced and that further re-
search and/or higher genomic coverage is needed for con-
firmation. We verified the synteny of conserved orthologs
flanking the missing genes for the subfamily KRTAP25 in
the callitrix, cow and elephant, along with KRTAP25,
KRTAP19 and KRTAP29 in cavia, and KRTAP12 in rabbit.
Species-specific subfamily differences, changes in the

total number of genes, functional genes, pseudogenes,
amino acid content (changes in sulfur content are respon-
sible for disulphide bonds, which provide rigidity, strength

and flexibility to hair) and size polymorphism in genes
within subfamilies may be responsible for the species-
specific hair characteristics and the marked variability
found in hair patterns among mammalian species.

Genomic organization of the KRTAP gene family
The KRTAP gene family consists of 30 subfamilies, 24 of
which are high cysteine and six are high glycine-tyrosine.
The complete KRTAP gene family is arranged into five
clusters at five different genomic locations (Figure 2). Each
cluster contains members of one or more subfamilies ar-
ranged in a tandem array. The genomic organization of
the KRTAP gene family is similar in all species studied,
with only slight variations. Subfamilies KRTAP 1, 2, 3, 4, 9,
16, 17 and 29 are present in cluster one. All high glycine-
tyrosine (HGT) KRTAP subfamilies, together with KRTAP
11, 13, 24-27 subfamilies, form cluster two. Subfamilies
KRTAP10 and KRTAP12 form cluster three, whereas clus-
ter four consists of subfamily KRTAP28 and cluster five of
subfamily KRTAP5.
Cluster 5 shows some variation. For example in pri-

mates, KRTAP cluster 5 is divided into two paralogous
gene clusters, most likely through segmental duplication,
with both clusters having members of the KRTAP5 sub-
family (Figure 2). In all of the other mammals studied,
genes of the KRTAP5 subfamily form a single cluster.
The KRTAP subfamilies that are clustered together in
the genome (Figure 2) are phylogenetically closely re-
lated (Additional file 1: Figure S1) (e.g. all subfamilies of
high glycine-tyrosine KRTAPs are located in close prox-
imity in cluster 2 represented by HGT in Figure 2, which
supports their functional relatedness and common ances-
try arising from duplications and divergence. The con-
served genomic organization of the KRTAP gene clusters
over more than 166 Myr (i.e. divergence of therian from
the monothermes mammals) [55] confirms the strong
evolutionary constrain acting on their genomic arrange-
ment [56]. The conserved clustering of KRTAPs seems to
be related with its ordered expression in follicle [57].

KRTAP Gene family dynamics and hair characteristics
Previously, the KRTAP gene repertoire had been assessed
in eight mammalian species [14], all terrestrial species
with few characteristic differences in hair phenotypes.
Here we expanded on previous results by analyzing 22
additional mammalian species consisting of a much more
diverse group of mammals including species from differ-
ent mammalian orders with diverse hair characteristics,
such as the armadillo (modified scales), hedgehog (spines),
alpaca (fiber), sloth (symbionts) and dolphin (mostly hair-
less and aquatic), along with several more-closely related
species, e.g. members of hominidae family in primates.
We identified near complete KRTAP gene repertoires

in 22 mammalian genomes, including 11 high-coverage
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genomes (Table 1, Figure 3, and Additional file 2). Our
findings suggest that the most recent common ancestor
of mammals is supposed to have had 53% (16 of 30) of
the known KRTAP subfamilies (1-5, 8, 10, 11, 13, 16, 17,
20, 21, 26, 28, and 29) (Figure 3). Extant monotremes
(Platypus) and marsupials (Opossum and Wallaby), have
slightly different subfamilies representation (60%, 18 of
30 subfamilies, and 50%, 15 of 30, respectively), while
eutherians have up to 93% (28 of 30) of the KRTAP sub-
families. This shows that the diversification of the
KRTAP gene family occurred early in mammalian evolu-
tion, likely starting after the split of sauropsids (leading to
birds and reptiles) and synapsids (leading to mammals-
like reptiles) around 350 Myr ago [58,55]. Sauropsids de-
veloped KRTAPs (the beta keratins) in hard appendages
like feathers, beaks, scales and claw, etc., and synapsids de-
veloped mKRTAPs present in hair, nails, hoofs, claws, etc.
The presence of glycine rich proteins such as HGT in
mammals and HGP (high glycine proline) in reptiles and

birds is evidence of their radiation from a common ances-
tor [5] and suggest that these changes may have contrib-
uted to the successful radiation of mammals, reptiles and
birds. Further expansion and diversification of the KRTAP
gene family, favored by high rates of concerted evolution
in HS-KRTAPs and positive selection in HGT-KRTAPs,
led to the species-specific hair characteristics observed in
extant mammals. Additional analyses of sauropsid and the
mammalian KRTAPs are likely to reveal insights into the
patterns of adaptive radiation present in extant reptilian,
birds and mammalian KRTAPs. Subfamilies 7 and 12 first
appear in therian mammals after their divergence from
monothremes around 166 Myr ago [55]. Subfamilies 6, 9,
19, 24, and 27 are specific to placental mammals (euthe-
rians), and thus appeared after their divergence from mar-
supials around 148 Myr ago [55]. Subfamily 25 is absent
in Afrotheria and Xenarthra, which suggests an origin
within placental mammals only after the divergence from
the atlantogenata clade (Figure 3 and Table 1). Monotremes

Figure 1 The phylogeny of all high glycine-tyrosine gene family members of 22 mammalian genomes. Neighbor-joining method used with
P-distance and interiors branch test with 1,000 replications. The different color represents different subfamilies of high glycine-tyrosine KRTAP.
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and marsupials lack subfamily 9, which we observed to
have expanded dramatically in the basal placental mammal
xenartha (sloth) to 50 members. We noted that the KRTAP
gene family shows species-specific variation as expected
due to concerted evolution, and some of the subfamilies
are restricted to particular species, e.g. subfamilies 30,

31, and 34 are present only in mouse and rat, subfamily
35 in mouse, and subfamilies 32 and 33 in platypus [14]
(Figure 3 and Table 1). We also observed remarkable
differences among these KRTAP genes (Table 1, Figure 3
and Additional file 2), including a dramatic gene expan-
sion with 175 members (50 in subfamily 9 and 37 genes

Figure 2 Genomic organization of KRTAP gene family in the gorilla genome. The KRTAP gene family is arranged in five different clusters,
shown with the size in base pairs (bp) for each cluster with name of cluster and chromosome in which they are present. Each triangle represents
a gene member; where p means a pseudogene, same subfamily members are shown with same colors. The triangle points the direction of
transcription. The distance between the genes is not to scale.
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Table 1 Number of KRTAP gene present in each subfamily in twenty-two mammalian species
KRTAP Gorilla Pongo Gibbon Calllitrix Tarsius Mouse lemur Otolemur Treeshrew Cavia Rabbit Dolphin

HS-KRTAP KRTAP1 4(2) 4(0) 3(0) 4(1) 4(0) 4(0) 4(0) 2(1) 4(0) 4(0) 0(0)

KRTAP2 4(0) 3(0) 4(0) 4(0) 3(0) 4(0) 2(0) 5(1) 4(0) 4(0) 0(0)

KRTAP3 3(0) 6(0) 4(1) 4(0) 3(0) 2(0) 4(1) 2(1) 4(0) 4(0) 2(2)

KRTAP4 15(6) 15(4) 10(2) 8(1) 8(1) 9(2) 14(3) 12(1) 16(1) 14(1) 0(0)

KRTAP5 13(8) 14(6) 15(3) 19(5) 16(8) 8(4) 13(2) 11(4) 18(5) 18(1) 1(1)

KRTAP9 9(2) 12(2) 9(1) 5(0) 6(1) 4(1) 8(0) 5(0) 12(2) 6(1) 0(0)

KRTAP10 13(5) 17(2) 13(0) 13(2) 8(2) 5(1) 7(1) 10(2) 12(1) 10(2) 2(2)

KRTAP11 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(1)

KRTAP12 3(0) 4(2) 2(0) 3(2) 0(0) 0(0) 3(1) 1(0) 12(1) 0(0) 1(0)

KRTAP13 4(2) 8(4) 7(3) 6(1) 4(2) 4(2) 8(0) 6(1) 8(2) 8(3) 10(6)

KRTAP16 1(0) 2(1) 1(0) 1(0) 0(0) 0(0) 1(0) 1(0) 1(0) 1(0) 0(0)

KRTAP17 1(0) 1(0) 1(0) 1(0) 0(0) 1(0) 1(1) 1(0) 1(0) 1(0) 0(0)

KRTAP24 1(0) 2(0) 1(0) 1(0) 1(0) 1(0) 1(1) 1(0) 1(0) 1(0) 0(0)

KRTAP25 1(1) 1(1) 1(0) 0(0) 0(0) 1(1) 0(0) 1(1) 0(0) 1(1) 0(0)

KRTAP26 2(1) 1(0) 2(0) 1(0) 1(0) 1(1) 1(1) 1(0) 1(0) 1(0) 1(1)

KRTAP27 1(0) 1(0) 1(0) 1(0) 1(0) 1(1) 0(0) 1(0) 1(0) 1(0) 0(0)

KRTAP28 9(0) 11(1) 12(2) 10(1) 7(1) 4(3) 9(4) 11(3) 19(1) 23(5) 0(0)

KRTAP29 1(0) 1(1) 1(0) 1(0) 0(0) 0(0) 1(1) 1(0) 0(0) 1(0) 0(0)

KRTAP30 0 0 0 0 0 0 0 0 0 0 0

KRTAP31 0 0 0 0 0 0 0 0 0 0 0

KRTAP32 0 0 0 0 0 0 0 0 0 0 0

KRTAP33 0 0 0 0 0 0 0 0 0 0 0

KRTAP34 0 0 0 0 0 0 0 0 0 0 0

KRTAP35 0 0 0 0 0 0 0 0 0 0 0

TOTAL-HS 86(27) 104(25) 88(12) 83(13) 63(15) 78(16) 50(16) 73(14) 115(13) 99(14) 18(13)

HGT-KRTAP KRTAP6 4(1) 3(1) 3(0) 3(0) 8(0) 4(0) 4(1) 5(0) 7(1) 9(1) 1(1)

KRTAP7 1(0) 1(0) 1(0) 1(0) 1(0) 2(0) 2(0) 1(0) 1(0) 1(0) 1(1)

KRTAP8 1(0) 1(0) 1(0) 1(0) 2(0) 0(0) 0(0) 1(1) 1(0) 1(0) 3(0)

KRTAP19 8(3) 9(4) 5(3) 9(5) 10(3) 5(0) 6(0) 9(2) 0(0) 2(0) 6(5)

KRTAP20 2(0) 2(0) 1(0) 2(1) 4(0) 6(1) 5(1) 10(3) 27(3) 8(1) 6(6)

KRTAP21 4(1) 3(0) 3(0) 8(2) 2(0) 3(1) 3(1) 2(1) 3(0) 4(1) 0(0)

TOTAL-HGT 20(5) 19(5) 14(3) 24(8) 27(3) 18(5) 20(2) 28(7) 39(4) 25(3) 17(13)

ALL-KRTAP 106(32) 123(30) 102(15) 107(21) 90(18) 96(21) 70(18) 101(21) 154(17) 124(17) 35(26)
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Table 1 Number of KRTAP gene present in each subfamily in twenty-two mammalian species (Continued)

KRTAP Cow Pig Alpaca Horse Panda Bat Hedgehog Elephant Armadillo Sloth Wallaby

HS-KRTAP KRTAP1 4(0) 4(1) 5(1) 4(0) 3(0) 4(1) 4(1) 4(0) 2(0) 4(1) 4(1)

KRTAP2 4(0) 4(0) 3(0) 4(0) 5(1) 3(0) 4(1) 4(0) 4(0) 3(0) 5(0)

KRTAP3 4(0) 4(0) 5(2) 4(0) 4(1) 4(0) 4(0) 4(1) 3(1) 4(0) 4(0)

KRTAP4 16(5) 7(0) 7(3) 12(0) 4(1) 6(0) 8(1) 13(4) 9(3) 8(0) 17(4)

KRTAP5 18(5) 0(0) 2(2) 11(2) 13(3) 6(4) 5(0) 12(4) 8(7) 8(1) 7(1)

KRTAP9 19(3) 5(0) 4(1) 8(2) 2(0) 9(3) 9(1) 4(0) 7(2) 50(5) 0(0)

KRTAP10 15(3) 14(1) 1(1) 11(0) 8(1) 14(5) 1(1) 8(1) 3(1) 1(0) 5(3)

KRTAP11 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(1) 1(0) 0(0) 1(0) 1(0)

KRTAP12 6(0) 4(0) 1(0) 10(1) 5(1) 1(0) 10(1) 11(2) 1(0) 5(2) 7(0)

KRTAP13 8(3) 14(10) 8(0) 10(2) 8(1) 12(3) 7(1) 11(5) 9(5) 16(13) 0(0)

KRTAP16 1(0) 0(0) 1(0) 1(0) 1(0) 1(0) 2(1) 1(0) 1(0) 2(1) 1(0)

KRTAP17 1(0) 1(0) 0(0) 1(0) 1(0) 1(0) 0(0) 1(0) 0(0) 1(0) 1(0)

KRTAP24 1(0) 1(1) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 0(0)

KRTAP25 0(0) 1(1) 1(1) 1(0) 1(0) 1(1) 0(0) 0(0) 0(0) 0(0) 0(0)

KRTAP26 2(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 3(0) 1(0) 4(1) 0(0)

KRTAP27 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(1) 1(0) 1(0) 0(0) 0(0)

KRTAP28 10(2) 14(2) 2(2) 9(1) 12(6) 4(0) 11(0) 8(1) 7(2) 5(2) 10(1)

KRTAP29 2(0) 0(0) 2(2) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(1) 1(0)

KRTAP30 0 0 0 0 0 0 0 0 0 0 0

KRTAP31 0 0 0 0 0 0 0 0 0 0 0

KRTAP32 0 0 0 0 0 0 0 0 0 0 0

KRTAP33 0 0 0 0 0 0 0 0 0 0 0

KRTAP34 0 0 0 0 0 0 0 0 0 0 0

KRTAP35 0 0 0 0 0 0 0 0 0 0 0

TOTAL-HS 113(21) 76(16) 46(14) 91(8) 72(15) 71(17) 70(10) 88(18) 58(21) 114(27) 63(10)

HGT-KRTAP KRTAP6 5(0) 4(0) 9(0) 4(0) 7(2) 6(0) 4(1) 5(1) 0(0) 0(0) 0(0)

KRTAP7 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(1) 1(0) 1(0) 1(0)

KRTAP8 2(0) 4(1) 0(0) 3(1) 1(0) 1(0) 1(0) 1(0) 1(0) 4(2) 1(0)

KRTAP19 8(1) 3(2) 0(0) 8(2) 8(3) 7(2) 4(0) 6(1) 0(0) 7(1) 0(0)

KRTAP20 5(0) 5(0) 12(2) 12(0) 4(0) 6(3) 2(2) 6(1) 12(0) 37(3) 38(0)

KRTAP21 11(0) 9(0) 3(1) 6(1) 8(1) 8(2) 5(1) 5(0) 13(0) 12(1) 0(0)

TOTAL-HGT 32(1) 26(3) 25(3) 34(4) 29(6) 29(7) 17(4) 24(4) 27(0) 61(7) 40(0)

ALL-KRTAP 145(22) 102(19) 71(17) 125(12) 101(21) 100(24) 87(14) 112(22) 85(21) 175(34) 103(10)

Number of pesudogene is represented in parenthesis.

Khan
et

al.BM
C
G
enom

ics
2014,15:779

Page
7
of

18
http://w

w
w
.biom

edcentral.com
/1471-2164/15/779



in subfamily 20, respectively) in sloth (Choloepus hoff-
manni), a nocturnal hairy mammal with long, coarse and
shaggy fur that serves as a host for different microorgan-
ism [59] (Table 1, Figures 3 and 4). Similarly, we found
gene expansion in subfamily 20 (27 genes copies) in the
rodent Guinea Pig (Cavia porcellus), and 38 genes copies
in the marsupial Wallaby (Macropus eugenii). Subfamily
28 has expanded in Rabbit (Oryctolagus cuniculus) (23
genes copies), which belongs to order lagomorpha. We

typically observed functional genes in (HS-KRTAPs) sub-
families 11, 16, 17, 24-27 and 29 varying from a minimum
of one to a maximum of three. The subfamilies 11, 16, 17
and 25 have a maximum of one functional gene member,
subfamilies 24 and 29 have a maximum of two functional
genes (present in orangutan and cow, respectively), and
subfamily 26 has a maximum of three members (present
in sloth and elephant). Subfamily 7, belonging to the high
glycine-tyrosine group, has a maximum of one functional

Figure 3 The topological tree representing evolution of KRTAP gene family repertoires in 30 mammalian species. Twenty-two from the
present study and eight from Wu et al, 2008 [14] marked with an asterisk). Stars and circles respectively show the gain and loss of subfamilies,
by numbers below.
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gene member (Table 1). We found that closely related spe-
cies, e.g. among Hominidae family (Human, chimpanzee,
gorilla and orangutan), have very similar gene repertoires
with only slight differences (e.g. Humans have highest HGT
pseudogenes; Figure 3). We also observed the apparent
reduction in the KRTAP gene repertoire in alpaca
(fibre), armadillo (modified scales), hedgehog (spines),
and dolphin (mostly hairless and aquatic) (Figure 3,
Figure 5), probably due to the replacement or modifica-
tion of hair function or to extensive specialization and
subsequent selection and pseudogenization.
For example, we observed high rates of pseudogeniza-

tion (Figures 3, 4 and 5 and Table 1) (74% compared to
the mammalian average of 19%) and only nine intact
genes in the dolphin (Tursiops truncatus). This aquatic
mammal is almost hairless, with only a few hairs (bristles)
on the upper lip of the rostrum, which are shed soon after
birth, leaving hairless pits on the rostrum of adults that
have specialized sensory function [60-65] (Figure 4). The
epidermal surface also undergoes high proliferation and
sloughing of epidermis cells in order to maintain a smooth
skin, a major advantage for swimming [66,67].

Concerted evolution, GC bias and sequence divergence
Tandemly arranged gene members of multigene families
often show more similarity among each other than with
their counterpart’s orthologs in other species, which sug-
gest that they evolved in similar or concerted fashion.
This would further lead to species-specific variation, as

observed in KRTAP gene family. Two mechanisms play
an important role in concerted evolution. Recombin-
ation increases the copy number of gene by providing
raw material for further functional innovations and di-
versification, and gene conversion, which principally ho-
mogenizes genes, can help insure the rapid synthesis of
a gene product (protein) that may be required during a
precise stage of cell cycle [68]. Gene conversion also de-
creases the evolutionary distance among paralogous mem-
bers and shifts the substitutions from weak (A or T) to
strong (G or C) by increasing GC content through biased
gene conversion (gBGC) [69-72]. The negative correlation
between evolutionary distance calculated by synonymous
substitution rates and GC content provides the level of di-
vergence between the members of a subfamily [73].
Using Geneconv [74] and RDP3 [75] we found higher

rates of gene conversion and recombination events in
the high cysteine KRTAPs compared with the high
glycine-tyrosine KRTAP genes (Additional files 3 and 4).
KRTAP subfamilies also displayed different rates of gene
conversion in different species. For example, in gorilla
we found 44 gene pairs of the KRTAP10 under gene
conversion, compared to only 17 gene pairs found for this
subfamily in gibbon (Additional file 3). The high level of
gene conversion also reduces orthologous relationship be-
tween genes of two different species.
Sequences with higher synonymous substitution rates

(dS) had higher overall GC content (GC%) and third-codon
GC content (GC3%), and lower synonymous substitution

C Sloth

All KRTAP 

KRTAP Pseudogene % 

Dolphin

B A 

Figure 4 Hair characteristic adaption in terrestrial and aquatic mammal. Sloth an arboreal mammal with high density of hair harboring
algae (image credits: firstworldfacts.com). Representation of sloth hair with algal growth and cross section of hair showing the major layers of hair
shaft (A). Bottlenose dolphin (image credits: Public source Dolphin NASA) with rostrum selected in circle and detailed in image with arrows point
the hairless vibrissae crypts of dolphin (image credits: Élio A. Vicente, Zoomarine) (B). Overall number of KRTAP genes and percentage of pseudogene
present in sloth and dolphin (C).
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rates in the high-cysteine genes than the high glycine-
tyrosine genes. The negative correlation between GC con-
tent and synonymous substitution rate (dS) is consistent
with the higher rates of concerted evolution observed in
high cysteines (Figure 6A and B). The high GC content in
the HS –KRTAP gene family compared with the HGT-
KRTAP could be a consequence of the high number of
gene conversion events.

Adaptive evolution
Gene expansion provides the essential raw material for
the positive selection to act [76], which in turn acceler-
ates the diversification of duplicated copies by increasing
the number of nonsynonymous substitutions (dN) rela-
tive to the synonymous substitutions (dS) through posi-
tive selection (dN/dS > 1). The PAML package [77] was
used to identify signatures of positive selection. Specific-
ally, we used likelihood ratio test for positive selection
[78,79] to test site-specific models comparing twice the
difference in log-likelihood between two models to chi
square distribution with two degrees of freedom. For ex-
panded subfamilies, such as in the case of the KRTAP20 in
wallaby with 38 members, we tested if this species-specific
expansion has been influenced by adaptive evolution. We
tested two nested pairs of site-specific models (M1a vs.
M2a and M7 vs. M8), where M1a and M7 states no positive

selection (ω ≤ 1) and M2a and M8 states positive selection
(ω ≥ 1). In both cases the likelihood of positive selection
was significantly higher (p < 0.0001), retrieving similar sites
under positive selection. The likelihood ratio test is a con-
servative approach, which can be biased by false positives
in the presence of high recombination rates [80]. Thus, we
evaluated the possibility of gene conversion/recombination
in the KRTAP20 subfamily that has expanded dramatically
in the wallaby genome, but did not detect such evidence.
The results of positive selection tests are shown in Table 2.
The positive selection acting of KRTAP probably favored
the diversification and adaptation to different environment.

Differential evolution of the HS and HGT KRTAPs
The KRTAP multigene family has experienced dynamic
evolution and diversification within and among genomes
as observed in the 30 diverse subfamilies of high cysteine
and high glycine-tyrosine subfamilies. These two groups
have evolved differently, with the high cysteine group
showing high rates of gene conversion within subfamilies,
with some exhibiting characteristic differences in copy
number, while others have been more conserved. This
may be an adaptive mechanism promoting a high order of
amplification of similar copies to meet the high demand
for the structural proteins required to adapt to changing
environmental conditions (e.g. sloth have extensive hairs

Figure 5 Variation in KRTAP gene family in mammals and relation with hair characteristic features.
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that can harbor symbiotic microorganism communities
while the dolphin is “hairless” in response to a more-
predictable and constant environment and to create less
resistance when swimming). We also compared the differ-
ential evolutionary patterns between high cysteine and
high glycine–tyrosine genes using the Pearson correlation

coefficient for the number of genes in each subfamily be-
tween species. The coefficient value for high cysteine is sig-
nificantly higher than for high glycine-tyrosine (Figure 7A)
and the coefficient values for the two are positively corre-
lated (p < 0.001) (Figure 7B). The high GC content and
negative correlation between GC content and synonymous

A

B

Figure 6 GC-content dynamics. Figure legend text GC-biased gene conversion (gBGC) and evolutionary distance between the KRTAP genes,
shown by the correlation between the synonymous substitution rates (dS) and GC content (GC%) among paralogous members of each subfamily
(A) and third codon GC content (GC3%) (B). Negative correlation points towards the gene conversion. High cyteine KRTAP (HS) and high
glycine-tyrosine KRTAP (HGT) are represented by blue and red squares respectively. The linear regression is shown.

Table 2 Likelihood ratio test for PAML site models within Wallaby

Model Parameters lnL 2ΔlnL (LRT)

M0 ω: = 0.65464 -1673.250363 NA

M1a p0: 0.57003 p1: 0.42997 -1576.668729

ω0: 0.09616 ω1: 1.00000

M2a p0: 0.49130 p1: 0.31322 p2: 0.19547 -1556.441999 M1a vs. M2a 40.45346 (p = 1.643E-09)

ω0: 0.10488 ω1: 1.00000 ω2: 3.48389

M7 p = 0.33061 q = 0.37447 -1581.277897

M8 p0 = 0.74935 p = 0.55372 q = 1.09725 -1560.301816 M7 vs. M8 41.952162 (p = 7.765E-10 )

(p1 = 0.25065) ω1 = 2.75722
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substitution rates also support the higher rates of gene con-
version observed in high cysteine genes relative to high
glycine-tyrosine KRTAPs, suggesting that high cysteine are
under high rates of concerted evolution promoted by gene
conversion and recombination events (see Additional
files 3 and 4). By contrast, HGT-KRTAP had a more-
dynamic evolutionary pattern, with less evidence of gene
conversion or recombination, but with signatures of posi-
tive selection.

Size Polymorphism and amino acid composition affects
KRTAP matrix formation and interactions with hair KIFs
The KRTAP family is widely grouped into three major cat-
egories based on amino acid composition: (i) high sulfur
(<30% cysteine content), including subfamilies 1, 2, 3, 10-
13, 16, 24-27, 29, 31, 34 and 35; (ii) ultrahigh sulfur (>30%
cysteine content), including subfamilies 4, 5, 9, 17, 28, 30,
32 and 33 subfamilies; and (iii) high glycine/tyrosine, in-
cluding subfamilies 6, 7, 8, 19, 20 and 21. The amino acid
composition is shown in Table 3. Subfamily gene members
also showed size polymorphism [81-83] mostly due to
cysteine-rich repeats, which create difference in cysteine

content. Cysteine is important for the formation of strong
disulphide bonds. Thus, changes in cysteine composition
can result in differential interaction among KRTAPs and
between KIFs and KRATPs leading to combinatorial com-
plexity and thereby creating morphological differences in
hair fiber strength, rigidity and flexibility [40].

Discussion
Gene families are formed by gene duplication, a process
that provides important raw material for functional
innovation and adaptive selection. Gene families vary in
size from a few to thousands of gene members, which
makes it difficult to identify and characterize them with-
out sufficient genome sequences. The genome sequen-
cing projects have made it possible to explore complex
gene families involved in different phenotypes. Here we
explored the mammal-specific KRTAP gene family,
which is the major constituent of the hair proteome and
plays a primary role in hair formation and thus long
been associated with phenotypic differences in hair and
wool. This study assessed patterns of variation using
comparative genomic approaches in the KRTAP gene

A

B

Figure 7 Pearson correlation coefficients (r) show the evolutionary differentiation of KRTAP genes. Pearson correlation coefficients (r)
values of the high cysteine and high glycine-tyrosine KRTAP are positively correlated. The linear regression is shown. (A) The boxplot for Pearson
correlation coefficients (r) of gene numbers of each subfamily between species shows, high cysteine KRTAP genes have higher correlation
coefficient than high glycine-tyrosine KRTAP genes (B).
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family. Our study used 22 diverse mammalian genomes
that encompassed closely related species, e.g. family
Hominidae of primates, comparing apes with dense hair
cover with human with much less hair cover, along with
species with diverse hair related characteristic, e.g. alpaca
(fibre), armadillo (modified scales), hedgehog (spines),
sloth (hosting hair symbionts) and dolphin (mostly hair-
less and aquatic), to obtain greater insights into the
KRTAP gene family evolution relative to mammalian hair
and phenotypic variations.
We found high molecular diversity within the KRTAP

gene family, with 30 subfamilies (24 belonging to high cyst-
eine and six belonging to high glycine-tyrosine KRTAP)
(Additional file 2 and Table 1) and approximately 100-180
KRTAP gene members, which are arranged in five clus-
ters at five different chromosome locations in a genome
(Figure 2). Most KRTAP subfamilies are found in all
mammalian orders, with variations in expansion, contrac-
tion, presence/absence, different rates of pseudogenization
and sequence variation (length polymorphisms and amino
acid changes). For example, we found species-specific dif-
ferences in the size and compositions of some subfamilies

(e.g. subfamilies 4, 5 and 9) probably caused by unequal
crossing over accompanied with high GC content.
Moreover, we also found lineage-specific trends, such
as in marsupials, where both wallaby and opossum
lacked subfamilies 13, 21 and 26 and showed expansion
of the KRTAP20 subfamily, which is under positive se-
lection (Table 2). However, highly conserved sequences
and the maintenance of the same number of members
in subfamilies 1, 2, and 3 suggests that high rates of
gene conversion maintain homogeneity and with evolu-
tion occurring through a process of punctuated equilib-
rium [14,84,85]. Similarly, the conserved synteny of
KRTAP gene clusters shows that there are also strong
constraints acting on this gene family and supports the
important role of KRTAP gene family in shaping hair
characteristics.
Together with the high molecular diversity of the

KTRAP gene family observed in our study, considerable
intraspecific diversification has been reported earlier
with copy number variations [86-91] in ethnic human
populations and allelic variations in sheep. Such se-
quence polymorphism found in KRTAP gene members

Table 3 Amino acid composition of KRTAPs subfamily genes in mammals

KRTAP Subfamily Cysteine Glycine Leucine Proline Glutamine Serine Threonine Tyrosine

HS-KRTAP KRTAP1 25.98 9.68 1.83 9.26 7.16 13.89 9.41 1.70

KRTAP2 28.83 4.35 1.59 14.50 5.29 9.17 9.28 0.52

KRTAP3 19.65 3.92 8.05 15.43 3.12 8.51 10.97 1.29

KRTAP4 34.84 3.29 1.15 9.87 6.14 17.60 7.19 0.72

KRTAP5 33.67 23.00 0.35 5.02 3.74 20.58 0.28 0.36

KRTAP9 35.30 3.57 1.17 11.64 7.41 12.57 12.79 1.81

KRTAP10 25.92 1.95 3.66 13.79 5.85 18.86 4.85 0.73

KRTAP11 12.84 6.86 3.79 8.25 7.16 16.22 10.81 2.64

KRTAP12 22.54 4.26 4.15 13.85 6.24 17.94 4.27 1.11

KRTAP13 11.11 10.67 6.62 7.25 3.83 21.93 5.99 7.71

KRTAP16 19.24 1.89 2.54 14.12 5.33 17.40 5.94 2.24

KRTAP17 36.09 28.93 0.00 5.29 3.73 10.37 2.83 0.15

KRTAP24 9.73 5.89 7.90 9.49 4.16 17.18 6.87 6.55

KRTAP25 8.17 3.92 6.86 8.82 8.17 16.99 1.96 7.52

KRTAP26 10.38 6.58 9.55 11.13 4.08 18.98 6.24 4.36

KRTAP27 8.87 4.33 6.69 7.97 8.32 17.15 7.90 2.04

KRTAP28 38.43 30.92 0.04 1.78 4.19 7.71 2.68 1.20

KRTAP29 16.25 6.13 3.74 11.10 7.96 16.66 6.92 2.29

HGT-KRTAP KRTAP6 14.37 39.89 5.40 0.11 0.02 6.96 0.16 22.07

KRTAP7 7.82 20.26 5.99 6.85 0.29 11.93 5.65 11.76

KRTAP8 6.15 22.47 4.52 6.64 0.14 8.83 2.69 19.15

KRTAP19 8.07 35.88 4.51 1.53 0.10 10.39 0.33 18.18

KRTAP20 10.62 32.08 4.97 2.22 0.13 7.01 0.54 25.05

KRTAP21 17.88 34.32 0.76 1.76 0.16 11.50 1.77 21.10

Average percentage of eight amino acids.
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may influence its expression, protein structure, and/or
post-translation modifications and consequently effect
wool/hair fibre structure and wool/hair quality traits
[92,23,93]. For example, evidence of linkage reported be-
tween KRTAP6-8 and wool fiber diameter (quantitative
trait) in sheep [94] may be related with similar charac-
teristics in alpaca (fiber), which has one of the largest
number of KRTAP6 genes (n = 9) in mammals. Further
exploration of KRATP gene family in sheep could help
shed light on the improvement of hair/wool traits
[57,95,94,96].
Interestingly, we found differences in KRTAP gene

repertoire related with hair features. A very expanded
KRTAP gene family repertoire (175 total genes and 141
intact genes) was found in sloth, which has long, dense
and coarse body hair cover, which also serves as a host
for symbiotic microorganisms (e.g., cyanobacteria) in
this arboreal mammal. By contrast, we have detected a
reduced number of functional KRTAP genes and high
percentage of KRTAP pseudogenes (74%) in dolphin
(aquatic mammal), highlighting the much lower KRTAP
gene requirement in this smooth-skinned species that
only has a few hairs (bristle) at the rostrum. These are
lost soon after birth and in adults the hairless pits are
adapted for sensory functions (Figure 4). This example
illustrates the adaptive potential of hair follicles to diver-
sify into more specialized sensory organs.
We also observed that several unique hair-related phe-

notypes in some of the species, such as scales in arma-
dillo, fiber in alpaca and spines in hedgehog, are linked
with an inverse correlation between the number of intact
KRTAP genes and the number of pseudogenes. Arma-
dillo and hedgehog have specialized hair features, where
the pattern in alpaca could be due to inbreeding and gen-
ome homogenization during domestication. The “hairless”
dolphin had a large number of KRTAP pseudogenes rela-
tive to intact genes (Figure 5). In contrast, the sloth
showed a high positive correlation with intact KRTAP
genes, suggesting that changes in KRTAP can be related
to morphological diversity of hair phenotypes (Figure 5).
In contrast, we did not find any correlation between the
comparatively hairless human and other primates, which
favors the hypothesis, that diversification of keratinization
structures in mammals may be collectively explained by
KRTAP gene number variation together with other bio-
logical mechanisms, such as gene expression variation in
KRTAPs (which can be further influenced by KRTAP
genes polymorphism).
We suggest that the diverse repertoire and variability in

KRTAPs (at gene, family and genome level) provides extra-
ordinary combinatorial complexity [97] for interaction
between KRTAPs and Keratin intermediate filaments,
resulting in a rich diversity of pathways for evolutionary
change, which together with differences in higher order

expression of KRTAP genes results in the diverse hair
morphological characteristic visible in extant mammals.
Overall, we conclude that KRTAPs play an important role
in evolution and diversification of hair character across
mammals and are responsible for unique features of hair.

Conclusions
The present study explored KRTAP gene family evolution
in various mammalian species inhabiting diverse terrestrial
and aquatic environments. The two groups of the KRTAP
gene family, high cysteine and high glycine-tyrosine
KRTAP genes, have evolve differently, resulting in species-
specific diversification of this multi-gene family and lead-
ing wide morphological diversity in hair characteristics in
extant mammals. We conclude that differences in KRTAP
gene family repertoires, together with changes in expres-
sion patterns, are responsible for shaping unique hair
characteristics in diverse mammalian species. These differ-
ences are more pronounced between aquatic and terres-
trial species and demonstrate the important adaptive role
of hairs in terrestrial colonization and the radiation of
mammals from water to land. Future studies comparing
the KRTAP repertoire in key model organisms, e.g. Alpaca
and sheep, may provide insights to understanding the role
of KRTAP gene variations in hair fibre traits and its use in
textile industry.

Methods
Gene identification
All KRTAP genes are relatively small (ca. 1 kb) and gen-
erally have single exon [83]. Some KRTAP genes appear
to possess small introns. However these are similar to
repeat regions present in the gene [98] and can be trans-
lated in-frame with the coding exon, leading to the con-
clusion that all KRTAP are intron-less [14,99]. The
presence of KRTAP gene clusters in mammalian ge-
nomes makes it easy to identify and fully characterize
the gene family in genomes with high coverage, but in
low coverage genomes it requires much more manual
inspection and in-depth screening to insure an almost
complete or maximum possible repertoire of non-
redundant KRTAP genes (Additional file 2). In order to
identify the complete gene repertoire in the KRTAP gene
family, all previously annotated gene sequences were
taken and used as query in blast searches against the ge-
nomes from Ensembl http://www.ensembl.org/Multi/
Tools/Blast and NCBI genome database http://www.ncbi.
nlm.nih.gov/blast/Blast.cgi using BLASTN algorithm [100]
and E-value cut-off of 10. We retrieved multiple hits for
each query and selected all the non-redundant hits by ex-
tending 500 bp at both 5’ and 3’ ends. Non-redundant hits,
which were seen to be clustered in the same region
(chromosome, contig, genescaffold, scaffold, supercontig)
were merged together to form a single extended common
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DNA fragment, bearing all these hits and the ends of this
fragment were further extended to maximum 0.3 Mbp
were ever possible. Finally all the hits were used to identify
and annotate KRTAP gene using program BLAST 2 Se-
quences [101] TFASTX and TFASTY incorporated in
Fasta programs [102] and ORF finder from NCBI http://
www.ncbi.nlm.nih.gov/gorf/gorf.html and Mobyle [103].
The identified gene were blast searched against non re-
dundant NBCI blast database, all best hits which re-
sulted in KRTAP or KRTAP like sequences were finally
taken as KRTAP genes. The KRTAP genes were further
classified into intact/complete genes, partial genes and
pseudogene with interrupting frame-shift mutations and/
or stop codons.

Phylogenetic analysis
We employed phylogenic tree building method to fur-
ther classify the identified KRTAP gene repertoire to
their respective subfamilies. For each species the intact
genes were used for building phylogentic tree. All intact
KRTAP genes were translated to amino-acid and aligned
using ClustalW incorporated in MEGA4.0 [104,105] with
Blosum protein weight matrix the manual adjustments
were done when ever needed to correct the final align-
ment. This final protein sequence alignment was used to
build the KRTAP gene tree with the Neighbour-Joining
method with P-distance and the interior branch test evalu-
ated with 1,000 replications [106] (Additional file 1:
Figures S1-24). We make use of unique motifs and re-
peat sequence structure present in KRTAP subfamilies
along with phylogeny and blast results to further help
identify and classify partial and pseudogenes to the re-
spective subfamilies.

Gene conversion and Recombination study
We used the program Geneconv http://www.math.wustl.
edu/~sawyer/geneconv/ [74] to detect statistically signifi-
cant events of sequence homogenization on paralogs using
Global Bonferroni corrected P values. The lower P values
indicate greater support for gene conversion. The multiple
sequence alignment of protein were back translated and
used as input for the Geneconv to give both global and
pairwise fragments involved in gene conversion. We also
used the RDP3 software [75] to detect recombination
events using RDP, Bootscan, MaxChi and Chimaera with
1,000 permutations and cutoff p value of 0.01 employing
Bonferroni correction.
The evolutionary distance between genes can be calcu-

lated with synonymous substitution, which are immune to
selection and are not decreased by negative selection [50].
The sequence divergence was estimated using approxi-
mate synonymous substitution rates (dS) implemented in
MEGA using modified Nei-Gojobori (P-distance) method
with transition/transversion ratio of 2. GC content was

estimated using MEGA5.0 [107]. More than two se-
quences are needed to detect the signals of recombin-
ation therefore subfamilies having more than three
genes were used for studies of gene conversion (Additional
files 3 and 4).

Statistical analysis
In order to study the differential evolutionary pattern
of high cysteine and high glycine-tyrosine KRTAP
genes, we compared the pairwise-pearson correction
coefficient (Figure 7) of the number of genes present in
each subfamily (Table 1). We also compared the correl-
ation between GC content (GC% and GC3%) and synonym-
ous substitution rates (Figure 6) using the Nei-Gojobori
(P-distance) method with transition/transversion ratio
of 2 in MEGA4.0 [95].

Availability of supporting data
All the supporting data are included as additional files.

Additional files

Additional file 1: Figure S1-S24. The phylogeny of high cysteine KRTAP
genes in 22 mammalian species. Neighbor-joining method with P-distance
and interiors branch test with 1,000 replications (shown on the branches)
was employed to build the trees. Figures S23 and S24 shows loss of, one to
one orthologous relationship between two species due to concerted
evolution. The KRTAP members are labeled with species abbreviation,
Gene ID and KRTAP subfamily (Additional file 2) Figure S1-21 are in
order, Gorilla, Pongo, Gibbon, Mormoset, Tarsies, Mouse lemur, Bushbaby,
Treeshrew, Cavia, rabbit, Cow, Pig, Alpaca, Horse, Panda, Bat, Hedgehog,
Elephant, Armadillo, Sloth and Wallaby. Figure S22 (Gorilla and Gibbon) and
S23 (Gorilla and Cavia) shows reduced orthology with increase in
divergence time. Figure S24 shows relationship between all HGT
members in 22 genomes.

Additional file 2: Table S2. The excel file shows the genomic
coordinates of the KRTAP gene repertoires in 22 mammalian species
studied. The Gene ID corresponds to the genomic location.

Additional file 3: Table S3. Gene pairs under significant gene
conversion, as detected by GeneConv program.

Additional file 4: Table S4. Results of RDP3 showing unique
recombination events with statistical significance P value of less than 0.01
employing Bonferroni correction.
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