
Nova Southeastern University
NSUWorks

Oceanography Faculty Proceedings, Presentations,
Speeches, Lectures Department of Marine and Environmental Sciences

7-2008

Coral Ultrastructural Response to Elevated pCO2
and Nutrients During Tissue Repair and
Regeneration
Dorothy-Ellen A. Renegar
Nova Southeastern University, drenegar@nova.edu

Patricia Blackwelder
University of Miami, Nova Southeastern University, pblackwe@nova.edu

Alison L. Moulding
Nova Southeastern University, moulding@nova.edu

Follow this and additional works at: http://nsuworks.nova.edu/occ_facpresentations

Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and
Meteorology Commons

This Conference Proceeding is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has
been accepted for inclusion in Oceanography Faculty Proceedings, Presentations, Speeches, Lectures by an authorized administrator of NSUWorks.
For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Renegar, Dorothy-Ellen A.; Blackwelder, Patricia; and Moulding, Alison L., "Coral Ultrastructural Response to Elevated pCO2 and
Nutrients During Tissue Repair and Regeneration" (2008). Oceanography Faculty Proceedings, Presentations, Speeches, Lectures. Paper
173.
http://nsuworks.nova.edu/occ_facpresentations/173

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NSU Works

https://core.ac.uk/display/51093814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Focc_facpresentations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Focc_facpresentations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Focc_facpresentations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/occ_facpresentations?utm_source=nsuworks.nova.edu%2Focc_facpresentations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/occ_facpresentations?utm_source=nsuworks.nova.edu%2Focc_facpresentations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cnso_mes?utm_source=nsuworks.nova.edu%2Focc_facpresentations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/occ_facpresentations?utm_source=nsuworks.nova.edu%2Focc_facpresentations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=nsuworks.nova.edu%2Focc_facpresentations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=nsuworks.nova.edu%2Focc_facpresentations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=nsuworks.nova.edu%2Focc_facpresentations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/occ_facpresentations/173?utm_source=nsuworks.nova.edu%2Focc_facpresentations%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nsuworks@nova.edu


Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida, 7-11 July 2008 
Session number 25 
 

Coral ultrastructural response to elevated pCO2 and 
nutrients during tissue repair and regeneration  
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Abstract.  Corals and coral reefs have recently experienced widespread decline attributed to anthropogenic 
pressure on reef systems.  Studies have demonstrated that nutrient and pCO2 stress effect coral growth and 
calcification, but study of specific effects on coral tissue is lacking.  The objective of this research was to 
examine wound healing in corals and how it is affected by exposure to elevated nutrients and pCO2.  Coral 
tissue repair and regeneration during wound healing in Montastraea cavernosa and Porites astreoides were 
assessed histologically and ultrastructurally by examining colony fragments exposed to elevated nitrate, 
phosphate, and pCO2.  In M. cavernosa, tissue repair was facilitated by granular amoebocytes, and the 
zooxanthellae population size increased under enriched nutrient conditions.  In P. astreoides, zooxanthellae 
chloroplasts were markedly abnormal in phosphate-enriched corals, and the concentration of chromophore cells 
at the healing tissue front was markedly lower under elevated nutrient conditions.  The area of wound healed 
was higher after 14 days under every experimental condition in M. cavernosa compared to P. astreoides.  In 
both species, phosphate enrichment had the most deleterious effect on repair and regeneration.   
 
Key words: coral ultrastructure, tissue repair, pCO2, nutrient enrichment. 
 
Introduction 
A growing global population and the close proximity 
of coral reefs to coastal areas has resulted in 
increasing anthropogenic pressure on reef systems.  In 
recent history, the implications of environmental 
change on coral reefs have become progressively 
more far-reaching.  Both nutrification and global 
climate change (including increasing atmospheric 
pCO2 and temperature) are sources of nonspecific 
general anthropogenic stress to corals.  Other sources, 
such as over-fishing, sedimentation and turbidity from 
dredging and beach restoration activities, have 
deleterious effects on corals (Szmant 2002, Vargas-
Ángel et al. 2005).  In addition, direct physical 
damage can result from storms, coral collection, 
dynamite fishing, blasting, and ship groundings 
(Curtis 1985, Szmant 2002).  Physical damage events, 
coupled with existing eutrophication stress (a 
complex process of organic production and 
accumulation) and changing global climate present a 
poor outlook for successful natural recovery of reef 
communities and individual colonies (Szmant 2002).  

Elevated nutrient and pCO2 levels in areas prone to 
physical damage may contribute to a reduced ability 
of damaged corals to successfully heal and survive.  
Significant decreases in calcification rate and/or 
growth rate have been observed in several species at 
nitrate concentrations of <5 μM (Tomascik and 

Sander 1985, Bell and Tomascik 1993, Marubini and 
Davies 1996, Renegar and Riegl 2005) and at 
phosphorus concentrations of >1 μM (Kinsey and 
Davies 1979, Walker and Ormond 1982, Tomascik 
and Sander 1985, Ferrier-Pagès et al. 2000, Renegar 
and Riegl 2005).  Increasing atmospheric CO2 partial 
pressure (pCO2) is predicted to alter ocean surface 
carbonate saturation, resulting in reduced reef growth 
(Leclercq et al. 2000, Guinotte et al. 2003, Hughes et 
al. 2003).  The possible effects of low pH and CO3

2– 
(including weaker skeletons and increased erosion) 
may have a greater impact on net calcification than 
nutrient enrichment (Kleypas et al. 1999, Marubini 
and Atkinson 1999).   

The process by which tissue repair takes place and 
normal function restored is a complex process that has 
been described in other calcifying aquatic organisms 
but remains largely uninvestigated in scleractinians.  
The mechanism of invertebrate tissue repair, organic 
matrix production and skeletal deposition has been 
ultrastructurally studied, for example, in echinoderms 
and molluscs (Wilbur 1973, Meenakshi et al. 1975, 
Blackwelder and Watabe 1977).  Mollusc epithelial 
ultrastructure changes dramatically during repair, and 
the minerals formed differ from normal morphology 
and mineralogy (Watabe and Blackwelder 1980).  In 
corals, most studies have focused on physical 
parameters such as lesion or colony size.  Lesional 
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perimeter length is likely the most important factor in 
regeneration, although the size, shape and location of 
lesions can be significant (Meesters et al. 1997, Oren 
et al. 1998, Lirman 2000).  Regeneration may be 
supported by a limited amount of energy related to the 
extent of damage, an aspect possibly linked to colony 
size (Bak and Van Es 1980, Lirman 2000).   

A more complete understanding of the effects of 
anthropogenic environmental factors on coral cell 
biology is essential to reef management and 
prediction of the capacity for natural recovery.  This 
goal of this study was to examine the process of tissue 
repair in corals and how it is affected by elevated 
nutrients and pCO2.  The target species, Montastraea 
cavernosa and Porites astreoides, are important and 
widespread Caribbean reef corals. 
 
Materials and Methods 
Four colonies each of M. cavernosa and P. astreoides 
were acclimated to laboratory conditions.  Colonies 
were cut into 4 cm2 fragments.  A wound (~4 mm 
wide and 2 cm in length) was created with a rotary 
tool in each fragment, and fragments were placed in 
experimental tanks.  Experiments were conducted in 
20 separate (8 l) flow-through aquaria partially 
submerged in a water bath to control temperature 
variation between tanks.  Five treatment conditions 
were maintained, with two tanks and 32 fragments of 
each species for each treatment: control; nitrate 
enrichment; phosphate enrichment; nitrate and 
phosphate, and pCO2 enrichment.  Each set of 
treatment tanks was continuously supplied with 
natural seawater from reservoirs dosed at a specific 
rate.  Irradiance was supplied by metal halide lamps 
(175 watt, 10,000K, photoperiod 12:12).   

Elevated mean nutrient concentrations of 10.8 
(±0.5) μM NO3

– and 4.4 (±0.3) μM P-PO4
3– were 

achieved by addition of KNO3 and KH2PO4 to 
reservoirs supplying the appropriate tanks.  Nitrate 
concentration was determined with NECi Saltwater 
Nitrate Test Kit (SW-NTK).  Phosphate concentration 
was determined utilizing the method of Parsons et al. 
(1984).  Elevated mean pCO2 concentrations of 1381 
(±66) μatm were achieved with a pH controlled CO2 
injected reservoir system described by Reynaud et al 
(2003).  Total alkalinity and pH were used to monitor 
pCO2.   

Corals were maintained under experimental 
conditions for 14 days.  Fragments were then fixed in 
glutaraldehyde fixative solution [2 mL 70% 
glutaraldehyde in 68 mL cacodylic buffer (2.16 g 
cacodylic acid in 200 mL of .22 µm filtered 
seawater)].  Samples were maintained at 4°C in the 
fixative solution for 1-2 days, rinsed in buffer, and 
subsequently post-fixed in buffered 1% osmium 
tetroxide solution (5 mL 4% aqueous osmium 

tetroxide in 30 mL of cacodylic buffer) for 1 hour.  
Samples were again rinsed in buffer and then 
dehydrated in a graded series of ethanols.  Excess 
skeleton was trimmed and the samples were 
embedded in Spurr resin.  Ultrathin sections were cut 
(40 to 60 nm thick) using a Sorval MT-2 
ultramicrotome fitted with a diamond knife.  Sections 
were retrieved on nitrocellulose and carbon coated 
200 mesh copper grids, stained with Reynolds lead 
citrate and/or 2% uranyl acetate solution, and viewed 
in a Phillips 300 TEM.   

After fixation and dehydration as discussed above, 
SEM samples were dried in HMDS, mounted on 
carbon adhesive covered aluminum stubs, coated with 
palladium in a sputter coater and examined in an FEI 
XL-3- ESEM fitted with an Oxford EDS for 
elemental analysis of the calcified structures.  

Histological samples were decalcified after primary 
fixation in 5% HCl/EDTA solution, dehydrated and 
embedded in Paraplast®, sectioned and stained with 
Hematoxylin & Eosin.   
 
Results 
Wound healing and closure was affected by nutrient 
and CO2 enrichment.  Area analysis of percent wound 
healing for each treatment was performed using Coral 
Point Count (Kohler and Gill 2006) (Table 1).  In M. 
cavernosa, 15% of the wounded corals for all 
treatments fully healed after 14 days.  In P. astreoides, 
none of the wounded corals fully healed.  In both 
species, phosphate enrichment had the greatest 
deleterious effect on the percent of wound repaired.  
The effect of pCO2 was similar to that of nitrate 
enrichment alone.  
 
Table 1.  CPCe (V 3.5).  Mean percent wound healing in each 
treatment for Montastraea cavernosa and Porites astreoides.

 Montastraea 
cavernosa 

Porites 
astreoides 

Control 87% ± 11% 24% ±   5% 
Nitrate/Phosphate 85% ± 17%   9% ± 13% 

Nitrate 79% ± 11% 10% ± 16% 
Phosphate 58% ± 26%  2% ±   6% 

pCO2 75% ± 20% 10% ± 11% 
 
Montastraea cavernosa.  Histological analysis 
indicated that tissue repair in M. cavernosa was 
characterized by rapid granulation of tissue across the 
wound site, facilitated by granular amoebocytes.  
These amoebocytes coalesced to form new tissue at 
the healing front (arrows) (Figs. 1A & 1C).  No 
histological differences in the coral tissue have thus 
far been observed between the treatments.  However, 
the zooxanthellae population number appeared to 
increase in response to nutrient enrichment (Figs. 1B 
& 1D).  
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Figure 1.  Montastraea cavernosa.  Histological micrographs.  A) 
Control, B) CO2 enriched, C) nitrate & phosphate enriched and D) 
phosphate enriched.  ep: epidermis;  gd: gastrodermis;  zx: 
zooxanthellae.  Scale bars: A, B, C & D = 20 μm. 
 

Ultrastructural observations revealed that granular 
amoebocytes were migrating to and integrating with 
new tissue at the repairing interface (Figs. 2A & 2B).  
Newly formed tissue was dense with well-defined cell 
walls and a distinct granular appearance (Fig. 2C).  
Zooxanthellae appeared healthy and were in various 
stages of cell division.  Preliminary data indicates few 
distinct differences in tissue ultrastructure between 
nutrient, CO2, or control treatments.  

 
Porites astreoides.  Tissue repair in P. astreoides was 
characterized by an increased concentration of 
chromophores near the healing tissue front (arrows).  
This was pronounced in control and CO2 treatments 
(Figs. 3A & 3B).  In contrast, the nutrient enriched 
corals appeared to exhibit fewer chromophores near 
the repairing front (Figs. 3C & 3D), and the 
gastrodermis was thickened.  Vacuolization was 
observed in phosphate treated tissue, suggesting 
zooxanthellae degradation (Fig. 3D).   

 
 

 
 

 
Figure 2.  Montastraea cavernosa.  TEM micrographs.  A) 
Coalescent granular amoebocytes, B) mid-stage tissue formation, 
and C) late-stage tissue formation.  mi: mitochondria; mv: 
microvilli; nu: nucleus;  sp: spirocyst.  Scale bars: A = 4 μm, B & C 
= 5 μm. 
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Figure 3.  Porites astreoides.  Histological micrographs. A) Control, 
B) CO2 enriched, C) nitrate & phosphate enriched and D) phosphate 
enriched.  cr: chromophore;  ep: epidermis;  gd: gastrodermis;  zx: 
zooxanthellae.  Scale bars: A, B, C & D = 20 μm. 
 

Fine-structural examination (SEM) of the repairing 
tissue confirmed the presence of chromophores 
accumulating at the healing tissue front (oval) (Fig. 
4A).  Ultrastructural examination revealed mature 
granules within the chromophore cells (Fig. 4B).  
Abnormal zooxanthellae were observed in the 
phosphate-enriched corals, with significantly 
degraded chloroplast lamellae and cellular wall 
disruption (Fig. 4C).  These effects are currently 
being assessed in greater detail.   

 

 
 

 
 

   
Figure 4.  Porites astreoides.  A) SEM micrograph, chromophore 
cell accumulation in healing tissue. TEM micrographs, B) mature 
granules in chromophores, C) phosphate-enriched zooxanthellae 
and D) mast-type cell in early stage tissue repair.  ch: chloroplast; 
gr: granule; nu: nucleus.  Scale bars: A = 5 μm, B, C & D = 2 μm. 

 
Discussion 
Tissue repair in M. cavernosa was characterized by 
granulation of new tissue across the wound site, 
facilitated by coalescent granular amoebocytes.  This 
is similar to observations in gorgonians (Meszaros 
and Bigger 1999).  As little organic matrix was 
observed associated with the calicodermis near the 
repairing front, the wound healing strategy of this 
species appears to emphasize rapid wound closure 
and formation of new tissue before calcification 
resumes.  The percentage of wound repair was highest 
in the controls, and lowest in the phosphate treatment.  
Zooxanthellae concentration appeared higher near the 
healing front in the nutrient treatments compared to 
the control or CO2 treatments.  The variation in 
zooxanthellae concentration is likely due to the 
interaction between regeneration energy demands and 
the presence of limiting nutrients, as overall increases 
in zooxanthellae concentrations have been found in 
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wounded gorgonians compared to non-wounded 
(Meszaros and Bigger 1999).  This aspect is currently 
being studied in greater detail.  

In contrast to M. cavernosa, the wound repair 
strategy of P. astreoides appeared to involve rapid 
sealing and reorganization of the tissue and 
continuation of calcification, with closure achieved by 
recalcification across the wound.  This is supported 
by the marked effect of nutrients and pCO2 on wound 
closure rate in this species.  Accumulation of 
chromophores at the healing tissue front was notable 
in the control and CO2 treatments, in contrast to the 
few seen adjacent to the tissue front in the nutrient 
treatments.  Interestingly, the ultrastructure of some 
chromophores was similar to vertebrate mast cells 
(Fig. 4D) (Porter and Bonneville 1974).  
Chromopphores may have many functions, including 
involvement in tissue repair and the coral immune 
response.  For example, differences in chromophore 
ultrastructure have been observed in healthy vs. 
diseased P. astreoides (Kacszmarsky, pers. com.).   

The synergistic effect of nitrate and phosphate 
combined appeared to be antagonistic in both species.  
Similar observations have been made regarding 
growth rate and calcification in other coral species.  
The effect of nitrate and phosphate combined on the 
growth rate of Acropora cervicornis was additive at 
low concentrations (5 μM NO3

– and 2 μM P-PO4), 
and antagonistic at high concentrations (10 μM NO3

– 
and 4 μM P-PO4) (Renegar and Riegl 2005).  This 
effect may be a consequence of disruption of the 
coral-zooxanthellae relationship resulting from the 
stress of and energy requirements for regeneration 
and repair (Meszaros and Bigger 1999).   
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