
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2016

Evaluation of Supervised Machine Learning for
Classifying Video Traffic
Farrell R. Taylor
Nova Southeastern University, ftaylor@mitre.org

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Artificial Intelligence and Robotics Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Farrell R. Taylor. 2016. Evaluation of Supervised Machine Learning for Classifying Video Traffic. Doctoral dissertation. Nova Southeastern
University. Retrieved from NSUWorks, College of Engineering and Computing. (972)
http://nsuworks.nova.edu/gscis_etd/972.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Evaluation of Supervised Machine Learning for Classifying Video

Traffic

 by

Farrell Taylor

A dissertation submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy

in

Information Systems

Graduate School of Computer and Information Sciences

Nova Southeastern University

2016

We hereby certify that this dissertation, submitted by Farrell Taylor, conforms to

acceptable standards and is fully adequate in scope and quality to fulfill the dissertation

requirements for the degree of Doctor of Philosophy.

___ ________________

Sumitra Mukherjee , Ph.D. Date

Chairperson of Dissertation Committee

___ ___________ _____

Michael J. Laszlo, Ph. D . D ate

Dissertation Committee Member

___ ________________

Gregory E. Simco , Ph.D. Date

Dissertation Committee Member

Approved:

___ __ ______________

Ronald J. Chenail, Ph.D. Date

Interim Dean, College of Engineering and Computing

An Abstract of a Dissertation Submitted to Nova Southeastern University

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Evaluation of Supervised Machine Learning for Classifying Video

Traffic

by

Farrell Taylor

May 2016

Operational deployment of machine learning based classifiers in real-world networks has

become an important area of research to support automated real-time quality of service

decisions by Internet service providers (ISPs) and more generally, network

administrators. As the Internet has evolved, multimedia applications, such as voice over

Internet protocol (VoIP), gaming, and video streaming, have become commonplace.

These traffic types are sensitive to network perturbations, e.g. jitter and delay. Automated

quality of service (QoS) capabilities offer a degree of relief by prioritizing network traffic

without human intervention; however, they rely on the integration of real-time traffic

classification to identify applications. Accordingly, researchers have begun to explore

various techniques to incorporate into real-world networks. One method that shows

promise is the use of machine learning techniques trained on sub-flows – a small number

of consecutive packets selected from different phases of the full application flow.

Generally, research on machine learning classifiers was based on statistics derived from

full traffic flows, which can limit their effectiveness (recall and precision) if partial data

captures are encountered by the classifier. In real-world networks, partial data captures

can be caused by unscheduled restarts/reboots of the classifier or data capture

capabilities, network interruptions, or application errors. Research on the use of machine

learning algorithms trained on sub-flows to classify VoIP and gaming traffic has shown

promise, even when partial data captures are encountered. This research extends that

work by applying machine learning algorithms trained on multiple sub-flows to

classification of video streaming traffic.

Results from this research indicate that sub-flow classifiers have much higher and more

consistent recall and precision than full flow classifiers when applied to video traffic.

Moreover, the application of ensemble methods, specifically Bagging and adaptive

boosting (AdaBoost) further improves recall and precision for sub-flow classifiers.

Findings indicate sub-flow classifiers based on AdaBoost in combination with the C4.5

algorithm exhibited the best performance with the most consistent results for

classification of video streaming traffic.

Acknowledgements

It has been a long journey to this point, filled with numerous challenges; however,

looking back, the endeavor was well worth the effort. When I first entered the program, I

was told that a PhD is a personal journey that should not be undertaken for career,

financial gain, nor ego. This was sage advice.

Several friends have been supportive of my efforts to attain a PhD. Dr. Dennis Bauer, a

dear friend and colleague who provided an emotional push to move me from the point of

indecision to commitment. Also, Dr. Dolly Mastrangelo, who provided encouragement at

a key point in this journey when I strongly considered stopping my pursuit of a PhD. I

owe Dr. Mastrangelo a great deal of thanks. To Zachary Parker, who spent his time

discussing and providing reviews on a subject that had very little interest to him, and

simply being there when needed, thank you. I would like to thank Dr. Stephen Dinkle for

his advice and mentorship from the beginning of my PhD program until its completion.

Dr. Dinkel’s reviews and advise throughout this process was instrumental to my success.

To my dissertation committee, Dr. Sumitra Mukherjee, Dr. Michael Laszlo and Dr.

Gregory Simco, I would like to extend appreciation and gratitude for their guidance and

support. A very special thanks to Dr. Sumitra Mukherjee. Dr. Mukherjee was and still is a

motivating force for me undertaking and completing my dissertation. Dr. Mukherjee is

simply one of the best professors, more importantly, “teachers”, I have ever had, and as

he’s done for me, will continue to inspire other students to achieve.

Finally, I would like to thank my wife, Toni, who has supported me throughout this

process. Many nights, weekends and in some cases mini-vacations where sacrificed for

this work. I owe her a sincere debt of gratitude. And to my children; the greatest

achievement I have ever made is being a father. Thank you Mackenzie, Elyse and

Samantha for calling me “Dad”.

iii

Table of Contents

Abstract ii

Acknowledgements iii

List of Tables v

List of Figures vi

Chapters

1. Introduction 1
Background 1
Problem Statement 4
Dissertation Goal 4
Research Questions 5

Relevance and Significance 6
Barriers and Issues 8

Definition of Terms 9

Summary 11

2. Review of the literature 12
Introduction 12

Initial Approaches to IP Traffic Classification 12
IP Classification using Unsupervised ML 13

IP Classification using Supervised ML 15
IP Classification using Semi-Supervised (Hybrid) ML 17
Operationalizing ML Classifiers 17

ML Techniques Applied in this Research 19

Support Vector Machine 22

Naïve Bayes 27
C4.5 31

Ensemble Techniques used to Improve ML Performance 38
Summary 41

3. Methodology 42
Introduction 42
Step 1 – Data Collection 43
Step 1a – Capturing Live Traffic 44
Step 1b – Generating Full Flow and Sub-flow Feature Sets 45
Step 1c – Creating Training and Test Sets 48

Step 2 – Classification Based on Full Flows 49
Step 3 – Classification Based on Sub-flows 50
Evaluating Ensemble Techniques: Bagging and Boosting 51
Format for Results 52

Resource Requirements 53
Summary 53

iv

4. Results 55
Data Preprocessing 55
Addressing Class Imbalance 57
Full Flow Trained Classifier Applied to Partial Flows with Missing Packets 58

J48 C4.5 Full Flow Classifier Performance 59
Naïve Bayes Full Flow Classifier Performance 63
SVM Full Flow Classifier Performance 67
Summary 71

Sub-flow Trained Classifiers Applied to Partial Flows with Missing Packets 72

Sub-flow “m0,n25,s10” Model Evaluation 73
Sub-flow “m0,n100,s50” Model Evaluation 77
Sub-flow “m0,n500,s200” Model Evaluation 82
Sub-flow “m0,n1000,s500” Model Evaluation 86

Summary 90
Evaluation of Ensemble Algorithms Applied to Sub-flow Classifiers 91

YouTube Sub-flow Bagging Classifiers 91
YouTube Sub-flow ADA Classifiers 95

Netflix Sub-flow Bagging Models 98
Netflix Sub-flow AdaBoost Classifiers 101
Summary 105

5. Conclusions, Implications, Recommendations, and Summary 106
Conclusion 106

Implications 109
Recommendations 109
Summary 110

6. References 112

v

List of Tables

Tables

1. Table 1 Definition of Terms 9

2. Table 2 Full Flow and Sub-flow Statistics 46

3. Table 3 Required Resources 53

4. Table 4 YouTube Dataset 56

5. Table 5 Netflix Dataset 56

6. Table 6 Full Flow Training Stats 59

7. Table 7 YouTube m0,n25,s10 Model Results 74

8. Table 8 Netflix m0,n25,s10 Model Results 75

9. Table 9 YouTube m0,n100,s50 Model Results 78

10. Table 10 Netflix m0,n100,s50 Model Results 80

11. Table 11 YouTube m0,n500,s200 Model Results 82

12. Table 12 Netflix m0,n500,s200 Model Results 84

13. Table 13 YouTube m0,n1000,s500 Model Results 86

14. Table 14 Netflix m0,n1000,s500 Model Results 88

15. Table 15 YouTube Bagging-J48 Results 92

16. Table 16 YouTube Bagging-Naive Results 93

17. Table 17 YouTube Bagging-SMO Results 94

18. Table 18 YouTube ADA-J48 Results 95

19. Table 19 YouTube ADA-Naive Results 97

20. Table 20 YouTube ADA-SMO Results 98

21. Table 21 Netflix Bag-J48 Results 99

22. Table 22 Netflix Bag-Naive Results 100

23. Table 23 Netflix Bag-SMO Results 101

24. Table 24 Netflix ADA-J48 Results 102

25. Table 25 Netflix ADA-Naive Results 103

26. Table 26 Netflix ADA-SMO Results 104

vi

List of Figures

Figures

1. Figure 1 Generalized Depiction of Machine Learning 20

2. Figure 2 Linear Support Vector Machine 24

3. Figure 3 Overview of Research Methodology 43

4. Figure 4 Environment used to Capture Traffic 44

5. Figure 5 Generating Full and Sub-flow Statistics 46

6. Figure 6 Sample Wireshark Text Export 48

7. Figure 7 Recall for YouTube J48 Full-flow Classifier Tested with Partial Flows 60

8. Figure 8 Recall for Netflix J48 Full-flow Classifier Tested with Partial Flows 60

9. Figure 9 Precision for YouTube J48 Full-flow Classifier Tested with Partial Flows 62

10. Figure 10 Precision for Netflix J48 Full-flow Classifier Tested with Partial Flows 63

11. Figure 11 Recall for YouTube Naïve Bayes Full-flow Classifier Tested with Partial

Flows 64

12. Figure 12 Recall for Netflix Naïve Bayes Full-flow Classifier Tested with Partial

Flows 65

13. Figure 13 Precision for YouTube Naïve Bayes Full-flow Classifier Tested with

Partial Flows 66

14. Figure 14 Precision for Netflix Naïve Bayes Full-flow Classifier Tested with Partial

Flows 67

15. Figure 15 Recall for YouTube SVM Full-flow Classifier Tested with Partial Flows 69

16. Figure 16 Recall for Netflix SVM Full-flow Classifier Tested with Partial Flows 69

17. Figure 17 Precision for YouTube SVM Full-flow Classifier Tested with Partial Flows

70

18. Figure 18 Precision for Netflix SVM Full-flow Classifier Tested with Partial Flows

71

19. Figure 19 Process for Evaluating Sub-flow Models 72

20. Figure 20 YouTube J48 m0,n25,s10 Model 74

21. Figure 21 YouTube Naive m0,n25,s10 Model 75

22. Figure 22 YouTube SMO m0,n25,s10 Model 75

23. Figure 23 Netflix J48 m0,n25,s10 Results 76

24. Figure 24 Netflix Naive m0,n25,s10 Results 77

25. Figure 25 Netflix SMO m0,n25,s10 Results 77

26. Figure 26 YouTube J48 m0,n100,s50 Results 79

27. Figure 27 YouTube Naive m0,n100,s50 Results 79

28. Figure 28 YouTube SMO m0,n100,s50 Results 80

29. Figure 29 Netflix J48 m0,n100,s50 Model 81

30. Figure 30 Netflix Naïve m0,n100,s50 Model 81

31. Figure 31 Netflix m0,n100,s50 Model 82

32. Figure 32 J48 m0,n500,s200 Model 83

33. Figure 33 Netflix Naïve m0,n500,s200 Model 83

34. Figure 34 Netflix SMO m0,n500,s200 Model 84

35. Figure 35 Netflix J48 m0,n500,s200 Model 85

36. Figure 36 Netflix Naïve m0,n500,s200 Model 85

vii

37. Figure 37 Netflix SMO m0,n500,s200 Model 86

38. Figure 38 YouTube J48 m0,n1000,s500 Model 87

39. Figure 39 YouTube Naive m0,n1000,s500 Model 87

40. Figure 40 YouTube SMO m0,n1000,s500 Model 88

41. Figure 41 Netflix J48 m0,n1000,s500 Model 89

42. Figure 42 Netflix Naive m0,n1000,s500 Model 90

43. Figure 43 Netflix SMO m0,n1000,s500 Model 90

44. Figure 44 YouTube Bagging-J48 F-Measure 93

45. Figure 45 YouTube Bagging-Naive F-Measure 94

46. Figure 46 YouTube Bagging-Naive F-Measure 95

47. Figure 47 YouTube ADA-J48 F-Measure 96

48. Figure 48 YouTube ADA-Naive F-Measure 97

49. Figure 49 YouTube ADA-SMO F-Measure 98

50. Figure 50 Netflix Bag-J48 F-Measure 99

51. Figure 51 Netflix Bag-Naive F-Measure 100

52. Figure 52 Netflix Bag-SMO F-Measure 101

53. Figure 53 Netflix ADA-J48 F-Measure 103

54. Figure 54 Netflix ADA-Naive F-Measure 104

55. Figure 55 Netflix ADA-SMO F-Measure 105

1

Chapter 1

Introduction

Background

Internet Protocol (IP) network traffic classification is a key objective of internet

service providers (ISPs) and network administrators supporting decisions related to

quality of service (QoS), security, traffic shaping and overall network management

(Dainotti, Pescape, & Claffy, 2012; Nguyen & Armitage, 2008). Traffic classification is

the practice of correlating network flows to the applications that generated them (Mu &

Wu, 2011). Initially, IP traffic classification was accomplished through the examination

of common characteristics of network packets such as IP address, well-known ports and

payload inspection (Karagiannis, Papagiannaki, & Faloutsos, 2005). Well-known ports

were the preeminent means of identifying traffic (i.e. traffic classification) based on the

Internet Assigned Numbers Authority (IANA) application port registration and were

integrated into network monitoring tools such as NetFlow and sflow (Zander, Nguyen, &

Armitage, 2005). Payload inspection, also referred to as deep-packet inspection, was a

complementary technique, based on content analysis of the data portion of an IP packet

(Bernaille, Teixeira, Akodkenou, Soule, & Salamatian, 2006). Both methodologies

produced early success in classifying network flows to the applications that originated the

traffic (Bernaille et al., 2006; Moore & Papagiannaki, 2005).

Although techniques based on well-known ports and payload inspection realized a

level of success, today’s network applications, especially peer to peer (P2P), have

become more sophisticated and the reliance on these characteristics to identify specific

application protocols is suspect (Soysal & Schmidt, 2010; Yuan, Li, Guan, & Xu, 2010).

2

P2P applications (e.g. gaming, video streaming, voice over IP (VoIP)) may use a variety

of ports to communicate between end user devices and servers, and payload inspection

can be computationally expensive, infringe on privacy laws by revealing user content and

could be rendered ineffective if encryption is used (Karagiannis, Broido, Faloutsos, &

claffy, 2004; Yibo, Dawei, & Luoshi, 2013). Moreover, users have begun to purposely

evade detection using encryption, tunnels, and ephemeral ports (Karagiannis et al., 2004).

To address deficiencies associated with using port and payload inspection for traffic

identification researchers have applied machine learning techniques – based on network

flow statistics – to support classification of IP traffic (Callado et al., 2009; Zander et al.,

2005). Generally, a flow is defined by a sequence of five-tuples: source IP, destination IP,

source port, destination port, and protocol (Dainotti et al., 2012; Hu, Chiu, & Lui, 2009).

Overall results have been promising; however, several research worthy areas remain; in

particular, research on the operational deployment of classifiers in real-world networks to

identify P2P interactive traffic (Li, Springer, Bebis, & Hadi Gunes, 2013; Nguyen &

Armitage, 2008). Deploying classifiers into real-world networks is a key aspect of

automating QoS decisions to enable immediate, without the need for human intervention,

reprioritization of network traffic to support real-time Internet applications (McGregor,

Hall, Lorier, & Brunskill, 2004).

Operational deployment of machine learning (ML) based classifiers have several

challenges: timely and continuous classification, directional neutrality, efficient use of

memory, portability and robustness (Nguyen & Armitage, 2008). Nguyen, Armitage,

Branch, and Zander (2012) developed a means to address a key challenge associated with

real-time classifiers, specifically, the challenges associated with timeliness and

3

continuous classification of traffic flows. Nguyen et al. (2012) methodology uses sub-

flows – fragments of full traffic flows containing some number of contiguous packets –

for identification of IP flows that addressed timeliness and continuous classification

challenges. Prior to this work, the majority of the research on IP traffic classification used

statistics derived from the entire traffic flow (Nguyen & Armitage, 2006). However, real-

time classifiers may encounter partial, incomplete, traffic flows for a number of reasons:

unscheduled shutdown/reboots of packet capture capabilities, network interruptions, or

application errors (Nguyen & Armitage, 2006). Nguyen et al. (2012) found that

classifiers trained on statistics from full flows, and used to identify flows from partial,

incomplete network traffic captures where initial packets are missing, exhibited degraded

performance in terms of recall and precision. Conversely, classifiers trained on multiple

sub-flows across the entire life of the application performed well -- better than 95% for

both recall and precision – even if the data being analyzed did not represent complete

captures of the entire application session. Additionally, sub-flows represent a small

portion of the entire flow of traffic, consequently less processing is needed to generate

flow statistics, train, and perform classification of the target network traffic. Although

Nguyen et al. (2012) were successful in applying this methodology, their work focused

on the identification of two specific applications: Wolfenstein: Enemy Territory and

VoIP. This research extends (Nguyen et al., 2012) work by evaluating the performance,

in terms of recall and precision, of supervised machine learning algorithms trained on

sub-flows in identifying video streaming traffic (i.e. YouTube and Netflix).

4

Problem Statement

Deployment of traffic classifiers in real-world networks has several challenges:

timely and continuous classification, directional neutrality, efficient use of memory, and

portability and robustness (Nguyen & Armitage, 2008). Of particular interest to this

research is the challenge associated with timely and continuous classification of IP traffic.

“A timely classifier should reach its decision using as few packets as possible from each

flow (rather than waiting until each flow completes before reaching a decision)” (Nguyen

& Armitage, 2008, p. 63). Additionally, it is not adequate to require the beginning

packets of a traffic flow to produce high recall and precision– good classifier

performance. In reality, network flows captured from real-world networks may be

incomplete, due to unscheduled restarts of monitoring capabilities, network interruption,

or application errors (Nguyen & Armitage, 2006; Nguyen et al., 2012; Zander, Nguyen,

& Armitage, 2012). Moreover, packet statistics may change over the lifetime of an

application’s flow, e.g. initial client server negotiation vice established connection

between client and server. Accordingly, classifiers must be able to continuously classify

traffic throughout the lifetime of the application’s flow (Nguyen & Armitage, 2008).

The problem studied for this research effort is the timely and continuous

classification of video streaming traffic using ML based classifiers trained on multiple

sub-flows, when partial, incomplete data sets are encountered.

Dissertation Goal

The goal of this research is to evaluate the effectiveness, specifically recall and

precision, of ML techniques trained on sub-flows to classify video streaming traffic.

Three ML algorithms are used – C4.5, Naïve Bayes, and Support Vector Machine (SVM)

5

– to address this goal. C4.5 and Naïve Bayes were used as part of the original work by

Nguyen et al. (2012) and Nguyen and Armitage (2006) with good results; thusly, these

methods are expected to be well suited to support this research effort. SVM has also

been applied successfully in previous work for classification of network traffic (Este,

Gringoli, & Salgarelli, 2009; Yuan et al., 2010). Additionally, ensemble techniques were

considered, combining the outputs of each ML algorithm in order to enhance the

performance of any single classifier (Dong & Han, 2005; Jianli & Yuncai, 2012). This

research effort expands knowledge on using ML techniques to classify IP network traffic

toward enabling the timely and continuous classification in real-world network

environments.

Research Questions

 This research answers the following questions:

1) What recall and precision can be attained using ML algorithms trained on

multiple sub-flows in classifying video streaming traffic?

2) What sub-flow sized is needed to train, test and classify video traffic to attain

high recall and precision?

3) What features, sub-flow attributes, are required to enable classification of video

traffic?

4) What is the effect of different sub-flow sizes, number of packets per sub-flow,

on ML recall and precision?

5) How effective are ML algorithms trained on multiple sub-flows in classifying

video streaming traffic from disparate data sets containing packets captured

from different network environments?

6

Relevance and Significance

In the early days of the Internet, data was transmitted on the basis of best effort

(Xipeng & Ni, 1999). Nowadays, the Internet has become a platform for provisioning

complex multimedia application services such as online gaming, e-commerce, video

(streaming and interactive), VoIP, Internet radio, and large-scale file sharing (Roughan,

Sen, Spatscheck, & Duffield, 2004). Additionally, with the advent of mobile devices,

which ushered in the era of ubiquitous network access, the Internet has seen exponential

growth (Roughan et al., 2004). “At the current pace of growth, Internet traffic is doubling

approximately every two years, leading to a factor of 1000 growth in the next two

decades” (Saleh & Simmons, 2011, p. 132).

As demand for Internet services has steadily increased, so has ISPs desire for

detailed understanding of the various applications traversing their networks to support

real-time network management (Jin et al., 2012). Content providers, understanding the

importance of provisioning high-quality application services, are keenly interested in

assured services to support a competitive advantage in their respective markets (Meddeb,

2010). The confluence of these challenges has provided ISPs with a new business

opportunity where differentiated services, in the form of QoS guarantees, can be offered

individualistically at varying price-points leading to new sources of revenue (Meddeb,

2010). Moreover, given the open nature of the Internet, a variety of legitimate and

malicious users exist. ISPs and content providers are examining various technologies to

support both QoS requirements and security (Saleh & Simmons, 2011). “In order to

prioritize, protect, or prevent certain traffic, providers need to implement technology for

traffic classification: associating traffic flows with the applications — or application

7

types — that generated them” (Dainotti et al., 2012, p. 35). As such, research on traffic

classification methodologies has steadily grown over the past decade (Li et al., 2013).

Both offline forensic analysis, and more recently, online, real-time capabilities have been

explored to support QoS and security.

Although offline traffic classification has shown good results, the need for real-time

traffic classification for deployment in real-world networks is critical to make timely

decisions regarding network management, particularly as it relates to automated QoS

capabilities that prioritize IP traffic (Li et al., 2013; Roughan et al., 2004). Network

administrators need to make decisions on QoS well before the flow of traffic has

completed (Nguyen & Armitage, 2006, 2008; Nguyen et al., 2012). This is especially true

for applications that are sensitive to jitter and delay such as VoIP and video (Dehghani,

Movahhedinia, Khayyambashi, & Kianian, 2010).

Security also motivates the need for deployment of traffic classification in

operational networks. In terms of security, IP classification can be used to support lawful

intercept based on malicious traffic that is linked to systems and users (Baker, Foster, &

Sharp, 2004). Anomaly detection and Botnet detection are other areas where IP

classification can be used to identify inconsistencies in traffic patterns that may be

indicative of malware on end user systems (Feily, Shahrestani, & Ramadass, 2009).

Security administrators can also use these techniques to profile traffic between clients and

servers on the network in order to make decisions on bandwidth allocation and to block

illicit traffic (Hu et al., 2009; Zhao et al., 2013).

Based on these drivers, operational deployment of machine learning base IP network

classifiers has become a meaningful area of research.

8

Barriers and Issues

Several barriers and issues affected this research effort. First, the acquisition of the

appropriate data was required for this research; second, selections of the right number of

sub-flows and associated features was challenging; third, selection of a suitable ensemble

techniques toward enhancing recall and precision of individual classifiers was not straight

forward; and finally, the robustness of the classifier as it relates to disparate data sets was

a challenge that needed to be addressed.

 Acquiring the Right Data – Although there are publicly accessible data sets, it

was difficult to acquire traces of the right applications, such as Netflix or

YouTube traces, to support this work. Additionally, lab generated traffic may

not be as realistic since the traffic may be so well contained within a segment

of the network that classifiers trained on this type of data set may not be

generalizable to traffic from an entirely different network. Some congruence

between benchmark and lab generated data must exist to support the

generalizability of the ML based classifiers. Additionally, it was important

that the labeled training data sets represent ground truth, i.e. the label on the

traffic flows are truly correct.

 Sub-flow and Feature Selection – Selecting the optimum sub-flows and

associated features was challenging. Video traffic data did not exhibit

sufficient differences across entire network flows to generate clusters of sub-

flows and features to alleviate the need for manually inspection of the data set.

Accordingly, examination of training and test datasets manually as well as

9

repetitive preliminary experimentation was needed to select features used to

train and test classifiers for experimentation.

 Applying Ensemble Techniques – Based on this research, selection of an

ensemble technique that is most suitable for enhancing the ML classifiers used

in this research will be a key goal (Fern & Givan, 2003). Although, ensemble

techniques may not be appropriate to support optimizing the classifiers used in

this work.

 Robustness of the ML Classifiers – Robustness within the context of this

research refers to the generalizability of the classifier. Although the use of lab

captured data from different networks was be used, this may not fully validate

classifiers robustness across all network environments. In all cases, data used

in this research was captured from real networks and was not artificially

generated.

Definition of Terms

Table 1 Definition of Terms

Term Definition

Machine Learning A discipline within the field of artificial intelligence

concerned with the use of algorithms that allow computers

to learn (improve their performance) based on previous

experience, in the form of data, to address a specified task

(Abu-Mostafa, Magdon-Ismail, & Lin, 2012; Flach, 2012;

Mitchell, 1997).

10

Instance/Observation Instance or Observation, within the context of this paper,

is synonymous and refers to a tuple of attributes for an

individual data point within a given input dataset.

Attribute/Feature For this research, attribute and feature are synonymous

and refer to one or more measured characteristics of an

instance of the input dataset.

Traffic Classification Describes the process of correlating network traffic to its

associated protocol or application (Mu & Wu, 2011).

Flows Refers to a five-tuples: source IP, destination IP, source

port, destination port, and protocol of network traffic

(Dainotti et al., 2012).

Sub-flow A fragment of “n” contiguous packets of a particular

traffic flow (Nguyen & Armitage, 2006).

Quality of Service (QoS) Relates to the prioritization of specific network traffic

types.

Discriminative Learning Discriminative algorithms estimate the direct posterior

probability between the input vector X, and a target class

Y, 𝑃(𝑌|𝑋), without any understanding of any of the

underlying probability distributions that may exist (Ng &

Jordan, 2002).

11

Generative Learning Generative algorithms model the joint conditional

probability distribution between the target class Y and the

input vector X, succinctly 𝑃(𝑋, 𝑌), accounting for the

underlying probabilities, likelihood and prior probability

of the target class (Ng & Jordan, 2002)

Information Gain Information gain measures the relative importance of an

individual attribute for classification of an instance

(Quinlan, 1986).

Entropy Entropy, within the context of information theory, is a

measure of impurity or uncertainty of a given dataset

(Mitchell, 1997).

Summary

 As the Internet expands to support growing demands for P2P traffic, social media,

online commerce, and gaming, the need to control, secure, and proactively manage

network traffic, will increase accordingly. Consequently, traffic classification based on

machine learning has become an important area of research with an emphasis on real

world application of these techniques. This research is focused on supporting these goals

by addressing gaps associated with timeliness and continuous classification of video

traffic. In the following section, literature related to this effort and a description of

machine learning algorithms used to pursue the objectives of this research is provided.

12

Chapter 2

Review of the literature

Introduction

 There are two main themes of this chapter: a discussion of related research literature

on the use of ML techniques for classifying IP traffic and a discussion of the specific

supervised ML algorithms used for this research effort. Although not exhaustive, the

review of literature related to IP classification is focused on the use of both supervised

and unsupervised methods; albeit, the emphasis was on supervised efforts, which is the

predominant type of ML algorithm used and the primary focus of this research. The ML

algorithms that are discussed in the latter segment of this chapter include C4.5, Naïve

Bayes and Support Vector Machines. Finally, ensemble techniques, specifically bagging

and boosting, are also be detailed.

Initial Approaches to IP Traffic Classification

Early incarnations of application classification were based on well-known port and

payload inspection. One of the initial works detailing the use of port numbers for

application classification was performed by Schneider (1996). Schneider (1996) proposed

the use of well-known port numbers registered in IANA. Ports below 1024 are

documented in the registry in terms of the applications that use them; although, not

required, the Request for Comment (RFC) 4632 also lists the use of ports beyond 1024

for convenience (Reynolds, Postel, & Group, 1994; Schneider, 1996). While Schneider

(1996) stated the benefits of using well-known ports, the paper also recommended the use

13

of additional traffic characteristics, especially in the case of ports above 1024, where port

registration was not required by the RFC.

Another means of classifying network traffic was based on packet inspection. Sen,

Spatscheck, and Wang (2004) evaluated the use of deep packet inspection to determine

application signatures for reliable and accurate identification of applications traffic flows.

Sen et al. (2004) work proved that packet inspection had advantages over port based

classification with false positive and negative rates below 5%; however, with the advent

of encryption and the increased density and diversity of traffic across the Internet, the

benefits of deep packet inspection became computationally costly when compared to the

use of flow statistics (Li et al., 2013; Raineri & Verticale, 2009).

IP Classification using Unsupervised ML

Nearly two decades ago Cisco patented NetFlow – a capability to derive statistical

information on network traffic flows (Li et al., 2013). Since that time, research has

evolved to leverage network flow statistics for a variety of activities such as application

identification, host/user profiling, anomaly detection, and intrusion detection (Li et al.,

2013). McGregor et al. (2004) were early adopters of flow statistics to support IP

classification. McGregor et al. (2004) used unsupervised machine learning techniques, in

particular expectation maximization (EM), for coarse grain clustering of traffic flows.

Although McGregor et al. (2004) work was effective, specific identification of traffic was

not possible; nevertheless, McGregor et al. (2004) research gave insight into the use of

flow statistics for probability clustering. Another unsupervised approach, termed

Autoclass, used a Bayesian classifier pioneered by Zander et al. (2005) for traffic

classification. Using Autoclass, better results were realized in terms of clustering

14

applications; although the authors stated that some clusters contained multiple application

flows, which could not be discerned by this method. As a follow-on to Zander et al.

(2005), Erman, Arlitt, and Mahanti (2006) compared the performance of Autoclass to two

other clustering algorithms, K-Means and density-based spatial clustering of applications

with noise (DBSCAN). Results indicated that both K-Means and DBSCAN had

significantly lower classifier build time than Autoclass, while Autoclass had the best

overall accuracy. The small difference in accuracy of Autoclass over DBSCAN and K-

Means was offset by the latter two algorithms’ ability to generate small, tight clusters,

indicating the overall classification power for identifying unlabeled instances. K-Means

was also used by Grimaudo, Mellia, Baralis, and Keralapura (2014) to develop a self-

learning unsupervised classifier named SeLeCT. SeLeCT used an iterative approach to

increase the fidelity of clustering ML techniques, specifically, pure clusters. Results from

Grimaudo et al. (2014) indicated that SeLeCT could semi-automatically classify traffic,

with the use of seed data derived from filtering previously identified traffic flows.

Moreover, in combination with supervised methods, SeLeCT’s iterative and adaptive

process generated homogenous cluster that predominantly contain only a single traffic

flow. Although clustering techniques show promise, sole use of these techniques to

support on-line traffic classification still presents challenges given the requirement to

positively identify traffic in real-world networks for decision-making purposes.

Clustering, or unsupervised techniques, are key foundational elements to support IP

classification (Erman, Mahanti, Arlitt, Cohen, & Williamson, 2007; Marnerides,

Schaeffer-Filho, & Mauthe, 2014). Initially, clustering was focused on crude groupings

of similar traffic as a precursor for processing unlabeled data instances, however,

15

clustering techniques has served as the basis for more sophisticated approaches to traffic

classification that combine both supervised and unsupervised hybrid methods (Dainotti et

al., 2012).

IP Classification using Supervised ML

Supervised methods have shown a great deal of promise and have become the

predominant approach used for traffic classification (Nguyen & Armitage, 2008). Moore

and Zuev (2005) used Naïve Bayes techniques to categorize network traffic. Unlike

unsupervised methods, Moore and Zuev (2005) required training on traffic that was in

some way, manually or otherwise, labeled with the correct application classification for

each flow. In their work on classification of IP traffic using Naïve Bayes, Moore and

Zuev (2005) showed that classification accuracy could be improved significantly (65 –

95% accuracy) by employing kernel density estimation to calculate required probability

distributions and enhancing the quality of discriminators for the input data. Although

their work did not address real-time classification, it provided insights on the use of

Naïve Bayes in terms of its efficiency and accuracy for classifying IP flows. Este et al.

(2009) adapted a SVM based algorithm to perform multi-class traffic categorization. In

this work, Este et al. (2009) demonstrated both the usefulness of SVM as a multi-class

traffic classification technique and its application to real-time traffic identification by

only leveraging a small number of the first few packets of the application flow.

Soysal and Schmidt (2010) evaluated three ML algorithms, Bayesian Networks,

decision trees, and multilayer perceptron, ability to classify six different types of P2P

traffic. The key objective of this work was determining if ML based classifiers are

affected by the amount and breadth of training data used. Furthermore, Soysal and

16

Schmidt (2010) evaluated the impact of incorrectly labeled training data on classifier

performance. Soysal and Schmidt (2010) concluded that the amount of data processed by

ML classifiers – in their case over one million flows – can have impact on accuracy of

classification. Moreover, their results also strongly encouraged the use of correctly

labeled instances to reduce error rates. An important aspect of Soysal and Schmidt (2010)

work are the insights into real-world application of classifiers, in relationship to the

amount of data used to train ML based classifiers. Another comparative analysis by Singh

and Agrawal (2011) used five of ML algorithms, multilayer perceptron, radial basis

function, C4.5 decision tree, Bayesian network, and Naïve Bayes. Each algorithm was

exposed to approximately two minutes of Internet data, which constitutes a large and

diverse sample set. Additionally, the feature set used was incrementally reduced to

determine the effects on classifier performance. Results indicate that C4.5 and Bayesian

network performed best. More importantly, the study called for further research to reduce

the sample and feature size to make the ML algorithms more compatible with real-time

classification problems.

In concert with the findings of Singh and Agrawal (2011), Singh, Agrawal, and Sohi

(2013) researched the application of the same five ML algorithms to real-time IP traffic

classification. In particular, their work refined the approach in described in Singh and

Agrawal (2011) by capturing only two sec intervals of Internet traffic packets and deeply

examining the elimination of attributes using feature selection algorithms. Results

indicate that this approach effectively reduce training and classification time. Moreover,

there was a strong dependency between the reduction of sample data and feature space in

relation to classifier suitability to near real-time implementation of classifiers (Singh et

17

al., 2013). As to the efficacy of the various ML algorithms, Bayesian network proved to

be most effective within the context of the research methodology used.

IP Classification using Semi-Supervised (Hybrid) ML

Hybrid solutions have also shown some promise in terms IP classification, where

both unsupervised and supervised methods are combined. Erman et al. (2007) used

labeled training data to perform classification and clustering to aggregate traffic that was

unknown (not labeled). This combination allowed for a more robust capability that could

react to both known and unknown application traffic. Shrivastav and Tiwari (2010)

research used a similar thesis; however, clustering was used first on traffic data, then the

traffic was labeled, and finally the labeled data was used to train supervised classification

algorithms. Callado, Kelner, Sadok, Alberto Kamienski, and Fernandes (2010) combined

the output of multiple supervised machine learning techniques, e.g. Naïve Bayes, J48,

SVM and others, in different ways as an approach to improve classification of IP traffic.

Multiple algorithms were applied to the output of the classifiers, such as random selection

of classifier’s outputs, maximum likelihood, Dempster-Shafer theory, and an enhanced

version of Dempster-Shafer (Callado et al., 2010). Follow-on work was recommended to

understand the optimal combination of machine learning techniques along with other

combinatorial methods for aggregating the output of multiple algorithms to improve

classification recall and precision.

Operationalizing ML Classifiers

While the offline research on unsupervised and supervised ML classifiers has shown

significant progress, the need to operationally deploy classifiers in real world networks

has grown (de A Ribeiro, Filho, & Maia, 2011; Nguyen et al., 2012). As the Internet

18

evolves, the growth in online multimedia traffic, gaming, interactive P2Ps, and video has

driven the need for automated traffic management to ensure the quality of these services

(Nguyen et al., 2012). Consequently, research on real-time deployment of ML classifiers

has become an area of increased focus within the field of IP traffic classification

(Dehghani et al., 2010; Nguyen & Armitage, 2008). One of the earlier efforts to address

the challenges of real-time classification was undertaken by (Bernaille et al., 2006). The

methodology proposed by Bernaille et al. (2006) relies on capturing the first few packets

of network traffic and applying ML algorithms for classification. Though this method

produced some level of success, the requirement to always capture the initial packets for

target flows may not be reasonable in real-world environments. Haffner, Sen, Spatscheck,

and Wang (2005) provided another approach to real-time traffic identification based on

the use of ML classifiers to automatically recognize a target application by its payload

signature. As is the case with Bernaille et al. (2006), Haffner et al. (2005) relies on

capturing the initial packets of traffic flows.

Of particular interest to this work is Nguyen and Armitage (2006) research that

devised a method using sub-flows to train ML algorithms and classify traffic. A sub-flow

is a traffic flow fragment of some number of contiguous packets taken from an

application’s full flow (Nguyen & Armitage, 2008; Nguyen et al., 2012). Statistics from

multiple sub-flows selected from various phases of the application’s flow can be used to

train the classifier (Nguyen et al., 2012). Once trained, the classifier can be used to

examine traffic at any point in the traffic flow, irrespective of incomplete data captures.

Generally, the predominance of the work discussed in this section that uses

unsupervised, supervised or hybrid methods relies on statistics from full traffic flows.

19

This presupposes that full flows can always be obtained, which may not always be the

case (Nguyen et al., 2012). This research effort extended Nguyen et al. (2012) work by

applying their methodology to classifying video streaming traffic. As such, the following

sub-section provides a more in-depth discussion of the ML algorithms that were be used

to pursue this research goal.

ML Techniques Applied in this Research

Machine Learning is a discipline within the field of artificial intelligence concerned

with the use of algorithms that allow computers to learn based on previous experience, in

the form of data, to perform a specified task (Abu-Mostafa et al., 2012; Flach, 2012). In

general, there are three fundamental forms of machine learning: supervised,

unsupervised, and reinforcement. Supervised learning entails learning from data that is

labeled, i.e. a priori knowledge of the actual classification of the input data is known

(Mitchell, 1997). Conversely, for unsupervised learning, no a priori knowledge of the

class of the input data is provided; thus, the data is unlabeled and the ML algorithm must

deduce natural groupings, clusters, without any insight of underlying patterns within the

dataset (Mitchell, 1997). Reinforcement learning takes a different tack, whereby

automated computational decision-making is performed through application of a reward

system based on feedback from trial-and-error (Sutton & Barto, 1998). Since the primary

focus of this work is supervised learning, the discussion that follows is scoped

accordingly.

Data is the key element needed to apply ML algorithms to any given task (Abu-

Mostafa et al., 2012). The learning process is based on previously gathered data, whether

unlabeled or labeled, to support prediction of future outcomes, modeling of patterns in

20

the form of natural clusters, or classification of new instances. Depending on the problem

space, the input data may undergo some degree of preprocessing such as feature

selection, generation of statistics, and formatting in order to use a particular ML

algorithm (Abu-Mostafa et al., 2012). Furthermore, the input data may be separated into a

training and validation set. Figure 1 provides a generalized depiction of machine learning

along with some of the terms that are commonly used in this section.

Figure 1 Generalized Depiction of Machine Learning

As the name implies, the training set is use to select the optimum hypothesis h(x),

from the space of hypothesis, H(x). Succinctly, training data is used to build a model that

can used to predict, cluster, or classify new instances. The hypothesis is in fact a function

that maps the input vector X to an output Y; written formally, 𝐹: 𝑋 → 𝑌. The function,

h(x), is representative of the particular ML algorithm used. In Figure 1 the input data has

a single feature, x; however, in practice the input feature space may be very large, as in

the case of classifying photos of common objects where a single picture may have

256x256 pixels. Selection of a particular ML algorithm, e.g. linear regression, logistic

21

regression, perceptron, etc. is a function of the data, task, and the preference of the

analyst.

Finally, the validation data set is use to evaluate the trained ML algorithm, h(x). A

well accepted method for evaluating the quality of a ML model is to measure recall and

precision. Recall and precision are defined as follows:

 Recall represents the proportion of all the instances of a particular class that

are correctly classified as that class (Blair & Maron, 1985; Flach, 2012;

Hand, 2009). Concisely, did the classifier correctly classify all the instances

of a particular class. To calculate recall the following expression is used:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

 Precision represents the proportion of instances that were classified as a

particular class that are actually classified correctly (Blair & Maron, 1985;

Flach, 2012; Hand, 2009). In short, out of the instances classified, what

percentage of them are correct. Precision is calculated using the following

expression:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

Both recall and precision are important for assessing classifier performance. If a

classifier has high precision – indicating that the majority of observations classified were

classified correctly – and the classifier failed to classify many of the target instances (i.e.,

poor recall), then the overall performance cannot be considered good. The converse is

also true, where recall is high and precision is low. In the following section the three ML

22

algorithms used in this research, SVM, Naïve Bayes, and C4.5, is described in more

detail.

Support Vector Machine

Support Vector Machine (SVM) has become one of the most popular supervised ML

algorithms and is applied to a wide range of tasks within the field of genetics, medical

science, security, and network analysis (Burges, 1998). Although SVM is based on a

linear classification model, its ability to be extended to tasks with high dimensional

features, with a relatively small training set, has only widened its use across a variety of

problem sets (Burges, 1998; Yuan et al., 2010). Moreover, SVM can be applied to binary,

multi-class, and non-linear classification problems, while still maintaining a high degree

of efficiency (Chang & Lin, 2011; Chih-Wei & Chih-Jen, 2002).

SVM is considered a large margin classifier since it constructs a hyperplane

(decision boundary) that offers the greatest separation between the different classes of

data under analysis (Muller, Mika, Ratsch, Tsuda, & Scholkopf, 2001; Tsochantaridis,

Joachims, Hofmann, Altun, & Singer, 2005). Since the hyperplane has a large margin

between positive and negative classes, SVM mitigates issues associated with

misclassification of new unlabeled data instances; succinctly, the trained classifier is

more generalizable to new instances of the data than a basic linear classification model

(Smola & Schölkopf, 2004). In the following sub-section, a discussion of SVM, along

with an overview of its mathematical underpinnings, is detailed initially from the

perspective of a generic linear classification task, followed by an overview of a nonlinear

case.

23

Linear SVM (LSVM)

 LSVM is the most basic SVM model that supports binary classification of data into

negative and positive classes, assuming the input data is linearly separable. For example,

given a data set D defined by the following

𝐷 = {(𝑥𝑖 , 𝑦𝑖) | 𝒙 ∈ ℝ𝑑 , 𝑦 ∈ {1, −1}}, 𝑖 = 1 … 𝓃, (1)

 where the vector 𝒙 represents a set of scalar data points 𝑥1… 𝑥𝑛 that can be used to train

and test a function that maps the input data to the output 𝑦. The dependent variable 𝑦 will

be either 1 or -1 for positive and negative classes, respectively. Since SVM is a

supervised learning algorithm, all training data instances were labeled with either a 1 or -

1 when training the classifier. Furthermore, given this is a linear classification task, the

SVM function to be trained with dataset D can be described by the following expression

𝑦 = ℎ(𝑥) = 𝒘 ⋅ 𝒙 + 𝑏; 𝑦 ∈ {1, −1} (2)

where 𝒘 is the normal vector to the decision plane, 𝒙 is the input vector, and b is the bias

or offset. Additionally, equation 2 specifies the dot product of vector 𝒘 and 𝒙 which is

defined as

𝒘 ⋅ 𝒙 = ∑ 𝑤𝑖

𝑛

𝑖=1

𝑥𝑖 (3)

To gain better intuition of the details regarding SVM, Figure 2, based on Flach (2012), is

used as a reference for a generalized LSVM and the discussion that follows.

24

Figure 2 Linear Support Vector Machine

 As depicted in Figure 2, the decision boundary hyperplane, is specified by

𝒘 ⋅ 𝒙 + 𝑏 = 0 (4)

and the maximum margin hyperplanes are defined by

𝒘 ⋅ 𝒙 + b = 1 𝒂𝒏𝒅 𝒘 ⋅ 𝒙 + 𝑏 = −1 (5)

separating positive and negative values, respectively. Constructing the maximum margin

hyperplanes (dashed lines) for both positive and negative classes is based on the data

instances nearest to the decision boundary hyperplane, which are referred to as support

vectors. The Euclidean distance from the maximum margin hyperplanes defined by

equation (5) to the decision boundary hyperplane, equation (4), can be determined using

the following 1/|(|𝒘|)|, where ||w|| is the norm of the vector 𝒘. Intuitively, minimizing

||w|| will maximize the distance between the nearest positive or negative sample to the

decision boundary hyperplanes, which implies the following constraint optimization

problem.

25

min
1

2
∥ 𝑤 ∥2 subject to 𝑦𝑖(𝒘 ⋅ 𝒙 + 𝑏) ≥ 1, ∀ 𝑖, 𝑖 ∈ {1 … 𝑛} (6)

Extending LSVM

Two key limitations arise from the constraint optimization problem expressed in (6),

its ability to deal with input data that is not linearly separable (non-linear feature space),

as well as a high dimensional input vector space (Flach, 2012). In order to addresses

these issues, the introduction of a soft margin constraint, Lagrange multiplier, and a

Kernel function will be explored (Flach, 2012).

First, the addition of slack variables to the objective function and constraint in

equation (6) will relax the constraint and introduce the concept of a soft margin

(Tsochantaridis et al., 2005). The addition of slack variables allows some degree of

misclassification, which assumes that the data may not perfectly satisfy the linear

constraint that was imposed in equation (6). Concretely, if the input data is noisy or not

linearly separable, then the constraint 𝑦𝑖(𝒘 ⋅ 𝒙 + 𝑏) ≥ 1 will not be met. By applying a

slack variable 𝜉 to the constraint, some degree of margin violation is allowed, which

begins the process of addressing non-linearly separable data (Tsochantaridis et al., 2005).

Accordingly, slack variables are added to both the objective function and the constraint

for the SVM. Moreover, a penalization parameter 𝐶 is introduced to balance the effects of

slack variables on the objective function. Therefore, equation (6) takes the form

 min
1

2
∥ 𝒘 ∥2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1

subject to 𝑦𝑖(𝒘 ⋅ 𝒙 + 𝑏) ≥ 1 − 𝜉𝑖 𝑎𝑛𝑑 𝜉𝑖 ≥ 0 ∀ 𝑖, 𝑖 ∈ {1 … 𝑛} (7)

where the parameter C is used to minimize the effects of the sum of the slack variable 𝜉

on the objective function.

26

By convention, a linear optimization problem of the form specified in (7) can be

approached using Lagrange multiplier 𝛼 to find the extrema of the objective function

under the specified constraint (Cortes & Vapnik, 1995). Furthermore, by devising the

dual form of the Lagrange function the SVM optimization problem, equation (7) can be

expressed as follows,

max ∑ 𝛼𝑖

𝑛

𝑖=1

−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗

𝑛

𝑗=1

𝑛

𝑖=1

(𝒙𝒊 ⋅ 𝒙𝒋)

 subject to ∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 and 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 ∈ {1 … 𝑛} (8)

 Completing the process of making SVM applicable to non-linear problem sets

requires the addition of Kernel methods to equation (8). Kernel methods are functions

that can be applied to various ML algorithms to address non-linearity of input data and

has proven to be well suited for SVM (Burges, 1998; Cortes & Vapnik, 1995; Howley &

Madden, 2005). By replacing the dot product in the optimization in (8) with a Kernel

function, the equation takes the form

max ∑ 𝛼𝑖

𝑛

𝑖=1

−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝐾(𝒙𝒊 ⋅ 𝒙𝒋)

 subject to ∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 and 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 ∈ {1 … 𝑛} (9)

where 𝐾(𝒙𝒊 ⋅ 𝒙𝒋) represents the application of a Kernel function to the SVM (Flach,

2012). This approach allows the algorithm to fit a non-linear input data set to a large

margin hyperplane decision boundary in a high dimensional feature space. There are

several Kernel functions that can be used to support this transformation; although,

Gaussian Kernel is one of the more common methods used across a large spectrum of

problem sets (Chang & Lin, 2011; Keerthi & Lin, 2003).

27

Finally, as stated previously, SVM can be applied to multi-class problem sets. For

multi-class systems, the most rudimentary method used is the principle of one-against-all,

whereby multiple SVM algorithms are independently trained to identify a particular class

of the data, say red, blue or green, and then applied against new instances (Weston &

Watkins, 1998). As expected, each classifier identifies the input data it was trained on for

a given instance, providing the effect of a multi-class classifier system.

Naïve Bayes

 In general, probabilistic ML algorithms can be characterized as either discriminative

or generative. Discriminative algorithms estimate the direct posterior probability between

the input vector X, and a target class Y, 𝑃(𝑌|𝑋), without any understanding of the

underlying probability distributions that may exist (Ng & Jordan, 2002). Generative

algorithms model the joint conditional probability distribution between the target class Y

and the input vector X, succinctly 𝑃(𝑋, 𝑌), accounting for the underlying probabilities,

likelihood, and prior probability of the target class (Ng & Jordan, 2002). Although Naïve

Bayes ML algorithms are comparatively less complex than other supervised learning

models, it has been empirically proven to be effective across a variety of problem sets

(Soria, Garibaldi, Ambrogi, Biganzoli, & Ellis, 2011).

From Bayes Rule to Naïve Bayes

 Fundamentally, Naïve Bayes is simplified form of Bayes rule, with the inclusion of a

key assumption that allows its practical application to ML tasks. Any discussion of Naïve

Bayes, must begin with Bayes Rule, which is defined as

𝑃(𝑌|𝑋) =
𝑃(𝑋|𝑌) 𝑃(𝑌)

𝑃(𝑋)
 (10)

28

where 𝑃(𝑌|𝑋) is the posterior joint conditional probability of class Y given the input X

and is computed using the product of 𝑃(𝑋|𝑌), termed the likelihood, and the prior

probability for the class Y, 𝑃(𝑌) (Friedman, Geiger, & Goldszmidt, 1997; Lewis, 1998).

The denominator, 𝑃(𝑋), is used to normalize the resulting posterior probability to a value

less than or equal to 1.

To begin extending Bayes Rule to the Naïve Bayes algorithm, the focus is on

maximizing 𝑃(𝑌|𝑋), as expressed by

𝐶𝑙𝑎𝑠𝑠 𝑜𝑓 𝑋 = 𝑚𝑎𝑥 𝑃(𝑌|𝑋) (11)

or stated more explicitly,

Class of 𝑋 = max
𝑃(𝑋|𝑌) 𝑃(𝑌)

𝑃(𝑋)
 (12)

which indicates that the classification of X for a target class is a function of the largest

joint posterior probability (Mitchell, 1997; Seeger, 2011). Understanding that X is a

vector that is comprised of a set of features, 𝑥1 … 𝑥𝑖, a key assumption can be introduced

to simplify this formulation to reduce the complexity of calculating the likelihood when

using data with a high dimensional feature space and a large number of samples.

Specifically, it can be proposed that the likelihood value 𝑃(𝑋|𝑌) can be expressed as the

combination of individual and independent probabilities of each input feature with

respect to a given class, i.e. 𝑃(𝑥1 … 𝑥𝑖|𝑦𝑗=𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑙𝑎𝑠𝑠). This postulation constitutes the

“Naïve” assumption for Bayes Rule and is referred to as conditional independence (Koc,

Mazzuchi, & Sarkani, 2012). Written generically,

𝑃(𝑥1 … 𝑥𝑖|𝑦𝑗) = 𝑃(𝑥1|𝑦𝑗) ⋅ 𝑃(𝑥2|𝑦𝑗) … ⋅ 𝑃(𝑥𝑖|𝑦𝑗) (13)

represents the product of the independent conditional probabilities of x given a class y.

This significantly simplifies the calculation of P(X|Y). Furthermore, the denominator for

29

the Bayes Rule, 𝑃(𝑋), can be dropped since its value is constant for the entire input

dataset (Mitchell, 1997). Consequently, P(X) does not affect the resultant joint posterior

probability and is in accord with the assumption that each feature is conditionally

independent across the entire feature set and sample space. Thus, the final form of the

equation for Naïve Bayes can be expressed as follows

𝐶𝑙𝑎𝑠𝑠 𝑜𝑓 𝑋 = max 𝑃(𝑌|𝑋) = 𝑃(𝑦𝑗) ∏ 𝑃(𝑥𝑖|𝑦𝑗) (14)

𝑛

𝑖=1

where the class of a new observation is the product of independent likelihoods, multiplied

by the prior probability 𝑃(𝑦𝑗) for a specified class.

Estimating Probability Distributions for Naïve Bayes

 Generating the required probability distributions for the Naïve Bayes classifier can

be performed using maximum likelihood estimates (McCallum & Nigam, 1998).

Concretely, the training set is used to estimate 𝑃(𝑋|𝑌) and 𝑃(𝑌) by examining relative

frequencies for each class and attribute in the dataset. First, the probability of a class, 𝑦𝑗,

within a given dataset can be estimated by the following

𝑃(𝑦𝑗) =
|𝑦𝑗|

|𝐷|
 (15)

where |𝑦𝑗| is the number of occurrences of a specific class normalized against the total

number of instances, |𝐷|; and to determine likelihood, the following formulation can be

used

𝑃(𝑥𝑖|𝑦𝑗) =
#𝑥𝑖 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑦𝑗

∑ #𝑥 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑦𝑗∀ 𝑣
 (16)

30

where the numerator represents the frequency that the attribute 𝑥𝑖 occurs for the specified

class, 𝑦𝑗, normalized by the count of all of attributes within the training set that have the

class 𝑦𝑗 (McCallum & Nigam, 1998).

Since maximum likelihood is used to determine component probability distributions

for Naïve Bayes, in real-world problems certain distributions of an instance’s feature may

be equal to zero for a given class. Simply stated, the training set may not have an

occurrence of a particular attribute-class pair, while a new observation may in fact

represent such an attribute-class relationship. Based on equation (14), which specifies the

class of a new instance is a product of independent probability distributions, a zero

probability can in effect lead to an unknown classification – zero for P(Y|X). In order to

address this issue, Laplace smoothing can be used (F. Peng, Schuurmans, & Wang,

2004). In its most basic form, Laplace smoothing can be implemented by adding one

(add-one-smoothing) to both counts in equation (16) as follows:

𝑃(𝑥𝑖|𝑦𝑗) =
#𝑥𝑖 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑦𝑗 + 1

∑ #𝑥 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑦𝑗∀ 𝑣 + |𝐷|
 (17)

where the value |𝐷| is a more compact form for adding one to each occurrence of an

attribute of class 𝑦𝑗. The result of add-one-smoothing is to ensure that missing attribute-

class pairs in the training set do not impair the ability for the algorithm to classify new,

unknown instances.

While the formulation of Naïve Bayes is based on a simplifying premise, it has

exhibited excellent performance in terms of computation time and classification results

despite the assumption of conditional independence (Rish, 2001; Yuguang & Lei, 2011).

In fact, Naïve Bayes has become the de facto standard for text classification and

31

sentiment analysis where it is used in conjunction with ensemble techniques (Rennie,

2001).

C4.5

One of the more practical inductive machine learning methods are decision trees

(Safavian & Landgrebe, 1991). A decision tree represents a classification task as a

structure containing a root, branches, and leafs. The root of the tree, which itself is an

attribute (feature), is the starting point of the structure, with each associated branch

representing a decision point based on testing the value of an attribute, and each leaf

equating to a specific classification of the input data under analysis. Decision tress can

also be represented as a series on conditional statements (if-then), a sequence of rules that

illustrates the testing of an attribute value to determine the final classification of an

instance. Objectively, it is important to select the most appropriate root attribute and

subsequent branch attributes to reduce decision tree complexity, computation time and

overfitting (Quinlan, 1986). Quinlan (1986) and Quinlan (1993) developed two methods,

ID3 (Iterative Dichotomiser 3) and C4.5, respectively, to optimize the building of a

decision tree classifier.

32

ID3

 Simplistically, a decision tree can be created based on randomly and continuously

generating individual trees from sample data, with the hope of building an optimal

classifier that can be generalized to new instances. However, depending on the size of the

training data in terms of the various classes and attributes, this approach can be time

consuming to generate a viable decision tree. Moreover, the selected decision tree may in

fact be one that is overly complex, as well as computationally expensive when used to

classify new instances. ID3 is a top-down, greedy methodology for inducing an optimal

decision tree with less computational overhead for both the generation of the tree and the

classification of new observations. Considering ID3’s top-down approach, it is critical for

the algorithm to select an attribute for the root of the tree that ultimately minimizes

complexity (number of nodes and branches), yet is efficient at performing classifications

of new observations. One means for determining the root and subsequent descendant

branch nodes is to use a statistical based methodology referred to as information gain that

measures the relative importance of an individual attribute for classification of an

instance (Mitchell, 1997; Quinlan, 1986). In order to calculate information gain, two

values are needed: the entropy of the entire dataset and the normalized entropy after the

dataset has been split using an attribute (Quinlan, 1993). Entropy, within the context of

information theory, is a measure of the impurity or uncertainty of a given dataset

(Mitchell, 1997). An examination of how the entropy of a data set is calculated is first

described, followed by a discussion of the normalized entropy after segmenting the input

data using a selected attribute.

33

Given a training data set, D, which has two distinct classes (positive and negative,

denoted by P and N, respectively), the probability of positive and negative instances is

calculated by the following

𝑝⊕ =
�̂�

𝑝 + 𝑛
 𝑎𝑛𝑑 𝑝⊝ =

�̂�

𝑝 + 𝑛
 (18)

where 𝑝 ̂and �̂� represent the number of positive and negative instances within the dataset

normalized over all instances in the dataset (Quinlan, 1986). Since a decision tree returns

a single class for any instance evaluated, it can be considered as a message source for

each class, P or N, contained in the dataset (Quinlan, 1986). Accordingly, principles

related to information theory can be applied to determine the information needed to

generate a message for P or N. Based on this precept, the probability equations in (18)

can be used to evaluate the entropy of the system and is specified by the formula

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) = −𝑝⊕ log2 𝑝⊕ − 𝑝⊝ log2 𝑝⊝ (19)

where 𝑝⊕ and 𝑝⊝are the proportion of positive and negative instances of the dataset

(Fayyad & Irani, 1992). Note that if the input space D only contains a single class, then

equation (19) for the entropy of the system evaluates to 0. Units for the output of

equation (19) are in bits and range from 0 to 1, indicating the amount of information

required to generated a message related to the class of an instance. The restriction of the

dataset to a boolean classification is done for simplicity, and is not indicative of a

limitation for ID3 or C4.5. Input datasets may contain significantly more classes than

two. As such, equation (19) can generalized to the following

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) = ∑ −𝑝𝑖 log2 𝑝𝑖

𝑐

𝑖=1

 (20)

34

where c is the total number of distinct classes and 𝑝𝑖 represents the proportion of each

class within the input space D.

Determining the entropy after splitting on an attribute follows a similar approach as

the entropy for the entire dataset prior to dividing. However, the scope of the evaluation

pertains to a single attribute and includes a normalization factor. More explicitly, if an

attribute A with values {𝑎1 … 𝑎𝑣} is used as the root of tree, it partitions the input space D

into a subset of branches and associated classes, using each attribute value. That is, for

each attribute A, and its associated values 𝑎𝑣, a subset of the objective decision tree can

be formed by testing the different values for A. Accordingly, the entropy for the sub-tree

generated from this activity can be evaluated with respect to the particular attribute under

test. Written formally,

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴) = ∑
�̂�𝑖 + �̂�𝑖

𝑝 + 𝑛

𝑣

𝑖=1

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) (21)

where �̂�𝑖 𝑎𝑛𝑑 �̂�𝑖 represent the number of positive and negative classes related to the

attribute 𝐴𝑖 being evaluated, normalized by the total number of positive and negative

instances for the entire input data space D.

Now that both the entropy for the entire input data set D and the normalized entropy

for each attribute can be determined, information gain can be used as a measure of the

effectiveness of an individual attribute for classifying data. Stated differently, information

gain for an attribute is a measure of the reduction of entropy for classifying the dataset

when a particular attribute is used to partition the data (De Mántaras, 1991; Mitchell,

1997). Written formally

𝐼𝑛𝑓 𝐺𝑎𝑖𝑛 (𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴) (22)

35

represents the information gain for an attribute used to classify (partition) the data

(Quinlan, 1986). In building the decision tree, the attribute that generates the largest

information gain for the initial segmentation should be selected as the root. Subsequent

descendant nodes are recursively generated in the same manner until either the all classes

or attributes within the dataset are exhausted.

Extending ID3 to C4.5

 In practice several challenges arise that impact the performance of ID3, some of

which are related to the data used to train, while others are inherent to the algorithm

itself. Quinlan (1993) implemented several enhancements to ID3 that were codified

within the C4.5 algorithm. The discussion that follows provides an overview of four of

the key challenges encountered in real-world application of ID3 and provides a synopsis

of the method used to address the issue in C4.5.

 Managing Complexity – As with all machine learning algorithms, the optimum

balance between complexity and simplicity of an algorithm can be a difficult

objective to attain. If a model is complex it may fit the training data extremely

well but do poorly when generalize to new instances, an effect referred to as

overfitting the data (Schaffer, 1993). Simplicity is always desired, although it

may lead to higher error rates. To address this challenge, C4.5 employs post-

pruning of a decision tree. Principally, the decision tree is generated using the

ID3 algorithm without regard to overfitting issues and subsequently pruned to

reduce the number of branches of the tree (Breslow & Aha, 1997). In order to

perform post-pruning with some level of assurance that the loss branch does not

increase error rates, the input dataset is disjunctively separated into a training

36

and validation subset. Once post-pruning begins, the validation set is used to

verify that error rates have not increase as a result eliminating a branch. If error

rates increase, the branch is restored. Note, post-pruning can be efficiently

applied to decision tree rules instead of the tree structure. The effect of post-

pruning is to reduce the overall number of branches, thereby reducing

complexity, while maintaining good classifier performance.

 Attributes with Continuous Values – Originally, the ID3 algorithm focused on

attributes with discrete rather than continuous values (Quinlan, 1996). In reality,

attributes with continuous values occur often in real-world applications of

classifiers. Moreover, decision trees must deal with both discrete and

continuous values within the same decision tree. Length is an example of an

attribute with continuous values that can take on a variety of measures. An

approach to using this type of attribute within the decision tree is to first sort the

values and then identify where changes in attribute values cause subsequent

changes in the class of the instance (Fayyad & Irani, 1992). Inherently,

thresholds can be identified that align with the transition from one class to

another, e.g. positive to negative. These thresholds can be used to test an

attribute to determine branching or leaf nodes within the tree. For each threshold

of the attribute length associated with change in the output class, information

gain can be evaluated in the same manner as any discrete value attributes to

determine its place in the decision tree hierarchy.

 Attributes with Missing Values – Although it is optimum to have data that has a

value for each attribute to efficiently induce a decision tree, in practice attributes

37

may be missing values. Though attributes with missing values may introduce

errors, the instance may still be of some importance. C4.5 employs probabilities

for instances with missing values for attributes (Grzymala-Busse & Hu, 2001).

Plainly stated, the frequency of attributes for fully populated instances and their

associated class are used to calculate probability for the instance with missing

attribute values. The derived probabilities are used instead of assigning the most

frequent value to an instance. Once probabilities of attributes with missing

values are calculated, they can be used in the evaluation of information gain

(Quinlan, 1993).

 Attributes with Different Costs – Certain machine learning problem sets may

involve attributes with associated cost. Within this context, cost can be

considered explicit, i.e. monetary or inherent such as the importance of one

attribute with respect to another. C4.5 employs a weighting factor to

information gain that reduces the effect of one attribute vice others (Quinlan,

1996). Side effects include the possible generation of a less optimal decision

tree that exhibits bias to a certain classes; although, to some extent bias is the

desired effect.

With the enhancements to ID3, C4.5 has become a common classifier algorithm used

on a broad range of problems to include data mining tasks. C4.5 has also been enhanced

to improve speed, optimize memory usage, incorporate boosting, among other

refinements which are embedded in C5.0.

38

Ensemble Techniques used to Improve ML Performance

 Ensembles attempt to find the best result, whether for prediction or classification,

from the space of trained hypothesis to reduce misclassification error (Seni & Elder,

2010). Fundamentally, model ensembles follow two principles:

 Generate multiple trained hypothesis, classifiers, that are as diverse as possible

 Use various techniques to leverage the output of the set of diverse classifiers, in

such a way that they reduce the overall errors associated with any single

classifier

 Use of ensemble methods has seen steady growth in both academia and the

commercial sector (Rokach, 2010). Accordingly, the number of methods that fall within

the category of ensembles has also experience significant growth. For this research effort,

two common ensemble methods were used, bagging and boosting.

Bagging

 As with all ensemble methodologies, creating diversity amongst the classifiers used

is a key objective. Breiman (1996) Bagging, short for “bootstrap aggregating”, creates

diversity by manipulating the training dataset. More precisely, given a training set, D,

bagging entails random sampling of the dataset, with replacement, generating n number

of bootstrap samples that are used to train individual classifiers (Breiman, 1996). Since

sampling is performed with replacement, each bootstrap sample has some number of

duplicate instances. However, the probability that a particular training instance is not part

of a bootstrap, given n samples can be estimated by (1 −
1

𝑛
)

𝑛

, which implies that

approximately a third of the instances (as n gets very large) are omitted from each sample

(Flach, 2012). The expectation is that each bootstrap sample induces some level of

39

diversity among the various classifiers of the ensemble. When evaluating the

classification of new instances using the bagging ensemble method, a plurality vote is

used to select the target class from the output of the various classifiers (Oza & Tumer,

2008). For problems involving prediction, averaging the outputs of the classifier is

typically used to determine the target value (Seni & Elder, 2010).

 Bagging implies that averaging outputs from the committee of classifiers inevitably

limits the effects of noisy data and, to some degree, issues associated with overfitting,

since it is unlikely that all the ensemble classifiers respond to the data in the same way

(Rokach, 2010). Unlike AdaBoost (described below), bagging does not require weak

learners to provide good results; however, learners sensitive to changes in the input data

set tend to receive the greatest benefit (Mordelet & Vert, 2014).

Boosting

 Similar to bagging, Adaptive Boosting (AdaBoost) attempts to improve the

performance of an individual classifier by manipulating training sets; however, bagging

depends on replacement sampling of the input data to generate multiple classifiers. In

contrast, AdaBoost applies weights, recursively, to instances of the training set to

improve the performance of classifiers that are part of an ensemble. That is, the training

data for each classifier within the ensemble is modified to account for weights derived

from misclassifications errors (Freund & Schapire, 1997). Larger weights are assessed to

misclassified instances, while smaller weights are given to correctly classified instances

per iteration. The effect of this process is to focus each successive classifier on the

misclassified observations, increasing the likelihood of eliminating incorrectly classified

instances. The final hypothesis is a weighted combination of classifiers and is expected to

40

produce higher recall and precision— classifier performance. Equation (21) formalizes

the objective function for the AdaBoost algorithm

𝑦 = ℎ(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼ℎ𝑡(𝑥)

𝑇

𝑡=1

) (23)

where ℎ(𝑥) is the signed output of the strong classifier that is generated from the weighed

linear combination parameter, 𝛼, times the set of hypothesis ℎ𝑡(𝑥). The process for

generating the objective function, based on Flach (2012), in (23) follows the generalized

steps outlined below for a given dataset 𝐷 = {(𝑥𝑖, 𝑦𝑖) | 𝒙 ∈ ℝ𝑑 , 𝑦 ∈ {1, −1}}, 𝑖 = 1 … 𝓃,

with a specified number of training hypothesis, T, and a learning algorithm, ℎ𝑡(𝑥).

1. An initial weight vector, 𝒘 = 1/(|𝐷|), is calculated and applied uniformly to all

instances of the training dataset.

2. For each iteration from 𝑡 = 1 𝑡𝑜 𝑇 do the following:

o Train the target classifier ℎ𝑡(𝑥), using the weight calculated in step 1

uniformly distributed across each instance of the input data set D.

o Calculate the weighted misclassification error for ℎ𝑡(𝑥): 𝜖𝑡 =

𝑤𝑡𝑖(ℎ𝑡(𝑥𝑖) − 𝑦𝑖).

o Check if error, 𝜖𝑡 ≤ .5. If so, exit the loop.

o Calculate the confidence value, 𝛼𝑡 =
1

2
ln

1− 𝜖𝑡

𝜖𝑡
, which is used to update

weights for misclassified and correctly classified instances. The final value

for, 𝛼, is used to proportionally combine members of the ensemble in step

3.

o Update weights for misclassified instances using the following:

𝑤(𝑡+1)𝑖 =
𝑤𝑡

𝑍𝑡
 exp (−𝛼𝑡 ⋅ 𝑦𝑡 ℎ𝑡(𝑥𝑖)), where 𝑍𝑡 is a normalization constant.

41

Depending on the classification of a target instance, the exponent will be

either positive or negative. A positive exponent has the effect of increasing

the weight for that instance; a negative exponent has the opposite effect.

3. The output is the objective function in equation (24).

ℎ(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼ℎ𝑡(𝑥)

𝑇

𝑡=1

) (24)

 Boosting requires the use of weak classifiers that are slightly better than random

guessing (Seni & Elder, 2010). Strong candidates for developing weak classifiers are

decision trees that are one level deep, referred to as stumps (Rodríguez & Maudes, 2008).

However, Adaboost has been combined with other ML algorithms, such as SVM and

Naïve Bayes (Kim, Pang, Je, Kim, & Yang Bang, 2003; Korada, Kumar, & Deekshitulu,

2012).

Summary

 In this chapter, an overview of supporting literature, ML algorithms and ensemble

techniques that used in this research have been provided. Pertaining to supporting

literature, several examples of unsupervised, supervised and hybrid ML were presented to

provide context for this work. The particular emphasis has been on supervised models, in

particular SVM, Naïve Bayes, and C4.5, which constitute the focus of this research effort

on classification of video traffic. In addition, ensemble techniques, i.e. bagging and

boosting, were described as means to improve recall and precision for each model. In the

following chapter on methodology, specifics on how each ML algorithm and ensemble

technique support experimentation are described.

42

Chapter 3

Methodology

Introduction

The methodology used to perform experimentation involved capturing real network

traffic to train, test and compare performance, recall, and precision, of three ML

classifiers, C4.5, Naïve Bayes, and SVM, to identify a video streaming traffic when

partial, incomplete data traces are encountered. Waikato Environment for Knowledge

Analysis (Weka) implementation of C4.5, Naïve Bayes and SVM was used for all

experimentation (Witten et al., 1999). Experiments confirmed that ML classifiers trained

on statistics derived from full traffic flows exhibited degraded recall and precision as the

number of missing beginning packets increases. Conversely, ML classifiers trained on

multiple sub-flows selected from all phases of the application produced much higher and

consistent recall and precision, despite the presence of incomplete traffic traces. In the

process of comparing the outcome from testing classifiers trained with full flows and sub-

flows against partial data captures, research question 1 was addressed. Figure 3 represents

a generalized overview of methodology used in this research. A description of each step

of the process follows.

43

Figure 3 Overview of Research Methodology

Step 1 – Data Collection

Traffic data used for this research included target video application flows as well as

interfering traffic. Interfering traffic, within the context of this study, is any traffic flow

that is not the target application to be classified (Karam & Tobagi, 2000). The

methodology used to secure data for use in this research effort was internet traffic

collected in a controlled lab environment.

44

Step 1a – Capturing Live Traffic

To capture video traffic data, Wireshark was used. Wireshark is a freely available,

publicly accessible, network analysis application that is used to collect information about

data packets (Dabir & Matrawy, 2007; Lamping & Warnicke, 2004). To capture packet

data, each target application (YouTube and Netflix) along with a separate instance of

Wireshark, was run on a virtual machine (VM) instance on a laptop. Additionally,

interfering traffic was also generated at the same time as target application data on each

VM instance. Figure 4 depicts the environment used to capture network traffic.

Figure 4 Environment used to Capture Traffic

The use of a multiple VMs running each target application along with interfering

traffic simplifies the process of determining the “ground truth” for the class of each

application flow within training and test data set. Specifically, to the greatest extent

possible, a limited and deterministic set of application traffic was generated that can be

readily identified using source and destination IP address, port and protocol to enable

proper labeling of network traffic (Pascoal et al., 2012; Piraisoody, Changcheng, Nandy,

& Seddigh, 2013). The process for generating known traffic types within a lab

45

environment to improve the likelihood of correctly labeling training and test sets is a

common approach (Alshammari & Zincir-Heywood, 2008; L. Peng, Zhang, Yang, Chen,

& Wu, 2014). Note in Figure 4 that interfering traffic is comprised of email, FTP, Secure

Shell, and telnet. These are applications that have well-known ports officially registered

in IANA. Accordingly, this increases the probability of distinguishing target from

interfering traffic. The size of the files containing captured packets were limited to make

processing of the files more efficient. A portion of the captured traffic was used

exclusively for training and the rest used for testing both the full flow and sub-flow

classifiers. The ratio of training to testing data set was ~60/40.

Step 1b – Generating Full Flow and Sub-flow Feature Sets

Once Wireshark has captured the requisite sets of packet capture (pcap) data for each

target application, steps must be taken to extract statistical information and create an

attribute-relation file format (ARFF) file for use as input to the Weka’s ML application.

Pcap files produced by Wireshark cannot be used directly with Weka for training or

testing ML classifiers.

Two types of Weka input files containing statistics for both target applications were

produced: full flow and sub-flow ARFF files. For both types of ARFF files, scripts were

built for processing Wireshark output. Wireshark is integral to the generation of both full

flow and sub-flow statistics since it performs the duty of capturing network traffic as well

as text exports of pcap data. Figure 5 provides a generalized depiction of the process for

generation of full and sub-flow statistics. The following sections provide additional

details related to each element of the process.

46

Figure 5 Generating Full and Sub-flow Statistics

Full Flow Statistics

While Wireshark is proficient at capturing network traffic, to generate full flow and

sub-flow statistics it was necessary to develop specific scripts to generate a more robust

set of stats. Wireshark can provide some full flow statistics; however, the depth, breadth

and type of statistics needed to support this research necessitated additional

preprocessing. Multiple approaches were attempted to discern the correct set of attributes.

However, the selection of features is primarily based on work by Alshammari and Zincir-

Heywood (2011) and Nguyen and Armitage (2006). As experimentation progressed,

features were pruned and added to improve classification accuracy. Table 2 provides the

final set of features that were used for training and classification experimentation.

Table 2 Full Flow and Sub-flow Statistics

Attribute Description

total_packets Total number of packets
total_volume Total number of bytes
min_pktl Minimum packet length
mean_pktl Mean packet length
max_pktl Maximum packet length
std_pktl Standard deviation of packet length
min_iat Minimum inter-arrival time of packets
mean_iat Mean inter-arrival time of packets

Wireshark

Pcap Data Text Export

Scripts

Full Flow Stat.

Sub-flow Stat.

47

max_iat Maximum inter-arrival time of packets
std_iat Standard deviation for inter-arrival time of packets
total_headl Total header length
min_tcphl Minimum TCP header length
mean_tcphl Mean TCP header length
max_tcphl Maximum TCP header length
std_tcphl Standard deviation for TCP header length
total_intframe Total inter-packet length between packets of the same

flow
min_intframe Minimum inter-packet length between packets of the

same flow
mean_intframe Mean inter-packet length between packets of the same

flow
 max_intframe Maximum inter-packet length between packets of the

same flow

Wireshark has the ability to generate information about each layer of the TCP/IP

protocol stack (physical, link, network, transport and application layer) for a given packet

(Lamping & Warnicke, 2004). Using Wireshark, a text file export of protocol attributes

gathered from pcap files, such as frame length, time delta, IP length, TCP header length,

etc. can be produced. Figure 6 represents a sample of a Wireshark text export file

containing a subset of packet attributes.

48

Figure 6 Sample Wireshark Text Export

Once the Wireshark text export file is created, it can be processed to generate the

statistics listed Table 2 in addition to ARFF formatted files for sub-flows. The requisite

scripts were developed to perform the processing of Wireshark text export files.

Step 1c – Creating Training and Test Sets

To properly train and test the classifier, a mixture of the target application and

interfering traffic must be part of the same respective data file prior to use with Weka ML

classifiers. In previous steps, a mixture of target and interfering traffic is captured and

No. Time Source Destination Protocol Length Frame
Info

 7 1.230858000 192.168.0.9 54.244.245.212 T LSv1 1495 Yes

Application Data

Frame 7: 1495 bytes on wire (11960 bits), 1495 bytes captured (11960 bits) on

interface 0

 Interface id: 0

 Encapsulation type: Ethernet (1)

 Arrival Time: Oct 14, 2013 20:23:16.256442000 MST
 [Time shift for this packet: 0.000000000 seconds]

 Epoch Time: 1381807396.256442000 s econds

 [Time delta from previous captured frame: 0.000001000 seconds]

 [Time delta from previous displayed frame: 0.000001000 seconds]

 [Time since reference or first frame: 1.230858000 seconds]
…

…

Transmission Control Protocol, Src Port: 56469 (56469), Dst Port: https (443),

Seq: 1441, Ack: 1, Len: 1429

 Source port: 56469 (56469
 Destination port: https (443)

 [Stream index: 1]

 Sequence number: 1441 (relative sequence number)

 [Next sequence number: 2870 (relative sequence number)]

 Acknowledgment number: 1 (relative ack number)
 Header length: 32 bytes

 Flags: 0x018 (PSH, ACK)

…

…

	

49

then used to generate ARFF files for use with Weka. Prior to using the ARFF file for

testing or training, the class of each flow must be determined and labeled as either the

target (YouTube or Netflix) or interfering traffic (all other traffic). To determine the

“ground truth” class for captured flows, a two-step process was used that employs both

Wireshark and the output from the scripts. First, Wireshark was used to examine captured

traffic in order to understand key attributes such IP address, port, protocols, start time of

various flows in the traffic. Since the traffic generated and captured in Step 1a is fixed to

the greatest extent possibly, use of IP address, port, protocol, and start time provided

strong evidence as to class of the traffic. This is especially true for traffic that use IANA

registered ports below 1023, which was the objective. Secondly, once ARFF files are

generated using scripts, the same attributes, IP address, port, protocol, and start time were

used to label flows in the ARFF file. For files containing YoutTube traffic, the class

labels was YT or OTHER; and for files containing Netflix traffic, labels were NF or

OTHER. When creating training and test data sets, maintaining a ratio close to 1:1

between target application and interfering traffic was the objective.

Step 2 – Classification Based on Full Flows

 Evaluating the effectiveness of ML classifiers trained on statistics from full flows on

partial data sets, specifically, flows that are missing the beginning packets of the traffic,

is an important first step. In addition to testing data sets that are missing the initial set of

packets, test datasets also contained varying sub-flow sizes to simulate the effect of

partial flows. This initial experiment is required to confirm the degradation of

performance, recall and precision, for ML algorithms trained on full flows for identifying

target traffic when used with incomplete data captures. Recollect that captured data in

50

real-world networks may be incomplete due to network and application perturbations.

C4.5, Naïve Bayes, and SVM ML algorithms were trained on statistics from full flows

then tested with data sets that have the first 10, 20, 30, 40, 50, 60, 100 and 200 packets

missing from the traffic flow. Note that flow statistics used for training were not used for

test purposes; once the required number of flows were collected, separate data sets for

both training and testing were generated. For each test data set containing missing

packets, an ARFF file was constructed that had both the target and interfering traffic.

Input files for Weka were created using the process described in step 1, to generate data

sets with missing packets. Recall and precision were calculated and graphed as a function

of the missing packets to illustrate the effects of partial data captures on full flow

classifiers. It was expected that recall and precision would reveal a significant

degradation in performance as the number of missing beginning packets increases. These

results were used as a reference for comparison against ML classifiers trained on multiple

sub-flows.

Step 3 – Classification Based on Sub-flows

Initially, sub-flows of 25 consecutive packets were selected from the full flow data,

with a sliding window of 10 packets between each sub-flow. In previous work by Nguyen

et al. (2012), sub-flows of 25 packets provided good results in classifying Wolfenstein

and VoIP traffic. However, it is unknown what the optimum number of packets per sub-

flow should be to produce high, above 92% or better, recall and precision; accordingly,

25 packets constituted a starting point for sub-flow classification. Multiple sub-flow sizes

were attempted with the objective of maintaining high recall and precision. Adjusting the

number of packets per sub-flow, while recording the effects on recall and precision

51

addressed research question 4. ARFF files were created to evaluate sub-flows of differing

sizes (number of packets) to execute this portion of the experiment. The initial set of

features used were based on features listed in Table 2. Some degree of experimentation

with various combinations of features was undertaken to find the minimum number of

features to gain high recall and precision, addressing research question 3.

Evaluating Ensemble Techniques: Bagging and Boosting

Once the analysis in steps 2 and 3 were completed, an evaluation of ensemble

techniques was performed. As outlined in section 2, bagging and boosting were the

ensemble techniques evaluated for this research effort. Weka has the capability to

perform bagging and boosting using a variety of base ML algorithms (Bouckaert et al.,

2013; Elovici, Shabtai, Moskovitch, Tahan, & Glezer, 2007).

Testing with Weka can be performed using a command line interface (CLI), explorer

or the experimenter. Both the explorer and experimenter Weka application can be used

for training and testing ML applications. The key difference is the experimenter allows

the training and testing of ML algorithms side-by-side for direct comparison. This

provides an effective means of comparing results of ML algorithms on the same data set

to determine which method preforms best.

Using the explorer, bagging in combination with base implementations of Naïve

Bayes, C4.5, and SVM were trained and tested using the same data set in step 3 to

determine if there was any improvement to performance, specifically, recall and

precision. It was expected that bagging would have a greater effect on C4.5, since

decision trees are more sensitive to changes in the training and test data set (Galar,

Fernandez, Barrenechea, Bustince, & Herrera, 2012). Moreover, the effect of bagging

52

may be less pronounced on the performance of Naïve Bayes and SVM, since in general

these ML algorithms are less sensitive to variances in the training and test data (Yuan et

al., 2010). In the case of boosting, the same process was followed. Boosting was

performed using each base ML algorithm and compared to outcomes from the execution

of step 2. Boosting was also expected to be less effective on Naïve Bayes and SVM, since

both of these algorithms are considered to be strong learners (Hall, Witten, & Frank,

2011).

Format for Results

 Generally, tables and figures containing text and graphs are used to display results

from experimentation.

Pcap data files were not presented in this dissertation as these files would be too

large and would not add value to communicating the results of this work. Additionally,

ARFF files containing features and associated statistics were also omitted from this

document based on the same rational.

Outputs from testing classifiers on full flows are depicted in tables and graphs as a

function of the number of packets missing from the beginning of each network flow, to

recall and precision of the classifier tested. In the same manner, graphs of recall and

precision per missing packets for classifiers tested with sub-flows were also be presented

in the results section with Table containing detailed information and plots used as a

graphical depiction of the data.

53

Resource Requirements

This research effort required a variety of resources to perform required

experimentation as specified in Table 3.

Table 3 Required Resources

Type Resource Purpose

Data Lab Captured Data Using Wireshark, pcap data was captured

from test systems (laptop/PCs/desktops) to

support training, validation and testing of ML

algorithms.

Software Microsoft Office MS Office (Word, PowerPoint and Excel) is

a general purpose document, presentation and

spreadsheet software package that was used

throughout this research activity. Excel was

also used for generating statistics and

manipulating data sets.

 Perl Perl was used to develop scripts to

manipulate files and to generate sub-flow

statistics in ARFF format.

 VM Fusion This software package is used to create

virtual machines.

 Wireshark This software was used to capture IP traffic

for both target and interfering application

flows.

Hardware PC and Laptops General purpose PCs, Macs, and desktops for

data capture, manipulating data and

developing documents and presentations.

Summary

In this section, the methodology used to execute the experiments was described fully.

Concepts regarding the gathering of network traffic, generation of statistics for both full

flow and sub-flows were outlined. The use of lab captured traffic thoroughly supports this

research effort. While the use of benchmark data would support assessment of the

54

generalizability of the classifier, significant challenges were experienced in collecting

“ground truth” benchmark data for both YouTube and Netflix traffic that could be used

for testing the generalizability of each classifier (Caiyun, Lizhi, Bo, & Zhenxiang, 2012).

Accordingly, benchmark data was not used in this research.

Evaluation of ensembles was undertaken as the final stage of experimentation to

assess if bagging or boosting can improve the performance of the sub-flow classifier.

Evaluation of ensembles for this research effort is important given the increase use of

ensembles across the spectrum of ML applications (Galar et al., 2012).

55

Chapter 4

Results

 In this chapter the results of experimentation are presented. Prior to describing

results, a short discussion on data preprocessing and class imbalance is provided. Next,

results on the effects of partial flows on a classifier trained on full flow statistics is

examined. Then, an evaluation on the effectiveness of classifiers trained on sub-flows is

examined using traffic flows with missing packets to determine if performance is

improved. Finally, the use of ensemble techniques, Boosting and Bagging, is examined to

discern if these algorithms improve sub-flow classifier performance. In all cases,

performance of classifiers was judged based on recall and precision.

Data Preprocessing

Basic preprocessing of data was required to ensure proper training and building of

classifiers. Weka provides filters, methods for manipulating data, as a means to preform

data preprocessing, prior to training and testing classifiers. Additionally, Weka filters,

were used to split data into training and testing datasets. Resampling without replacement

was used to partition the data into training and testing datasets. Finally, class imbalance

was addressed using the Weka filter synthetic minority over-sampling technique

(SMOTE). Table 4 and 5 provides the breakout of traffic classes for both YouTube and

Netflix (bold print), respectively, prior to preprocessing. All subsequent data files used in

experimentation were derived from these two foundational data sets.

56

Table 4 YouTube Dataset

Class of Traffic Sum of Packets Sum of Bytes

aggregate 80 20862

akamai Tech 19438 19115955

amazon 214171 253509968

apple 66 6089

avast 554 111371

criteo 698 425408

DNS 21659 18236174

doubleclick 6081 2632553

doubleverify 126 38484

edgecast 26 4019

email 48412 43023115

facebook 38 8670

footprint 236 78593

ftp 258500 260123595

google 73624 40540232

imdb 834 215953

motocast 1738 275806

pki 46 9900

spyware 162 42997

twitter 3837 979977

unknown 3884 2615064

yahoo 1627 512630

YouTube 1143792 1063013067

Grand Total 1799629 1705540482

Table 5 Netflix Dataset

Class of Traffic Sum of Packets Sum of Bytes

akamai Tech 14134 12457513

apple 1164 270255

avast 234 42385

bright tag ad 185 65738

DNS 4423 1128399

doubleclick 662 237501

ftp 1211092 1354307441

google 45 11512

mawi 301015 386171493

Netflix 1233909 1395827732

57

Class of Traffic Sum of Packets Sum of Bytes

Nova University 42 2947

twitter 117 24721

yahoo 849 279204

Yahoo email 137748 154893713

Grand Total 2905619 3305720554

Addressing Class Imbalance

 Class imbalance for this research effort was an outcome of two key factors: 1) the

nature of the data used and 2) the manipulation of the data to derive sub-flows for

training and testing classifiers. Class imbalance is exhibited by a significant difference

between the majority and minority classes of a given dataset. For example, the majority

class may be 2 to 3 times larger, in terms of the number of class instances represented in

the dataset.

Video streaming traffic is typically long-lived flows comprised of large numbers of

packets as compared to interfering traffic. Since video traffic consists of long-lived flows,

the total number flows may be substantially less than those of interfering traffic, which

generally has relatively small numbers of packets but repeats often within the captured

dataset. Accordingly, the predominance of network flows for training are interfering

traffic over the total capture time for the data. Inherently this leads to class imbalance for

datasets used to train and generate full flow classifiers as well as any associated full flow

test data sets.

The second factor that causes class imbalance is the generation of sub-flows for

experimentation. While the predominance of full flows are interfering traffic, the total

number of packets is disproportionately associated with video traffic, since video traffic

tends to be long-lived flows with 100s to 1000s of packets. As a consequence, the

generation of sub-flow instances, as a function of the sub-flow size selected, can create

58

class imbalance for datasets used for experimentation, since sub-flow generation divides

full flows into subsets. This is especially true with small sub-flows sizes of 25 and 100

packets. In general, video streams generated significantly more sub-flows due to the total

number of packets per flow in contrast to interfering traffic. For both types of class

imbalance, SMOTE was used to address this condition.

SMOTE is a long-standing and accepted means to address class imbalance by

oversampling the minority class of a particular dataset ((Sáez, Luengo, Stefanowski, &

Herrera, 2015)). More specifically, SMOTE works within the feature space not with the

instance space (deleting instances from the majority class) to synthetically generate a new

minority class instance based on two sample classes within the original dataset (Chawla,

Bowyer, Hall, & Kegelmeyer, 2002). Weka supplies a SMOTE implementation that was

used to address class imbalance issues and is used throughout this research. SMOTE

reduces the effect of class imbalance while maintaining the integrity of the dataset used

for training classifiers ((Chawla et al., 2002; J. Wang, Xu, Wang, & Zhang, 2006)).

Full Flow Trained Classifier Applied to Partial Flows with Missing Packets

 For this experiment, data was captured for YouTube and Netflix along with

interfering traffic. Target traffic was considered positive instances, and interfering traffic

was designated as negative instances. Full flow statistics were used to train a C4.5, Naïve

Bayes and SVM full-flow classifier. Table 6 provides key information associated with

building full flow classifiers to execute this portion of the test.

59

Table 6 Full Flow Training Stats

Traffic Algorithm Positive Negative Precision Recall

YouTube J48-C4.5 2455 3423 0.974 0.983

Naïve

Bayes

2455 3423 0.969 0.952

SMO

SVM

2455 3423 0.868 0.829

Netflix J48-C4.5 808 492 0.967 0.979

Naïve

Bayes
873 427 0.905 0.99

SMO

SVM
833 467 0.879 0.917

Once the full flow classifiers were built, each full flow classifier was then tested

against files with a select number of packets missing as well as different sub-flow sizes to

assess performance.

J48 C4.5 Full Flow Classifier Performance

Figure 7 and 8 represents recall for YouTube and Netflix J48 full-flow classifiers,

respectively, tested against datasets with missing packets and varying sub-flow sizes. J48

is Weka’s implementation of C4.5 and is used interchangeably throughout the rest of this

document. Weka default settings were used for the J48 decision tree algorithm.

60

Figure 7 Recall for YouTube J48 Full-flow Classifier Tested with Partial Flows

Figure 8 Recall for Netflix J48 Full-flow Classifier Tested with Partial Flows

m0 m10 m20 m30 m40 m50 m60 m100 m200

N=25, S=10 0.012 0.011 0.01 0.01 0.012 0.011 0.011 0.011 0.012

N=100, S=50 0.699 0.692 0.693 0.694 0.706 0.685 0.681 0.686 0.707

N=500, S=200 0.502 0.491 0.455 0.467 0.451 0.451 0.429 0.453 0.481

N=1000, S=500 0.711 0.663 0.642 0.622 0.605 0.584 0.584 0.659 0.656

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
YouTube J48 FF - Recall

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25,s10 0.053 0.052 0.053 0.052 0.052 0.051 0.051 0.052 0.052

n100,s50 0.114 0.117 0.119 0.118 0.113 0.115 0.111 0.117 0.118

n500,s200 0.305 0.304 0.291 0.29 0.296 0.298 0.299 0.291 0.284

n1000,s500 0.392 0.389 0.408 0.42 0.423 0.435 0.435 0.427 0.398

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Netflix J48 FF - Recall

61

The y-axis indicates recall for the J48 decision tree for a given dataset, with a

specific number of missing packets, “m0 – m200” on the x-axis. Each point on a plot for

a given line (color coded with different markers) represents a particular dataset tested

against a J48 full-flow classifier. For example, the first point on the “m0,n,=25,s=10” plot

represents a data file that contains instances that are 25 packets long (sub-flow size), with

a step size (skipped packets) of 10 packets with no missing packets (m = 0). This data file

would be representative of a partial flow that, although it has no missing packets,

contains partial flows of 25 packets. The second point on the same line plot

(m10,n=25,s=10) represents a data file that is missing the first 10 packets from each flow

and has partial flows of 25 packets. Each line plot on the graph represents 9 separate

datasets, points, for a particular sub-flow size of 25, 100, 500 and 1000 packets, missing

0 to 200 packets (m0 – m200) from the start of the flow. The use of sub-flows in this test

illustrates the impact of partial flows on a classifier trained on full flow statistics.

 As evidenced, using a full-flow classifier to classify partial flows leads to average

performance for YouTube traffic with a maximum recall of ~0.70 for “m40,n100,s50”

and poor performance for Netflix traffic with a maximum of ~0.43 for

“m50,n1000,s=500”. Good performance is not attained even in the case of larger sub-

flow sizes, such as 1000 packets; recall is relatively low as packets are removed, which

indicates the full-flow classifier has limited accuracy and in fact misclassifies a

significant portion of the target class as the negative classes (false negatives). This was

expected given the difference in statistics calculated over the life of a flow can vary

dramatically with respect to the type of traffic.

62

Figure 9 and 10 depicts precision for the same J48 full-flow classifier tested with the

same dataset for YouTube and Netflix, respectively. In certain cases, with partial flows of

sub-flow size of 25, 500 or 1000 packets, the full-flow classifier exhibits consistently

high precision -- above 0.90. However, given the poor recall for the same classifier –

indicating large numbers of false negatives – high precision is of little benefit. Both

precision and recall need to exhibit good performance to assess classifier performance as

excellent.

Figure 9 Precision for YouTube J48 Full-flow Classifier Tested with Partial Flows

m0 m10 m20 m30 m40 m50 m60
m10

0

m20

0

N25, S10 0.913 0.869 0.929 0.904 0.914 0.94 0.939 0.915 0.953

N100, S50 0.623 0.622 0.634 0.608 0.631 0.623 0.614 0.598 0.625

N500, S100 0.927 0.889 0.921 0.945 0.924 0.925 0.926 0.931 0.935

N1000, S500 0.94 0.915 0.926 0.932 0.924 0.934 0.936 0.922 0.952

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

YouTube J48 FF - Precision

63

Figure 10 Precision for Netflix J48 Full-flow Classifier Tested with Partial Flows

Naïve Bayes Full Flow Classifier Performance

To develop the full flow Naïve Bayes classifier, the same approach was used. For

Naïve Bayes a single configuration parameter was applied; specifically, “supervised

discretization” was selected for the Naïve Bayes algorithm prior to training the classifier.

Discretization is a method for transforming continuous values for variables, into discrete

values, by creating intervals over the range of values for a specified variable ((Garcıa,

Luengo, Sáez, López, & Herrera, 2013; H. Liu, Hussain, Tan, & Dash, 2002)). Research

has shown that discretization may significantly improve the performance for certain

machine learning algorithms, Naïve Bayes being a prominent example ((Al-Aidaroos,

Bakar, & Othman, 2010; Y. Liu, Li, Guo, & Feng, 2008)). Certain variables for data used

in these experiments had a broad range of values, e.g. 1 – 49,000, which impacted the

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25,s10 0.672 0.668 0.668 0.675 0.683 0.651 0.653 0.682 0.679

n100,s50 0.848 0.734 0.718 0.724 0.72 0.757 0.729 0.742 0.739

n500s200 0.83 0.827 0.811 0.791 0.792 0.812 0.769 0.891 0.779

n1000,s500 0.881 0.885 0.917 0.894 0.895 0.822 0.822 0.896 0.889

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Netflix J48 FF - Precision

64

performance of the Naïve Bayes machine learning algorithms. Weka’s implementation of

discretization was used for all experiments involving Naïve Bayes.

In Figure 11 and 12, recall for the Naïve Bayes is presented. Results were similar to

that of J48 in terms performance, although poor performance in certain cases – where

partial flows of 25 and 100 packets were tested against the full flow Naïve Bayes

classifier – is more pronounced for Netflix traffic. Recall for YouTube sub-flow sizes of

1000 packets were well above 50% indicating the larger sub-flow sizes have a greater

affiliation to statistics for full flows. Moreover, the performance for large YouTube sub-

flow size was relatively consistent even when the number of missing packets increased

sharply from 60 to 200.

Figure 11 Recall for YouTube Naïve Bayes Full-flow Classifier Tested with Partial

Flows

m0 m10 m20 m30 m40 m50 m60 m100 m200

N=25, S=10 0.01 0.008 0.008 0.009 0.011 0.009 0.009 0.009 0.009

N=100, S=50 0.082 0.075 0.086 0.083 0.082 0.081 0.078 0.088 0.1

N=500, S=100 0.455 0.424 0.405 0.416 0.398 0.081 0.381 0.408 0.445

N=1000, S=500 0.655 0.584 0.571 0.582 0.557 0.551 0.551 0.6 0.727

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

YouTube Naive FF - Recall

65

Figure 12 Recall for Netflix Naïve Bayes Full-flow Classifier Tested with Partial

Flows

 For precision, Figure 13 shows high values ranging from the low to high 90s for

YouTube. Precision for Netflix attains values in the 90s as depicted in Figure 14.

Although, performance for precision is reasonably high, recall is still relatively low for

the Naïve Bayes full flow classifier.

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25,s10 0.013 0.014 0.013 0.013 0.012 0.013 0.013 0.013 0.012

n100,s50 0.048 0.052 0.051 0.045 0.048 0.049 0.047 0.046 0.05

n500,s200 0.238 0.238 0.227 0.238 0.24 0.238 0.223 0.219 0.223

n1000,s500 0.33 0.33 0.321 0.325 0.324 0.343 0.346 0.328 0.333

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix Naive FF - Recall

66

Figure 13 Precision for YouTube Naïve Bayes Full-flow Classifier Tested with

Partial Flows

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25, s10 0.992 0.984 0.977 0.97 0.962 0.985 0.974 0.97 0.985

n100, s50 0.947 0.938 0.929 0.95 0.961 0.964 0.959 0.925 0.946

n500, s100 0.906 0.902 0.886 0.923 0.91 0.964 0.927 0.91 0.905

n1000, s500 0.915 0.893 0.91 0.905 0.913 0.919 0.922 0.91 0.904

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

YouTube Naive FF - Precision

67

Figure 14 Precision for Netflix Naïve Bayes Full-flow Classifier Tested with Partial

Flows

SVM Full Flow Classifier Performance

 There are two separate implementations of SVM that can be executed using Weka:

sequential minimal optimization (SMO) and libsvm. SMO was developed as part of the

Weka platform and is available to users; whereas libsvm was developed by Yasser EL-

Manzalawy and is not integrated as part of the weka distribution. However, Weka does

provide a wrapper class to run libsvm.jar from the Weka user interface. The difference in

performance between SMO and libSVM is not significant based on preliminary testing of

both algorithms with the same dataset; therefore, to maintain consistency in using Weka

implementation of machine learning algorithms, SMO was used for all experiments

requiring SVM. Moreover, the terms SMO and SVM are interchangeable throughout the

rest of this document.

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25,s10 0.57 0.658 0.625 0.592 0.627 0.598 0.578 0.562 0.571

n100,s50 0.742 0.652 0.631 0.585 0.629 0.647 0.621 0.62 0.648

n500,s200 0.675 0.605 0.657 0.68 0.684 0.627 0.61 0.778 0.631

n1000,s500 0.881 0.885 0.917 0.894 0.895 0.822 0.822 0.896 0.889

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Netflix Naive FF - Precision

68

 Configuring SMO entailed selecting normalization of training attributes and the use

of a polykernel. The requirement for normalization was due to poor performance of SVM

given the wide variance of values for the attributes used to train the algorithms. SVM

may be negatively impacted by features that have a broad range of values, e.g. attribute-1

ranges from 1 – 4900, attribute-2 ranges 0 – 1 etc., across the total space of attributes

((Ben-Hur & Weston, 2010)). Normalization can, in some cases, reduce the effects of

attribute variance ((W. Wang, Zhang, Gombault, & Knapskog, 2009)). Accordingly,

SVM was trained with normalized values for all experiments for this research.

Figure 15 and 16 provides a summary of recall for the SVM model tested with

various datasets of missing packets and varying window sizes: 25, 100, 500 and 1000

packets.

69

Figure 15 Recall for YouTube SVM Full-flow Classifier Tested with Partial Flows

Figure 16 Recall for Netflix SVM Full-flow Classifier Tested with Partial Flows

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25, s10 0.044 0.036 0.035 0.037 0.033 0.036 0.037 0.035 0.036

n100, s50 0.148 0.139 0.141 0.139 0.131 0.138 0.136 0.142 0.143

n500, s200 0.6 0.425 0.395 0.451 0.424 0.431 0.43 0.426 0.44

n1000, s500 0.612 0.584 0.589 0.591 0.587 0.579 0.557 0.597 0.607

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

YouTube SMO FF - Recall

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25,s10 0.019 0.019 0.019 0.018 0.018 0.019 0.019 0.019 0.019

n100,s50 0.062 0.066 0.065 0.06 0.063 0.064 0.061 0.066 0.063

n500,s200 0.223 0.226 0.207 0.207 0.206 0.212 0.208 0.202 0.211

n1000,s500 0.327 0.329 0.325 0.325 0.325 0.346 0.348 0.325 0.33

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Netflix SMO FF - Recall

70

 Results for SVM are low – the highest value is ~0.61 for YouTube traffic and even

lower for Netflix traffic at ~0.35 -- although the values are reasonably consistent across

the spectrum of datasets with missing packets from 0 – 200. Datasets containing window

sizes of 1000 (n1000, s500) packets, provide the highest recall percentage relative to

other datasets, indicating that larger sub-flow sizes provide better alignment to full-flow

statistics for SVM. Worst performance is attributed to datasets with small sub-flow sizes,

with “n25, s10”, delivering the worst performance: ~0.035 for YouTube and ~0.019 for

Netflix.

 Precision for full flow SVM, as evidenced with previous full flow models, provides

more consistent performance and higher performance levels. Figures 17 and 18 provide a

summary of results for the full-flow trained SVM classifier tested with the same datasets.

Figure 17 Precision for YouTube SVM Full-flow Classifier Tested with Partial

Flows

m0 m10 m20 m30 m40 m50 m60
m10

0

m20

0

n25, s10 0.699 0.734 0.693 0.704 0.685 0.679 0.709 0.706 0.703

n100, s50 0.674 0.609 0.676 0.673 0.653 0.669 0.673 0.644 0.653

n500, s200 0.857 0.623 0.636 0.641 0.606 0.613 0.628 0.643 0.78

n1000, s500 0.636 0.609 0.628 0.614 0.618 0.582 0.862 0.636 0.621

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

YouTube SMO FF - Precision

71

Figure 18 Precision for Netflix SVM Full-flow Classifier Tested with Partial Flows

In some cases, precision for YouTube reaches levels well above 0.80, although

precision drops off as additional packets are deleted from the datasets. Netflix only

reaches ~0.70, although uneven for certain values of “m”. Overall, precision results for

SVM is similar to those of J48 and Naïve Bayes in terms of consistency and performance.

Summary

In this section testing confirmed that full flow classifiers have difficulty classifying

traffic that contains partial flows. While in some cases, J48 C4.5 and Naïve Bayes,

precision is high and consistent, better than 90%, recall is average at best (typically lower

than ~0.70), and inconsistent. Classifiers with high precision are of little benefit when

considering the large number of false negatives indicated by the low recall values, as this

would lead to missing instances for target traffic when applied to real world

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25,s10 0.577 0.599 0.568 0.545 0.586 0.58 0.541 0.546 0.54

n100,s50 0.709 0.586 0.573 0.56 0.573 0.58 0.564 0.586 0.571

n500,s200 0.619 0.573 0.56 0.599 0.6 0.546 0.559 0.708 0.57

n1000,s500 0.696 0.697 0.7 0.704 0.704 0.547 0.551 0.71 0.714

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Netflix SMO FF - Precision

72

implementations. Next, classifiers trained on sub-flows were evaluated with the same test

datasets to determine if performance improves.

Sub-flow Trained Classifiers Applied to Partial Flows with Missing Packets

In the previous experiment, classifiers trained on full flows were tested against

partial flows with packets missing, which resulted in average to poor performance for

recall in addition to uneven results. For this part of the evaluation, classifiers trained on

sub-flows were used to classify the same data sets containing partial flows with missing

packets. Figure 19 provides an overview of the experimental process.

Figure 19 Process for Evaluating Sub-flow Models

To perform this evaluation, a J48 C4.5, Naïve Bayes and SMO SVM models were

trained for each of four sub-flow sizes, “m0,n25,s10”, “m0,n100,s50”, “m0,n500s200”

and “m0,n1000, s500” as depicted in Figure 19. The models were then tested against

data sets of the same sub-flow size with missing packets from m0 to m200 (e.g.

“m0,n25,s10” to “m200,n25,10”). This is an important distinction from the previous

J48-m0,n25,s10

Naïve-m0,n25,s10

SMO-m0,n25,s10

m0,n25,s10

m10,n25,s10

m20,n25s10

m30,n25,s10

m40,n25,s10

m50,n25,s10

m60,n25,s10

m100,n25,s10

m200,n25,s10

…

Models

Test Files Results

m0,n25,s10 Models

m0,n100,s50 Models

m0,n500,s200 Models

m0,n1000,s500 Models

73

experiment that confirmed that full flow classifiers yielded both inconsistent and average

to poor recall. In this evaluation, determining if sub-flow models perform better than full

flow classifiers as well as which sub-flow model and associated machine learning

algorithm performs best was the objective.

The process used for this experiment has real world application. In real world

applications, collecting network traffic for a target sub-flow size for training a classifier,

testing and evaluating new cases should be achievable relative to capturing the entire

traffic flow from the beginning to end on real networks.

Sub-flow “m0,n25,s10” Model Evaluation

Table 7 provides a summary of results from testing a J48-m0,n25,s10, Naïve-

m0,n25,s10 and SMO-m0,n25,s10 model for YouTube traffic. Each model was tested

with data of the same sub-flow size with missing packets from m0 to m200, respectively.

Results for J48 and Naïve are more consistent across the data set for recall and precision

than the full flow test previously performed, even as the number of missing packets

increases. While there are lower values for precision in this experiment, recall is now

significantly higher than the full flow models tested against n25,s10 datasets previously.

Note Table 7 also contains F-measure values along with precision and recall. F-measure,

is the harmonic mean for precision and recall and is defined as:

2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙⁄ . A balanced F-measure was used for this

research, and stipulated in the rest of this chapter to simplify comparison of results.

74

Table 7 YouTube m0,n25,s10 Model Results

 J48-m0,n25,s10 Naïve-m0,n25,s10 SMO-m0,n25,s10

YT Prec. Rec. F-Mea Prec. Rec. F-Mea Prec. Rec. F-Mea

m0 0.669 0.987 0.798 0.666 0.778 0.936 0.64 0.974 0.773

m10 0.668 0.984 0.796 0.665 0.78 0.942 0.642 0.979 0.776

m20 0.665 0.982 0.793 0.662 0.779 0.945 0.637 0.98 0.772

m30 0.67 0.983 0.797 0.667 0.782 0.944 0.645 0.981 0.778

m40 0.662 0.983 0.791 0.661 0.779 0.949 0.637 0.98 0.772

m50 0.658 0.981 0.788 0.658 0.776 0.946 0.633 0.979 0.769

m60 0.667 0.98 0.794 0.666 0.781 0.945 0.641 0.981 0.776

m100 0.667 0.986 0.796 0.665 0.782 0.948 0.643 0.981 0.776

m200 0.667 0.985 0.795 0.664 0.78 0.946 0.641 0.978 0.774

In order to quickly assess which algorithm performs best for n25,s10 sub-flow size,

Figure 20 – 22 provide a graphical representation of precision and recall for the results in

Table 7. Both J48 and Naïve Bayes have similar plots for precision and recall, where

recall stays relatively stable in the mid 0.90s, and precision hovers at ~0.70. While these

results are an improvement over the full flow test, the implication is that a sub-flow size

of n25,s10 may not be best suited for classifying YouTube traffic.

Figure 20 YouTube J48 m0,n25,s10 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.669 0.668 0.665 0.67 0.662 0.658 0.667 0.667 0.667

 Recall 0.987 0.984 0.982 0.983 0.983 0.981 0.98 0.986 0.985

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

YouTube J48 m0,n25,s10

75

Figure 21 YouTube Naive m0,n25,s10 Model

Figure 22 YouTube SMO m0,n25,s10 Model

For Netflix traffic, Table 8 summarizes the results for testing J48, Naïve Bayes, and

SMO SVM. Testing for Netflix traffic for “m0,n25,s10” models followed the same

process as YouTube.

Table 8 Netflix m0,n25,s10 Model Results

 J48-m0,n25,s10 Naïve-m0,n25,s10 SMO-m0,n25,s10

NF Prec. Rec. F-Mea. Prec. Rec. F-Mea. Prec. Rec. F-Mea.

m0 0.723 0.785 0.753 0.643 0.971 0.773 0.601 0.049 0.091

m10 0.725 0.789 0.755 0.645 0.971 0.775 0.603 0.049 0.09

m20 0.726 0.79 0.757 0.646 0.971 0.776 0.61 0.05 0.092

m30 0.725 0.79 0.756 0.645 0.973 0.776 0.617 0.05 0.092

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.666 0.665 0.662 0.667 0.661 0.658 0.666 0.665 0.664

 Recall 0.936 0.942 0.945 0.944 0.949 0.946 0.945 0.948 0.946

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

YouTube Naive m0,n25,s10 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.869 0.601 0.622 0.616 0.618 0.593 0.868 0.617 0.613

 Recall 0.873 0.858 0.865 0.869 0.865 0.854 0.859 0.854 0.858

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

YouTube SMO m0,n1000,s500

76

m40 0.727 0.793 0.759 0.646 0.975 0.777 0.613 0.047 0.087

m50 0.727 0.793 0.759 0.646 0.971 0.776 0.582 0.046 0.086

m60 0.723 0.793 0.757 0.643 0.971 0.774 0.574 0.047 0.087

m100 0.722 0.789 0.754 0.644 0.973 0.775 0.603 0.048 0.089

m200 0.724 0.789 0.755 0.64 0.972 0.772 0.612 0.049 0.091

Figures 23 - 25 provide a graphical representation of precision and recall in Table 8.

As experienced previously with YouTube, the results are more consistent than full flow

models; however, SVM performs particularly poorly for both precision and recall. J48

and Naïve Bayes performed similarly with average to poor results, with the best results at

~0.80 and ~0.72, respectively.

Figure 23 Netflix J48 m0,n25,s10 Results

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.723 0.725 0.726 0.725 0.727 0.727 0.723 0.722 0.724

 Recall 0.785 0.789 0.79 0.79 0.793 0.793 0.793 0.789 0.789

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix J48 m0,n25,s10

77

Figure 24 Netflix Naive m0,n25,s10 Results

Figure 25 Netflix SMO m0,n25,s10 Results

Sub-flow “m0,n100,s50” Model Evaluation

 In this experiment results for the J48-m0,n100,s50, Naïve-m0,n100,s50 and SMO-

m0,n100,s50 for YouTube and Netflix traffic classes are presented. In general, the results

in Table 9 are similar to those in Table 8, m0,n25,s10, in terms of consistency and F-

measure values for J48 and Naïve Bayes, although, SMO SVM improved significantly

for this sub-flow size, n100,s50.

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.643 0.645 0.646 0.645 0.646 0.646 0.643 0.644 0.64

 Recall 0.971 0.971 0.971 0.973 0.975 0.971 0.971 0.973 0.972

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix Naive m0,n25,s10 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.601 0.603 0.61 0.617 0.613 0.582 0.574 0.603 0.612

 Recall 0.049 0.049 0.05 0.05 0.047 0.046 0.047 0.048 0.049

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix SMO m0,n25,s10 Model

78

Table 9 YouTube m0,n100,s50 Model Results

 J48-m0,n100,s50 Naïve-m0n100,s50 SMO-m0, n100,s50

YT Prec. Rec. F-Mea. Prec. Rec. F-Mea. Prec. Rec. F-Mea.

m0 0.712 0.936 0.809 0.673 0.946 0.787 0.662 0.891 0.76

m10 0.721 0.93 0.812 0.682 0.958 0.796 0.669 0.894 0.765

m20 0.723 0.912 0.807 0.688 0.952 0.799 0.674 0.887 0.766

m30 0.708 0.909 0.796 0.665 0.953 0.784 0.652 0.883 0.75

m40 0.717 0.907 0.801 0.678 0.941 0.788 0.665 0.881 0.758

m50 0.711 0.902 0.795 0.678 0.944 0.789 0.668 0.889 0.763

m60 0.706 0.899 0.791 0.67 0.941 0.783 0.66 0.885 0.756

m100 0.694 0.918 0.791 0.657 0.953 0.778 0.642 0.899 0.749

m200 0.712 0.919 0.802 0.674 0.953 0.79 0.662 0.898 0.762

 Figures 26 – 28 provide graphical depictions of precision and recall. Note the

improved precision for SVM in Figure 28: ~0.65 across the entire dataset. The plot also

indicates all models are more consistent across the datasets. Overall J48,m100,s50

performs the best for YouTube traffic at this sub-flow size.

79

Figure 26 YouTube J48 m0,n100,s50 Results

Figure 27 YouTube Naive m0,n100,s50 Results

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.712 0.721 0.723 0.708 0.717 0.711 0.706 0.694 0.712

 Recall 0.936 0.93 0.912 0.909 0.907 0.902 0.899 0.918 0.919

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

YouTube J48 m0,n100,s50

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.673 0.682 0.688 0.665 0.678 0.678 0.67 0.657 0.674

 Recall 0.946 0.958 0.952 0.953 0.941 0.944 0.941 0.953 0.953

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

YouTube Naive m0,n100,s50 Model

80

Figure 28 YouTube SMO m0,n100,s50 Results

 Netflix results are detailed in Table 10. Of note is the recall of 1 for SMO model. A

model that produces a 100% recall may indicate a problem with either the convergence of

the algorithm or possibly over fitting. Since the data used for SMO is the same as J48 and

Naïve Bayes, it is more likely that the model is suspect.

Table 10 Netflix m0,n100,s50 Model Results

 J48-m0,n100,s50 Naive-m0,n100,s50 SMO-m0,n100,s50

NT Prec Rec
 F-

Mea
Prec Rec

F-

Mea

597Pr

ec
Rec F-Mea

m0 0.792 0.992 0.88 0.784 0.98 0.871 0.604 1 0.753

m10 0.661 0.991 0.793 0.65 0.98 0.782 0.434 1 0.605

m20 0.653 0.989 0.786 0.641 0.979 0.775 0.429 1 0.601

m30 0.661 0.989 0.792 0.649 0.978 0.78 0.432 1 0.603

m40 0.652 0.989 0.786 0.64 0.98 0.774 0.426 1 0.

m50 0.655 0.988 0.788 0.644 0.98 0.777 0.427 1 0.599

 m60 0.655 0.988 0.787 0.643 0.977 0.776 0.432 1 0.604

m100 0.652 0.99 0.786 0.639 0.977 0.773 0.427 1 0.598

m200 0.659 0.99 0.792 0.648 0.977 0.779 0.428 1 0.599

Figures 29 – 31 provide a graphical depiction of the precision and recall results

detailed in Table 10. Visually, the patterns related to the consistency of the model track

across model types; the performance is best for J48 for Netflix at this sub-flow size.

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.662 0.669 0.674 0.652 0.665 0.668 0.66 0.642 0.662

 Recall 0.891 0.894 0.887 0.883 0.881 0.889 0.885 0.899 0.898

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

YouTube SMO m0,n100,s50 Model

81

Figure 29 Netflix J48 m0,n100,s50 Model

Figure 30 Netflix Naïve m0,n100,s50 Model

m0 m10 m20 m30 m40 m50 m60 100 m200

 Precision 0.792 0.661 0.653 0.661 0.652 0.655 0.655 0.652 0.659

 Recall 0.992 0.991 0.989 0.989 0.989 0.988 0.988 0.99 0.99

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix J48 m0,n100,s50 Model

m0 m10 m20 m30 m40 m50 m60 100 m200

 Precision 0.784 0.65 0.641 0.649 0.64 0.644 0.643 0.639 0.648

 Recall 0.98 0.98 0.979 0.978 0.98 0.98 0.977 0.977 0.977

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix Naive m0,n100,s50 Model

82

Figure 31 Netflix m0,n100,s50 Model

Sub-flow “m0,n500,s200” Model Evaluation

 Table 11 provides results from testing J48, Naïve Bayes and SMO m0,n500,s200

models. Recall and precision has increased with values reaching into the mid 80s and 90s

for J48. The F-measure for J48 has also increase well beyond full flow models tested

previously. Naïve Bayes closely tracks to J48 in performance. While SMO improved over

m0,n25,s10 and m0,n100,s50 models, the results are still below average.

Table 11 YouTube m0,n500,s200 Model Results

 J48-m0,n500,s200 Naive-m0,n500,s200 SMO-m0,n500,s200

YT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.987 0.916 0.95 0.935 0.929 0.932 0.93 0.632 0.753

m10 0.929 0.871 0.899 0.71 0.94 0.809 0.828 0.564 0.671

m20 0.987 0.831 0.902 0.921 0.927 0.924 0.955 0.54 0.69

m30 0.948 0.827 0.884 0.716 0.913 0.803 0.84 0.524 0.646

m40 0.943 0.813 0.873 0.73 0.908 0.809 0.83 0.521 0.64

m50 0.943 0.812 0.873 0.727 0.91 0.808 0.844 0.537 0.656

m60 0.947 0.79 0.861 0.73 0.913 0.812 0.879 0.56 0.684

m100 0.949 0.834 0.888 0.76 0.941 0.841 0.88 0.547 0.675

m200 0.965 0.842 0.899 0.829 0.949 0.885 0.92 0.569 0.703

m0 m10 m20 m30 m40 m50 m60 100 m200

 Precision 0.604 0.434 0.429 0.432 0.426 0.427 0.432 0.427 0.428

 Recall 1 1 1 1 1 1 1 1 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix SMO m0,n100,s50 Model

83

 Figure 32 provides a plot for the J48 “m0,n500,s200” model which illustrates

good results for this model at this sub-flow size. There is a slight perturbation at m20;

however, the performance is relatively consistent throughout. Naïve Bayes, Figure 32,

also has good performance. SMO SVM is worst at this sub-flow size relative to J48 and

Naïve Bayes. Indications are that a sub-flow size of n500,s200 may be suitable for

classifying YouTube traffic.

Figure 32 J48 m0,n500,s200 Model

Figure 33 Netflix Naïve m0,n500,s200 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.987 0.929 0.987 0.948 0.943 0.943 0.947 0.949 0.965

 Recall 0.916 0.871 0.831 0.827 0.813 0.812 0.79 0.834 0.842

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

YouTube J48 m0,n500,s200 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.935 0.71 0.921 0.716 0.73 0.727 0.73 0.76 0.829

 Recall 0.929 0.94 0.927 0.913 0.908 0.91 0.913 0.941 0.949

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

YouTube Naive m0,n500,s200 Model

84

Figure 34 Netflix SMO m0,n500,s200 Model

 Performance for J48, Naïve Bayes, and SMO for Netflix are detailed in Table 12.

The results indicated that for a sub-flow size of “m0,n500,s200”, all three models

performed about average – ~0.70 for J48 and Naïve, and relatively poor for SMO.

Figures 35 – 37 provide a graphical representation of precision and recall. In general

results are consistent across the spectrum of datasets, with a slight uptick at m100.

Table 12 Netflix m0,n500,s200 Model Results

 J48-m0,n500,s200 Naive-m0,n500,s200 SMO-m0,n500,s200

NT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.716 0.99 0.831 0.663 0.989 0.794 0.451 1 0.621

m10 0.719 0.991 0.834 0.663 0.983 0.792 0.441 1 0.612

m20 0.687 0.977 0.807 0.643 0.977 0.775 0.432 1 0.603

m30 0.687 0.983 0.809 0.64 0.972 0.772 0.425 0.999 0.596

m40 0.688 0.983 0.809 0.641 0.972 0.773 0.425 0.999 0.596

m50 0.702 0.988 0.821 0.654 0.972 0.782 0.424 0.999 0.595

m60 0.692 0.968 0.807 0.65 0.966 0.777 0.431 0.999 0.602

m100 0.824 0.979 0.895 0.785 0.969 0.867 0.597 1 0.748

m200 0.695 0.974 0.811 0.651 0.964 0.777 0.432 1 0.604

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.93 0.828 0.955 0.84 0.83 0.844 0.879 0.88 0.92

 Recall 0.632 0.564 0.54 0.524 0.521 0.537 0.56 0.547 0.569

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

YouTube SMO m0,n500,s200 Model

85

Figure 35 Netflix J48 m0,n500,s200 Model

Figure 36 Netflix Naïve m0,n500,s200 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.716 0.719 0.687 0.687 0.688 0.702 0.692 0.824 0.695

 Recall 0.99 0.991 0.977 0.983 0.983 0.988 0.968 0.979 0.974

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix J48 m0,n500,s200 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.663 0.663 0.643 0.64 0.641 0.654 0.65 0.785 0.651

 Recall 0.989 0.983 0.977 0.972 0.972 0.972 0.966 0.969 0.964

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix Naive m0,n500,s200 Model

86

Figure 37 Netflix SMO m0,n500,s200 Model

Sub-flow “m0,n1000,s500” Model Evaluation

 Given the trend toward increased performance as sub-flow size increases, the

expectation is that “m0,n1000,s500” for J48, Naïve Bayes and SMO models should

continue to improve in terms of precision and recall. Table 13 indicates that performance

has increased appreciably for the YouTube traffic class with precision and recall of ~0.90

and ~0.92, respectively. Moreover, the models performance is relatively stable across the

9 different test datasets with missing packets.

Table 13 YouTube m0,n1000,s500 Model Results

 J48-m0,n1000,n500 Naïve-m0,n1000,n500 SMO-m0,n1000,n500

YT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.97 0.983 0.976 0.939 0.963 0.951 0.869 0.873 0.871

m10 0.882 0.958 0.919 0.773 0.937 0.847 0.601 0.858 0.707

m20 0.915 0.934 0.925 0.781 0.936 0.852 0.622 0.865 0.723

m30 0.91 0.933 0.921 0.794 0.936 0.859 0.616 0.869 0.721

m40 0.912 0.922 0.917 0.779 0.927 0.847 0.618 0.865 0.721

m50 0.924 0.927 0.926 0.808 0.929 0.865 0.593 0.854 0.7

m60 0.975 0.885 0.928 0.937 0.933 0.935 0.868 0.859 0.863

m100 0.891 0.941 0.915 0.782 0.95 0.858 0.617 0.854 0.716

m200 0.912 0.926 0.919 0.792 0.94 0.86 0.613 0.858 0.715

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.451 0.441 0.432 0.425 0.425 0.424 0.431 0.597 0.432

 Recall 1 1 1 0.999 0.999 0.999 0.999 1 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix SMO m0,n500,s200 Model

87

 As depicted in Figure 38, J48 has excellent and consistent performance overall. The

implication being that J48-m0,n1000,s500 is well suited for classifying YouTube traffic

with missing packets. Naïve Bayes, Figure 39, performed well with precision of ~0.80

and recall of ~0.90; SMO, Figure 40, performed below average with precision of ~0.60.

Figure 38 YouTube J48 m0,n1000,s500 Model

Figure 39 YouTube Naive m0,n1000,s500 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.97 0.882 0.915 0.91 0.912 0.924 0.975 0.891 0.912

 Recall 0.983 0.958 0.934 0.933 0.922 0.927 0.885 0.941 0.926

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

YouTube J48 m0,n1000,s500 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.939 0.773 0.781 0.794 0.779 0.808 0.937 0.782 0.792

 Recall 0.963 0.937 0.936 0.936 0.927 0.929 0.933 0.95 0.94

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

YouTube Naive m0,n1000,s500 Model

88

Figure 40 YouTube SMO m0,n1000,s500 Model

 Table 14 details results for Netflix J48, Naïve Bayes and SMO for sub-flow

m0,n1000,s500. J48 and Naïve Bayes performed very well with similar values for

precision and recall: ~0.85 and ~0.92 across the datasets. F-measure values J48 and

Naïve Bayes hover at ~0.88 and ~0.85, respectively, which suggest J48 performs slightly

better that Naïve Bayes.

Table 14 Netflix m0,n1000,s500 Model Results

 J48-m0,n1000,s500 Naive-m0,n1000,s500 SMO-m0,n1000,s500

NF Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.859 0.927 0.892 0.812 0.927 0.865 0.609 0.913 0.731

m10 0.859 0.927 0.892 0.812 0.925 0.865 0.61 0.913 0.731

m20 0.879 0.924 0.901 0.831 0.934 0.88 0.593 0.919 0.721

m30 0.87 0.943 0.905 0.824 0.941 0.879 0.611 0.911 0.732

m40 0.87 0.941 0.904 0.823 0.943 0.879 0.612 0.912 0.732

m50 0.789 0.928 0.853 0.708 0.928 0.803 0.448 0.888 0.595

m60 0.787 0.928 0.852 0.708 0.928 0.803 0.448 0.891 0.596

m100 0.866 0.936 0.9 0.821 0.941 0.877 0.612 0.911 0.732

m200 0.869 0.92 0.894 0.821 0.915 0.865 0.624 0.91 0.741

 Figures 41 – 43 provide a graphical overview of precision and recall for each model.

The graph illustrates how closely the plots from all 3 models track, although the

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.869 0.601 0.622 0.616 0.618 0.593 0.868 0.617 0.613

 Recall 0.873 0.858 0.865 0.869 0.865 0.854 0.859 0.854 0.858

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

YouTube SMO m0,n1000,s500 Model

89

magnitude of each value is quite different. All models experience a small depression

when missing packets reach 50 and 60. The loss of packets m50 and m60 is affecting

sub-flow statistics, which impacts the classification of both datasets. As the number of

missing packets increases the effect is lessened because most of the initial packets that

are used to sync communications are most likely outside the sub-flow window. Overall

the plots indicate J48 provides more consistent and higher performance relative to other

models for the n1000,s500 sub-flow size for the Netflix traffic class.

Figure 41 Netflix J48 m0,n1000,s500 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.859 0.859 0.879 0.87 0.87 0.789 0.787 0.866 0.869

 Recall 0.927 0.927 0.924 0.943 0.941 0.928 0.928 0.936 0.92

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix J48 m0,n1000,s500 Model

90

Figure 42 Netflix Naive m0,n1000,s500 Model

Figure 43 Netflix SMO m0,n1000,s500 Model

Summary

 In this section, results were presented for sub-flow trained classifiers tested with

datasets of the same sub-flow size with missing packets. Using models and datasets of the

same sub-flow size was a direct outcome from evaluation of full flow models with

different sub-flow sizes which returned poor results. Furthermore, testing of different

machine learning algorithms (J48, Naïve Bayes, and SMO for 4 different sub-flow sizes,

“n25,s10”, “n100,s50”, “n500,s200”, and “n1000,s500”), in order to identify the best sub-

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.812 0.812 0.831 0.824 0.823 0.708 0.708 0.821 0.821

 Recall 0.927 0.925 0.934 0.941 0.943 0.928 0.928 0.941 0.915

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix Naive m0,n1000,s500 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.609 0.61 0.593 0.611 0.612 0.448 0.448 0.612 0.624

 Recall 0.913 0.913 0.919 0.911 0.912 0.888 0.891 0.911 0.91

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix SMO m0,n1000,s500

91

flow classifier, in terms of performance, for YouTube and Netflix was also performed.

For both YouTube and Netflix traffic classes the “J48-m0,n1000,s500” model performed

best.

 The key outcome from this evaluation is that a sub-flow size along with an ML

algorithm have been identified that provides very good (J48 for Netflix) and in some

cases excellent (J48 for YouTube traffic) overall performance, while eliminating the need

for collecting data for the entire network flow. In the next section, ensemble techniques

were applied to each algorithm – J48, Naïve Bayes and SMO SVM – to determine if

performance, precision, and recall, can be improved.

Evaluation of Ensemble Algorithms Applied to Sub-flow Classifiers

 In the previous experiments, it was demonstrated that sub-flow classifiers performed

substantially better than full flow classifiers on traffic with missing packets. Results

presented in this section evaluated the effect of ensemble techniques on sub-flow

classifiers, as exhibited through improved performance, precision and recall. Bagging and

AdaBoost were the two ensemble techniques evaluated. Both Bagging and AdaBoost

were applied to J48, Naïve Bayes, and SMO SVM for each traffic class and then tested

with the same 9 datasets as the non-ensemble classifiers. The outcome of these

experiments identified the best sub-flow classifier for YouTube and Netflix among all the

sub-flow classifiers tested for this research.

YouTube Sub-flow Bagging Classifiers

 Table 15 and Figure 44 (F-Measure only) provides a tabular and graphical view of

results for Bagging as applied to J48 decision tree algorithm. Plotting F-measure

simplifies comparison across all Bagging models since the objective is identifying the

92

best single model for YouTube and Netflix. Bagging applied to “m0,n1000,s500”

provides excellent results with values in the mid-nineties (~.94) across each data set even

when missing packets increases. These results are also higher than the non-ensemble

model J48m0,n1000,s500 previously tested.

Table 15 YouTube Bagging-J48 Results

 Figure 44 graphically depicts F-measure for the results found in Table 15. F-measure

is consistently above 0.93 which confirms excellent results for the Bag-

J48m0,n1000,s500 model. All Bagging J48 models perform consistently for all datasets

of missing packets and sub-flow sizes.

93

Figure 44 YouTube Bagging-J48 F-Measure

 Table 16 and Figure 45 provide results for Bagging applied to Naïve Bayes. Again

results show improvement over the non-ensemble Naïve Bayes models tested previously.

However, does not rise to the performance of the Bag-J48m0,n1000,s500 (Figure 44).

Table 16 YouTube Bagging-Naive Results

m0 m10 m20 m30 m40 m50 m60 m100 m200

Bag-J48m0,n25,s10 0.799 0.798 0.795 0.799 0.794 0.79 0.796 0.798 0.797

Bag-J48m0,n100,s50 0.814 0.817 0.815 0.801 0.803 0.803 0.802 0.795 0.809

Bag-J48m0,n500,s200 0.96 0.91 0.908 0.885 0.881 0.881 0.879 0.91 0.91

Bag-J48m0,n1000,s500 0.98 0.938 0.943 0.937 0.934 0.942 0.962 0.929 0.93

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

YouTube Bag-J48 F-Measure

	YOUTUBE

YT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.666 0.939 0.779 0.675 0.952 0.79 0.936 0.93 0.933 0.939 0.961 0.95

m10 0.666 0.944 0.781 0.682 0.958 0.797 0.712 0.943 0.812 0.773 0.939 0.848

m20 0.663 0.945 0.779 0.689 0.952 0.799 0.922 0.925 0.924 0.778 0.94 0.851

m30 0.668 0.946 0.783 0.666 0.955 0.785 0.715 0.915 0.803 0.79 0.936 0.857

m40 0.661 0.95 0.78 0.679 0.945 0.79 0.732 0.911 0.812 0.777 0.927 0.846

m50 0.658 0.947 0.777 0.678 0.946 0.79 0.731 0.918 0.814 0.805 0.931 0.863

m60 0.666 0.946 0.782 0.67 0.94 0.782 0.729 0.916 0.812 0.935 0.938 0.937

m100 0.666 0.949 0.783 0.657 0.957 0.779 0.761 0.948 0.844 0.782 0.953 0.859

m200 0.665 0.948 0.782 0.675 0.956 0.792 0.829 0.947 0.884 0.79 0.939 0.858

Bag-Naivem0,n25,s10 Bag-Naivem0,n100,s50 Bag-Naivem0,n500,s200 Bag-Naivem0,n1000,s500

94

Figure 45 YouTube Bagging-Naive F-Measure

 Finally, Bagging is applied to SMO and results in the poorest performance of all

Bagging models. Moreover, non-SMO models perform better overall, which indicates

Bagging did not improve SMO precision and recall.

Table 17 YouTube Bagging-SMO Results

m0 m10 m20 m30 m40 m50 m60 m100 m200

Bag-Naivem0,n25,s10 0.779 0.781 0.779 0.783 0.78 0.777 0.782 0.783 0.782

Bag-Naivem0,n100,s50 0.79 0.797 0.799 0.785 0.79 0.79 0.782 0.779 0.792

Bag-Naivem0,n500,s200 0.933 0.812 0.924 0.803 0.812 0.814 0.812 0.844 0.884

Bag-Naivem0,n1000,s500 0.95 0.848 0.851 0.857 0.846 0.863 0.937 0.859 0.858

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

YouTube Bag-Naive F-Measure

YT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.64 0.97 0.77 0.66 0.89 0.76 0.928 0.622 0.745 0.87 0.873 0.872

m10 0.64 0.98 0.78 0.67 0.89 0.765 0.829 0.562 0.67 0.602 0.858 0.708

m20 0.64 0.98 0.77 0.67 0.89 0.766 0.955 0.54 0.69 0.624 0.863 0.725

m30 0.65 0.98 0.78 0.65 0.88 0.751 0.84 0.526 0.647 0.618 0.867 0.722

m40 0.64 0.98 0.77 0.67 0.88 0.758 0.825 0.52 0.638 0.62 0.865 0.722

m50 0.63 0.98 0.77 0.67 0.89 0.763 0.844 0.537 0.656 0.595 0.854 0.702

m60 0.64 0.98 0.78 0.66 0.89 0.757 0.873 0.56 0.682 0.868 0.855 0.861

m100 0.64 0.98 0.78 0.64 0.9 0.75 0.876 0.543 0.67 0.619 0.852 0.717

m200 0.64 0.98 0.77 0.66 0.9 0.762 0.918 0.564 0.698 0.615 0.854 0.715

Bag-

SMOm0,n25,s10

Bag-

SMOm0,n100,s50

Bag-

SMOm0,n500,s200

Bag-

SMOm0,n1000,s50

95

Figure 46 YouTube Bagging-Naive F-Measure

YouTube Sub-flow ADA Classifiers

 Table 18 provides a tabular view, and Figure 46 the graphical view, of results from

applying AdaBoost to J48 algorithm. Note ADA-J48m0,n1000,s500 model has the

highest performance of all models for YouTube with F-measure values between 0.94 and

0.98 across the range of m0 – m200 datasets.

Table 18 YouTube ADA-J48 Results

m0 m10 m20 m30 m40 m50 m60 m100 m200

Bag-SMOm0,n25,s10 0.773 0.776 0.772 0.778 0.772 0.769 0.776 0.776 0.774

Bag-SMOm0,n100,s50 0.76 0.765 0.766 0.751 0.758 0.763 0.757 0.75 0.762

Bag-SMOm0,n500,s200 0.745 0.67 0.69 0.647 0.638 0.656 0.682 0.67 0.698

Bag-SMOm0,n1000,s500 0.872 0.708 0.725 0.722 0.722 0.702 0.861 0.717 0.715

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

YouTube Bag-SMO F-Measure

	YOUTUBE

YT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.67 0.99 0.8 0.71 0.96 0.81 0.98 0.9 0.94 0.98 0.98 0.98

m10 0.67 0.98 0.8 0.72 0.96 0.82 0.92 0.91 0.92 0.93 0.97 0.95

m20 0.67 0.98 0.79 0.72 0.94 0.81 0.98 0.86 0.92 0.96 0.94 0.95

m30 0.67 0.98 0.8 0.7 0.95 0.81 0.93 0.88 0.9 0.96 0.94 0.95

m40 0.67 0.98 0.79 0.71 0.93 0.81 0.93 0.87 0.9 0.95 0.93 0.94

m50 0.66 0.98 0.79 0.71 0.93 0.8 0.93 0.86 0.89 0.96 0.94 0.95

m60 0.67 0.98 0.8 0.71 0.93 0.8 0.92 0.84 0.88 0.99 0.95 0.97

m100 0.67 0.99 0.8 0.69 0.93 0.79 0.95 0.88 0.91 0.95 0.94 0.94

m200 0.67 0.99 0.8 0.71 0.94 0.81 0.96 0.86 0.91 0.95 0.94 0.95

ADA-J48

m0,n25,s10

ADA-J48

m0,n100,s50

ADA-J48

m0,n500,s200

ADA-J48

m0,n1000,s500

96

 Figure 47 confirms of the excellent performance and consistency of ADA-

J48m0,n1000,s500 model in comparison to other ADA-J48 models of different sub-flow

sizes. The performance of ADA-J48 are even higher than Bag-J48,n1000,s500 model

previously tested.

Figure 47 YouTube ADA-J48 F-Measure

 Table 19 provides results from applying AdaBoost to Naïve Bayes for multiple sub-

flows. Of significance is the performance of the ADA-Naïve m0,n1000,s500 model,

which has F-measure values between ~0.92 and 0.97 across the m0 – m200 datasets.

Similar to ADA-J48, ADA complements Naïve Bayes well, and is only slightly less

effective than AdaBoost applied to J48. Figure 48 graphically confirms the findings for

the ADA-Naïve m0,n1000,s500 model.

m0 m10 m20 m30 m40 m50 m60 m100 m200

ADA-J48m0,n25,s10 0.799 0.798 0.793 0.798 0.794 0.789 0.795 0.797 0.797

ADA-J48m0,n100,s200 0.812 0.818 0.814 0.806 0.807 0.801 0.804 0.794 0.807

ADA-J48m0,n500,s200 0.937 0.917 0.92 0.903 0.898 0.893 0.876 0.913 0.907

ADA-J48m0,n1000,s500 0.981 0.948 0.948 0.95 0.941 0.952 0.966 0.942 0.945

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

YouTube ADA-J48 F-Measure

97

Table 19 YouTube ADA-Naive Results

Figure 48 YouTube ADA-Naive F-Measure

 Table 20 list results for AdaBoost applied to SMO. Performance for ADA-SMO is

relatively poor when compared to ADA-J48 and ADA-Naïve models. Moreover,

AdaBoost only slightly improves SMO SVM relative to non-ensemble SVM models

tested previously. Figure 49 graphically depicts these findings.

	YOUTUBE

YT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.677 0.934 0.785 0.74 0.805 0.771 0.983 0.896 0.937 0.958 0.988 0.973

m10 0.676 0.938 0.786 0.758 0.802 0.779 0.923 0.91 0.917 0.882 0.983 0.93

m20 0.67 0.931 0.779 0.754 0.794 0.773 0.984 0.864 0.92 0.888 0.972 0.928

m30 0.676 0.933 0.784 0.742 0.784 0.763 0.929 0.877 0.903 0.892 0.969 0.929

m40 0.669 0.937 0.781 0.75 0.785 0.767 0.926 0.871 0.898 0.879 0.957 0.917

m50 0.667 0.935 0.779 0.755 0.786 0.771 0.925 0.863 0.893 0.892 0.958 0.924

m60 0.674 0.933 0.782 0.74 0.771 0.755 0.922 0.835 0.876 0.97 0.964 0.967

m100 0.674 0.938 0.784 0.732 0.792 0.761 0.946 0.883 0.913 0.873 0.969 0.918

m200 0.672 0.933 0.782 0.752 0.788 0.77 0.957 0.863 0.907 0.869 0.974 0.918

ADA-

Naivem0,n25,s10

ADA-

Naivem0,n100,s50

ADA-

Naivem0,n500,s200

ADA-

Naivem0,n1000,s500

m0 m10 m20 m30 m40 m50 m60 m100 m200

ADA-Naivem0,n25,s10 0.785 0.786 0.779 0.784 0.781 0.779 0.782 0.784 0.782

ADA-Naivem0,n100,s50 0.771 0.779 0.773 0.763 0.767 0.771 0.755 0.761 0.77

ADA_Naivem0,n500,s200 0.937 0.917 0.92 0.903 0.898 0.893 0.876 0.913 0.907

ADA-Naivem0,n1000,s500 0.973 0.93 0.928 0.929 0.917 0.924 0.967 0.918 0.918

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

YouTube ADA-Naive F-Measure

98

Table 20 YouTube ADA-SMO Results

Figure 49 YouTube ADA-SMO F-Measure

Netflix Sub-flow Bagging Models

In this portion of the research, results from Bagging are presented to determine if

ensemble techniques improved on previous findings for non-ensemble J48, Naïve Bayes

and SMO models for Netflix traffic data. Table 21 details results for Bagging applied to

J48 for Netflix traffic. Bag-J48-m0,n1000,s500 model’s performance is good relative to

	YOUTUBE

YT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.645 0.967 0.774 0.667 0.851 0.748 0.929 0.53 0.675 0.877 0.872 0.874

m10 0.646 0.972 0.776 0.678 0.852 0.755 0.821 0.559 0.665 0.62 0.858 0.72

m20 0.641 0.971 0.772 0.683 0.847 0.756 0.953 0.535 0.685 0.638 0.865 0.734

m30 0.648 0.971 0.777 0.662 0.844 0.742 0.834 0.52 0.64 0.633 0.868 0.732

m40 0.641 0.972 0.772 0.677 0.846 0.752 0.825 0.514 0.633 0.633 0.863 0.731

m50 0.636 0.971 0.769 0.677 0.853 0.755 0.84 0.532 0.651 0.616 0.853 0.715

m60 0.645 0.972 0.776 0.669 0.842 0.745 0.871 0.553 0.676 0.875 0.857 0.866

m100 0.645 0.972 0.776 0.649 0.858 0.739 0.877 0.541 0.67 0.635 0.852 0.728

m200 0.644 0.969 0.774 0.671 0.852 0.751 0.92 0.56 0.696 0.627 0.858 0.724

ADA-

SMOm0,n25,s10

ADA-

SMOm0,n100,s50

ADA-

SMOm0,n500,s200

ADA-

SMOm0,n1000,s500

m0 m10 m20 m30 m40 m50 m60 m100 m200

ADA-SMOm0,n25,s10 0.774 0.776 0.772 0.777 0.772 0.769 0.776 0.776 0.774

ADA-SMOm0,n100,n50 0.748 0.755 0.756 0.742 0.752 0.755 0.745 0.739 0.751

ADA-SMOm0,n500,s200 0.675 0.665 0.685 0.64 0.633 0.651 0.676 0.67 0.696

ADA-SMOm0,n1000,s500 0.874 0.72 0.734 0.732 0.731 0.715 0.866 0.728 0.724

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

YouTube ADA-SMO F-Measure

99

the other Bag J48 models; however, it is just slightly better than the non-ensemble J48

models tested previously with F-measure values between 0.86 - 0.90. Figure 50

graphically depicts F-measure for each Bagging model.

Table 21 Netflix Bag-J48 Results

Figure 50 Netflix Bag-J48 F-Measure

 Table 22 lists the results from applying Bagging to Naïve Bayes for Netflix traffic.

Results indicate that Bag-Naïve-m0,n100,s500 model performs best relative to other

Bagging Naïve Bayes models with F-measure scores ~0.87; however, the Netflix Bag-

	NF

NF Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.723 0.785 0.753 0.793 0.993 0.882 0.805 0.905 0.852 0.859 0.933 0.895

m10 0.725 0.788 0.755 0.664 0.991 0.795 0.804 0.906 0.852 0.86 0.937 0.897

m20 0.726 0.791 0.757 0.657 0.988 0.789 0.754 0.89 0.816 0.876 0.926 0.9

m30 0.726 0.789 0.757 0.664 0.988 0.794 0.766 0.889 0.823 0.873 0.948 0.909

m40 0.728 0.793 0.759 0.656 0.989 0.789 0.767 0.891 0.824 0.873 0.949 0.91

m50 0.728 0.793 0.759 0.657 0.988 0.789 0.784 0.898 0.837 0.79 0.948 0.862

m60 0.724 0.793 0.757 0.658 0.988 0.79 0.774 0.879 0.823 0.792 0.948 0.863

m100 0.723 0.789 0.754 0.655 0.991 0.789 0.883 0.887 0.885 0.872 0.945 0.907

m200 0.724 0.788 0.755 0.662 0.99 0.793 0.75 0.883 0.811 0.872 0.927 0.899

Bag-J48-

m0,n1000,s500

Bag-J48-

m0,n25,s10

Bag-J48-

m0,n100,s50

Bag-J48-

m0,n500,s200

m0 m10 m20 m30 m40 m50 m60 m100 m200

Bag-J48m0,n25,s10 0.753 0.755 0.757 0.757 0.759 0.759 0.757 0.754 0.755

Bag-J48m0,n100,s50 0.882 0.795 0.789 0.794 0.789 0.789 0.79 0.789 0.793

Bag-J48m0,n500,s50 0.852 0.852 0.816 0.823 0.824 0.837 0.823 0.885 0.811

Bag-J48m0,n1000,s500 0.895 0.897 0.9 0.909 0.91 0.862 0.863 0.907 0.899

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Netflix Bag-J48 F-Measure

100

J48-m0,n1000,s500 model, Figure 50, exhibits better performance overall with F-

measure values ~0.90.

Table 22 Netflix Bag-Naive Results

Figure 51 Netflix Bag-Naive F-Measure

Lastly, Table 23 lists the results from applying Bagging to SMO for Netflix traffic

class. Performance is good for the Bag-SMO-m0,n1000,s500 model; however, the

performance of Bag-J48-m0,n1000,s500 is still better in comparison. Of note, Bagging

	NF

NF Prec Rec F-MeaPrec Rec F-MeaPrec Rec F-MeaPrec Rec F-Mea

m0 0.65 0.97 0.78 0.78 0.98 0.87 0.73 0.9 0.81 0.81 0.93 0.87

m10 0.65 0.97 0.78 0.65 0.98 0.78 0.73 0.9 0.8 0.81 0.93 0.87

m20 0.65 0.97 0.78 0.64 0.98 0.77 0.7 0.88 0.78 0.83 0.93 0.87

m30 0.65 0.97 0.78 0.65 0.98 0.78 0.69 0.88 0.77 0.82 0.94 0.88

m40 0.65 0.97 0.78 0.64 0.98 0.77 0.69 0.88 0.78 0.82 0.94 0.88

m50 0.65 0.97 0.78 0.64 0.98 0.77 0.73 0.87 0.79 0.7 0.93 0.8

m60 0.65 0.97 0.77 0.64 0.98 0.78 0.72 0.87 0.79 0.7 0.93 0.8

m100 0.65 0.97 0.78 0.64 0.98 0.77 0.83 0.87 0.85 0.82 0.94 0.88

m200 0.64 0.97 0.77 0.65 0.98 0.78 0.7 0.85 0.76 0.82 0.92 0.87

Bag-Naïve-

m0,n1000,s500

Bag-Naïve-

m0,n25,s10

Bag-Naïve-

m0,n100,s50

Bag-Naïve-

m0,n500,s200

m0 m10 m20 m30 m40 m50 m60 m100 m200

Bag-Naivem0,n25,s10 0.775 0.776 0.777 0.777 0.778 0.777 0.774 0.775 0.773

Bag-Naivem0,n100,s50 0.869 0.781 0.774 0.778 0.772 0.774 0.775 0.77 0.777

Bag-Naivem0,n500,s200 0.805 0.802 0.779 0.774 0.776 0.793 0.785 0.851 0.764

Bag-Naivem0,n1000,s500 0.865 0.866 0.874 0.875 0.875 0.801 0.801 0.875 0.867

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix Bag-Naive F-Measure

101

significantly improved SMO results over non-ensemble SMO previously tested for the

Netflix traffic class.

Table 23 Netflix Bag-SMO Results

Figure 52 Netflix Bag-SMO F-Measure

Netflix Sub-flow AdaBoost Classifiers

 Now that Bagging has been evaluated, the results from testing AdaBoost on the same

Netflix traffic data are presented. Table 24 provides results from applying AdaBoost to

J48. The best performing model for ADA-J48 is ADA-J48-m0,n1000,s50. Additionally,

	NF

NF Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.598 0.052 0.096 0.6 1 0.75 0.73 0.9 0.81 0.809 0.929 0.865

m10 0.608 0.053 0.097 0.43 1 0.61 0.73 0.9 0.8 0.808 0.932 0.866

m20 0.604 0.052 0.097 0.43 1 0.6 0.7 0.88 0.78 0.827 0.928 0.874

m30 0.612 0.052 0.097 0.43 1 0.6 0.69 0.88 0.77 0.819 0.94 0.875

m40 0.614 0.051 0.094 0.43 1 0.6 0.69 0.88 0.78 0.818 0.941 0.875

m50 0.582 0.049 0.09 0.43 1 0.6 0.73 0.87 0.79 0.702 0.933 0.801

m60 0.573 0.049 0.091 0.43 1 0.6 0.72 0.87 0.79 0.702 0.933 0.801

m100 0.597 0.051 0.094 0.43 1 0.6 0.83 0.87 0.85 0.818 0.94 0.875

m200 0.61 0.052 0.096 0.43 1 0.6 0.7 0.85 0.76 0.817 0.923 0.867

Bag-SMO-

m0,n1000,s500

Bag-SMO-

m0,n1000,s500

Bag-SMO-

m0,n100,s50

Bag-SMO-

m0,n500,s200

m0 m10 m20 m30 m40 m50 m60 m100 m200

Bag-SMOm0,n25,s10 0.096 0.097 0.097 0.097 0.094 0.09 0.091 0.094 0.096

Bag-SMOm0,n100,s50 0.753 0.605 0.601 0.603 0.597 0.599 0.604 0.598 0.599

Bag-SMOm0,n500,s200 0.805 0.802 0.779 0.774 0.776 0.793 0.785 0.851 0.764

Bag-SMOm0,n1000,s500 0.865 0.866 0.874 0.875 0.875 0.801 0.801 0.875 0.867

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix Bag-SMO F-Meassure

102

results from the ADA-J48-m0,n1000,s500 model in comparison to Bag-J48-

m0,n1000,s500 are essentially the same in terms of F-measure. Either model is an

improvement over non-ensemble models previously tested. Figure 53 provides a

graphical depiction of F-measure for the ADA J48 model for the four different sub-flow

sizes.

Table 24 Netflix ADA-J48 Results

	NF

NF Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.72 0.78 0.75 0.604 1 0.753 0.811 0.894 0.85 0.857 0.936 0.895

m10 0.73 0.79 0.76 0.434 1 0.605 0.806 0.894 0.848 0.858 0.932 0.893

m20 0.73 0.79 0.76 0.429 1 0.601 0.765 0.879 0.818 0.881 0.926 0.903

m30 0.73 0.79 0.76 0.432 1 0.603 0.773 0.881 0.823 0.875 0.95 0.911

m40 0.73 0.79 0.76 0.426 1 0.597 0.774 0.88 0.824 0.875 0.949 0.911

m50 0.73 0.79 0.76 0.427 1 0.599 0.788 0.878 0.831 0.794 0.94 0.861

m60 0.72 0.79 0.76 0.432 1 0.604 0.779 0.858 0.817 0.792 0.94 0.86

m100 0.72 0.79 0.75 0.427 1 0.598 0.885 0.865 0.875 0.869 0.941 0.904

m200 0.73 0.79 0.76 0.428 1 0.599 0.765 0.872 0.815 0.869 0.93 0.898

ADA-J48-

m0,n1000,s500

 ADA-J48-

m0,n25,s10

 ADA-J48-

m0,n100,s50

ADA-J48-

m0,n500,s200

m0 m10 m20 m30 m40 m50 m60 m100 m200

ADA-J48m0,25,s10 0.753 0.755 0.756 0.756 0.759 0.758 0.756 0.754 0.755

ADA-J48m0,n100,s50 0.753 0.605 0.601 0.603 0.597 0.599 0.604 0.598 0.599

ADA-J48m0,n500,s200 0.85 0.848 0.818 0.823 0.824 0.831 0.817 0.875 0.815

ADA-Naivem0,n1000,s500 0.895 0.893 0.903 0.911 0.911 0.861 0.86 0.904 0.898

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Netflix ADA-J48 F-Measure

103

Figure 53 Netflix ADA-J48 F-Measure

 Table 25 provides results from applying AdaBoost to Naïve Bayes. While ADA-

Naïve-m0,n1000,s500 has the best results among the ADA Naïve Bayes models with F-

measure values between 0.86 and 0.88, its performance is slightly less than ADA-J48-

m0,n1000,s500, as depicted in Fig. 53. Figure 54 depicts F-measure for the ADA Naïve

Bayes.

Table 25 Netflix ADA-Naive Results

	NF

NF Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea

m0 0.649 0.962 0.775 0.791 0.979 0.875 0.764 0.888 0.821 0.825 0.903 0.862

m10 0.65 0.961 0.776 0.659 0.979 0.787 0.756 0.883 0.815 0.827 0.901 0.863

m20 0.651 0.961 0.776 0.651 0.979 0.782 0.734 0.877 0.799 0.847 0.908 0.877

m30 0.65 0.963 0.776 0.658 0.978 0.787 0.733 0.877 0.799 0.85 0.918 0.883

m40 0.652 0.964 0.777 0.652 0.98 0.783 0.732 0.876 0.798 0.848 0.921 0.883

m50 0.652 0.961 0.777 0.653 0.979 0.784 0.755 0.873 0.81 0.745 0.908 0.818

m60 0.648 0.962 0.775 0.652 0.976 0.782 0.745 0.861 0.799 0.745 0.908 0.818

m100 0.65 0.962 0.776 0.649 0.977 0.78 0.861 0.864 0.862 0.846 0.917 0.88

m200 0.646 0.963 0.773 0.658 0.976 0.786 0.724 0.854 0.784 0.84 0.889 0.864

 ADA-Naïve-

m0,n1000,s500

 ADA-Naïve-

m0,n25,s10

 ADA-Naïve-

m0,n100,s50

 ADA-Naïve-

m0,n500,s200

m0 m10 m20 m30 m40 m50 m60 m100 m200

ADA-Naivem0,n25,s10 0.775 0.776 0.776 0.776 0.777 0.777 0.775 0.776 0.773

ADA-Naivem0,n100,s50 0.875 0.787 0.782 0.787 0.783 0.784 0.782 0.78 0.786

ADA-Naivem0,500,s200 0.821 0.815 0.799 0.799 0.798 0.81 0.799 0.862 0.784

ADA-Naivem0,n1000,s500 0.862 0.863 0.877 0.883 0.883 0.818 0.818 0.88 0.864

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Netflix ADA-Naive F-Measure

104

Figure 54 Netflix ADA-Naive F-Measure

 Table 26 list results from applying AdaBoost to SMO. Indications are that the ADA-

SMO-m0,n1000,s500 model has the best performance among all other ADA-SMO

models with values ~0.71 across the various datasets. Furthermore, there is an

improvement to SMO when ADA is used in combination with the SVM algorithm.

Although results for ADA-SMO-m0,n1000,s500 are good with F-measure values

between 0.86 - 0.88, the Bag-J48-m0,n1000,s500 model, Figure 53, performs the best for

Netflix traffic classification.

Table 26 Netflix ADA-SMO Results

	NF

NF Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.6 0.05 0.091 0.61 0.996 0.754 0.68 0.29 0.402 0.61 0.92 0.734

m10 0.6 0.05 0.09 0.44 0.996 0.608 0.64 0.29 0.395 0.61 0.92 0.735

m20 0.61 0.05 0.092 0.43 0.997 0.603 0.65 0.28 0.392 0.59 0.92 0.723

m30 0.62 0.05 0.092 0.43 0.996 0.605 0.64 0.27 0.375 0.61 0.92 0.735

m40 0.61 0.05 0.087 0.43 0.998 0.6 0.65 0.27 0.377 0.61 0.92 0.735

m50 0.58 0.05 0.086 0.43 0.998 0.602 0.64 0.27 0.383 0.45 0.9 0.6

m60 0.57 0.05 0.087 0.44 0.998 0.607 0.6 0.27 0.371 0.45 0.9 0.601

m100 0.6 0.05 0.089 0.43 0.998 0.601 0.78 0.27 0.4 0.61 0.92 0.736

m200 0.61 0.05 0.091 0.43 0.996 0.601 0.63 0.27 0.379 0.63 0.92 0.744

ADA-SMO-

m0,n1000,s500

 ADA-SMO-

m0,n25,s10

ADA-SMO-

m0,n100,s50

ADA-SMO-

m0,n500,s200

105

 Figure 55 Netflix ADA-SMO F-Measure

Summary

 In this set of experiments, the effects of ensemble methodologies, Bagging and

AdaBoost, were explored. The intent was to improve performance of sub-flow classifiers

for J48, Naïve Bayes and SMO tested on the same partial flows as non-ensemble models.

Generally, both Bagging and AdaBoost increased precision and recall for each sub-flow

classifier tested. Moreover, the ADA-J48-m0,n1000,s500 model produced excellent

performance with F-measures between 0.94 and 0.98 for the YouTube traffic class. For

Netflix ADA-J48-m0,n1000,s500, there were slightly improved results with F-measure

values from ~0.86 to 0.91. Overall, the results indicate that sub-flow classifiers using

ensemble techniques in conjunction with J48 C4.5 are well suited for classification of

YouTube and Netflix traffic.

m0 m10 m20 m30 m40 m50 m60 m100 m200

ADA-SMOm0,n25,s10 0.091 0.09 0.092 0.092 0.087 0.086 0.087 0.089 0.091

ADA-SMOm0,n100,s50 0.754 0.608 0.603 0.605 0.6 0.602 0.607 0.601 0.601

ADA-SMOm0,n500,s200 0.402 0.395 0.392 0.375 0.377 0.383 0.371 0.4 0.379

ADA-SMOm0,n1000,s500 0.734 0.735 0.723 0.735 0.735 0.6 0.601 0.736 0.744

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Netflix ADA-SMO F-Measure

106

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusion

 This research focused on the evaluation of machine learning algorithms for

classifying video streaming traffic. A key tenet of this research was the use of sub-flow

based classifiers – ML models trained on statistics from a subset of packets instead of the

entire traffic flow. Use of statistics derived from the entire flow, known as full flow,

produced poor results when partial flows with missing packets are encountered.

Specifically, full flow trained classifiers exhibited low recall and inconsistent

performance as the number of missing packets increase. In contrast, classifiers trained on

sub-flows exhibit higher and more consistent performance. Furthermore, ensemble

techniques applied to the same ML algorithms improve performance substantively. To

examine this supposition, 5 research questions were proposed and answered through

experimentation and are listed below along with their associated findings:

1) What recall and precision can be attained using ML algorithms trained on

multiple sub-flows in classifying video streaming traffic?

Prior to examining the impact of sub-flow base classifiers, full flow classifiers

were tested to confirm poor performance in terms of recall of ~0.70 for YouTube

and 0.41 for Netflix. In contrast, sub-flow trained classifiers attained precision

from 0.88 to 0.97 and recall of 0.88 to 0.98 for YouTube; for Netflix, values

from ~0.80 to 0.82 for precision and ~0.92 to 0.94 for recall were attained. More

importantly, ensemble based sub-flow classifiers produce excellent results for

YouTube, and some improvement in performance for Netflix. For YouTube,

107

ADA-J48-m0,n1000,s500 (AdaBoost combined with C4.5) model produced

precision values between ~0.93 and ~0.98 and recall values between ~0.94 and

~0.98; and for Netflix, ADA-J48-m0,n1000,s500 precision of ~0.80 to ~0.88 and

recall of ~0.92 to ~0.95.

2) What sub-flow size used to train, test, and classify video traffic attained high

recall and precision?

Experiments indicate that a sub-flow size of 1000 packets results in very good

performance for Netflix and excellent performance for YouTube traffic. While

the experiments performed for this research were specific to Netflix and

YouTube, results should be extensible to other video streaming applications.

However, interactive video gaming systems, may respond differently to sub-flow

techniques due to the number of changes in traffic patterns over the entire flow.

Investigation of online large scale gaming traffic should be undertaken through

future research efforts.

3) What features, sub-flow attributes, are required to enable classification of video

traffic?

A total of 19 features, including “class” of traffic, were identified and used for

training and testing classifiers. Wireshark was used to capture and derive a

number of statistics. Additionally, Wireshark was also used, in conjunction with

manual inspection, to label flows correctly for training classifiers. Scripts were

written to generate missing statistics and select the proper number features from

Wireshark output. The list and description of features can be found in Chapter 3,

108

Methodology. Preliminary tests were executed to ensure the relevance of

selected features.

4) What is the effect of different sub-flow sizes, number of packets per sub-flow, on

ML recall and precision?

Results in Chapter 4 indicate precision and recall are impacted by sub-flow size;

specifically, as sub-flow size increases, performance and recall also increase and

become more consistent. To great extent this trending toward increase sub-flow

size is understandable, considering video streaming traffic tends to be consistent

and long lived. However, as sub-flows sizes get closer to full flows then

precision and recall are reduced as experiments with full flow classification

indicate. In general, there is a point at which larger sub-flows reflects the

characteristics of full flow models and produces poor performance. Additionally,

increasing sub-flow size is counter to the premise of this research in that it is

generally difficult to ensure the capture of full flows in real world application of

ML classifiers for video traffic.

5) How effective are ML algorithms trained on multiple sub-flows in classifying

video streaming traffic from disparate data sets containing packets captured from

different network environments?

Traffic for YouTube and Netflix were captured from two different networks and

stored as separate datasets for training and testing classifiers. Sub-flow classifiers

were successful in classifying both types of traffic with solid performance results

for both YouTube and Netflix. Moreover, ensemble techniques in concert with

109

C4.5 decision tree algorithm as detailed in Chapter 4, produced improved

performance over non-ensemble classifiers.

Implications

 Use of full flow classifiers in real world applications of machine learning should be

questioned in terms of the practical application to classifying video streaming traffic with

missing packets or partial flows. Testing of full flow classifiers performed for this

research indicates that full flow classifiers had difficulty classifying video streaming

traffic when partial flows were encountered. In the use cases examined in this research,

J48-C4.5, Naïve Bayes and SVM performed poorly in terms of recall in comparison sub-

flow classifiers tested with the same partial flow datasets. Furthermore, ensemble

techniques paired with J48 C4.5, Naïve Bayes and SMO SVM sub-flow models

performed significantly better than full flow classifiers. Therefore, use of full flow

classifiers for classifying video streaming traffic is suspect when full flow capture cannot

be assured due to volume, time, or network perturbations.

Recommendations

 It is recommended based on the findings of this research that sub-flow classifiers

offer significant benefits for classification of video streaming traffic with partial flows

and missing packets. Moreover, ensemble techniques, specifically Bagging and AdaBoost

applied to J48-C4.5 and Naïve Bayes can significantly improve performance.

Accordingly, ensemble based sub-flow classifiers are recommended when classification

of video streaming traffic is desired.

110

Summary

 This research focused on the evaluation of ML classification models for video

streaming traffic. An underlying premise is the use of sub-flow classifiers to classify

partial traffic flows with missing packets. Three ML algorithms were used for

experimentation: C4.5, Naïve Bayes and SVM. Moreover, ensemble techniques were

applied to each of these models to evaluate if performance, precision, and recall could be

improved. Experimentation proved that sub-flow classifiers were in fact more consistent

and produced higher levels of performance overall. Specifically, ADA applied to Weka’s

implementation of C4.5 (J4.8) performed best for YouTube and Netflix traffic.

Indications are that when implementing ML base classifiers in real world applications,

consideration should be given to use of sub-flow base classifiers instead of full flow

models.

Although this work was successful in addressing all research questions, limitations

exist that should be examined in future research efforts:

 Applying Sub-flow Classifiers to Interactive On-line Video Games: While

video streaming traffic is relatively consistent, interactive games played with

thousands of users over the internet offer additional challenges. The

characteristics of these types of interactive games may change meaningfully

and continually over short intervals for the life of the traffic flow.

Researchers should consider the application of ensemble base sub-flow

classifiers to classification of interactive large scale internet games.

 Evaluation of other Ensemble Techniques: Only two ensemble techniques

were tested for this research. In general, performance was improved. Other

111

ensemble techniques such as stacking, random forest, and Bayes Optimal

Classifier may garner even better results.

 Automating Discovery of the Optimal Sub-flow Size: It may be possible to

use clustering techniques to reduce number of choices related to the optimal

sub-flow size. Clustering techniques may offer insights based on the

groupings of packets. This may lead to reduced time to determine which sub-

flow size provides optimum classification performance.

 Malware Command and Control (C2) Traffic: A key challenge for Cyber

security is identifying malware that may be communicating with “home

station” once an end-user system is compromised. Typically, this

communication is intermittent and uses short duration flows. Since sub-flow

methods take small samples of network traffic, it may be well suited for

classifying this type of anomalous traffic.

As the expansion and use of the Internet continues, classification of network traffic

to improve security, manage usage, and provide differentiated service will grow

accordingly. Consequently, network administrators need techniques to classify traffic to

make informed decisions related to use of network resources. This research and the

associated findings build on previous work and provides additional insights on applying

ML routines to real world classification problems.

112

References

Abu-Mostafa, Y. S., Magdon-Ismail, M., & Lin, H.-T. (2012). Learning from data:

AMLBook.

Al-Aidaroos, K. M., Bakar, A. A., & Othman, Z. (2010, 17-18 March 2010). Naive bayes

variants in classification learning. Paper presented at the Information Retrieval &

Knowledge Management, (CAMP), 2010 International Conference on.

Alshammari, R., & Zincir-Heywood, A. N. (2008, 1-3 Oct. 2008). Investigating Two

Different Approaches for Encrypted Traffic Classification. Paper presented at the

Privacy, Security and Trust, 2008. PST '08. Sixth Annual Conference on.

Alshammari, R., & Zincir-Heywood, A. N. (2011). Can encrypted traffic be identified

without port numbers, IP addresses and payload inspection? Computer Networks,

55(6), 1326-1350. doi:10.1016/j.comnet.2010.12.002

Baker, F., Foster, B., & Sharp, C. (2004). Cisco Architecture for Lawful Intercept in IP

Networks.

Ben-Hur, A., & Weston, J. (2010). A user’s guide to support vector machines. Data

mining techniques for the life sciences, 223-239.

Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A., & Salamatian, K. (2006). Traffic

classification on the fly. ACM SIGCOMM Computer Communication Review,

36(2), 23-26.

Blair, D. C., & Maron, M. (1985). An evaluation of retrieval effectiveness for a full-text

document-retrieval system. Communications of the ACM, 28(3), 289-299.

Bouckaert, R. R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., & Scuse,

D. (2013). WEKA Manual for Version 3-7-8: January.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.

Breslow, L. A., & Aha, D. W. (1997). Simplifying decision trees: A survey. The

Knowledge Engineering Review, 12(01), 1-40.

113

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data

mining and knowledge discovery, 2(2), 121-167.

Caiyun, Z., Lizhi, P., Bo, Y., & Zhenxiang, C. (2012, 21-23 Sept. 2012). Labeling the

Network Traffic with Accurate Application Information. Paper presented at the

Wireless Communications, Networking and Mobile Computing (WiCOM), 2012

8th International Conference on.

Callado, A., Kamienski, C., Szabó, G., Gero, B., Kelner, J., Fernandes, S., & Sadok, D.

(2009). A survey on internet traffic identification. Communications Surveys &

Tutorials, IEEE, 11(3), 37-52.

Callado, A., Kelner, J., Sadok, D., Alberto Kamienski, C., & Fernandes, S. (2010). Better

network traffic identification through the independent combination of techniques.

Journal of Network and Computer Applications, 33(4), 433-446.

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE:

synthetic minority over-sampling technique. Journal of Artificial Intelligence

Research, 16, 321-357. doi:http://dx.doi.org/10.1613/jair.874

Chih-Wei, H., & Chih-Jen, L. (2002). A comparison of methods for multiclass support

vector machines. Neural Networks, IEEE Transactions on, 13(2), 415-425.

doi:10.1109/72.991427

Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20, 273-

297.

Dabir, A., & Matrawy, A. (2007). Bottleneck analysis of traffic monitoring using

wireshark. Paper presented at the Innovations in Information Technology, 2007.

IIT'07. 4th International Conference on.

Dainotti, A., Pescape, A., & Claffy, K. C. (2012). Issues and future directions in traffic

classification. Network, IEEE, 26(1), 35-40. doi:10.1109/MNET.2012.6135854

http://dx.doi.org/10.1613/jair.874

114

de A Ribeiro, V. P., Filho, R. H., & Maia, J. E. B. (2011, 23-27 May 2011). Online traffic

classification based on sub-flows. Paper presented at the Integrated Network

Management (IM), 2011 IFIP/IEEE International Symposium on.

De Mántaras, R. L. (1991). A distance-based attribute selection measure for decision tree

induction. Machine Learning, 6(1), 81-92.

Dehghani, F., Movahhedinia, N., Khayyambashi, M. R., & Kianian, S. (2010, 22-23 May

2010). Real-Time Traffic Classification Based on Statistical and Payload Content

Features. Paper presented at the Intelligent Systems and Applications (ISA), 2010

2nd International Workshop on.

Dong, Y.-S., & Han, K.-S. (2005). Boosting SVM classifiers by ensemble. Paper

presented at the Special interest tracks and posters of the 14th international

conference on World Wide Web.

Elovici, Y., Shabtai, A., Moskovitch, R., Tahan, G., & Glezer, C. (2007). Applying

machine learning techniques for detection of malicious code in network traffic. KI

2007: Advances in Artificial Intelligence, 44-50.

Erman, J., Arlitt, M., & Mahanti, A. (2006). Traffic classification using clustering

algorithms. Paper presented at the Proceedings of the 2006 SIGCOMM workshop

on Mining network data.

Erman, J., Mahanti, A., Arlitt, M., Cohen, I., & Williamson, C. (2007). Semi-supervised

network traffic classification. Paper presented at the ACM SIGMETRICS

Performance Evaluation Review.

Este, A., Gringoli, F., & Salgarelli, L. (2009). Support Vector Machines for TCP traffic

classification. Computer Networks, 53(14), 2476-2490.

doi:10.1016/j.comnet.2009.05.003

Fayyad, U. M., & Irani, K. B. (1992). On the handling of continuous-valued attributes in

decision tree generation. Machine Learning, 8(1), 87-102.

Feily, M., Shahrestani, A., & Ramadass, S. (2009). A Survey of Botnet and Botnet

Detection. New York: IEEE.

115

Fern, A., & Givan, R. (2003). Online Ensemble Learning: An Empirical Study. Machine

Learning, 53(1-2), 71-109. doi:10.1023/A:1025619426553

Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of

data: Cambridge University Press.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of Computer and System

Sciences, 55(1), 119-139.

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers.

Machine Learning, 29(2-3), 131-163.

Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A review

on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-

based approaches. Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on, 42(4), 463-484.

Garcıa, S., Luengo, J., Sáez, J. A., López, V., & Herrera, F. (2013). A Survey of

Discretization Techniques: Taxonomy and Empirical Analysis in Supervised

Learning. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, 25(4).

Grimaudo, L., Mellia, M., Baralis, E., & Keralapura, R. (2014). SeLeCT: Self-Learning

Classifier for Internet Traffic. Network and Service Management, IEEE

Transactions on, PP(99), 1-14. doi:10.1109/TNSM.2014.011714.130505

Grzymala-Busse, J. W., & Hu, M. (2001). A Comparison of Several Approaches to

Missing Attribute Values in Data Mining. Computer Science, 2005, 378-385.

Haffner, P., Sen, S., Spatscheck, O., & Wang, D. (2005). ACAS: automated construction

of application signatures. Paper presented at the Proceedings of the 2005 ACM

SIGCOMM workshop on Mining network data.

Hall, M., Witten, I., & Frank, E. (2011). Data mining: Practical machine learning tools

and techniques. Kaufmann, Burlington.

Hand, D. J. (2009). Measuring classifier performance: a coherent alternative to the area

under the ROC curve. Machine Learning, 77(1), 103-123.

116

Howley, T., & Madden, M. G. (2005). The genetic kernel support vector machine:

Description and evaluation. Artificial Intelligence Review, 24(3-4), 379-395.

Hu, Y., Chiu, D.-M., & Lui, J. C. S. (2009). Profiling and identification of P2P traffic.

Computer Networks, 53(6), 849-863. doi:10.1016/j.comnet.2008.11.005

Jianli, X., & Yuncai, L. (2012, 16-19 Sept. 2012). Traffic incident detection by multiple

kernel support vector machine ensemble. Paper presented at the Intelligent

Transportation Systems (ITSC), 2012 15th International IEEE Conference on.

Jin, Y., Duffield, N., Erman, J., Haffner, P., Sen, S., & Zhang, Z.-L. (2012). A Modular

Machine Learning System for Flow-Level Traffic Classification in Large

Networks. ACM Trans. Knowl. Discov. Data, 6(1), 1-34.

doi:10.1145/2133360.2133364

Karagiannis, T., Broido, A., Faloutsos, M., & claffy, K. (2004). Transport layer

identification of P2P traffic. Paper presented at the Proceedings of the 4th ACM

SIGCOMM conference on Internet measurement, Taormina, Sicily, Italy.

http://delivery.acm.org/10.1145/1030000/1028804/p121-

karagiannis.pdf?ip=129.83.31.2&id=1028804&acc=ACTIVE%20SERVICE&key

=A9ED11D7A520B19D%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2

E4D4702B0C3E38B35&CFID=433333441&CFTOKEN=97218331&__acm__=

1396838758_ef2138e596d590d0bed1f13233a14301

Karagiannis, T., Papagiannaki, K., & Faloutsos, M. (2005). BLINC: multilevel traffic

classification in the dark. SIGCOMM Comput. Commun. Rev., 35(4), 229-240.

doi:10.1145/1090191.1080119

Karam, M. J., & Tobagi, F. A. (2000). On traffic types and service classes in the Internet.

Paper presented at the Global Telecommunications Conference, 2000.

GLOBECOM'00. IEEE.

Keerthi, S. S., & Lin, C.-J. (2003). Asymptotic behaviors of support vector machines

with Gaussian kernel. Neural computation, 15(7), 1667-1689.

Kim, H.-C., Pang, S., Je, H.-M., Kim, D., & Yang Bang, S. (2003). Constructing support

vector machine ensemble. Pattern recognition, 36(12), 2757-2767.

http://delivery.acm.org/10.1145/1030000/1028804/p121-karagiannis.pdf?ip=129.83.31.2&id=1028804&acc=ACTIVE%20SERVICE&key=A9ED11D7A520B19D%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=433333441&CFTOKEN=97218331&__acm__=1396838758_ef2138e596d590d0bed1f13233a14301
http://delivery.acm.org/10.1145/1030000/1028804/p121-karagiannis.pdf?ip=129.83.31.2&id=1028804&acc=ACTIVE%20SERVICE&key=A9ED11D7A520B19D%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=433333441&CFTOKEN=97218331&__acm__=1396838758_ef2138e596d590d0bed1f13233a14301
http://delivery.acm.org/10.1145/1030000/1028804/p121-karagiannis.pdf?ip=129.83.31.2&id=1028804&acc=ACTIVE%20SERVICE&key=A9ED11D7A520B19D%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=433333441&CFTOKEN=97218331&__acm__=1396838758_ef2138e596d590d0bed1f13233a14301
http://delivery.acm.org/10.1145/1030000/1028804/p121-karagiannis.pdf?ip=129.83.31.2&id=1028804&acc=ACTIVE%20SERVICE&key=A9ED11D7A520B19D%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=433333441&CFTOKEN=97218331&__acm__=1396838758_ef2138e596d590d0bed1f13233a14301
http://delivery.acm.org/10.1145/1030000/1028804/p121-karagiannis.pdf?ip=129.83.31.2&id=1028804&acc=ACTIVE%20SERVICE&key=A9ED11D7A520B19D%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=433333441&CFTOKEN=97218331&__acm__=1396838758_ef2138e596d590d0bed1f13233a14301

117

Koc, L., Mazzuchi, T. A., & Sarkani, S. (2012). A network intrusion detection system

based on a Hidden Naïve Bayes multiclass classifier. Expert Systems with

Applications, 39(18), 13492-13500.

Korada, N. K., Kumar, N. S. P., & Deekshitulu, Y. (2012). Implementation of Naive

Bayesian Classifier and Ada-Boost Algorithm Using Maize Expert System.

International Journal of Information, 2(3).

Lamping, U., & Warnicke, E. (2004). Wireshark User's Guide. Interface, 4, 6. Retrieved

from https://www.wireshark.org/download/docs/user-guide-us.pdf website:

Lewis, D. D. (1998). Naive (Bayes) at forty: The independence assumption in

information retrieval Machine learning: ECML-98 (pp. 4-15): Springer.

Li, B., Springer, J., Bebis, G., & Hadi Gunes, M. (2013). A survey of network flow

applications. Journal of Network and Computer Applications, 36(2), 567-581.

doi:http://dx.doi.org/10.1016/j.jnca.2012.12.020

Liu, H., Hussain, F., Tan, C. L., & Dash, M. (2002). Discretization: An Enabling

Technique. Data mining and knowledge discovery, 6, 393-423.

Liu, Y., Li, Z., Guo, S., & Feng, T. (2008, 6-8 April 2008). Efficient, Accurate Internet

Traffic Classification using Discretization in Naive Bayes. Paper presented at the

Networking, Sensing and Control, 2008. ICNSC 2008. IEEE International

Conference on.

Marnerides, A., Schaeffer-Filho, A., & Mauthe, A. (2014). Traffic Anomaly Diagnosis in

Internet Backbone Networks: A Survey. Computer Networks, 73, 224-243.

doi:DOI: 10.1016/j.comnet.2014.08.007

McCallum, A., & Nigam, K. (1998). A comparison of event models for naive bayes text

classification. Paper presented at the AAAI-98 workshop on learning for text

categorization.

McGregor, A., Hall, M., Lorier, P., & Brunskill, J. (2004). Flow clustering using machine

learning techniques Passive and Active Network Measurement (pp. 205-214):

Springer.

https://www.wireshark.org/download/docs/user-guide-us.pdf
http://dx.doi.org/10.1016/j.jnca.2012.12.020

118

Meddeb, A. (2010). Internet QoS: Pieces of the puzzle. Communications Magazine,

IEEE, 48(1), 86-94. doi:10.1109/MCOM.2010.5394035

Mitchell, T. M. (1997). Machine Learning: McGraw-Hill, Inc.

Moore, A. W., & Papagiannaki, K. (2005). Toward the accurate identification of network

applications Passive and Active Network Measurement (pp. 41-54): Springer.

Moore, A. W., & Zuev, D. (2005). Internet traffic classification using bayesian analysis

techniques. Paper presented at the ACM SIGMETRICS Performance Evaluation

Review.

Mordelet, F., & Vert, J.-P. (2014). A bagging SVM to learn from positive and unlabeled

examples. Pattern Recognition Letters, 37, 201-209.

Mu, X., & Wu, W. (2011). A Parallelized Network Traffic Classification Based on

Hidden Markov Model. Paper presented at the Cyber-Enabled Distributed

Computing and Knowledge Discovery (CyberC), 2011 International Conference

on.

Muller, K., Mika, S., Ratsch, G., Tsuda, K., & Scholkopf, B. (2001). An introduction to

kernel-based learning algorithms. Neural Networks, IEEE Transactions on, 12(2),

181-201. doi:10.1109/72.914517

Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A

comparison of logistic regression and naive bayes. Advances in Neural

Information Processing Systems, 2, 841-848.

Nguyen, T., & Armitage, G. (2006, 14-16 Nov. 2006). Training on multiple sub-flows to

optimise the use of Machine Learning classifiers in real-world IP networks. Paper

presented at the Local Computer Networks, Proceedings 2006 31st IEEE

Conference on.

Nguyen, T., & Armitage, G. (2008). A Survey of Techniques for Internet Traffic

Classification using Machine Learning. IEEE Communications Surveys and

Tutorials, 10(4), 56-76. doi:10.1109/surv.2008.080406

119

Nguyen, T., Armitage, G., Branch, P., & Zander, S. (2012). Timely and Continuous

Machine-Learning-Based Classification for Interactive IP Traffic. Networking,

IEEE/ACM Transactions on, 20(6), 1880-1894. doi:10.1109/TNET.2012.2187305

Oza, N. C., & Tumer, K. (2008). Classifier ensembles: Select real-world applications.

Information Fusion, 9(1), 4-20. doi:http://dx.doi.org/10.1016/j.inffus.2007.07.002

Pascoal, C., Rosario de Oliveira, M., Valadas, R., Filzmoser, P., Salvador, P., & Pacheco,

A. (2012, 25-30 March 2012). Robust feature selection and robust PCA for

internet traffic anomaly detection. Paper presented at the INFOCOM, 2012

Proceedings IEEE.

Peng, F., Schuurmans, D., & Wang, S. (2004). Augmenting naive Bayes classifiers with

statistical language models. Information Retrieval, 7(3-4), 317-345.

Peng, L., Zhang, H., Yang, B., Chen, Y., & Wu, T. (2014). Traffic Labeller: Collecting

Internet traffic samples with accurate application information. Communications,

China, 11(1), 69-78. doi:10.1109/CC.2014.6821309

Piraisoody, G., Changcheng, H., Nandy, B., & Seddigh, N. (2013, 11-13 Nov. 2013).

Classification of applications in HTTP tunnels. Paper presented at the Cloud

Networking (CloudNet), 2013 IEEE 2nd International Conference on.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.

Quinlan, J. R. (1993). C4. 5: programs for machine learning (Vol. 1): Morgan kaufmann.

Quinlan, J. R. (1996). Improved Use of Continuous Attributes in C4. 5. Journal of

Artificial Intelligence Research, 4, 77-90.

Raineri, F., & Verticale, G. (2009). Early Internet Application Identification with

Machine Learning Techniques. Paper presented at the 2009 First International

Conference on Evolving Internet, New York. <Go to

ISI>://WOS:000289870300010

http://ieeexplore.ieee.org/ielx5/5277746/5277747/05277868.pdf?tp=&arnumber=527786

8&isnumber=5277747

Rennie, J. D. (2001). Improving multi-class text classification with naive Bayes.

Massachusetts Institute of Technology.

http://dx.doi.org/10.1016/j.inffus.2007.07.002
http://ieeexplore.ieee.org/ielx5/5277746/5277747/05277868.pdf?tp=&arnumber=5277868&isnumber=5277747
http://ieeexplore.ieee.org/ielx5/5277746/5277747/05277868.pdf?tp=&arnumber=5277868&isnumber=5277747

120

Reynolds, J., Postel, J., & Group, W. S.-N. W. (1994). RFC 1700. Assigned Numbers.

Oct.

Rish, I. (2001). An empirical study of the naive Bayes classifier. Paper presented at the

IJCAI 2001 workshop on empirical methods in artificial intelligence.

Rodríguez, J. J., & Maudes, J. (2008). Boosting recombined weak classifiers. Pattern

Recognition Letters, 29(8), 1049-1059.

Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2), 1-

39.

Roughan, M., Sen, S., Spatscheck, O., & Duffield, N. (2004). Class-of-service mapping

for QoS: a statistical signature-based approach to IP traffic classification. Paper

presented at the Proceedings of the 4th ACM SIGCOMM conference on Internet

measurement.

Sáez, J. A., Luengo, J., Stefanowski, J., & Herrera, F. (2015). SMOTE–IPF: Addressing

the noisy and borderline examples problem in imbalanced classification by a re-

sampling method with filtering. Information Sciences, 291, 184-203.

doi:http://dx.doi.org/10.1016/j.ins.2014.08.051

Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier

methodology. IEEE transactions on systems, man, and cybernetics, 21(3), 660-

674.

Saleh, A. A. M., & Simmons, J. M. (2011). Technology and architecture to enable the

explosive growth of the internet. Communications Magazine, IEEE, 49(1), 126-

132. doi:10.1109/MCOM.2011.5681026

Schaffer, C. (1993). Overfitting Avoidance as Bias. Machine Learning, 10(2), 153-178.

Schneider, P. (1996). TCP/IP traffic Classification Based on port numbers. (2138).

Seeger, M. (2011). Pattern Classification and Machine Learning. Machine Learning, 1,

17.

http://dx.doi.org/10.1016/j.ins.2014.08.051

121

Sen, S., Spatscheck, O., & Wang, D. (2004). Accurate, scalable in-network identification

of p2p traffic using application signatures. Paper presented at the Proceedings of

the 13th international conference on World Wide Web, New York, NY, USA.

http://delivery.acm.org/10.1145/990000/988742/p512-

sen.pdf?ip=129.83.31.2&id=988742&acc=ACTIVE%20SERVICE&key=A9ED1

1D7A520B19D%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D470

2B0C3E38B35&CFID=433333441&CFTOKEN=97218331&__acm__=1396839

571_331034a2dab408962b34f518f108741e

Seni, G., & Elder, J. F. (2010). Ensemble methods in data mining: improving accuracy

through combining predictions. Synthesis Lectures on Data Mining and

Knowledge Discovery, 2(1), 1-126.

Shrivastav, A., & Tiwari, A. (2010). Network Traffic Classification Using Semi-

Supervised Approach. Paper presented at the Machine Learning and Computing

(ICMLC), 2010 Second International Conference on.

Singh, K., & Agrawal, S. (2011, 2011). Comparative analysis of five machine learning

algorithms for IP traffic classification. Paper presented at the Emerging Trends in

Networks and Computer Communications (ETNCC), 2011 International

Conference on.

Singh, K., Agrawal, S., & Sohi, B. S. (2013). A Near Real-time IP Traffic Classification

Using Machine Learning. International Journal of Intelligent Systems and

Applications, 5(3), 83-93. doi:10.5815/ijisa.2013.03.09

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics

and computing, 14(3), 199-222.

Soria, D., Garibaldi, J. M., Ambrogi, F., Biganzoli, E. M., & Ellis, I. O. (2011). A ‘non-

parametric’version of the naive Bayes classifier. Knowledge-Based Systems,

24(6), 775-784.

Soysal, M., & Schmidt, E. G. (2010). Machine learning algorithms for accurate flow-

based network traffic classification: Evaluation and comparison. Performance

Evaluation, 67(6), 451-467. doi:http://dx.doi.org/10.1016/j.peva.2010.01.001

Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning: MIT Press.

http://delivery.acm.org/10.1145/990000/988742/p512-sen.pdf?ip=129.83.31.2&id=988742&acc=ACTIVE%20SERVICE&key=A9ED11D7A520B19D%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=433333441&CFTOKEN=97218331&__acm__=1396839571_331034a2dab408962b34f518f108741e
http://delivery.acm.org/10.1145/990000/988742/p512-sen.pdf?ip=129.83.31.2&id=988742&acc=ACTIVE%20SERVICE&key=A9ED11D7A520B19D%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=433333441&CFTOKEN=97218331&__acm__=1396839571_331034a2dab408962b34f518f108741e
http://delivery.acm.org/10.1145/990000/988742/p512-sen.pdf?ip=129.83.31.2&id=988742&acc=ACTIVE%20SERVICE&key=A9ED11D7A520B19D%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=433333441&CFTOKEN=97218331&__acm__=1396839571_331034a2dab408962b34f518f108741e
http://delivery.acm.org/10.1145/990000/988742/p512-sen.pdf?ip=129.83.31.2&id=988742&acc=ACTIVE%20SERVICE&key=A9ED11D7A520B19D%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=433333441&CFTOKEN=97218331&__acm__=1396839571_331034a2dab408962b34f518f108741e
http://delivery.acm.org/10.1145/990000/988742/p512-sen.pdf?ip=129.83.31.2&id=988742&acc=ACTIVE%20SERVICE&key=A9ED11D7A520B19D%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=433333441&CFTOKEN=97218331&__acm__=1396839571_331034a2dab408962b34f518f108741e
http://dx.doi.org/10.1016/j.peva.2010.01.001

122

Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y., & Singer, Y. (2005). Large

margin methods for structured and interdependent output variables. Journal of

Machine Learning Research, 6(9).

Wang, J., Xu, M., Wang, H., & Zhang, J. (2006, 16-20 2006). Classification of

Imbalanced Data by Using the SMOTE Algorithm and Locally Linear

Embedding. Paper presented at the Signal Processing, 2006 8th International

Conference on.

Wang, W., Zhang, X., Gombault, S., & Knapskog, S. J. (2009, 14-16 Dec. 2009).

Attribute Normalization in Network Intrusion Detection. Paper presented at the

Pervasive Systems, Algorithms, and Networks (ISPAN), 2009 10th International

Symposium on.

Weston, J., & Watkins, C. (1998). Multi-class support vector machines. Retrieved from

Witten, I. H., Frank, E., Trigg, L. E., Hall, M. A., Holmes, G., & Cunningham, S. J.

(1999). Weka: Practical machine learning tools and techniques with Java

implementations.

Xipeng, X., & Ni, L. M. (1999). Internet QoS: a big picture. Network, IEEE, 13(2), 8-18.

doi:10.1109/65.768484

Yibo, X., Dawei, W., & Luoshi, Z. (2013, 28-31 Jan. 2013). Traffic classification: Issues

and challenges. Paper presented at the Computing, Networking and

Communications (ICNC), 2013 International Conference on.

Yuan, R., Li, Z., Guan, X. H., & Xu, L. (2010). An SVM-based machine learning method

for accurate internet traffic classification. Information Systems Frontiers, 12(2),

149-156. doi:10.1007/s10796-008-9131-2

Yuguang, H., & Lei, L. (2011, 15-17 Sept. 2011). Naive Bayes classification algorithm

based on small sample set. Paper presented at the Cloud Computing and

Intelligence Systems (CCIS), 2011 IEEE International Conference on.

Zander, S., Nguyen, T., & Armitage, G. (2005, 17-17 Nov. 2005). Automated traffic

classification and application identification using machine learning. Paper

presented at the Local Computer Networks, 2005. 30th Anniversary. The IEEE

Conference on.

123

Zander, S., Nguyen, T., & Armitage, G. (2012, 22-25 Oct. 2012). Sub-flow packet

sampling for scalable ML classification of interactive traffic. Paper presented at

the Local Computer Networks (LCN), 2012 IEEE 37th Conference on.

Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A., & Garant, D. (2013).

Botnet detection based on traffic behavior analysis and flow intervals. Computers

& Security(0). doi:http://dx.doi.org/10.1016/j.cose.2013.04.007

http://dx.doi.org/10.1016/j.cose.2013.04.007

	Nova Southeastern University
	NSUWorks
	2016

	Evaluation of Supervised Machine Learning for Classifying Video Traffic
	Farrell R. Taylor
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1472237132.pdf.lI_b8

