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Operational deployment of machine learning based classifiers in real-world networks has 

become an important area of research to support automated real-time quality of service 

decisions by Internet service providers (ISPs) and more generally, network 

administrators. As the Internet has evolved, multimedia applications, such as voice over 

Internet protocol (VoIP), gaming, and video streaming, have become commonplace. 

These traffic types are sensitive to network perturbations, e.g. jitter and delay. Automated 

quality of service (QoS) capabilities offer a degree of relief by prioritizing network traffic 

without human intervention; however, they rely on the integration of real-time traffic 

classification to identify applications. Accordingly, researchers have begun to explore 

various techniques to incorporate into real-world networks. One method that shows 

promise is the use of machine learning techniques trained on sub-flows – a small number 

of consecutive packets selected from different phases of the full application flow. 

Generally, research on machine learning classifiers was based on statistics derived from 

full traffic flows, which can limit their effectiveness (recall and precision) if partial data 

captures are encountered by the classifier. In real-world networks, partial data captures 

can be caused by unscheduled restarts/reboots of the classifier or data capture 

capabilities, network interruptions, or application errors. Research on the use of machine 

learning algorithms trained on sub-flows to classify VoIP and gaming traffic has shown 

promise, even when partial data captures are encountered. This research extends that 

work by applying machine learning algorithms trained on multiple sub-flows to 

classification of video streaming traffic. 

  

Results from this research indicate that sub-flow classifiers have much higher and more 

consistent recall and precision than full flow classifiers when applied to video traffic. 

Moreover, the application of ensemble methods, specifically Bagging and adaptive 

boosting (AdaBoost) further improves recall and precision for sub-flow classifiers. 

Findings indicate sub-flow classifiers based on AdaBoost in combination with the C4.5 

algorithm exhibited the best performance with the most consistent results for 

classification of video streaming traffic.  
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Chapter 1 

Introduction 

Background 

Internet Protocol (IP) network traffic classification is a key objective of internet 

service providers (ISPs) and network administrators supporting decisions related to 

quality of service (QoS), security, traffic shaping and overall network management 

(Dainotti, Pescape, & Claffy, 2012; Nguyen & Armitage, 2008). Traffic classification is 

the practice of correlating network flows to the applications that generated them (Mu & 

Wu, 2011). Initially, IP traffic classification was accomplished through the examination 

of common characteristics of network packets such as IP address, well-known ports and 

payload inspection (Karagiannis, Papagiannaki, & Faloutsos, 2005). Well-known ports 

were the preeminent means of identifying traffic (i.e. traffic classification) based on the 

Internet Assigned Numbers Authority (IANA) application port registration and were 

integrated into network monitoring tools such as NetFlow and sflow (Zander, Nguyen, & 

Armitage, 2005). Payload inspection, also referred to as deep-packet inspection, was a 

complementary technique, based on content analysis of the data portion of an IP packet 

(Bernaille, Teixeira, Akodkenou, Soule, & Salamatian, 2006). Both methodologies 

produced early success in classifying network flows to the applications that originated the 

traffic (Bernaille et al., 2006; Moore & Papagiannaki, 2005).  

Although techniques based on well-known ports and payload inspection realized a 

level of success, today’s network applications, especially peer to peer (P2P), have 

become more sophisticated and the reliance on these characteristics to identify specific 

application protocols is suspect (Soysal & Schmidt, 2010; Yuan, Li, Guan, & Xu, 2010).  
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P2P applications (e.g. gaming, video streaming, voice over IP (VoIP)) may use a variety 

of ports to communicate between end user devices and servers, and payload inspection 

can be computationally expensive, infringe on privacy laws by revealing user content and 

could be rendered ineffective if encryption is used (Karagiannis, Broido, Faloutsos, & 

claffy, 2004; Yibo, Dawei, & Luoshi, 2013). Moreover, users have begun to purposely 

evade detection using encryption, tunnels, and ephemeral ports (Karagiannis et al., 2004).   

To address deficiencies associated with using port and payload inspection for traffic 

identification researchers have applied machine learning techniques – based on network 

flow statistics – to support classification of IP traffic (Callado et al., 2009; Zander et al., 

2005). Generally, a flow is defined by a sequence of five-tuples: source IP, destination IP, 

source port, destination port, and protocol (Dainotti et al., 2012; Hu, Chiu, & Lui, 2009). 

Overall results have been promising; however, several research worthy areas remain; in 

particular, research on the operational deployment of classifiers in real-world networks to 

identify P2P interactive traffic (Li, Springer, Bebis, & Hadi Gunes, 2013; Nguyen & 

Armitage, 2008). Deploying classifiers into real-world networks is a key aspect of 

automating QoS decisions to enable immediate, without the need for human intervention, 

reprioritization of network traffic to support real-time Internet applications (McGregor, 

Hall, Lorier, & Brunskill, 2004).  

Operational deployment of machine learning (ML) based classifiers have several 

challenges: timely and continuous classification, directional neutrality, efficient use of 

memory, portability and robustness (Nguyen & Armitage, 2008). Nguyen, Armitage, 

Branch, and Zander (2012) developed a means to address a key challenge associated with 

real-time classifiers, specifically, the challenges associated with timeliness and 
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continuous classification of traffic flows.  Nguyen et al. (2012) methodology uses sub-

flows – fragments of full traffic flows containing some number of contiguous packets –  

for identification of IP flows that addressed timeliness and continuous classification 

challenges. Prior to this work, the majority of the research on IP traffic classification used 

statistics derived from the entire traffic flow (Nguyen & Armitage, 2006). However, real-

time classifiers may encounter partial, incomplete, traffic flows for a number of reasons: 

unscheduled shutdown/reboots of packet capture capabilities, network interruptions, or 

application errors (Nguyen & Armitage, 2006). Nguyen et al. (2012) found that 

classifiers trained on statistics from full flows, and used to identify flows from partial, 

incomplete network traffic captures where initial packets are missing, exhibited degraded 

performance in terms of recall and precision. Conversely, classifiers trained on multiple 

sub-flows across the entire life of the application performed well -- better than 95% for 

both recall and precision – even if the data being analyzed did not represent complete 

captures of the entire application session. Additionally, sub-flows represent a small 

portion of the entire flow of traffic, consequently less processing is needed to generate 

flow statistics, train, and perform classification of the target network traffic. Although 

Nguyen et al. (2012) were successful in applying this methodology, their work focused 

on the identification of two specific applications:  Wolfenstein: Enemy Territory and 

VoIP. This research extends (Nguyen et al., 2012) work by evaluating the performance, 

in terms of recall and precision, of supervised machine learning algorithms trained on 

sub-flows in identifying video streaming traffic (i.e. YouTube and Netflix).     
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Problem Statement 

Deployment of traffic classifiers in real-world networks has several challenges: 

timely and continuous classification, directional neutrality, efficient use of memory, and 

portability and robustness (Nguyen & Armitage, 2008). Of particular interest to this 

research is the challenge associated with timely and continuous classification of IP traffic. 

“A timely classifier should reach its decision using as few packets as possible from each 

flow (rather than waiting until each flow completes before reaching a decision)” (Nguyen 

& Armitage, 2008, p. 63). Additionally, it is not adequate to require the beginning 

packets of a traffic flow to produce high recall and precision– good classifier 

performance. In reality, network flows captured from real-world networks may be 

incomplete, due to unscheduled restarts of monitoring capabilities, network interruption, 

or application errors (Nguyen & Armitage, 2006; Nguyen et al., 2012; Zander, Nguyen, 

& Armitage, 2012). Moreover, packet statistics may change over the lifetime of an 

application’s flow, e.g. initial client server negotiation vice established connection 

between client and server. Accordingly, classifiers must be able to continuously classify 

traffic throughout the lifetime of the application’s flow (Nguyen & Armitage, 2008).  

The problem studied for this research effort is the timely and continuous 

classification of video streaming traffic using ML based classifiers trained on multiple 

sub-flows, when partial, incomplete data sets are encountered.  

Dissertation Goal 

The goal of this research is to evaluate the effectiveness, specifically recall and 

precision, of ML techniques trained on sub-flows to classify video streaming traffic.  

Three ML algorithms are used – C4.5, Naïve Bayes, and Support Vector Machine (SVM) 
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– to address this goal. C4.5 and Naïve Bayes were used as part of the original work by 

Nguyen et al. (2012) and Nguyen and Armitage (2006) with good results; thusly, these 

methods are expected to be well suited to support this research effort.  SVM has also 

been applied successfully in previous work for classification of network traffic (Este, 

Gringoli, & Salgarelli, 2009; Yuan et al., 2010). Additionally, ensemble techniques were 

considered, combining the outputs of each ML algorithm in order to enhance the 

performance of any single classifier (Dong & Han, 2005; Jianli & Yuncai, 2012). This 

research effort expands knowledge on using ML techniques to classify IP network traffic 

toward enabling the timely and continuous classification in real-world network 

environments. 

Research Questions 

 This research answers the following questions: 

1) What recall and precision can be attained using ML algorithms trained on 

multiple sub-flows in classifying video streaming traffic? 

2) What sub-flow sized is needed to train, test and classify video traffic to attain 

high recall and precision? 

3) What features, sub-flow attributes, are required to enable classification of video 

traffic? 

4) What is the effect of different sub-flow sizes, number of packets per sub-flow, 

on ML recall and precision? 

5) How effective are ML algorithms trained on multiple sub-flows in classifying 

video streaming traffic from disparate data sets containing packets captured 

from different network environments? 
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Relevance and Significance 

In the early days of the Internet, data was transmitted on the basis of best effort 

(Xipeng & Ni, 1999). Nowadays, the Internet has become a platform for provisioning 

complex multimedia application services such as online gaming, e-commerce, video 

(streaming and interactive), VoIP, Internet radio, and large-scale file sharing (Roughan, 

Sen, Spatscheck, & Duffield, 2004). Additionally, with the advent of mobile devices, 

which ushered in the era of ubiquitous network access, the Internet has seen exponential 

growth (Roughan et al., 2004). “At the current pace of growth, Internet traffic is doubling 

approximately every two years, leading to a factor of 1000 growth in the next two 

decades” (Saleh & Simmons, 2011, p. 132).  

As demand for Internet services has steadily increased, so has ISPs desire for 

detailed understanding of the various applications traversing their networks to support 

real-time network management (Jin et al., 2012). Content providers, understanding the 

importance of provisioning high-quality application services, are keenly interested in 

assured services to support a competitive advantage in their respective markets (Meddeb, 

2010). The confluence of these challenges has provided ISPs with a new business 

opportunity where differentiated services, in the form of QoS guarantees, can be offered 

individualistically at varying price-points leading to new sources of revenue (Meddeb, 

2010). Moreover, given the open nature of the Internet, a variety of legitimate and 

malicious users exist. ISPs and content providers are examining various technologies to 

support both QoS requirements and security (Saleh & Simmons, 2011). “In order to 

prioritize, protect, or prevent certain traffic, providers need to implement technology for 

traffic classification: associating traffic flows with the applications — or application 
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types — that generated them” (Dainotti et al., 2012, p. 35). As such, research on traffic 

classification methodologies has steadily grown over the past decade (Li et al., 2013). 

Both offline forensic analysis, and more recently, online, real-time capabilities have been 

explored to support QoS and security. 

Although offline traffic classification has shown good results, the need for real-time 

traffic classification for deployment in real-world networks is critical to make timely 

decisions regarding network management, particularly as it relates to automated QoS 

capabilities that prioritize IP traffic (Li et al., 2013; Roughan et al., 2004). Network 

administrators need to make decisions on QoS well before the flow of traffic has 

completed (Nguyen & Armitage, 2006, 2008; Nguyen et al., 2012). This is especially true 

for applications that are sensitive to jitter and delay such as VoIP and video (Dehghani, 

Movahhedinia, Khayyambashi, & Kianian, 2010).  

Security also motivates the need for deployment of traffic classification in 

operational networks. In terms of security, IP classification can be used to support lawful 

intercept based on malicious traffic that is linked to systems and users (Baker, Foster, & 

Sharp, 2004). Anomaly detection and Botnet detection are other areas where IP 

classification can be used to identify inconsistencies in traffic patterns that may be 

indicative of malware on end user systems (Feily, Shahrestani, & Ramadass, 2009). 

Security administrators can also use these techniques to profile traffic between clients and 

servers on the network in order to make decisions on bandwidth allocation and to block 

illicit traffic (Hu et al., 2009; Zhao et al., 2013).  

Based on these drivers, operational deployment of machine learning base IP network 

classifiers has become a meaningful area of research.  
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Barriers and Issues 

Several barriers and issues affected this research effort. First, the acquisition of the 

appropriate data was required for this research; second, selections of the right number of 

sub-flows and associated features was challenging; third, selection of a suitable ensemble 

techniques toward enhancing recall and precision of individual classifiers was not straight 

forward; and finally, the robustness of the classifier as it relates to disparate data sets was 

a challenge that needed to be addressed.  

 Acquiring the Right Data – Although there are publicly accessible data sets, it 

was difficult to acquire traces of the right applications, such as Netflix or 

YouTube traces, to support this work. Additionally, lab generated traffic may 

not be as realistic since the traffic may be so well contained within a segment 

of the network that classifiers trained on this type of data set may not be 

generalizable to traffic from an entirely different network. Some congruence 

between benchmark and lab generated data must exist to support the 

generalizability of the ML based classifiers. Additionally, it was important 

that the labeled training data sets represent ground truth, i.e. the label on the 

traffic flows are truly correct.  

 Sub-flow and Feature Selection – Selecting the optimum sub-flows and 

associated features was challenging. Video traffic data did not exhibit 

sufficient differences across entire network flows to generate clusters of sub-

flows and features to alleviate the need for manually inspection of the data set. 

Accordingly, examination of training and test datasets manually as well as 
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repetitive preliminary experimentation was needed to select features used to 

train and test classifiers for experimentation.   

 Applying Ensemble Techniques – Based on this research, selection of an 

ensemble technique that is most suitable for enhancing the ML classifiers used 

in this research will be a key goal (Fern & Givan, 2003). Although, ensemble 

techniques may not be appropriate to support optimizing the classifiers used in 

this work.  

 Robustness of the ML Classifiers – Robustness within the context of this 

research refers to the generalizability of the classifier. Although the use of lab 

captured data from different networks was be used, this may not fully validate 

classifiers robustness across all network environments. In all cases, data used 

in this research was captured from real networks and was not artificially 

generated.  

Definition of Terms 

Table 1 Definition of Terms  

Term Definition 

Machine Learning A discipline within the field of artificial intelligence 

concerned with the use of algorithms that allow computers 

to learn (improve their performance) based on previous 

experience, in the form of data, to address a specified task 

(Abu-Mostafa, Magdon-Ismail, & Lin, 2012; Flach, 2012; 

Mitchell, 1997). 
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Instance/Observation Instance or Observation, within the context of this paper, 

is synonymous and refers to a tuple of attributes for an 

individual data point within a given input dataset.  

Attribute/Feature For this research, attribute and feature are synonymous 

and refer to one or more measured characteristics of an 

instance of the input dataset.  

Traffic Classification  Describes the process of correlating network traffic to its 

associated protocol or application (Mu & Wu, 2011).  

Flows Refers to a five-tuples: source IP, destination IP, source 

port, destination port, and protocol of network traffic  

(Dainotti et al., 2012). 

Sub-flow A fragment of “n” contiguous packets of a particular 

traffic flow (Nguyen & Armitage, 2006).  

Quality of Service (QoS) Relates to the prioritization of specific network traffic 

types.  

Discriminative Learning Discriminative algorithms estimate the direct posterior 

probability between the input vector X, and a target class 

Y, 𝑃(𝑌|𝑋), without any understanding of any of the 

underlying probability distributions that may exist (Ng & 

Jordan, 2002). 



11 

 

Generative Learning Generative algorithms model the joint conditional 

probability distribution between the target class Y and the 

input vector X, succinctly 𝑃(𝑋, 𝑌), accounting for the 

underlying probabilities, likelihood and prior probability 

of the target class (Ng & Jordan, 2002) 

Information Gain Information gain measures the relative importance of an 

individual attribute for classification of an instance 

(Quinlan, 1986).  

Entropy Entropy, within the context of information theory, is a 

measure of impurity or uncertainty of a given dataset 

(Mitchell, 1997). 

Summary  

 As the Internet expands to support growing demands for P2P traffic, social media, 

online commerce, and gaming, the need to control, secure, and proactively manage 

network traffic, will increase accordingly.  Consequently, traffic classification based on 

machine learning has become an important area of research with an emphasis on real 

world application of these techniques. This research is focused on supporting these goals 

by addressing gaps associated with timeliness and continuous classification of video 

traffic.  In the following section, literature related to this effort and a description of 

machine learning algorithms used to pursue the objectives of this research is provided.  
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Chapter 2 

Review of the literature 

Introduction  

 There are two main themes of this chapter: a discussion of related research literature 

on the use of ML techniques for classifying IP traffic and a discussion of the specific 

supervised ML algorithms used for this research effort. Although not exhaustive, the 

review of literature related to IP classification is focused on the use of both supervised 

and unsupervised methods; albeit, the emphasis was on supervised efforts, which is the 

predominant type of ML algorithm used and the primary focus of this research. The ML 

algorithms that are discussed in the latter segment of this chapter include C4.5, Naïve 

Bayes and Support Vector Machines. Finally, ensemble techniques, specifically bagging 

and boosting, are also be detailed.    

Initial Approaches to IP Traffic Classification  

Early incarnations of application classification were based on well-known port and 

payload inspection. One of the initial works detailing the use of port numbers for 

application classification was performed by Schneider (1996). Schneider (1996) proposed 

the use of well-known port numbers registered in IANA. Ports below 1024 are 

documented in the registry in terms of the applications that use them; although, not 

required, the Request for Comment (RFC) 4632 also lists the use of ports beyond 1024 

for convenience (Reynolds, Postel, & Group, 1994; Schneider, 1996). While Schneider 

(1996) stated the benefits of using well-known ports, the paper also recommended the use 
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of additional traffic characteristics, especially in the case of ports above 1024, where port 

registration was not required by the RFC.  

Another means of classifying network traffic was based on packet inspection. Sen, 

Spatscheck, and Wang (2004) evaluated the use of deep packet inspection to determine 

application signatures for reliable and accurate identification of applications traffic flows. 

Sen et al. (2004) work proved that packet inspection had advantages over port based 

classification with false positive and negative rates below 5%; however, with the advent 

of encryption and the increased density and diversity of traffic across the Internet, the 

benefits of deep packet inspection became computationally costly when compared to the 

use of flow statistics (Li et al., 2013; Raineri & Verticale, 2009).  

IP Classification using Unsupervised ML  

Nearly two decades ago Cisco patented NetFlow – a capability to derive statistical 

information on network traffic flows (Li et al., 2013). Since that time, research has 

evolved to leverage network flow statistics for a variety of activities such as application 

identification, host/user profiling, anomaly detection, and intrusion detection (Li et al., 

2013). McGregor et al. (2004) were early adopters of flow statistics to support IP 

classification. McGregor et al. (2004) used unsupervised machine learning techniques, in 

particular expectation maximization (EM), for coarse grain clustering of traffic flows. 

Although McGregor et al. (2004) work was effective, specific identification of traffic was 

not possible; nevertheless, McGregor et al. (2004) research gave insight into the use of 

flow statistics for probability clustering. Another unsupervised approach, termed 

Autoclass, used a Bayesian classifier pioneered by Zander et al. (2005) for traffic 

classification. Using Autoclass, better results were realized in terms of clustering 
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applications; although the authors stated that some clusters contained multiple application 

flows, which could not be discerned by this method. As a follow-on to Zander et al. 

(2005), Erman, Arlitt, and Mahanti (2006) compared the performance of Autoclass to two 

other clustering algorithms, K-Means and density-based spatial clustering of applications 

with noise (DBSCAN). Results indicated that both K-Means and DBSCAN had 

significantly lower classifier build time than Autoclass, while Autoclass had the best 

overall accuracy. The small difference in accuracy of Autoclass over DBSCAN and K-

Means was offset by the latter two algorithms’ ability to generate small, tight clusters, 

indicating the overall classification power for identifying unlabeled instances. K-Means 

was also used by Grimaudo, Mellia, Baralis, and Keralapura (2014) to develop a self-

learning unsupervised classifier named SeLeCT. SeLeCT used an iterative approach to 

increase the fidelity of clustering ML techniques, specifically, pure clusters. Results from 

Grimaudo et al. (2014) indicated that SeLeCT could semi-automatically classify traffic, 

with the use of seed data derived from filtering previously identified traffic flows. 

Moreover, in combination with supervised methods, SeLeCT’s iterative and adaptive 

process generated homogenous cluster that predominantly contain only a single traffic 

flow. Although clustering techniques show promise, sole use of these techniques to 

support on-line traffic classification still presents challenges given the requirement to 

positively identify traffic in real-world networks for decision-making purposes.   

Clustering, or unsupervised techniques, are key foundational elements to support IP 

classification (Erman, Mahanti, Arlitt, Cohen, & Williamson, 2007; Marnerides, 

Schaeffer-Filho, & Mauthe, 2014). Initially, clustering was focused on crude groupings 

of similar traffic as a precursor for processing unlabeled data instances, however, 
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clustering techniques has served as the basis for more sophisticated approaches to traffic 

classification that combine both supervised and unsupervised hybrid methods (Dainotti et 

al., 2012).  

IP Classification using Supervised ML  

Supervised methods have shown a great deal of promise and have become the 

predominant approach used for traffic classification (Nguyen & Armitage, 2008). Moore 

and Zuev (2005) used Naïve Bayes techniques to categorize network traffic. Unlike 

unsupervised methods, Moore and Zuev (2005) required training on traffic that was in 

some way, manually or otherwise, labeled with the correct application classification for 

each flow. In their work on classification of IP traffic using Naïve Bayes, Moore and 

Zuev (2005) showed that classification accuracy could be improved significantly (65 – 

95% accuracy) by employing kernel density estimation to calculate required probability 

distributions and enhancing the quality of discriminators for the input data. Although 

their work did not address real-time classification, it provided insights on the use of 

Naïve Bayes in terms of its efficiency and accuracy for classifying IP flows. Este et al. 

(2009) adapted a SVM based algorithm to perform multi-class traffic categorization. In 

this work, Este et al. (2009) demonstrated both the usefulness of SVM as a multi-class 

traffic classification technique and its application to real-time traffic identification by 

only leveraging a small number of the first few packets of the application flow.    

Soysal and Schmidt (2010) evaluated three ML algorithms, Bayesian Networks, 

decision trees, and multilayer perceptron, ability to classify six different types of P2P 

traffic. The key objective of this work was determining if ML based classifiers are 

affected by the amount and breadth of training data used. Furthermore, Soysal and 
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Schmidt (2010) evaluated the impact of incorrectly labeled training data on classifier 

performance. Soysal and Schmidt (2010) concluded that the amount of data processed by 

ML classifiers – in their case over one million flows – can have impact on accuracy of 

classification. Moreover, their results also strongly encouraged the use of correctly 

labeled instances to reduce error rates. An important aspect of Soysal and Schmidt (2010) 

work are the insights into real-world application of classifiers, in relationship to the 

amount of data used to train ML based classifiers. Another comparative analysis by Singh 

and Agrawal (2011) used five of ML algorithms, multilayer perceptron, radial basis 

function, C4.5 decision tree, Bayesian network, and Naïve Bayes. Each algorithm was 

exposed to approximately two minutes of Internet data, which constitutes a large and 

diverse sample set. Additionally, the feature set used was incrementally reduced to 

determine the effects on classifier performance. Results indicate that C4.5 and Bayesian 

network performed best. More importantly, the study called for further research to reduce 

the sample and feature size to make the ML algorithms more compatible with real-time 

classification problems.  

In concert with the findings of Singh and Agrawal (2011), Singh, Agrawal, and Sohi 

(2013) researched the application of the same five ML algorithms to real-time IP traffic 

classification. In particular, their work refined the approach in described in Singh and 

Agrawal (2011) by capturing only two sec intervals of Internet traffic packets and deeply 

examining the elimination of attributes using feature selection algorithms. Results 

indicate that this approach effectively reduce training and classification time. Moreover, 

there was a strong dependency between the reduction of sample data and feature space in 

relation to classifier suitability to near real-time implementation of classifiers (Singh et 
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al., 2013). As to the efficacy of the various ML algorithms, Bayesian network proved to 

be most effective within the context of the research methodology used.  

IP Classification using Semi-Supervised (Hybrid) ML  

Hybrid solutions have also shown some promise in terms IP classification, where 

both unsupervised and supervised methods are combined.  Erman et al. (2007) used 

labeled training data to perform classification and clustering to aggregate traffic that was 

unknown (not labeled). This combination allowed for a more robust capability that could 

react to both known and unknown application traffic. Shrivastav and Tiwari (2010) 

research used a similar thesis; however, clustering was used first on traffic data, then the 

traffic was labeled, and finally the labeled data was used to train supervised classification 

algorithms. Callado, Kelner, Sadok, Alberto Kamienski, and Fernandes (2010) combined 

the output of multiple supervised machine learning techniques, e.g. Naïve Bayes, J48, 

SVM and others, in different ways as an approach to improve classification of IP traffic. 

Multiple algorithms were applied to the output of the classifiers, such as random selection 

of classifier’s outputs, maximum likelihood, Dempster-Shafer theory, and an enhanced 

version of Dempster-Shafer (Callado et al., 2010). Follow-on work was recommended to 

understand the optimal combination of machine learning techniques along with other 

combinatorial methods for aggregating the output of multiple algorithms to improve 

classification recall and precision. 

Operationalizing ML Classifiers  

While the offline research on unsupervised and supervised ML classifiers has shown 

significant progress, the need to operationally deploy classifiers in real world networks 

has grown (de A Ribeiro, Filho, & Maia, 2011; Nguyen et al., 2012). As the Internet 
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evolves, the growth in online multimedia traffic, gaming, interactive P2Ps, and video has 

driven the need for automated traffic management to ensure the quality of these services 

(Nguyen et al., 2012). Consequently, research on real-time deployment of ML classifiers 

has become an area of increased focus within the field of IP traffic classification 

(Dehghani et al., 2010; Nguyen & Armitage, 2008). One of the earlier efforts to address 

the challenges of real-time classification was undertaken by (Bernaille et al., 2006). The 

methodology proposed by Bernaille et al. (2006) relies on capturing the first few packets 

of network traffic and applying ML algorithms for classification. Though this method 

produced some level of success, the requirement to always capture the initial packets for 

target flows may not be reasonable in real-world environments. Haffner, Sen, Spatscheck, 

and Wang (2005)  provided another approach to real-time traffic identification based on 

the use of ML classifiers to automatically recognize a target application by its payload 

signature. As is the case with Bernaille et al. (2006), Haffner et al. (2005) relies on 

capturing the initial packets of traffic flows.  

Of particular interest to this work is Nguyen and Armitage (2006) research that 

devised a method using sub-flows to train ML algorithms and classify traffic. A sub-flow 

is a traffic flow fragment of some number of contiguous packets taken from an 

application’s full flow (Nguyen & Armitage, 2008; Nguyen et al., 2012). Statistics from 

multiple sub-flows selected from various phases of the application’s flow can be used to 

train the classifier (Nguyen et al., 2012). Once trained, the classifier can be used to 

examine traffic at any point in the traffic flow, irrespective of incomplete data captures.  

Generally, the predominance of the work discussed in this section that uses 

unsupervised, supervised or hybrid methods relies on statistics from full traffic flows. 
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This presupposes that full flows can always be obtained, which may not always be the 

case (Nguyen et al., 2012). This research effort extended Nguyen et al. (2012) work by 

applying their methodology to classifying video streaming traffic. As such, the following 

sub-section provides a more in-depth discussion of the ML algorithms that were be used 

to pursue this research goal.  

ML Techniques Applied in this Research  

Machine Learning is a discipline within the field of artificial intelligence concerned 

with the use of algorithms that allow computers to learn based on previous experience, in 

the form of data, to perform a specified task (Abu-Mostafa et al., 2012; Flach, 2012).  In 

general, there are three fundamental forms of machine learning: supervised, 

unsupervised, and reinforcement. Supervised learning entails learning from data that is 

labeled, i.e. a priori knowledge of the actual classification of the input data is known 

(Mitchell, 1997). Conversely, for unsupervised learning, no a priori knowledge of the 

class of the input data is provided; thus, the data is unlabeled and the ML algorithm must 

deduce natural groupings, clusters, without any insight of underlying patterns within the 

dataset (Mitchell, 1997). Reinforcement learning takes a different tack, whereby 

automated computational decision-making is performed through application of a reward 

system based on feedback from trial-and-error (Sutton & Barto, 1998). Since the primary 

focus of this work is supervised learning, the discussion that follows is scoped 

accordingly.  

Data is the key element needed to apply ML algorithms to any given task (Abu-

Mostafa et al., 2012). The learning process is based on previously gathered data, whether 

unlabeled or labeled, to support prediction of future outcomes, modeling of patterns in 
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the form of natural clusters, or classification of new instances. Depending on the problem 

space, the input data may undergo some degree of preprocessing such as feature 

selection, generation of statistics, and formatting in order to use a particular ML 

algorithm (Abu-Mostafa et al., 2012). Furthermore, the input data may be separated into a 

training and validation set. Figure 1 provides a generalized depiction of machine learning 

along with some of the terms that are commonly used in this section.  

 
Figure 1 Generalized Depiction of Machine Learning 

As the name implies, the training set is use to select the optimum hypothesis h(x), 

from the space of hypothesis, H(x). Succinctly, training data is used to build a model that 

can used to predict, cluster, or classify new instances. The hypothesis is in fact a function 

that maps the input vector X to an output Y; written formally, 𝐹: 𝑋 → 𝑌. The function, 

h(x), is representative of the particular ML algorithm used. In Figure 1 the input data has 

a single feature, x; however, in practice the input feature space may be very large, as in 

the case of classifying photos of common objects where a single picture may have 

256x256 pixels. Selection of a particular ML algorithm, e.g. linear regression, logistic 
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regression, perceptron, etc. is a function of the data, task, and the preference of the 

analyst.  

Finally, the validation data set is use to evaluate the trained ML algorithm, h(x). A 

well accepted method for evaluating the quality of a ML model is to measure recall and 

precision. Recall and precision are defined as follows: 

 Recall represents the proportion of all the instances of a particular class that 

are correctly classified as that class (Blair & Maron, 1985; Flach, 2012; 

Hand, 2009). Concisely, did the classifier correctly classify all the instances 

of a particular class. To calculate recall the following expression is used:  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 Precision represents the proportion of instances that were classified as a 

particular class that are actually classified correctly (Blair & Maron, 1985; 

Flach, 2012; Hand, 2009). In short, out of the instances classified, what 

percentage of them are correct. Precision is calculated using the following 

expression:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Both recall and precision are important for assessing classifier performance. If a 

classifier has high precision – indicating that the majority of observations classified were 

classified correctly – and the classifier failed to classify many of the target instances (i.e., 

poor recall), then the overall performance cannot be considered good. The converse is 

also true, where recall is high and precision is low. In the following section the three ML 
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algorithms used in this research, SVM, Naïve Bayes, and C4.5, is described in more 

detail.  

Support Vector Machine  

Support Vector Machine (SVM) has become one of the most popular supervised ML 

algorithms and is applied to a wide range of tasks within the field of genetics, medical 

science, security, and network analysis (Burges, 1998).  Although SVM is based on a 

linear classification model, its ability to be extended to tasks with high dimensional 

features, with a relatively small training set, has only widened its use across a variety of 

problem sets (Burges, 1998; Yuan et al., 2010). Moreover, SVM can be applied to binary, 

multi-class, and non-linear classification problems, while still maintaining a high degree 

of efficiency (Chang & Lin, 2011; Chih-Wei & Chih-Jen, 2002).   

SVM is considered a large margin classifier since it constructs a hyperplane 

(decision boundary) that offers the greatest separation between the different classes of 

data under analysis (Muller, Mika, Ratsch, Tsuda, & Scholkopf, 2001; Tsochantaridis, 

Joachims, Hofmann, Altun, & Singer, 2005).  Since the hyperplane has a large margin 

between positive and negative classes, SVM mitigates issues associated with 

misclassification of new unlabeled data instances; succinctly, the trained classifier is 

more generalizable to new instances of the data than a basic linear classification model 

(Smola & Schölkopf, 2004). In the following sub-section, a discussion of SVM, along 

with an overview of its mathematical underpinnings, is detailed initially from the 

perspective of a generic linear classification task, followed by an overview of a nonlinear 

case.  
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Linear SVM (LSVM) 

 LSVM is the most basic SVM model that supports binary classification of data into 

negative and positive classes, assuming the input data is linearly separable. For example, 

given a data set D defined by the following  

𝐷 = {(𝑥𝑖 , 𝑦𝑖) | 𝒙 ∈ ℝ𝑑 , 𝑦 ∈ {1, −1}}, 𝑖 = 1 … 𝓃,                              (1) 

 where the vector 𝒙 represents a set of scalar data points 𝑥1… 𝑥𝑛 that can be used to train 

and test a function that maps the input data to the output 𝑦. The dependent variable 𝑦 will 

be either 1 or -1 for positive and negative classes, respectively. Since SVM is a 

supervised learning algorithm, all training data instances were labeled with either a 1 or -

1 when training the classifier. Furthermore, given this is a linear classification task, the 

SVM function to be trained with dataset D can be described by the following expression  

𝑦 = ℎ(𝑥) = 𝒘 ⋅ 𝒙 + 𝑏;   𝑦 ∈ {1, −1}                         (2)                                                 

where 𝒘 is the normal vector to the decision plane, 𝒙 is the input vector, and b is the bias 

or offset. Additionally, equation 2 specifies the dot product of vector 𝒘 and 𝒙 which is 

defined as  

𝒘 ⋅ 𝒙 =  ∑ 𝑤𝑖

𝑛

𝑖=1

𝑥𝑖                                                 (3) 

To gain better intuition of the details regarding SVM, Figure 2, based on Flach (2012), is 

used as a reference for a generalized LSVM and the discussion that follows.  
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Figure 2 Linear Support Vector Machine  

 As depicted in Figure 2, the decision boundary hyperplane, is specified by 

𝒘 ⋅ 𝒙 + 𝑏 = 0                                                        (4)                                                                            

and the maximum margin hyperplanes are defined by 

𝒘 ⋅ 𝒙 + b = 1  𝒂𝒏𝒅  𝒘 ⋅ 𝒙 + 𝑏 = −1                     (5)         

separating positive and negative values, respectively.  Constructing the maximum margin 

hyperplanes (dashed lines) for both positive and negative classes is based on the data 

instances nearest to the decision boundary hyperplane, which are referred to as support 

vectors.  The Euclidean distance from the maximum margin hyperplanes defined by 

equation (5) to the decision boundary hyperplane, equation (4), can be determined using 

the following 1/|(|𝒘|)|, where ||w|| is the norm of the vector 𝒘. Intuitively, minimizing 

||w|| will maximize the distance between the nearest positive or negative sample to the 

decision boundary hyperplanes, which implies the following constraint optimization 

problem.  
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min  
1

2
∥ 𝑤 ∥2   subject to    𝑦𝑖(𝒘 ⋅ 𝒙 + 𝑏) ≥ 1,   ∀ 𝑖,   𝑖 ∈ {1 … 𝑛}       (6)  

Extending LSVM 

Two key limitations arise from the constraint optimization problem expressed in (6), 

its ability to deal with input data that is not linearly separable (non-linear feature space), 

as well as a high dimensional input vector space (Flach, 2012). In order to addresses 

these issues, the introduction of a soft margin constraint, Lagrange multiplier, and a 

Kernel function will be explored (Flach, 2012).  

First, the addition of slack variables to the objective function and constraint in 

equation (6) will relax the constraint and introduce the concept of a soft margin 

(Tsochantaridis et al., 2005).  The addition of slack variables allows some degree of 

misclassification, which assumes that the data may not perfectly satisfy the linear 

constraint that was imposed in equation (6). Concretely, if the input data is noisy or not 

linearly separable, then the constraint 𝑦𝑖(𝒘 ⋅ 𝒙 + 𝑏) ≥ 1 will not be met. By applying a 

slack variable 𝜉 to the constraint, some degree of margin violation is allowed, which 

begins the process of addressing non-linearly separable data (Tsochantaridis et al., 2005).  

Accordingly, slack variables are added to both the objective function and the constraint 

for the SVM. Moreover, a penalization parameter 𝐶 is introduced to balance the effects of 

slack variables on the objective function. Therefore, equation (6) takes the form  

                              min  
1

2
∥ 𝒘 ∥2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1    

subject to    𝑦𝑖(𝒘 ⋅ 𝒙 + 𝑏) ≥ 1 − 𝜉𝑖 𝑎𝑛𝑑  𝜉𝑖 ≥ 0  ∀ 𝑖,   𝑖 ∈ {1 … 𝑛}               (7)    

where the parameter C is used to minimize the effects of the sum of the slack variable 𝜉 

on the objective function.  
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By convention, a linear optimization problem of the form specified in (7) can be 

approached using Lagrange multiplier 𝛼 to find the extrema of the objective function 

under the specified constraint (Cortes & Vapnik, 1995).  Furthermore, by devising the 

dual form of the Lagrange function the SVM optimization problem, equation (7) can be 

expressed as follows, 

max    ∑ 𝛼𝑖

𝑛

𝑖=1

−  
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗

𝑛

𝑗=1

𝑛

𝑖=1

(𝒙𝒊 ⋅ 𝒙𝒋) 

                     subject to   ∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1  and 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 ∈ {1 … 𝑛}               (8) 

 Completing the process of making SVM applicable to non-linear problem sets 

requires the addition of Kernel methods to equation (8). Kernel methods are functions 

that can be applied to various ML algorithms to address non-linearity of input data and 

has proven to be well suited for SVM (Burges, 1998; Cortes & Vapnik, 1995; Howley & 

Madden, 2005).  By replacing the dot product in the optimization in (8) with a Kernel 

function, the equation takes the form 

max    ∑ 𝛼𝑖

𝑛

𝑖=1

−  
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝐾(𝒙𝒊 ⋅ 𝒙𝒋) 

                     subject to   ∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1  and 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 ∈ {1 … 𝑛}                        (9) 

where 𝐾(𝒙𝒊 ⋅ 𝒙𝒋) represents the application of a Kernel function to the SVM (Flach, 

2012).  This approach allows the algorithm to fit a non-linear input data set to a large 

margin hyperplane decision boundary in a high dimensional feature space. There are 

several Kernel functions that can be used to support this transformation; although, 

Gaussian Kernel is one of the more common methods used across a large spectrum of 

problem sets (Chang & Lin, 2011; Keerthi & Lin, 2003).     
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Finally, as stated previously, SVM can be applied to multi-class problem sets. For 

multi-class systems, the most rudimentary method used is the principle of one-against-all, 

whereby multiple SVM algorithms are independently trained to identify a particular class 

of the data, say red, blue or green, and then applied against new instances (Weston & 

Watkins, 1998). As expected, each classifier identifies the input data it was trained on for 

a given instance, providing the effect of a multi-class classifier system.  

Naïve Bayes  

 In general, probabilistic ML algorithms can be characterized as either discriminative 

or generative. Discriminative algorithms estimate the direct posterior probability between 

the input vector X, and a target class Y, 𝑃(𝑌|𝑋), without any understanding of the 

underlying probability distributions that may exist (Ng & Jordan, 2002). Generative 

algorithms model the joint conditional probability distribution between the target class Y 

and the input vector X, succinctly 𝑃(𝑋, 𝑌), accounting for the underlying probabilities, 

likelihood, and prior probability of the target class (Ng & Jordan, 2002). Although Naïve 

Bayes ML algorithms are comparatively less complex than other supervised learning 

models, it has been empirically proven to be effective across a variety of problem sets 

(Soria, Garibaldi, Ambrogi, Biganzoli, & Ellis, 2011).   

From Bayes Rule to Naïve Bayes 

 Fundamentally, Naïve Bayes is simplified form of Bayes rule, with the inclusion of a 

key assumption that allows its practical application to ML tasks. Any discussion of Naïve 

Bayes, must begin with Bayes Rule, which is defined as  

𝑃(𝑌|𝑋) =
𝑃(𝑋|𝑌) 𝑃(𝑌)

𝑃(𝑋)
                                           (10) 
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where 𝑃(𝑌|𝑋) is the posterior joint conditional probability of class Y given the input X 

and is computed using the product of  𝑃(𝑋|𝑌), termed the likelihood, and the prior 

probability for the class Y, 𝑃(𝑌) (Friedman, Geiger, & Goldszmidt, 1997; Lewis, 1998). 

The denominator, 𝑃(𝑋), is used to normalize the resulting posterior probability to a value 

less than or equal to 1. 

To begin extending Bayes Rule to the Naïve Bayes algorithm, the focus is on 

maximizing 𝑃(𝑌|𝑋), as expressed by 

𝐶𝑙𝑎𝑠𝑠 𝑜𝑓 𝑋 = 𝑚𝑎𝑥 𝑃(𝑌|𝑋)                               (11) 

or stated more explicitly, 

Class of 𝑋 = max  
𝑃(𝑋|𝑌) 𝑃(𝑌)

𝑃(𝑋)
                           (12) 

which indicates that the classification of X for a target class is a function of the largest 

joint posterior probability (Mitchell, 1997; Seeger, 2011). Understanding that X is a 

vector that is comprised of a set of features, 𝑥1 … 𝑥𝑖, a key assumption can be introduced 

to simplify this formulation to reduce the complexity of calculating the likelihood when 

using data with a high dimensional feature space and a large number of samples. 

Specifically, it can be proposed that the likelihood value 𝑃(𝑋|𝑌) can be expressed as the 

combination of individual and independent probabilities of each input feature with 

respect to a given class, i.e. 𝑃(𝑥1 … 𝑥𝑖|𝑦𝑗=𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑙𝑎𝑠𝑠).  This postulation constitutes the 

“Naïve” assumption for Bayes Rule and is referred to as conditional independence (Koc, 

Mazzuchi, & Sarkani, 2012). Written generically,  

𝑃(𝑥1 … 𝑥𝑖|𝑦𝑗) = 𝑃(𝑥1|𝑦𝑗) ⋅  𝑃(𝑥2|𝑦𝑗) … ⋅ 𝑃(𝑥𝑖|𝑦𝑗)          (13) 

represents the product of the independent conditional probabilities of x given a class y. 

This significantly simplifies the calculation of P(X|Y). Furthermore, the denominator for 
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the Bayes Rule, 𝑃(𝑋), can be dropped since its value is constant for the entire input 

dataset (Mitchell, 1997). Consequently, P(X) does not affect the resultant joint posterior 

probability and is in accord with the assumption that each feature is conditionally 

independent across the entire feature set and sample space. Thus, the final form of the 

equation for Naïve Bayes can be expressed as follows 

𝐶𝑙𝑎𝑠𝑠 𝑜𝑓 𝑋 = max  𝑃(𝑌|𝑋) =  𝑃(𝑦𝑗) ∏ 𝑃(𝑥𝑖|𝑦𝑗)               (14)

𝑛

𝑖=1

 

where the class of a new observation is the product of independent likelihoods, multiplied 

by the prior probability 𝑃(𝑦𝑗) for a specified class.   

Estimating Probability Distributions for Naïve Bayes 

 Generating the required probability distributions for the Naïve Bayes classifier can 

be performed using maximum likelihood estimates (McCallum & Nigam, 1998). 

Concretely, the training set is used to estimate 𝑃(𝑋|𝑌) and 𝑃(𝑌) by examining relative 

frequencies for each class and attribute in the dataset. First, the probability of a class, 𝑦𝑗, 

within a given dataset can be estimated by the following 

𝑃(𝑦𝑗) =
|𝑦𝑗|

|𝐷|
                                     (15) 

where |𝑦𝑗| is the number of occurrences of a specific class normalized against the total 

number of instances, |𝐷|; and to determine likelihood, the following formulation can be 

used 

𝑃(𝑥𝑖|𝑦𝑗) =
#𝑥𝑖 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑦𝑗

∑ #𝑥 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑦𝑗∀ 𝑣
               (16) 
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where the numerator represents the frequency that the attribute 𝑥𝑖 occurs for the specified 

class, 𝑦𝑗, normalized by the count of all of attributes within the training set that have the 

class 𝑦𝑗 (McCallum & Nigam, 1998). 

Since maximum likelihood is used to determine component probability distributions 

for Naïve Bayes, in real-world problems certain distributions of an instance’s feature may 

be equal to zero for a given class. Simply stated, the training set may not have an 

occurrence of a particular attribute-class pair, while a new observation may in fact 

represent such an attribute-class relationship. Based on equation (14), which specifies the 

class of a new instance is a product of independent probability distributions, a zero 

probability can in effect lead to an unknown classification – zero for P(Y|X). In order to 

address this issue, Laplace smoothing can be used (F. Peng, Schuurmans, & Wang, 

2004).  In its most basic form, Laplace smoothing can be implemented by adding one 

(add-one-smoothing) to both counts in equation (16) as follows:  

𝑃(𝑥𝑖|𝑦𝑗) =
#𝑥𝑖  𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑦𝑗 + 1

∑ #𝑥 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑦𝑗∀ 𝑣 + |𝐷|
                     (17)      

where the value |𝐷| is a more compact form for adding one to each occurrence of an 

attribute of class 𝑦𝑗.  The result of add-one-smoothing is to ensure that missing attribute-

class pairs in the training set do not impair the ability for the algorithm to classify new, 

unknown instances.  

While the formulation of Naïve Bayes is based on a simplifying premise, it has 

exhibited excellent performance in terms of computation time and classification results 

despite the assumption of conditional independence (Rish, 2001; Yuguang & Lei, 2011). 

In fact, Naïve Bayes has become the de facto standard for text classification and 
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sentiment analysis where it is used in conjunction with ensemble techniques (Rennie, 

2001).  

C4.5  

One of the more practical inductive machine learning methods are decision trees 

(Safavian & Landgrebe, 1991). A decision tree represents a classification task as a 

structure containing a root, branches, and leafs. The root of the tree, which itself is an 

attribute (feature), is the starting point of the structure, with each associated branch 

representing a decision point based on testing the value of an attribute, and each leaf 

equating to a specific classification of the input data under analysis. Decision tress can 

also be represented as a series on conditional statements (if-then), a sequence of rules that 

illustrates the testing of an attribute value to determine the final classification of an 

instance. Objectively, it is important to select the most appropriate root attribute and 

subsequent branch attributes to reduce decision tree complexity, computation time and 

overfitting (Quinlan, 1986). Quinlan (1986) and Quinlan (1993) developed two methods, 

ID3 (Iterative Dichotomiser 3) and C4.5, respectively, to optimize the building of a 

decision tree classifier.  
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ID3 

 Simplistically, a decision tree can be created based on randomly and continuously 

generating individual trees from sample data, with the hope of building an optimal 

classifier that can be generalized to new instances. However, depending on the size of the 

training data in terms of the various classes and attributes, this approach can be time 

consuming to generate a viable decision tree. Moreover, the selected decision tree may in 

fact be one that is overly complex, as well as computationally expensive when used to 

classify new instances. ID3 is a top-down, greedy methodology for inducing an optimal 

decision tree with less computational overhead for both the generation of the tree and the 

classification of new observations. Considering ID3’s top-down approach, it is critical for 

the algorithm to select an attribute for the root of the tree that ultimately minimizes 

complexity (number of nodes and branches), yet is efficient at performing classifications 

of new observations. One means for determining the root and subsequent descendant 

branch nodes is to use a statistical based methodology referred to as information gain that 

measures the relative importance of an individual attribute for classification of an 

instance (Mitchell, 1997; Quinlan, 1986). In order to calculate information gain, two 

values are needed: the entropy of the entire dataset and the normalized entropy after the 

dataset has been split using an attribute (Quinlan, 1993). Entropy, within the context of 

information theory, is a measure of the impurity or uncertainty of a given dataset 

(Mitchell, 1997).  An examination of how the entropy of a data set is calculated is first 

described, followed by a discussion of the normalized entropy after segmenting the input 

data using a selected attribute.  
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Given a training data set, D, which has two distinct classes (positive and negative, 

denoted by P and N, respectively), the probability of positive and negative instances is 

calculated by the following 

𝑝⊕ =
�̂�

𝑝 + 𝑛
  𝑎𝑛𝑑 𝑝⊝ =

�̂�

𝑝 + 𝑛
                                          (18) 

where 𝑝 ̂and �̂� represent the number of positive and negative instances within the dataset 

normalized over all instances in the dataset (Quinlan, 1986). Since a decision tree returns 

a single class for any instance evaluated, it can be considered as a message source for 

each class, P or N, contained in the dataset (Quinlan, 1986). Accordingly, principles 

related to information theory can be applied to determine the information needed to 

generate a message for P or N. Based on this precept, the probability equations in (18) 

can be used to evaluate the entropy of the system and is specified by the formula 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) =  −𝑝⊕  log2 𝑝⊕ − 𝑝⊝ log2 𝑝⊝               (19) 

where 𝑝⊕ and 𝑝⊝are the proportion of positive and negative instances of the dataset 

(Fayyad & Irani, 1992). Note that if the input space D only contains a single class, then 

equation (19) for the entropy of the system evaluates to 0. Units for the output of 

equation (19) are in bits and range from 0 to 1, indicating the amount of information 

required to generated a message related to the class of an instance. The restriction of the 

dataset to a boolean classification is done for simplicity, and is not indicative of a 

limitation for ID3 or C4.5. Input datasets may contain significantly more classes than 

two. As such, equation (19) can generalized to the following 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) = ∑ −𝑝𝑖 log2 𝑝𝑖

𝑐

𝑖=1

                                         (20) 
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where c is the total number of distinct classes and 𝑝𝑖 represents the proportion of each 

class within the input space D.  

Determining the entropy after splitting on an attribute follows a similar approach as 

the entropy for the entire dataset prior to dividing. However, the scope of the evaluation 

pertains to a single attribute and includes a normalization factor. More explicitly, if an 

attribute A with values {𝑎1 … 𝑎𝑣} is used as the root of tree, it partitions the input space D 

into a subset of branches and associated classes, using each attribute value. That is, for 

each attribute A, and its associated values 𝑎𝑣, a subset of the objective decision tree can 

be formed by testing the different values for A. Accordingly, the entropy for the sub-tree 

generated from this activity can be evaluated with respect to the particular attribute under 

test.  Written formally,  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴) = ∑
�̂�𝑖 + �̂�𝑖

𝑝 + 𝑛

𝑣

𝑖=1

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷)                                (21) 

where �̂�𝑖 𝑎𝑛𝑑 �̂�𝑖 represent the number of positive and negative classes related to the 

attribute 𝐴𝑖 being evaluated, normalized by the total number of positive and negative 

instances for the entire input data space D.  

Now that both the entropy for the entire input data set D and the normalized entropy 

for each attribute can be determined, information gain can be used as a measure of the 

effectiveness of an individual attribute for classifying data. Stated differently, information 

gain for an attribute is a measure of the reduction of entropy for classifying the dataset 

when a particular attribute is used to partition the data (De Mántaras, 1991; Mitchell, 

1997). Written formally 

𝐼𝑛𝑓 𝐺𝑎𝑖𝑛 (𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) −  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴)                    (22) 



 

 

35 

represents the information gain for an attribute used to classify (partition) the data 

(Quinlan, 1986). In building the decision tree, the attribute that generates the largest 

information gain for the initial segmentation should be selected as the root. Subsequent 

descendant nodes are recursively generated in the same manner until either the all classes 

or attributes within the dataset are exhausted.  

Extending ID3 to C4.5 

 In practice several challenges arise that impact the performance of ID3, some of 

which are related to the data used to train, while others are inherent to the algorithm 

itself. Quinlan (1993) implemented several enhancements to ID3 that were codified 

within the C4.5 algorithm. The discussion that follows provides an overview of four of 

the key challenges encountered in real-world application of ID3 and provides a synopsis 

of the method used to address the issue in C4.5.  

 Managing Complexity – As with all machine learning algorithms, the optimum 

balance between complexity and simplicity of an algorithm can be a difficult 

objective to attain. If a model is complex it may fit the training data extremely 

well but do poorly when generalize to new instances, an effect referred to as 

overfitting the data (Schaffer, 1993). Simplicity is always desired, although it 

may lead to higher error rates. To address this challenge, C4.5 employs post-

pruning of a decision tree. Principally, the decision tree is generated using the 

ID3 algorithm without regard to overfitting issues and subsequently pruned to 

reduce the number of branches of the tree (Breslow & Aha, 1997). In order to 

perform post-pruning with some level of assurance that the loss branch does not 

increase error rates, the input dataset is disjunctively separated into a training 
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and validation subset. Once post-pruning begins, the validation set is used to 

verify that error rates have not increase as a result eliminating a branch. If error 

rates increase, the branch is restored. Note, post-pruning can be efficiently 

applied to decision tree rules instead of the tree structure. The effect of post-

pruning is to reduce the overall number of branches, thereby reducing 

complexity, while maintaining good classifier performance.  

 Attributes with Continuous Values – Originally, the ID3 algorithm focused on 

attributes with discrete rather than continuous values (Quinlan, 1996). In reality, 

attributes with continuous values occur often in real-world applications of 

classifiers. Moreover, decision trees must deal with both discrete and 

continuous values within the same decision tree. Length is an example of an 

attribute with continuous values that can take on a variety of measures. An 

approach to using this type of attribute within the decision tree is to first sort the 

values and then identify where changes in attribute values cause subsequent 

changes in the class of the instance (Fayyad & Irani, 1992). Inherently, 

thresholds can be identified that align with the transition from one class to 

another, e.g. positive to negative. These thresholds can be used to test an 

attribute to determine branching or leaf nodes within the tree. For each threshold 

of the attribute length associated with change in the output class, information 

gain can be evaluated in the same manner as any discrete value attributes to 

determine its place in the decision tree hierarchy. 

 Attributes with Missing Values – Although it is optimum to have data that has a 

value for each attribute to efficiently induce a decision tree, in practice attributes 
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may be missing values. Though attributes with missing values may introduce 

errors, the instance may still be of some importance. C4.5 employs probabilities 

for instances with missing values for attributes (Grzymala-Busse & Hu, 2001). 

Plainly stated, the frequency of attributes for fully populated instances and their 

associated class are used to calculate probability for the instance with missing 

attribute values. The derived probabilities are used instead of assigning the most 

frequent value to an instance. Once probabilities of attributes with missing 

values are calculated, they can be used in the evaluation of information gain 

(Quinlan, 1993).  

 Attributes with Different Costs – Certain machine learning problem sets may 

involve attributes with associated cost. Within this context, cost can be 

considered explicit, i.e. monetary or inherent such as the importance of one 

attribute with respect to another. C4.5 employs a weighting factor to 

information gain that reduces the effect of one attribute vice others (Quinlan, 

1996). Side effects include the possible generation of a less optimal decision 

tree that exhibits bias to a certain classes; although, to some extent bias is the 

desired effect.   

With the enhancements to ID3, C4.5 has become a common classifier algorithm used 

on a broad range of problems to include data mining tasks. C4.5 has also been enhanced 

to improve speed, optimize memory usage, incorporate boosting, among other 

refinements which are embedded in C5.0. 
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Ensemble Techniques used to Improve ML Performance 

 Ensembles attempt to find the best result, whether for prediction or classification, 

from the space of trained hypothesis to reduce misclassification error (Seni & Elder, 

2010). Fundamentally, model ensembles follow two principles: 

 Generate multiple trained hypothesis, classifiers, that are as diverse as possible  

 Use various techniques to leverage the output of the set of diverse classifiers, in 

such a way that they reduce the overall errors associated with any single 

classifier  

  Use of ensemble methods has seen steady growth in both academia and the 

commercial sector (Rokach, 2010). Accordingly, the number of methods that fall within 

the category of ensembles has also experience significant growth. For this research effort, 

two common ensemble methods were used, bagging and boosting.  

Bagging  

 As with all ensemble methodologies, creating diversity amongst the classifiers used 

is a key objective. Breiman (1996) Bagging, short for “bootstrap aggregating”, creates 

diversity by manipulating the training dataset. More precisely, given a training set, D, 

bagging entails random sampling of the dataset, with replacement, generating n number 

of bootstrap samples that are used to train individual classifiers (Breiman, 1996). Since 

sampling is performed with replacement, each bootstrap sample has some number of 

duplicate instances. However, the probability that a particular training instance is not part 

of a bootstrap, given n samples can be estimated by (1 −
1

𝑛
)

𝑛

, which implies that 

approximately a third of the instances (as n gets very large) are omitted from each sample 

(Flach, 2012). The expectation is that each bootstrap sample induces some level of 
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diversity among the various classifiers of the ensemble. When evaluating the 

classification of new instances using the bagging ensemble method, a plurality vote is 

used to select the target class from the output of the various classifiers (Oza & Tumer, 

2008). For problems involving prediction, averaging the outputs of the classifier is 

typically used to determine the target value (Seni & Elder, 2010).  

 Bagging implies that averaging outputs from the committee of classifiers inevitably 

limits the effects of noisy data and, to some degree, issues associated with overfitting, 

since it is unlikely that all the ensemble classifiers respond to the data in the same way 

(Rokach, 2010). Unlike AdaBoost (described below), bagging does not require weak 

learners to provide good results; however, learners sensitive to changes in the input data 

set tend to receive the greatest benefit (Mordelet & Vert, 2014).  

Boosting  

 Similar to bagging, Adaptive Boosting (AdaBoost) attempts to improve the 

performance of an individual classifier by manipulating training sets; however, bagging 

depends on replacement sampling of the input data to generate multiple classifiers. In 

contrast, AdaBoost applies weights, recursively, to instances of the training set to 

improve the performance of classifiers that are part of an ensemble. That is, the training 

data for each classifier within the ensemble is modified to account for weights derived 

from misclassifications errors (Freund & Schapire, 1997). Larger weights are assessed to 

misclassified instances, while smaller weights are given to correctly classified instances 

per iteration. The effect of this process is to focus each successive classifier on the 

misclassified observations, increasing the likelihood of eliminating incorrectly classified 

instances. The final hypothesis is a weighted combination of classifiers and is expected to 
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produce higher recall and precision— classifier performance. Equation (21) formalizes 

the objective function for the AdaBoost algorithm 

𝑦 = ℎ(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼ℎ𝑡(𝑥)

𝑇

𝑡=1

)                             (23) 

where ℎ(𝑥) is the signed output of the strong classifier that is generated from the weighed 

linear combination parameter, 𝛼, times the set of hypothesis ℎ𝑡(𝑥).  The process for 

generating the objective function, based on Flach (2012), in (23) follows the generalized 

steps outlined below for a given dataset 𝐷 = {(𝑥𝑖, 𝑦𝑖) | 𝒙 ∈ ℝ𝑑 , 𝑦 ∈ {1, −1}}, 𝑖 = 1 … 𝓃, 

with a specified number of training hypothesis, T, and a learning algorithm, ℎ𝑡(𝑥).  

1. An initial weight vector, 𝒘 = 1/(|𝐷|), is calculated and applied uniformly to all 

instances of the training dataset.  

2. For each iteration from 𝑡 = 1 𝑡𝑜 𝑇 do the following: 

o Train the target classifier ℎ𝑡(𝑥), using the weight calculated in step 1 

uniformly distributed across each instance of the input data set D. 

o Calculate the weighted misclassification error for ℎ𝑡(𝑥): 𝜖𝑡 =

𝑤𝑡𝑖(ℎ𝑡(𝑥𝑖) −  𝑦𝑖). 

o Check if error, 𝜖𝑡 ≤  .5. If so, exit the loop. 

o Calculate the confidence value, 𝛼𝑡 =
1

2
ln

1− 𝜖𝑡

𝜖𝑡
, which is used to update 

weights for misclassified and correctly classified instances. The final value 

for, 𝛼, is used to proportionally combine members of the ensemble in step 

3. 

o Update weights for misclassified instances using the following: 

𝑤(𝑡+1)𝑖 =
𝑤𝑡

𝑍𝑡
 exp (−𝛼𝑡 ⋅  𝑦𝑡 ℎ𝑡(𝑥𝑖)), where 𝑍𝑡 is a normalization constant. 
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Depending on the classification of a target instance, the exponent will be 

either positive or negative. A positive exponent has the effect of increasing 

the weight for that instance; a negative exponent has the opposite effect.                                     

3. The output is the objective function in equation (24). 

ℎ(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼ℎ𝑡(𝑥)

𝑇

𝑡=1

)                            (24) 

 Boosting requires the use of weak classifiers that are slightly better than random 

guessing (Seni & Elder, 2010). Strong candidates for developing weak classifiers are 

decision trees that are one level deep, referred to as stumps (Rodríguez & Maudes, 2008). 

However, Adaboost has been combined with other ML algorithms, such as SVM and 

Naïve Bayes (Kim, Pang, Je, Kim, & Yang Bang, 2003; Korada, Kumar, & Deekshitulu, 

2012).   

Summary 

 In this chapter, an overview of supporting literature, ML algorithms and ensemble 

techniques that used in this research have been provided.  Pertaining to supporting 

literature, several examples of unsupervised, supervised and hybrid ML were presented to 

provide context for this work. The particular emphasis has been on supervised models, in 

particular SVM, Naïve Bayes, and C4.5, which constitute the focus of this research effort 

on classification of video traffic. In addition, ensemble techniques, i.e. bagging and 

boosting, were described as means to improve recall and precision for each model. In the 

following chapter on methodology, specifics on how each ML algorithm and ensemble 

technique support experimentation are described.   
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Chapter 3 

Methodology 

Introduction  

The methodology used to perform experimentation involved capturing real network 

traffic to train, test and compare performance, recall, and precision, of three ML 

classifiers, C4.5, Naïve Bayes, and SVM, to identify a video streaming traffic when 

partial, incomplete data traces are encountered. Waikato Environment for Knowledge 

Analysis (Weka) implementation of C4.5, Naïve Bayes and SVM was used for all 

experimentation (Witten et al., 1999). Experiments confirmed that ML classifiers trained 

on statistics derived from full traffic flows exhibited degraded recall and precision as the 

number of missing beginning packets increases. Conversely, ML classifiers trained on 

multiple sub-flows selected from all phases of the application produced much higher and 

consistent recall and precision, despite the presence of incomplete traffic traces. In the 

process of comparing the outcome from testing classifiers trained with full flows and sub-

flows against partial data captures, research question 1 was addressed. Figure 3 represents 

a generalized overview of methodology used in this research. A description of each step 

of the process follows.   
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Figure 3 Overview of Research Methodology  

Step 1 – Data Collection  

Traffic data used for this research included target video application flows as well as 

interfering traffic. Interfering traffic, within the context of this study, is any traffic flow 

that is not the target application to be classified (Karam & Tobagi, 2000). The 

methodology used to secure data for use in this research effort was internet traffic 

collected in a controlled lab environment. 
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Step 1a – Capturing Live Traffic 

To capture video traffic data, Wireshark was used. Wireshark is a freely available, 

publicly accessible, network analysis application that is used to collect information about 

data packets (Dabir & Matrawy, 2007; Lamping & Warnicke, 2004). To capture packet 

data, each target application (YouTube and Netflix) along with a separate instance of 

Wireshark, was run on a virtual machine (VM) instance on a laptop. Additionally, 

interfering traffic was also generated at the same time as target application data on each 

VM instance. Figure 4 depicts the environment used to capture network traffic. 

 

Figure 4 Environment used to Capture Traffic 

The use of a multiple VMs running each target application along with interfering 

traffic simplifies the process of determining the “ground truth” for the class of each 

application flow within training and test data set.  Specifically, to the greatest extent 

possible, a limited and deterministic set of application traffic was generated that can be 

readily identified using source and destination IP address, port and protocol to enable 

proper labeling of network traffic (Pascoal et al., 2012; Piraisoody, Changcheng, Nandy, 

& Seddigh, 2013). The process for generating known traffic types within a lab 



 

 

45 

environment to improve the likelihood of correctly labeling training and test sets is a 

common approach (Alshammari & Zincir-Heywood, 2008; L. Peng, Zhang, Yang, Chen, 

& Wu, 2014). Note in Figure 4 that interfering traffic is comprised of email, FTP, Secure 

Shell, and telnet. These are applications that have well-known ports officially registered 

in IANA. Accordingly, this increases the probability of distinguishing target from 

interfering traffic. The size of the files containing captured packets were limited to make 

processing of the files more efficient. A portion of the captured traffic was used 

exclusively for training and the rest used for testing both the full flow and sub-flow 

classifiers. The ratio of training to testing data set was ~60/40.  

Step 1b – Generating Full Flow and Sub-flow Feature Sets 

Once Wireshark has captured the requisite sets of packet capture (pcap) data for each 

target application, steps must be taken to extract statistical information and create an 

attribute-relation file format (ARFF) file for use as input to the Weka’s ML application. 

Pcap files produced by Wireshark cannot be used directly with Weka for training or 

testing ML classifiers.  

Two types of Weka input files containing statistics for both target applications were 

produced: full flow and sub-flow ARFF files. For both types of ARFF files, scripts were 

built for processing Wireshark output. Wireshark is integral to the generation of both full 

flow and sub-flow statistics since it performs the duty of capturing network traffic as well 

as text exports of pcap data. Figure 5 provides a generalized depiction of the process for 

generation of full and sub-flow statistics. The following sections provide additional 

details related to each element of the process.  
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Figure 5 Generating Full and Sub-flow Statistics 

Full Flow Statistics  

While Wireshark is proficient at capturing network traffic, to generate full flow and 

sub-flow statistics it was necessary to develop specific scripts to generate a more robust 

set of stats. Wireshark can provide some full flow statistics; however, the depth, breadth 

and type of statistics needed to support this research necessitated additional 

preprocessing. Multiple approaches were attempted to discern the correct set of attributes. 

However, the selection of features is primarily based on work by Alshammari and Zincir-

Heywood (2011) and Nguyen and Armitage (2006). As experimentation progressed, 

features were pruned and added to improve classification accuracy. Table 2 provides the 

final set of features that were used for training and classification experimentation.  

Table 2 Full Flow and Sub-flow Statistics 

Attribute Description  

total_packets Total number of packets  
total_volume Total number of bytes  
min_pktl Minimum packet length 
mean_pktl Mean packet length 
max_pktl Maximum packet length 
std_pktl Standard deviation of packet length  
min_iat Minimum inter-arrival time of packets 
mean_iat Mean inter-arrival time of packets 

Wireshark

Pcap Data Text Export

Scripts

Full Flow Stat.

Sub-flow Stat.
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max_iat Maximum inter-arrival time of packets 
std_iat Standard deviation for inter-arrival time of packets 
total_headl Total header length 
min_tcphl Minimum TCP header length 
mean_tcphl Mean TCP header length 
max_tcphl Maximum TCP header length 
std_tcphl Standard deviation for TCP header length 
total_intframe Total inter-packet length between packets of the same 

flow 
min_intframe Minimum inter-packet length between packets of the 

same flow 
mean_intframe Mean inter-packet length between packets of the same 

flow 
 max_intframe Maximum inter-packet length between packets of the 

same flow 
  

Wireshark has the ability to generate information about each layer of the TCP/IP 

protocol stack (physical, link, network, transport and application layer) for a given packet 

(Lamping & Warnicke, 2004). Using Wireshark, a text file export of protocol attributes 

gathered from pcap files, such as frame length, time delta, IP length, TCP header length, 

etc. can be produced. Figure 6 represents a sample of a Wireshark text export file 

containing a subset of packet attributes.   
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Figure 6 Sample Wireshark Text Export 

Once the Wireshark text export file is created, it can be processed to generate the 

statistics listed Table 2 in addition to ARFF formatted files for sub-flows. The requisite 

scripts were developed to perform the processing of Wireshark text export files.  

Step 1c – Creating Training and Test Sets  

To properly train and test the classifier, a mixture of the target application and 

interfering traffic must be part of the same respective data file prior to use with Weka ML 

classifiers. In previous steps, a mixture of target and interfering traffic is captured and 

No.     Time           Source                Destination           Protocol Length Frame      
Info 

      7 1.230858000    192.168.0.9           54.244.245.212        T LSv1    1495   Yes        

Application Data 

 
Frame 7: 1495 bytes on wire (11960 bits), 1495 bytes captured (11960 bits) on 

interface 0 

    Interface id: 0 

    Encapsulation type: Ethernet (1) 

    Arrival Time: Oct 14, 2013 20:23:16.256442000 MST 
    [Time shift for this packet: 0.000000000 seconds] 

    Epoch Time: 1381807396.256442000 s econds 

    [Time delta from previous captured frame: 0.000001000 seconds] 

    [Time delta from previous displayed frame: 0.000001000 seconds] 

    [Time since reference or first frame: 1.230858000 seconds] 
… 

… 

Transmission Control Protocol, Src Port: 56469 (56469), Dst Port: https (443), 

Seq: 1441, Ack: 1, Len: 1429 

    Source port: 56469 (56469 
    Destination port: https (443) 

    [Stream index: 1] 

    Sequence number: 1441    (relative sequence number) 

    [Next sequence number: 2870    (relative sequence number)] 

    Acknowledgment number: 1    (relative ack number) 
    Header length: 32 bytes 

    Flags: 0x018 (PSH, ACK) 

… 

… 
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then used to generate ARFF files for use with Weka. Prior to using the ARFF file for 

testing or training, the class of each flow must be determined and labeled as either the 

target (YouTube or Netflix) or interfering traffic (all other traffic). To determine the 

“ground truth” class for captured flows, a two-step process was used that employs both 

Wireshark and the output from the scripts. First, Wireshark was used to examine captured 

traffic in order to understand key attributes such IP address, port, protocols, start time of 

various flows in the traffic. Since the traffic generated and captured in Step 1a is fixed to 

the greatest extent possibly, use of IP address, port, protocol, and start time provided 

strong evidence as to class of the traffic. This is especially true for traffic that use IANA 

registered ports below 1023, which was the objective. Secondly, once ARFF files are 

generated using scripts, the same attributes, IP address, port, protocol, and start time were 

used to label flows in the ARFF file. For files containing YoutTube traffic, the class 

labels was YT or OTHER; and for files containing Netflix traffic, labels were NF or 

OTHER. When creating training and test data sets, maintaining a ratio close to 1:1 

between target application and interfering traffic was the objective. 

Step 2 – Classification Based on Full Flows  

 Evaluating the effectiveness of ML classifiers trained on statistics from full flows on 

partial data sets, specifically, flows that are missing the beginning packets of the traffic, 

is an important first step. In addition to testing data sets that are missing the initial set of 

packets, test datasets also contained varying sub-flow sizes to simulate the effect of 

partial flows. This initial experiment is required to confirm the degradation of 

performance, recall and precision, for ML algorithms trained on full flows for identifying 

target traffic when used with incomplete data captures. Recollect that captured data in 
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real-world networks may be incomplete due to network and application perturbations. 

C4.5, Naïve Bayes, and SVM ML algorithms were trained on statistics from full flows 

then tested with data sets that have the first 10, 20, 30, 40, 50, 60, 100 and 200 packets 

missing from the traffic flow. Note that flow statistics used for training were not used for 

test purposes; once the required number of flows were collected, separate data sets for 

both training and testing were generated. For each test data set containing missing 

packets, an ARFF file was constructed that had both the target and interfering traffic. 

Input files for Weka were created using the process described in step 1, to generate data 

sets with missing packets. Recall and precision were calculated and graphed as a function 

of the missing packets to illustrate the effects of partial data captures on full flow 

classifiers. It was expected that recall and precision would reveal a significant 

degradation in performance as the number of missing beginning packets increases. These 

results were used as a reference for comparison against ML classifiers trained on multiple 

sub-flows. 

Step 3 – Classification Based on Sub-flows 

Initially, sub-flows of 25 consecutive packets were selected from the full flow data, 

with a sliding window of 10 packets between each sub-flow. In previous work by Nguyen 

et al. (2012), sub-flows of 25 packets provided good results in classifying Wolfenstein 

and VoIP traffic. However, it is unknown what the optimum number of packets per sub-

flow should be to produce high, above 92% or better, recall and precision; accordingly, 

25 packets constituted a starting point for sub-flow classification. Multiple sub-flow sizes 

were attempted with the objective of maintaining high recall and precision. Adjusting the 

number of packets per sub-flow, while recording the effects on recall and precision 
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addressed research question 4. ARFF files were created to evaluate sub-flows of differing 

sizes (number of packets) to execute this portion of the experiment. The initial set of 

features used were based on features listed in Table 2. Some degree of experimentation 

with various combinations of features was undertaken to find the minimum number of 

features to gain high recall and precision, addressing research question 3.  

Evaluating Ensemble Techniques: Bagging and Boosting  

Once the analysis in steps 2 and 3 were completed, an evaluation of ensemble 

techniques was performed. As outlined in section 2, bagging and boosting were the 

ensemble techniques evaluated for this research effort. Weka has the capability to 

perform bagging and boosting using a variety of base ML algorithms (Bouckaert et al., 

2013; Elovici, Shabtai, Moskovitch, Tahan, & Glezer, 2007).  

Testing with Weka can be performed using a command line interface (CLI), explorer 

or the experimenter. Both the explorer and experimenter Weka application can be used 

for training and testing ML applications. The key difference is the experimenter allows 

the training and testing of ML algorithms side-by-side for direct comparison. This 

provides an effective means of comparing results of ML algorithms on the same data set 

to determine which method preforms best.  

Using the explorer, bagging in combination with base implementations of Naïve 

Bayes, C4.5, and SVM were trained and tested using the same data set in step 3 to 

determine if there was any improvement to performance, specifically, recall and 

precision. It was expected that bagging would have a greater effect on C4.5, since 

decision trees are more sensitive to changes in the training and test data set (Galar, 

Fernandez, Barrenechea, Bustince, & Herrera, 2012). Moreover, the effect of bagging 
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may be less pronounced on the performance of Naïve Bayes and SVM, since in general 

these ML algorithms are less sensitive to variances in the training and test data (Yuan et 

al., 2010). In the case of boosting, the same process was followed. Boosting was 

performed using each base ML algorithm and compared to outcomes from the execution 

of step 2. Boosting was also expected to be less effective on Naïve Bayes and SVM, since 

both of these algorithms are considered to be strong learners (Hall, Witten, & Frank, 

2011). 

Format for Results 

 Generally, tables and figures containing text and graphs are used to display results 

from experimentation.  

Pcap data files were not presented in this dissertation as these files would be too 

large and would not add value to communicating the results of this work. Additionally, 

ARFF files containing features and associated statistics were also omitted from this 

document based on the same rational.   

Outputs from testing classifiers on full flows are depicted in tables and graphs as a 

function of the number of packets missing from the beginning of each network flow, to 

recall and precision of the classifier tested.  In the same manner, graphs of recall and 

precision per missing packets for classifiers tested with sub-flows were also be presented 

in the results section with Table containing detailed information and plots used as a 

graphical depiction of the data.  
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Resource Requirements 

This research effort required a variety of resources to perform required 

experimentation as specified in Table 3.  

Table 3 Required Resources 

Type Resource Purpose 

Data Lab Captured Data Using Wireshark, pcap data was captured 

from test systems (laptop/PCs/desktops) to 

support training, validation and testing of ML 

algorithms.  

Software Microsoft Office MS Office (Word, PowerPoint and Excel) is 

a general purpose document, presentation and 

spreadsheet software package that was used 

throughout this research activity. Excel was 

also used for generating statistics and 

manipulating data sets. 

 Perl  Perl was used to develop scripts to 

manipulate files and to generate sub-flow 

statistics in ARFF format. 

 VM Fusion This software package is used to create 

virtual machines.  

 Wireshark This software was used to capture IP traffic 

for both target and interfering application 

flows.  

Hardware  PC and Laptops General purpose PCs, Macs, and desktops for 

data capture, manipulating data and 

developing documents and presentations.  

Summary   

In this section, the methodology used to execute the experiments was described fully. 

Concepts regarding the gathering of network traffic, generation of statistics for both full 

flow and sub-flows were outlined. The use of lab captured traffic thoroughly supports this 

research effort. While the use of benchmark data would support assessment of the 
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generalizability of the classifier, significant challenges were experienced in collecting 

“ground truth” benchmark data for both YouTube and Netflix traffic that could be used 

for testing the generalizability of each classifier (Caiyun, Lizhi, Bo, & Zhenxiang, 2012).  

Accordingly, benchmark data was not used in this research. 

Evaluation of ensembles was undertaken as the final stage of experimentation to 

assess if bagging or boosting can improve the performance of the sub-flow classifier. 

Evaluation of ensembles for this research effort is important given the increase use of 

ensembles across the spectrum of ML applications (Galar et al., 2012). 
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Chapter 4 

Results  

 In this chapter the results of experimentation are presented. Prior to describing 

results, a short discussion on data preprocessing and class imbalance is provided. Next, 

results on the effects of partial flows on a classifier trained on full flow statistics is 

examined. Then, an evaluation on the effectiveness of classifiers trained on sub-flows is 

examined using traffic flows with missing packets to determine if performance is 

improved. Finally, the use of ensemble techniques, Boosting and Bagging, is examined to 

discern if these algorithms improve sub-flow classifier performance. In all cases, 

performance of classifiers was judged based on recall and precision.  

Data Preprocessing  

Basic preprocessing of data was required to ensure proper training and building of 

classifiers. Weka provides filters, methods for manipulating data, as a means to preform 

data preprocessing, prior to training and testing classifiers. Additionally, Weka filters, 

were used to split data into training and testing datasets. Resampling without replacement 

was used to partition the data into training and testing datasets. Finally, class imbalance 

was addressed using the Weka filter synthetic minority over-sampling technique 

(SMOTE).  Table 4 and 5 provides the breakout of traffic classes for both YouTube and 

Netflix (bold print), respectively, prior to preprocessing.  All subsequent data files used in 

experimentation were derived from these two foundational data sets.  
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Table 4 YouTube Dataset  

Class of Traffic Sum of Packets Sum of Bytes 

aggregate 80 20862 

akamai Tech 19438 19115955 

amazon 214171 253509968 

apple 66 6089 

avast 554 111371 

criteo 698 425408 

DNS 21659 18236174 

doubleclick 6081 2632553 

doubleverify 126 38484 

edgecast 26 4019 

email 48412 43023115 

facebook 38 8670 

footprint 236 78593 

ftp 258500 260123595 

google 73624 40540232 

imdb 834 215953 

motocast 1738 275806 

pki 46 9900 

spyware 162 42997 

twitter 3837 979977 

unknown 3884 2615064 

yahoo 1627 512630 

YouTube 1143792 1063013067 

Grand Total 1799629 1705540482 

 

Table 5 Netflix Dataset   

Class of Traffic Sum of Packets Sum of Bytes 

akamai Tech 14134 12457513 

apple 1164 270255 

avast 234 42385 

bright tag ad 185 65738 

DNS 4423 1128399 

doubleclick 662 237501 

ftp 1211092 1354307441 

google 45 11512 

mawi 301015 386171493 

Netflix 1233909 1395827732 
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Class of Traffic Sum of Packets Sum of Bytes 

Nova University 42 2947 

twitter 117 24721 

yahoo 849 279204 

Yahoo email  137748 154893713 

Grand Total 2905619 3305720554 

Addressing Class Imbalance  

 Class imbalance for this research effort was an outcome of two key factors: 1) the 

nature of the data used and 2) the manipulation of the data to derive sub-flows for 

training and testing classifiers. Class imbalance is exhibited by a significant difference 

between the majority and minority classes of a given dataset. For example, the majority 

class may be 2 to 3 times larger, in terms of the number of class instances represented in 

the dataset.  

Video streaming traffic is typically long-lived flows comprised of large numbers of 

packets as compared to interfering traffic. Since video traffic consists of long-lived flows, 

the total number flows may be substantially less than those of interfering traffic, which 

generally has relatively small numbers of packets but repeats often within the captured 

dataset. Accordingly, the predominance of network flows for training are interfering 

traffic over the total capture time for the data. Inherently this leads to class imbalance for 

datasets used to train and generate full flow classifiers as well as any associated full flow 

test data sets.  

The second factor that causes class imbalance is the generation of sub-flows for 

experimentation. While the predominance of full flows are interfering traffic, the total 

number of packets is disproportionately associated with video traffic, since video traffic 

tends to be long-lived flows with 100s to 1000s of packets. As a consequence, the 

generation of sub-flow instances, as a function of the sub-flow size selected, can create 
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class imbalance for datasets used for experimentation, since sub-flow generation divides 

full flows into subsets. This is especially true with small sub-flows sizes of 25 and 100 

packets. In general, video streams generated significantly more sub-flows due to the total 

number of packets per flow in contrast to interfering traffic. For both types of class 

imbalance, SMOTE was used to address this condition.  

SMOTE is a long-standing and accepted means to address class imbalance by 

oversampling the minority class of a particular dataset ((Sáez, Luengo, Stefanowski, & 

Herrera, 2015)). More specifically, SMOTE works within the feature space not with the 

instance space (deleting instances from the majority class) to synthetically generate a new 

minority class instance based on two sample classes within the original dataset (Chawla, 

Bowyer, Hall, & Kegelmeyer, 2002). Weka supplies a SMOTE implementation that was 

used to address class imbalance issues and is used throughout this research. SMOTE 

reduces the effect of class imbalance while maintaining the integrity of the dataset used 

for training classifiers ((Chawla et al., 2002; J. Wang, Xu, Wang, & Zhang, 2006)).  

Full Flow Trained Classifier Applied to Partial Flows with Missing Packets 

 For this experiment, data was captured for YouTube and Netflix along with 

interfering traffic. Target traffic was considered positive instances, and interfering traffic 

was designated as negative instances. Full flow statistics were used to train a C4.5, Naïve 

Bayes and SVM full-flow classifier. Table 6 provides key information associated with 

building full flow classifiers to execute this portion of the test.  
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Table 6 Full Flow Training Stats 

Traffic Algorithm Positive Negative Precision Recall 

YouTube J48-C4.5 2455 3423 0.974 0.983 

Naïve 

Bayes  

2455 3423 0.969 0.952 

SMO 

SVM 

2455 3423 0.868 0.829 

Netflix J48-C4.5 808 492 0.967 0.979 

Naïve 

Bayes  
873 427 0.905 0.99 

SMO 

SVM 
833 467 0.879 0.917 

Once the full flow classifiers were built, each full flow classifier was then tested 

against files with a select number of packets missing as well as different sub-flow sizes to 

assess performance.   

J48 C4.5 Full Flow Classifier Performance  

Figure 7 and 8 represents recall for YouTube and Netflix J48 full-flow classifiers, 

respectively, tested against datasets with missing packets and varying sub-flow sizes. J48 

is Weka’s implementation of C4.5 and is used interchangeably throughout the rest of this 

document. Weka default settings were used for the J48 decision tree algorithm.  
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Figure 7 Recall for YouTube J48 Full-flow Classifier Tested with Partial Flows  

 

Figure 8 Recall for Netflix J48 Full-flow Classifier Tested with Partial Flows 

m0 m10 m20 m30 m40 m50 m60 m100 m200

N=25, S=10 0.012 0.011 0.01 0.01 0.012 0.011 0.011 0.011 0.012

N=100, S=50 0.699 0.692 0.693 0.694 0.706 0.685 0.681 0.686 0.707

N=500, S=200 0.502 0.491 0.455 0.467 0.451 0.451 0.429 0.453 0.481

N=1000, S=500 0.711 0.663 0.642 0.622 0.605 0.584 0.584 0.659 0.656

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
YouTube J48 FF - Recall

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25,s10 0.053 0.052 0.053 0.052 0.052 0.051 0.051 0.052 0.052

n100,s50 0.114 0.117 0.119 0.118 0.113 0.115 0.111 0.117 0.118

n500,s200 0.305 0.304 0.291 0.29 0.296 0.298 0.299 0.291 0.284

n1000,s500 0.392 0.389 0.408 0.42 0.423 0.435 0.435 0.427 0.398

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Netflix J48 FF - Recall
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The y-axis indicates recall for the J48 decision tree for a given dataset, with a 

specific number of missing packets, “m0 – m200” on the x-axis. Each point on a plot for 

a given line (color coded with different markers) represents a particular dataset tested 

against a J48 full-flow classifier. For example, the first point on the “m0,n,=25,s=10” plot 

represents a data file that contains instances that are 25 packets long (sub-flow size), with 

a step size (skipped packets) of 10 packets with no missing packets (m = 0). This data file 

would be representative of a partial flow that, although it has no missing packets, 

contains partial flows of 25 packets. The second point on the same line plot 

(m10,n=25,s=10) represents a data file that is missing the first 10 packets from each flow 

and has partial flows of 25 packets. Each line plot on the graph represents 9 separate 

datasets, points, for a particular sub-flow size of 25, 100, 500 and 1000 packets, missing 

0 to 200 packets (m0 – m200) from the start of the flow. The use of sub-flows in this test 

illustrates the impact of partial flows on a classifier trained on full flow statistics.  

 As evidenced, using a full-flow classifier to classify partial flows leads to average 

performance for YouTube traffic with a maximum recall of ~0.70 for “m40,n100,s50” 

and poor performance for Netflix traffic with a maximum of ~0.43 for 

“m50,n1000,s=500”.  Good performance is not attained even in the case of larger sub-

flow sizes, such as 1000 packets; recall is relatively low as packets are removed, which 

indicates the full-flow classifier has limited accuracy and in fact misclassifies a 

significant portion of the target class as the negative classes (false negatives). This was 

expected given the difference in statistics calculated over the life of a flow can vary 

dramatically with respect to the type of traffic.  
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Figure 9 and 10 depicts precision for the same J48 full-flow classifier tested with the 

same dataset for YouTube and Netflix, respectively. In certain cases, with partial flows of 

sub-flow size of 25, 500 or 1000 packets, the full-flow classifier exhibits consistently 

high precision -- above 0.90. However, given the poor recall for the same classifier – 

indicating large numbers of false negatives – high precision is of little benefit. Both 

precision and recall need to exhibit good performance to assess classifier performance as 

excellent. 

 

Figure 9 Precision for YouTube J48 Full-flow Classifier Tested with Partial Flows 

m0 m10 m20 m30 m40 m50 m60
m10

0

m20

0

N25, S10 0.913 0.869 0.929 0.904 0.914 0.94 0.939 0.915 0.953

N100, S50 0.623 0.622 0.634 0.608 0.631 0.623 0.614 0.598 0.625

N500, S100 0.927 0.889 0.921 0.945 0.924 0.925 0.926 0.931 0.935

N1000, S500 0.94 0.915 0.926 0.932 0.924 0.934 0.936 0.922 0.952

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

YouTube J48 FF - Precision
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Figure 10 Precision for Netflix J48 Full-flow Classifier Tested with Partial Flows 

Naïve Bayes Full Flow Classifier Performance 

To develop the full flow Naïve Bayes classifier, the same approach was used. For 

Naïve Bayes a single configuration parameter was applied; specifically, “supervised 

discretization” was selected for the Naïve Bayes algorithm prior to training the classifier.  

Discretization is a method for transforming continuous values for variables, into discrete 

values, by creating intervals over the range of values for a specified variable ((Garcıa, 

Luengo, Sáez, López, & Herrera, 2013; H. Liu, Hussain, Tan, & Dash, 2002)). Research 

has shown that discretization may significantly improve the performance for certain 

machine learning algorithms, Naïve Bayes being a prominent example ((Al-Aidaroos, 

Bakar, & Othman, 2010; Y. Liu, Li, Guo, & Feng, 2008)). Certain variables for data used 

in these experiments had a broad range of values, e.g. 1 – 49,000, which impacted the 

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25,s10 0.672 0.668 0.668 0.675 0.683 0.651 0.653 0.682 0.679

n100,s50 0.848 0.734 0.718 0.724 0.72 0.757 0.729 0.742 0.739

n500s200 0.83 0.827 0.811 0.791 0.792 0.812 0.769 0.891 0.779

n1000,s500 0.881 0.885 0.917 0.894 0.895 0.822 0.822 0.896 0.889

0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8
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Netflix J48 FF - Precision 



 

 

64 

performance of the Naïve Bayes machine learning algorithms. Weka’s implementation of 

discretization was used for all experiments involving Naïve Bayes.  

In Figure 11 and 12, recall for the Naïve Bayes is presented. Results were similar to 

that of J48 in terms performance, although poor performance in certain cases – where 

partial flows of 25 and 100 packets were tested against the full flow Naïve Bayes 

classifier – is more pronounced for Netflix traffic. Recall for YouTube sub-flow sizes of 

1000 packets were well above 50% indicating the larger sub-flow sizes have a greater 

affiliation to statistics for full flows. Moreover, the performance for large YouTube sub-

flow size was relatively consistent even when the number of missing packets increased 

sharply from 60 to 200.  

  

 

Figure 11 Recall for YouTube Naïve Bayes Full-flow Classifier Tested with Partial 

Flows 

m0 m10 m20 m30 m40 m50 m60 m100 m200

N=25, S=10 0.01 0.008 0.008 0.009 0.011 0.009 0.009 0.009 0.009

N=100, S=50 0.082 0.075 0.086 0.083 0.082 0.081 0.078 0.088 0.1

N=500, S=100 0.455 0.424 0.405 0.416 0.398 0.081 0.381 0.408 0.445

N=1000, S=500 0.655 0.584 0.571 0.582 0.557 0.551 0.551 0.6 0.727
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YouTube Naive FF - Recall



 

 

65 

 

Figure 12 Recall for Netflix Naïve Bayes Full-flow Classifier Tested with Partial 

Flows  

 For precision, Figure 13 shows high values ranging from the low to high 90s for 

YouTube. Precision for Netflix attains values in the 90s as depicted in Figure 14. 

Although, performance for precision is reasonably high, recall is still relatively low for 

the Naïve Bayes full flow classifier. 

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25,s10 0.013 0.014 0.013 0.013 0.012 0.013 0.013 0.013 0.012

n100,s50 0.048 0.052 0.051 0.045 0.048 0.049 0.047 0.046 0.05

n500,s200 0.238 0.238 0.227 0.238 0.24 0.238 0.223 0.219 0.223

n1000,s500 0.33 0.33 0.321 0.325 0.324 0.343 0.346 0.328 0.333

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix Naive FF - Recall
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Figure 13 Precision for YouTube Naïve Bayes Full-flow Classifier Tested with 

Partial Flows  

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25, s10 0.992 0.984 0.977 0.97 0.962 0.985 0.974 0.97 0.985

n100, s50 0.947 0.938 0.929 0.95 0.961 0.964 0.959 0.925 0.946

n500, s100 0.906 0.902 0.886 0.923 0.91 0.964 0.927 0.91 0.905

n1000, s500 0.915 0.893 0.91 0.905 0.913 0.919 0.922 0.91 0.904
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0.90
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YouTube Naive FF - Precision
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Figure 14 Precision for Netflix Naïve Bayes Full-flow Classifier Tested with Partial 

Flows  

SVM Full Flow Classifier Performance 

 There are two separate implementations of SVM that can be executed using Weka: 

sequential minimal optimization (SMO) and libsvm. SMO was developed as part of the 

Weka platform and is available to users; whereas libsvm was developed by Yasser EL-

Manzalawy and is not integrated as part of the weka distribution. However, Weka does 

provide a wrapper class to run libsvm.jar from the Weka user interface. The difference in 

performance between SMO and libSVM is not significant based on preliminary testing of 

both algorithms with the same dataset; therefore, to maintain consistency in using Weka 

implementation of machine learning algorithms, SMO was used for all experiments 

requiring SVM. Moreover, the terms SMO and SVM are interchangeable throughout the 

rest of this document.  

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25,s10 0.57 0.658 0.625 0.592 0.627 0.598 0.578 0.562 0.571

n100,s50 0.742 0.652 0.631 0.585 0.629 0.647 0.621 0.62 0.648

n500,s200 0.675 0.605 0.657 0.68 0.684 0.627 0.61 0.778 0.631

n1000,s500 0.881 0.885 0.917 0.894 0.895 0.822 0.822 0.896 0.889
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Netflix Naive FF - Precision
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 Configuring SMO entailed selecting normalization of training attributes and the use 

of a polykernel. The requirement for normalization was due to poor performance of SVM 

given the wide variance of values for the attributes used to train the algorithms. SVM 

may be negatively impacted by features that have a broad range of values, e.g. attribute-1 

ranges from 1 – 4900, attribute-2 ranges 0 – 1 etc., across the total space of attributes 

((Ben-Hur & Weston, 2010)). Normalization can, in some cases, reduce the effects of 

attribute variance ((W. Wang, Zhang, Gombault, & Knapskog, 2009)). Accordingly, 

SVM was trained with normalized values for all experiments for this research.   

Figure 15 and 16 provides a summary of recall for the SVM model tested with 

various datasets of missing packets and varying window sizes: 25, 100, 500 and 1000 

packets.  
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Figure 15 Recall for YouTube SVM Full-flow Classifier Tested with Partial Flows  

 

Figure 16 Recall for Netflix SVM Full-flow Classifier Tested with Partial Flows  

 

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25, s10 0.044 0.036 0.035 0.037 0.033 0.036 0.037 0.035 0.036

n100, s50 0.148 0.139 0.141 0.139 0.131 0.138 0.136 0.142 0.143

n500, s200 0.6 0.425 0.395 0.451 0.424 0.431 0.43 0.426 0.44

n1000, s500 0.612 0.584 0.589 0.591 0.587 0.579 0.557 0.597 0.607
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YouTube SMO FF - Recall

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25,s10 0.019 0.019 0.019 0.018 0.018 0.019 0.019 0.019 0.019

n100,s50 0.062 0.066 0.065 0.06 0.063 0.064 0.061 0.066 0.063

n500,s200 0.223 0.226 0.207 0.207 0.206 0.212 0.208 0.202 0.211

n1000,s500 0.327 0.329 0.325 0.325 0.325 0.346 0.348 0.325 0.33
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Netflix SMO FF - Recall
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 Results for SVM are low – the highest value is ~0.61 for YouTube traffic and even 

lower for Netflix traffic at ~0.35 -- although the values are reasonably consistent across 

the spectrum of datasets with missing packets from 0 – 200. Datasets containing window 

sizes of 1000 (n1000, s500) packets, provide the highest recall percentage relative to 

other datasets, indicating that larger sub-flow sizes provide better alignment to full-flow 

statistics for SVM. Worst performance is attributed to datasets with small sub-flow sizes, 

with “n25, s10”, delivering the worst performance: ~0.035 for YouTube and ~0.019 for 

Netflix. 

 Precision for full flow SVM, as evidenced with previous full flow models, provides 

more consistent performance and higher performance levels. Figures 17 and 18 provide a 

summary of results for the full-flow trained SVM classifier tested with the same datasets.  

 

Figure 17 Precision for YouTube SVM Full-flow Classifier Tested with Partial 

Flows 

m0 m10 m20 m30 m40 m50 m60
m10

0

m20

0

n25, s10 0.699 0.734 0.693 0.704 0.685 0.679 0.709 0.706 0.703

n100, s50 0.674 0.609 0.676 0.673 0.653 0.669 0.673 0.644 0.653

n500, s200 0.857 0.623 0.636 0.641 0.606 0.613 0.628 0.643 0.78

n1000, s500 0.636 0.609 0.628 0.614 0.618 0.582 0.862 0.636 0.621

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

YouTube SMO FF - Precision 
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Figure 18 Precision for Netflix SVM Full-flow Classifier Tested with Partial Flows 

In some cases, precision for YouTube reaches levels well above 0.80, although 

precision drops off as additional packets are deleted from the datasets.  Netflix only 

reaches ~0.70, although uneven for certain values of “m”. Overall, precision results for 

SVM is similar to those of J48 and Naïve Bayes in terms of consistency and performance.  

Summary 

In this section testing confirmed that full flow classifiers have difficulty classifying 

traffic that contains partial flows. While in some cases, J48 C4.5 and Naïve Bayes, 

precision is high and consistent, better than 90%, recall is average at best (typically lower 

than ~0.70), and inconsistent. Classifiers with high precision are of little benefit when 

considering the large number of false negatives indicated by the low recall values, as this 

would lead to missing instances for target traffic when applied to real world 

m0 m10 m20 m30 m40 m50 m60 m100 m200

n25,s10 0.577 0.599 0.568 0.545 0.586 0.58 0.541 0.546 0.54

n100,s50 0.709 0.586 0.573 0.56 0.573 0.58 0.564 0.586 0.571

n500,s200 0.619 0.573 0.56 0.599 0.6 0.546 0.559 0.708 0.57

n1000,s500 0.696 0.697 0.7 0.704 0.704 0.547 0.551 0.71 0.714

0
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0.4

0.5

0.6
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0.8

0.9
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Netflix SMO FF - Precision 
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implementations. Next, classifiers trained on sub-flows were evaluated with the same test 

datasets to determine if performance improves. 

Sub-flow Trained Classifiers Applied to Partial Flows with Missing Packets 

In the previous experiment, classifiers trained on full flows were tested against 

partial flows with packets missing, which resulted in average to poor performance for 

recall in addition to uneven results. For this part of the evaluation, classifiers trained on 

sub-flows were used to classify the same data sets containing partial flows with missing 

packets. Figure 19 provides an overview of the experimental process.  

 

Figure 19 Process for Evaluating Sub-flow Models 

To perform this evaluation, a J48 C4.5, Naïve Bayes and SMO SVM models were 

trained for each of four sub-flow sizes, “m0,n25,s10”, “m0,n100,s50”, “m0,n500s200” 

and “m0,n1000, s500” as depicted in Figure 19.  The models were then tested against 

data sets of the same sub-flow size with missing packets from m0 to m200 (e.g. 

“m0,n25,s10” to “m200,n25,10”). This is an important distinction from the previous 

J48-m0,n25,s10

Naïve-m0,n25,s10

SMO-m0,n25,s10

m0,n25,s10

m10,n25,s10

m20,n25s10

m30,n25,s10

m40,n25,s10

m50,n25,s10

m60,n25,s10

m100,n25,s10

m200,n25,s10

…

Models

Test Files Results

m0,n25,s10 Models 

m0,n100,s50 Models 

m0,n500,s200 Models 

m0,n1000,s500 Models 
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experiment that confirmed that full flow classifiers yielded both inconsistent and average 

to poor recall. In this evaluation, determining if sub-flow models perform better than full 

flow classifiers as well as which sub-flow model and associated machine learning 

algorithm performs best was the objective.  

The process used for this experiment has real world application. In real world 

applications, collecting network traffic for a target sub-flow size for training a classifier, 

testing and evaluating new cases should be achievable relative to capturing the entire 

traffic flow from the beginning to end on real networks.  

Sub-flow “m0,n25,s10” Model Evaluation  

Table 7 provides a summary of results from testing a J48-m0,n25,s10, Naïve-

m0,n25,s10 and SMO-m0,n25,s10 model for YouTube traffic. Each model was tested 

with data of the same sub-flow size with missing packets from m0 to m200, respectively. 

Results for J48 and Naïve are more consistent across the data set for recall and precision 

than the full flow test previously performed, even as the number of missing packets 

increases. While there are lower values for precision in this experiment, recall is now 

significantly higher than the full flow models tested against n25,s10 datasets previously. 

Note Table 7 also contains F-measure values along with precision and recall. F-measure, 

is the harmonic mean for precision and recall and is defined as: 

2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙⁄ . A balanced F-measure was used for this 

research, and stipulated in the rest of this chapter to simplify comparison of results.  
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Table 7 YouTube m0,n25,s10 Model Results 

 J48-m0,n25,s10 Naïve-m0,n25,s10  SMO-m0,n25,s10  

YT Prec. Rec. F-Mea Prec. Rec. F-Mea Prec. Rec. F-Mea 

m0 0.669 0.987 0.798 0.666 0.778 0.936 0.64 0.974 0.773 

m10 0.668 0.984 0.796 0.665 0.78 0.942 0.642 0.979 0.776 

m20 0.665 0.982 0.793 0.662 0.779 0.945 0.637 0.98 0.772 

m30 0.67 0.983 0.797 0.667 0.782 0.944 0.645 0.981 0.778 

m40 0.662 0.983 0.791 0.661 0.779 0.949 0.637 0.98 0.772 

m50 0.658 0.981 0.788 0.658 0.776 0.946 0.633 0.979 0.769 

m60 0.667 0.98 0.794 0.666 0.781 0.945 0.641 0.981 0.776 

m100 0.667 0.986 0.796 0.665 0.782 0.948 0.643 0.981 0.776 

m200 0.667 0.985 0.795 0.664 0.78 0.946 0.641 0.978 0.774 

In order to quickly assess which algorithm performs best for n25,s10 sub-flow size, 

Figure 20 – 22 provide a graphical representation of precision and recall for the results in 

Table 7. Both J48 and Naïve Bayes have similar plots for precision and recall, where 

recall stays relatively stable in the mid 0.90s, and precision hovers at ~0.70. While these 

results are an improvement over the full flow test, the implication is that a sub-flow size 

of n25,s10 may not be best suited for classifying YouTube traffic.  

 

Figure 20 YouTube J48 m0,n25,s10 Model 

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.669 0.668 0.665 0.67 0.662 0.658 0.667 0.667 0.667

 Recall 0.987 0.984 0.982 0.983 0.983 0.981 0.98 0.986 0.985
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YouTube J48 m0,n25,s10
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Figure 21 YouTube Naive m0,n25,s10 Model 

 

Figure 22 YouTube SMO m0,n25,s10 Model 

For Netflix traffic, Table 8 summarizes the results for testing J48, Naïve Bayes, and 

SMO SVM. Testing for Netflix traffic for “m0,n25,s10” models followed the same 

process as YouTube. 

Table 8 Netflix m0,n25,s10 Model Results 

 J48-m0,n25,s10 Naïve-m0,n25,s10 SMO-m0,n25,s10 

NF Prec. Rec. F-Mea. Prec. Rec. F-Mea. Prec. Rec. F-Mea. 

m0 0.723 0.785 0.753 0.643 0.971 0.773 0.601 0.049 0.091 

m10 0.725 0.789 0.755 0.645 0.971 0.775 0.603 0.049 0.09 

m20 0.726 0.79 0.757 0.646 0.971 0.776 0.61 0.05 0.092 

m30 0.725 0.79 0.756 0.645 0.973 0.776 0.617 0.05 0.092 

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.666 0.665 0.662 0.667 0.661 0.658 0.666 0.665 0.664

 Recall 0.936 0.942 0.945 0.944 0.949 0.946 0.945 0.948 0.946
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YouTube Naive m0,n25,s10 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.869 0.601 0.622 0.616 0.618 0.593 0.868 0.617 0.613

 Recall 0.873 0.858 0.865 0.869 0.865 0.854 0.859 0.854 0.858

0
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0.2
0.3
0.4
0.5
0.6
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0.9
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YouTube SMO m0,n1000,s500
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m40 0.727 0.793 0.759 0.646 0.975 0.777 0.613 0.047 0.087 

m50 0.727 0.793 0.759 0.646 0.971 0.776 0.582 0.046 0.086 

m60 0.723 0.793 0.757 0.643 0.971 0.774 0.574 0.047 0.087 

m100 0.722 0.789 0.754 0.644 0.973 0.775 0.603 0.048 0.089 

m200 0.724 0.789 0.755 0.64 0.972 0.772 0.612 0.049 0.091 

Figures 23 - 25 provide a graphical representation of precision and recall in Table 8. 

As experienced previously with YouTube, the results are more consistent than full flow 

models; however, SVM performs particularly poorly for both precision and recall. J48 

and Naïve Bayes performed similarly with average to poor results, with the best results at 

~0.80 and ~0.72, respectively.  

 

Figure 23 Netflix J48 m0,n25,s10 Results 

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.723 0.725 0.726 0.725 0.727 0.727 0.723 0.722 0.724

 Recall 0.785 0.789 0.79 0.79 0.793 0.793 0.793 0.789 0.789
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Netflix J48 m0,n25,s10
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Figure 24 Netflix Naive m0,n25,s10 Results 

 

Figure 25 Netflix SMO m0,n25,s10 Results 

Sub-flow “m0,n100,s50” Model Evaluation  

 In this experiment results for the J48-m0,n100,s50, Naïve-m0,n100,s50 and SMO-

m0,n100,s50 for YouTube and Netflix traffic classes are presented. In general, the results 

in Table 9 are similar to those in Table 8, m0,n25,s10, in terms of consistency and F-

measure values for J48 and Naïve Bayes, although, SMO SVM improved significantly 

for this sub-flow size, n100,s50.  

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.643 0.645 0.646 0.645 0.646 0.646 0.643 0.644 0.64

 Recall 0.971 0.971 0.971 0.973 0.975 0.971 0.971 0.973 0.972
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Netflix Naive m0,n25,s10 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.601 0.603 0.61 0.617 0.613 0.582 0.574 0.603 0.612

 Recall 0.049 0.049 0.05 0.05 0.047 0.046 0.047 0.048 0.049
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0.6
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Netflix SMO m0,n25,s10 Model
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Table 9 YouTube m0,n100,s50 Model Results 

 J48-m0,n100,s50 Naïve-m0n100,s50 SMO-m0, n100,s50 

YT Prec. Rec. F-Mea. Prec. Rec. F-Mea. Prec. Rec. F-Mea. 

m0 0.712 0.936 0.809 0.673 0.946 0.787 0.662 0.891 0.76 

m10 0.721 0.93 0.812 0.682 0.958 0.796 0.669 0.894 0.765 

m20 0.723 0.912 0.807 0.688 0.952 0.799 0.674 0.887 0.766 

m30 0.708 0.909 0.796 0.665 0.953 0.784 0.652 0.883 0.75 

m40 0.717 0.907 0.801 0.678 0.941 0.788 0.665 0.881 0.758 

m50 0.711 0.902 0.795 0.678 0.944 0.789 0.668 0.889 0.763 

m60 0.706 0.899 0.791 0.67 0.941 0.783 0.66 0.885 0.756 

m100 0.694 0.918 0.791 0.657 0.953 0.778 0.642 0.899 0.749 

m200 0.712 0.919 0.802 0.674 0.953 0.79 0.662 0.898 0.762 

 Figures 26 – 28 provide graphical depictions of precision and recall. Note the 

improved precision for SVM in Figure 28: ~0.65 across the entire dataset. The plot also 

indicates all models are more consistent across the datasets. Overall J48,m100,s50 

performs the best for YouTube traffic at this sub-flow size.  
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Figure 26 YouTube J48 m0,n100,s50 Results 

 

Figure 27 YouTube Naive m0,n100,s50 Results 

 

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.712 0.721 0.723 0.708 0.717 0.711 0.706 0.694 0.712

 Recall 0.936 0.93 0.912 0.909 0.907 0.902 0.899 0.918 0.919
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YouTube J48 m0,n100,s50

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.673 0.682 0.688 0.665 0.678 0.678 0.67 0.657 0.674

 Recall 0.946 0.958 0.952 0.953 0.941 0.944 0.941 0.953 0.953
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YouTube Naive m0,n100,s50 Model
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Figure 28 YouTube SMO m0,n100,s50 Results 

 Netflix results are detailed in Table 10. Of note is the recall of 1 for SMO model. A 

model that produces a 100% recall may indicate a problem with either the convergence of 

the algorithm or possibly over fitting. Since the data used for SMO is the same as J48 and 

Naïve Bayes, it is more likely that the model is suspect.  

Table 10 Netflix m0,n100,s50 Model Results 

 J48-m0,n100,s50 Naive-m0,n100,s50 SMO-m0,n100,s50 

NT Prec Rec 
 F-

Mea 
Prec Rec 

F-

Mea 

597Pr

ec 
Rec F-Mea 

m0 0.792 0.992 0.88 0.784 0.98 0.871 0.604 1 0.753 

m10 0.661 0.991 0.793 0.65 0.98 0.782 0.434 1 0.605 

m20 0.653 0.989 0.786 0.641 0.979 0.775 0.429 1 0.601 

m30 0.661 0.989 0.792 0.649 0.978 0.78 0.432 1 0.603 

m40 0.652 0.989 0.786 0.64 0.98 0.774 0.426 1 0. 

m50 0.655 0.988 0.788 0.644 0.98 0.777 0.427 1 0.599 

 m60 0.655 0.988 0.787 0.643 0.977 0.776 0.432 1 0.604 

m100 0.652 0.99 0.786 0.639 0.977 0.773 0.427 1 0.598 

m200 0.659 0.99 0.792 0.648 0.977 0.779 0.428 1 0.599 

  

Figures 29 – 31 provide a graphical depiction of the precision and recall results 

detailed in Table 10. Visually, the patterns related to the consistency of the model track 

across model types; the performance is best for J48 for Netflix at this sub-flow size.  

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.662 0.669 0.674 0.652 0.665 0.668 0.66 0.642 0.662

 Recall 0.891 0.894 0.887 0.883 0.881 0.889 0.885 0.899 0.898
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YouTube SMO m0,n100,s50 Model
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Figure 29 Netflix J48 m0,n100,s50 Model 

 

Figure 30 Netflix Naïve m0,n100,s50 Model 

 

 

m0 m10 m20 m30 m40 m50 m60 100 m200

 Precision 0.792 0.661 0.653 0.661 0.652 0.655 0.655 0.652 0.659

 Recall 0.992 0.991 0.989 0.989 0.989 0.988 0.988 0.99 0.99
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Netflix J48 m0,n100,s50 Model

m0 m10 m20 m30 m40 m50 m60 100 m200

 Precision 0.784 0.65 0.641 0.649 0.64 0.644 0.643 0.639 0.648

 Recall 0.98 0.98 0.979 0.978 0.98 0.98 0.977 0.977 0.977
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Netflix Naive m0,n100,s50 Model
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Figure 31 Netflix m0,n100,s50 Model 

Sub-flow “m0,n500,s200” Model Evaluation  

 Table 11 provides results from testing J48, Naïve Bayes and SMO m0,n500,s200 

models. Recall and precision has increased with values reaching into the mid 80s and 90s 

for J48. The F-measure for J48 has also increase well beyond full flow models tested 

previously. Naïve Bayes closely tracks to J48 in performance. While SMO improved over 

m0,n25,s10 and m0,n100,s50 models, the results are still below average.   

Table 11 YouTube m0,n500,s200 Model Results 

 J48-m0,n500,s200 Naive-m0,n500,s200 SMO-m0,n500,s200 

YT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea 

m0  0.987 0.916 0.95 0.935 0.929 0.932 0.93 0.632 0.753 

m10 0.929 0.871 0.899 0.71 0.94 0.809 0.828 0.564 0.671 

m20 0.987 0.831 0.902 0.921 0.927 0.924 0.955 0.54 0.69 

m30 0.948 0.827 0.884 0.716 0.913 0.803 0.84 0.524 0.646 

m40 0.943 0.813 0.873 0.73 0.908 0.809 0.83 0.521 0.64 

m50 0.943 0.812 0.873 0.727 0.91 0.808 0.844 0.537 0.656 

m60 0.947 0.79 0.861 0.73 0.913 0.812 0.879 0.56 0.684 

m100 0.949 0.834 0.888 0.76 0.941 0.841 0.88 0.547 0.675 

m200 0.965 0.842 0.899 0.829 0.949 0.885 0.92 0.569 0.703 

 

m0 m10 m20 m30 m40 m50 m60 100 m200

 Precision 0.604 0.434 0.429 0.432 0.426 0.427 0.432 0.427 0.428

 Recall 1 1 1 1 1 1 1 1 1
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Netflix SMO m0,n100,s50 Model
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  Figure 32 provides a plot for the J48 “m0,n500,s200” model which illustrates 

good results for this model at this sub-flow size.  There is a slight perturbation at m20; 

however, the performance is relatively consistent throughout. Naïve Bayes, Figure 32, 

also has good performance. SMO SVM is worst at this sub-flow size relative to J48 and 

Naïve Bayes. Indications are that a sub-flow size of n500,s200 may be suitable for 

classifying YouTube traffic.  

 

Figure 32 J48 m0,n500,s200 Model 

 

Figure 33 Netflix Naïve m0,n500,s200 Model 

 

 

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.987 0.929 0.987 0.948 0.943 0.943 0.947 0.949 0.965

 Recall 0.916 0.871 0.831 0.827 0.813 0.812 0.79 0.834 0.842
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YouTube J48 m0,n500,s200 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.935 0.71 0.921 0.716 0.73 0.727 0.73 0.76 0.829

 Recall 0.929 0.94 0.927 0.913 0.908 0.91 0.913 0.941 0.949
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YouTube Naive m0,n500,s200 Model
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Figure 34 Netflix SMO m0,n500,s200 Model 

 Performance for J48, Naïve Bayes, and SMO for Netflix are detailed in Table 12.  

The results indicated that for a sub-flow size of “m0,n500,s200”, all three models 

performed about average – ~0.70 for J48 and Naïve, and relatively poor for SMO. 

Figures 35 – 37 provide a graphical representation of precision and recall.  In general 

results are consistent across the spectrum of datasets, with a slight uptick at m100. 

Table 12 Netflix m0,n500,s200 Model Results   

 J48-m0,n500,s200 Naive-m0,n500,s200 SMO-m0,n500,s200 

NT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea 

m0 0.716 0.99 0.831 0.663 0.989 0.794 0.451 1 0.621 

m10 0.719 0.991 0.834 0.663 0.983 0.792 0.441 1 0.612 

m20 0.687 0.977 0.807 0.643 0.977 0.775 0.432 1 0.603 

m30 0.687 0.983 0.809 0.64 0.972 0.772 0.425 0.999 0.596 

m40 0.688 0.983 0.809 0.641 0.972 0.773 0.425 0.999 0.596 

m50 0.702 0.988 0.821 0.654 0.972 0.782 0.424 0.999 0.595 

m60 0.692 0.968 0.807 0.65 0.966 0.777 0.431 0.999 0.602 

m100 0.824 0.979 0.895 0.785 0.969 0.867 0.597 1 0.748 

m200 0.695 0.974 0.811 0.651 0.964 0.777 0.432 1 0.604 

 

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.93 0.828 0.955 0.84 0.83 0.844 0.879 0.88 0.92

 Recall 0.632 0.564 0.54 0.524 0.521 0.537 0.56 0.547 0.569
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YouTube SMO m0,n500,s200 Model
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Figure 35 Netflix J48 m0,n500,s200 Model 

 

Figure 36 Netflix Naïve m0,n500,s200 Model 

 

 

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.716 0.719 0.687 0.687 0.688 0.702 0.692 0.824 0.695

 Recall 0.99 0.991 0.977 0.983 0.983 0.988 0.968 0.979 0.974
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Netflix J48 m0,n500,s200 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.663 0.663 0.643 0.64 0.641 0.654 0.65 0.785 0.651

 Recall 0.989 0.983 0.977 0.972 0.972 0.972 0.966 0.969 0.964
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Netflix Naive m0,n500,s200 Model
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Figure 37 Netflix SMO m0,n500,s200 Model 

Sub-flow “m0,n1000,s500” Model Evaluation  

 Given the trend toward increased performance as sub-flow size increases, the 

expectation is that “m0,n1000,s500” for J48, Naïve Bayes and SMO models should 

continue to improve in terms of precision and recall. Table 13 indicates that performance 

has increased appreciably for the YouTube traffic class with precision and recall of ~0.90 

and ~0.92, respectively. Moreover, the models performance is relatively stable across the 

9 different test datasets with missing packets.  

Table 13 YouTube m0,n1000,s500 Model Results 

 J48-m0,n1000,n500 Naïve-m0,n1000,n500 SMO-m0,n1000,n500 

YT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea 

m0 0.97 0.983 0.976 0.939 0.963 0.951 0.869 0.873 0.871 

m10 0.882 0.958 0.919 0.773 0.937 0.847 0.601 0.858 0.707 

m20 0.915 0.934 0.925 0.781 0.936 0.852 0.622 0.865 0.723 

m30 0.91 0.933 0.921 0.794 0.936 0.859 0.616 0.869 0.721 

m40 0.912 0.922 0.917 0.779 0.927 0.847 0.618 0.865 0.721 

m50 0.924 0.927 0.926 0.808 0.929 0.865 0.593 0.854 0.7 

m60 0.975 0.885 0.928 0.937 0.933 0.935 0.868 0.859 0.863 

m100 0.891 0.941 0.915 0.782 0.95 0.858 0.617 0.854 0.716 

m200 0.912 0.926 0.919 0.792 0.94 0.86 0.613 0.858 0.715 

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.451 0.441 0.432 0.425 0.425 0.424 0.431 0.597 0.432

 Recall 1 1 1 0.999 0.999 0.999 0.999 1 1
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Netflix SMO m0,n500,s200 Model
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 As depicted in Figure 38, J48 has excellent and consistent performance overall. The 

implication being that J48-m0,n1000,s500 is well suited for classifying YouTube traffic 

with missing packets. Naïve Bayes, Figure 39, performed well with precision of ~0.80 

and recall of ~0.90; SMO, Figure 40, performed below average with precision of ~0.60.  

 
Figure 38 YouTube J48 m0,n1000,s500 Model 

 

 

Figure 39 YouTube Naive m0,n1000,s500 Model 

 

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.97 0.882 0.915 0.91 0.912 0.924 0.975 0.891 0.912

 Recall 0.983 0.958 0.934 0.933 0.922 0.927 0.885 0.941 0.926
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YouTube J48 m0,n1000,s500 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.939 0.773 0.781 0.794 0.779 0.808 0.937 0.782 0.792

 Recall 0.963 0.937 0.936 0.936 0.927 0.929 0.933 0.95 0.94
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YouTube Naive m0,n1000,s500 Model
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Figure 40 YouTube SMO m0,n1000,s500 Model 

 Table 14 details results for Netflix J48, Naïve Bayes and SMO for sub-flow 

m0,n1000,s500. J48 and Naïve Bayes performed very well with similar values for 

precision and recall: ~0.85 and ~0.92 across the datasets. F-measure values J48 and 

Naïve Bayes hover at ~0.88 and ~0.85, respectively, which suggest J48 performs slightly 

better that Naïve Bayes. 

Table 14 Netflix m0,n1000,s500 Model Results 

 J48-m0,n1000,s500 Naive-m0,n1000,s500 SMO-m0,n1000,s500 

NF Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea 

m0 0.859 0.927 0.892 0.812 0.927 0.865 0.609 0.913 0.731 

m10 0.859 0.927 0.892 0.812 0.925 0.865 0.61 0.913 0.731 

m20 0.879 0.924 0.901 0.831 0.934 0.88 0.593 0.919 0.721 

m30 0.87 0.943 0.905 0.824 0.941 0.879 0.611 0.911 0.732 

m40 0.87 0.941 0.904 0.823 0.943 0.879 0.612 0.912 0.732 

m50 0.789 0.928 0.853 0.708 0.928 0.803 0.448 0.888 0.595 

m60 0.787 0.928 0.852 0.708 0.928 0.803 0.448 0.891 0.596 

m100 0.866 0.936 0.9 0.821 0.941 0.877 0.612 0.911 0.732 

m200 0.869 0.92 0.894 0.821 0.915 0.865 0.624 0.91 0.741 

 

 Figures 41 – 43 provide a graphical overview of precision and recall for each model. 

The graph illustrates how closely the plots from all 3 models track, although the 

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.869 0.601 0.622 0.616 0.618 0.593 0.868 0.617 0.613

 Recall 0.873 0.858 0.865 0.869 0.865 0.854 0.859 0.854 0.858

0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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YouTube SMO m0,n1000,s500 Model
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magnitude of each value is quite different. All models experience a small depression 

when missing packets reach 50 and 60. The loss of packets m50 and m60 is affecting 

sub-flow statistics, which impacts the classification of both datasets. As the number of 

missing packets increases the effect is lessened because most of the initial packets that 

are used to sync communications are most likely outside the sub-flow window. Overall 

the plots indicate J48 provides more consistent and higher performance relative to other 

models for the n1000,s500 sub-flow size for the Netflix traffic class. 

 

Figure 41 Netflix J48 m0,n1000,s500 Model 

 

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.859 0.859 0.879 0.87 0.87 0.789 0.787 0.866 0.869

 Recall 0.927 0.927 0.924 0.943 0.941 0.928 0.928 0.936 0.92
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Netflix J48 m0,n1000,s500 Model
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Figure 42 Netflix Naive m0,n1000,s500 Model 

 

Figure 43 Netflix SMO m0,n1000,s500 Model 

Summary  

 In this section, results were presented for sub-flow trained classifiers tested with 

datasets of the same sub-flow size with missing packets. Using models and datasets of the 

same sub-flow size was a direct outcome from evaluation of full flow models with 

different sub-flow sizes which returned poor results. Furthermore, testing of different 

machine learning algorithms (J48, Naïve Bayes, and SMO for 4 different sub-flow sizes, 

“n25,s10”, “n100,s50”, “n500,s200”, and “n1000,s500”), in order to identify the best sub-

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.812 0.812 0.831 0.824 0.823 0.708 0.708 0.821 0.821

 Recall 0.927 0.925 0.934 0.941 0.943 0.928 0.928 0.941 0.915
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Netflix Naive m0,n1000,s500 Model

m0 m10 m20 m30 m40 m50 m60 m100 m200

 Precision 0.609 0.61 0.593 0.611 0.612 0.448 0.448 0.612 0.624

 Recall 0.913 0.913 0.919 0.911 0.912 0.888 0.891 0.911 0.91

0
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0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Netflix SMO m0,n1000,s500
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flow classifier, in terms of performance, for YouTube and Netflix was also performed. 

For both YouTube and Netflix traffic classes the “J48-m0,n1000,s500” model performed 

best.  

 The key outcome from this evaluation is that a sub-flow size along with an ML 

algorithm have been identified that provides very good (J48 for Netflix) and in some 

cases excellent (J48 for YouTube traffic) overall performance, while eliminating the need 

for collecting data for the entire network flow. In the next section, ensemble techniques 

were applied to each algorithm – J48, Naïve Bayes and SMO SVM – to determine if 

performance, precision, and recall, can be improved.  

Evaluation of Ensemble Algorithms Applied to Sub-flow Classifiers  

 In the previous experiments, it was demonstrated that sub-flow classifiers performed 

substantially better than full flow classifiers on traffic with missing packets. Results 

presented in this section evaluated the effect of ensemble techniques on sub-flow 

classifiers, as exhibited through improved performance, precision and recall. Bagging and 

AdaBoost were the two ensemble techniques evaluated. Both Bagging and AdaBoost 

were applied to J48, Naïve Bayes, and SMO SVM for each traffic class and then tested 

with the same 9 datasets as the non-ensemble classifiers. The outcome of these 

experiments identified the best sub-flow classifier for YouTube and Netflix among all the 

sub-flow classifiers tested for this research.  

YouTube Sub-flow Bagging Classifiers 

 Table 15 and Figure 44 (F-Measure only) provides a tabular and graphical view of 

results for Bagging as applied to J48 decision tree algorithm. Plotting F-measure 

simplifies comparison across all Bagging models since the objective is identifying the 
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best single model for YouTube and Netflix. Bagging applied to “m0,n1000,s500” 

provides excellent results with values in the mid-nineties (~.94) across each data set even 

when missing packets increases. These results are also higher than the non-ensemble 

model J48m0,n1000,s500 previously tested.  

Table 15 YouTube Bagging-J48 Results 

 

 Figure 44 graphically depicts F-measure for the results found in Table 15. F-measure 

is consistently above 0.93 which confirms excellent results for the Bag-

J48m0,n1000,s500 model. All Bagging J48 models perform consistently for all datasets 

of missing packets and sub-flow sizes. 
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Figure 44 YouTube Bagging-J48 F-Measure 

 Table 16 and Figure 45 provide results for Bagging applied to Naïve Bayes. Again 

results show improvement over the non-ensemble Naïve Bayes models tested previously. 

However, does not rise to the performance of the Bag-J48m0,n1000,s500 (Figure 44). 

Table 16 YouTube Bagging-Naive Results  

 
 

m0 m10 m20 m30 m40 m50 m60 m100 m200

Bag-J48m0,n25,s10 0.799 0.798 0.795 0.799 0.794 0.79 0.796 0.798 0.797

Bag-J48m0,n100,s50 0.814 0.817 0.815 0.801 0.803 0.803 0.802 0.795 0.809

Bag-J48m0,n500,s200 0.96 0.91 0.908 0.885 0.881 0.881 0.879 0.91 0.91

Bag-J48m0,n1000,s500 0.98 0.938 0.943 0.937 0.934 0.942 0.962 0.929 0.93
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YouTube Bag-J48 F-Measure

	YOUTUBE

YT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.666 0.939 0.779 0.675 0.952 0.79 0.936 0.93 0.933 0.939 0.961 0.95

m10 0.666 0.944 0.781 0.682 0.958 0.797 0.712 0.943 0.812 0.773 0.939 0.848

m20 0.663 0.945 0.779 0.689 0.952 0.799 0.922 0.925 0.924 0.778 0.94 0.851

m30 0.668 0.946 0.783 0.666 0.955 0.785 0.715 0.915 0.803 0.79 0.936 0.857

m40 0.661 0.95 0.78 0.679 0.945 0.79 0.732 0.911 0.812 0.777 0.927 0.846

m50 0.658 0.947 0.777 0.678 0.946 0.79 0.731 0.918 0.814 0.805 0.931 0.863

m60 0.666 0.946 0.782 0.67 0.94 0.782 0.729 0.916 0.812 0.935 0.938 0.937

m100 0.666 0.949 0.783 0.657 0.957 0.779 0.761 0.948 0.844 0.782 0.953 0.859

m200 0.665 0.948 0.782 0.675 0.956 0.792 0.829 0.947 0.884 0.79 0.939 0.858

Bag-Naivem0,n25,s10 Bag-Naivem0,n100,s50 Bag-Naivem0,n500,s200 Bag-Naivem0,n1000,s500
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Figure 45 YouTube Bagging-Naive F-Measure 

 Finally, Bagging is applied to SMO and results in the poorest performance of all 

Bagging models. Moreover, non-SMO models perform better overall, which indicates 

Bagging did not improve SMO precision and recall. 

Table 17 YouTube Bagging-SMO Results  

 

m0 m10 m20 m30 m40 m50 m60 m100 m200

Bag-Naivem0,n25,s10 0.779 0.781 0.779 0.783 0.78 0.777 0.782 0.783 0.782

Bag-Naivem0,n100,s50 0.79 0.797 0.799 0.785 0.79 0.79 0.782 0.779 0.792

Bag-Naivem0,n500,s200 0.933 0.812 0.924 0.803 0.812 0.814 0.812 0.844 0.884

Bag-Naivem0,n1000,s500 0.95 0.848 0.851 0.857 0.846 0.863 0.937 0.859 0.858
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YouTube Bag-Naive F-Measure

YT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.64 0.97 0.77 0.66 0.89 0.76 0.928 0.622 0.745 0.87 0.873 0.872

m10 0.64 0.98 0.78 0.67 0.89 0.765 0.829 0.562 0.67 0.602 0.858 0.708

m20 0.64 0.98 0.77 0.67 0.89 0.766 0.955 0.54 0.69 0.624 0.863 0.725

m30 0.65 0.98 0.78 0.65 0.88 0.751 0.84 0.526 0.647 0.618 0.867 0.722

m40 0.64 0.98 0.77 0.67 0.88 0.758 0.825 0.52 0.638 0.62 0.865 0.722

m50 0.63 0.98 0.77 0.67 0.89 0.763 0.844 0.537 0.656 0.595 0.854 0.702

m60 0.64 0.98 0.78 0.66 0.89 0.757 0.873 0.56 0.682 0.868 0.855 0.861

m100 0.64 0.98 0.78 0.64 0.9 0.75 0.876 0.543 0.67 0.619 0.852 0.717

m200 0.64 0.98 0.77 0.66 0.9 0.762 0.918 0.564 0.698 0.615 0.854 0.715

Bag-

SMOm0,n25,s10

Bag-

SMOm0,n100,s50

Bag-

SMOm0,n500,s200

Bag-

SMOm0,n1000,s50
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Figure 46 YouTube Bagging-Naive F-Measure 

YouTube Sub-flow ADA Classifiers  

 Table 18 provides a tabular view, and Figure 46 the graphical view, of results from 

applying AdaBoost to J48 algorithm. Note ADA-J48m0,n1000,s500 model has the 

highest performance of all models for YouTube with F-measure values between 0.94 and 

0.98 across the range of m0 – m200 datasets. 

Table 18 YouTube ADA-J48 Results  

 

m0 m10 m20 m30 m40 m50 m60 m100 m200

Bag-SMOm0,n25,s10 0.773 0.776 0.772 0.778 0.772 0.769 0.776 0.776 0.774

Bag-SMOm0,n100,s50 0.76 0.765 0.766 0.751 0.758 0.763 0.757 0.75 0.762

Bag-SMOm0,n500,s200 0.745 0.67 0.69 0.647 0.638 0.656 0.682 0.67 0.698

Bag-SMOm0,n1000,s500 0.872 0.708 0.725 0.722 0.722 0.702 0.861 0.717 0.715
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YouTube Bag-SMO F-Measure

	YOUTUBE

YT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.67 0.99 0.8 0.71 0.96 0.81 0.98 0.9 0.94 0.98 0.98 0.98

m10 0.67 0.98 0.8 0.72 0.96 0.82 0.92 0.91 0.92 0.93 0.97 0.95

m20 0.67 0.98 0.79 0.72 0.94 0.81 0.98 0.86 0.92 0.96 0.94 0.95

m30 0.67 0.98 0.8 0.7 0.95 0.81 0.93 0.88 0.9 0.96 0.94 0.95

m40 0.67 0.98 0.79 0.71 0.93 0.81 0.93 0.87 0.9 0.95 0.93 0.94

m50 0.66 0.98 0.79 0.71 0.93 0.8 0.93 0.86 0.89 0.96 0.94 0.95

m60 0.67 0.98 0.8 0.71 0.93 0.8 0.92 0.84 0.88 0.99 0.95 0.97

m100 0.67 0.99 0.8 0.69 0.93 0.79 0.95 0.88 0.91 0.95 0.94 0.94

m200 0.67 0.99 0.8 0.71 0.94 0.81 0.96 0.86 0.91 0.95 0.94 0.95

ADA-J48 

m0,n25,s10

ADA-J48 

m0,n100,s50

ADA-J48 

m0,n500,s200

ADA-J48 

m0,n1000,s500
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 Figure 47 confirms of the excellent performance and consistency of ADA-

J48m0,n1000,s500 model in comparison to other ADA-J48  models of different sub-flow 

sizes.  The performance of ADA-J48 are even higher than Bag-J48,n1000,s500 model 

previously tested. 

 

Figure 47 YouTube ADA-J48 F-Measure 

 Table 19 provides results from applying AdaBoost to Naïve Bayes for multiple sub-

flows. Of significance is the performance of the ADA-Naïve m0,n1000,s500 model, 

which has F-measure values between ~0.92 and 0.97 across the m0 – m200 datasets. 

Similar to ADA-J48, ADA complements Naïve Bayes well, and is only slightly less 

effective than AdaBoost applied to J48. Figure 48 graphically confirms the findings for 

the ADA-Naïve m0,n1000,s500 model. 

m0 m10 m20 m30 m40 m50 m60 m100 m200

ADA-J48m0,n25,s10 0.799 0.798 0.793 0.798 0.794 0.789 0.795 0.797 0.797

ADA-J48m0,n100,s200 0.812 0.818 0.814 0.806 0.807 0.801 0.804 0.794 0.807

ADA-J48m0,n500,s200 0.937 0.917 0.92 0.903 0.898 0.893 0.876 0.913 0.907

ADA-J48m0,n1000,s500 0.981 0.948 0.948 0.95 0.941 0.952 0.966 0.942 0.945
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YouTube ADA-J48 F-Measure
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Table 19 YouTube ADA-Naive Results 

 

 

Figure 48 YouTube ADA-Naive F-Measure 

 Table 20 list results for AdaBoost applied to SMO. Performance for ADA-SMO is 

relatively poor when compared to ADA-J48 and ADA-Naïve models. Moreover, 

AdaBoost only slightly improves SMO SVM relative to non-ensemble SVM models 

tested previously. Figure 49 graphically depicts these findings.    

 

 

	YOUTUBE

YT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.677 0.934 0.785 0.74 0.805 0.771 0.983 0.896 0.937 0.958 0.988 0.973

m10 0.676 0.938 0.786 0.758 0.802 0.779 0.923 0.91 0.917 0.882 0.983 0.93

m20 0.67 0.931 0.779 0.754 0.794 0.773 0.984 0.864 0.92 0.888 0.972 0.928

m30 0.676 0.933 0.784 0.742 0.784 0.763 0.929 0.877 0.903 0.892 0.969 0.929

m40 0.669 0.937 0.781 0.75 0.785 0.767 0.926 0.871 0.898 0.879 0.957 0.917

m50 0.667 0.935 0.779 0.755 0.786 0.771 0.925 0.863 0.893 0.892 0.958 0.924

m60 0.674 0.933 0.782 0.74 0.771 0.755 0.922 0.835 0.876 0.97 0.964 0.967

m100 0.674 0.938 0.784 0.732 0.792 0.761 0.946 0.883 0.913 0.873 0.969 0.918

m200 0.672 0.933 0.782 0.752 0.788 0.77 0.957 0.863 0.907 0.869 0.974 0.918

ADA-

Naivem0,n25,s10

ADA-

Naivem0,n100,s50

ADA-

Naivem0,n500,s200

ADA-

Naivem0,n1000,s500

m0 m10 m20 m30 m40 m50 m60 m100 m200

ADA-Naivem0,n25,s10 0.785 0.786 0.779 0.784 0.781 0.779 0.782 0.784 0.782

ADA-Naivem0,n100,s50 0.771 0.779 0.773 0.763 0.767 0.771 0.755 0.761 0.77

ADA_Naivem0,n500,s200 0.937 0.917 0.92 0.903 0.898 0.893 0.876 0.913 0.907

ADA-Naivem0,n1000,s500 0.973 0.93 0.928 0.929 0.917 0.924 0.967 0.918 0.918
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YouTube ADA-Naive F-Measure
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Table 20 YouTube ADA-SMO Results 

 

 

Figure 49 YouTube ADA-SMO F-Measure 

Netflix Sub-flow Bagging Models 

In this portion of the research, results from Bagging are presented to determine if 

ensemble techniques improved on previous findings for non-ensemble J48, Naïve Bayes 

and SMO models for Netflix traffic data. Table 21 details results for Bagging applied to 

J48 for Netflix traffic. Bag-J48-m0,n1000,s500 model’s performance is good relative to 

	YOUTUBE

YT Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.645 0.967 0.774 0.667 0.851 0.748 0.929 0.53 0.675 0.877 0.872 0.874

m10 0.646 0.972 0.776 0.678 0.852 0.755 0.821 0.559 0.665 0.62 0.858 0.72

m20 0.641 0.971 0.772 0.683 0.847 0.756 0.953 0.535 0.685 0.638 0.865 0.734

m30 0.648 0.971 0.777 0.662 0.844 0.742 0.834 0.52 0.64 0.633 0.868 0.732

m40 0.641 0.972 0.772 0.677 0.846 0.752 0.825 0.514 0.633 0.633 0.863 0.731

m50 0.636 0.971 0.769 0.677 0.853 0.755 0.84 0.532 0.651 0.616 0.853 0.715

m60 0.645 0.972 0.776 0.669 0.842 0.745 0.871 0.553 0.676 0.875 0.857 0.866

m100 0.645 0.972 0.776 0.649 0.858 0.739 0.877 0.541 0.67 0.635 0.852 0.728

m200 0.644 0.969 0.774 0.671 0.852 0.751 0.92 0.56 0.696 0.627 0.858 0.724

ADA-

SMOm0,n25,s10

ADA-

SMOm0,n100,s50

ADA-

SMOm0,n500,s200

ADA-

SMOm0,n1000,s500

m0 m10 m20 m30 m40 m50 m60 m100 m200

ADA-SMOm0,n25,s10 0.774 0.776 0.772 0.777 0.772 0.769 0.776 0.776 0.774

ADA-SMOm0,n100,n50 0.748 0.755 0.756 0.742 0.752 0.755 0.745 0.739 0.751

ADA-SMOm0,n500,s200 0.675 0.665 0.685 0.64 0.633 0.651 0.676 0.67 0.696

ADA-SMOm0,n1000,s500 0.874 0.72 0.734 0.732 0.731 0.715 0.866 0.728 0.724
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the other Bag J48 models; however, it is just slightly better than the non-ensemble J48 

models tested previously with F-measure values between 0.86 - 0.90. Figure 50 

graphically depicts F-measure for each Bagging model. 

Table 21 Netflix Bag-J48 Results 

 

Figure 50 Netflix Bag-J48 F-Measure 

 Table 22 lists the results from applying Bagging to Naïve Bayes for Netflix traffic. 

Results indicate that Bag-Naïve-m0,n100,s500 model performs best relative to other 

Bagging Naïve Bayes models with F-measure scores ~0.87; however, the Netflix Bag-

	NF

NF Prec Rec  F-Mea Prec Rec  F-Mea Prec Rec  F-Mea Prec Rec  F-Mea

m0 0.723 0.785 0.753 0.793 0.993 0.882 0.805 0.905 0.852 0.859 0.933 0.895

m10 0.725 0.788 0.755 0.664 0.991 0.795 0.804 0.906 0.852 0.86 0.937 0.897

m20 0.726 0.791 0.757 0.657 0.988 0.789 0.754 0.89 0.816 0.876 0.926 0.9

m30 0.726 0.789 0.757 0.664 0.988 0.794 0.766 0.889 0.823 0.873 0.948 0.909

m40 0.728 0.793 0.759 0.656 0.989 0.789 0.767 0.891 0.824 0.873 0.949 0.91

m50 0.728 0.793 0.759 0.657 0.988 0.789 0.784 0.898 0.837 0.79 0.948 0.862

m60 0.724 0.793 0.757 0.658 0.988 0.79 0.774 0.879 0.823 0.792 0.948 0.863

m100 0.723 0.789 0.754 0.655 0.991 0.789 0.883 0.887 0.885 0.872 0.945 0.907

m200 0.724 0.788 0.755 0.662 0.99 0.793 0.75 0.883 0.811 0.872 0.927 0.899

Bag-J48-

m0,n1000,s500

Bag-J48-

m0,n25,s10

Bag-J48-

m0,n100,s50

Bag-J48-

m0,n500,s200

m0 m10 m20 m30 m40 m50 m60 m100 m200

Bag-J48m0,n25,s10 0.753 0.755 0.757 0.757 0.759 0.759 0.757 0.754 0.755

Bag-J48m0,n100,s50 0.882 0.795 0.789 0.794 0.789 0.789 0.79 0.789 0.793

Bag-J48m0,n500,s50 0.852 0.852 0.816 0.823 0.824 0.837 0.823 0.885 0.811

Bag-J48m0,n1000,s500 0.895 0.897 0.9 0.909 0.91 0.862 0.863 0.907 0.899
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J48-m0,n1000,s500 model, Figure 50, exhibits better performance overall with F-

measure values ~0.90. 

 

Table 22 Netflix Bag-Naive Results 

 

 

Figure 51 Netflix Bag-Naive F-Measure 

Lastly, Table 23 lists the results from applying Bagging to SMO for Netflix traffic 

class. Performance is good for the Bag-SMO-m0,n1000,s500 model; however, the 

performance of Bag-J48-m0,n1000,s500 is still better in comparison. Of note, Bagging 

	NF

NF Prec  Rec  F-MeaPrec  Rec  F-MeaPrec  Rec  F-MeaPrec  Rec  F-Mea

m0 0.65 0.97 0.78 0.78 0.98 0.87 0.73 0.9 0.81 0.81 0.93 0.87

m10 0.65 0.97 0.78 0.65 0.98 0.78 0.73 0.9 0.8 0.81 0.93 0.87

m20 0.65 0.97 0.78 0.64 0.98 0.77 0.7 0.88 0.78 0.83 0.93 0.87

m30 0.65 0.97 0.78 0.65 0.98 0.78 0.69 0.88 0.77 0.82 0.94 0.88

m40 0.65 0.97 0.78 0.64 0.98 0.77 0.69 0.88 0.78 0.82 0.94 0.88

m50 0.65 0.97 0.78 0.64 0.98 0.77 0.73 0.87 0.79 0.7 0.93 0.8

m60 0.65 0.97 0.77 0.64 0.98 0.78 0.72 0.87 0.79 0.7 0.93 0.8

m100 0.65 0.97 0.78 0.64 0.98 0.77 0.83 0.87 0.85 0.82 0.94 0.88

m200 0.64 0.97 0.77 0.65 0.98 0.78 0.7 0.85 0.76 0.82 0.92 0.87

Bag-Naïve-

m0,n1000,s500

Bag-Naïve-

m0,n25,s10

Bag-Naïve-

m0,n100,s50

Bag-Naïve-

m0,n500,s200

m0 m10 m20 m30 m40 m50 m60 m100 m200

Bag-Naivem0,n25,s10 0.775 0.776 0.777 0.777 0.778 0.777 0.774 0.775 0.773

Bag-Naivem0,n100,s50 0.869 0.781 0.774 0.778 0.772 0.774 0.775 0.77 0.777

Bag-Naivem0,n500,s200 0.805 0.802 0.779 0.774 0.776 0.793 0.785 0.851 0.764

Bag-Naivem0,n1000,s500 0.865 0.866 0.874 0.875 0.875 0.801 0.801 0.875 0.867
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Netflix Bag-Naive F-Measure 
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significantly improved SMO results over non-ensemble SMO previously tested for the 

Netflix traffic class.  

Table 23 Netflix Bag-SMO Results 

 

 

Figure 52 Netflix Bag-SMO F-Measure 

Netflix Sub-flow AdaBoost Classifiers 

 Now that Bagging has been evaluated, the results from testing AdaBoost on the same 

Netflix traffic data are presented. Table 24 provides results from applying AdaBoost to 

J48. The best performing model for ADA-J48 is ADA-J48-m0,n1000,s50. Additionally, 

	NF

NF Prec Rec  F-Mea Prec Rec  F-Mea Prec Rec  F-Mea Prec Rec  F-Mea

m0 0.598 0.052 0.096 0.6 1 0.75 0.73 0.9 0.81 0.809 0.929 0.865

m10 0.608 0.053 0.097 0.43 1 0.61 0.73 0.9 0.8 0.808 0.932 0.866

m20 0.604 0.052 0.097 0.43 1 0.6 0.7 0.88 0.78 0.827 0.928 0.874

m30 0.612 0.052 0.097 0.43 1 0.6 0.69 0.88 0.77 0.819 0.94 0.875

m40 0.614 0.051 0.094 0.43 1 0.6 0.69 0.88 0.78 0.818 0.941 0.875

m50 0.582 0.049 0.09 0.43 1 0.6 0.73 0.87 0.79 0.702 0.933 0.801

m60 0.573 0.049 0.091 0.43 1 0.6 0.72 0.87 0.79 0.702 0.933 0.801

m100 0.597 0.051 0.094 0.43 1 0.6 0.83 0.87 0.85 0.818 0.94 0.875

m200 0.61 0.052 0.096 0.43 1 0.6 0.7 0.85 0.76 0.817 0.923 0.867

Bag-SMO-

m0,n1000,s500

Bag-SMO-

m0,n1000,s500

Bag-SMO-

m0,n100,s50

Bag-SMO-

m0,n500,s200

m0 m10 m20 m30 m40 m50 m60 m100 m200

Bag-SMOm0,n25,s10 0.096 0.097 0.097 0.097 0.094 0.09 0.091 0.094 0.096

Bag-SMOm0,n100,s50 0.753 0.605 0.601 0.603 0.597 0.599 0.604 0.598 0.599

Bag-SMOm0,n500,s200 0.805 0.802 0.779 0.774 0.776 0.793 0.785 0.851 0.764

Bag-SMOm0,n1000,s500 0.865 0.866 0.874 0.875 0.875 0.801 0.801 0.875 0.867
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Netflix Bag-SMO F-Meassure
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results from the ADA-J48-m0,n1000,s500 model in comparison to Bag-J48-

m0,n1000,s500 are essentially the same in terms of F-measure. Either model is an 

improvement over non-ensemble models previously tested. Figure 53 provides a 

graphical depiction of F-measure for the ADA J48 model for the four different sub-flow 

sizes.  

Table 24 Netflix ADA-J48 Results 

 

 

	NF

NF Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea Prec Rec F-Mea

m0 0.72 0.78 0.75 0.604 1 0.753 0.811 0.894 0.85 0.857 0.936 0.895

m10 0.73 0.79 0.76 0.434 1 0.605 0.806 0.894 0.848 0.858 0.932 0.893

m20 0.73 0.79 0.76 0.429 1 0.601 0.765 0.879 0.818 0.881 0.926 0.903

m30 0.73 0.79 0.76 0.432 1 0.603 0.773 0.881 0.823 0.875 0.95 0.911

m40 0.73 0.79 0.76 0.426 1 0.597 0.774 0.88 0.824 0.875 0.949 0.911

m50 0.73 0.79 0.76 0.427 1 0.599 0.788 0.878 0.831 0.794 0.94 0.861

m60 0.72 0.79 0.76 0.432 1 0.604 0.779 0.858 0.817 0.792 0.94 0.86

m100 0.72 0.79 0.75 0.427 1 0.598 0.885 0.865 0.875 0.869 0.941 0.904

m200 0.73 0.79 0.76 0.428 1 0.599 0.765 0.872 0.815 0.869 0.93 0.898

ADA-J48-

m0,n1000,s500

  ADA-J48-

m0,n25,s10

    ADA-J48-

m0,n100,s50

ADA-J48-

m0,n500,s200

m0 m10 m20 m30 m40 m50 m60 m100 m200

ADA-J48m0,25,s10 0.753 0.755 0.756 0.756 0.759 0.758 0.756 0.754 0.755

ADA-J48m0,n100,s50 0.753 0.605 0.601 0.603 0.597 0.599 0.604 0.598 0.599

ADA-J48m0,n500,s200 0.85 0.848 0.818 0.823 0.824 0.831 0.817 0.875 0.815

ADA-Naivem0,n1000,s500 0.895 0.893 0.903 0.911 0.911 0.861 0.86 0.904 0.898
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Figure 53 Netflix ADA-J48 F-Measure 

 Table 25 provides results from applying AdaBoost to Naïve Bayes. While ADA-

Naïve-m0,n1000,s500 has the best results among the ADA Naïve Bayes models with F-

measure values between 0.86 and 0.88, its performance is slightly less than ADA-J48-

m0,n1000,s500, as depicted in Fig. 53.  Figure 54 depicts F-measure for the ADA Naïve 

Bayes.  

Table 25 Netflix ADA-Naive Results 

 

 

	NF

NF Pre Rec  F-Mea Pre Rec  F-Mea Pre Rec  F-Mea Pre Rec  F-Mea

m0 0.649 0.962 0.775 0.791 0.979 0.875 0.764 0.888 0.821 0.825 0.903 0.862

m10 0.65 0.961 0.776 0.659 0.979 0.787 0.756 0.883 0.815 0.827 0.901 0.863

m20 0.651 0.961 0.776 0.651 0.979 0.782 0.734 0.877 0.799 0.847 0.908 0.877

m30 0.65 0.963 0.776 0.658 0.978 0.787 0.733 0.877 0.799 0.85 0.918 0.883

m40 0.652 0.964 0.777 0.652 0.98 0.783 0.732 0.876 0.798 0.848 0.921 0.883

m50 0.652 0.961 0.777 0.653 0.979 0.784 0.755 0.873 0.81 0.745 0.908 0.818

m60 0.648 0.962 0.775 0.652 0.976 0.782 0.745 0.861 0.799 0.745 0.908 0.818

m100 0.65 0.962 0.776 0.649 0.977 0.78 0.861 0.864 0.862 0.846 0.917 0.88

m200 0.646 0.963 0.773 0.658 0.976 0.786 0.724 0.854 0.784 0.84 0.889 0.864

    ADA-Naïve-

m0,n1000,s500

    ADA-Naïve-

m0,n25,s10

    ADA-Naïve-

m0,n100,s50

    ADA-Naïve-

m0,n500,s200

m0 m10 m20 m30 m40 m50 m60 m100 m200

ADA-Naivem0,n25,s10 0.775 0.776 0.776 0.776 0.777 0.777 0.775 0.776 0.773

ADA-Naivem0,n100,s50 0.875 0.787 0.782 0.787 0.783 0.784 0.782 0.78 0.786

ADA-Naivem0,500,s200 0.821 0.815 0.799 0.799 0.798 0.81 0.799 0.862 0.784

ADA-Naivem0,n1000,s500 0.862 0.863 0.877 0.883 0.883 0.818 0.818 0.88 0.864
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Figure 54 Netflix ADA-Naive F-Measure 

 Table 26 list results from applying AdaBoost to SMO. Indications are that the ADA-

SMO-m0,n1000,s500 model has the best performance among all other ADA-SMO 

models with values ~0.71 across the various datasets. Furthermore, there is an 

improvement to SMO when ADA is used in combination with the SVM algorithm. 

Although results for ADA-SMO-m0,n1000,s500 are good with F-measure values 

between 0.86 - 0.88, the Bag-J48-m0,n1000,s500 model, Figure 53, performs the best for 

Netflix traffic classification. 

Table 26 Netflix ADA-SMO Results 

 

	NF

NF Prec Rec  F-Mea Prec Rec  F-Mea Prec Rec  F-Mea Prec Rec  F-Mea

m0 0.6 0.05 0.091 0.61 0.996 0.754 0.68 0.29 0.402 0.61 0.92 0.734

m10 0.6 0.05 0.09 0.44 0.996 0.608 0.64 0.29 0.395 0.61 0.92 0.735

m20 0.61 0.05 0.092 0.43 0.997 0.603 0.65 0.28 0.392 0.59 0.92 0.723

m30 0.62 0.05 0.092 0.43 0.996 0.605 0.64 0.27 0.375 0.61 0.92 0.735

m40 0.61 0.05 0.087 0.43 0.998 0.6 0.65 0.27 0.377 0.61 0.92 0.735

m50 0.58 0.05 0.086 0.43 0.998 0.602 0.64 0.27 0.383 0.45 0.9 0.6

m60 0.57 0.05 0.087 0.44 0.998 0.607 0.6 0.27 0.371 0.45 0.9 0.601

m100 0.6 0.05 0.089 0.43 0.998 0.601 0.78 0.27 0.4 0.61 0.92 0.736

m200 0.61 0.05 0.091 0.43 0.996 0.601 0.63 0.27 0.379 0.63 0.92 0.744

ADA-SMO-

m0,n1000,s500

  ADA-SMO-

m0,n25,s10

ADA-SMO-

m0,n100,s50

ADA-SMO-

m0,n500,s200
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 Figure 55 Netflix ADA-SMO F-Measure 

Summary 

 In this set of experiments, the effects of ensemble methodologies, Bagging and 

AdaBoost, were explored. The intent was to improve performance of sub-flow classifiers 

for J48, Naïve Bayes and SMO tested on the same partial flows as non-ensemble models. 

Generally, both Bagging and AdaBoost increased precision and recall for each sub-flow 

classifier tested. Moreover, the ADA-J48-m0,n1000,s500 model produced excellent 

performance with F-measures between 0.94 and 0.98 for the YouTube traffic class. For 

Netflix ADA-J48-m0,n1000,s500, there were slightly improved results with F-measure 

values from ~0.86 to 0.91. Overall, the results indicate that sub-flow classifiers using 

ensemble techniques in conjunction with J48 C4.5 are well suited for classification of 

YouTube and Netflix traffic.  

 

m0 m10 m20 m30 m40 m50 m60 m100 m200

ADA-SMOm0,n25,s10 0.091 0.09 0.092 0.092 0.087 0.086 0.087 0.089 0.091

ADA-SMOm0,n100,s50 0.754 0.608 0.603 0.605 0.6 0.602 0.607 0.601 0.601

ADA-SMOm0,n500,s200 0.402 0.395 0.392 0.375 0.377 0.383 0.371 0.4 0.379

ADA-SMOm0,n1000,s500 0.734 0.735 0.723 0.735 0.735 0.6 0.601 0.736 0.744
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

Conclusion  

 This research focused on the evaluation of machine learning algorithms for 

classifying video streaming traffic. A key tenet of this research was the use of sub-flow 

based classifiers – ML models trained on statistics from a subset of packets instead of the 

entire traffic flow. Use of statistics derived from the entire flow, known as full flow, 

produced poor results when partial flows with missing packets are encountered. 

Specifically, full flow trained classifiers exhibited low recall and inconsistent 

performance as the number of missing packets increase. In contrast, classifiers trained on 

sub-flows exhibit higher and more consistent performance. Furthermore, ensemble 

techniques applied to the same ML algorithms improve performance substantively. To 

examine this supposition, 5 research questions were proposed and answered through 

experimentation and are listed below along with their associated findings:  

1) What recall and precision can be attained using ML algorithms trained on 

multiple sub-flows in classifying video streaming traffic? 

Prior to examining the impact of sub-flow base classifiers, full flow classifiers 

were tested to confirm poor performance in terms of recall of ~0.70 for YouTube 

and 0.41 for Netflix. In contrast, sub-flow trained classifiers attained precision 

from 0.88 to 0.97 and recall of 0.88 to 0.98 for YouTube; for Netflix, values 

from ~0.80 to 0.82 for precision and ~0.92 to 0.94 for recall were attained.  More 

importantly, ensemble based sub-flow classifiers produce excellent results for 

YouTube, and some improvement in performance for Netflix. For YouTube, 
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ADA-J48-m0,n1000,s500 (AdaBoost combined with C4.5) model produced 

precision values between ~0.93 and ~0.98 and recall values between ~0.94 and 

~0.98; and for Netflix, ADA-J48-m0,n1000,s500 precision of ~0.80 to ~0.88 and 

recall of ~0.92 to ~0.95.   

2) What sub-flow size used to train, test, and classify video traffic attained high 

recall and precision? 

Experiments indicate that a sub-flow size of 1000 packets results in very good 

performance for Netflix and excellent performance for YouTube traffic. While 

the experiments performed for this research were specific to Netflix and 

YouTube, results should be extensible to other video streaming applications. 

However, interactive video gaming systems, may respond differently to sub-flow 

techniques due to the number of changes in traffic patterns over the entire flow. 

Investigation of online large scale gaming traffic should be undertaken through 

future research efforts. 

3) What features, sub-flow attributes, are required to enable classification of video 

traffic? 

A total of 19 features, including “class” of traffic, were identified and used for 

training and testing classifiers. Wireshark was used to capture and derive a 

number of statistics. Additionally, Wireshark was also used, in conjunction with 

manual inspection, to label flows correctly for training classifiers. Scripts were 

written to generate missing statistics and select the proper number features from 

Wireshark output. The list and description of features can be found in Chapter 3, 
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Methodology. Preliminary tests were executed to ensure the relevance of 

selected features.  

4) What is the effect of different sub-flow sizes, number of packets per sub-flow, on 

ML recall and precision? 

Results in Chapter 4 indicate precision and recall are impacted by sub-flow size; 

specifically, as sub-flow size increases, performance and recall also increase and 

become more consistent. To great extent this trending toward increase sub-flow 

size is understandable, considering video streaming traffic tends to be consistent 

and long lived. However, as sub-flows sizes get closer to full flows then 

precision and recall are reduced as experiments with full flow classification 

indicate. In general, there is a point at which larger sub-flows reflects the 

characteristics of full flow models and produces poor performance. Additionally, 

increasing sub-flow size is counter to the premise of this research in that it is 

generally difficult to ensure the capture of full flows in real world application of 

ML classifiers for video traffic.  

5) How effective are ML algorithms trained on multiple sub-flows in classifying 

video streaming traffic from disparate data sets containing packets captured from 

different network environments? 

Traffic for YouTube and Netflix were captured from two different networks and 

stored as separate datasets for training and testing classifiers. Sub-flow classifiers 

were successful in classifying both types of traffic with solid performance results 

for both YouTube and Netflix. Moreover, ensemble techniques in concert with 
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C4.5 decision tree algorithm as detailed in Chapter 4, produced improved 

performance over non-ensemble classifiers.  

Implications 

 Use of full flow classifiers in real world applications of machine learning should be 

questioned in terms of the practical application to classifying video streaming traffic with 

missing packets or partial flows. Testing of full flow classifiers performed for this 

research indicates that full flow classifiers had difficulty classifying video streaming 

traffic when partial flows were encountered. In the use cases examined in this research, 

J48-C4.5, Naïve Bayes and SVM performed poorly in terms of recall in comparison sub-

flow classifiers tested with the same partial flow datasets. Furthermore, ensemble 

techniques paired with J48 C4.5, Naïve Bayes and SMO SVM sub-flow models 

performed significantly better than full flow classifiers. Therefore, use of full flow 

classifiers for classifying video streaming traffic is suspect when full flow capture cannot 

be assured due to volume, time, or network perturbations.  

Recommendations 

 It is recommended based on the findings of this research that sub-flow classifiers 

offer significant benefits for classification of video streaming traffic with partial flows 

and missing packets. Moreover, ensemble techniques, specifically Bagging and AdaBoost 

applied to J48-C4.5 and Naïve Bayes can significantly improve performance.  

Accordingly, ensemble based sub-flow classifiers are recommended when classification 

of video streaming traffic is desired. 
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Summary 

 This research focused on the evaluation of ML classification models for video 

streaming traffic. An underlying premise is the use of sub-flow classifiers to classify 

partial traffic flows with missing packets. Three ML algorithms were used for 

experimentation: C4.5, Naïve Bayes and SVM. Moreover, ensemble techniques were 

applied to each of these models to evaluate if performance, precision, and recall could be 

improved. Experimentation proved that sub-flow classifiers were in fact more consistent 

and produced higher levels of performance overall. Specifically, ADA applied to Weka’s 

implementation of C4.5 (J4.8) performed best for YouTube and Netflix traffic. 

Indications are that when implementing ML base classifiers in real world applications, 

consideration should be given to use of sub-flow base classifiers instead of full flow 

models.  

Although this work was successful in addressing all research questions, limitations 

exist that should be examined in future research efforts: 

 Applying Sub-flow Classifiers to Interactive On-line Video Games: While 

video streaming traffic is relatively consistent, interactive games played with 

thousands of users over the internet offer additional challenges. The 

characteristics of these types of interactive games may change meaningfully 

and continually over short intervals for the life of the traffic flow. 

Researchers should consider the application of ensemble base sub-flow 

classifiers to classification of interactive large scale internet games.  

 Evaluation of other Ensemble Techniques: Only two ensemble techniques 

were tested for this research. In general, performance was improved. Other 
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ensemble techniques such as stacking, random forest, and Bayes Optimal 

Classifier may garner even better results.  

 Automating Discovery of the Optimal Sub-flow Size: It may be possible to 

use clustering techniques to reduce number of choices related to the optimal 

sub-flow size. Clustering techniques may offer insights based on the 

groupings of packets. This may lead to reduced time to determine which sub-

flow size provides optimum classification performance. 

 Malware Command and Control (C2) Traffic: A key challenge for Cyber 

security is identifying malware that may be communicating with “home 

station” once an end-user system is compromised. Typically, this 

communication is intermittent and uses short duration flows. Since sub-flow 

methods take small samples of network traffic, it may be well suited for 

classifying this type of anomalous traffic.  

As the expansion and use of the Internet continues, classification of network traffic 

to improve security, manage usage, and provide differentiated service will grow 

accordingly. Consequently, network administrators need techniques to classify traffic to 

make informed decisions related to use of network resources. This research and the 

associated findings build on previous work and provides additional insights on applying 

ML routines to real world classification problems. 
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