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Abstract 

This research produced a Predictive Anomaly Detector (PAD). It is an adaptive 

prediction-based approach to detecting unexpected events in data streams drawn from 

staring continuous-dwell sensors. The underlying technology is spectrum independent 

and does not depend on correlated data (neither temporal nor spatial) to achieve improved 

detection and extraction in highly robust environments. ("robust environment" refers to 

the data stream's control law being variable and the spectral content covering a wide 

range of wavelengths.) 

The resulting approach uses a network of simple building-block equations (basis 

functions) to predict the non-event data and thereby present subtle sub-streams to a 

detection model as potential events of interest. The prediction model is automatically 

created from sequential observations of the data stream. Once model construction is 

complete, it continues to evolve as new samples arrive. Each sample value that is 

sufficiently different from the model's predicted value is postulated as an unexpected 

event. A subsequent detection model uses a set of rules to confirm unexpected events 

while ignoring outliers. 

Intruder detection in robust video scenes is the main focus, although one demonstration 

achieved voice detection in a noisy audio signal. These demonstrations are coupled to a 

concept of operations that emphasizes the spectrum-independence of this approach and 

its integration with other processing requirements such as target recognition and tracking. 

Primary benefits delivered by this work include the ability to process large data volumes 

for obscured or buried information within highly active environments. The fully 

automated nature of this technique helps mitigate manning shortfalls typically associated 

with sorting through large volumes of surveillance data using trained analysts. This 

approach enables an organization to perform automated cueing for these analysts so that 

they spend less time examining data where nothing of interest exists. This maximizes the 

value of skilled personnel by using them to assess data with true potential. In this way, 

larger data volumes can be processed in a shorter period of time leading to a higher 

likelihood that important events and signals will be found, analyzed, and acted upon. 
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Chapter One 

Introduction 

Problem Statement 

This research provides an advance in univariate anomaly detection within the field of 

staring continuous-dwell sensor data processing. Mathematically, this anomaly detection 

problem can be expressed in the following way: 

1 

Consider a uni variate data stream: X = {x 1, X2, ... , xd such that the Xj are data 

samples received in time sequential order. Find those subsets of X, S = {Sl' S2, ... , sz} 

such that each Sj is a contiguous sequence within X that is not normally a part of X 

(an anomalous sequence) according to some criteria. This criteria is informed only 

by the samples received prior to the anomalous sequence Sj = {Xb, Xb+l, ... Xb+c} 

where c is the number of samples in the anomalous sequence. 

Discussions with sensor analysts reveal that typical criteria for anomaly detection uses 

thresholds that are preset. However, the highly dynamic data streams delivered by typical 

sensors require a thresholding method that does not depend on presets but that adapts 

continuously. The basic issue with preset thresholds is that if the setting is too high then 

too much of the data stream is discarded. If the setting is too low, the event of interest is 

obscured. This research developed a solution to this problem for situations that do not 

involve white noise. The basic approach is to take advantage of data streams' temporal 

nature by adapting to their evolving control laws. By predicting the next data sample it is 

possible to eliminate non-static but expected content while retaining unexpected 

anomalies. In this way, it is possible to estimate the Sj. The method achieved here is 

judged by the number of Xj not found to be a part of some Si when those Xj actually are 

anomalies. These are the missed detects. False alarms are those Xk thought to be a 

member of some Sj but which are not really anomalies. Synthetic data streams make it 



easy to inject anomalies and to precisely determine missed detects and false alarms. In 

natural data streams anomalies can be some event of interest or they can be due to some 

momentary variation. In this case, the metrics need to be estimated. 

Starting with the seminal work of Sanner and Slotine (1991, May/November) in control 

theory, this research developed a modeling technique that implements the required 

adapti ve detection threshold. This model enables the detection of unspecified anomalies 

in spectrum-independent staring continuous-dwell sensor data streams. The resulting 

technique works with signals taken directly from the sensor with minimal preprocessing 

or filtering applied, other than converting voltage into engineering units. In essence, this 

work takes a technique from control theory and combines it with ideas from image and 

signal processing to extend the available technology for anomaly detection. 

Goal 

Detection accuracy was the goal of this research. Since a typical data stream's control 

2 

law is unknown and dynamic, it is difficult to know how to set a fixed detection threshold 

so that the expected content is filtered out while the anomalies are retained. Developed by 

this research was an approach that automatically builds a detection threshold that adapts 

to staring continuous-dwell sensor data streams by using numeric sequence prediction. 

While some primitive preconceived notions can be built into such a model, it is 

impossible to build a model that describes all possible data streams. To make this work, 

the model has to be built on the fly as the data stream evolves. A method was established 

for evolving the model as the data stream's control law evolves and to create a means for 

confirming the beginning and end of an anomaly. Demonstrations include data from 

chaotic equations, actual audio, and actual video. Measurements of accuracy include false 

alarms, missed detections, and good detections. The research sought to maximize the 

number of good detections while minimizing the number of false alarms and missed 

detections. 



3 

There are two ways to measure detection accuracy. For missed detects and good detects, 

one could measure the number of anomalies that were detected and compare that to the 

total number of anomalies. This basic measure does not count the number of samples the 

anomaly occupied but simply asks if any sample within an anomalous block was found. 

An extension to this idea is to require a certain number of contiguous samples to be found 

within an anomalous block before the anomaly can be said to have been found. False 

alarms can similarly be measured by the number of "anomalies" that get detected that are 

not true anomalies according to established ground truth. For these measures, a single 

anomaly would be a group of contiguous samples that are so tagged. Coupled with the 

number of contiguous sample blocks, it is necessary to compare the time spent in 

anomalies with the total time. A good definition of "contiguous" is also needed. How 

many samples does it take to separate one block of samples from another? This depends 

on the application. One approach is to directly relate the number of samples required to 

separate a block to how dynamic the data stream is. 

Another approach to measuring detection accuracy is to first count the total number of 

samples that are actual anomalies. One would then compare that number to the number of 

samples with detected anomalies. This would give a count of good and missed detects. 

False alarms would be measured by the number of samples tagged as anomalies that were 

not. This number would be compared to the number of total samples minus the number of 

samples that contained true anomalies. 

High or low detection accuracy is dependant on the application. For instance, if the 

anomaly is only present for ten samples and the detector uses four samples to verify 

detection then there will be a minimum of 40% missed-detects if the measure is by 

sample. However, if the measure is by the number of anomalies then the accuracy could 

be as high as 100% under the same circumstances. For false alarms, one has to pay 

attention to how many samples the detector needs to verify that an anomaly no longer 

exists. If the detector uses five samples to verify that an anomaly no longer exists then 

there will be at least five false alarms for every anomaly if the count is by samples. 

However, if counted on an event basis the false alarms contiguous to an anomaly would 
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not be counted. In either case, one would want the false alarms to be very low, around 10-

20% in most cases. Otherwise, one runs the risk of replacing signal clutter with false 

alarm clutter. For detections, one would expect to find 80-100% of the anomalies. 

Anomaly detection methods for continuous data streams need to deliver results soon 

enough to make a positive difference to the decision-making process impacting a rapidly 

evolving situation. Sampling rates and timeline requirements vary for each application 

but experience has shown that the typical desktop computer is not fast enough. Even for 

post-collection analysis, the volume of data is so high that a slow method is of little help. 

Given the costs involved, this research did not achieve real-time processing. However, 

the research developed a detection model that is linearly scalable in the mathematical and 

computational sense. The demonstration of scalability used two networked quad­

processor systems acting as a single virtual machine. Measurements included the clock 

time required to process each sample vs. the number of CPUs and the size of the model. 

Measures of data input time, data display time, and data storage time, were taken. Where 

mUltiple machines are involved, measures of inter-machine data transmission time were 

taken. 

The research evolved the anomaly detection method using simulated data streams built 

from chaotic equations. This allowed the injection of anomalies at known points in the 

data stream, thus enabling precise measures of effectiveness. Once the method performed 

satisfactorily on simulated data streams, tests using natural data streams were performed 

(audio and video). These were less precise since it is hard to know the exact location of 

anomalies. However, it was possible to perform a reasonable estimate. 

While this work dealt only with a workstation/network environment and did not attempt 

real-time processing or integration into an operational environment, a discussion on 

alternative approaches to throughput improvement is presented. 
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Relevance, Significance, and Need 

An ability to automatically find unspecified anomalies in staring continuous-dwell sensor 

data streams from staring continuous-dwell sensors is important to such endeavors as: 

• surveillance, security, perimeter defense, treaty monitoring 

• launch detection, signal filtering, signal detection 

• environmental observation, process monitoring, malfunction detection 

• health maintenance, weather prediction, natural resource management 

The primary benefit is the reduction of large data volumes so that only the unexpected 

content remains while providing continuous remote monitoring. Other benefits accrue: 

• Enhanced data stream filtering 

ability to filter staring continuous-dwell sensor data streams for 
unspecified anomalies 

• Labor-reducing process helps mitigate manning shortages 

current methods typically depend on human observation and extraction 

content not expected in the ongoing data stream can be automatically 
extracted and passed on to further processing or presented for human 
evaluation and response 

direct human observation and evaluation of the entire data stream would 
no longer be necessary 

• Enhanced analysis technology 

the mathematics (Appendix A) is highly parallel with strong opportunities 
for real-time implementation 

model adapts automatically as the data stream's control law evolves 



Analyzing continuously-sampled data streams is an increasingly complex activity due to 

several major factors: 

• improvements in sensor sampling • expanding data volumes are creating a 
rates, resolution, and sensitivity progressive analysis backlog 

• the number and types of data streams • new anomalies of interest are more 
to capture and analyze is growing difficult to detect and identify 

These factors make it is necessary to explore new ways to automate data stream analysis. 

6 

Generally, the literature suggests that anomaly detection methods typically make one or 

more of the following assumptions. An operational scenario may make these assumptions 

unacceptable. 

• benign or static backgrounds • events of interest are known 

• uniform backgrounds • known spectra 

• the control law generating the data does not change • correlated data is available 

• the data stream can be pre-characterized via some • cooperative data streams exist 
external modeling process using apriori knowledge 

From this discussion, it is clear that a generic model that can automatically adjust itself to 

staring continuous-dwell sensor data streams and detect unspecified anomalies is needed. 

This project created a linearly scalable technology that accomplishes anomaly detection 

while minimizing common assumptions. 

These next citations are further evidence of the relevance of this research. They are 

drawn from Frost and Sullivan's (1999) study of the remote sensing market. The author's 

comments are in parentheses. 

pp. 2-8,2-10,2-11: The current demand for data products is restrained by the lack of 

availability. This is a major issue now and will be at least a medium issue for the next 

five years. Currently, there are 25-30 countries who use commercial and military remote 

sensing data. The demand within those nations already using such data will grow in 

proportion to the number of satellite data products available and the affordability that 

competition can bring. (Thus, there is an unrealized demand for data products and the 

related timely analyses.) 
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p 2-5: Worldwide demand for high-resolution data will remain high for at least the next 

five years. Over the next five years there will be a constantly growing commercialization 

of satellite data. (Coupled with their projection above, this is a confirmation of the 

unrealized demand for spectral data with the related increase in data flow.) 

p 2-5: There is a strong probability that the demand for surveillance and change 

monitoring will be recession proof for the next five years. There is a demand for near 

real-time analysis results in regard to political situations, natural disasters, and treaty 

compliance. (As these situations become more complex and urgent, and as the required 

detections become more obscure, the more computationally burdensome will become the 

attendant analyses.) 

p 2-6: There are about to be commercial launches of satellites that have a temporal 

resolution of 2-4 revisits per day. (There are also sensors that are continuous-dwell 

staring systems that provide a continuous data stream. In any case, the ability to respond 

to that much information puts us in a situation of having to upgrade our ability to make 

best use of existing computational infrastructures.) 

pp. 2-6, 2-7: The amount of data commercial remote sensing satellites will bring back 

will be of great value to agriculture; oil, gas, and mineral exploration; environmental 

monitoring; and ocean monitoring to name a few. Commercial satellite data will 

increasingly provide critical information layers for specialized data products in a myriad 

of industries. The economies of scale several satellite operators will provide will continue 

downward pressure on data pricing, and should enable more purchases from existing 

customers and new purchases from the commercial world. A great majority, as high as 

80%, of high-resolution commercially-obtained satellite data sales to foreign 

governments will be used for surveillance in a certain country's region of influence. The 

ability to observe one's borders and one's neighbors is highly coveted. 

p 3-15: The ability to provide real-time analyses is a competitive factor. (Timely 

analyses becomes more difficult to achieve as the data rate increases. From their 



projections above, there is a clear chance that the data rates will indeed increase and the 

urgency for which these analyses are required will also increase.) 

p 2-12: For satellite data providers selling in their own countries, profitability will be 

aided by an ability to team with resellers or vertically integrate a value-added service to 

stay as close as possible to the end user. Value-added off-the-shelf data products will be 

more and more common across the remote-sensing marketplace. 

8 

p 1-6: PC computing power is a revolutionary end-user enabler. (It is important to make 

best use of existing resources to provide solutions that take advantage of a user's office or 

laboratory network of computational devices.) 

P 1-4, 1-5: The world remote-sensing and geographic information systems (GIS) 

software markets stood at $139 million in 1998. The compound annual growth rate 

(CAGR) for this market is forecast to be 17.1 percent through 2005. Remote sensing, in 

terms of revenues, will continue to be the dominant vehicle for remote-sensing and GIS 

data through 2005. Revenues for this market in 1998 were nearly $2.2 billion, and the 

CAGR for this segment through 2005 is 9.6 percent. 

Barriers and Issues 

The elusive part of this research is the detection of unspecified anomalies in evolving 

staring continuous-dwell sensor data streams. Building the model automatically (from 

scratch), evolving the model as the data stream's control law evolves, and confirming the 

beginning and end of anomalies is a non-trivial task. This is due to problem areas that 

bear on single-dimension and two-dimensional data streams. 

Signal Processing 

Every signal contains a certain amount of noise. It is necessary to either account for the 

noise or the noise has to be filtered out in a pre-processing step. There are many means of 

filtering noise. These are described in such texts as Embree and Danieli (1999, pp. 177-

330), Morgan (1999, pp. 201-262), as well as Otnes and Enochson (1978, pp. 106-218). 



This research did not concentrate on applying filters per se but remained aware that the 

necessity may arise with certain datastreams. 

9 

Beyond signal noise, Otnes and Enochson (p 89) go on to list several other problem areas 

that can arise: 

• computer word has too few bits to capture the necessary numeric accuracy 
• extraneous electrical noise picked up from the environment 

noise added by amplifiers 
• distortion caused by signal levels being too high 
• excessive noise level owing to the signal level being too low 
• frequency aliasing due to a too-low sampling rate 
• aperture error in the sampling device 

jitter in the sampling device 
nonlinearities in the AID converter 
dropouts in the converter 
converter noise 
operator error 

Lockhart (1995) talks a bit more about sampling rate. He reminds us about the Nyquist 

rate requiring that a bandwidth-limited signal needs to be sampled at just slightly greater 

than twice the highest frequency. For example, if a signal is limited to a top-end of 

300hz, the sampling rate would need to be just slightly higher than 600hz. To achieve 

bandwidth limits, he recommends applying an anti-aliasing filter to the pre-sampled 

analog signal, although this may not always be necessary. 

Image Streams 

Image stream problems are partially discussed by Russ (1999, pp. 80-83, pp. 194-195). 

Given the wide range of image types and sources, he raises several issues that apply to 

images gathered for digital processing. One of these issues is that the same type of feature 

should look the same wherever it appears. This implies that the color and brightness 

values should be the same and that the illumination is stable for frames taken over time. 

Another issue is that there be local sensitivity to variations in the image. This implies that 

edges and boundaries are well defined. He also says that the optics must be free of dirt 

and other sensor-based obstructions lest false specimens be introduced into the image. 



His discussion of methods to correct non-uniform illumination require the assumption 

that the illumination be constant for at least some period of time. His approach to 

generating a specimen-free background appears to assume a static scene in which the 

background does not change. Carefully setting up the imaging conditions is the 

foundation of his discussion for alleviating collection issues. 

10 

Control over imaging conditions is something difficult to achieve in natural outdoor 

settings. I So it is necessary to adapt to illumination that varies over time and to a small 

amount of non-random vibration Gitter) in the sensor platform. By implication, this 

adaptation needs also to deal with non-static backgrounds. Further, it is unlikely that 

features will look the same wherever they appear or that their boundaries will be well 

defined. The research addressed these issues for applications where it is important to 

detect the arrival of an anomaly in a continuous sequence of samples or image frames. 

Should the anomaly be already present, the method at least detects the anomaly when it 

changes state in spectra measured by the sensor. This is important in situations involving 

natural or man-made camouflage. Also, the method ignores obstructions local to the 

sensor since it is not always possible to gain physical access to the sensor. Lastly, the 

method does not require traditional image processing methods such as edge detection, 

methods specific to audio processing, or other assumptions on the spectra the data stream 

is drawn from. 

I This does not include controlled settings such as in manufacturing or process plants. 
One has only to look at Vision Systems Magazine (http://vsd.pennnet.comlhome.cfm) to 
see that setting up appropriate imaging conditions, including illumination, is a highly 
refined engineering practice. This dissertation worked with data streams captured from 
nature's environment under conditions that can not be controlled. Hence the term 
"natural" as opposed to "controlled" conditions. 



Additional reasons for this project's goal not being met are presented by Schalkoff 

(1989, pp. 1-4). He begins by stating that image processing algorithms, with their 

associated hardware and software, are typically application dependent. Thus, their 

applicability to new problems and spectra is limited. Adaptation of image processing 

technology to specific applications is a continuing challenge. He goes further by saying 

that, especially for real-time applications, the computer processing required can be 

overwhelming. 

11 

This research overcame these problems by employing basis functions to build and evolve 

a frame prediction model (Appendix A). In this model each pixel is taken as an 

independent data stream. So, a frame prediction model is composed of numerous smaller 

independent models. Each basis function and sub-model is independent of all others and 

thus permits full use of parallel processing hardware to improve throughput. This 

enabled a demonstration showing the linear scalability of the technology. Additionally, 

this technology is spectrum independent since, from the point of view of the model, it is 

simply dealing with vectors of numbers with no units applied. Where the numbers come 

from is not an issue to the model itself, although pre- and post-processing steps may 

become necessary depending on the application at hand. In all, the technology is very 

generic and is able to generalize over multiple applications and spectra. 

As this is an emerging technology, the following risks should be considered whenever a 
new application is attempted: 

• Does the data stream contain significant random components such that forward 
prediction of essential elements is not possible? 

Can the model's accuracy be maintained with natural data streams? At what point 
does noisy data become an issue? 

How much jitter is tolerable? How well does the model cope with missed samples? 

• Is the anomaly present prior to model initialization? 



Does the data stream evolve slowly enough that achievable sampling rates are 
sufficient for an effective model to be built? 

Can the processing be performed fast enough to enable timely response? 

12 

Do anomalies exist for such a long time that the underlying data stream evolves to 
the point that it is radically different at the end of the anomaly than at the start? 

Research Elements Investigated 

Starting with the seminal work of Sanner and Slotine (1991, MaylNovember) in control 

theory, combined with ideas from image analysis and signal processing, the author 

developed an adaptive detection threshold that finds unspecified anomalies in staring 

continuous-dwell sensor data streams. The basic technique uses each sample to predict 

the next. When the next sample does not match the prediction, the method postulates a 

detection event. Only loose or no assumptions are needed on the content, source, or 

spectrum of the data stream. Chaotic equations, audio, and video were used for testing 

since that form of data is most accessible to the author. 

A common means employed commercially for anomaly detection is to set a threshold 

based on apriori knowledge of the data stream and the types of anomalies expected. 

There are two basic approaches for doing this. One approach measures the difference 

between the current sample and the simple moving average of some number of past 

samples. The other approach checks to see if the current sample value is greater or less 

than some fixed value. The moving average approach is illustrated in Figure 1. There are 

two moving averages, 3 point and 20 point, plotted against a chaotic equation. In such a 

dynamic environment it is clear that this approach will not suffice for anomaly detection. 

It is true that with much less dynamic problems this approach could work. 
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Figure 1. Illustration of thresholds drawn from simple moving averages 

Figure 2 shows fixed-value thresholds. Anomalies are detected when sample values are 

greater than, less than, or in-between certain values. If these thresholds are set properly it 

is possible to catch anomalies that are outliers relative to the expected range of data. In 

this particular case, this approach to thresholds finds anomalies when sample data x is 

one of the following: 

x>A 

x<D 

(x < B) AND (x > C) 



_C! 
I.t')~ 

C"Iv 
Q U 
~U 
x~ 

~('I') 

atr-
('1')0 
11-

~~ 
')(g 
-,t:. 
-U 

0.8 

0.7 

0.6 

0.5 

OA 

0.3 

0.2 

0.1 

~ ~ 

~ ~~ IN 4~1 

~ .. I~ 
i ~ • ~ 14 

'.' ~. ,~ " ,. ~ ;-

,,:.; ",,;1- \ ,,' .4.A£... 

~ ~ 

' v " ' ~ ~, " 
;,"-' . 

<I 

ft~Q::11.1r*i!ff,f?t::ft:t1rrff:'eim:x:tf-lll~=tr,~~tttzt~t~fifi~~~~~I~Mm,f2t,-,~I:t" ~~, ~ Data 

~~~$H~$#~~*fl~~~~~~~~~*H~~,~~~~, ~~~~l.~, .. ~~~ .. ~ ~: 
~~ 

~C 

<I~ ~ 
I -*-D 

~~ <I~ I 

4 ~ ~ 
~ 

<I~ ~ ~ 

~, 
XIXV'Y.. 

0 ~~ ~ 

~~~~~~~~~~~~~~~~~~~~ 

Time (t) 

Figure 2. Illustration of thresholds based on fixed values 
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At issue with either of the above approaches is the heavy use of apriori knowledge 

concerning the data stream and the anomalies to expect. Further, they only catch range 

outliers. They do not catch anomalies relative to the control law generating the data. They 

also do not adapt well to evol ving data streams. The current research minimized the need 

for apriori knowledge and created an ability to readily adapt to evolving control laws. In 

this researcher's experience, the more apriori knowledge used, the less flexible is the 

model when the data stream changes or some new anomaly occurs. It also becomes more 

difficult to modify the modeling approach for new requirements. 

The threshold used here is based on the difference between the model's current-sample 

prediction error and the prediction error over some number of past samples (perhaps via 

the mean range-relative prediction error). Thus, in comparison to static sample-difference 

or moving-average thresholds, this new detection threshold floats more meaningfully 
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with the data. If the prediction error becomes too large, an anomaly is postulated. From 

this perspective, the level of noise in the data does matter but it is still possible to detect 

anomalies. This new threshold is illustrated in Figure 3. 
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It is true that, as currently employed, the prediction-error difference threshold itself is 

fixed. Prior experience shows that this threshold is not the same for all applications. 

Another impact comes from the level and length of noise bursts. Noise bursts can be 

taken as anomalies. If the control law of the noise does not suddenly change, the noise 

can usually be filtered out since nature is inherently non-random. Be that as it may, the 

detection threshold itself does vary with the model's ability predict the data stream. The 

currently-invariant aspect has to do with the allowed deviation from that threshold. The 

detection threshold itself changes with prediction ability and is based on the prediction 

error so that the detection threshold increases as does the prediction error. 
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Not only is nature inherently non-random, it is also non-linear. That is the reason this 

research uses a Gaussian model instead of the more popular linear models. This choice is 

backed up by the new IEEE802.3ab standard for Gigabit Ethernet. This standard calls for 

non-linear adaptive digital-echo and near-end crosstalk cancellation technologies because 

ever increasing data rates are causing difficult problems in those areas. Adaptive linear 

models have a very successful history and still have value. However, this research aimed 

at highly dynamic applications in which linear models have their limitations. Crosstalk is 

a similarly difficult dynamic problem that increasingly does not yield to filters based on 

linear models. 

From the above discussion, this research adds to the field by: 

• creating a non-static detection threshold that evolves with the data stream rather 
than use a static sample-difference or moving average threshold 

• increasing the generality and flexibility of detection by going beyond current 
sample-difference measures 

• creating a means of anomaly detection that is, with few exceptions, independent 
of data stream content, spectrum, and source 

• providing a type of moving-target indicator that does not depend on the shape of 
the object or the clearness of its edges when the data stream is composed of image 
frames 

• avoiding common assumptions: 

benign or static backgrounds 

uniform backgrounds 
the data's control law does not change 
known events of interest 

known spectra 
other domain data is correlated or cooperative 

The adaptive modeling method employed here is composed of a network of independent 

Gaussian radial basis functions of a form similar to that used for classification (Raeth, 

Gustafson, and Little (1994)) although the constructive technique is much different and 
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the outputs are interpreted for analog rather than binary application. Each data stream has 

its own model. Each model is built automatically from sequential observations of the 

incoming samples, constituting a learning phase. As the model converges to the training 

input, it gradually becomes able to predict the next sample in the sequence. Once the 

model is complete, it continues to refine its predictions as new samples arrive. The model 

evolves by varying the heights of fixed-width Gaussians. The adaptation rate depends on 

the size of the model and the Fourier Transform frequency content of the data. One would 

expect the model to be fully trained and ready to enter operational mode within 60 data 

seconds. However, much depends on how long the signal's control law takes to generate 

sufficient output so that the signal can be fully characterized. (See the Issues section of 

this chapter.) 

When an anomaly is detected, the model stops evolving until the anomaly is no longer 

present. In this way, the anomaly does not become part of the model's prediction 

baseline. This secondary control layer allows the anomaly's presence to be tracked and 

thus provides a type of moving target indicator as the anomaly undergoes temporal and 

spatial shifts. Anomalies are detected by the model using three measures of departure 

from the expected background: 

the number of sequential times the departure appears 
the number of sequential times the departure subsequently disappears 
the percentage difference between the actual and expected sample 

Note that too sudden a change in the data stream's control law would be taken as an 

anomaly. In such a case, the prediction error would never fall below the detection 

threshold and the detector would continue to insist that an anomaly is present. A return to 

training mode would have to be triggered by some external event such as operator 

interaction. This is a case where correlated information would be needed. Something 

would have to indicate that the "anomaly" is really part of the expected data stream. 

Basis functions are simple-equation building blocks that are a proven means of modeling 

more complex functions. Brown (writing in the book edited by Light, 1992, pp. 203-206) 

showed that if D is a compact subset of the k-dimensional region Rk then every 
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continuous real-valued function on D can be uniformly approximated by linear. 

combinations of radial basis functions with centers in D. Proofs of this type have also 

been shown by Funahashi (1989); Girosi and Poggio (1989); and Hornik, Stinchcombe, 

and White (1989). They established the basic theory behind the predictive model 

produced by Sanner and Slotine (1991, May/November; 1991, December). Since the 

theory has already been well established, this research concentrated on a transition to the 

reality of anomaly detection in data streams, thereby creating a new technology and 

applying the theory to a new domain. This domain has come about because of the 

growing use of sensor data for such applications as security, defense, environment, and 

health. This research uses k = 1, a one-dimensional value such that Rk is a line. Look to 

Sanner and Slotine (1991, May/November; 1991, December) for an expansion to larger 

dimensions. A summary of the math for k = 1 was published as part of a paper by Raeth, 

Bostick, and Bertke (1999). See Raeth and Bertke for additional material (2000). 

Appendix A contains a discussion of the math itself. This approach makes strong use of a 

data stream's temporal component and only makes the assumption that the data is not 

random, which is true, for instance, in the case of natural noise phenomena. Note though 

that the math assumes that the important elements of the data stream are spectrally 

limited in the Fourier Transform sense. (A low-pass filter could be configured to preserve 

the important elements required for sufficiently-accurate next-sample prediction.) 

Limitations of the Study 

A primary limitation of this research was that it did not seek to achieve real-time 

throughput. However, there were some experiments in that arena that sought to make best 

use of existing networked computers. There was also a brief study on transitioning to 

Field-Programmable Gate Arrays. The intention here was to show that the required 

detection accuracy can be achieved in a reasonable amount of time with the potential to 

achieve true real-time processing. 

All data sources were taken either from equations or post-collection from microphone or 

video sources. There was no attempt to read the sensors directly and process the data as it 

arrived. Rather, the data was recorded on disk for later processing. 



The following assumptions were applied to the data stream. There are approaches to 

mitigate these assumptions but their exploration is outside the scope of this research 

project. 

• there is a maximum spectral content in the Fourier Transform sense 

• minimum and maximum values are known 

• there is no missing data 

• a staring continuous-dwell sensor is the source 

• analog-to-digital conversion is already accomplished 
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• there is not a significant change in the data stream's control law while an event is 
in progress 

• the data stream is not purely random 

• signal sampling is at least at the Nyquist rate 

Definition of Terms 

This index identifies terms appropriate to this line of study. Some of these are expanded 

from various authors as marked. Unmarked terms are from the present author. 

activity Specific to a particular neural network node, the weighted sum of inputs to that 

node. For example, the activity of hidden node 1 would be INPUT 1 *W(1,l) + 

INPUT2*W(2,1) + ... , where W(i,j) designates the weight on the signal coming from the 

ith input node and going to the jth hidden node. (Bungay, 1999) 

activation function Specific to a particular neural network node. This is a basis 

function that receives the inputs to the node and produces the node's output. This 

function is typically non-linear and continuous. 
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algorithms Well-defined unambiguous procedures for performing operations that lead 

to exact solutions in an efficient manner. Although adaptive systems are more closely 

associated with heuristics, algorithms can be used for preprocessing and to acquire 

insights into the data. (Morris, 1992) 

anomaly Data that is unexpected according to some criteria. Can also refer to data that 

is not similar to its neighbors in the temporal or spatial sense. 

anti-aliasing A filter that attenuates frequencies in an analog signal that are greater than 

one-half the digital sampling frequency. 

basis function Small building-block equation that can be combined with others to 

model more complex functions. An example is e-1x - YI. With fixed y and varying values 

for x, these can be summed. Each Xi gives a local contribution to the overall model. 

Another example is the Fourier transform that uses combinations of sin(x) and cos(x) to 

build a model of a complex waveform. 

central maximum Mid-point of a two-dimensional graph's independent axis 

continuous-dwell While a sensor may gather data from the same "source", it may 

switch or "time share" between sub-sources. That is, for instance, it may always gather 

heat readings from System-A but individual readings may come from several 

measurement points on System-A. This refers to a staring sensor (see below) that is not 

continuous-dwell. A continuous-dwell sensor always gathers its data from the same 

measurement source. For a geographical sensor, a staring sensor may look at the same 

geographical area but will "sweep" the area. Continuous-dwell means that it does not 

sweep but just looks at the same place all the time. 

control law The process that generates the analog signal from which a data stream is 

drawn. A function representing (modeling) the system that causes the observing sensor to 

generate a given data stream. 
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data stream An analog signal is converted to digital representation at a gi ven rate. The 

periodic digital value returned by the analog-to-digital conversion process is called a data 

sample. A contiguous (in the temporal sense) set of samples is called a data stream. 

error Difference between the computed output (using weighted basis functions) and the 

actual (correct) output. In training, the error is supposed to decrease to some specified 

minimum. (Bungay, 1999) 

evolutionary computing A class of heuristics that attempt to solve a problem by means 

loosely based on natural evolution. A set of candidate solutions is evaluated in terms of 

solution quality, the better candidates are allowed to reproduce, sometimes with 

mutations. If one candidate comes to dominate the population, it is selected as the best 

solution. At times, different candidates are combined to make a new candidate. (Morris, 

1992) 

expert systems Applications in which problems are solved by means of an information 

base containing rules and data from which inferences are drawn on the basis of human 

experience and previously encountered situations. True enough, a task adaptive systems 

are often put to is the deri vation of rules from data. However, there is no reason that 

previously established rules can not be used to guide a new analysis session. (Morris, 

1992) 

field of view Domain that is observable by the sensor. For instance, a camera might 

have a field of view of 45 degrees. This means that, without moving, it can observe a 

cone formed by a 45 degree angle relati ve to a line starting at the lens center and running 

at a zero degree angle with the pointing direction of the lens. Of course, there are range 

limits as well. 



frame One sample from an image stream. An image stream is composed of a series of 

frames taken in time sequence. Note that "images" are not necessarily drawn from the 

visible spectrum. 

frame rate Number of image frames acquired per time period. 
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fuzzy logic A method of machine reasoning that can process uncertain or incomplete 

information. This system of logic is based on the fuzzy set, a generalization of traditional 

two-state set concepts. Partial membership in a gi ven set can take on the entire analog 

range of 0 .. 1 inclusive, rather than just the binary discrete values of 0 (not at all a 

member of the given set) and 1 (entirely a member of the given set and of no other). 

Fuzzy set theory applies these concepts to expert systems and estimates the degree of a 

conclusion's certainty. (Morris, 1992) 

gaussian radial basis function One of many activation functions that can be used by a 

neural net node. This function can be specified and employed in many ways. This 

project's method uses the following form. The details of this form are explained in 

Appendix A. 

graph theory The study of graphs, trees, and networks. A graph is a diagram or curve 

representing varying relationships between sets of data. "Data structures" is another 

topical area in this same genre. It is an organization of data in some characteristic way, 

such as arrays, trees, lists, queues, networks, or stacks. (Morris, 1992) 

grid Set of points in two dimensions. All points are evenly spaced. 

ground truth That which is known apriori about anomalies' temporal and spatial 

locations but not revealed to the detection model. 
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hidden layer Set of neural network nodes between the input layer and the output layer. 

Each node in the hidden layer "communicates" with each input node and with each output 

node. There may be more than one hidden layer. (Bungay, 1999) 

image A grid of data streams that are organized according to their spatial relationships. 

It is not necessary that the data streams be from the visible spectrum nor that they all be 

drawn from the same spectral region. Also see frame. 

image size Number of pixels (grid points) per frame. 

image stream Series of frames taken in time sequence. 

input layer Set of neural network nodes that recei ves and processes the input to a neural 

net. Can also be more generally seen as the pre-processing functions applied to the input 

data stream. (Terry, 1999) 

jitter A small amount of non-random vibration or periodic movement in the sensor 

platform such that there is a small variation in the registration of the frame. Any periodic 

and ongoing lack of sensor-pointing instability. 

kurtosis Degree of peakedness of a curve relative to a bell-shaped curve (other 

comparisons are possible). The larger the kurtosis, the more peaked the curve. (Spiegel, 

1961, p91) 

mean square error Takes the average of the sum of the squares of the difference 

between one value and another. Typically measures the difference between the actual and 

expected values. This method emphasizes large errors over small ones but is not 

weighted according to the type of error. (Masters, 1993, p344-346) 

natural data stream Data streams captured from nature's environment under 

conditions that can not be controlled. 
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neural networks A computational network composed of mathematically defined nodes 

that are loosely based on biological neurons. These networks are often composed of one 

layer that receives, organizes, and processes the k-dimensional data input; a subsequent 

data processing (hidden) layer; and an output layer in which individual neurons identify 

particular patterns or deliver an analog result as an estimate of the system represented by 

the data. There are numerous neural network types. (Morris, 1992) 

neuron (Node) Building block of a neural net. It is very loosely based on the brain's 

nerve cell. Neurons receive inputs via weighted links from other neurons. These inputs 

are processed according to the neurons' activation functions. Signals are then passed on 

to other neurons. There are 3 different types of neurons within a neural net. Input neurons 

receive, organize, and process encoded information from the external environment. 

Output neurons send signals out to the external environment in the form of an encoded 

answer to the problem represented by the input. Hidden neurons allow intermediate 

calculation between inputs and outputs. (Toulson and Toulson, 1999) 

OLAP On-Line Analytical Processing. A category of database software that provides an 

interface that enables users to transform or limit raw data according to user-defined or 

pre-defined criteria, and to quickly and interactively examine the results in various 

dimensions of the data. OLAP primarily involves aggregating large amounts of diverse 

data. It can involve millions of data items with complex relationships. Its objective is to 

analyze these relationships and look for patterns, trends, and exceptions. 

(Dictionary.com, 2002) 

operations research The mathematical analysis of optimization problems, especially of 

dynamic systems subject to a given set of constraints. The purpose of such analyses is to 

evaluate the effectiveness of a given system in achieving identified goals. (Morris, 1992) 
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output layer A set of neural network nodes that receives, organizes, and processes the 

output from the last hidden layer to produce a neural net's results. Neural network layers 

are numbered sequentially starting at the input layer. (Terry, 1999) 

pixel One point on a frame's (image's) grid. 

process Continuous or periodic series of actions organized and conducted to achieve an 

end result, such as a distillation process. May employ a system to facilitate the process. 

(Morris, 1992) 

real-time Fast enough to continuously deliver results in time to have a positive impact 

on the decision-making processes impacting a rapidly evolving situation. A numeric 

specification is application dependant. In radar signal identification problems this may 

mean nano-second response times. In weather monitoring applications this may mean 

minutes or hours response time. 

registration In regard to frames of data, the source referred to by a given cell. For 

perfect frame registration, the same cell will always refer to the same source. For spectral 

sensors taking data from a geographical location, the data for a given pixel should always 

be drawn from the exact same place. 

registration noise Refers to the lack of perfect registration. For example, registration 

noise of one pixel means that the data stream for a given frame is being produced from a 

one-pixel variation relative to a center pixel. Such noise can be caused by sensor jitter but 

there are other causes such as recording inaccuracies. 

sample Representati ve segment of a larger whole that is studied in order to gain 

information about the characteristics of the whole. A subset of an entire population that is 

observed in order to infer properties of the population. (Morris, 1992) 



sensor A device that measures a system, environment, or other variable external to 

itself. A sensor can operate in any of a number of wavelengths and is not necessarily 

limited to those detectable by the six human senses. In the case of this research, it is 

necessary that the sensor provide a data stream composed of regular-interval samples. 
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scene Same as a frame or image stream, although meant in a sense larger than just the 

data. Speaks to what the frames are meant to measure or represent. For instance, the 

scene might be of the area beyond a security perimeter that is within the field of view of 

the sensor. The scene may be non-static in that it might contain, for instance, the 

movement of trees, the change in natural illumination as the sun runs its course, and the 

entry and exit of potential intruders. 

skewness A data curve's property that describes its general shape. (Spiegel, 1961, p31) 

There are six general shapes that that curves can achieve in practice (viewed as the reader 

sees the page): 

1. symmetrical, normal, or bell - data is equally distributed on either side of the 
central maximum, the curves skew would be 0 

2. left skew - data is more heavily distributed to the left of the central maximum, the 
more positive the skew, the more heavily to the left the curve leans 

3. right skew - data is more heavily distributed to the right of the central maximum, 
the more negative the skew, the more heavily to the right the curve leans 

4. J - curve's maximum value occurs at the extreme right 

5. Reverse J - curve's maximum value occurs at the extreme left 

6. U - curve's maximum value occurs at both the extreme right and left 

7. bimodal - curve has two maxima 

8. multimodal- curve has multiple maxima 



spectra, spectrum (singular) Set of wavelength limits within which a sensor suite can 

perform measurements. 

standard deviation Measure of dispersion about the mean. The larger the value, the 

larger the dispersion. Tells whether the variable's values are grouped about the mean or 

not. (Bruning and Kintz, 1968, pp. 4-6; See Spiegel, 1961, p70, for calculation.) 

staring The sensor gathers data from the same source. 
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statistics Mathematical methods for estimating, confirming, or denying population 

parameters from samples of varying degrees of accuracy. Adaptive systems do go beyond 

statistics. But, statistics can be a worthwhile start for determining basic characteristics of 

the data. (Morris, 1992) 

system Combination of components, elements, sub-systems, and operating procedures 

that function together to achieve some purpose. May be used to facilitate a process. 

(Morris, 1992) 

training The learning process during which a neural network develops the weighting 

coefficients that modify the nodes' inputs. Starting from an arbitrary initial set of 

weighting coefficients, the signals are input, weighted, summed, and output. Then the 

errors are computed and used to develop new weights. Iteration, error checking, and 

testing for convergence continue until the error is beneath a specified limit, at which 

point the network is said to be trained. (Bungay, 1999) 

t-test (for difference between two independent means, assuming equal variances) 

Statistical judgment as to whether the performance difference between two groups is 

significant. Assumes already-constituted groups and that the experimenter wants to 

determine whether they differ with respect to some variable. Note that this is not the same 

as the Student t-Test. Note also that a simple variation of this test assumes unequal 
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variances. The most common use assumes equal variances. (Bruning and Kintz, 1968, pp. 

9-12) 

variance Measure of dispersion around the mean, given by the arithmetic average of 

squared deviations; the square of the standard deviation. Also known as the mean square 

deviation. (Morris, 1992) 

weights Coefficients that are multiplicative factors of the inputs to each node. These 

weighted inputs are summed to produce the activity of a node, which is then used to 

determine the node's output. (Bungay, 1999) 

Summary 

The technology established here could be termed a "Predictive Anomaly Detector 

(PAD)". Functionally, it acts as a dynamic squelch, minimizing the non-event 

background so that anomalous events (relative to the ambient background) can be more 

readily detected. This technology is pervasive, impacting many domains of application. It 

is not spectrum dependent nor does it rely on a deep knowledge of the domain's physics, 

sources, collection methods, or phenomenology. It is point-specific in that, even in the 

case of a spectral frame, it relies only on one-dimensional data streams (individual 

pixels). There is no need for cross-correlation with nearby pixels or related data streams. 

Since the resulting detection model is so general, it tends to be fairly large. Therefore, 

this research also addressed the practical implementation of the model, although there 

was no attempt at true real-time processing. To facilitate the research, some simplifying 

assumptions were made so as to bound the project. These assumptions do not limit the 

practical application of the work nor do they draw results from toy problems. 

Behind the detection model is a predictive method successfully used in control theory to 

find out-of-range machine operations so that appropriate feedback signals can be 



generated. This method has already been documented in Sanner's publications. 

Transitioning this control theory method to applications in spectral analysis is not 

obvious and made for a non-trivial, original research project. 
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Chapter Two 

Review of the Literature 

Overview 

This literature review highlights the documents from which the research drew its 

background. No one paper gives information specific to the main thrust. However, each 

paper contributes an essential element, the synthesis of which enabled progress. At the 

top level, this research leans heavily on Sanner's work in adaptive control theory. Basis 

functions form the mathematical foundation of his work and the anomaly detection 

approach described in this dissertation. Brown (writing in the book edited by Light, 1992, 

pp. 203-206) proved that if D is a compact subset of the k-dimensional region R k then 

every continuous real-valued function on D can be approximated uniformly by linear 

combinations of radial basis functions with centers in D. 

There are seven sections in this review. Each section groups papers according to a major 

topic. This derives from the fact that the present research requires the fusion of results 

provided by numerous people in many areas of investigation. The seven sections are: 

• Historical Background 
• Existence of the Problem 
• Difficulty of Solution 
• Practical Applications of the Solution 
• Implementation Technology 

• Metrics 
• Reference Material 
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Historical Background 

Upward evolution of computer hardware speed, storage capacity, and data 

communications, along with advances in algorithms, heuristics, and programming theory, 

has enabled continual advancement in the ways computers can be employed. Taking 

advantage of this trend, people always want to solve new types of problems. These 

problems are ever more unstructured, poorly defined, and involving extreme volumes of 

sometimes incorrect, uncertain, and noisy data. 

1954 saw the first commercial installation of a computer. Payroll processing was the 

application, a fairly straight-forward, well structured, and routine accounting procedure 

(Davis, 1974, p 3). Tasks such as payroll, test grading, record keeping, and data 

aggregation provide support for activities where there is great concern over the effective 

performance of specific, highly structured, well understood routine tasks. (See Thierauf, 

1982, pp. 7-10, pp. 66-73) and Sprague and Carlson (1982, pp. 4-10, pp. 94-96) for a 

good discussion.) These were the advantages sought through the 1960s (Hussain and 

Hussain, 1981, pp. 5-6). 

After solidifying the success for these types of tasks, the evolution continued by moving 

on to problems that are much less structured, embed several well-structured tasks, and 

seek to optimize the acquisition and use of resources in a search for optimal functionality. 

This is where Management Information Systems (MIS) comes into its full application. 

According to Sprague and Carlson (1982, P 7), the basic characteristics of MIS include 

structured information flows, a focus on single functional areas (production, marketing, 

personnel, etc), and report generation. MIS tends to be batch oriented with predefined 

inputs and outputs, and is not very interactive as we understand the term today. 

Evolution in computer capability continued with Decision Support Systems (DSS). Here 

the computer is asked to help solve planning and other problems that are highly 

unstructured, poorly defined, and involving information that is less than precise. Rather 

than being task focused and batch oriented, DSS tend to be highly interactive, flexible, 
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adaptable, quick to respond, and supportive of needs that are not predefined (Sprague and 

Carlson, 1982, p 7). 

Further Evolution 

The evolution in the ways people want to employ computers continues apace. Where 

straight forward applications like payroll processing were the original topic of pursuit, 

people now want to do things like build real-time systems that adapt to the problem at 

hand as that problem evolves. Where data volume used to be measured by the number of 

96-byte Hollerith cards one had room for in a storage facility, we now have applications 

like NASA's EOS satellite constellation that is projected to transmit, store, and 

(hopefully) analyze 50 gigabytes of data every hour, all day, every day of the year (Way 

and Smith, 1991). Where the data was once fairly exact and the related models well 

established, we now deal in domains where the data is incorrect, uncertain, and noisy; the 

models can not be established by traditional means; and the associated heuristics are 

expected to adapt continuously to highly dynamic environments. From straight forward to 

highly complex, from well structured to unstructured, from well defined to poorly 

defined, from narrow application to broad, from static to dynamic, from clear data to 

uncertain, incorrect, and noisy: the trend continues through the present day and beyond. 

This situation requires the next step in the evolution of the computer as a tool, a step that 

leads to adaptive systems. While the human-centered aspects of modem automation must 

be retained if the computer is to be useful, something more is needed. What is needed to 

solve modem problems is " ... a new generation of techniques and tools with the ability to 

intelligently and automatically assist humans in analyzing the mountains of data ... " 

(Fayyad, Piatetsky-Shapiro, and Smyth, 1996, p 2). These new tools have to go beyond 

what has been done before. They must transcend even complex database queries and 

statistical analyses. Both of these only confirm or deny preconceived notions by 

analyzing the available data. They require a domain expert's prior insight into the data 

and the process being measured. While the role of the domain expert is still paramount, 



these new methods need to be able to deliver results that do not involve preconceived 

hypotheses. 
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In treading upon this new ground, it is important to know where we want to go. Having 

stored "mountains of data", we want to achieve information and knowledge. It is essential 

to not confuse the two. The MIS and DSS literature tends to equate data with information 

and rarely mentions knowledge. However, they are not the same thing. Data is the raw 

material. Information is the result of data being processed in such a way that it is 

meaningful to the user in the context of some application. Knowledge is a truth or set of 

truths that span individual applications. So, data leads to information and information 

leads to knowledge. This present research concentrates on a new method for extracting 

useful information from large volumes of time-stamped data. 

For extracting meaningful information, Fayyad, Piatetsky-Shapiro, and Smyth (1996, p 

27) see changing data and evolving domains as one of the prime challenges. Other 

significant challenges these authors cite are: 

• dealing with large databases 
• high dimensionality 
• overfitting 
• assessing statistical significance 
• missing and noisy data 
• complex relationships between fields 
• understandability of results 
• user interaction 
• use of prior knowledge 
• integration with other systems 

The solutions they briefly propose tend to deal with these issues at the post-collection 

level. However, it is this author's contention that methods performed solely post­

collection can not have a real-time impact on highly dynamic processes. For a real-time 

impact to be made, analyses must be performed as the data is being collected. Adaptive 

models that are capable of this could also have value in post-collection analyses of large 

volumes of information drawn over time. Thus, there are two areas of potential impact: 
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real-time during collection such that the process can be modified immediately, and post­

collection such that the process can be improved on a more fundamental scale. 

Research and development experts can offer a valuable contribution to the solution of the 

challenges posed by rapidly evolving processes. This particular research deals with 

unlimited-length data streams where the model needed to represent that data stream is 

constantly changing. The desire is to modify the model fast enough to facilitate taking 

action that meaningfully impacts the process being measured. This is something already 

done in business, for instance, by stock traders who use computer programs to model the 

market in real-time and to automatically buy and sell (Goldman, 1988). In engineering, a 

common application is adapti ve system control (Slotine and Li, 1991) whereby a model 

of the system is learned automatically and evolved continuously. 

Existence of the Problem 

General 

According to Kerestecioglu (1993), the problem of detecting changes in dynamic systems 

is gaining in importance. His thrust pertains to the need for determining the existence of 

malfunctions and performance degradations in complex automatic systems. A similar 

train of thought is espoused by Sanner and Slotine (1991, May/November; 1991, 

December) as well as Akin and Sanner (1990). Their basic idea is to model the system in 

some way that undesirable changes in operation can be detected and acted upon. In the 

case of this research, "undesirable changes" are the anomalies that the model is supposed 

to detect. 

This line of thinking is seconded by Morgan (1994, p 335). He says that one application 

of adaptive filters is the modeling of unknown systems. In the application pursued by this 

project, the technology is attempting to model the control law that is generating the data 

sequence, while having no knowledge of the source, so that unspecified anomalies in the 

sequence can be detected. Although Morgan's (1994) thrust is at unknown systems, the 
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author's experience has been that some known systems are so complicated that traditional 

modeling techniques can prove to be intractable, even if it is possible to gather full 

technical information. Thus, adaptive methods that learn from example have a place in 

modeling even "known" systems. Most current adaptive filtering schemes are linear 

whereas this research uses a non-linear. 

Image Sequence Analysis 

Nagel (1981) has written extensively on the applications of image sequence analysis. 

Among the applications he cites are video data compression, analysis of satellite imagery 

for meteorological and geological purposes, and temporal analysis for medical diagnosis 

and disease prevention. After discussing the various applications, Nagel (1981, pp. 163-

164) comes to the conclusion that there are common threads in the need for 

improvements. 

• quantitative models to describe complex phenomena 
• lower-level image processing approaches 
• general formulation of solution approaches vs. application-specific solutions 

These needs are addressed by the current research. An anomaly is a change in the data 

stream relative to the model's expectations. This project is focused on reviewing data 

sequences and retaining unexpected portions, using a quantitative approach to modeling 

complex, dynamic, and staring continuous-dwell sensor data streams so that anomalies 

can be detected. By "unspecified" is meant that the research created a technology that is 

general and not very application-specific. The result deals with data streams at a very low 

level, source-by-source, with no correlation between the sources. 

The following authors note that change detection is a research issue in the analysis of 

satellite sensor data. Ehlers and Shi (1996) identify dynamic change detection as one of 

the key problems in natural resource management. According to Aach and Kaup (1995), 

"The detection and accurate localization of intensity changes between subsequent frames 

of image sequences is a crucial issue for coding moving video, in particular for region­

oriented techniques, as well as for a variety of tasks in image analysis". Bruzzone and 
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Serpico (1997) have a similar sentiment, "Detection of land-cover changes, by comparing 

the images acquired in the same area at different times, is one of the major applications of 

remotely-sensed images acquired by Earth-orbiting satellites". Abutaleb, Elfishawy, and 

Kesler report that, "Detection of targets (small changes in the gray levels of images) 

embedded in a background of interfering clutter plus noise is a very important task in 

applications such as remote sensing for monitoring growth patterns of urban areas, 

weather prediction from satellite images, diagnosis of disease from medical images, 

optical and infrared detection from radar images, and visual industry application". 

Intrusion Detection 

Intrusion detection is an area where this research applies because an intrusion is a change 

in a scene or other signal that is not expected. The work in this area is represented by 

Smith, Peters, Curry, and Gupta (1998); Enomoto, Kawasumi, Ohata, Okazaki, and Sekii 

(1997); Kanemaru, Kaneta, Kanoh, and Nagai (1993); Lee and Stolfo (1998). 

Finally, Kanemaru, Kaneta, Kanoh, and Nagai (1993) state that, "There is a need for fully 

automated [industrial television camera image] processing since, with present 

technology, detection relies solely on the judgment of personnel who monitor displays". 

According to Chantry (1998), there is a growing interest in intruder detection systems 

that minimize false alarms. This is derived from people's desire to protect property in the 

face of sophisticated criminals who find it easy to defeat common alarm systems. Used as 

a passive intruder detection system, the technique should separate intruder events from 

dynamic backgrounds.2 Postulated intruder events can be displayed to security personnel 

or submitted to further analysis. Chantry's (1998) article is about infrared detectors but 

the technique does not depend on the spectrum. 

2 The term "passive" is used here to mean that the sensor does not emit a signal or depend 
on a cooperative emitter, as an "active" sensor would. This is an important distinction 
since the presence of a passive sensor is much harder to detect. An undetected sensor is 
much harder to spoof. Speaking in an electrical sense, according to Taylor (1997, p 21), 
"passive" and "active" are used to denote sensors that are either powered exclusively by 
the measurand's signal or which deliver more energy than is drawn from the measurand. 
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Implementation 

Applications like NASA's EOS satellite constellation are becoming common. EOS 

transmits 50 gigabytes of data every hour, all day, every day of the year (Way and Smith, 

1991). Ground stations have to analyze and store this volume of data for any value to be 

realized. Even relatively simple and slow-speed sensors such as the QuickCam produce 

30 frames per second. Thus, a frame would have to be processed in less than 1/30th of a 

second (~33 milliseconds). Each frame can be sized at 640x480 30-bit pixels. Any 

method chosen to solve the anomaly detection problem has to be scalable to this size 

problem, at minimum. Solution options will likely have to be a combination of hardware 

and software. Choosing commercial off-shelf hardware would enhance the industrial 

transition of the result. 

Finding a means of automatically modeling the infinite variety of scenes that a sensor 

could observe is critical to this research. Given traditional modeling methods, a solution 

may appear impossible. However, for instance, think of a digital image stream as a 

sequence of frames. Each frame is composed of a 2-dimensional grid of pixels. (The 

"grid" may be multi-layer but each layer is still a grid.) A pixel in a digital image stream 

can be thought of as nothing more than an independent single-dimension data stream. 

Sanner and Slotine (1991, May/November; 1991, December), while doing research in 

adaptive control theory, produced a time series analysis method that predicts the next 

sample of a one-dimensional numeric sequence. If a one-dimensional numeric sequence 

can be predicted, then it should be possible to predict what the next frame in an image 

stream ought to be since a stream of image frames is nothing more than a stream of pixels 

or one-dimensional data streams. Anything sufficiently beyond that expected in any pixel 

could be postulated as an anomaly. When viewed as an image, the detected anomalies 

would appear to be, for instance, intruders moving through the scene, evolving forest 

fires, or excessive pollution. Pushing the technology to these limits for improved anomaly 

detection in a practical sense is not straight forward. Chapter 1, Barriers and Issues, 

discusses the related problems. 
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Practical Applications of the Solution 

The author's modus operandi has always been based on the premise, "No theory without 

practice. No practice without theory." It is insufficient to develop theory without ensuring 

its practical implementation. Just as important is that all implementations should have a 

solid grounding in theory. Basic research is something that should always be funded. 

Such research provides the concepts, mathematics, and tools we will need before we 

know we need them. However, it has been this author's experience that such endeavors 

need to ride on the platform of practical application. It is practical application that attracts 

the funding for basic research. (Additional discussion can be found in Raeth, 1993.) 

Since the ultimate benefit of technology lies in its practical application, this section 

identifies just a few published success stories. These serve to illustrate the ways adaptive 

systems are providing value in the near term as an encouragement for additional work 

that will advance the technology further. There are two basic categories of application: 

business/management and technical/engineering. Emphasis is on the latter since that is 

the author's primary development and insertion focus. For additional insight into the 

former see the following: 

Business/Management 

• determining opportunities for cross sales 

(Anand, Patrick, Hughes, and Bell (1998» 

(Holstein, 1998) 

• process for business data mining 

(Brachman, Khabaza, Kloesgen, Piatetsky-Shapiro, and Simoudis (1996» 

• a research perspective 

(Kersten, Siebes, Holsheimer, and Kwakkel (1993» 

• business benefits 

(Sharman, 1997) 
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Technical Applications In Engineering 

Mango and Auriol (1998) introduce two applications that apply case-based reasoning and 

inductive learning to generate maintenance applications based on previous experience. 

The first application is by Cfm-international, a partnership of General Electric and 

Snecma. This application provides maintenance advice on the Cfm 56 jet engine family 

for Boeing and Airbus aircraft. 23,000 maintenance cases were extracted from a historical 

database. After validation and cleanup of these cases by master mechanics, the cases 

were used to automatically generate a fault tree. This tree can be updated as new cases 

are validated. The fault tree is the heart of a process that queries the user as to symptoms 

and then provides suggestions on possible causes and tests to perform. The process is 

linked to the Illustrated Parts Catalog for visual parts cues, automatic updates related to 

system evolution, and statistics gathering on reliability and maintainability from the 

world-wide community of users. This system helps to mitigate the 50% of total engine 

downtime that is due to waiting for faults to be diagnosed. 

Second is an application in troubleshooting robot axis positioning. Sepro Robotique 

develops robots that automate the process of grabbing plastic parts from an injection 

molding press and manipulating them in various ways. Each robot is customized for a 

particular purpose. Axis position defects represent about 30% of the problems that are the 

most difficult to solve. Automated diagnostic advice starts with a fault tree built from 

150 historical cases. About 10 cases a month are added to the fault tree. As a result, the 

system is able to resolve 75% of the cases presented to it. 

Other applications are presented in the following citations: 

• machine condition monitoring 

(Peck and Burrows, 1990) 

• determining system behavior envelopes 

(DeCoste, 1997) 
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• capturing transients and trends in scientific data 

(Hinke, Rushing, Ranganath, and Graves (1997)) 

• modeling industrial blasting 

(Chapman, Bollinger, and Sibol (1992)) 

• correlation of waveforms 

(Israelsson, 1990) 

• training sample labeling 

(Hsieh and Landgrebe, 1996) 

• learning from manufacturing systems 

(Koonce, Fang, and Tsai (1997)) 

• equation discovery 

(Bharat, Lu, and Stepp (1990)) 

• scientific data mining 

(Chang, Wang, and Chang (1996)) 

(Kapetanios and Norrie, 1997) 

(Fayyad, Piatetsky-Shapiero, and Smyth (1996)) 

(Fayyad, Haussler, and Stolorz (1996)) 

• throughput screening 

(Holland, 1995) 

Implementation Technology 

Neural Networks 
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A technique for finding if-then rules in a set of observations are discussed by Zhong, 

Dong, and Ohsuga (1998): Generalization Distribution Table using neural networks and 

rough sets. These tables provide a probabilistic basis for determining the strength of a 

rule. Neural networks and rough sets facilitate the use of data that is uncertain and 

incomplete. This is an important ability since data in the real world is not perfect and can 

not be. This present research does not develop rules but the integrated discussion of data 

mining, neural networks, and real-world data provides a lot of useful points. 
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Agehed, Eide, Lindblad, and Lindsey (1998) give a valuable paper that talks about 

creating a categorization of images in a large database. These categories could lead to a 

retrieval index based on image classification. They also discuss the implementation of 

neural networks via look-up tables. Their intent is different from my own but the thought 

may yield ways of increasing the throughput of the model. They are particularly keen on 

hardware implementations via reprogrammable devices. They also realize that images 

mean data volumes large enough that even post-collection processing needs methods that 

have improved speed over those that would be satisfactory for single-dimensioned data. 

The weakness in their argument is that they only postulate speed improvements from 

hardware implementations without providing actual test results. Such results are needed 

to form a judgment on cost vs. time. 

Goodwin (1994) gives a brief overview of the advantages of neural computation over 

traditional methods and applies those advantages to sensor data processing. Of particular 

interest is the discussion of chips that are specially designed to accommodate neural 

architectures. The chips he discusses are no longer on the market but one does get a good 

idea of what features implementation hardware should meet. A primary problem with this 

present research is the size of the model required for minimally-useful real-time image 

stream processing. The model can be likened to a neural architecture so this article gives 

some encouragement that a model can be implemented that effectively detects 

unspecified events in natural image streams, and that performs this task in real-time for 

meaningful frame rates and resolutions. 

Basis Function Networks 

There is precious little in the literature at this point that applies neural networks to data 

mining. (In many ways, the present research target can be cast as a problem in data 

mining.) The paper by Lu, Setiono, and Liu (1996) concentrates on classification whereas 

this present research is on function approximation. However, he has a good introduction 

to neural nets in data mining. Seeing his approach is worthwhile. Another helpful part of 
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this paper is the comparison of the neural network rules to those generated via the C4.5 

decision tree approach. This fed my own thinking on metrics. Finding metrics that can be 

implemented with natural data for the large data sets that make up image streams is not 

simple. 

Tan, Hao, and Vandewalle (1993) apply radial basis functions to the identification of 

non-linear systems. Of particular interest is their discussion on updating the functions' 

parameters. They lend insight to possible improvements to the method currently in use by 

this research. 

Chen, Billings, Cowan, and Grant (1990) explore the representation capability of 

networks of radial basis functions. They explore the conditions necessary for functions of 

one variable to be qualified as activation functions. They also present experimental 

results of attempts to approximate nonlinear systems in the frequency and time domains. 

Their results indicate there are alternatives to using the gaussian in this project's basis 

function model. 

Chen and Chen (1993) explain and demonstrate a fully automated means of choosing the 

centers of the basis functions and adapting their parameters. Their application is in 

general time-series analysis, a particular area of this present research. Several approaches 

are discussed. An important proof here is that a necessary and sufficient condition for a 

function of one variable to be used as a basis for forming larger models is that the 

function not be an even polynomial. This leads ultimately to a large number of choices 

besides the radial gaussian currently being considered by the present research. 

Peck and Burrows (1990) wrote a valuable paper that compares expert systems and 

neural networks as applied to real-time equipment monitoring. They also provide a top­

level architecture for how the whole process from collection to fault detection and 

identification might work. Their approach is very much like what is needed in image 

sequence analysis and event detection for real-time response and post-collection 

indexing. One fault in the paper is the processing architecture's comparison of expert 
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systems and neural networks. The authors make the neural network approach look 

simpler that it is, as if there is comparatively much less to do. Having had experience in 

both, this author disagrees with that notion. A strength of their paper is the very practical 

approach taken and the inclusion of traditional analysis methods such as Fourier 

Transforms to facilitate data preprocessing. 

Brown (writing in the book edited by Light, 1992, pp. 203-206) proved that if D is a 

compact subset of the k-dimensional region Rk then every continuous real valued 

function on D can be approximated uniformly by linear combinations of radial basis 

functions with centers in D. This is a fundamental proof that lends credibility to attempts 

to model complex systems using radial basis functions. Similar proofs have also been 

generated by Funahashi (1989); Girosi and Poggio (1989); and Hornik, Stinchcombe, and 

White (1989). 

Supportive work in the area of using basis functions for data fitting was accomplished by 

Watson (writing in the book edited by Mason and Cox, 1987, pp. 337-356). He 

concentrates on the two-dimensional problem of observation y taken at position x. His 

methods may be extendable to the problem type where x is time. 

Raeth, Gustafson, and Little (1994) employed gaussian radial basis functions for 

classification. This work provides basic technology for the present application. The 

research being pursued here employs gaussian radial basis functions in a much different 

way but the mathematical and software approach is derived from this earlier work. 

Raeth, Gustafson, Little, and Puterbaugh (1992) applied gaussian radial basis functions to 

the problem of k-dimensional interpolation. This work also provides basic technology for 

the present application in that the authors' later work in classification was derived from 

this work on interpolation. 
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Powell (writing in the book edited by Mason and Cox, 1987, pp. 143-167) made 

contributions to multivariable interpolation. His work is very theoretical but does lend 

some insights that broaden one's understanding of how to use radial basis functions. 

Time-Series Analysis 
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Sanner and Slotine (collected works) provide the basic theory for the present research. 

Their application is in adaptive controls for automated machinery. However, their thrust 

into the prediction of numeric sequences has wide application. 

Weiss and Indurkhya (1998) specifically address a topic within the present research, 

time-series prediction. Data preparation is a strong part of the material as is a comparison 

of traditional and adaptive approaches. There are some good procedures here for data 

preparation, reduction, modeling, and analysis. The authors take care to lead the reader 

through some actual examples. They also include a software tool that can be used to 

implement these examples. There is sufficient information and generality that the tool is 

not essential to getting the best value from the book. 

DeCoste's (1997) paper is directly related to the present research in that it seeks to model 

a sensor's data stream so that future anomalies can be detected. Their technique works 

with multi-dimensional data and makes no claim to real-time potential. However, there is 

clear post-collection capability. His basic technique uses regression, a process of 

collecting a batch of data and then working backwards to create a predictive model. 

Although the present research also creates a predictive model built from past results, it is 

not a regression technique. It does not collect a batch of data and then perform some 

calculation. Rather, it postulates a model and then adjusts that model as each new sample 

arrives. In this sense the model incorporates ALL past samples rather than a fixed 

number. From this point of view, the technique is more akin to the mathematical 

technique 'regula falsi', "a method of approximating an unknown quantity by first 

making an estimate and then using known properties of the quantity to improve the 



estimate" (Morris, 1992). The known property is the next sample. The estimate is the 

model's guess at what the next sample will be. 

Chen and Chen (1993) explore the representation capability of networks of radial basis 

functions. They explore the conditions necessary for functions of one variable to be 

qualified as activation functions. They also present experimental results of attempts to 

approximate nonlinear systems in the frequency and time domains. 

In their two papers, Chen, Billings, Cowan, and Grant (both in 1990) explain and 

demonstrate a fully automated means of choosing the centers of the basis functions and 

adapting their parameters. Their application is in general time-series analysis. 

Anandan and Shafer (1999) have developed a software tool kit for vision experiments 

that is freely available to researchers. This is not a finished system but a collection of 

Visual C++ software modules that can be used in systems being built by others. 
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Akin and Sanner (1990) discuss computer architectures as part of their efforts to get basis 

function networks to perform in real-time vehicle control applications. They show that 

their approach would be effective if appropriate hardware architectures were employed. 

This paper was useful as this project moved into processing natural images. 

Chantry (1998) is the managing director of a company that produces intrusion detection 

devices. His article explores many of the misconceptions that people have when they 

install these devices. These misconceptions lead to mistakes in installation and unmet 

expectations. In all, it is an extremely useful and practical article that aids the effort to 

develop new capability for this market. 

Eberart and Dobbins (1990), and Masters (1993), discuss measures of error for neural 

network calculations. This research employs networks of gaussian radial basis functions 
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that can be cast as neural networks. Thus, there was a lot to learn from these authors on 

how to measure detection effectiveness. 

Logitech Engineering (1999) is a practical applications company. They sell various 

grades of cameras known as QuickCams. These are for home use, at the low end, and 

teleconferencing use, at the high end. Their datasheets are the source of technical 

specifications for cameras intended for use in this project. 
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Smith, Peters, Curry, and Gupta (1998) explore discrete event simulation as a means of 

evaluating intrusion detection systems. Their basic thrust involves the modeling of floor 

plans, the placement of detection devices, the movement of intruders, and the movement 

of security personnel. This work helps to lay a framework for judging the value of new 

data analysis techniques as an adjunct to established security approaches. 

Suvan (1999) is a student at Northeastern University working in machine vision. He has 

produced an excellent tool for real-time image capture and processing that he has 

released for use by researchers. Using a pipeline approach, the experimenter can employ 

the provided techniques or install unique ones. Full documentation and executable 

software can be downloaded from the URL provided in the reference list. 

Metrics 

The main value of Masters' (1993) book is its discussion on measures of error (actual vs. 

expected output from the system being observed). This present research uses an error 

measure derived from those presented in this text. There is an additional discussion on 

confidence measures, time-series prediction, and function estimation. Another chapter on 

data preparation also provides useful information. If one is just starting in neural 

networks, this is a very reliable book. It covers all the major bases and gives complete 

examples, including source code. Like most writings on using neural networks for time­

series prediction, Masters (1993) uses x previous samples as input. In my own 

experience, this increases the size of the network far more than does the single-input, 

single-output approach. Additionally, Masters (1993) includes a discussion on trend 
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elimination and "seasonal" variations. This is not necessary in the approach employed by 

the present research since the network evolves as the data arrives. In this approach, a 

complex function is constructed that takes into account all previous data, not just the last 

x samples. The size of the function is based on the expected frequency content of the 

data. 

If you need to apply statistical measures but are not a statistician then look to the writings 

of Bruning and Kintz (1968). This present research needed a measure of statistical 

significance. This book presents such a measure complete with a computational process 

and examples. While most texts concentrate on statistical theory, this book concentrates 

on application. The result is that the reader understands how to apply the given statistical 

test and how to interpret the results. Covered are tests like mean, standard deviation, 

standard error of the mean, t-tests, analysis of variance, correlation, nonparametric tests, 

tests of significance, and indices of relationship. 

Reference Material 

Specialized Dictionaries 

Morris' (1992) dictionary consists of 2500 pages and 133,000 entries. It is a general 

technical dictionary. 

Cubberly's (1988) dictionary contains 9000 terms and 350 pages. It is specific to 

instrumentation and data acquisition. It provides terminology bearing on the engineering 

applications of this present research. 

Data Extraction and Preparation 

While this present research makes no assumptions about whether the data is from an 

image, audio, or other stream, Davies' (1997) book does give some useful insights on 

noise removal. It presents accumulation, threshold, and gaussian filtering methods. For 

practical purposes, it eventually will be necessary to make use of domain information to 
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achieve a commercial result from this research. However, this author desired to push the 

general ideas behind prediction, adaptive thresholds, and event detection to their limits to 

see how far they can go before domain assumptions are necessary. 

Fayyad, Haussler, and Stolorz (1996) have written an article that discusses reduction of 

scientific data and the process of going from extreme amounts of raw data to conclusive 

results. The authors see the automation inherent in data mining as a way of overcoming 

the growing gap between data volume and human analysis capacity. An important part of 

their article is the discussion on various types of data and the means of dealing with them. 

Fayyad also presents two case studies. 

In his article, Fayyad (1997) expands his thinking on the application of data mining to 

extracting value from scientific data. He talks about the increased value as one moves 

from databases to OLAP to data mining. Best value from the article comes from material 

on the different ways to extract value from scientific data. He talks about predictive 

modeling, clustering, data summarization, dependency modeling, as well as change and 

deviation detection. As such, there is strong input to the present research. 

There is A LOT of data involved in the present research. Just one short collection with a 

QuickCam set to low resolution and slow frame rate can result in 3gb of data. Thus, it is 

necessary to think carefully about data storage and processing. The paper by Hinke, 

Rushing, Ranganath, and Graves (1997) goes a long way in discussing these issues. 

Additionally, they deal with satellite data, a source likely to be encountered eventually by 

this present research. Generally, their paper takes large volumes of data stored on tertiary 

devices and summarizes it so it can be placed in a database on primary storage. The 

justification given is that the new version of the data is far smaller in volume but much 

higher in value. Generating trend data and outliers is the basic approach used. 

Calculations are used to show that the accuracy of the resulting summary does not vary 

much from the original data in the sense of statistical significance. 
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Supporting Information 

Russ (1999) produces an image processing handbook that has been through numerous 

reprints. It is an accepted standard text that gives well written explanations of technology 

topics. Practical application is its guide but attention to theory is given where needed. His 

main focus is on the processing of single images for display, printing, and multimedia 

applications. As such, it is a good overview of the issues to consider when processing a 

scene's individual frames. 

Schalkoff (1989) has written quite an informative basic text on image processing. One of 

his best contributions is his discussion on the difficulties of practical applications. By 

now, his book is somewhat dated but his clear explanations of basic technology issues are 

timeless. 

Gong, Ledrew, and Miller (1992) introduce and evaluate two methods for reducing the 

registration noise in two images of the same area taken at different times. Their methods 

help to ensure that the two images actually overlap in a spatial (geographic) sense. Their 

discussion is not directed at continuous image streams but rather to mUltiple passes over 

the same area during an extended period of time. However, the idea of imperfect 

registration also impacts this present project due to the vibration expected in the camera's 

platform Gitter). 

Aach and Kaup's (1995) thrust at change detection invol ves Bayesian statistics. Their 

work aids this project mainly by discussing the drawbacks to existing change-detection 

systems. They also discuss the need for adaptive systems in this area of work. 

Bruzzone and Serpico's (1997) work is highly specialized to multispectral sensors. Their 

input may prove useful if this technology is applied to satellite imagery. Although this 

project will not delve into that area, their general discussion does provide some basic 

education that is useful. 
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Change Detection 

The title of the article by Kanemaru, Kaneta, Kanoh, and Nagai (1993) almost causes it to 

be skipped. Instead of referring to "power line towers", they should have referred to 

"highly complex scenes". Their piece is an excellent discussion on the difficulties 

encountered in performing intrusion detection in natural scenes. They also talk about the 

use of industrial cameras for such applications. 

Shi and Ehlers (1996) gi ve a good introduction to the sources of error in detecting 

changes in sequential images. They identify dynamic change detection as one of the key 

problems in natural resource management. They also talk about another approach to 

change detection, analysis of multi-date composite images. Their basic thrust is to 

overlay multiple images and then to analyze the changes in color hue or grey tone. 

Mas (1999) discusses six methods for detecting changes in images taken of the same area 

over an extended period of time. Although his focus is on the best use of specific 

satellite-gathered spectra, his discussion on change detection does prove useful. Overall, 

he finds selective principal components analysis to be best in his application for detecting 

image changes. This approach is also used by image analysts interviewed by the author. 

Elfishawy, Kesler, and Abutaleb (1991) offer two approaches to the detection of small 

changes in a pair of images. They apply variations on least squares to accomplish their 

goals. Their discussion of problems and issues bears directly on the author's research. 

The alternative approaches may prove useful when the reality of natural scenes strikes 

this project. 

Kerestecioglu's (1993) approach to change detection departs quite a bit from that 

intended in this project. However, he has written an excellent article that introduces the 

subject and explains its importance in system and process control. 



51 

Chapter Three 

Methodology 

This chapter details the experiments used to demonstrate the effectiveness of the 

approach chosen to detect unspecified anomalies in staring continuous-dwell sensor data 

streams. While certain data streams were specified, the detection model was not tuned to 

the stream based on the source. Some loose assumptions were made: 

• min/max of the expected actual values 
• general robustness and spectral content as illustrated via Fourier Transform 

analysis (although no anti-aliasing filter was applied to the data) 

Presented first is an overview of the author's approach to projects in adapti ve automation. 

This foundation guided the specifics of the individual experiments. 

A Philosophy of Adaptive Automation Development 

In beginning this discussion on Methodology, it seems best to present a general 

philosophy that supports adaptive automation projects. An understanding of this 

philosophy explains why certain choices and steps were used to conduct the research. 

Working Definition 

Adaptive Automation is a systematic process of finding meaningful new correlations, 

models, patterns, and trends by sifting through huge volumes of data. Far beyond only 

confirming preconceived hypotheses or organizing the results of queries, it is a process of 

extracting hidden, non-obvious, information that human experts or conventional 

approaches could miss because it lies outside their sphere of consideration. Adaptive 

Automation allows business managers, system analysts, scientists, engineers, and 

automated analysis/response mechanisms to make proactive decisions informed by 

objecti ve observations. 
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Process Review 

When developing credible adaptive automation for post-collection or real-time 

environments, having a clear and objective process is essential. Quite contrary to the 

impression given by too many speakers and writers, you can not just take your data and 

throw it into some black box without regard to analysis method, theory, data quantity and 

quality, experimental design, or domain knowledge. A mistake beginners often make is to 

think they can just "plug and chug" with some analysis tool. One trap such people fall 

into right off is the one described Fayyad, Piatetsky-Shapiro, and Smyth (1996, p 27), "If 

a system tests N models at the 0.001 statistical significance level then, on average, with 

purely random data, N / 1000 of these models will be accepted as significant." Other 

traps the author has seen are the following: 

• certain problems' high dimensionality (D) and the analysis model's size growing 
as does CD (where C is some constant relating to the problem's size and 
complexity), along with a corresponding growth in memory and CPU utilization 

• failing to account for insufficient, missing, noisy, incorrect, or uncertain data 

• problems where each dimension has a data range widely different from the other 
dimensions 

• failing to pre-process data that is closely packed in the domain space 

• failure to carefully conduct method selection, construction, testing, and validation 
with the result that, for instance, clustering methods yield false classifications for 
critical known cases in the training data 

Given the challenges and traps of adaptive systems, one should establish a formal process 

for conducting a project. Several authors discuss adaptive systems development 

processes. Fayyad, Piatetsky-Shapiro, and Smyth (1996, p 10-11) give the most concise 

and complete list of process steps. Bigus (1996, pp. 43-60) offers an excellent discussion 

of data preparation. Look to Groth (1997, pp. 12-22) and Kennedy, Lee, Reed, and 

Lippmann (1998) for larger perceptions on the process steps. The following discussion is 

a summary of these sources with expansion due to the author's experience. 
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Any worthwhile adaptive systems development process should contain the following 

steps. Although these steps speak to the "systematic" part of the working definition of 

adaptive automation, the reader will note that there are algorithmic and heuristic 

components. These are needed to accomplish the analytic parts of the process. 

1. Know the end user's goals and have access to domain knowledge 
2. Choose the development task 
3. Select an appropriate data set 
4. Choose the algorithms and heuristics 
5. Clean the data 
6. Perform appropriate data reduction and transformation 
7. Apply the selected algorithms and heuristics to accomplish the task at hand 
8. Interpret and validate the results 
9. Iterate through the above steps as needed 
10. Consolidate, review, and document the results 
11. Install the results in the target system 

Lets talk about each one of these steps. 

Know the End User's Goals and Have Access to Domain Knowledge 
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There is no substitute for knowing the domain of application. A technical specialist in 

adaptive systems will do well to develop a solid relationship with a domain expert. Such 

a combination of talent can be invaluable to an organization. A background in the domain 

will enable the successful accomplishment of the other steps in the adaptive systems 

development process. Once domain expertise has been established, find out who the real 

end user is. Sometimes the end user is the domain expert. Sometimes it is someone who 

performs day-to-day tasks. Consider the question, "Who is the domain expert's end user 

and what is that person's goal?" Honest consideration of this question and attention to the 

answer can result in continued funding for the project. The author's experience is that the 

goal of all enterprise in our society is profit. Sometimes "profit" is measured in terms of 

additional money after expenses. Sometimes it is measured in other terms such as more 

lives saved in dangerous situations, additional crops harvested, more efficient energy 
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distribution or usage, lowered maintenance cost, improved material purity, lower ambient 

noise, and so forth. The result of any adaptive systems project needs to be couched in 

terms of such improvements to the bottom line. If you do not have ready access to 

domain expertise or can not determine what the improvement to the bottom line is, be 

careful about expending any serious funding. Forward thinking companies encourage 

exploration but, once serious funding is expended, serious results are expected. So, to 

maintain your credibility, stay away from over promising and under delivering. 

Choose the Development Task 

Having the required expertise is the first step. Having a clear idea of what it is you are 

trying to accomplish, why its accomplishment is important, and how you are going to 

accomplish it is next. What is the problem you are trying to solve? What is the 

improvement you are trying to make? By when does the solution need to be available? 

Who and what is needed for the task to be successful? Fayyad, Piatetsky-Shapiro, and 

Smyth (1996, p 24) list criteria by which a good adaptive systems project may be 

identified. These can be expanded as: 

• potential for significant positive improvement according to the organization's 
success criteria 

• no good alternatives exist within more traditional analysis methods 

• solid organizational support exists 

• there are no privacy or other legal issues outstanding in the use of the data or 
in the production of the intended result 

• sufficient data can be obtained 

• the available data is relevant to the intended project 

• the available data can be cleaned so that it has an acceptable level of accuracy 
and completeness 

• objective criteria exist for judging the project's results 
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• a domain expert exists, is committed to the project's success, and can dedicate 
a sufficient amount of time to the project 

These may sound like simple things but there is no substitute for a clear definition of and 

support for the task at hand. Write the goal down. Define in definite measurable terms 

how you will know when the goal is reached. Have a plan with milestones that takes 

matters from beginning to end in time to make a difference. Something that has worked 

well for the author is to under sell and over deliver. The idea is to understate what the 

likely result will be and when that result can be accomplished. Further, be aware that 

sometimes a lesser solution is better than no solution at all. Always strive to deliver some 

measurable improvement in the near term while building toward a larger long-term 

solution. Recognize too that it is not necessarily a bad thing to aim at one target and hit 

another. Just be sure to show a positive impact on the bottom line relative to the funds 

expended. 

Select all Appropriate Data Set 

Finding the right data is the next step in the adaptive systems development process. It 

takes a domain expert to make this determination. This person will have a deep 

understanding the data's source and meaning. Here is where the input and output 

variables (data elements or fields) are selected. This is also the chance to determine 

representati ve subsets of the input data records. Input records must be selected for the 

modeling/training step, testing step, and validation step. Additionally, the practitioner has 

to decide if there is sufficient data quantity to carry out the development task. Solutions 

to the problem of insufficient modeling data include recycling the data until the model is 

completely built, using simulation to generate additional data, and putting in electronic 

form data that was collected manually. None of these are pristine solutions but, used 

judiciously, they can sometimes yield implementable results or at least allow you to 

demonstrate a proof of concept. 
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Choose the Algorithms and Heuristics 

In many ways, the choice of choice of algorithms and heuristics needs to be done in 

synergy with the choice of data. For instance, some methods are more tolerant of errant 

data than others. Having more or less data volume will make a lesser or larger difference, 

depending on the method chosen. Supporting technologies are discussed in the next 

section. 

Clean the Data 

A common assumption that must be made about the data to be used is that it will contain 

a certain percentage of dirty records. For instance, according to Fayyad, Piatetsky­

Shapiro, and Smyth (1996, p 27), U.S. census data has error rates of up to 20%. Dirty 

records take the form of inaccurate values, missing values, and other inconstancies. 

Adaptive processes will only yield results that are as reliable as the data feeding the 

process. Thus, the data must be as clean and correct as possible. There are several 

methods that can be used to accomplish this. Rule-based techniques evaluate each field 

according to an expected range or list of values. According to Simoudis, Livezey, and 

Kerber (1995) , rules are also useful for examining the relationships of one field to 

another. Visualization is another useful method of data cleansing. This approach can be 

used to identify outliers. Statistical processing can be used to set missing or incorrect 

values to valid, or at least neutral, values. If noise exists in the data, there are some good 

filtering techniques that may prove useful (see Embree (1995) for instance). Noise is 

mainly due to measurement and collection errors that are not caused by human error. 

They are due to the limitations of the system being measured, the path across which the 

data must travel, and the data collection equipment. 
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Perform Appropriate Data Reduction and Transformation 

When the data is as complete and accurate as possible, it is time to enhance the data. 

Interestingly enough, there is not necessarily a direct relationship between data volume 

and information content. There could be elements that are simply duplicates or computed 

from other elements. A decision is needed on which elements to eliminate. On the other 

hand, new elements may need to be created by preprocessing single elements or by 

combining several elements. Here again, a decision has to be made on whether to 

eliminate the root elements. By and large, success and the time it takes to apply the 

selected algorithms and heuristics depends a great deal on data reduction and 

transformation. Most guidance on this subject depends on the domain application and the 

algorithms and heuristics chosen. Hence, further discussion on the methods of data 

reduction and transformation is beyond our scope. Look to Bigus (1996, pp. 49-55), 

Bevington and Robinson (1992), and Weiss and Indurkhya (1998, pp. 51-118) for some 

excellent insights. 

Apply the Selected Algorithms and Heuristics to Accomplish the Task 

This is where the search for patterns of interest in particular representational forms takes 

place. Getting through this step successfully depends on how well the preceding steps 

have been performed. According to Kennedy, Lee, Reed, and Lippmann (1998, p 11.4), 

these steps are useful: 

• Divide the available data into training, test, and evaluation sets 
• Set values for user-selectable parameters in the algorithms and heuristics 
• Use the training data to adjust the method's variables 
• Use the test set to determine if the variable settings continue to hold 
• Repeat the above steps using different parameters 
• Select the best set of parameter values 
• use the training AND test data to adjust the method's variables 
• validate the end result by applying the evaluation data set 
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Interpret and Validate the Results 

Interpretation and validation imply much more than calculating an error factor. The 

results have to be cast in terms of the application domain and demonstrate a chance to 

create a meaningful positive delta relative to the bottom line. Here is a place where the 

domain expert has another serious role. An important question to be answered is, "Do the 

results make sense?" Some results will be absolutely correct but not intuitive. Other 

results will have clear statistical significance but be total nonsense. The difference can be 

subtle. Careful effort must be applied so that it is possible to see the difference. On the 

one hand, this is an opportunity to separate the new opportunities that are revealed from 

the worthless results. On the other hand, this is a chance to "think out of the box". Here 

too is a place where debugging of the method's use should be performed. Each method 

has its own nuances and so offering debugging assistance is beyond the scope of this 

dissertation. However, some useful ideas are given by Kennedy, Lee, Reed, and 

Lippmann (1998, pp. 12.14-12.26). 

Iterate Through the Above Steps as Needed 

At the risk of sounding repetitive, let it be emphasized once again the importance of the 

domain expert. Anand, Bell, and Hughes (1995) offer additional discussion on this topic 

beyond that given above. They say that the domain expert can offer information of two 

types: 

• information about the data that is already available either through some other 
process or as part of the domain's common knowledge 

• attributes of interest within the data, support and uncertainty bounds, 
opportunities for bottom-line improvement, and identification of unsolved 
problems 



Information about the data generally falls within three classes: 

• Hierarchical Generalization Trees - generalizations of attribute values that 
may be of interest to the end user 
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• Attribute Relationship Rules - integrity constraints defined within the design 
of the database or information already known with high certainty 

• Environment-Based Constraints - constraints put on the adaptive process by 
the domain itself 

If you have gone through the adaptive systems development process once without the 

help of a domain expert, you will likely have realized the need for one by now. Do recruit 

one before trying the process again. 

Once you have generated a baseline model, it is time to try to improve the results. 

Examine your work in each of the process steps. Try to improve each one individually 

and then put them all together. Beware of simply collecting more data. Many 

practitioners expect that substantial amounts of new data should lead to better 

performance. This is sometimes the case but do consider the following questions from 

Weiss and Indurkhya (1998, pp. 112-113): 

• is the error getting smaller in the statistically-significant sense 
• is model complexity increasing much faster than the error is decreasing 
• is the model's increase in complexity worth the smaller error 

Developing effective and profitable adaptive systems is an art. This is told by the fact that 

most adaptive systems methods are heuristics rather than algorithms. They give 

approximate results relative to the actual reality. The actual reality itself is often not 

knowable. Adaptive automation is also a process. While the performance of the process 

steps is important, these steps are not discrete with no relationship to each other. Each 

must be seen as part of a larger whole. Additionally, the results of conducting one 

instance of the process has to be combined with the results of other instances in order to 

produce significant achievements. 
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Consolidate, Review, and Document the Results 

Consolidation gives you a chance to find and resolve potential conflicts with previously 

believed or extracted information. Careful records should be kept on each experiment. 

These records should enable another practitioner to repeat the exact process and duplicate 

the results. Records should be kept in a standard format to facilitate comparisons. 

Opportunities to publish in the peer-reviewed literature should be considered. 

Install the Results in the Target Environment 

A classic performance curve that results from trying anything new in an established 

environment is shown in Figure 4. 
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At issue with this curve is that an initial decrease in results is expected anytime 

something new is tried. The hope is that the system results will recover as people and 

processes evolve to accommodate new features, and that the new system will ultimately 

exceed past performance. Practitioners need to encourage the organization so that it 

understands the risks and to conduct the installation in such a way that overall 

profitability is not too negatively impacted. Here again the domain expert can assist in 

telling a potential improvement from a potential failure. A business mentor can offer 

advice on the impact of risk on the organization and for how long and how much a 

negative impact on the bottom line can be tolerated. The use of prototypes is highly 

recommended as is running the new system in parallel with the old for a period of time. 

Two worthy books on integrating new technology into established applications are 

written by Gillies (1991) and by Parmee (1998). 

Supporting Technologies 

The previous section discussed a process for carrying out an adaptive systems 

development project. This section reviews technologies that could be used for carrying 

out the analysis part of the process. 

An article by Pass (1997) touches on the idea that in any adaptive systems project there 

are requirements (what needs to be done) and technologies (how to get things done). The 

link between requirements and the technologies needed to meet those requirements is an 

important one. Adaptive automation technologies can be seen as lying along a continuum 

(Figure 5). On the one end are pure procedures. On the other end are the various methods 

of evolutionary computation. As one goes from one end to the other, algorithms (exact 

answers) evolve into heuristics (best guesses). Algorithms are for well understood, highly 

structured problems. Heuristics are better for problems that are not well structured or 

understood. They are also more tolerant of imperfect data. 
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Figure 5. Adaptive Automation Technology Continuum 

Here are short definitions for the basic technologies in the continuum. These are 

expanded from Morris (1992). 

• Algorithms - well-defined unambiguous procedures for performing operations 

that lead to exact solutions in an efficient manner. Although adaptive 

automation is more closely associated with heuristics, algorithms can be used 

for preprocessing and to acquire insights into the data. 

• Statistics - mathematical methods for estimating, confirming, or denying 

population parameters from a sample with varying degrees of accuracy. 

Adaptive automation does go beyond statistics, as stated earlier. But, statistics 

can be a worthwhile start for determining basic characteristics of the data. 

• Operations Research - mathematical analysis of optimization problems, 

especially of dynamic systems subject to a given set of constraints. The 

purpose of such analyses is to evaluate the effectiveness of a given system in 

achieving identified goals. 

• Graph Theory - the study of graphs, trees, and networks. A graph is a diagram 

or curve representing varying relationships between sets of data. "Data 

structures" is another topical area in this same genre. It is an organization of 



data in some characteristic way, such as graphs, arrays, trees, lists, queues, 

networks, or stacks. 
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• Expert Systems - applications that solve problems by means of an information 

base containing rules and data from which inferences are drawn on the basis 

of human experience and previously encountered situations. Adaptive 

automation is often put to the task of deriving rules from data. However, there 

is no reason that previously established rules can not be used to guide a new 

processing session. 

• Fuzzy Logic - a method of machine reasoning that can process uncertain or 

incomplete information. This system of logic is based on the fuzzy set, a 

generalization of traditional two-state set concepts. Membership in a given set 

can take on the entire analog range of 0 .. 1 inclusive, rather than just the 

binary discrete values of 0 (not at all a member of the set) and 1 (entirely a 

member of the set and no other). Fuzzy set theory applies these concepts to 

expert systems and estimates the degree of a conclusion's certainty. 

• Neural Networks - a computational network composed of mathematically 

defined elements that are loosely based on biological neurons. These networks 

are often composed of one layer that receives and organizes the n-dimensional 

data input, a subsequent data processing layer, and an output layer in which 

individual neurons identify particular patterns or deliver an analog result as an 

estimate of the system represented by the data. There are numerous neural 

network types. 

• Evolutionary Computing - a class of heuristics that attempt to solve a problem 

by means loosely based on natural evolution. A set of candidate solutions is 

evaluated in terms of solution quality. Then, the better candidates are allowed 

to reproduce (create modified duplicates that continue evolving). If one 
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candidate comes to dominate the population, it is selected as the best solution. 

At times, different candidates are combined to make a new candidate. 

Although he does not say so explicitly, Pass (1997) implies that the technology 

continuum is just one dimension of a 3-dimensional view that fosters solutions to 

problems that might not otherwise be achievable. It also encourages the integration of 

technologies. The three dimensions are technology, application, and the level of impact a 

technology has on solving a particular problem in the given area of application. This 3-

dimensional view is illustrated in Figure 6. 

Pure 
Procedures 

Technology Continuum 

Evolutionary 
Computation 

Figure 6. 3-Dimensional View of Adaptive Automation Technologies 

Figure 6 offers that a range of technologies are available to use for solving the range of 

problems posed by various applications. Depending on the type of problem and how 

much is known about it, a given technology will have more or less to contribute to a 

solution. Each dimension is continuous. It is possible that a given application will pose 



several problems and that multiple technologies will need to be combined to provide a 

more meaningful solution than only one technology could by itself. This 3-dimensional 

view of adaptive systems technologies and their application broadens the scope of 

problems that can be solved and it opens the door to technologies that might not have 

been previously considered. 
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Additional support for this idea is given by Engels, Lindner, and Struder (1997), "An 

important success factor for the field of [adaptive automation] lies in the development 

and integration of methods ... " They go on to apply these ideas to the conduct of a project 

using steps similar to those dIscussed earlier. They end by coupling method selection 

with project subtasks. Thus, they tend also to lean toward a 3-dimensional view. An 

interesting point they bring out is that the solution to a given problem may require several 

subtasks, each of which may require the application of one or more technologies. So, 

while the view can be taken on a problem-by-problem basis, it helps to see the process of 

arrival at a problem's solution as a series of subtasks. Each subtask is achieved as an 

adaptive subprocess. 

Summary 

To avoid the traps of adaptive systems, a clear and objective process should be followed. 

This process should address not only the technical aspects of adaptive automation but 

also domain knowledge and bottom-line realities. Several technologies exist to support 

adaptive automation. These technologies exist along one axis of a 3-dimensional 

continuum that has the application and desired results along the other two axes. 

Combining an objective process with an expanded view of the technologies enables 

solutions that might not have previously been considered. In this way, the opportunities 

for producing meaningful results are greatly improved. 
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Functional Experiments 

There are three major components to the capability created by this research: 

• prediction 
• detection 
• effective implementation for real-world problems 

The innovation provided by this research is the employment of a prediction method from 

control theory to solve the problem of anomaly detection in data streams. How data 

stream next-sample prediction is used for detection is illustrated in Figure 7. 

Data Stream ,--------, 

DT Predict 
DT+1 

Compute 
Prediction 

Error 

No 

Figure 7. Prediction as a Prelude to Detection 

Outside Yes 
Threshold 

? 

No 

Count 
Sequential 
Excursions 

Suffiden 
Number 

Anomaly 
Detected 

Essentially, the predictor provides a difference measure between the actual and predicted 

samples. A detector decides if this difference is large enough often enough to postulate 

and confirm the existence of an anomaly. With the detection threshold and related 

processes taken in reverse, this approach also finds the end of confirmed anomalies. 

The following subsections present the experimental design for the three components. 
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Experiments in Prediction 

Since this is not a dissertation on time-series prediction, the author has bypassed an in­

depth discussion on that topic. Appendix A presents the technique chosen. It was selected 

because it has a firm grounding in well-established mathematics, it is readily 

implementable via parallel processing (course-grained and fine-grained), it is non-linear, 

and it has infinite support. (Infinite support exists in theory only since the fixed word­

sizes of computers truncate very small values to zero.) For a brief introduction to time­

series analysis see the author's two columns that overview that topic (Raeth, 12 Oct 01 

and Raeth, 30 Oct 01). 

Appendix A's next-sample prediction technique can be implemented in a language such 

as Fortran, C++, or Java. This technique is not language-dependent nor does the 

subsequent detection of anomalies depend on its peculiarities; except that, in the author's 

experience, non-linear methods tend to better represent the real-world than do linear 

methods, especially in highly dynamic situations. 

Comparing the Gaussian Predictor with a Linear Predictor 

Although the author has had the experience that non-linear predictors' accuracy over 

linear predictors goes without saying, it is important that a demonstration be made. 

Clearly, the heart of the adaptive detection threshold produced by this research is the 

ability to accurately predict the next value in a sampled data stream. While working with 

a natural and a synthetic data stream, the prediction ability of the present gaussian 

method was compared to that of a popular linear method in digital signal processing. The 

linear method performs a weighted sum of a number of the most recent past actual values. 

According to Morgan (1994, pp. 331-335), it is a very common method in digital signal 

processing. The summation is given below. 



Weights are adjusted via: 

a 

predictedValue = L wiactuali 
i=l 

W;,t+1 = W;,t + (2.0 * gain * (actual;,t+l - predicted;,t) * actuali,t+l) 

where t is the current time 
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gain is a number indicating the rate of parameter evolution 

According to Morgan (1994, code comments), the past-value and weight buffers are 

initialized all at zero. The input has to be mapped to the range 0 .. 1 to ensure 

convergence. 

The steps used for comparing the linear and non-linear predictors were: 

1. Generate chaotic and natural input data 

2. Run data through each prediction method 

3. Generate four descriptive plots 

• magnitude of input data (Figure 8 and Figure 9) 

• range-relative prediction error (RRPE) 

• RRPE standard deviation 

• Fourier transform of input data 
This translates a signal from the magnitude to the frequency domain 
such that the original signal can be recreated via a summation of 
sinusoids of varying frequency and peak value. The spectral 
components are the frequencies of those sinusoids. The component 
values are the peaks of those sinusoids. 

4. Calculate statistical significance of error and standard deviation differences. 

(See Appendix B for mechanization.) 

Figure 8 and Figure 9 show the chaotic and natural data magnitudes respectively. Chaotic 

data was generated by Xt = CXt_I(1.0 - Xt-I) with C = 3.7513 and Xo = 0.9270. According to 

Hilborn (1994, p 26), this equation is chaotic when 3.6 <= C < 4.0 and 
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0.0 < xo < 1.0. Natural data was collected by mounting a microphone inside the frame of 

a common household box fan and sampling at 44100hz. 
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Figure 8. Chaos original signal magnitude 
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Figure 9. Fan noise original signal magnitude 

Prediction error is defined to be PE = 1 Actual- Predicted I. Range-relative prediction 

error is computed by dividing PE by the size of the expected numeric range of the actual 

data, RRPE = PE / (Range_Max - Range_Min). The average is calculated over N 

samples. This particular calculation relates the size of the prediction error to the actual 

data range. 

RRPE is derived from a discussion by Masters (1993, pp. 64-66). He includes a 

calculation for Root Mean Square Error (RMSE). 

n 

RMSE = (1/ n) z)actuali - predicted} 
i=1 

At issue with this equation, according to Masters (1993), is that it is sensitive to the 

range of the actual sampled values. To cancel this effect, this research divides the 

prediction error by the range of actual values. 

The gaussian predictor was documented in the following table: 



Gaussian Predictor Setup 

Gaussian Width 

Number of Terms 

Gain Numerator 

Number of Samples 

Data Stream Name 

The linear predictor was documented in the following table: 

Linear Predictor Setup 

Number of Terms 

Gain 

Number of Samples 

Data Stream Name 

RRPE results were compared using the statistical significance table and procedure 

discussed in Appendix B. 

Single-Dimensioned Data Streams 

A series of experiments were performed with the Gaussian predictor applied to various 

single-dimensioned data streams. There are two user-settable parameters: 

• gain numerator, G 
• number of gaussian terms, N 
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For each data stream, these parameters were varied according to the following table: 

Results Table: name of signal 

Gain Numerator 

0.01 0.10 0.50 1.00 1.50 

C/J 2 
4-< § 
0 Q) 

20 l-< E--
Q) 

§ .n 
200 S ..... 

C/J 
:::l C/J 

Z :::l 
2000 C':i 

d 
20000 

Intersecting cells contain the overall average of the range-relative prediction error. Since 

the purpose of the prediction trials is to establish that the next-sample can be estimated to 

an acceptable level of accuracy in various situations, the table was exercised on 2000 

samples of the following data streams. 

• Constant Value = 1.0 

• Sinusoid = (sin(sample_numberI20.0) / 3.0) + 0.34 

• Chaost+l = 3.7513 * Chaost * (1.0 - Chaosa, 

Chaoso = 0.9270, see Figure 10. 

• Noise recorded by microphone from a box fan, see Figure 11. 

c. 
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Each experiment was documented using the following table: 

Gaussian Predictor Setup 

Gaussian Width 

Number of Terms 

Gain Numerator 

Number of Samples 

Data Stream Name 

Best and worst RRPE curves from each set of experiments with each data stream were 

compared using the statistical significance table and procedure described in Appendix B. 

This test had the value of observing the ability of the prediction method to foretell the 

next sample in various data streams and of providing a sensitivity analysis relative to the 

user settable parameters. 

Two-Dimensional Data Stream 

Once it was established that the prediction method could perform to an acceptable level 

of accuracy for single-dimensioned data, a test was performed on a data stream of two 

dimensions. This test took the form of a 10 x 10 simulated frame sequence. Each pixel 

was generated by its own unique and independent chaotic equation. Essentially, this came 

down to combining 100 single-dimension tests that use variations on the equation 

illustrated in Figure 10 for one parameter set. 

The chaotic equation employed in the one- and two-dimensional prediction tests is Xt = 
CXt_I(l.O - Xt-I). According to Hilborn (1994, p 26), this equation is chaotic when 3.6 <= 

C < 4.0 and 0.0 < Xo < 1.0. For this two-dimensional test, C and Xo were varied by 

random selection from a uniform distribution over their ranges. While a frame generated 



in this way can be color-coded, it makes an uninformative image. Therefore, a figure is 

not provided. The report on this test plotted range-relative prediction error averaged 

across all pixels on the Y axis with frame number on the X axis. It also plotted the 

evolving standard deviation of the average RRPE. The model setup was documented 

using the following table. All pixel models had the same setup. 

Two-Dimensional Frame Prediction Experiment Setup 

Gaussian Width 

Number of Gaussian Terms 

Gain Numerator 

Total Frames in Experiment 
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At this point it is worth reckoning with the phrase "acceptable prediction accuracy". The 

detection method to be described later adjusts its threshold based on the prediction 

accuracy. Therefore, there is no domain-independent definition of "acceptable prediction 

accuracy". Much depends on how different the anomalies are expected to be from the 

background. If the anomalies exceed the background by only 10%, for instance, the 

prediction error would have to be less than 10%. However, the author's feeling is that 
c 

anything beyond 20% error would be too domain limited. The intent of the research is to 

arrive at an independent capability that makes only loose assumptions on the domain. 

Experiments with Detection 

Detection is actually quite simple, being based on elementary statistics: 

1. Range-relative prediction error (RRPE) is averaged over a window of 

samples. An average of the actual value is also maintained over the same 

window. In this step we are creating two moving averages. 

2. Based on a knowledge of the domain, an RRPE threshold is chosen beyond 

which the immediate (local) RRPE is said to depart from the acceptable when 

compared to the average RRPE. When such a departure occurs, the beginning 

of an anomaly is postulated. The threshold is defined in terms of a fraction of 

• 
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the average RRPE. For instance, one might say that a 10% departure from the 

average is an indication that an anomaly might be starting. 

3. A count is kept of the number of times in a row the RRPE departure originally 

appears. If, during the count, the RRPE fails to exceed its threshold, the count 

is reset. 

4. Based on a knowledge of the domain, a count threshold is chosen beyond 

which the departure count confirms the beginning of an anomaly. This 

prevents outliers from being confirmed as anomalies. 

5. At this point, the prediction model stops evolving so that the anomaly does not 

become part of the background. Instead, the prediction model simply outputs 

the average of the window's actual values collected prior to the first sample of 

the anomaly. This is because the predictor is not a model of the data stream, 

just a next-sample forecaster. An alternative to the average is to output as the 

prediction the last actual value prior to the first sample of the anomaly. The c 

RRPE average is also fixed upon reaching this step. 

6. RRPE continues to be collected while the anomaly is in being. However, the 

predictor is simply producing the value determined in the previous step. 

7. Based on a knowledge of the domain, an RRPE threshold is chosen such that 

the end of the anomaly is postulated when the RRPE falls below that 

threshold. Here, the threshold is stated as a fraction of the average RRPE 

previously computed prior to the start of the anomaly. 

8. A count is kept of the number of sequential times the local RRPE falls below 

the threshold. If, during the count, the RRPE does not fall below its threshold, 

the count is reset. 
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9. Based on a knowledge of the domain, a count threshold is chosen such that the 

end of the anomaly is confirmed when the count from the previous step 

exceeds that threshold. 

How to measure prediction and detection success is application dependent. An example is 

interceptor vectoring via object trajectory prediction (Raeth, 1999, Jul). Even though the 

interceptor may frequently make better than 100% error in predicting the object's 

trajectory, the interceptor still can come in physical contact with the object, certainly 

within the interceptor's activation footprint. So, simply measuring prediction accuracy is 

insufficient. The larger question involves the goals of the data collection and processing. 

In the case of an image stream, we want to identify those pixels where something besides 

the background exists. Success would be measured in terms of how accurately we can 

place the start-time and end-time markers for each event. We would also like to blank out 

those portions of the display that contain the background and only show those portions 

that contain possible anomalies. In the case of this project, we are interested in the 

number of false alarms, good detections, and missed detections. Even here it is necessary 
10 

to establish just what false alarms and missed detects are. For instance: Consider an 

object that moves through a scene and thereby changes the lighting conditions. It is 

possible that this change will cause the model to postulate an anomaly based only on the 

pixels affected by the lighting change. Is this a false alarm? Since the model has not 

detected the actual object, is this a missed detect? The model has not detected the object 

itself but has detected evidence of its presence. This research did not count the lighting 

change detects as false alarms but did count the missed object as a missed detect. 

Another question is how long it takes to confirm the presence of the anomaly. Is it a 

missed detect if the anomaly exists for 10 samples but is only confirmed for the last 5? Is 

it a false alarm if it takes 4 samples to confirm that the anomaly no longer exists? It 

depends on the detail of the analysis. In the end, user intent has to drive the analysis . It 

may be more important to notice that the anomaly exists at all and to tell where it is 

located, in the temporal and spatial sense. In that sense, if the anomaly is confirmed to 
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exist while it is still in being, the model could be said to have achieved a good detect. 

Ultimately, there is the matter of detecting the anomaly soon enough to support a 

meaningful and timely reaction. If the anomaly exists for 10 samples, does a confirmation 

covering the last 5 samples give sufficient reaction time? In the case of this research, 

detecting the anomaly while it is in being was considered a good detect for that anomaly. 

A measure of the length of time the anomaly was actually detected was given relative to 

its total existence. There will also be a measure of the length of time taken to determine 

that the anomaly no longer exists. This latter measure gives a sense of the length of the 

anomaly's "wake", the length of time the anomaly is thought to still exist when it no 

longer exists. 

For data streams generated from equations, it is possible to exactly specify at what 

sample an anomaly is to start and at what sample an anomaly is to stop. In a frame sense, 

it is possible to specify exactly what pixels will contain what anomalies when and for 

how long. For natural data, such precise specification is not possible given the available 

equipment. Thus, in the case of natural data streams, an estimate of false alarms, missed 

detects, and good detects was made. Figures give the reader a sense of the validity of to 

these estimates. Plots of detection data were also produced (# detects per frame). 

Detection in Single-Dimensioned Data Streams 

To begin the detection experiments with single-dimensioned data streams, the 

comparison between linear and gaussian methods were continued to include a detection 

experiment. This experiment used the previous fan noise with a loud, obvious, "Hello" 

electronically mixed into the signal. The reSUlting signal is illustrated in Figure 12. A 

comparison of the spectral plots is given in Figure 13. 
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The following tables described the experiment's setup: 

Gaussian Predictor Setup 

Gaussian Width 

Number of Terms 

Gain Numerator 

Moving Average Length 

Linear Predictor Setup 

Number of Terms 

Gain 

Detector Setup for both the Gaussian and Linear Models 

# samples required to confirm anomaly start 

Threshold indicating an anomalous sample 

# samples required to confirm anomaly end 

Threshold indicating a non-anomalous sample 

Data Stream Name 

# samples in data stream 

A combination of synthetic and natural single-dimensioned data streams was used to 

perform additional detection tests with the gaussian model: 

• Constant Value = 5.0, with square pulse = 10.0 inserted at t = 300 and 
remaining through t = 400. 

• Sinusoid = (sin(Time/20.0) / 3.0) + 0.6666, with 
Cosine = (cos(Time/20.0) / 3.0) + 0.6666 inserted at t = 1000 and remaining 
through t = 1500. 

• Chaos = 3.7513 * ChaoticResulCt * (1.0 - ChaoticResulCt), 

Co 

ChaoticResult_t at to = 0.9270, with square pulse = 0.5 inserted at t = 600 and 
remaining through t = 650. 
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• Noise recorded by microphone from a box fan, with reduced-volume "Hello" 
recorded by the same microphone inserted via electronic mixing. (Available 
equipment does not permit exact insertion at a given sample range.) 

The setup for each experiment was documented using the following table: 

Single-Dimensioned Data Stream Experiment Setup 
Gaussian Width 
Number Gaussian Terms 
Gain Numerator 
# Sequential Unpredicted Samples Required for an 
Anomaly to be Confirmed 
% Difference Required Between Predicted and 
Actual for a Sample to be Considered Unpredicted 
# Samples Before Anomaly Was Inserted 
# Samples Before Model Entered Detection Mode 
Total Samples in Experiment 

As the constant-valued data stream is expected to deliver the best detection results, the 

RRPE curve from that experiment was compared to each of the other three experiments 

using the statistical significance table and procedure from Appendix B. Plots comparing 

the original and filtered data streams will also be provided. 

Detection in Two-Dimensional Data Streams 

One can see from the prediction mathematics described in Appendix A and the detection 

procedure described above that this technology is designed for a single-dimensioned data 

stream. Even so, via multiple applications of the technology, 

n-dimensional problems can be addressed. Each element in the n-space has its own time­

varying single-dimensioned data stream. Commonly, for imagery, the two-dimensional 

elements are called pixels. To apply this technology, each pixel has its own 

prediction/detection model. Each model is built automatically from sequential 

observations of its pixel's data stream, without reference to any other pixel. As the model 

is being built, it gradually becomes able to predict the next pixel value in the sequence. 

Once construction is completed, the model continues to evolve as new samples arrive. 
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Pixels with a confirmed anomaly stop evolving until the anomaly is no longer present. 

The other pixels keep evolving. In this way, in keeping with the detection procedure, the 

anomaly does not become part of the pixel's prediction. At the macro level, the image 

anomaly does not become part of the next-frame prediction, thus preserving a sense of 

how the non-anomaly frame should look. 

Experiments conducted to this point were designed to demonstrate this technology's 

underlying abilities. Subsequent experiments applied these abilities to image streams. 

• Two-dimensional chaotic-equation prediction experiment with insertion of a 

value = 0.5, lO-sample, pulse moving along the lower-right to upper-left 

diagonal. This is achieved by inserting the pulse into the subsequent pixel at 

the end of the lO-sample sequence. In this way, a moving anomaly is 

simulated. 

• lO-by-lO low-resolution image generated by a proprietary infrared camera 

simulator. An anomaly moving from the top of the frame to the bottom, in thp 

same column, was inserted into the right side of the image. 

• QuickCam camera set to low picture sharpness and 160 x 120 resolution 

aimed at a scene that does not change at all. A model car was pulled by string 

through the scene. The ROB triplet produced by the camera for each pixel was 

combined to produce a single value by adding the individual triplet elements 

The goal was to filter out all but the car. 

• Under the same setup, the QuickCam aimed at a highly dynamic scene. The 

scene was produced by pointing the camera at a ceiling fan having a room 

light mounted under the fan housing. The fan was turning at such a speed that 

the camera undersampled the scene. This caused the fan blades to appear to be 

constantly switching directions. A model airplane was pulled by string 

through the scene. (Note that the scene was sampled below its Nyquist rate. A 
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characteristic of the QuickCam is that a fixed sampling rate can not be set. 

The camera lens opens and stays open until sufficient light is received to 

record a frame. Thus, it was necessary to experiment a bit with the fan speed 

and lighting conditions to achieve the specified dynamic scene. More 

expensive equipment would make this process more precise but such 

equipment was not available to this project.) 

The following table was used to document the setup of each experiment: 

Two-Dimensional Data Stream Experiment Setup 
Gaussian Width 
Number Gaussian Terms 
Gain Numerator 
# Sequential Unpredicted Frames Required for an 
Anomaly to be Confirmed 
% Difference Required Between Predicted and 
Actual for a Pixel to be Considered Unpredicted 
# Frames Before Object Entered Scene 
# Frames Before Model Entered Detection Mode 
Total Frames in Experiment 

In the case of the chaotic image stream, plots of the number of false alarms and good 

detects were produced. For the QuickCam and simulated infrared image streams, false 

alarms and good detects were estimated since, given available equipment, it was not 

possible to exactly place the anomalies in the scene. In all cases, screen shots showing a 

sample of the filtered image were generated. 

Implementation Experiments 

After nearly 30 years in the computer engineering profession, it has been the author's 

experience that there is a latent demand for throughput that always exceeds what present­

day hardware and software can deliver. The demand is "latent" because users of 

technology are convinced that it is necessary to "wait for the next round of hardware", 

that technology is evolving so fast that the speed will be there within the next year or so. 

Yet, when that year passes and the needs of a year past are satisfied, the present-day need 

has again increased beyond what present-day technology is able to satisfy. Thus, although 
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user's do not demand the throughput because they are convinced it is not available, the 

need is there none-the-Iess. The author is persuaded that it is not necessary to wait for the 

next round of technology in order to satisfy the present-day need for throughput. Rather, 

it is possible to satisfy present-day needs with present-day technology by employing 

technology in ways that are not traditional. It is not necessary to view computing though 

the limited scope of the traditional office computer or engineering workstation. That is 

why this section is included in this dissertation. The intent is to show that the 

prediction/detection technology described here is implementable for real-world 

applications. Another purpose is to explore ways of using present technology to satisfy 

present needs for throughput, while laying the groundwork for satisfying future needs. In 

this way, it is possible move applications at least one year ahead of the technology curve, 

rather than always leaving them one year behind. Therein lies a competitive advantage. 

There were four phases to the throughput experiments. These were designed to push the 

technology produced by this research toward implementation for real-world problems and 

to show that the anomaly detection technique developed in this research is not just for toy 

problems. Figure 14 shows that there are many steps that could have been taken. 

• 
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The first phase improved the code that was running on an architecture with a single 

machine containing one CPU. Then experiments using an architecture with a single 

machine and multiple CPUs were conducted. Following those experiments were efforts 

with an architecture having two networked machines, each with four CPUs. Finally, a 

thrust was taken at converting the technology for implementation on Field-Programmable 

Gate Arrays. This last phase simply examined the difficulties and was not intended to 

achieve actual implementation. The purpose was see what it would take to step out of the 

box of fetch/execute computing methods. 
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Single-Machine Single-CPU Throughput Experiment 

In this experiment, work was done on the original code to increase the throughput of a 

single-CPU computer. The intent was to build the model to a given level of accuracy in 

less clock time. Image size and observation sequence remained the same throughout each 

trial. The changes in the code and its method of construction included: 

• method of compiling the source code 
• method of preprocessing the executable code 
• number and construction of statements used to implement the model 

Other opportunities to improve the base code would be to write certain compute-intensive 

routines in assembler and to perform other machine-specific improvements. In order to 

keep the code as generic as possible, these approaches were not explored. 

The first trial in the experiment repeated the simulated IR-camera experiment after it was 

instrumented to collect per-cycle timing data. The second trial applied all improvements. 

A statistical significance table and procedure described in Appendix B was used to 

compare the per-cycle timing data from the two trials. ("cycles" are the processing 

performed due to the arrival of each sample.) This experiment produced more efficient 

code for use by later throughput experiments. 

Multi-CPU Throughput Experiments 

As a basis of test planning for further throughput experiments, an objective measure of 

execution speedup was needed. A subjective approach leads too easily to incorrect 

findings. Bailey lists twelve ways to produce glowing but false reports from evaluations 

of parallel-processor configurations: 

1. Use 32-bit arithmetic, not 64-bit arithmetic, for performance benchmarks. Compare 
32-bit performance to 64-bit performance. 

.. 
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2. Assume that the inner kernel of an application is the sole determinant of performance. 

3. Use assembly code and other low-level language constructs for performance and 
compare them with Fortran or C implementations. 

4. Scale the problem size with the number of processors, but do not disclose this fact. 

5. Estimate linear scaling of performance without proof. 

6. Compare the performance of heavily optimized benchmarks against unoptimized 
benchmarks. 

7. Compare with an old code on an obsolete system. 

8. Base MFLOPS operation counts on the parallel implementation instead of on the best 
sequential implementation. 

9. Give performance in terms of processor utilization, parallel speedup, or peak 
MFLOPS per $. 

10. Use algorithms that are numerically inefficient, compared to the best known serial 
or vector algorithms for an application, in order to show artificially high MFLOPS 
rates. 

11 . Measure parallel run times on a dedicated system, but measure conventional run 
'" times on a heavily loaded system. 

12. If all else fails, show pretty pictures and animated videos, and don't talk about 
performance. 

To avoid subjectivity, this project used the following metrics: 

• Execution time was collected and reported for one through n processors on a shared­

memory bus. Later, this was increased by one processor up through m processors, 

with (m - n) processors being on their own separate memory bus and linked to the 

application via a network and message-passing infrastructure. The resulting table of 

execution times was used to estimate the value of ' f' in Amdahl's Law for a 

particular implementation of the model. See Appendix C for 

an explanation of this parameter. 
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• According to Morse (1994, p 33), the actual speed-up is the time it takes to run the 

code using one processor divided by the time it takes to run on N processors. The 

ideal speed-up is equal to the number of processors. Efficiency is the actual speed-up 

divided by the ideal speed-up. This can also be calculated as the actual speed-up on N 

processors divided by N. Speed-Up and Efficiency was collected and reported. 

However, do not confuse the two. With increasing speed-up, it may be possible to 

meet a throughput goal. In doing so, it may be necessary to add a number of 

processors such that efficiency drops. 

• Summary charts compare the values collected and clearly show the point at which 

adding more processors is not cost effecti ve. 

• During the experiments, the code and model size were not changed. The comparisons 

were of the exact same code and the exact same model running on increasing 

numbers of processors. 

Each run increased the number of processors employed on a single machine. A multi­

CPU version of the model was created to support this experiment. It was considered 

likely that this version of the model would have additional overhead for the use of N 

processors even if N = 1. 

Multi-Machine Multi-CPU Experiments 

A third version of the architecture was generated to accommodate the multi-machine / 

multi-CPU case. This new version was not hardwired. Rather, it automatically expanded 

itself according to the number of machines, the number of CPUs on each machine, and 

the capacity of each machine known to be dedicated to the model's workload. Although 

this third version was capable of running even the single-machine / single-CPU case, it 

was expected that the overhead would increase because of the new code based on M 

machines instead of assuming just one. This is similar to the previous expectation when 



the single-machine Isingle-CPU version was expanded to single-machine I multi-CPU. 

Removing the assumption of just one CPU is expected to add some overhead to the 

processmg. 

The physical computer arrangement used is illustrated in Figure 15. 
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Multiprocessor I Multirnachine Architecture for Anomaly Detection in Image Streams 

HOST 
MACHINE 

TCP/IP Local Area Network 
MPI Message Exchange 

For these tests: 

Two Intergraph Workstations 
- 4 200mhz Intel Pentium CPUs each 
- 500mb shared memory each 
- VVinNT, Visual C++ 

HELPER 

Figure 15. Computer physical arrangement for multi-machine/multi-CPU tests 

Experiment #IA 

This experiment ran the model with 8290 frames having a resolution of 160 x 120 pixels. 

(A pixel is represented by 4 bytes.) Since the prediction model for each pixel had 30 

terms, the total number of terms per frame is 160 x 120 x 30 = 576,000. (There are some 

applications where this size image is useful.) The modeling software for this experiment 
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was designed to support only one machine and one processor. The run-time was collected 

for comparison with the I-processor case in Experiments #IBand #1C. 

Experiment #IB 

This experiment employed code designed for 1 through P processors on a single machine. 

The run time with 1 through 4 processors was collected. The speed-up and efficiency was 

calculated. Data was collected in the following chart. Plots of run time, speed-up, and 

efficiency were generated V s number of processors. 

#CPUs Run Time Speed Up Efficiency 

1 

2 

3 

4 

Experiment #IC 

This experiment is the same as #IB except that the code can support multiple machines. 

The caveat is that the code was restricted to run on only one machine. A message-passing 

infrastructure was brought up and the was code run from the cluster control interface. 

Experiment #2 

This experiment continued experiment #IC by adding 5 through 8 processors to the mix 

via cluster computing. As more processors were added from the additional machine, a 

larger image chip was sent for that machine to work on. Each machine had a workload 

capacity number assigned to it. This number was equal to the amount of time the machine 

took to do a sample image stream problem in a stand-alone setting using all of its 

processors. Thus, the larger the number, the lower the workload capacity. The total 

cluster capacity is the sum of all the numbers from the various machines. The size of the 

E 
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image chip sent to a given machine is calculated as a fraction of that machine's share of 

the total cluster capacity: 

(totaLimage_size * machineX_clusteccapacity_fraction). The fraction is equal to 

(1 - (machineX_capacity / total_clusteccapacity)). 

Experiment #3 

This experiment used software designed to only measure the overhead inherent in the 

model. There were four phases: 

A. Read the frames from a local file . 

B. Send a 4-bytes-per-pixel half-sized frame chip on to another machine and 
receive a l-byte-per-pixel chip back. 

C. Store the frames on local disk. 

D. Display two copies of the frame on the CRT (original and filtered). 

The following table was used to estimate the impact of all four activities on the run times 

in experiments lA, l B, and Ie. (Results from experiment 3B are not applicable to 

experiment lA or lB since they do not send chips to other machines. Similarly, 

experiment 3B results are not applicable to the single machine case in experiment lC.) 

#CPUs Run Time A. B. e. D. 
% Due to % Due to Inter- % Due to % Due to 

Frame Machine Frame Frame 
Receive Communication Storage Display 

1 
2 
3 
4 



The following table collected the underlying data. 

Overhead Activity Total AvgTime 

Processing Per Pixel 

Time 

A. Receiving all Frames 
B. Send / Receive Comrn with one other Machine 
C. Storing Frames on Local Disk 
D. Displaying two Frames on Screen 

Exploring Issues In Moving Toward FPGA Implementation 

This part of the research continued the exploration into alternative means of improving 

throughput. The task was to investigate a means of translating the computationally 

intensive parts of the model for use by Field Programmable Gate Arrays (FPGAs). The 

track involved the following steps: 

1. translating part of PAD to Java 

2. ensuring that part of the model executes correctly in a standard Java 
environment 
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3. explore the idea of using a commercial tool (Forge) to translate the Java byte 
codes to Verilog, a hardware description language 

4. actively participating on the Xilinx' Forge beta test team 

This task was supported by contacts at Xilinx and gaining a spot on the Forge beta test 

team. The thrust here was to demonstrate a smooth flow between software applications 

and high-speed signal processing hardware without having to program directly in 

assembler or a hardware description language. Forge is unique in the market in that it is 

intended to take object-oriented source code written using a standard application 

development environment, and translate it directly for FPGA use without having to 

modify the programming language with special keywords or other functionality. This 



94 

Chapter Four 

Results 

One of the points of the author's work is to produce a technology that is fit for more than 

toy problems. Therefore, synthetic data was used for initial testing and data from actual 

sensors was used for additional testing. Further, an exploration was made of various 

means of physical implementation. So, the results presented here are from applications of 

the theory and from practical realization. 

Results From Applying the Theory 

This chapter on Results mirrors Chapter 3 on Methodology. To that end, the same section 

titles are repeated. Each section starts with the conclusions. These are followed by the 

supporting data. 

Experiments in Prediction 

Comparing the Gaussian Predictor with a Linear Predictor 

For the data tried, the original assertion was confirmed. The Gaussian (non-linear) 

predictor proved to be superior to the linear predictor in terms of accuracy. In all 

experiments, a statistically significant difference in results was observed. 

Since Morgan (1994, pp. 331-335) asserts in his code comments that the data has to be 

mapped to the range 0 .. 1 for the linear case, the linear and Gaussian models were 

exercised on mapped and unmapped data in both the Chaotic and FanNoise experiments. 

The following tables show how the Gaussian and linear models were arranged: 
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Gaussian Predictor Setup 
Gaussian Width 11.28125, per calculation described in Appendix A 
Number of Terms 20, centered evenly over the data maximin range +1- 0.5 
Gain Numerator 0.5, based on general experience 
Number of Samples 32000, maximum number of points that can be plotted by Excel 

spreadsheet 
Data Stream Name Chaos and FanNoise 

Linear Predictor Setup 
Number of Terms 250, per Morgan's choice for his noise experiment 
Gain 0.0001, Morgan chose a higher value for his noise experiment 

but that value did not work well for these experiments 
Number of Samples 32000 
Data Stream Name Chaos and FanNoise 

If it is assumed that the chaotic signal was sampled at 44, 100hz then there were 

meaningful frequency components through 20,000hz, as shown in Figure 16. Given its 

44,100hz sampling rate, the data derived from the fan noise had meaningful frequency 

components through 1,400hz as illustrated in Figure 17. The spectral plots were 

calculated over 16384 datapoints, the maximum allowed by the student version of the 

DADISP engineering spreadsheet. 



• 

96 

i Strong 
~ ~DC 
~....----- Component 

0.01 

Hellz 
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Figure 17. Spectral plot of the fan noise data 

The chaotic data was already in the range 0 .. 1 so it was not necessary to perform an 

experiment with mapped data. A comparison of the range-relative prediction errors 

averaged over time is shown in Figure 18. Figure 19 contains the evolving standard 

deviation. 
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Figure 18. Comparison of range-relative prediction error for chaotic data 
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Figure 19. Comparison of standard deviation for chaotic data experiment 

Statistical tests showed that there is a significant difference for both range-relative 

prediction errors and standard deviations. The following two tables offer a summary of 

these calculations. 

t-Test: Two-Sample Assuming Equal Variances 

RRPE NonLinear Linear 
Mean 0.018783761 0.161917152 
Variance 0.000368539 0.009415051 
Observations 32000 31999 
Pooled Variance 0.004891724 
Hypothesized Mean Difference 0 
df 63997 
t Stat -258.8609747 
P(T <=t) one-tail 0 
t Critical one-tail 1.644878012 
P(T <=t) two-tail 0 
t Critical two-tail 1.96000201 

c 
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t-Test: Two-Sample Assuming Equal Variances 

Standard Deviation NonLinear Linear 
Mean 0.031075439 0.141569691 
Variance 0.000766539 0.001463286 
Observations 32000 31999 
Pooled Variance 0.001114907 
Hypothesized Mean Difference 0 
df 63997 
t Stat -418.5784545 
peT <=t) one-tail 0 
t Critical one-tail 1.644878012 
peT <=t) two-tail 0 
t Critical two-tail 1.96000201 

The original fan-noise data has sample values all less than zero. This data was first 

mapped to the range 0 .. 1. Both prediction methods were able to handle that data. Figure 

20 compares the range-relative prediction errors. Figure 21 compares standard deviations. 
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Figure 20. Comparing range-relative prediction error for fan-noise mapped data 
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Figure 21. Comparing standard deviation for the fan-noise mapped data ¢ 

As the following summary tables show, there is a statistically significant difference 

between the range-relative prediction errors and the standard deviations. 

t-Test: Two-Sample Assuming Equal Variances 

RRPE NonLinear Linear 
Mean 0.015887637 0.307905233 
Variance 1.82066E-06 0.018572305 
Observations 32000 31999 
Pooled Variance 0.009286918 
Hypothesized Mean Difference 0 
df 63997 
t Stat -383.2920573 
P(T<=t) one-tail 0 
t Critical one-tail 1.644878012 
P(T<=t) two-tail 0 
t Critical two-tail 1.96000201 



102 

t-Test: Two-Sample Assuming Equal Variances 

Standard Deviation NonLinear Linear 
Mean 0.012918234 0.274495128 
Variance 1.43875E-06 0.005638906 
Observations 32000 31999 
Pooled Variance 0.002820128 
Hypothesized Mean Difference 0 
df 63997 
t Stat -623.0480578 
peT <=t) one-tail 0 
t Critical one-tail 1.644878012 
P(T<=t) two-tail 0 
t Critical two-tail 1.96000201 

The Gaussian predictor is capable of dealing with any range of data so the fan-noise 

experiment was repeated with the raw data unmapped. Figure 22 contains the comparison 

of range-relative prediction error while Figure 23 compares the standard deviation. 

0.80 

0.70 

0.60 

0.50 

w 
~ 0.40 
a: 

0.30 

0.20 

0.10 

0.00 

1 

oil 

\ 
\ 
~ 
~ 

... 
I 

1726 3451 5176 6901 8626 10351 12076 1 ~0115526 17~ 1189762070122426241512587627601 29326 31051 

Sarrple Nu11 er 

[..L t-bnLinear -1. Unear [ 

Figure 22. Comparing range-relative prediction error for fan-noise unmapped data 
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Figure 23. Comparing standard deviation for fan-noise unmapped data 

As the following summary tables show, there is a statistically significant difference in 

range-relative prediction error and standard deviation. 

t-Test: Two-Sample Assuming Equal Variances 

RRPE NonLinear Linear 
Mean 0.018783761 0.161917152 
Variance 0.000368539 0.009415051 
Observations 32000 31999 
Pooled Variance 0.004891724 
Hypothesized Mean Difference 0 
df 63997 
t Stat -258.8609747 
P(T<=t) one-tail 0 
t Critical one-tail 1.644878012 
P(T<=t) two-tail 0 
t Critical two-tail 1.96000201 
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Figure 40. False Alarms prior to intruder entering the chaotic scene 
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Examination of the data revealed that the intruder was detected in all but the first physical 

location it attained. These detections amounted to 2 or 3 of the 10 pixels that were taken 

as the intruder lingered in each physical location (21.31 % over all). Figure 42 offers a 

snapshot of these results. The full plot is very cluttered and therefore not revealing. 
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Figure 42. Portion of good detects during chaotic eyeball experiment 

When reviewing these results, one should recall that a detection history of three frames 

was required before an intruder was verified and reported. This guarantees three missed 

detects for each physical location. In this case, this means that one-third of the possible 

good detects will be missed. (The intruder lingered in each physical location for ten 

frames and occupied only one pixel at a time.) Detector sensitivity could be increased at 

the risk of additional false alarms. The requirements of the specific application would 

drive this decision. 

For the first thrust at real-world data, a demonstration using frame data was performed by 

generating pixels from a proprietary infrared camera simulator. The simulator also 
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produc ed a very small amount of platform vibration (jitter). The goal was to 

autom atically build an adaptive model that filters out the background and leaves only the 

r on the display. Given available equipment, only a 10xlO frame was simulated. intrude 

Each p ixel had its own detection model. Each of the 100 models were built automatically 

bservations of the appropriate pixel in 75 sequential frames of intruder-free from 0 

backgr 

intrude 

ound. The model was shown 100 cycles of all 75 frames to get enough exposure to 

r-free scenes. Normally, a continuous data stream would be used. However, 

stances at the time prevented our obtaining more data. CIrcum 

Simulated Infrared Camera Experiment Setup 
Gauss ian Width 
Num ber Gaussian Terms 
Gain Numerator 
# Seq uential unpredicted frames required for the 

ning or end of an anomaly to be confirmed begin 
%Di fference required between predicted and 

for a pixel to be considered unpredicted actual 
#Fra mes before object entered scene 
#Fra mes before model entered detection mode 
Movi ng average length 

3.141592654e4 
800 
0.5 
4 

20 

7500 
7500 
1 

Out of the series of frames that the object lingered at anyone pixel, 4 frames were missed 

e there had to be 4 in order to confirm the presence of the anomaly. For each of ten 

, there were 4 false alarms since 4 were needed to confirm the end of the anomaly. 

er false alarm (relative to the actual intruder) was a two-pixel hot-spot developed 

becaus 

frames 

Anoth 

by the 

pixel p 

simulator in another part of the frame from the intruder's track. The intruder's first 

osition was missed altogether. A precise percentage of false alarms and missed 

detects was not possible to calculate due to the nature of the data. 

-~~ 



Two results from QuickCam scenes are discussed next. The following table gives the 

configuration of the detector for both the benign and dynamic cases. 

Two-Dimensional Data Stream Experiment Setup 
Gaussian Width 0.0011286596702183 
Number Gaussian Terms 30 
Gain Numerator 0.1 
# Sequential unpredicted frames required for the 3/1 
start / end of an anomaly to be confirmed 
% Difference required between predicted and 9.5 
actual for a pixel to be considered unpredicted 
# Frames before object entered scene 30 data minutes 
# Frames before model entered detection mode 30 data minutes 
Moving average length 1 
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During the experiment with a benign scene, a model car was pulled through the scene. 

The detector, according to a visual estimate, was able to tum on an average of 50% of the 

pixels associated with the car as it moved through the scene. Visually, there were no false 

alarms and no lighting changes were detected. The model did detect the string as it 

changed position while pulling the car. 

The model learned to predict the base scene within five data seconds. Figure 43 compares" 

one frame of the unfiltered and filtered scene as the car was moving through the scene. 

Figure 43. Unfiltered and filtered benign scene as model car moves in the scene 
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While there were no visually detectable false alarms, detailed examination of the output 

data stream showed that there were some single-pixel false alarms. These were so small 

and brief in the scene that the eye did not catch them. In this sense, the eye essentially 

acted as a spatial filter and ignored single-pixel false alarms. An automatic filter could 

also be developed to do that as a post-processor for the detector. A choice to do 

something like that would depend on the application. 

Empirical observation showed that more pixels could be turned on by the model at the 

risk of increasing the number of false alarms. The only change in the model to 

accomplish this would be to decrease the threshold between the average and 

instantaneous RRPE. Another way to tum on more pixels would be to use a clustering 

method such that if some number of pixels were turned on within a cluster boundary then 

all the pixels within that boundary would be turned on. As shown in the detection 

experiments with single-dimensional data streams, there are many ways to configure the 

detector depending on the needs of the application. 

The final detection experiment was with the dynamic QuickCam scene. A model airplane 
c 

was pulled below a spinning ceiling fan. The scene was undersampled so that the fan 

appeared to be turning in random directions. A light was attached to the fan below the 

blades. The light was turned on. 

The model learned to predict the scene within 30 data minutes. Visually, the model 

turned on an average of 50% of the pixels associated with the airplane as it was pulled 

through the scene. Visually, there were no false alarms. Numerous lighting changes were 

detected. These changes occurred because the airplane crossed between the fan's light 

and the camera. The model did not detect the string as it changed position in the process 

of pulling the airplane. Figure 44 compares one frame of the unfiltered and filtered scene 

as the airplane was being pulled through the scene. 
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Figure 44. Unfiltered and Filtered robust scene as model plane moves in the scene 

The same discussion on false alarms and turning on additional pixels applies here as with 

the benign QuickCam scene. It should also be noted that, in the case of the dynamic 

QuickCam scene, the model detected evidence of the anomaly's presence along with the 

anomaly itself. The lighting changes were caused by the presence of the anomaly. 

Results from the Implementation Experiments 

As demonstrated by the results from the experiments with the theory, PAD works well 

with a variety of synthetic and natural data. The main point of the research is concluded 

thereby but the author wanted to take things a bit further and demonstrate the potential 

for implementation in practical settings. Thus, it seemed appropriate to explore 

alternatives for improving throughput. 

Recognized immediately is that PAD is CPU intensive. (Yet, it scales linearly.) The 

implementation experiments took advantage of PAD's naturally-parallel architecture 

while exploring three opportunities to improve throughput: 

• code improvements on a single-cpu/single-machine PC 
- these had a positive affect but were not statistically significant 
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• parallel processing on a multi-cpu/single-machine and a multi-machine cluster 
- these had a positive affect but were statistically significant only for large 
problems 
- takes advantage of course-grain parallelism 

• evolution toward FPGA implementation 
- found that there is a huge potential but that a software paradigm shift needed 
- takes advantage of fine-grain parallelism 

The parallel processing experiments split PAD by numbers of pixels. Each CPU's part 

was to for evaluate and update the model terms for a given number of pixels. Overhead 

was evaluated as the number of CPUs and machines expanded. Left to future work was 

pipelining for such things as data acquisition, distribution, display, and storage. 

Single-Machine Single-CPU Throughput Experiment 

The Original Trial 

After the code was instrumented to allow the collection of metrics, the original trial with 

the simulated IR-camera was run again so that specific data could be collected on 

throughput and a baseline established. All comparisons were made to the baseline. 

Nothing else was running on the computer. This trial took 2765 seconds to complete. 

The architecture of the model for these single-CPU / single-machine comparison trials is 

shown in Figure 45. 
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Figure 45. Model architecture: single-CPU / single-machine 

Comparison Trial 1 

To prepare for the first comparison trial, a copy was made of the instrumented code. 

Then, a lot of code cleanup was performed: 

• A lookup table replaced the constant recalculation of basis function centers. The 

centers do not change so there is no need to keep recomputing them. 
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• The function that determines the adaptation signal was modified to permit mUltiple 

return points rather than setting a control variable. This function is deep in the loop 

that iterates through all basis functions. For 100 pixels and 800 hidden nodes in the 

model for each pixel there are 100 x 800 = 80,000 equations for each frame. Thus, it 

was felt that improving this function would be worthwhile. 



• Compilation and linking used VC++ standard release mode. This removes all the 

debugging code. 
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• The code was executed directly from the operating system file menu, rather than 

under the control of the development environment. This removes a bit more overhead. 

• Each frame was read using one statement that inputs all the frame's pixels at once, 

rather than using a loop to read each pixel one at a time. This saves a loop and 

multiple file accesses per frame. 

• Liposuction 

(http://www.microsoft.com/msj/defaulttop.asp?page=/msj/archive/s572.htm ) removed 

excess statements from the executable code. 

As a result, the run took 2484 seconds. This is indeed numerically smaller than the 

original. However, there is no statistical difference in the run times. This was determined 

by comparing the amount of time to complete each cycle during the original and triaL! '" 

runs. 

There are other code-level modifications that can be tried during future work: 

• The exponential is employed heavily. It may be possible to replace the standard call 

to exp(x) with a shortened in-line tailor series without loosing the model's predictive 

capability. Something like this may tend to run faster. (Suggestion from Dr Steve 

Gustafson, University of Dayton Research Institute.) 

• Opportunities to replace division with multiplication could be explored. There may 

also be opportunities to perform integer, rather than floating point, arithmetic. 

Further, one could explore opportunities to use left and right bit shifts instead of 

multiplication and division by powers of 2. (Suggestions from Charlie Todd, Ball 
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Aerospace & Technologies Corp.) 

• Higher-grade compilers have options that could improve the optimization of the 

object code. (The student version of VC++ has only a default optimization whereas 

the professional version has several additional capabilities. However, it is necessary 

to reckon with the testing needed to verify that the optimized code performs the same 

way functionally as the non-optimized code.) 

• Some of the code be replaced by assembler routines and other machine-specific 

improvements. A profiler would show where this and other attempts at speeding up 

the code might be most profitably applied. However, these types of changes interfere 

with the generic nature of the code and relegate it to a specific hardware suite. 

Comparison Trial 2 

Comparison trials 2 and 3 set aside attempts at improving the code and looked at the 

basic algorithm used to construct and evolve the model. 

Since the data being used in these trials is very robust, one might assume that a large 

model is needed. Of course, the larger the model, the longer the run time and the lower 

the throughput. This trial took the original experiment and decreased the number of nodes 

until just before a statistically significant increase in prediction error occurred. The model 

reached this point at 775 nodes. This resulted in a 26% decrease in run time. Comparison 

showed that this is statistically significant. 

Comparison Trial 3 

Setting the gain numerator to 0.05 in the triaL2 code, it was possible to bring the number 

of nodes down to 25 before a statistically significant decrease in prediction accuracy 
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occurred relative to the original trial. The run took 77 seconds, a statistically significant 

improvement in throughput. 

Multi-CPU Throughput Experiments 

The next thrust in throughput improvement made use of a multiple-CPU architecture. 

This is not a cure-all as the following discussion shows. 

Issues in Parallel Processing 

By having several CPUs perform smaller parts of a single large problem, the hope is that 

the problem gets solved faster. That this is typically true is demonstrated by Sevenich 

(1998) and by Souza, Senger, Santana, & Santana (1997). It should be noted, however, 

that for any given problem and architecture there is a limit to how much improvement 

can be had by simply adding more processors. This is because of contention for the 

memory bus (in a shared-memory environment), contention for the network (in a 

distributed-memory environment), the need for processor synchronization, and portions 

of the code that must be run sequentially. A typical performance curve is shown in Figure 

46. Morse (1994, p 32-43), Toxvaerd (1994, p 503), Mattson (1996, p 992), and Stewart 

(1994, p 244) show applications that exhibit this curve's general shape. Figure 46 shows 

that, for a given problem and architecture, adding more processors helps a great deal at 

first. Then the benefit from additional processors ceases to increase. With still more 

processors, resource contention slows the application down until the relationship between 

the number of processors and the throughput is increasingly inverse. 
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Figure 46. General Execution Speed Expectations With Parallel Processing 
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Amdahl (1967) derived an equation that predicts the amount of speedup to be expected 

from a number of processors given a fraction of code that has to be run sequentially (cited 

and explained by Zomaya, 1996, p 14; see Appendix C for more details). 

s < 1 
N - (f + ((1- f) / N) 

Where: SN 

N 

f 

the predicted execution time divisor for the single-processor case 

the number of processors 

fraction of the code that must be executed sequentially 
(loops unwound) 



137 

This equation is illustrated in Figure 47 for the case f = 0.05. Note that Amdahl's equation 

only deals with the fraction of code that must be executed sequentially. It does not take 

into account the other drawbacks noted earlier. However, his equation does tend to 

confirm the curve in Figure 46. Memory bus and network contention, along with 

processor synchronization, are the overhead that makes execution time begin to slow 

down again once too many processors are included. Note also the small fraction of 

sequential code, Figure 47 assumes (f = 0.05). The message here is that a program has to 

be carefully examined and arranged so that it takes best advantage of multiple CPUs. The 

"code fraction" is not the popular "executable lines of code" used in cost estimating. If 

90% of the executable lines of code must be run sequentially but only 5% of the time is 

spent there then f = 0.05. 

Amdahl's Law Predicting Execution Speedup Via Parallel Processing 
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Figure 47 Amdahl's Law Predicting Execution Speedup Via Parallel Processing 
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Another issue is problem size. For problems that are too small, parallel processing can 

decrease their throughput. This is due to the fact that the overhead attendant on parallel 

processing can cause the total execution time to exceed what it would take a single-CPU 

to complete the run. Going back to Amdahl, if the time spent executing the 10% of the 

code that can run in parallel is smaller than the time spent in the 90% that must be run 

sequentially, the run-time due to the sequential code and the parallel-processing overhead 

will dominate the throughput and slow things down. Pipelining is one option that can 

alleviate this problem. This technique uses an architecture of several processors but each 

processor performs a larger portion of the problem as part of a sequence. For instance, 

next-sample input and preprocessing can be performed at the same time as current­

sample final processing and output. This does, however, introduce additional overhead 

for processor synchronization. Thus, the use of parallel and distributed processing 

requires a constant balance of application, architecture, CPU demands, memory demands, 

and data-passing capacity. 

Opportunities 

Four opportunities were considered for parallel operation of the prediction/detection 

model: 

• Split the model's main loop. The number of parameters in the model 

determines the length of this loop. The loop can be split because each model 

parameter is independent of all the others. Currently, the number of 

parameters is fixed prior to the start of processing. Even so, variable loop 

sizes can be accommodated. The code for each loop index can execute 

independently on its own processor. 

There are many approaches to splitting loops. One approach is offered by 

Letner (1996). He has each processor handle a given pass through all loop 

indexes. This works well when the code for each loop index is dependent on 
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the other indexes but each (entire) loop produces independent results. An 

approach used by Pilati (2000) has each processor execute a given portion of 

the loop. This is effective when each loops' results are dependent on the 

results from previous passes through the loop but the code for each loop index 

is independent of the code for other indexes. 

• Generate the model's output as a separate process. 

• Update the model using another separate process. 

• Implement model input, output, and update as steps in a pipeline. 

When moving in the direction of parallel/distributed processing it is important to 

provided additional efficiencies without undoing the flexibility of the implementation. 

The basic idea used here was to first use Pilati's (2000) method to split the model's main 

loop. This architecture is illustrated in Figure 48 and takes advantage of multiple CPUs 

on the same machine. It is an evolution of the architecture used for the original single­

machine/single-CPU comparison tests (see Figure 45). 
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Figure 48. Model architecture: single-machine I multiple-CPUs 

Experiment with a Uni-Dimensional Data Stream 
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A uni-dimensional data stream was applied to a model with 25,000 terms. The single­

machine I multiple-CPU architecture of Figure 48 was used. Preliminary experiments 

with lesser numbers of terms showed throughput improvements that numerically 

improved as the number of CPUs increased from 1 though 4 but no statistically 

significant improvement was observed. The results from the 25,000-term experiment are 

summarized in Figure 49. 
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With 25000 terms in the model 

#CPUs Seconds Actual Efficiency Estimated 
Speed-Up 

1 4042.69 
2 2966.23 1.36 0.68 
3 2319.28 1.74 0.58 
4 2282.83 1.77 0.44 

Figure 49. Results from experiment with loop-splitting in a 
single-machine / multiple-CPU architecture 
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The effort in throughput improvement took its next step by applying the model to the 

more complex image stream problem. A total of 8 processors were employed by adding 

an additional 4-processor computer to the mix. This created a parallel/distributed cluster 

where each group of four processors has its own shared memory. This approach enabled 

reasonable throughput improvement for the much-larger image-stream models . It also 

offered a chance to examine the issues brought about by inter-computer communication. 
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A major lesson learned from the uni-dimensional data-stream experiment reported above 

is that the model has to have at least 25,000 terms for parallel processing to produce 

statistically significant throughput improvement. The earlier experiments with image 

stream prediction showed that each pixel needed a model with only 20 terms. Thus, loop­

splitting for term-level parallelism would have been ruinous for the many small models 

used to process image streams (one model per pixel). Because of this, the architecture 

used for single-machine I multi-CPU experiments with uni-dimensional data streams was 

modified to enable pixel-level parallelism. Instead of each processor receiving a certain 

number of terms, the processors are each given a number of pixels. The terms for a given 

pixel are all computed and updated by a single processor. If a processor is located on 

another computer, the appropriate part of the image is sent to that computer. From there 

the image chip pixels are distributed to the various processors. The results are returned to 

the host computer for accumulation and posting. The resulting multi-machine/multi-CPU 

architecture is illustrated in Figure 50. (Recall that the number of processors on each 

computer need not be the same. The software is set up to automatically adjust to the 

number of computers and processors, and to the workload capacity of each computer.) 



Model Architecture for Multiple 11achines ! Multiple CPUs Per Machine 
(application: video stream having a small model for each pixel) 

Initialize 
Windows 

Environm ent 

Sm<I 
Anomaly 
Detectioo 
ReNIta » 
Machine 1 

Determine Determine 
Number of Workload 

Machines in Capacity 
Application of each 

auster Machine 

Start 
Anomaly 
Detection 
Process 

Online 
Graphs 

CAltputto 
Disk and 
Online 
Graphs 

Generate 
Statistics 

Generate 
Next 

Frame 

Receive and I L===~ ___ ~ 
f-----------~ Accumulate I-

Results 

Figure 50. Architecture for applying the model to image stream pixels 
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This architecture implies the need for a message-passing infrastructure. While one can 

easily argue that a custom-written infrastructure would serve the needs of throughput 

most effectively, the author chose to use a generic infrastructure to preserve the generic 

nature of the overall detection environment. After considering the various alternatives 

(Raeth, 14 Nov 2000), the author settled on an implementation of the Message-Passing 

Interface. MPI (see Numerous Authors, 1998) is an internationally accepted and 

coordinated industrial standard for passing messages between machines in a 

heterogeneous cluster. (This means that the machines in a cluster do not have to be all of 

the same type nor even running the same operating system. They also do not have to be 

physically local to each other.) Of the academic implementations of MPI, the one that 

appears most complete is produced by the Center for Scalable Computing at the Aachen 

University of Technology (see Scholtyssik, 2000). This particular infrastructure is 
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specifically designed to support machines connected to a common office LAN running 

the TCP/IP protocol. 

Experiment lA 

# Pixels per frame = 120 x 160 = 19,200 

# model terms per pixel = 30 -7 576,000 terms to evaluate and update per frame 

# frames = 8,290 

Experiment 1A: Execution time for the single-machine I single-CPU case 

% Due to Overhead 
#CPUs Seconds A. Frame C. Frame D. Frame Total 

Receive Store Display 

1 16469.2 2.0% 0.7% 22.8% 25.6% 



Experiment 1 B 

Experiment IB: Execution time for the single-machine / multi-CPU case 

% Due to Overhead 
#CPUs Seconds Speed Up Efficiency A. Frame Receive C. Frame Store D. Frame Display Total 

1 16153.7 1.00 1.00 2.0% 0.8% 23.3% 26.0% 
2 9366.6 1.72 0.86 3.5% 1.3% 40.1% 44.9% 
3 7089.2 2.28 0.76 4.6% 1.7% 53.0% 59.4% 
4 5956.6 2.71 0.68 5.5% 2.0% 63 .1% 70.7% 

- ~~-

Experiments 1 C and 2 

Experiment lC and 2: Execution time for the multi-machine / multi-CPU case 

I I % Due to Overhead 
#CPUs Seconds Speed Up Efficiency A. Frame B. Inter-Machine C. Frame Store D. Frame Total 

Receive Communication Display 

1 16855.8 1.00 1.00 2.0% 0.7% 22.3% 25.0% 
2 9658.4 1.75 0.87 3.5% 1.3% 38.9% 43.7% 
3 7260.7 2.32 0.77 4.6% 1.7% 51.8% 58.1% 
4 6092.4 2.77 0.69 5.5% 2.0% 61.7% 69.2% 
5 5325.7 3.17 0.63 6.3% 3.5% 2.3% 70.6% 82.7% 
6 5170.4 3.26 0.54 6.5% 3.6% 2.4% 72.7% 85.2% 
7 4809.0 3.51 0.50 7.0% 3.8% 2.5% 78.2% 91.6% 
8 4185.5 4.03 0.50 8.0% 4.4% 2.9% 89.8% 105.2% 



Experiment 3 

Experiment 3: Determining Overhead 

A. Frame B. Inter-Machine C. Frame D. Frame Total 
Read Communication Store Display Overhead 

Run Time (Seconds) 336.4 185.1 121.8 3760.1 4403.4 
% of Total 7.6% 4.2% 2.8% 85.4% 100.0% 
A vg Time Per Pixel 2.11E-06 1.16E-06 0.0765E-06 20.36E-06 20.77E-06 cluster 
A vg Time Per Pixel 2.11E-06 0.0765E-06 20.36E-06 20.65E-06 single 

machine 

" 
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Discussion 

Note that the fractions of overhead found in the 8-CPU case adds up to more than 100%. 

This shows that there is unmeasured overhead attributable to the operating system. Still, 

the numbers are useful for judging relative overhead. There is a certain overhead that will 

always be present, regardless of the activity performed. This overhead appears in all four 

phases of experiment three but only once during a full run of the model. The total 

overhead, however, is estimated by summing the execution times of all four phases of 

experiment three. Thus, operating system overhead is included four times in the estimate 

of total overhead. That continuous overhead is present, even when no user programs are 

running, is verified by the operating system's task manager. It estimates continuous 

overhead at 1 % of CPU resources due to the operating system's 20 tasks. Task overhead 

from user applications adds to continuous overhead. A real-time operating system may 

minimize the impact of system overhead on model throughput. A bare-bones version of 

the general-purpose operating system is another option. In this case, WinNT, the bare­

bones version is WinCE. Another option is to provide a co-processor for CPU-intensive 
" 

parts of the model. This co-processor would be a hardware device executing outside the 

operating system's management and in parallel with overhead tasks. 

It goes without saying that the biggest hold-back to improving throughput at this point is 

the display of results. The operator will want to see the filtered and unfiltered scene. This 

means that each frame has to be displayed twice. Since each pixel is assumed to be of a 

different color, the display is generated pixel by pixel. It would be worthwhile seeing if 

there are other ways of generating the display. When this work started only one machine 

and one processor were available. Thus, the percentage overhead devoted to frame 

display did not appear to be an issue. When viewed from the perspective of a faster 

cluster, this would be a good place to spend addition design and development time. 

Leaving such a large block of code in a purely sequential part of the architecture makes a 

heavy contribution to the loss of efficiency (down to 50% for the 8-CPU case). For the 

multi-CPU case a thread could be started that would accept pointers to the filtered and 
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unfiltered frames and then generate the display. This would put frame display more into a 

parallel pipeline so that model calculations can take place on other CPUs at the same time 

as frame display. Thus, while frame display would take the same amount of time, other 

activities would not be waiting on its completion. 

Fame read is the next highest part of the overhead. Depending on the size of the frames, 

the distance to the source and the speed of the connection, this overhead could grow or 

shrink. It depends on the application. When large data volumes must be moved around, it 

might be wise to consider network hardware intended for real-time simulation and 

process control. One network of this type is SCRAMnet (Shared Common RAM 

Network), a product of Systran (http://www.systran.com). Systran is a supplier of 

specialized, high-performance, high-availability computer data communications products 

for real-time applications. One version of their network is capable of 250 nSec/node 

transport delay and 16.7 MB/sec data throughput. Here again is an opportunity to use 

parallel pipeline software architectures. A thread could receive the next frame while the 

previous frame is being stored. 

Inter-machine communications was surprisingly a minor part of the overhead. The fact 

that only two machines were involved contributed to this result. The experiments with 

increasing numbers of processors on a single machine confirms that adding processing 

devices increases communications overhead. If something like a SCRAMnet were 

employed for frame reception, a simple extension to that network could be made to 

facilitate inter-machine communications. There are always things that can be done to a 

LAN to improve the speed of connections. These are well known and not a research 

issue. It really just comes down to how much money you want to spend. The results to 

date show how to make best use of existing infrastructure. A more clever use of parallel­

pipeline software architectures would improve these results. This is something that can be 

done without touching the hardware. 
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Frame storage to local devices could be improved by a faster local data bus. This would 

require replacing the motherboard of the cluster's host computer. Improvements here 

could also be had from faster storage devices. 

It might be possible to convert exp(x) to table lookup since each frame is composed only 

of integers. This is something that would be worth exploring. (Suggestion from Chris 

Mulliss, Ball Corporation.) 

A question that should be asked is, "What overhead is added when one goes from one 

processor to multiple processors and from there to multiple machines? Is it really worth it 

to introduce the added complexity?" These experiments show that it is indeed worth it if 

improved processing throughput is a requirement. 

Figure 51 shows the increasingly diminished execution time as additional processors are 

added. The one-processor cases show that there is little additional overhead due to the 

software required to manage multiple processors and multiple machines. Figure 52 shows 

that an improvement of 4-times the single-processor case was achieved. It must be 

admitted that this success came at the expense of dropping to 50% efficiency, as shown in 

Figure 53. However, the use of pipelines has the potential of greatly improving this 

situation. 
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Exploring Issues in Moving Toward FPGA Implementation 

Computer implementations of mathematical models have wide application in simulation 

and embedded systems. Often times, superior complex models can not be employed 

because their implementations' throughput is lacking relative to practical requirements. 

Various integrated circuit types have the potential to relieve this situation. Since 

integrated circuits were first invented in 1958, their capability has grown by over eight 

orders of magnitude. Yet there are not nearly enough people capable of supporting 

significant levels of application conversion from conventional fetch/execute CPUs to 

such chips as Field-Programmable Gate Arrays (FPGAs) or Application-Specific 

Integrated Circuits (ASICs). According to Davis, this is because there are not as many 

hardware logic designers as software programmers and because the time and effort to 

develop functionality in hardware is an order of magnitude more difficult than the time 

and effort to develop the same functionality in software. This is largely due to the fact 

that hardware designs must be done at a much lower level of abstraction than software 

designs, approximately equivalent to assembly language programming. 

<, 

Appropriate design methods and implementation tools would enable traditional software 

developers to join the population of people capable of leveraging the performance 

advantages of hardware implementations based on these chips. Then, all facets of 

industry would stand a better chance of taking advantage of this option for high-speed 

computing and throughput improvement. What is needed is a process and tool set that 

performs the same basic task as common high-level language compilers and linkers. 

These take the syntax of a given computer language and translate that syntax directly into 

the machine code needed by the CPU. The envisioned process and tool set would take 

high-level functional specifications expressed with commonly-used software languages 

(such as C, C++, or Java) and directly produce efficient hardware-oriented translations 

needed by FPGAs and ASICs. Given the current state of the art, producing such a process 

and tool set is a highly challenging strategic task. Furthermore, there is a change in mind­

set that the typical software applications developer has to undergo in order to target such 

chips. 
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Xilinx has marketed a language compiler called Forge. This tool converts Java source 

code to Register Transfer Level (RTL) Verilog which can be synthesized, using 

established commercial tools, to FPGA implementations. Thus, it is possible that a 

program running under the standard Java runtime environment could be converted for 

FPGA use. This section discusses a preliminary effort to produce an FPGA 

implementation of a C++ engineering application using the Forge compiler. It includes 

lessons learned and clear-cut advice for others making this transition. 

Background 

In an effort to improve throughput in a way that could ultimately result in frame-by-frame 

real-time, this project stepped completely out of the box of standard processing 

equipment. Field-Programmable Gate Arrays (FPGAs) are designed for high-speed 

computation. They are employed, for instance, in digital television at much higher frame­

rates and resolutions than currently being used by this research. Therefore, they have the 

potential to achieve the throughput the Predictive Anomaly Detector (PAD) developed by 

this research will require for commercial application beyond after-collection post­

processing. (For more technical details on FPGAs see Sharma (1998) and Oldfield & 

Dorf (1995). However, these details were not essential to the present research.) 

At issue with FPGAs is that they are traditionally programmed from a chip-design 

perspective. This approach emphasizes gate-level constructs and register-level operations. 

PAD was built using a high-level language (C++) as a software application running on a 

generic CPU. Therefore, there is a very wide gap between PAD's original form and the 

form it would have to be in to run on an FPGA. Hardware description languages (HDL) 

exist that take a step toward simplifying the transition. The most popular of these in the 

commercial world is Veri log (Moorby and Thomas, 1998). Government applications lean 

toward the Very High Speed Integrated Circuit (VHSIC) Hardware Description Language 

(VHDL, see Yalamanchili, 1997). A discussion of such languages on a more generic 
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plane is offered by Kloos and Cerny (1997). 

There are higher-level languages that go farther than HDL or VHSIC. These make 

FPGAs more accessible to those who have skills in software but these languages are still 

based on the chip-design paradigm. An example of such a specialized language is 

Hardware Promela (Wenban and Brown, 1996). Another approach along these lines is a 

specialized C compiler (Data-Parallel Bit C, dbC) and architecture generator (Malleable 

Architecture Generator, MARGE) from Gokhale and Gomersall (1997). A follow-on 

work by Gokhale, Stone, Frigo, and Ahrens (2002) is Streamc. JHDL (Java Hardware 

Description Language) by Hutchings, Bellows, Hawkins, Hemmert, Nelson, and Rytting 

is another example of a using a software language to describe hardware at a low level. 

These are followed by SA-C, a specialized language for graphics applications from 

Rinker, Hammes, Najjar, Bohm, and Draper 2000). Isshiki and Dai (1996) take the 

approach of using library extensions to GNU-compiled C++ to describe an FPGA design. 

However, their tool is specifically for hardware designers, not software developers. They 

cite several other approaches that all use non-generic dedicated compilers. Wo and e 

Forward (1994) developed a partial-C compiler that takes generic code and generates the 

gate-level information needed by an FPGA. This is a step in the right direction but it does 

not directly accommodate object-oriented code. 

What is needed is a process and tool set that performs the same basic task as common 

high-level language compilers and linkers. These take the application syntax and translate 

it directly into the machine code needed by the CPU. The envisioned process and tool set 

would take the high-level object-oriented syntax of an off-shelf language and directly 

produce the gate connections and register operations needed by the FPGA. Given the 

current state of the art in FPGAs, producing such a process and tool set is a mammoth 

strategic task. Still, more than ten years ago Patterson (1990) found that FPGAs are fast 

enough and large enough to accommodate the full range of modem applications. So, the 

dream of running a common software application on one or more FPGAs is not far 

fetched. Such enthusiasm must be tempered by Wo and Forward's (1994) caution that 
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modem bloat-ware will not cost-effectively fit on a pure FPGA system. Rather, they 

advise profiling the software and only placing the CPU-intensive parts on an FPGA co­

processor. Knittel (1996) has demonstrated that FPGA co-processing on generic PC 

systems is readily achievable using off-shelf components and boards. (PC systems are the 

target of this present work. Designing a co-processor board for other system types should 

not be any more difficult.) 

Xilinx is one of the world's largest manufacturers of FPGAs. They have undertaken to 

build Forge, a tool that translates Java source code into Verilog. Other tools already 

available from Xilinx translate the Verilog for use by simulators or directly by FPGAs. 

They can also translate for Application-Specific Integrated Circuits (ASIC). (ASICs are 

essentially write-once programmable devices built from the silicon up. FPGAs are slower 

but write-many devices that are continuously reconfigurable.) According to Davis (2002), 

the fact that FPGAs are immediately reconfigurable (as opposed to needing a prolonged 

manufacturing cycle as ASICs do) is important because it allows software designers to 

use a familiar "code, compile, debug" paradigm in an iterative fashion. 

For this first effort, the author joined Xilinx' Forge beta test team and generated code that 

Forge translated directly into Verilog. Due to cost constraints, an attempt at actual FPGA 

insertion was not attempted. That is something that is left to future work. 

Importance 

For many industrial applications the image frame size is large enough that PAD's 

underlying prediction model would contain 9,216,000 floating-point terms that would 

have to be computed and updated at least every 33 milliseconds. Achieving this objective 

is important to the technique being accepted for real-time operational use. Previous 

efforts with generic processors have not come close to achieving this throughput. 

Therefore, the author stepped completely out of the box and investigated FPGAs, 

programmable devices that one works with from a completely different point of view 
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compared to generic processors. Figure 14 places FPGAs in context with other options 

for improving throughput. 

Digital Signal Processing (DSP) chips are very similar to generic CPUs. The difference is 

that DSPs are specifically architected for mathematical calculations. They are not 

designed for office automation as are generic CPUs. Because DSPs are similar to generic 

CPUs, converting PAD to DSPs would not be as big a leap as converting to FPGAs. 

Significant speed improvement could still be achieved thereby since DSPs are commonly 

used for real-time implementations that require intense math calculations. However, they 

are not as big a step out of the box as the author wanted to take. The risk would be lower 

but that would not allow exploration of the cutting edge in transitioning common 

software applications to high-speed chips. In addition, Davis (2002) indicates that FPGAs 

provide a much better platform for implementing algorithms that can be highly 

parallelized at a fine level of granularity and for implementing algorithms that can be 

heavily pipelined (that is increasing overall throughput at the expense of latency.) 

Further, Bhatia (1997) found that FPGAs break the fetch/execute paradigm of traditional 

processing approaches with the effect that flexibility and performance are expanded at the 

same time. He shows a figure (repeated in Figure 54) that demonstrates the typical curve 

that compares instruction set architectures to custom hardware. The former gives high 

flexibility but relatively low performance whereas the latter gives high performance but 

low flexibility. FPGAs have the potential for both. 

c 
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Bhatia 

Having decided to transition PAD to running on FPGAs, the next step was to decide on a 

general approach. There are some tools available to assist in the process of converting 

standard software applications to FPGAs. Most of these require converting to integer 

calculations, the use of specialized languages that begin as extensions to standard 

languages, or the redesign of the application in a form compatible with a hardware 

description language. The latter approach essentially requires that the application be 

recast as a gate-level and register-level design. This is a rather onerous task for a complex 

application since it requires both reimplementing the desired functionality while 

simultaneously specifying the low level gate implementation. As such, it is a task more 

suited to chip designers rather than software applications developers. Using a specialized 
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language denies the use of a common off-shelf language. It also requires changing PAD 

from a common software application to something that may be much less portable. 

It was important that a means be found to easily transition standard software applications 

to FPGAs. FPGAs represent a class of high-speed infinitely reconfigurable chips that 

have the potential to dramatically improve an application's throughput. According to the 

Xilinx Corporate Authors (2001, Feb 8), since the integrated circuit (IC) was first 

invented in 1958, IC capability has grown by over eight orders of magnitude. Yet there 

are today very few chip designers in the world, relative to the number of software 

developers. This is not nearly enough to support significant levels of application 

conversion. Appropriate methods and tools would enable traditional software developers 

to join the population of people capable of writing for FPGAs. Then, all facets of industry 

would stand a better chance of taking advantage of this option for high-speed processing. 

Xilinx has marketed a tool called Forge. This tool converts Java source code to Verilog. 

Tools already produced by Xilinx convert Verilog for use by a simulator, FPGA, or 

ASIC. Thus, it is possible that a program running under the standard Java runtime system 

(Java Virtual Machine, JVM) could be directly converted for an FPGA. (Davis (2002) 

has said that Xilinx has plans for a C-syntax font-end for Forge. They currently have the 

basic operations, decisions and loops supported and will be working on pointers and 

arrays next. C++ is still not on the schedule but once they get C completed they will take 

a look at it.) 

To begin the process of porting the computationally intense parts of PAD from standard 

C++ to Verilog. The following steps were followed: 

1. translate appropriate C++ code to Java 

2. ensure that part of the model executes correctly in a standard Java environment 

3. use a commercial tool (Forge) to translate Java source code to Veri log 

4. actively participating on Xilinx' Forge beta test team 

" 
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Participating on the Forge beta test team and providing input to Forge's development was 

a large part of the project. Forge represents an important strategic technology that is well 

worth exploring and fostering. 

The general approach taken by this project for moving from software application toward 

FPGA implementation started with a fully operational software application. Once the 

program was performing as desired, the Java source code was fed into Xilinx' Forge, 

along with preferences and constraints to guide Forge's operation. Forge analyzed the 

source code and generated resistor-transfer logic (RTL) hardware description language 

(HDL) in the form of Verilog. The Verilog code is in standard form and can be used 

directly by FPGA synthesis or simulation tools. Physical implementation on an FPGA 

does not necessarily required building a specific circuit board since there are numerous 

standard boards available. 

The prototype for this part of the work was the Java version of PAD. Testing compared 

the Java version of PAD with the C++ version using the voice/fan data (Figure 9). 

A Simple Java/Forge Case 

Just to get a sense of the vast difference between a high-level language like Java and a 

low-level language like Verilog, have a look at the following example. Java allows a 

much more direct means of approaching a programming problem whereas Veri log 

requires thinking at the gate and register levels, a more detailed paradigm than working in 

assembler. 

After installing Forge, the following very simple Java program was written and processed 

with that tool to produce the Verilog equivalent: 



public class Main extends Object 
{ 

} 

public Main () 
{ 

} 

public static void main (String args[]) 
{ 

int if j; 

for(i = 0; 1 < 20; i++) 
{ 

] = 1 * 3 ; 
] = j + 5 ; 

} 

} 
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On the following two pages is the Verilog equivalent of the above code as produced by 

Forge. As one can see, it takes a lot of obscure Verilog code to perform a simple Java 

process. Therein lies the main barrier to employing high-speed FPGA chips, even if their 

throughput potential is immense. That is why one would want to just feed the Java code 

into a "compiler" and have the Verilog produced automatically. This is very similar to c 

what a traditional compiler does for fetch/execute CPUs. Davis (2002) asserts that while 

it is true that the Verilog is much more obscure and at a lower level of abstraction when 

compared to the Java code, the Verilog code that Forge generates is not optimally coded 

for human readability (although it does generate quite good hardware implementations 

ultimately). That is, if a good Verilog designer came along and tried to replicate the same 

functionality by going back to first principles, it is likely that the Verilog code they wrote 

would be much simpler. 
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II Standard Verilog translation of Main .main 
App([Ljava.lang.String;) 
II Tue Jul 24 19:51:12 EDT 2001 

module L_Main_main_App_$L_java_lang_String 
DONE, 
ARGO, 
GO, 
RESET, 
CLK) ; 

input 
input 
input 
input 
output 
wire 
wire 
wire 
wire 
wire 
wire 

CLK; 
RESET; 
GO; 
[31 : 0] 
DONE; 

ARGO; 

Main_main_[Ljava. lang. String; 5857105_1_doneO; 
muxEntry_15_result; 
[31:0] muxEntry_18_result; 
muxEntry_20_done; 
muxEntry_20_result; 
emux_22_result; 

II #-1 : <unknown source for line# -1> 
L_Main_main_$L_java_lang_String 
Main_main_[Ljava.lang.String;5857105_1_instance(.CLK(CLK), 
. RESET (RESET) , .GO(muxEntry_15_result), 
. ARGO (muxEntry_18_result) , 
.DONE(Main_main_[Ljava.lang.String;5857105_1_doneO)) ; 
II UN-arbitrated mux 
assign muxEntry_15_result = GO; 
II UN-arbitrated mux 
assign muxEntry_18_result = ARGO; 
II UN-arbitrated mux 
assign muxEntry_20_result = 
Main_main_[Ljava . lang . String; 5857105_1_doneO; 
assign muxEntry_20_done = 
Main_main_[Ljava . lang . String; 5857105_1_doneO; 
assign emux_22_result = (muxEntry_20_done == 0) ? 
muxEntry_20_result : muxEntry_20_result; 
assign DONE = emux_22_result; 
endmodule II L_Main_main_App_$L_java_lang_String_O 
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module L_Main_main_$L_java_lang_String 
DONE, 
ARGO, 
GO, 
RESET, 
eLK) ; 

input 
input 
input 
input 
output 
wire 
wire 
wire 
wire 
wire 
wire 
wire 
reg 
reg 
wire 

eLK; 
RESET; 
GO; 
[31:0] 
DONE; 

ARGO; 

[31:0] iinc_13_4; 
if_icmplt_19_6_true; 
if_icmplt_19_6_false; 
if_icmplt_19_6_compare; 
and_7 ; 
[31 : 0] 
or_9; 
[31 : 0] enabled_register_l0; 
register_ll; 
and_12; 
for(i = 0; i < 20; i++) 

iinc_13_4 = (decoder_8 + 32'hl); 
for(i = 0; i < 20; i++) 
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1/ #12: 
assign 
II #12: 
assign 
assign 
assign 

if_icmplt_19_6_true = if_icmplt_19_6_compare; 
if_icmplt_19_6_false = !if_icmplt_19_6_compare; 
if_icmplt_19_6_compare = (! (decoder_8[31] A l'bO) && 

assign 
assign 

assign 
assign 
assign 
always 
begin 

(decoder_8 < 6'h14)) I I 
((decoder_8[31] A l'bO) && (decoder_8[31])); 

and_7 = or_9 & if_icmplt_19_6_false; 
decoder_8 = (enabled_register_l0[31 : 0] & 
{32{register_ll}}) I (32'hO & {32{GO}}); 
or_9 = register_ll I GO; 
and_12 = if_icmplt_19_6_true & or_9 ; 
DONE = and_7; 
@(posedge RESET or posedge eLK) 

if (RESET) 
begin 

end 
else 

begin 

enabled_register_l0 <= 0; 
register_ll <= 0; 

if (and_12) enabled_register_l0 <= iinc_13_4[31 : 0]; 
register_ll <= and_12; 

end 
end 

endmodule II L_Main_main_$L_java_lang_String_2 
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Translating PAD/C++ to PAD/Java 

At first it was thought that the translation of the original PAD/C++ to P AD/J ava would 

not take long. It turns out that this was very time consuming. PAD/C++ is built as a 

Visual C++ GUI application. Also, the control code is tightly integrated with the display 

code. It was necessary to separate the two in order to avoid having to translate the GUI. 

This is one of the architectural issues to keep in mind when writing code that is intended 

for FPGA use. In the architecture envisioned here the FPGA would act as a co-processor 

performing the math-intensive part of the code in cooperation with the control and GUI 

modules. The control module would feed data to the GUI which would operate 

independently of PAD. 

Other translation issues were encountered: 

• Java's way of performing text and binary file 110 is more flexible than C++ 
but also more cumbersome. 

• Java requires the inclusion of numerous try/catch pairs. 

• Java does not support certain variable types such as "unsigned long int" . 

• Java does not support structures. These all need to be converted to classes. 

The C++/Java translation issues were managed via careful attention to detail and 

thorough testing. Some data structures and memory allocations were modified to 

accommodate Java's way of doing things. In the end, there was no functional difference 

between PAD/C++ and PAD/Java. 

Issues Encountered While Feeding Java Code to Forge 

Once Forge was installed and its operation understood, PAD/Java was processed. Two 

issues were encountered: Forge does not directly support floating point variables. It only 

supports integers. It is possible to force an FPGA to perform floating point operations 

directly but the cost is unacceptable in terms of chip space and throughput. FPGAs are 
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inherently integer devices. So, it is worth looking into integer representations of floating 

point values, and the attendant operations. PAD makes heavy use of floating point 

representations of floating point values so this is a considerable shift in programming 

style. According to Davis (2002) some Xilinx customers claim that the use of floating 

point within an FPGA still provides significant advantages over general purpose 

processors. The key is that these customers have developed or acquired highly 

optimized/pipelined floating point proprietary libraries that Forge calls directly. 

The other issue is that if the required chip interface is more complex than can be 

represented with a method call paradigm, then Forge requires the use of a special 110 

package to describe the pins and their clock timing relationships. This package is 

included with the Forge binaries. 

Casting Floating Point Values as Integer Variables 

The shift from floating point variables to integer variables is rather large if one has never 

worked in pure integer. This project explored information sources and published 

literature. It also examined several publicly available libraries. Only one library, MathFP 

by Hommes (2001), proved suitable for PAD application. This is mainly because it is the 

only one that implements exp(x), the basis function used to build PAD's prediction 

model. Also, it appears to have the best numerical accuracy overall, although a formal 

study was not conducted. Unfortunately, MathFP is publicly available only as a Java 

class file. Source code is not distributed. The documentation does not expose its 

underlying methods. Tests with MathFP are described in the next section. 

An excellent introduction to the topic of integer (fixed-point) math is given by Lemieux 

(2001). He shows how floating point values can be translated to integer variables while 

retaining arbitrary decimal accuracy. He then describes the basic operations: add, 

subtract, mUltiply, and divide. Given this information, one might easily jump to the 

conclusion that Taylor's Series (Shanks and Gambill, 1969, pp 195-212) could be used to 

generate functions such as exp(x). However, experience with the representations and 
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operations described by Lemieux (2001) showed that the denominator of the Series grows 

far too quickly for the accuracy required by PAD to be achieved. Due to the resulting 

numeric overflow, sufficient numbers of terms can not be calculated. 

CORDIC (COordinate Rotation DIgital Computer) is a popular and effective method for 

performing fixed-point math. This method was originally a special purpose computer for 

aircraft navigation. It has since come to stand for the method embodied in that computer. 

According to Jones (1992), the algorithm is based on coordinate rotation. An initial 

vector PO is rotated until some condition is met. The vector PO is determined by the 

coordinate system, m, and two initial points, xO and yO. The coordinate systems are: 

circular (m = 1), linear (m = 0), and hyperbolic (m = -1). He goes on to say that the 

advantage of this method over more traditional approaches like power series include: 

• The same algorithm can be used to calculate multiplication, division, sin, cos, tan, 
arctan, sinh, cosh, tanh, arctanh, In, exp, and square-root. 

• The algorithm uses only shifts and adds so it will usually be faster then an 
equivalent power series. 

• Sin/Cos and Sinh/Cosh are calculated simultaneously. 

Cyliax (1997) presents an elementary tutorial and example on this topic. He says that 

almost all scientific calculators use the CORDIC technique and that it works by rotating 

the coordinate system through constant angles until the angle is reduced to zero. The 

angle offsets are selected such that the operations on points X and Yare only shifts and 

adds. Read the introduction by Jarvis (1990) after you absorb the one by Cyliax (1997). 

Knaust (1997) also gives an introduction, although his is more theoretical. He does reveal 

that CORDIC was originally developed by VoIder (1959). Figure 55 is from Knaust's 

(1997) discussion. It shows how the coordinate system is rotated from its original 

configuration (red point 0) via smaller and smaller steps to its final point where the angle 

between the new axis and its intended position is essentially zero. Eklund is similarly 

theoretical but he gives more in the way of historical citations. 
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Andraka (1998) writes a very understandable and useful survey of functions implemented 

via CORDIC. He discusses the underlying theory and then extends it to specific 

functions. He goes on to implement his material in FPGAs. In this paper and others it is 

interesting to notice the difference between the way a hardware designer approaches 

"programming" an FPGA compared to that of a software applications developer. The 

hardware designer is concerned with wiring gates, adders, and registers whereas the 

software developer is concerned with more abstract logic, essentially at the level of 

mathematical symbology. The two meet in the middle since the FPGA requires (for all 

intents and purposes) pure integer programming and CORDIC is designed for direct 

hardware implementation on integer devices. One also sees CORDIC used frequently on 

generic CPUs to lend additional speed to graphical applications, particularly in the online 

gaming market. 
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Testing the MathFP Java Fixed-Point Library 

Hommes' (2001) library for manipulating floating-point values as integers proved quite 

satisfying to work with. Tests were conducted with Forge to judge MathFP's 

compatibility with that tool. (MathFP was never written with Forge or FPGAs in mind.) 

Tests of were also conducted to judge MathFP's accuracy in conducting basic operations 

required by PAD: iterations and exp(x). No statistically significant differences were 

found between MathFP and floating-point Java while running iteration and exp(x) tests. 

Test of MathFP Iterations 

MathFP was used to perform a floating point iteration. An integer variable was iterated 

from -1.5 through 1.5 in steps of 0.05 using the following code. A comparison of the 

integer iteration with the normal floating-point iteration showed that there is no 

statistically significant difference between the two. 

public static void main (String args[]) 
{ 

} 

int increment = MathFP . toFP(10.05"); 
int result = MathFP.toFP(I-1 . 5") - increment; 
double testValueInc = 0.05; 
double testValue = -1 . 5 - testValueInc; 
Double stringNumber = new Double(O.O); 
double resultFloatingPoint; 
double percentDiff; 
String thisString; 

II Incrementation test 
for(int i = 0; i < 61; i++) 
{ 

result = result + increment; 
testValue = testValue + testValueInc; 
thisString = MathFP . toString(result); 
stringNumber = stringNumber .valueOf(thisString); 
resultFloatingPoint stringNumber.doubleValue(); 
percentDiff = 100.0 * ((testValue - resultFloatingPoint) I 

} 

testValue) ; 
System.out.println("result =, II + resultFloatingPoint 

+ testValue + ", " + percentDiff + 
+ .. I II 

" I % II ) ; 
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t-Test: Two-Sample Assuming Equal Variances 

MathFP Java Double 
Mean 0.001459016 1.45967E-15 
Variance 0.789384184 0.787916667 
Observations 61 61 
Pooled Variance 0.788650425 
Hypothesized Mean 0 
Difference 
df 120 
t Stat 0.009073353 
P(T<=t) one-tail 0.496387839 
t Critical one-tail 1.657649591 
P(T<=t) two-tail 0.992775678 
t Critical two-tail 1.979929038 

Test of MathFP Computing Exp(x) 

MathFP was used to insert the interacted value computed above as the argument in 

exp(x). An integer variable was iterated from -1.5 through 1.5 in steps of 0.05 and used 

as input to exp(x) using the following code. An comparison of the integer version with 

the normal floating point version showed that there is no statistically significant 

difference between the two. 



public static void main (String args[]) 
{ 

int increment = MathFP.toFP("O.OS"); 
int result = MathFP.toFP("-l.S") - increment; 
double testValuelnc = 0.05; 
double testValue = -1.5 - testValuelnc; 
Double stringNumber = new Double(O.O) 
double resultFloatingPoint; 
double percentDiff; 
String thisString; 

II exp(x) test 
for(int i = 0; i < 61; i++) 
{ 

result = result + increment; 
testValue = testValue + testValuelnc; 
thisString = MathFP.toString(MathFP.exp(result)); 
stringNumber = stringNumber.valueOf(thisString); 
resultFloatingPoint = stringNumber.doubleValue(); 
percentDiff = 100.0 * (Math . exp(testValue) -
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resultFloatingPoint) I Math . exp(testValue)); 
System.out.println("result -," + resultFloatingPoint + "," + 

Math. exp (testValue) + "," + percentDiff + 

} 

II I % " ) ; 

t-Test: Two-Sample Assuming E ual Variances 

Mean 
Variance 
o bservati ons 
Pooled Variance 
Hypothesized Mean 
Difference 
df 
t Stat 
P(T<=t) one-tail 
t Critical one-tail 
P(T<=t) two-tail 
t Critical two-tail 

MathFP Java 
----~------------~ 1.437734426 1.435103788 
----~------------~ 1.423322213 1.416020024 
----~------------~ 61 61 

1.419671119 
----~------------~ o 

120 
0.012193185 

----~------------~ 0.495145868 
1.65764-9-5-9-i1 r-------i 

0.990291736 
----~------------~ 1.979929038 
----~------------~ 
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Summary and Recommendations 

Parallel processing is one way of improving a software application's throughput and it 

extends the fetch/execute style of computing using standard CPUs. A step beyond that is 

the use of digital signal processing (DSP) chips. These are similar to standard CPUs but 

are architected for efficient math operations. They are designed for engineering 

applications rather than business applications. This project stepped completely away from 

fetch/execute means of computing and examined Field-Programmable Gate Arrays 

(FPGAs). 

In its present state, Forge assumes that the source code is compatible with the Sun 

standard Java compiler. Since the author's original model is written in C++ it was 

necessary to translate the compute-bound part of the model to Java. This was no simple 

task. Many have said that there is a strong similarity between Java and C++. However, at 

the detailed level of syntax translation there are many issues that had to be reconciled. 

The transition of a conventional software application from floating-point to fixed-point" 

operations and variables is also not trivial. One needs a fixed-point library of reasonable 

precision to accommodate this. An attempt to build a library of arithmetic operations and 

then to use those to create a Taylor's Series for exp(x) failed due to word-overflow 

problems. The denominator grows too quickly for reasonable precision to be achieved. 

This author did find a public-domain Java class file that provided the necessary 

arithmetic and other functions at the required accuracy. Tests showed that the Java 

version of PAD and that the Java fixed-point library produce results that are not 

statistically different from the original C++ code. The next step would be to synthesize 

the Verilog code for FPGA insertion. Davis (2002) expects that future versions of Forge 

will provide more sophisticated methods for helping with the translation from floating 

point to integer implementations and that as FPGAs continue to grow in size and 

capability, Forge will also provide ways to implement floating point directly in the 

FPGA. 
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Given these issues, why would anyone want to go through the learning process and effort 

needed to transition conventional software to FPGAs? 

• There is a positive impact on time-to-market when functionality can be developed and 

tested with high-level languages without the additional overhead of hardware or 

hardware simulators. These languages facilitate thinking and testing at a more 

abstract level, closer to the application's purpose. 

• There are relatively few people in the world today able to write effective code directly 

for an FPGA. High-level-language compilation for FPGAs would greatly expand the 

number of people capable of building applications for these chips. 

• Processes and tools for going directly from conventional software to an FPGA would 

give a tremendous boost to throughput, physical size, and dual-platform operation. 

• FPGAs give a speed boost that is well beyond that achievable with generic CPUs and 

DSPs. Along with that speed they give a flexibility that is not available from custom" 

hardware. The cost incurred for the speed is far less than one would experience with 

custom hardware or ASICs. One also has to compare the complexity and the attendant 

additional costs of achieving the required speed with multiple CPUs and networked 

machines, although this approach may give comparable flexibility. Still, multiple 

CPUs do not scale linearly, especially for algorithms that can make use of fine­

grained parallelism. 

• The standard US Air Force software cost model (REVIC), 

http://www.asu.faa.gov/ASU200/Toolbox/asu200afa.htm. 

http://www.jsc.nasa.gov/bu2lresources.html) is based on actual experience with 

defense-related software projects. It clearly shows that there is a direct relationship 

between the number of lines of executable code and the cost of the project. (Certain 

project environmental factors determine the slope of cost growth as the lines of 

executable code increases.) In the case of our simple example, the Java version had 



174 

only one-half page of code, whereas the Verilog version had 1.5 pages of code. This 

besides the fact that Java is a high-level language that is much easier to work with 

than the very low-level Verilog. Larger designs should demonstrate even greater 

increases in code size, . typically, in Davis' (2002) experience, about 5 to 10 times 

larger. Thus, the cost of developing directly in Veri log for the same application is 

likely to be much larger than for a language like Java. 

Clearly though, there are some paradigm shifts in software development that have to take 

place. The largest of these is programming directly in fixed-point rather than staying with 

floating-point. This is something Xilinx is currently working on. Their goal is to be able 

to provide a functional implementation for any code that uses floating point so that 

designers can at least get a baseline implementation. Then they can decide if they want to 

re-implement using fixed point to get better performance. For now though, the 

application has to be written from the ground up with the target hardware (FPGAs) in 

mind, although the resulting code will still execute on any machine running the standard 

Sun JVM. The advantages of high-level languages are still available but new skills have 

to be learned. Additionally, Forge requires a certain documented programming style so 

that the developer is not totally free in that choice. Finally, there are documented ways to 

write the code so that less space is used on the chip. These need to be kept in mind from a 

throughput perspective as well. In any case, a project that targets FPGAs could be written 

directly in Java given the current state of Forge. To the author's knowledge, there are no 

other tools that support object-oriented design and programming for FPGAs. It should 

also be recognized that to get the best performance out of any hardware requires writing 

the code with that hardware in mind. 

Ultimately, tests with an FPGA simulator should be performed. Once satisfying results 

with the simulator are achieved, the next step is to acquire an FPGA prototype board and 

port the model to that board. These tasks require the use of simulator software and 

software that translates Verilog to the code actually placed on the chip. Prototype boards, 

simulators, and Verilog translators are all tools that would have to be purchased. Thus, 

they represent a milestone in the project that requires more justification than did the 
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Chapter Five 

Conclusion, Implications, Recommendations, Summary 

Summary 

There were several major steps to this research: 

1. find and implement a next-sample prediction capability 

2. apply the predictor as input to a detector that separates anomalies from outliers 
and background 

3. employ a series of data streams of varying robustness, while measuring the 
number of samples required to construct the model to achieve a given level of 
detection accuracy (fixed and moving anomalies) 

4. develop and implement an objective means for estimating detection accuracy 
under the above conditions, estimate the detection accuracy of the model in terms 
of false alarms and good detects 

5. show that the chosen technology is linearly scalable in terms of its mathematics, " 
data flow, and automated-computation implementation 

Conclusion 

The following are the major outcomes of this research: 

• The prediction error curve steadily decreases to below 20%. 
• The gaussian predictor proved to be superior to the linear predictor. 
• False alarms were less than 10% for the single- and two-dimensional data. 
• Anomalies were found in all but the first pixel in which they exist. 
• It was possible to detect anomalies for a substantial length of their existance. 
• False alarms increase with the spectral content of the data, for a given model size. 
• Computational complexity increases linearly with problem complexity. 
• It was harder to find the end of an anomaly than the beginning. 
• The parallel nature of the mathematics facilitate throughput improvements via 

fetch/execute CPU architectures and via programmable devices such as FPGAs. 
• The technology developed by this research was found to be very general, having 

application in a wide range of domains using a variety of data streams. 
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Implications 

An architecture employing this method is shown in Figure 56. This research provides an 

effective predictive anomaly detector (PAD). The results can be posted for human 

viewing, evaluation, and reaction. These results can also be submitted for additional 

processing, such as signal classification. There are no limitations as to the source of the 

data, as long as the "staring, continuous-dwell" requirements are met, and there is a 

spectral limit to the data. 

Alert 
System 

or 

Spatial Threshold Filter 
(Correlation with Other Data) 

Temporal Threshold Filter 
(Actual vs. Expected Sample) 

Operator's 
Console 1.----,--------' 

Time Periods 
of Interest 

Adaptive 
Next-Sample 

Prediction 

Sampled Data 
Stream 

Any Source 

• Sunlight Visible 

• Infrared, SAR 

• Trajectory Data Sensorl 
Collectorl 

Transducer 
... 0(----. Audio, Sonar 

Other Processing 
(ex: signal id) 

Figure 56. Sample architecture for PAD employment 

• Signal Emissions 

• Physical Quantity 

• DAQ Data, etc. 

This architecture can be employed on shipboard, airborne, or land-based platforms. There 

is a potential for supporting real-time and offline scenarios. From a national defense 



perspective, a larger concept of operations using this architecture, to include force 

reaction and collection guidance, is illustrated in Figure 57. 

Filteting 
and 

Transfonnation 
as Needed 

Data Mining 
and . 

Knowledge Discov,ery 

Figure 57. Hybrid adaptive systems for real-time sensor signal utilization 
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This operations concept is based on the premise that adaptive algorithms can effectively 

find potential events of interest in dynamic environments. The value of PAD would be in 

those domains where normal threshold detection techniques and automatic gain control 

methods would not succeed in finding subtle anomalies. In essence, PAD enables 

applications to dynamically adjust to robust backgrounds and find low-observable events 

that would normally go undetected and, therefore, not tracked. This capability does not 

change the original system setup for the sensor since the technique is added to the 

existing signal processing capability as a real-time or post-collection enhancement. 

PAD converges on a model of the background environment and maintains track of the 

background's dynamic change. When an event occurs within the sensor's field of view, 
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an adaptive algorithm determines if the return is sufficiently different from the 

background prediction. Domain-specific identification algorithms can then be applied to 

verify if the detection is of interest. This interaction between the detection and 

classification algorithms determines if the potential event is to be tracked or if it is a false 

alarm. An important aspect of the adaptive approach is a dynamic detection threshold that 

could enable these systems to find signals and events that would normally be lost in the 

noise. The adaptive algorithms thus provide additional decision information to the 

observation system that can enhance its ability to find events of interest in environments 

subject to many false alarms. 

Recommendations 

The difficulties with the sine/cosine phase shift were unexpected. Only the beginning and 

end of the anomaly were found. Typically, the body of the anomaly is also detected. 

More reflection is needed on means of reconfiguring the detector so that it can find 

anomalies of this nature, involving only a phase shift in the background. From the test 

results, it appears as if one could compare the average and instantaneous RRPE. The ~ 

instantaneous RRPE has a huge reaction to phase shifts on both ends of the anomaly. The 

evolving RRPE standard deviation also shows a definite reaction at either end of the 

anomaly. In both cases, the spike in instantaneous RRPE and the step in evolving 

standard deviation, could be used to identify the beginning and end of anomalies. 

Other ways of preprocessing the data could be explored. For instance, does the spectral 

content shift when anomalies occur? Can the detection statistics be improved by 

observing various transformations of the data at the same time? In the case of sensor data 

stream, can isolating and simultaneously observing several planes of the stream improve 

detection statistics? For instance, in the case of the QuickCam, would it be more useful to 

observe the Red, Green, and Blue planes separately? The benefit would have to be 

balanced against the additional computational and data flow workload. 
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Are there other prediction methods that would enable greater or equal detection accuracy 

with less computation workload? Other non-linear prediction models could be explored. 

Additionally, one could explore means of automatically building a model that generates 

(heuristically) the data previously received. This is much different from a next-sample 

predictor and would be useful as a baseline when an anomaly is currently being detected. 

During such times, the predictor stops training and so is unreliable as a source of baseline 

comparisons. 

So that the technology developed by this research is not seen as fit only for toy problems, 

the author employed data collected from real sensors under less than ideal conditions. 

The author also explored ways of using present technology to satisfy present needs for 

throughput, while laying the groundwork for satisfying future needs. In this way, it 

should be possible move applications at least one year ahead of the technology curve, 

rather than always leaving them one year behind. A strong effort was made in 

parallel/distributed processing on common networked engineering workstations. The 

author also joined Xilinx' Forge beta test team and generated Java code that Forge 

translated directly into Verilog. Due to cost constraints, an attempt at actual FPGA 
< 

insertion was not attempted. This is a step that needs to be taken. Since having PAD cast 

in standard fixed-point Java code is a prerequisite, a preliminary step could be to insert 

that code into a JStamp (http://jstamp.systronix.com).This is a hardware version of the 

standard Sun JVM. Going to an FPGA is a far more expensive step given the need for 

costly software and hardware. However, if the sponsorship can be arranged, it is an 

important step to take. 

A related area of research is human factors. How should the results be displayed? How 

should the human interact with the detection process? Can the results display be used to 

support that interaction, via touch screen or mouse, for instance? 

There are clustering techniques that could be developed. Spatially, should nearby pixels 

be said to have detections when a given pixel has a verified detection? Temporally, 

should neighboring samples be said to be a part of a given sample's verified detection? 
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When an anomaly is detected, the predictor stops evolving and its "output" is set equal to 

the moving average of the moving average of some number of pre-detection samples. 

Would it be better to employ a data stream model instead of the moving average? 
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Appendix A 

Mathematics Behind the Anomaly Detection Model's Prediction Phase 

Gaussian radial basis functions are the foundation of the detection model's prediction 

phase. Basis functions are simple-equation building blocks that are a proven means of 

modeling more complex functions . Brown (in the book edited by Light, 1992, pp. 203-

206) showed that if D is a compact subset of the k-dimensional region Rk, then every 

continuous real-valued function on D can be uniformly approximated by linear 

combinations of radial basis functions with centers in D. Proofs of this type have also 

been shown by Funahashi (1989); Girosi and Poggio (1989); and Hornik, Stinchcombe, 

and White (1989). The theory thus having already been well established, the author 

proposes to concentrate on practical implementation and application to unspecified 

anomaly detection in staring continuous-dwell sensor data streams. The term "point" 

refers to a location in the space Rk. The intended application has k = 1, a one­

dimensional value such that Rk is a line. Look to Sanner and Slotine (1991, 

May/November; 1991, December) for an expansion to larger dimensions. This appendix 

interprets their work for one dimension. 

At the top level, complex functions can be approximated using the following summation: 

n 

f(x)= 2)Cigi(X,~J] 
i=l 

f(x) approximates function F(x) at point x in region Rk 

~i is the center or location of basis function i in region Rk 

gi is the nonlinear basis function i centered at ~i 

Ci is the weight by which the output of gi is multiplied 

n is the number of basis functions 

One picks the locations of n-number of basis functions in Rk and then chooses a function 

to use at each location. Set the output weight for each function and then add up the results 

of those functions at input point x. The interesting part, of course, is how to carry out 
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each of those steps. The author's approach interprets Sanner and Slotine's work for one 

dimension, k = 1. 

For this technique of predicting the next sample, a summation of Gaussian radial basis 

functions is used to model each datastream. In the case of an image, each pixel is its own 

datastream. The Gaussian is nonlinear, continuous, and has infinite support. 

cr? is the variance at point i (Gaussian width) 

(Note here that the variance, cr?, appears in the numerator of the exponential. This is not 

the implementation form of the usual Gaussian equation where the variance appears in 

the denominator. The form of the Gaussian employed here is the result of the original 

derivation. See Equation 2.3 in Sanner and Slotine, 1991, December.) 

Picking the number of Gaussians and their centers, ~i' in the k-dimensional decision 

region, Rk, is a matter of deciding how large the model is to be. (Making the model too 

large is as ineffective as making it too small.) For k = 1, the ~i lie spaced evenly along a" 

line segment formed by the range of expected values of F(x) E [F(x)min, F(x)max] plus a 

zone p = some constant. p accounts for errors in estimating the max/min range of F(x). 

The distance between Gaussian centers is ~ <= 1/(2~). These factors are illustrated in 

Figure 58. 

I I I~I I I 
F(x)min - P F(x)min ~+l F(x)max F(x)max+ P 

Figure 58. Illustration of the Gaussian centers, g, and the distance between them, ~. 
(The max/min range of F(x) is extended by the constant p.) 
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~ > 0 is less than the maximum frequency component (in the Fourier Transform sense) 

used to reproduce F(x). Thus, ~ increases as does the meaningful frequency content of 

F(x). Since the distance between Gaussians, ~, is inversely related to B, the number of 

Gaussians needed to cover the range in Figure 58 increases as does B. Figure 59 shows an 

audio signal. Figure 60 is the Fourier Transform plot of that signal. In this case, the 

maximum meaningful frequency content begins to disappear around 2000hz so that B <= 

2000. The author was able to build a successful predictive model of this audio signal 

using only 30 terms. However, if it is to be assumed that the signal's control law can 

change, there is nothing to stop the signal's frequency content from becoming so high or 

low that the model is no longer useful. This unbounded case is one where it must be 

recognized that there are implied assumptions in the way the model is constructed. A way 

around this is to keep a background process running that constantly evaluates the signal's 

Fourier Transform using a time window. Still, this could lead to the need to modify the 

number of Gaussians in the model. If this were done, how the heights of the original 

Gaussians would be distributed in the new model is an open question. At the very least, 

there would have to be some period of adjustment to establish the new model. 

Figure 59. Original audio signal 
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Figure 60. Fourier Transform plot of original audio signal 

In brief, the number of Gaussians needed to model F(x) increases as does the meaningfl)l 

frequency content of F(x). Judgment has to be used here. One does not want to attempt to 

model the high-frequency "noise". Just capture the meaningful parts of the signal. On the 

other hand, if the scene is truly very robust, a sufficiently large number of Gaussians is 

needed to provide an accurate prediction. This author has found that choosing the number 

of Gaussians to use is not a delicate affair, assuming there are some bounds on how much 

the signal can change its frequency content. 

For applications of low dimensionality such that k is small (our case is univariate so 

k = 1), a good rule of thumb uses 0/ = n~2, making the variance a constant for all 

Gaussians. Another good rule of thumb has /12 = 1/(802). The best approach is to 

determine the signal's spectral components via the Fourier Transform or some other 

method. The variance follows by calculation. This leads directly to /1, the distance 

between Gaussian centers, and thereby to the number of Gaussians to use to cover the 

range illustrated in Figure 58. 



The final issue is how to initialize and evolve the 

output weights. Let f(x)t be the function 

approximation due to sample x received at time t. 

Updating the output weight, Ci[t-l], 

due to f(x)t yields Cit. 
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n 

f(x)( = ~)ci[(-!lgi(x(,;J] 
i=! 

Empirically, the author has found that it is usually best to initialize all Ci[t = 0] to a constant 

between 0 and 1, non-inclusive. Now let Et = (f(x)t - F(x)t), the feedback signal that 

drives weight adjustments. This is the prediction error, the difference between the 

estimated function result and the actual function result. The estimation is performed 

before the arrival of the actual result. 

sat(z) = z if Izl <= 1 and sgn(z) otherwise 
Cat = ct - <Psat(cJ<P) 

sgn(z) = -1 if z < 0 and +1 otherwise 

<I> is the minimum expected error 

What this formula says is that the network's output weights are not updated if the 

prediction error is less than the minimum expected error. Intruder's are postulated when 

the system is in operational mode and the prediction error is sufficiently large. 

i=l 

Kt is the adaptation gain. The theory requires G < 2. Empirically, 

G = 0.1 appears to work well. Kt must be positive. 
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Appendix B 

Mechanization of Statistical Significance Calculations 

If you need to apply statistical measures but are not a statistician then the writings of 

Bruning and Kintz (1968) are very good. This present research needed a measure of 

statistical significance to measure the reliability of the technology. Their book presents 

such a measure complete with a computational process and examples. While most texts 

concentrate on statistical theory, this book concentrates on application. The result is that 

the reader understands how to apply the given statistical test and how to interpret the 

results. The authors cover simple tests like mean, standard deviation, standard error of the 

mean, and t-tests. They go on to cover analysis of variance (two chapters), correlation, 

nonparametric tests, tests of significance, and indices of relationship. 

The statistical significance of the difference between trials can be computed using the 

t-Test for Difference Between Two Independent Means, Assuming Equal Variances. This 

calculation results in a statistical judgment as to whether the performance difference 

between two independent groups is significant. The most common use assumes equal 

variances (Bruning and Kintz, 1968, pp. 9-12; also see Spiegel, 1961, p 70). 

The mechanization chosen is implemented by an Excel spreadsheet. One sample 

calculation is shown in Figure 61. The two columns on the left of the figure are the 

sample data. Each column contains values from members of an independent group. For 

instance, the values could represent test scores. The table to the right of the figure 

explains how to interpret the calculation of statistical significance. In this case, there is no 

statistical significance between the scores of the two groups. 



: 107 109 t-Test: Two-Sam Ie Assuming E ual Variances 

The "t value" that is significant at the 0.05 
confidence level for the computed degrees 
of freedom. Ifthe absolute value of the 
computed "t value" is less than this number, 
there is no significant difference between the 
two groups. 

Figure 61. Example calculation of statistical significance 
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Appendix C 

Derivation of the Equation for Estimating f in Amdahl's Equation 

Amdahl (1967, 1988) derived an equation that predicts the amount of speedup to be 

expected from some number of processors given a certain fraction of code that has to be 

run sequentially (cited and explained by Zomaya, 1996, p 14). 

s < 1 
N - (f + ((1- f) / N) 

Where: SN 
N 
f 

the predicted execution time divisor for the single-processor case 
the number of processors 
the fraction of the code that must be executed sequentially 
(loops unwound) 

There are times when it is necessary to estimate f when all the other variables are 

measured by some experiment. This can be an important calculation since it can 

demonstrate how much code is currently being run sequentially. Having this number dh 

help justify an effort to work on that part of the code so that more of it can take advantage 

of parallel processing. The following algebraic process converts Amdahl's equation into 

an estimate of f. 

_1 = f + 1- f = f2 N + f(l- f) = f2 N + f(l- f) = f2 N + f - f2 = iN + 1- f 

SN N iN iN iN iN N 

~-1 
N N S 

- = iN +1- f;--l = iN - f = feN -l);f = ---:N-,----

SN SN N-1 
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Support Provided to this Research 

• Financial Support Ball Aerospace & Technologies Corp (http://www.ball.com) 

provided support for tuition, books, and fees . 

• Advice Forum Gertrude Abramson, a faculty member at Nova Southeastern 

University, mediates a very helpful forum giving general and specific advice to 

doctoral students as they move through their courses and dissertation. 
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• Forge Preprocessor Converts Java source code to Verilog. Xilinx Corp 

(http://www.xilinx.com) provided access to this tool as part of their beta-test program. 

Two people from Xilinx (http://www.xilinx.com) were instrumental to the success of 

this part of the research. Don Davis and Jay Gould had quite an adventure. The Forge 

beta test started off with the idea that Xilinx personnel would be dealing only with 

experts in FPGAs. However, this author convinced them that someone with no 

experience whatever would be valuable in helping them reach their strategic goal. 

This goal envisions growing the population of FPGA programmers by enabling 

traditional software application developers to target that chip using common high­

level languages. This group of latent FPGA programmers knows nothing at all about 

such devices. Don and Jay were very proactive and patient throughout the project. 

• Java Fixed-Point Math Library Onno Hommes from jScience 

(http://home.rochester.rr.com!ohommes/MathFPlindex.html) provided his MathFP 

Java fixed-point library and advice on using the various versions. Onno has created an 

excellent piece of work that is unmatched from this authors' perspective. A long 

search revealed nothing like it available anywhere. Such libraries will be essential as 

more and more traditional developers target FPGAs. He is truly ahead of the pack. 



• Single-channel data acquisition hardware and software A WinDAQ DI-194 data 

acquisition starter kit was provided by DATAQ (http://www.dataq.com).This kit 

includes all software and hardware for sampling a (-1Ov .. + 1 Ov) data stream at a 

maximum of 240 samples per second, saving the samples to disk, converting the 

resulting file to various formats, and reviewing the waveforms. It also has various 

Fourier Transforms that can be applied to the data. All software is fully graphical. 
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• QuickCam digital color camera Loaned by Donald Bertke, Ball Aerospace 

Technologies Corp (http://www.ball.com).This device produces 30 image frames per 

second (maximum, depending on lighting conditions). Each frame can be sized at 

640x480 30-bit pixels (maximum, depending on user settings). Availability is via 

http://www.logitech.com/us/ cameras/ ca28 _100 .html. 

• LookingGlass Machine Vision Kit This is a tool produced by Pong Suvan that 

consists of a basic platform into which user-developed DLL executables can be 

linked. The author has been involved with Suvan as a beta tester. Suvan is studying 

machine vision at the College of Computer Science, Northeastern University, Bostop, 

Massachusetts . His is an excellent kit for real-time image capture and processing that 

he has released for use by researchers. Using a pipeline approach, the experimenter 

can employ the provided techniques or install unique ones. Availability is through 

http://www.ccs.neu.edu/home/psksvp/lg.htm. 

• Two networked quad-processor systems These were loaned by Ball Aerospace & 

Technologies Corp (http://www.ball.com). They make up the nodes on a virtual 

machine achieved via a common TCP/IP LAN and deployment of the Message­

Passing Infrastructure (MPI). Each system is made by Intergraph and has 4 Intel 

200mhz CPUs having a common 500mb memory. The operating system is WinNT 

v4sp4. 
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• Audio Processing Tool Support for audio processing came from Goldwave, a tool 

produced by C.S. Craig that enables audio capture, editing, and display 

(http://www.goldwave.com). 

• Engineering Spreadsheet DSP Development Corp (http://www.dadisp.com) donated 

a student copy of their DADiSP engineering spreadsheet. This spreadsheet has 

hundreds of engineering functions that can be applied to sampled data. It is a serious 

professional tool whose output is compatible with standard spreadsheets. 

• Engineering Plot Software Charles Everding, Ball Aerospace & Technologies Corp, 

donated his personal copy of engineering data analysis software. 

• MathCad Peter Telek, Ball Aerospace & Technologies Corp, donated his personal 

copy of MathCad. 
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Appendix E 

Author Biography 

Peter Raeth joined Ball Aerospace & Technologies Corp in January 1998 as a Computer 
Engineer. He currently designs algorithms and heuristics for spectral exploitation. His 
experience includes 17 years as an officer, computer research scientist and scientific 
analyst, United States Air Force (out of 21.5 years active military service). This includes 
5 years in industrially funded organizations. His past work was in modeling, simulation, 
and adaptive automation for passive radar signal identification, cockpit decision aids, 
computer performance analysis, and data sequence analysis. He has also gained 
experience in blackbox software test planning, signal analysis, pattern recognition, sensor 
and data fusion, and parallel/distributed processing. He received the BS degree in 
Electrical Engineering from the University of South Carolina and an MS in Computer 
Engineering from the Air Force Institute of Technology. He completed an Air Force career 
in March 1997. Besides staff billets at Headquarters Air Force Systems Command and Air 
Force Materiel Command, his assignments included duties in Electronic Warfare flight test 
support (3246th Test Wing), radar signal passive identification (Avionics Directorate, Air 
Force Research Laboratory), and pilot decision aids (Flight Dynamics Directorate, Air Force 
Research Laboratory). Just after leaving the service, Mr. Raeth worked with Simulation 
Technologies, Inc performing duties in distributed simulation, distributed processing, and 
software blackbox testing. He has given numerous seminars and published many articles, 
papers, and reports on adaptive automation. He is editor and a contributing author of the 
book, "Expert Systems: A Software Methodology for Modem Applications", published py 
the IEEE Computer Society in 1990. In 1991 he was awarded a research fellowship in 
neural networks at the University of Dayton Research Institute. In 2000 he was awarded 
third-place in the National Aerospace and Electronics Conference best-paper competition. In 
2001 he received Ball Corporation's top award, the Award of Excellence. In 2003 he 
graduated with a PhD in Computer Science from Nova Southeastern University. Mr. Raeth 
is a member of the electrical engineering honor societies Tau Beta Pi and Eta Kappa Nu, the 
community service honor society Omicron Delta Kappa, IEEE Computer Society, and the 
ACM Special Interest Group in Artificial Intelligence. He has twice won the Armed Forces 
Communications and Electronics Association's gold medal. The Dayton Affiliate Societies 
Council has twice selected him as one of the Region's Top 20 Technology Leaders. His web 
site on adaptive automation was selected in 1998 as a Science Site of the Week by the 
National Academy Press. Mr. Raeth is a lay minister at his church and enjoys trap, skeet, 
and sporting clays. He is a member of the Ohio Academy of Science's Science Fair Judging 
Team and is a faculty member of University of Phoenix' Online Campus. His reading and 
movie pleasure is science fiction. He also enjoys building scenarios for science fiction video 
games. He can be reached via petecraeth@juno.com. 
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