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Researchers have spent years understanding resource utilization to improve scheduling, 
load balancing, and system management through short-term prediction of resource 
utilization. Early research focused primarily on single operating systems; later, interest 
shifted to distributed systems and, finally, into web services. In each case researchers 
sought to more effectively use available resources. Since schedulers are required to 
manage the execution of multiple programs every second, short-term prediction has 
focused on time frames ranging from fractions of a second to several minutes. 

The recent increase in the number of research studies about web services has occurred 
because of the explosive growth and reliance on these services by most businesses. As 
demand has moved from static to dynamic content, the load on machine resources has 
grown exponentially, periodically resulting in temporary loss of service. To address these 
short-term denial-of-service issues, researchers have tried short-term prediction to 
manage scheduling of service requests. 

What researchers have not considered is that the same methods used for single step short-
term prediction can also be used for long-term prediction if a coarse granularity of 
samples is used. Instead of using one or more samples per second, a coarser aggregate of 
minutes or hours more accurately emulates the long-term patterns. This research has 
shown that simple moving averages and exponential moving averages as a prediction 
technique can be used to more accurately predict hourly, daily, and weekly seasonal 
patterns of resource utilization for web servers. 

Additionally, this research provides a foundation where using a resource prediction 
within a confidence interval range could be more useful to an administrator or system 
software than a single prediction point. When the focus shifts to a range, a set of 
probabilities can establish normal function within that system. For distributed systems, it 
will provide the ability to notify other systems when resource utilization is no longer 
normal before that system is unable to issue a notice of overloading. For web systems it 
can be used to provide a warning, permitting the instantiation of a second system to begin 
load balancing during unscheduled heavy loads. In both cases, the availability of the 
system can be improved by predicting a resource utilization level and the confidence 
interval within which that resource use has historically fallen. 
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Chapter 1 

  Introduction.. 

Introduction.. 

Short-term resource utilization remains an active area of research for scheduling 

web services. One reason for this is that an overloaded system will delay or deny services 

for users or automated requests (Andreolini & Casolari, 2006; Sharifian, Motamedi, & 

Akbari, 2010). Researchers have sought to understand the connections between resources 

and applications by studying resource balancing, scheduling, and future needs (Chapman, 

Musolesi, Emmerich, & Mascolo, 2007; Dinda, 2002) so that more applications can be 

serviced in a more effective manner. That exploration has also used simulation and load 

emulation (Andreolini, Casolari, & Colajanni, 2008; P. Barford & Crovella, 1998; 

Schroeder & Harchol-Balter, 2006) to better explain how systems react under specific 

conditions. 

A more effective means of scheduling and admission of web requests during 

times of system overload is needed to provide efficient use of resources, which will help 

businesses to increase revenue (Al-Ghamdi, Chester, & Jarvis, 2010; Hoffmann, Trivedi, 

& Malek, 2006). Software resource performance (Balsamo, Marzolla, & Mirandola, 

2006; Chen, Liu, Gorton, & Liu, 2005; Marzolla & Mirandola, 2007) has also been 

studied to demonstrate how software affects those resources. A better understanding of 

software-driven resource utilization can lead to more accurately matching available 

system resources to software needs. 

In each of the cases listed above, researchers sought to understand how resources 

were utilized. The researchers also directly referenced the use of prediction at some level 
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to improve the processes they were exploring. Resource prediction is not a new area of 

study, but continues to be active because of the promise it holds to improve utilization in 

so many areas of computing. 

Problem Statement.. 

Resource utilization prediction remains an active area of research due to the 

difficulty in accurate forecasting. The need for forecasting also remains high since an 

accurate understanding of resource utilization can improve scheduling, performance 

optimization, load balancing, and recognition of overload conditions (Sharifian et al., 

2010). Most of the research into resource forecasting has been conducted using 

simulation or limited real-time measurements, but these methods have provided only 

limited results. 

Dynamic load balancing of web content is one research area where system short-

term predictability is being studied (Sharifian et al., 2010). The Internet continues to 

grow at an astounding rate, and web services must now provide dynamic content in order 

to satisfy expanding user demands. The ability to predict resource utilization is a critical 

part of improving system availability, since overloading causes increased response time 

or dropped service. Sharifian et al. (2010) addressed dynamic load balance by 

establishing an algorithm that would examine incoming web traffic and determine how to 

distribute it among the various servers within the system. 

The system proposed by Sharifian et al. (2010) – approximation-based load-

balancing (ALB) – considers the CPU to be the resource primarily susceptible to 

bottlenecks in their systems. By classifying incoming requests based on estimated CPU 

time from similar requests, the system can queue like requests together. The system then 
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calculates load based on queue size and estimated utilization time for the CPU and 

maintains balance by admitting requests to appropriate servers within the cluster. To 

prevent overloading, the system routinely recalculates the remaining CPU capacity at 

regular time intervals. The remaining unit capacity, along with CPU time for released 

jobs, is fed back into the system calculations to increase the accuracy of job times in the 

appropriate class. 

Standard web traffic, dynamic web traffic, and secure traffic all require different 

levels of CPU time to service and are the primary class styles used within the system 

(Sharifian et al., 2010). Each of the three types of traffic is broken into further classes, 

since requests within the same area can also have different levels of CPU requirements. 

Sharifian et al. (2010) used weighted round-robin (WRR) and content-aware policy load-

balancing algorithms as benchmarks to determine the effectiveness of their ALB system, 

with collection points from 5,000 to 60,000 clients. Testing (Sharifian et al., 2010) 

showed that under load, WRR performed well through 27,000 clients, but then efficiency 

fell off. Context Aware Policy (CAP) used multiclass round robin and request 

classification to define this third-generation load balancing algorithm. CAP showed a 

much better performance than WRR, providing good throughput for up to 36,000 clients, 

which then slowly declined. ALB was able to maintain the high throughput rate through 

50,000 and remained level through 60,000 clients. Response times grew quickly for 

WRR load-balancing and broke ten seconds at 32,000 clients, while CAP could handle 

about 55,000 clients before breaking the ten-second barrier. In comparison, the ALB 

system never took more than two seconds to return a client request. 
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Resource utilization prediction models have also been explored by Andreolini and 

Casolari (2006). Systems require load balancing, overload management, admission 

control, and job dispatching. Andreolini and Casolari (2006) evaluated resource behavior 

for web services including CPU utilization, network throughput, open sockets, and 

memory load. Simulation was used to generate resource utilization patterns in step, 

staircase, and alternating formations. The three scenarios were evaluated for better 

understanding of CPU and disk utilization.  

The TPC-W benchmark ("TPC-W transactional Web e-commerce benchmark 

(Retired 04/28/2005)," 2004) was used as a foundation for Andreolini and Casolari’s 

(2006) study. They used sample rates of one- and five-second intervals for a ten-minute 

period for the study. The collected samples were processed using simple moving 

averages (SMA), exponential moving averages (EMA), and cubic spline (CS) analysis to 

provide resource utilization prediction. SMA, EMA, and CS look back at a number of 

samples to generate a prediction for the next cycle. These statistical methods were 

selected because of the averaging effect, allowing the drastic changes seen in web data to 

be normalized; each evaluation method was then run against the resource samples and 

evaluated for accuracy (Andreolini & Casolari, 2006). 

The sampling sizes feeding the series analysis changed the results of the 

prediction, so Andreolini and Casolari (2006) chose to generate results for ten and thirty 

seconds into the future. The ten-second sample time frame was selected from a series of 

times greater than zero, up to thirty seconds since it exhibited a high level of accuracy for 

predictions under thirty seconds. The accuracy of the prediction was also driven by the 

number of previous time frames used for weighting the prediction. In the case of the ten-
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second intervals, a prediction window of five time frames produced the highest level of 

accuracy; for the thirty-second time frame, fifteen intervals were used. In both cases, 

smaller intervals weighed the recent past too heavily, decreasing the accuracy, while 

longer intervals weighed the more distant past too heavily, causing the predictions to 

adjust to changes too slowly. 

Once it was determined that the prediction tracks aligned with the simulated 

pattern, Andreolini and Casolari (2006) calculated the amount of error in each prediction, 

by taking the actual reading from the simulator and comparing it to the prediction. The 

authors determined that the EMA prediction was the most accurate of the three, with an 

error rate of 0.065 at ten seconds in the future compared to CS’s error rate of 0.16 under 

the same time interval. The authors noted that EMA could suffer from high delays during 

times of overloading in web services. 

Forecasting for single web servers is another active area of research. Most 

organizations work with a web server until the load exceeds the unit’s resources. Once 

the web server is no longer able to guarantee availability, administrators move toward 

either clustered or distributed web services, but this then wastes resources, since most 

excess loading is transitory. A better understanding of how and when resources are 

required will permit the administrator to use a single web server and its resources more 

effectively. One recent study used an Apache web server to better understand response 

time and free memory (Hoffmann et al., 2006). The research was broken into several 

phases to provide the highest reliability in predicting response time and free memory. In 

the first phase Hoffmann et al. (2006) pulled readings from logs monitoring 102 

variables, which were pulled every five minutes for one hundred and sixty-five hours.  
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The initial variable group was composed of common variables that are traceable 

on an Apache server. A review of the collected information was completed to determine 

the variables that most accurately correlated to the server’s response time and free 

physical memory. These predictive variables were then identified using three benchmarks 

(forward selection, backward elimination, and probabilistic wrapper), reducing the 

number of variables followed even further. Hoffman et al. (2006) concentrated on the 

variables that would be used for both a short-term prediction (five minutes) and a long-

term prediction (two days). The root-means-square-error was calculated for each 

benchmark to find the calculation with the smallest error. Hoffmann et al. (2006) 

determined that the probabilistic wrapper benchmark had the smallest error at 0.025; 

forward selection was 0.047; and backward elimination was 0.336 for short-term 

prediction, while long-term prediction errors were 0.010, 0.011, and 0.716, respectively. 

Probabilistic wrapper had the smallest error for both long-term and short-term 

predictions, so it was used for the model building phase of Hoffmann et al.’s (2006) 

research. Four models were used (multivariate linear regression, support vector machines, 

redial basis functions, and universal basis functions) to process the data for both short-

term and long-term predictions. The authors (Hoffmann et al., 2006) used root-mean-

squared-errors again to determine which of the four models provided the most accurate 

prediction. The support vector machines model was the most promising during 

validation, with a short-term error rate of 0.012 and a long-term error rate of 0.007. 

However, the authors (Hoffmann et al., 2006) indicated that, once the final testing was 

completed, the single vector machines model was outperformed by universal basis 

functions for both short and long-term errors. Hoffmann et al. (2006) stated that a radial 
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basis functions model outperformed a support vector machines model for long-term 

prediction error, but table 5 (Hoffmann et al., 2006) indicates that the support vector 

machines model outperformed the radial basis functions model. This change in error rate 

between the five-minute prediction in table 5 and the twenty-four hour predictions of 

table 6 suggested that a single prediction method might not have been appropriate for 

forecasting different time frames of the same resource. 

Hoffmann et al. (2006) concluded that variable selection is very important to the 

process of predicting resource utilization and that using all variables as suggested by 

backward elimination will greatly slow the process. Three variables (number of new 

processes, blocks written to disk, and the number of Ethernet packets transmitted) were 

used for predicting free memory and response times for the author’s Apache server. Since 

these variables proved to have predictable qualities for web services, they are good 

candidates for long-term prediction as well. 

Prediction is also needed in network traffic management. These predictions 

should neither starve nor waste bandwidth and such predictions should not incur a high 

cost of execution or communications (Krithikaivasan, Zeng, Deka, & Medhi, 2007). 

Using a basis of well-known cyclical network utilization, Krithikaivasan et al. (2007) 

proposed a seasonal AutoRegressive Conditional Heteroskedasticity (ARCH) based 

model. They collected data every five minutes and averaged them for a fifteen-minute 

interval. Data was collected over fifteen weekdays, while no data was collected on 

weekends or holidays. This collection occurred in three different months. The first ten 

days of the data was used to generate forecasting for the last five. 
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Krithikaivasan et al. (2007) found that days one, six, and eight exhibited higher 

usage than the other days in the study and considered these anomalies important to 

understand but detrimental to the foundation of the study. The outliers are not removed 

from the data but transformed using natural logarithmic transformation, an effective way 

to stabilize data. This data is then processed under minimum mean square error (MMSE) 

to predict a single step ahead in prediction of the network traffic level. Krithikaivasan et 

al. (2007) determined that the resulting error level was negligible in this study. 

The final stage of the study used the information gathered to provide bandwidth 

provisioning. Krithikaivasan et al. (2007) used a modified allocation method called 

Stabilized Bandwidth Provisioning (SBP). The modification uses a Hold Down Timer 

(HDT) that permits extra bandwidth as needed but throttles message exchange as 

bandwidth is slowly reduced. The process keeps the bandwidth steps from heavy 

oscillation. The authors also set a maximum bandwidth of 60% to prevent starvation of 

other traffic. There were only two times in the study data where the 60% bandwidth limit 

was reached, with the remainder of the times properly provisioning bandwidth for the 

required service over the five days of forecasting. 

Five- to ten-minute prediction methodologies have been reasonably successful at 

determining resource utilization (Andreolini & Casolari, 2006; Sharifian et al., 2010), 

while similar results in longer patterns of resource utilization and prediction remain 

elusive. Attempts to accurately predict resource utilization using multiple steps of short-

term readings (Andreolini & Casolari, 2006; Sharifian et al., 2010) were less successful 

than using larger time-frames and a single step. Extending a prediction over several steps 

found that each step after the first in the time-series resulted in decreased accuracy of the 
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prediction; researchers, therefore, have focused on time-series analysis that uses only a 

single step prediction. System degradation and overloading of web services is a constant 

issue for service owners and needs to be addressed to guarantee availability (Hoffmann et 

al., 2006). Web services continue to be a key area of interest due to the rate of growth and 

importance to industry (Sharifian et al., 2010).  

Short-term prediction has shown that resource utilization can be reasonably 

determined on the scale of minutes or less; this is adequate for tasks such as scheduling, 

but, unfortunately, research has not been undertaken into long-term prediction. The 

predictability of system resource utilization deteriorates rapidly when multiple step short-

term prediction is used (Andreolini & Casolari, 2006; Istin, Visan, Pop, & Cristea, 2010). 

Shifting from short-term prediction to long-term prediction will provide for 

improvements in load balancing, job dispatching, job distribution, and overload 

prevention (Andreolini & Casolari, 2006) by permitting a system to anticipate resource 

needs further into the future. The improvements provided by long-term forecasting will 

facilitate the ability for administrators to avoid denial-of-service issues.  

Algorithms have used real-time sampling (Dinda, 2006) to solve resource 

limitation issues and only addressed problems as they were detected or based on short- 

term prediction. Being able to predict resource utilization through short-term prediction 

was helpful in allowing scheduling changes (Schroeder & Harchol-Balter, 2006), load 

balancing (Sharifian et al., 2010), and resource trending (Andreolini & Casolari, 2006). 

While current prediction methods deteriorate quickly (Andreolini & Casolari, 2006; Istin 

et al., 2010), researchers have determined that further research into longer term prediction 
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(greater than fifteen minutes) is needed to better understand utilization and management 

system components (Krithikaivasan et al., 2007). 

Better long-term prediction models for network traffic flow can be used to 

provide a higher quality of service (QoS) to the users (Krithikaivasan et al., 2007) by 

predicting the type of traffic expected on a network. Traffic volume prediction could also 

be used to expand or contract the communications channel prior to oversaturation. 

Another benefit of long-term prediction is in scheduling grid resources (Ramachandran, 

Lutfiyya, & Perry, 2010). Short-term prediction has improved usage of the volunteer grid, 

helping to guarantee availability of CPU and storage to the distributed system. The 

difficulty occurs when these systems are taken off the grid due to local usage. Long-term 

prediction would provide additional details about when systems are likely to go offline 

and provide for transition of the service to another system prior to predicted loss of 

service. 

Overloading of web services has also been improved through short-term 

prediction (Sharifian et al., 2010), by shifting incoming requests based on the level of 

previous service for similar requests. Long-term prediction would provide a foundation 

for load balancing of systems by permitting fewer machines to run during low load 

periods and bringing on additional machines during high loads. Load levels are also 

important to servers: Andreolini and Casolari (2006) used short-term load prediction to 

limit incoming traffic to a web server. Longer load predictions could identify periods 

when high load is expected, permitting a mirrored service to be started prior to the 

expected heavy load. 
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Short-term prediction has been used successfully to improve resource utilization 

for items which occur frequently or need to be addressed quickly. In most cases 

researchers have focused on a time frame of minutes, seconds, or fractions of a second, 

but computers must also contend with time frames of a much coarser granularity. Each 

day, systems see a heavier load as workers log into the services, a lighter load as staff 

goes to lunch, and a very light load overnight when most workers don’t need the services. 

These longer patterns exhibited over minutes, hours, days, weeks, and longer, have not 

yet been explored by researchers, nor have the ramifications of how administrators can 

more effectively use the resources available in their servers during these differing time 

periods. 

Dissertation Goal.. 

The goal of this research was to provide evidence that web resource utilization 

patterns that occur hourly, daily, and weekly are predictable with a reasonable accuracy 

using existing techniques of prediction. In the past, short-term prediction has focused on 

forecasting in time frames less than fifteen minutes (Andreolini, Casolari, & Colajanni, 

2006). Krithikaivasan et al. (2007) focused on bandwidth provisioning with fifteen days 

of five-minute collections, not including holidays and weekends, to predict bandwidth 

utilization for twenty-four hours. The work of Istin, Visan, Pop, & Cristea (2010) 

identified reliable statistical methods for short-term patterns and future predictability of 

resources for scheduling. Those methods included the evaluation of average percentage 

of errors for SMA, Weighted Moving Average (WMA), EMA, random prediction, and 

three additional methods that use neural networks. The results of the analysis completed 

by Istin et al. (2010) identified the patterns for CPU utilization, network traffic, memory 
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utilization, and disk I/O availability in a distributed system, along with the average 

percentage of errors when predicting a single step ahead.  

This research has built upon Krithikaivasan et al.’s (2007) methods of collecting 

and evaluating resource data by using the coarser granularity of data collection at one 

sample every ten seconds instead of one or more samples per second (Andreolini & 

Casolari, 2006; Dinda, 1999, 2006; Istin et al., 2010). The same set of resources used by 

Istin et al. (2010) – CPU utilization, network traffic, memory utilization, and disk I/O 

availability – was used to determine the effectiveness of long-term prediction. A previous 

study used Optimistic Network Performance Index, and a Robust Network Performance 

Index was used to create a high and low binding range for the prediction (Abusina et al., 

2005). This research will use a similar technique for each web resource by identifying the 

80% confidence interval for each single step prediction, during the hourly, daily, and 

weekly time frames of this study. Abusina et al. (2005) also chose to use time slices over 

each hour of their study. This study will divide the data into minute, fifteen-minute, and 

hourly time slices for predictions over an hour, day, and week, respectively. 

Relevance and Significance.. 

Simulation is an accepted method of testing a theory while reducing the number 

of variables within the study. Andreolini and Casolari (2006) used simulation of various 

workload patterns to assist in understanding the effectiveness of various job servicing 

algorithms. Their simulation of resource utilization in step, staircase, and alternating 

formations permitted better run-time scheduling of job services for web services. Barford 

and Crovella (1998) developed Scalable URL Reference Generator (SURGE) as a 

simulator that would represent common workload characteristics of a web service. The 
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SURGE simulator was compared to SPECweb96 ("SPECweb2009 (Retired 

01/12/2012)," 2011)  to determine the accuracy and ability to stress various web 

resources, including CPU utilization, active connections, and memory usage. SURGE 

also added a key metric that identified how long a page view would normally take before 

another page was requested. Most simulators, including SPECweb96, focus on pushing as 

much information at the web service as possible, to help identify the maximum load. 

Long-term prediction of resource utilization is focused on common utilization and 

SURGE’s ability to more accurately represent incoming traffic will allow the simulation 

to more accurately represent common utilization. 

The existence of hourly, daily, and weekly patterns in computing resources is well 

known (Krithikaivasan et al., 2007), but has not been extensively explored. The 

utilization levels of several resources (CPU utilization, Disk I/O, free memory, and 

network traffic), were examined as indicators to provide increased availability of a 

system (Schroeder & Harchol-Balter, 2006). By determining service levels of equipment, 

administrators can estimate resource needs, performance trending, trouble shooting, or 

event reconstruction using information found in logs (Ghemawat, Gobioff, & Leung, 

2003). When resources are undersized, the server is likely to experience denial of service 

issues (Andreolini et al., 2006; Schroeder & Harchol-Balter, 2006). When a denial of 

service occurs, users will abandon a web site after a short period of time. Users will also 

abandon sites if response times become too long, causing a company to lose revenue (Al-

Ghamdi et al., 2010). When a system’s resources are oversized, the company wastes 

money by purchasing resources that won’t be used. By forecasting resource utilization 
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needs, an administrator can properly size resources for demand (Al-Ghamdi et al., 2010; 

Schroeder & Harchol-Balter, 2006). 

Previous research focused on near-term issues driven by computing time frames, 

frequently using a small granularity of time (less than a minute) to drive the analysis and 

prediction. Research by Rood and Lewis (2010) focused on distributed system scheduling 

using increments from five minutes to twenty-five hours; the results provided predictions 

over fifteen days. Rood and Lewis’ (2010) work focused on the level of resource demand 

five minutes into the future by considering what had come immediately before without 

considering the longer cyclical patterns. In one study on network traffic predictions 

(Qiao, Skicewicz, & Dinda, 2004), the time frame was based on the end-to-end transfer 

times to provide a more accurate prediction of file transfer times. The prediction was 

used by the file services to balance demand and determine the routing of new requests. 

Most of the research into resource predictability only provides forecasting for 

short periods (Istin et al., 2010); those predictions appear to behave randomly over longer 

time periods because the recent past has little correlation with the immediate future. 

Researchers have focused on the dynamic behavior of systems resources (Dinda, 2002; 

Rood & Lewis, 2008), often looking for trending over predictable usage, but have rarely 

considered the large patterns that are known to exist in resource utilization 

(Krithikaivasan et al., 2007).  

Lampson (1983) indicates that, no matter how well a system manages its 

resources, once two-thirds of that resource is being utilized, bad things begin to happen. 

Administrators currently use logs to identify when resources are being over-utilized, 

solving the issue through evaluation or increasing size of the affected resource. Lampson 
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(1983) also argues that avoiding a disaster is an appropriate response and that manual 

evaluation often takes place after a disaster has occurred. Systems need to move toward 

dynamic allocation (Al-Ghamdi et al., 2010; Andreolini et al., 2008) to address the 

rapidly-changing user needs. The development of long-term resource forecasting will 

facilitate dynamic configuration since current methods are still too error-prone (Al-

Ghamdi et al., 2010). 

Barriers and Issues.. 

Resource prediction has been accepted as an important part of better system 

management (Andreolini & Casolari, 2006; Chen et al., 2005) and an important step in 

dynamic resource allocation (Al-Ghamdi et al., 2010). Attaining that goal has been 

reasonably successful in the process of understanding resource prediction for short-term 

prediction (Hoffmann et al., 2006; Lu, Wang, & Koutsoukos, 2005). At this time short-

term prediction has been favored over long-term prediction because of the inaccuracy of 

extending the short-term theories (Istin et al., 2010). The patterns in long-term resource 

utilization have been accepted as existing (Abusina et al., 2005; Krithikaivasan et al., 

2007), but research has not been furthered by this acceptance. 

The behavior of computer systems appears to be random (Istin et al., 2010). The 

execution of code, service requests, interrupts, outside communications, and human 

interaction create an environment that looks chaotic when considered in the time frame 

normally associated with a computer’s system clock. This randomness has been seen in 

attempts to develop fair scheduling for both operating systems and distributed systems 

(Dinda, 1999; Silberschatz, Galvin, & Gagne, 2003, pp. 153-156). In most cases, as a 

system approaches overload, the scheduling algorithm becomes unfair and the advantage 
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gained by a specific scheduling algorithm no longer matters (Wierman & Harchol-Balter, 

2003). Randomness was also seen in Rood and Lewis’s work (2008) when they used 

recent history to predict system availability in the future.  

The apparent randomness in short-term resource prediction runs counter to the 

suggested existence of the patterns within network traffic by Krithikaivasan et al. (2007). 

Since little work has been done to understand these patterns (Krithikaivasan et al., 2007) 

within the computing environment, appropriate methods to evaluate the data remain 

unknown. Krithikaivasan et al. (2007) provides some insight into the long-term patterns 

using ARCH. ARCH is based on time series analysis for resources and was applied to 

network traffic to improve QoS. Krithikaivasan et al. (2007) then modified the resource 

data to remove anomalies within the system to facilitate their study. Using time series 

analysis with seasonal consideration, long-term resource utilization prediction is feasible. 

Forecasting research has shown a wide range of how much historical data is 

needed to determine the next step. In Krithikaivasan et al. (2007), ten days of resource 

history was used to generate the prediction, while Rood and Lewis (2008) appeared to 

use several days and hours. One research project (Andreolini & Casolari, 2006) used only 

ten minutes of history to try to determine how heavy resource utilization would be one 

minute and five minutes in the future. Another forecasting attempt used 165 hours of data 

collected in five-minute increments (Hoffmann et al., 2006) to determine estimated 

response times on an Apache server as resources became exhausted. This research has 

provided insight into how much history is necessary to predict resource utilization 

accurately. 
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Researchers have used a variety of time-frames to collect the raw data for short-

term forecasting, but research into long-term prediction must also seriously consider the 

time-frames used. A collection rate at the speed of the computer would starve other 

systems and prove to be useless, but collection rates of thousands of samples per second 

are feasible without interfering with the system’s functionality (Dinda, 2002; Wolski, 

Spring, & Hayes, 1999). For short-term prediction, this high rate of collection is 

necessary to provide schedulers the data needed to make choices based on current load 

levels. Long-term prediction is more interested at looking at the overall long-term 

patterns of a system (Krithikaivasan et al., 2007). An appropriate granularity for the 

collection is an issue since short time frames may not add clarity to the result, while too 

few samples lead to inaccuracy (Wolski, 2003). 

The collection mechanism introduces a second issue about accuracy: the sample 

may not accurately reflect the overall resource utilization levels. Resources inherently 

move dramatically between levels of use very quickly (Dinda, 1999), so individual 

samples may not be representative of the true resource utilization level. Hoffmann, et al. 

(2006) saw this issue when data points exhibited utilization spikes which were then 

removed by filtering prior to the study’s analysis. Many researchers have chosen to use 

sample averaging to help increase the accuracy and remove heavy fluctuation of the 

resource utilization levels (Dinda, 2002; Krithikaivasan et al., 2007; Rood & Lewis, 

2008; Wolski, 2003). 

Research Questions.. 

Two questions have been answered by means of this research, during two phases. 

The first phase used SURGE (P. R. Barford, 2001) to exercise a web server with specific 



  18 

 

pattern usage to determine if the simulated pattern can be predicted. The second phase 

used trace data obtained from a live web server to evaluate the utilization pattern for 

long-term predictions. The results of both experiments were evaluated to answer two 

questions. 

The first question to be addressed was whether systems exhibit predictable long-

term resource patterns. Usage patterns are accepted as existing on an hourly level over a 

24-hour period (Krithikaivasan et al., 2007), but research has primarily focused on short-

term needs. This work has helped to understand the larger long-term patterns in web 

services (Schroeder & Harchol-Balter, 2006), since overloading of web services can lead 

to lost revenue for businesses (Al-Ghamdi et al., 2010). This research evaluated common 

web resources including percentage CPU utilization, Disk I/O time, free memory, and 

network traffic, using seasonality to identify the pattern of resource usage over the time 

frames of hours, days, and weeks. The answer to this question is important to 

administrators so that they can properly size servers and identify resource upgrades 

before issues arise. When administrators are able to identify resource utilization levels, 

peak usage, and periods of low demand, they can balance system requirements and 

maintain system availability (Hoffmann et al., 2006).  

The second question this research addressed was identifying the confidence 

interval of the prediction for each resource. Administrators should be able to trust the 

resource prediction, or else actions based on those numbers will be no more effective 

than those based on general observation. To provide a level of trust in the prediction, the 

study must define a confidence interval for the prediction (Traeger, Zadok, Joukov, & 

Wright, 2008). The research found a balance between the confidence interval and the 
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level of precision needed for an informed decision to be made by the administrator. A 

high confidence interval can result in an extreme range of values around the prediction, 

making the prediction nearly useless since nearly all of the results fall into that range. On 

the other hand, if the range of resource utilization is too narrowly defined in order to 

allow the administrator to be aware when the prediction is outside that range, trust in that 

prediction becomes very low, due to the large number of results outside the range. The 

balance point permits the smallest possible range of utilization values with the highest 

reasonable confidence, allowing the administrator to make quick decisions when the 

actual resource utilization falls outside the prediction range. 

Summary.. 

Short term research has provided advancements in job scheduling (Dinda, 2006), 

distributed system management (Rood & Lewis, 2010), and web services (Sharifian et al., 

2010). Researchers have used a variety of statistical methods to provide short-term 

predictability for system resources. To make these predictions, researchers have focused 

on collecting multiple data points every second to estimate utilization in the next few 

seconds, up to a few minutes in the future (Dinda, 2002). These attempts have remained 

focused on the short-term results, since longer-term predictions required researchers to 

use multiple iterations, and with each iteration a greater level of error in the prediction 

was generated (Andreolini & Casolari, 2006; Istin et al., 2010; Sharifian et al., 2010). 

Krithikaivasan, et al. (2007) used the techniques previously established for short-

term prediction and extended those methods to provide predictions up to fifteen minutes 

in the future, by building aggregate values for resource utilization over five minute 

periods which were then used as data points to generate that prediction. Krithikaivasan, et 
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al. (2007) also focused on single steps instead of multiple steps into the future, since 

previous research had determined multi-step prediction to be a poor methodology. By 

extending the techniques used by Krithikaivasan, et al. (2007), this research examined 

whether long-term predictions over hours, days, and weeks are also possible. 
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Chapter 2 

  Review of the Literature.. 

Introduction.. 

Short-term resource prediction has been studied frequently and researchers have 

found that using short-term data for long-term predictions provides poor results. By using 

the techniques developed for short-term prediction with long-term prediction data points, 

this difficult problem can be addressed. Hoffman et al. (2006) reviewed a variety of 

resource prediction studies and assembled a best practices guide for establishing 

predictive services for the Apache web server. This study identified the CPU, network, 

disk I/O, and free memory as critical resource for web services. The steps provided by 

Hoffmann et al. (2006) were used as a framework for this study and are as follows: 

First: gather data that will be used to define the patterns of the resource and are 

used to generate the forecasts. Web services continue to grow at an astounding rate and 

organizations are continuing to find new and innovative ways of providing content to 

consumers. Since web servers are common and critical to an organization’s functions, 

this study targeted the resources required to maintain availability of web services. Further 

justification is included in Forecasting for Web Services. Because each system is 

different, it was important to identify resources that could provide an accurate forecast of 

the system. Resources considered to be critical are available memory, network 

bandwidth, available CPU cycles, and disk access (Istin et al., 2010). Short-term studies 

frequently target one or more of these resources, but these resources are just as critical to 

long-term prediction. Additional details are provided in Resource Identification in 
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Forecasting. The data was collected at appropriate intervals in order to be useful. It is 

possible to collect hundreds of samples per second; this is useful for a very fine-grained 

prediction when multiple decisions are needed every second. This type of sampling is 

important to scheduling but is not appropriate for long-term predictions. Long-term 

prediction needs a very coarse-grained view of the computer system; samples that are 

taken every minute, five minutes, or every hour are more appropriate for this type of 

study. Data collection will be discussed in Data Collection for Forecasting. Long-term 

prediction is also faced with the issue that a random sample may not appropriately 

represent the system resource utilization for a specific period of time. For example, a new 

job start is likely to spike CPU utilization, while jobs entering a waiting cycle 

simultaneously would cause CPU utilization to look as if it were idle. Researchers have 

used data aggregation to address issues where coarse-grained measurements are required; 

this will be discussed in Data Aggregation in Forecasting. 

Second: a statistical model should be used that will evaluate the collected data and 

provide a pattern of events for each resource. Each set of data needs to be processed and 

evaluated; each resource exhibits different patterns based on the web service being 

performed. Statistics provide a variety of methods to evaluate sequential readings which 

were used to predict future behavior. Time-series analysis is a proven method of 

evaluating this data, including the ability to address patterns that are considered 

“seasonal”. Those seasonal patterns of resource utilization have been seen in network 

traffic and were apparent in the hourly, daily, and weekly utilization of computer 

resources. The analysis of the data is discussed further in Data Analysis in Forecasting. 
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Third: those patterned events are then used to forecast future events for each 

resource. The data analysis provides a predicted future value of the series. The time-

series prediction can be compared to the actual resource utilization and used to generate a 

confidence level, which gives administrators more information about their system 

resource utilization than they had previously. Additional discussion occurs in Prediction 

Accuracy in Forecasting, providing information about how various time-series were used 

for long-term prediction. 

Fourth: in order for forecasting to be useful, the forecast must be sufficiently 

accurate that data fed back into the system improves the process. The statistical method 

called time-series analysis is used to analyze patterns when a series of measurements are 

related and expected to behave “seasonally”. Simple time-series methods use a fixed 

number of information points to provide a prediction, while more advanced techniques 

weight each data point based on the proximity to the prediction point. Feedback can be 

used to fine tune a time-series prediction system after proof is provided that the series of 

data provides trending or “seasonal” patterns. The methods previously used by short-term 

predictability research will be discussed in Data Analysis in Forecasting and Prediction 

Accuracy in Forecasting. This research used time-series analysis to begin to identify 

whether resource utilization in web services shows long-term trends that are predictable 

and helped take that first step in understanding the accuracy of long-term prediction. 

Now that some of the patterns are better understood, it is possible to generate a 

feedback process which will increase the accuracy of future predictions. This feedback 

process can also be used to identify specific patterned events that have a higher rate of 

accuracy than the prediction and remove that portion of the prediction to focus on what is 
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left. For example, if the morning pattern determines that 98% of the staff logs into the 

system between 7:50 and 8:10 am each work day, a future study on the resource needs of 

the Kerberos system could identify what resource utilization is required for staff logging 

in during that time frame. The Kerberos predictability would have one level of accuracy 

while the remainder of resource utilization would have another. Feedback from these two 

portions could then be used to increase the overall accuracy of the prediction. This 

research focused on showing that patterns exist and are predictable with some accuracy, 

while the feedback of information to improve that accuracy is left to future research. 

Forecasting for Web Services.. 

Business use of web services continues to grow exponentially, as businesses rely 

more heavily on these services, but when a denial-of-service occurs it causes a loss of 

revenue (Al-Ghamdi et al., 2010; Hoffmann et al., 2006). To address this demand, 

administrators can use clustered or cloud services. Each of these solves the issue of 

denial-of-service by placing enough resources at the customer’s disposal that the failure 

or overuse of one system doesn’t prevent the requested information from being delivered. 

The use of cloud services also protects against network failures or congestion. These 

solutions help guarantee availability but waste resources, since many systems remain 

underutilized. Researchers have explored short-term resource utilization to help improve 

the effective use of these wasted web service resources (Hoffmann et al., 2006). 

Web systems must be adaptable by adjusting scheduling, balancing loads, and 

controlling overloads (Andreolini et al., 2008), in order to guarantee the availability of 

services. Short-term forecasting provides predictions to increase the effectiveness of load 

balancing, throttling, and scheduling, using information about the state of the system 
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many times per second. Load balancing permits multiple units to share the load but 

doesn’t prevent one of the units from becoming overloaded, since the length of service is 

rarely known. Throttling the incoming traffic has also been used by web services to 

prevent system failure at the cost of denying services to some. Scheduling determines 

how jobs will be serviced but has no predictive function on job length or resource needs. 

Web services consistently become overloaded; scheduling, throttling, and load-balancing 

provide some stability, but each strategy has a cost. To help prevent web service 

overloading, predictions need to extend beyond several minutes (Andreolini et al., 2008; 

Schroeder & Harchol-Balter, 2006).  

Resource Identification in Forecasting.. 

Resource overloading leads to impaired system availability and studies have 

identified appropriate sets of resources to monitor, if improvement in the system is to be 

gained. A wide variety of resources is available for monitoring computing systems. Those 

resources can then be split into two groups: fixed and variable (Istin et al., 2010). 

Examples of fixed resources include the machine’s name, the speed of the processor, and 

the maximum bandwidth of the network. Resources that are fixed in value can be 

removed from consideration since they don’t change or affect a system’s availability. Of 

the remaining resources, the majority never experience binding, so, while an 

understanding of their utilization may be informative, predictions from these resources 

will not increase availability.  Examples of resources that are unlikely to bind under web 

services would include the serial or printer ports, screen updating, and keyboard input. 

Just as with the resources that don’t change, there is no point in measuring a resource that 

doesn’t threaten the availability of the computer. It is important to identify those 
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resources at risk of binding, along with identifying the pattern of their utilization: this 

provides advanced warning when a web system is likely to experience availability issues. 

Resource utilization forecasting provides valuable details about system 

functionality and understanding when a resource is likely to become exhausted, 

permitting the operating system to take preventive action and allow increased short-term 

availability (Hoffmann et al., 2006). When a dynamically allocated resource becomes 

overloaded, the system should wait for the current load to pass before it introduces 

additional work, or all of the jobs will receive a smaller portion of that resource, 

extending the time the overload lasts; however, if the resource has a fixed allocation 

level, then new jobs must wait or be denied services. An example of a resource that is 

dynamic is the CPU, while a fixed resource is the amount of hard drive space. Memory is 

able to act as either a dynamic or a fixed resource since the operating system may use 

only the available memory, or it can offload portions to the hard drive and then reuse the 

same memory space, retrieving the original information when needed. All three types of 

resources are subject to overloading and need to be considered for long-term prediction, 

since each resource type is likely to display different utilization patterns. Only one 

resource needs to become overloaded to generate a denial-of-service on the computer 

affected. 

This study focused on four system resources – network bandwidth, disk 

bandwidth, CPU utilization, and free memory – since they have been shown to have high 

utilization rates and are likely to become a bottleneck within a system (Istin et al., 2010). 

Focusing on a few key resources which most commonly become exhausted provides the 

most effective method of prediction. Tracking other resources for this study is not likely 
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to indicate when a system is likely to experience a loss of availability due to a resource 

exhaustion, because increasing the availability of a resource that remains underutilized 

won’t improve system performance (Harchol-Balter, Schroeder, Bansal, & Agrawal, 

2003). 

Previous studies (Andreolini et al., 2008; Dinda, 2006; Harchol-Balter et al., 

2003; Hoffmann et al., 2006) used specific resources for their short-term predictions 

which permitted them to increase system availability. Two resources, CPU and network 

bandwidth, were used by Harchol-Balter et al. (2003) to manage queuing of jobs, since 

those resources frequently caused bottlenecks within web systems. This study used CPU 

and network bandwidth. CPU utilization is one of the most commonly overloaded 

resources. While it is dynamic in nature, the more jobs the CPU handles, the smaller the 

slice of time available to any one program. The CPU is the heart of the machine and 

understanding the long-term pattern of usage provides insights into how much processing 

power the web services needs to handle the current load pattern. Network bandwidth is 

another important resource, since overloading of this resource generates lost data, 

connection retries, and data retransmission. Each attempt to solve the problem of 

overloading compounds the issue, lengthening the amount of time until the overload can 

be cleared and services return to normal. Understanding traffic load patterns and 

generating long-term predictions of overloading will permit software to begin to offload 

server traffic to another server or identify other methods of mitigation prior to the event. 

A larger set of variables was examined by Andreolini et al. (2008) in their study. 

These variables included CPU utilization, disk and network throughput, open sockets and 

files, process load, and percentage of utilized memory. The disk traffic was a measure of 
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how much information the service needs to gather before formulating a response. For 

web services that have static pages, this resource utilization was likely to be low, since 

pages can be loaded to memory and additional requests serviced from that location. But 

web services now provide dynamic resources, which are frequently backed by a database 

that requires a variety of queries to acquire the data requested, rather than static 

resources. This higher level of demand from the disk subsystem indicates that the pattern 

of utilization for this resource is another important resource that should be investigated 

for long-term patterns in overloading. Memory was the last resource to be studied in this 

research. As requests were made of the server, additional jobs serviced those requests. 

Dynamic web page services use large amounts of memory to manage database requests, 

temporary data storage during response generation, and session management. Memory 

utilization patterns differed from the other three resources in the study, since this resource 

changes inversely to demands. Each running service reduces the amount of free memory. 

Data Collection for Forecasting.. 

The use of recorded data provides the advantage of using real data from a system, 

while processing that information on another system. The collection of data should have a 

granularity that is appropriate for the study (Traeger et al., 2008). For example, early 

studies that were focusing on scheduling and managing jobs needed to take data samples 

many times per second. Dinda’s (1999) early work used load averages for thirty-five 

machines and gathered hundreds of samples per second to make appropriate predictions 

for managing processes. It would be impractical if the samples were taken every five 

minutes, since the computer has a constant need to manage the various processes. 
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Unlike short-term prediction sampling, long-term prediction uses a granularity of 

minutes, hours, days, or even weeks. Sampling for long-term prediction at hundreds of 

times per second would lead to tens of thousands of data points that would not increase 

the accuracy of the prediction. A sample rate of ten to sixty seconds provides an 

appropriate granularity for long-term prediction needs. Additionally, as long as enough 

data is collected and it represents an accurate workload, that data can be reused for 

multiple tests (Traeger et al., 2008). An appropriate sample rate was determined for the 

hourly predictions and the same sample data was used for the daily and weekly 

predictions in this study. 

Krithikaivasan, et al. (2007) collected network traffic rate data at a granularity of 

five minutes and then used that information for their research. The longer time frame 

between collection points was selected because of the granularity chosen in the study. 

Since the object was to manage network bandwidth, a time frame of fifteen minutes was 

chosen. It was determined that adjusting the bandwidth for QoS more frequently than 

fifteen minutes could result in the thrashing of bandwidth throttling, while longer time 

frames could result in insufficient or excessive bandwidth. The selection of the five-

minute sampling rate provided enough data to generate the network bandwidth demands 

for each adjustment every fifteen minutes. 

Data Aggregation for forecasting.. 

One issue that occurs with the coarse granularity of collection is that random 

samples may not truly represent the utilization level of the resource. This happens 

because resources fluctuate as usage changes: a resource may be at 80% utilization 

during one time period and at 10% in immediately surrounding periods. If the sample was 
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pulled from the heavy time period, the data point would shift the prediction to a higher 

level of utilization than the resource was actually experiencing. This skewing of the 

results can be reduced by collecting samples at a smaller granularity than the prediction 

and averaging the results over that time frame. Krithikaivasan, et al. (2007) addressed this 

issue by averaging the three five-minute sample points to create a granularity of fifteen-

minute increments which were used to predict network traffic demands. 

Istin et al. (2010) used the trace replay to gather data and generate averages for 

system resource utilization over one, five, and fifteen-minute intervals; however, the 

study (Istin et al., 2010) didn’t mention the sampling rate used for the generation of the 

averages. CPU utilization, I/O wait times, and memory utilization were a few of the 

resources that contributed data readings for analysis. Istin et al. (2010) chose averaging 

with a coarser granularity of sampling to reduce calculation overhead, so that the 

evaluation process didn’t become overwhelmed with extraneous information. 

Krithikaivasan, et al. (2007) collected packet level measurements each minute 

during a fifteen-day period. Those measurements were gathered from the routers, which 

aggregated the data into five-minute averages. The study then aggregated three five 

minute readings into a single fifteen-minute sample point. Just as the QoS demand drove 

the granularity of Krithikaivasan, et al’s (2007) study, the prediction accuracy for hours, 

days, and weeks drove the granularity of the collection for this study. 

Data Analysis in Forecasting.. 

Short-term forecasting of resource utilization is frequently addressed by using 

various time-series analysis methods. Long-term forecasting of resource utilization has 

not been conducted, so researchers have not yet determined the appropriate conditions for 
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the different time-series calculations. The prediction of a machine’s state in a distributed 

system (Istin et al., 2010) compared a SMA, WMA, and EMA, with WMA having the 

smallest error in prediction, compared to the actual reading. The study also used several 

neural network algorithms for prediction, but they performed only slightly better than the 

three moving average algorithms. 

Time-series algorithms are a common mechanism to analyze data that can be 

correlated in time. The collection of that information is as important as the analysis. 

Dinda’s (2006) toolkit included mechanisms to gather data from selected resources and to 

analyze it using selected time-series analysis algorithms. Auto-regressive Moving 

Average (ARMA), Auto-regressive Integrated Moving Average (ARIMA), Auto-

regressive Fractionally Integrated Moving Average (ARFIMA), and several nonlinear 

models were made available so that the users of the toolkit could get output according to 

the needs of the study or administrative task. Dinda (2006) evaluated the algorithms 

based on the necessary completion time, instead of the accuracy of the prediction, since 

the primary focus of the study was the creation of a toolkit that could run in a live system 

without interfering with normal business. As research continues on long-term resource 

utilization, it is important to know that real-time data collection and evaluation will be 

possible so that systems can constantly monitor resource utilization. 

This research developed a proof of concept for one way to manage the 

information and predictions in real-time. This proof of concept used foundational time-

series analysis methods. Naïve prediction, SMA, and EMA provided a mechanism in 

which the resource predictions were evaluated from a simulation data stream and a live 

data stream to determine the effectiveness of predicting long-term resource utilization. 
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More complex methods of time-series analysis have been used to improve short-term 

predictions and it is reasonable to expect future research into long-term utilization 

prediction to experience similar improvement. 

Prediction Accuracy in Forecasting.. 

Accuracy in forecasting is a necessity since predictions need to be trusted by 

those who intend to use the information to improve the system. One way to provide 

accuracy is to determine a confidence level instead of using standard deviation (Traeger 

et al., 2008). Identification of the range in which a resource is likely to fall at a given time 

provides a metric for administrators to use for making choices about load balancing, 

upgrading monitored resources, combining virtual machines with different resource 

requirements, or generating a notification of abnormal utilization for further investigation 

– just to name a few possibilities. Additional data analysis will help shrink the high and 

low utilization prediction of the monitored resources, tightening the confidence interval. 

When a prediction is too inaccurate, reverting a system to random selection provides 

better results (Schroeder & Harchol-Balter, 2006), so a confidence interval of 80% was 

selected since a level of 95% or 99.7% provided similar results when using Naïve 

prediction. 

With the accuracy of the confidence level and long-term prediction shown to be 

possible, the results can be fed back into the prediction algorithm to improve the accuracy 

of the system in future research. As the accuracy improves, issues like active denial of 

service attacks, random events, or flash mobs will be more easily identified before the 

system becomes overwhelmed, causing the web system to experience a denial-of-service. 
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Summary.. 

Effective studies in resource prediction use the same common framework 

(Hoffmann et al., 2006) to conduct the research. The studies reviewed by Hoffmann, et 

al. (2006) determined that collected data must come from a source that is directly related 

to the service of interest, and that those samples should be representative of the resource 

being targeted. Previous research efforts used time-series analysis to generate the 

prediction and also focused on the accuracy of the prediction by determining the 

confidence interval of that prediction (Hoffmann et al., 2006). Finally, researchers seek to 

use the results of a comparison between the prediction and the actual results to provide 

feedback information for future predictions. 

Early research into resource prediction focused on system scheduling and 

resource utilization (Dinda, 1999). The prediction techniques were also used to extend 

prediction to distributed systems and resource availability (Rood & Lewis, 2008). 

Research has also determined that data could be collected without adversely affecting the 

target systems (Dinda, 2006). With the increased capability of systems to handle the 

prediction process and businesses’ need to guarantee the availability of web-enabled 

services, researchers have turned to various prediction techniques to improve service 

processing and availability (Andreolini et al., 2008). 
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Chapter 3 

  Methodology.. 

Introduction.. 

Researchers recognize that forecasting may improve scheduling (Schroeder & 

Harchol-Balter, 2006), load balancing (Istin et al., 2010; Sharifian et al., 2010), and 

resource utilization trending (Andreolini & Casolari, 2006; Hoffmann et al., 2006). They 

have also recognized that resource prediction is a difficult task and, while short-term 

predictions are reasonably accurate, when the same short-term data is used over multiple 

time periods, the resulting long-term predictions become much less accurate (Andreolini 

& Casolari, 2006; Istin et al., 2010). By focusing on near-term behavior of resources, the 

larger patterns have been lost. This occurs because the short-term data can only provide 

the current trend in resource utilization. When this is applied to multiple steps, ignoring 

the natural patterns of resource utilization, the prediction is less accurate. 

This research demonstrates that long-term resource utilization patterns of web 

servers are a more accurate predictor of future resource utilization than random 

prediction. Resource overloading is the most common cause of general service delay or 

denial (P. R. Barford, 2001, p. 37). Since service availability is lost when resources 

become overloaded (Hoffmann et al., 2006), a more accurate understanding of future 

resource utilization improves the availability of those servers. Long-term resource 

predictability helps identify periods of system overloading and trends that lead to 

overloading, allowing administrators to take preemptive actions to prevent future 

overloading of resources. Overloaded resources are also one of the major causes of slow 
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response or dropped responses specific to web services (Andreolini & Casolari, 2006; 

Schroeder & Harchol-Balter, 2006), so better methods of predicting future resource 

utilization permit longer periods of availability for web services. 

When web services are not available, businesses suffer from a loss of sales if they 

rely on the availability of their web services for income (Al-Ghamdi et al., 2010). To 

address the possibility of overloading resources, administrators today use clustered and 

cloud services to guarantee maximum availability. A clustered server solution addresses 

periodic maximum resource needs, but it also leaves many of the system resources idle or 

underutilized the rest of the time. Long-term resource prediction allows administrators to 

better understand the pattern of resource requirements for their services. Resource 

prediction facilitates dynamic capacity planning, allowing an administrator to allocate 

additional resources when and where those resources are needed to facilitate availability 

of the services. Additionally, better understanding of resource utilization patterns permits 

services having opposing resource demands to share resources without overloading a 

server’s resources. In each of these instances, system availability is improved. 

A number of other actions may occur once a system’s patterns of utilizing 

resources are better understood: applications may be developed to switch scheduling 

algorithms to better address the load (Harchol-Balter et al., 2003); distributed systems 

could use such information to act proactively instead of reactively to normal events that 

exhaust resources normally causing a system to enter into graceful degradation 

(Andreolini et al., 2006); system resource prediction could be used to enhance cloud 

computing’s dynamic allocation of resources (Islam, Keung, Lee, & Liu, 2012); an 

additional level in quality of service and service level agreements could be created 
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(Krithikaivasan et al., 2007); or cloud technologies could be extended to preemptively 

move virtual machines to other hardware with additional appropriate resources. System 

resource prediction could also be used to recognize that a utilization pattern is broken, 

allowing services like intrusion detection systems to take a closer look at the unexpected 

changes. In each of the previous cases, research into using long-term resource prediction 

has not occurred, since the extension of short-term prediction was considered too 

inaccurate to be of use and researchers have been focused on other methodologies. 

In this study, four resources (six metrics) were monitored to determine how 

predictable long term patterns using a coarser granularity of samples. These resources 

were free memory, network traffic volume, CPU utilization levels, and disk utilization 

volumes. Network traffic flow was represented by two metrics that measured the volume 

of traffic being sent to the web server and the amount of information transmitted back to 

the requester. Disk access was also comprised of two metrics that tracked the volume of 

data read and written to the hard drive. Hoffman et al (2006) were able to identify the 

resources that were most commonly the cause of system degradation for Apache web 

services after reviewing a large variety of resources the system was able to track. The 

previously mentioned resources were selected because they were identified as most likely 

to overload (Hoffmann et al., 2006) from either flash events or increased demand on the 

web service.  

Resource demand generated by modern dynamic web services is highly variable. 

Even when web services provided only static web pages, the demand for services was 

growing rapidly, and continues to do so, also driving research into resource forecasting to 

better understand how service performance can be measured (P. Barford & Crovella, 
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1998). The extreme volatility of web services often leads to periods of overloading of 

resources (Schroeder & Harchol-Balter, 2006). As businesses continue to expand e-

commerce as a mechanism for customer transactions, their reliance on web services has 

increased over the years, and can cause situations where customers are denied access and 

revenues are lost (Al-Ghamdi et al., 2010). For the preceding reasons, this research used a 

web-based system to gather the data required to show that long-term prediction of web 

service resource utilization is possible. 

The remaining sections of this chapter will provide the following information: 

current resource prediction methodology is explored in Current Research; reasoning 

behind the selection of the six metrics used in this study is discussed in Resource 

Selection; since researchers use a wide variety of time series algorithms to analyze 

resource utilization, the Time Frame and Evaluation Method Selection reviews those 

methods most appropriate to this research; the best practices previously established in 

short-term studies as they apply to this work are presented in Framework for the 

Research; and, finally, the physical resources required to complete the study are 

identified in Resource Requirements. 

Current Research.. 

Previous research (Dinda, 1999; Rood & Lewis, 2008) focused on the behavior of 

resources to provide scheduling choices needed within the next few seconds. Sampling 

hundreds of times per second allows the information needed by the operating system 

algorithms to address issues like scheduling, load balancing, and network traffic 

management. But long-term patterns in resource utilization also exist and those patterns 

are observable. It is well-known that network patterns cycle over a twenty-four hour 
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period (Krithikaivasan et al., 2007). Despite the acceptance of cyclical patterns that occur 

each day, formal research continues to explore these patterns using fine-grained sampling 

and short-term prediction applications. Krithikaivasan et al.’s (2007) research used the 

coarsest granularity found so far in research. This research extended the aggregation 

methodology used by Krithikaivasan et al (2007) by collecting resource utilization levels 

every ten seconds and aggregating that data into minute, fifteen minute, and hourly 

values for long-term evaluation. 

This research project, by predicting future resource needs, may help advance 

resource availability through two active areas of research: distributed systems and web 

services. Research in the distributed systems area includes work by Istin et al. (2010), 

who focused on the prediction of resource availability. This area of research was 

concerned with identifying the availability of distributed web services and their ability to 

provide service. The moving averages were slightly less accurate than the neural 

networks used by Istin et al. (2010), but were much faster than the neural networks and 

had average percentage errors only marginally higher than the neural network algorithms.  

The predictions were based on samples acquired at one, five, and fifteen minute intervals. 

Samples were pulled for CPU and I/O statistics and provided predictions for a single step 

ahead (Istin et al., 2010). This study used a ten-second sampling rate and aggregated the 

data into coarser-grained time frames. Each time frame was then used for a single step 

predictions, since every additional step beyond the first amplifies the error prediction rate 

(Istin et al., 2010). 

In addition to distributed systems research, web service is the other area of active 

research most relevant to this project. Andreolini, et al. (2008) focused on this area 
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because of the volatility of activity in web services and the need to be able to predict 

system resource overloading. Andreolini, et al.’s (2008) work to understand loading 

levels is used to help prevent denial of service issues and requires the ability for efficient 

real-time resource evaluation. Andreolini, et al (2008) found that moving averages met 

this requirement for short-term prediction. Samples were taken from CPU utilization and 

disk throughput at one-second and five-second intervals, and were drawn from the system 

as it was exercised in four scenarios, including a step-up, staircase up then down, 

alternating between a high and low level, and a realistic scenario. After the data was 

collected, the study (Andreolini et al., 2008) evaluated the resulting moving averages 

using between thirty and one hundred twenty data points to create the prediction. In 

addition to the basic moving averages, Andreolini, et al (2008) evaluated the more 

complex moving average models of CS, Quartile-Weighted Median (QWM), AR, and 

ARIMA. 

Resource Selection.. 

Web services have grown quickly over the years, dramatically increasing the 

volume of traffic, the number of users, and the amount of data transmitted. This growing 

demand continues to strain existing servers (Sharifian et al., 2010). Businesses also 

expect Internet services to be available on demand with as few delays or outages as 

possible. To help compensate for this rapid growth, researchers have actively worked on 

resource predictability to improve availability and better manage web services. Previous 

research has focused on short-term predictions and has avoided longer term cyclical 

patterns of resource utilization because attempts to stretch the short-term predictions into 
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multiple steps have resulted in inaccurate predictions (Andreolini & Casolari, 2006; Istin 

et al., 2010). 

Andreolini and Casolari’s (2006) study focused on the collection of CPU 

utilization, disk throughput, network throughput, open sockets, open files, and free 

memory. These readings were taken in five-second increments and used TPC-W ("TPC-

W transactional Web e-commerce benchmark (Retired 04/28/2005)," 2004) as a 

simulator to generate the workload. Andreolini and Casolari’s (2006) selection of 

resources helped support run-time decisions and also identified the need for an 

understanding of resource load conditions in order to better predict future needs. 

Hoffman, et al (2006) focused on the available resources used by Apache 

Webserver and evaluated the effectiveness of each resource’s ability to predict response 

times of the server. Samples were taken and then aggregated into five-minute and twenty-

four hour data points. Instead of averaging all data points into the aggregation, the 

authors used the median value to represent the most common utilization level for the 

aggregate period. Hoffman, et al. (2006) selected free memory and server response time 

as the two variables that were most predictive of the time taken for the server to respond 

to a client request. 

Schroeder and Harchol-Balter (2006) studied the effect of scheduling on web 

services experiencing a denial-of-service due to overloading. In order to better understand 

loading levels, they monitored CPU utilization, network traffic, disk I/O, and memory 

utilization. Schroeder and Harchol-Balter (2006) considered two types of overloading for 

their research; the first is a persistent overload caused by a constant demand on a system 

resource, while the second is an intermittent overload caused by a temporary bottleneck. 
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The research identified that, under either persistent or intermittent overload, the shortest-

remaining-process-time (SPRT) scheduling algorithm provided an improvement over 

other scheduling algorithms, despite its bias toward processes using fewer resources. The 

SPRT algorithm managed service requests without starving those requests that placed a 

heavier demand on the resources. 

Istin, et al. (2010) focused on understanding the state of a machine within a 

distributed system by the use of various statistics, including CPU utilization, free 

memory, swap memory, running and blocked processes, and I/O statistics including 

network and disk traffic. The resource utilization levels were then used in one-, five-, and 

fifteen-minute load averages and input into a neural network to predict the probability of 

a web service being available within the distributed system. Istin, et al (2010) reinforced 

the understanding that short-term prediction cannot be effectively extended to multiple 

steps, since the error rate becomes too high for the prediction to be reliable. 

For this study, CPU utilization, free memory, sent and received network traffic, 

and disk reads and writes were used as the resource set for predictability, since they are 

the most frequently identified as overloaded resources on a web server (Andreolini et al., 

2006; Hoffmann et al., 2006; Schroeder & Harchol-Balter, 2006). Additionally, these 

resources are easily measured through operating system logs and provide an effective 

indicator of the health of the web services. (Andreolini & Casolari, 2006; Istin et al., 

2010). The web logging permitted samples to be taken every ten seconds; which were 

then aggregated using the mean value into one- and fifteen-minute groupings. 
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Time Frame and Evaluation Method Selection.. 

Previous research focused on time frames of under fifteen minutes (Andreolini & 

Casolari, 2006; Dinda, 1999; Rood & Lewis, 2008) or on a specific subset of a server’s 

needs such as scheduling (Chapman et al., 2007; Harchol-Balter et al., 2003; Sharifian et 

al., 2010), network traffic (Krithikaivasan et al., 2007), or resource availability (Rood & 

Lewis, 2008; Wolski et al., 1999). This study used the collection of data in ten-second 

increments, and then averaged that data into larger blocks for analysis, as Krithikaivasan, 

et al. (2007) had done. Unlike previous studies, the samples were taken over multiple 

seconds and not multiple times per second (Dinda, 2006). The larger time frame was 

selected because long-term prediction using finer data to predict multiple steps ahead is 

considered inaccurate (Istin et al., 2010). The use of the longer time frame and the 

aggregation of the data to predict a single step ahead has been successful for short-term 

predictions of over five minutes into the future (Krithikaivasan et al., 2007). 

Andreolini, et al. (2008) evaluated SMA and EMA with several other more 

aggressive time-series analysis techniques in a highly volatile web service environment. 

Their research (Andreolini et al., 2008) found that the EMA method provided the most 

reasonable prediction of future load values for their web server. The newer statistical 

methods became too erratic in such a volatile environment and took much longer to 

generate the prediction than EMA. For this reason, Andreolini et al. (2008) concluded 

that the moving averages were appropriate at this time for predicting resource utilization, 

since they provided a reasonable prediction and could be used within a real-time system. 

Al-Ghamdi, et al. (2010) also reviewed a variety of prediction methods and also found 
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that SMA and EMA produced similar or superior predictions to more complex prediction 

functions. 

Istin, et al. (2010) studied a variety of prediction methods, including SMA, 

WMA, EMA, random predictions, and neural network techniques. In each case they (Istin 

et al., 2010) used the average percentage error to measure the accuracy of the single step 

prediction. Random prediction was less accurate than moving averages and moving 

averages were only slightly less accurate than neural network predictions. The study also 

reviewed the average error rate for multiple steps, but Istin, et al. (2010) found that with 

each step beyond the first, the prediction’s error rate became amplified. For these reasons, 

Istin, et al. (2010) concluded that moving averages would provide reasonable predictions 

when used for a single-step prediction. This study used Naïve, SMA, and EMA 

prediction methods for a single step ahead.  

Framework for the Research.. 

Overview.. 

The research was broken into two components, with each having three steps. The 

first component used simulation to provide a proof of concept. The second component 

involved the expansion of time-series analysis from short-term to long-term resource 

utilization prediction using trace data; the same techniques previously used were 

extended for the coarser granularity of the samples. Once the process and methods are 

better understood, they can be used for real time testing for future research. Each 

component also followed the same three-step process to gather, predict, and evaluate the 

accuracy of the selected methods. 
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The Data Collection Process discusses the resources that were monitored, which 

metrics were collected, and how the collection worked under the simulation and live 

servers. The Data Collection: Simulation Based section provides the justification for the 

use of the selected simulation and the validity of that portion of the study. The Data 

Collection: Trace Based section describes the purpose and use of live web services for 

this research. Data Analysis, a description of how the metrics were prepared for use in the 

prediction, also discusses how the accuracy of these predictions was measured. The final 

section, Resource Predictability, presents how the analysis of several different time 

frames was used to identify patterns of resource utilization for extended periods of time. 

Data Collection: Process.. 

The first step for both components involved the collection of resource utilization 

while the systems are under load. The logs collected data for resource utilization of CPU 

Utilization, network I/O, disk I/O time, and free memory (see Figure 1). The resource 

utilization levels were gathered using the Windows Log Manager program (Logman) to 

collect the data for the study. Data was collected over an eight week period for the 

simulator and over six months for the live systems. 

The Logman program is a command line utility that creates a counter to collect 

performance metrics from the resources available on the Windows OS. Performance 

monitor (Perfmon.exe) is the equivalent graphical interface that can be used to collect 

real-time data. By default, the output from Logman is in a format that can be reviewed by 

Perfmon, but Logman was configured to record the data as a comma separated version 

(CSV) file. The CSV file was used as input to create and evaluate the predictions for both 

the simulation and real-world servers. 
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Figure 1: Server Resource Logging.. 

The specific names of the Windows resources used in the experiment were: 

“\Processor(_Total)\% Processor Time” to represent the CPU utilization of the system; 

“\Network Interface(*)\Bytes Received/sec” and “\Network Interface(*)\Bytes Sent/sec” 

to represent the network I/O; “\LogicalDisk(_Total)\% Disk Read Time” and 

“\LogicalDisk(_Total)\% Disk Write Time” to represent the system disk I/O time; and 

finally, “\Memory\Available KBytes” to represent the free memory. These system 

counters make up the six metrics that were collected for the study. The Logman 

command was configured to record each of these metrics every ten seconds. The data was 

then stored in a raw text format using the command in Figure 2. 

 
Figure 2: Logman Command.. 

The Logman configuration created a counter object called yoas_log and used the 

csv output (-f). The file containing the raw data was named “yoas_log” and appended a 

date time stamp to guarantee uniqueness (-v) during the collection process. Each file 

holds the data collected every ten seconds (-si) over a twenty-four hour period (-cnf) from 
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the resources previously mentioned (-c). This configuration generated output similar to 

the content in Figure 3. 

Data was collected at the ten-second increments and then aggregated into longer 

time periods as appropriate for the time frame being evaluated. Predictions based on an 

hourly cycle used an aggregated mean for each minute, while daily and weekly cycles 

aggregated the data into fifteen- and sixty-minute increments respectively. The trace-

based data was collected over eight weeks for the simulation and six months for the real-

time data. Once the startup process for each of the moving averages was fulfilled, the 

single step prediction was compared to the actual aggregate in that time slot. 

 
Figure 3: Logman Output.. 

For the simulation portion of the research, a single Windows IIS web server was 

used along with twenty-two clients on a closed network. The web server was set up using 

Windows 64-bit 2008 R2 Server operating system, loaded onto a Gateway E4300 (Intel 

Pentium 4 dual processor running at 3.4 GHz). The server was also equipped with a 

Marvell Yukon Gigabit Ethernet interface and a Western Digital 1600JD ATA hard 

drive. Both DNS and DHCP services were provided by the server for the client machines 

attached to a closed network for this experiment. The server and clients were connected 
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to a Cisco Catalyst 2950 48-port switch so they could access web content provided by IIS 

7.0 web services. 

Each client machine was a Dell Precision T3500 with 64 bit openSUSE 11.2 

installed on a portable Toshiba HDDR500E04X USB hard drive. The clients were Intel 

Xeon 8-core CPU running at 2.8 GHz, a Broadcom NetXtreme gigabit Ethernet card, and 

eight gigabytes of RAM. The installation of openSUSE used the text-based interface to 

maximize the amount of RAM available to the simulator being used for the experiment. 

The twenty-two machines running SURGE were able to generate a sufficient 

traffic flow to generate a fixed pattern each hour (see Figure 4). Patterns are expected to 

arise in hourly, daily, and even longer sessional use of computing equipment 

(Krithikaivasan et al., 2007). To emulate these patterns, the scripts fired SURGE client-

request sequence every fifteen minutes. The first request starts eight processes with 75 

threads each at the top of the hour, the second request starts six processes of 75 threads 

each at quarter after, the third request starts four processes of 75 threads each at half past, 

and the final request starts two processes of 75 threads each at quarter of the next hour. 

The batch file was then set to loop for the duration of the experiment. SURGE generates 

random requests for files stored on the server, followed by a pause representative of the 

delay between requests (P. R. Barford, 2001, p. 20). 

 
Figure 4: Client Configuration.. 
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In addition to the simulation network, data was collected from a pair of clustered 

web servers used by the Pennsylvania College of Technology (PCT). These servers 

provide information to the public, as well as to students and employees of the college. 

The resource utilization of the web servers used the same Logman configuration as the 

simulator, collecting resource utilization levels every ten seconds. The information was 

collected over a six month period prior to evaluation. 

The logs of the simulation and live web systems were stored on the servers during 

the process of sampling (see Figure 3 for details of the data format). Logman was 

configured to start a new log file every twenty-four hours which was then processed for 

use in the study. The headers were stripped from all of the log files. The files were then 

combined into a single file and a single header was placed at the beginning of the data. 

SAS was then used to aggregate the ten-second data points into minute, fifteen-minute, 

and hour data points for the hourly, daily, and weekly forecasts respectively. 

Data Collection: Simulation Based.. 

Research frequently uses simulation as a way of providing evidence that a new 

method of evaluation is valid. Simulation provides a test bed for the method that is 

similar to a real world environment but allows the researcher to control variables that 

could otherwise obfuscate the results. The simulation also demonstrates the validity of 

the evaluation method selected for the study. This research followed this proven path of 

using a simulated environment in its first step. SURGE is a simulator based on user web 

demands that emulates user activity and pauses (P. Barford & Crovella, 1998) intended to 

exercise a web service. This research used SURGE to generate web traffic, while 

collecting the resource utilization of the CPU, memory, disk activity, and network 
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activity on the target server. The collected data was then evaluated for long-term 

predictability and the accuracy of the selected moving averages used for prediction. 

Barford (2001, pp. 18-19) developed the SURGE simulator to exhibit self-similar 

properties using analytically-based Web reference streams to accurately represent real 

world utilization and server behavior. Barford (2001) substantiated the accuracy of 

SURGE by comparing the results against SPECweb96, which was based on trace results, 

while SURGE is based on analytical workloads. SURGE was designed to emulate the 

behavior of user requests for web services and is configurable so that it can be 

manipulated for a variety of research purposes (P. Barford & Crovella, 1998). 

Barford and Crovella (1998) created an analytic workload generator called 

SURGE that permits researchers to explore a variety of web service resource loads. 

SURGE was developed as an alternative to existing simulations that were intended to 

stress the resources of the target web server instead of emulating typical loads. The 

research to develop SURGE compared similar levels of web traffic with SPECweb96. It 

was determined that SURGE provided a higher level of self-similar traffic, exercised the 

services at a higher level, and more accurately emulated a fixed population of users than 

did SPECweb96 (P. R. Barford, 2001, pp. 18-19).  

SURGE provides a mechanism to simulate real world traffic in a controlled 

environment. Using SURGE for this experiment provided the opportunity to examine 

resource utilization under load without having to deal with the flash traffic that can 

overload a live system. The SURGE-generated web requests created a clean pattern of 

resource loading at predictable levels and developed patterns for evaluation to determine 
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the effectiveness of the long-term prediction methods. The results of the simulated traffic 

are detailed in Chapter 4. 

This research extended existing short-term methods of predicting resource 

utilization for web services through simulation. Others (Andreolini & Casolari, 2006) 

have used simulation to mimic the variability seen in resources to determine the 

requirements for prediction of resource utilization to be effective. The use of simulation 

remains a viable method of testing research solutions in a controlled environment that 

appropriately simulates the real world characteristics of a system (P. Barford & Crovella, 

1998). The Rice University Bidding System (RUBiS) simulator was used by Sharifian, et 

al. (2010) to test their ALB scheduling algorithm. After they (Sharifian et al., 2010) were 

able to show how the algorithm worked, they compared the effectiveness of scheduling to 

TPC-W ("TPC-W transactional Web e-commerce benchmark (Retired 04/28/2005)," 

2004). 

Simulation was selected as part of this research, since most prediction research 

has focused on prediction times under 15 minutes (Andreolini et al., 2008; P. Barford & 

Crovella, 1998) and the use of simulation or benchmarks is a common practice for 

providing proof of concept (Traeger et al., 2008). Live environments can introduce 

anomalous information that is not easily understood at the time of research, and therefore 

that anomaly must be adjusted (Hoffmann et al., 2006) or thrown out, for the research 

objective to be valid. SURGE provides the ability to manage the user-equivalent traffic so 

that usage patterns can be built into the request process. The pattern of usage built from 

SURGE for this experiment exercised the web service at a variety of levels and resource 

patterns over fixed periods of time. The resource patterns are not expected to emulate 
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larger demand patterns, such as monthly, yearly, or seasonally, but should provide the 

foundation necessary to show that user equivalent requests will generate predictable long-

term patterns in resource utilization. 

Data Collection: Trace Based.. 

While simulation was used to present a clean known environment, there are times 

when the ability of a simulation to mimic real-world characteristics fails (Hoffmann et 

al., 2006). When a simulation has been previously used, or if a simulation is not available 

for the specific characteristics the researcher is interested in, traces from live resources 

provide a foundation for the effort. One difficulty with using trace data lies in 

determining that previously-collected data contains all information required by the study. 

When data is missing, researchers must turn to collecting their own data. 

Chapman, et al. (2007) were able to use data collected from the Condor cluster, 

which had 940 nodes and 1100 students, and recorded data over several weeks. The data 

was used to determine job length to help improve job scheduling within the cluster. 

Researchers have also successfully used trace data from the 1998 World Cup web site 

(Arlitt & Jin, 1999) to identify how well a system could handle increasing levels of traffic 

(Schroeder & Harchol-Balter, 2006) without suffering a loss of service. In each case, 

existing trace data contained the information necessary to complete the study, advancing 

the process of short-term prediction. 

Bandwidth provisioning offered a good opportunity for using trace-based data. 

While various datasets are available for network traffic, Krithikaivasan, et al. (2007) was 

interested in using the daily activity of the network traffic at the routers within the 

network.  Krithikaivasan, et al. (2007) used their local network to gather that trace data, 
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since they could establish logging of specific activity on their routers. Live data was also 

collected by Hoffmann, et al. (2006), since their study involved reviewing a large number 

of resources that previous studies had not yet considered for collection. Additionally, 

Hoffmann, et al. (2006) didn’t have access to previous data-traces that could be applied 

equally for evaluation of their predictions. In each of these cases, existing trace data 

didn’t exist or didn’t provide the correct information to complete the study, so the 

researchers established logs to collect data for later evaluation. The prediction methods 

demonstrated in the simulated environment were then used with the trace data. 

Data analysis.. 

The second part of the research aggregated the ten-second data point (DP) 

readings from each of the resources, CPU, network I/O, disk I/O time, and free memory 

(see Figure 3), into an appropriate aggregate A value used by the moving average 

functions (see Equation 1). In Equation 1, n is the number of data points used for the 

aggregated mean and t represents the specific samples at a given time. Resource data was 

collected at ten-second intervals and a given sample will be denoted as DPt. The previous 

data point is identified as DPt-1 while the next data point is DPt+1. 

 
Equation 1: Aggregate Function.. 

The analysis of the aggregated data for each of the selected cycles was fed into 

three functions which created the predictions from the collected data. The first function 

was a Naïve prediction. Naïve forecasting uses the last recorded value to predict the next 

value (Equation 2). This method is considered an equivalent to guessing future value. 
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Naïve prediction is used as a baseline to compare the other forecasting functions. When a 

function is statistically worse than Naïve forecasting, it is considered to be inappropriate 

for forecasting. Conversely, if a function performs better than Naïve prediction it is 

considered better than guessing the next prediction value.  

 
Equation 2: Naïve Forecasting.. 

The second function used in the study was SMA (see Equation 3). This method 

uses n samples over a period of time and adds them together, then divides the result by 

the number of samples to determine predicted average of the next step in time. This study 

used 13 steps for n. The drawback to using SMA is that it provides a trailing result that 

may be slow to catch up to the current value unless those values have been level for a 

while. One major advantage to this analysis method is that flash changes, very high or 

low values, are muted and will not create violent shifts in the prediction.  

 
Equation 3: Simple Moving Average.. 

The EMA is the most complex method of evaluating utilization levels that will be 

used in this study (see Equation 4). α is the weight used to split the prediction between 

the last reading and all of the previous readings. When α approaches 1, the EMA 

prediction mimics the most recent sample but is tempered by previous samples. When α 

approaches 0, the most recent sample tempers the prediction of all previous values. As a 

result, EMA can follow recent trends more quickly than a SMA prediction. The EMA 
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process also requires initialization, which uses a prediction value based on a SMA using a 

small number of samples. The study used 13 samples to initialize the prediction process. 

 
Equation 4: Exponential Moving Average.. 

To find the prediction for the next reading, the current reading is multiplied by α 

while the last EMA value is multiplied by (1-α), and the two results are then added 

together. The result is then used as the last EMA value in the next iteration of the process. 

While more complex statistical time-series analysis methods have been used in other 

research studies, those methods provided only marginal improvement over the methods 

chosen for this study. Additionally, the simpler methods supplied the results more quickly 

than did more complex time-series equations (Al-Ghamdi et al., 2010; Andreolini & 

Casolari, 2006). 

The effectiveness of the weight used for EMA determines the accuracy of a 

prediction, and a variety of formulas are used in statistics to evaluate that prediction error. 

To increase the accuracy of a weighted prediction, the system that is being measured 

should be tested using various weight combinations. A training process is used with a 

variety of weight settings, comparing the prediction to the actual value determining the 

error of the prediction. That error set is then evaluated to determine which weight yields 

the most accurate prediction of the future values (Makridakis, Wheelwright, & Hyndman, 

1997, pp. 17-35) based on the lowest results from the error formula.  

A variety of error calculations exist to help determine the accuracy of a 

prediction. Most of these calculations generate a value that can only be compared to other 

values calculated with the same formula. The other issue with many of the error values is 
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created since the scale of the error is very difficult to understand. This study used the 

Mean Average Percentage Error (MAPE) (Equation 5), including the determination of the 

most effective weight for EMA. MAPE was selected because it provides the error value 

as a percent of the true value compared to the prediction. This error rate is then averaged, 

since it is being expressed over multiple values in the forecasting process. MAPE was 

found to provide a more accurate evaluation of the effectiveness of the SMA and EMA 

predictions (Al-Ghamdi et al., 2010) over other error calculations. 

 
Equation 5: Mean Average Percentage Error.. 

Another purpose of this study is to identify the accuracy of a prediction. To do 

this, the confidence interval will be calculated for each prediction using a moving 

standard deviation. The standard deviation will then be multiplied by the confidence level 

and added to the prediction to create the upper band, and subtracted from the prediction 

to create the lower band (see Equation 6). The use of upper and lower ranges of possible 

prediction values has been done by Krithikaivasan, et al. (2007) to visually identify 

excessive prediction errors and to review the accuracy of their predictions. For their study 

(Krithikaivasan et al., 2007), a confidence level of 90% was used to set the two binding 

curves; it was found that the results remained inside those curves most of the time. 

 
Equation 6: Confidence Interval.. 

This study used the forecasted values, actual utilization level, and the upper and 

lower confidence intervals to evaluate the accuracy of the prediction. The confidence 
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interval provides a basic mechanism of anomaly detection (Chandola, Banerjee, & 

Kumar, 2009). A confidence interval of 80% was selected to provide the range of normal 

prediction. While a higher level of 95.45% or 99.73% could have been selected for the 

standard deviation to generate the confidence interval, these higher values capture most 

of the possible samples. However, this experiment has focused on the predictability of a 

resource utilization level and the appropriate confidence interval to determine when a 

machine is no longer acting normally is left for future work. 

Resource predictability.. 

There are known patterns contained within network utilization over a 24-hour 

period (Krithikaivasan et al., 2007); their research indicates that those patterns may also 

exist at the hourly level. Krithikaivasan, et al. (2007) sampled data over ten days but 

eliminated the weekends from the collection process due to expectations of lower than 

normal network utilization. The evaluation points of this study were based on these 

assumptions (Krithikaivasan et al., 2007). Each time frame was sliced based on the 

seasonality and compared to the comparable cycle over the length of the data. For 

example, the hourly evaluation looked at each of the minutes, while the daily evaluation 

looked at each corresponding 15-minute block, and the weekly evaluation looked at each 

hour. 

The simulation ran for six weeks and the data needed to evaluate the hourly and 

daily seasonality was extracted from the data set. The trace data from the live system was 

collected over a six month period and had data extracted to evaluate the hourly, daily, and 

weekly seasonal patterns. Each data set was sorted to align the data seasonally to prepare 

it for generating the forecast values. For each of the time frames, next step predictions 
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were generated for CPU usage, free memory, disk input time, disk output time, network 

input, and network output over a range of time.  

Finally, a variety of graphs and charts were created to evaluate the effectiveness 

of Naïve, MA, and EMA forecasting. Results were graphed to show the prediction, actual 

reading, and the 80% confidence interval above and below the prediction. Box and 

whisker charts for the resource, MAPE, and predictions were created to show the pattern 

of resource utilization and error rates of each cycle over an hour, day, or week. 

Distribution analysis was used to identify the distribution percentages of the resource and 

MAPE values, and linear regression analysis graphs were produced for each resource 

cycle to show any trend and the 80% confidence interval for that trend. 

The hourly prediction time frame has sixty predictions over an hour – one for 

each minute. To create the predictions, the study aggregated the ten-second readings from 

each selected minute into a single value (see Figure 5). These values were then used as 

input to the Naïve, SMA, and EMA forecasting algorithms. In addition to the forecast, the 

confidence intervals and MAPE for each step were also calculated. The process was 

repeated for the second minute, third minute, and so on until all sixty minutes within the 

hour have predictions over the selected week. 

 
Figure 5: Hourly Aggregation for Prediction.. 

The daily prediction time frame generated ninety-six predictions per day: one for 

every fifteen minutes. To create the prediction, the study aggregated ninety ten-second 

aggregations into fifteen-minute blocks from the hourly process. These aggregates were 
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evaluated over twenty-eight days using the Naïve, SMA, and EMA equations (see Figure 

6). The twenty-eight values over a four-week period were used to generate a prediction, 

the upper and lower values for the confidence interval, and the MAPE for each of the 

fifteen-minute increments per day. Daily analysis was conducted for the simulated data 

and the trace data pulled from the web servers. 

 
Figure 6: Daily Aggregation for Prediction.. 

The weekly prediction time frame used three-hundred and sixty data points 

aggregated into an hourly mean which was used to evaluate the weekly cycles (see Figure 

7). The hourly usage levels were evaluated based on each hour during the week for 

twenty weeks. The twenty-four data points for each hour were used with the three 

calculations (Naïve, SMA, and EMA) to show that the moving averages are more 

accurate than the Naïve forecasting method. This evaluation was completed using only 

the trace data from the live web servers, since at least five months of data collection was 

required for the evaluation to be completed. 

 
Figure 7: Weekly Aggregation for Prediction.. 

Resource Accuracy and Confidence.. 

This research was conducted to show that resource utilization has a degree of 

predictability in a long-term time frame of hours, days, and weeks. This was 
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accomplished by comparing the prediction accuracy of Naïve forecasting to the SMA and 

EMA methods of forecasting. The accuracy was measured using MAPE, which expresses 

accuracy as a percentage of difference between the prediction value and the actual 

resource utilization level. The MAPE value from the Naïve prediction was compared to 

the MAPE values for the SMA and EMA forecasts for the minute, hour, and day 

prediction series. The primary experiment sliced the resource utilization levels and 

compared the MAPE for Naïve, SMA, and EMA. The MAPE values for each forecast 

were also compared when the predictions were evaluated sequentially through time. 

This research also addressed the issue of confidence in the prediction. The use of 

a confidence interval is derived from the previous resource utilization levels and based on 

a standard deviation of 1.282. This represents an estimate that 80% of all readings will 

fall between the mean ±1.282 standard deviations. Within a time series, the mean and the 

upper and lower values are recalculated at each step. This information was then graphed 

along with the actual reading from the resource to provide a visual representation of the 

prediction confidence. The use of the 80% confidence interval was also reflected in the 

linear regression analysis. 

Summary.. 

Simulation is often used to extend research into new areas and helps to determine 

if the research methods are valid for the new use. This research used a closed network 

and simulation software to determine the effectiveness of moving average forecasting 

over Naïve forecasting. Short-term resource prediction methodologies were extended for 

use on long-term resource predictions. A variety of simulators have been used for short-

term prediction, but most focused on stressing the resources in the web server instead of 
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simulating common use. SURGE was developed specifically to emulate web traffic by 

simulating a number of clients that establish contact with a web server and the patterns of 

request and wait seen on other systems (P. R. Barford, 2001). Since SURGE was 

specifically designed to emulate common web request patterns, it was chosen for the 

simulation part of this experiment. 

Researchers also use trace data to provide an environment where an experiment 

can be repeated and retested. The trace data also provides information where part of the 

data may be used for testing the experiment; the results can then be compared to the 

remaining data. For this study, the trace data from two clustered web servers was used as 

input to compare moving average forecasting to Naïve forecasting from a live 

environment. 

In both cases, simulation and real world trace data, the validity of the predictions 

was determined through the evaluation of the error between the prediction and the actual 

resource utilization. This error measurement allowed for the selection of appropriate 

weight for the EMA and the comparison of the various forecasting methods used in this 

experiment. The results of the forecasts were graphed along with the actual utilization 

levels to provide a visual reference of the accuracy of the prediction. 

The study also graphically mapped the confidence interval using linear regression 

for each step of prediction. The 80% confidence intervals provide two bands above and 

below the prediction to indicate where 80% of the previous utilization levels fell. Along 

with the actual utilization level, the graph is able to quickly determine when a resource is 

no longer behaving normally based on its past behavior. 
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Chapter 4 

Results.. 

Introduction.. 

Resource prediction has been used to improve scheduling for operating systems 

(Dinda, 2002), distributed systems (Dinda, 2006), network traffic control (Abusina et al., 

2005; Krithikaivasan et al., 2007), and web services (Harchol-Balter et al., 2003). In each 

case, short-term prediction techniques were used to improve computing service. This 

research used the short-term techniques previously studied to determine the effectiveness 

of long-term forecasting for resource utilization forecasting on web services. 

This study used two sets of trace data to examine the predictability of six resource 

utilization levels. The first set of trace data was generated using the SURGE simulator (P. 

R. Barford, 2001) and collected on a Windows 2008 web server. The second set of trace 

data was collected from a pair of live clustered web servers located at the Pennsylvania 

College of Technology (Penn College). Each data set was used to create and evaluate 

predictions using Naïve, SMA, and EMA forecasting. The forecasting for both data sets 

examined predictions based on minute-by-minute blocks over an hour, and fifteen-minute 

blocks over a day. One final forecast set was derived from the live data, looking at an 

hour-by-hour block over a week. The results of this study are contained in the following 

sections of this chapter. 

The report will be broken into two additional sections: Simulation Results and 

Live System Results; each section will then be broken into subsections. The Simulation 

Results will provide information about the minute-by-minute predictions in the Each 
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Minute over an Hour subsection and fifteen-minute predictions in the Each Quarter-

Hour over a Day subsection. The Live System Results will be discussed in three 

subsections: Each Minute over an Hour, Every Quarter-Hour over a Day, and hourly 

predictions in the Each Hour over a Week. 

Simulation Results.. 

Twenty-two machines were set to run the SURGE client using four fifteen-minute 

sessions of seventy-five threads at decreasing process levels. Each hour, the system 

would reset to the highest level and repeat the sequence. The threads used HTTP 2.1 GET 

requests to pull files from the web server. The web server also provided DNS and DHCP 

services during the experiment and all of the equipment ran on a closed network. Logman 

was used to collect the data from six server resources: CPU, free memory, sent and 

received bytes through the network card, and disk read/write times. Each metric was 

sampled every ten seconds and logged for later analysis. 

One side effect of the simulator was that it generated enough traffic against the 

Web Server that IIS began to record additional logging information, when the request 

queue periodically became full. This extra logging managed to fill the 150MB hard drive 

of the server midway through the testing period, resulting in a shutdown of Logman. 

Once the extra IIS log data was removed from the drive, the process returned to normal. 

This gap in data affected only the daily analysis, since the hourly analysis could be 

contained within the data collected at the start of the experiment. The missing data did 

not create any known issues for the daily analysis, since the analysis focused on fifteen-

minute time slices and the simulator was generating the same level of page requests over 

a one-hour period. 
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The minute over an hour analysis aggregated and averaged six log entries for each 

metric into a single value, while the quarter-hour over a day aggregated and averaged 

ninety log entries. By using a predictable set of requests on a closed network, a known 

repeated level of demands could be placed on the web server, resulting in repeated 

patterns over each hour and day that were then analyzed for predictability. The results of 

the analysis for the simulation follow. 

Each Minute over an Hour.. 

Data from the logs generated by Logman between May 24, 2012 and May 31, 

2012, were aggregated into one-minute data points, and then used to generate Naïve, 

SMA, and EMA forecasts. MAPE was used to determine how much error existed 

between the prediction and the actual resource level. The utilization rates generated by 

the CPU were relatively small, frequently falling below 35% under the heaviest simulator 

load and below 15% at the lowest simulator load level. 

Within the four levels of simulation load, the aggregate exhibited a tight range 

around the forecast. The heaviest level of demand remained within a 5% range of the 

mean at an 80% confidence interval. At the second level the range was within 4%, while 

the third level of the simulation found the confidence interval pulled within 3%. At the 

lowest level, the interval remained under 1%.  

A sample of the third level CPU utilization can be seen in Minute 34 (Figure 8). 

This minute was found to have an MAPE rate from 2.5% for the SMA and 3.2% for the 

Naïve MAPE. It also exists as a sample that closely represents an error rate at one 

standard deviation below the mean MAPE for all three forecasting methods (See Table 

1). Table 1 also shows that both the average error rate and the deviation of the error rate 
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were smaller for the SMA and EMA methods over the Naïve forecasting method. The 

blanks found in Table 1 exist because the value at one STD below the mean was less than 

the minimum MAPE for that resource. 

 
Figure 8: SMA for Hourly Cycle 34 of the CPU.. 

The results for available memory and network traffic also show a fairly tight 

range of prediction values with a small standard deviation and low MAPE. This tight 

pattern can be seen in a box with whiskers chart (Figure 9) of the resulting quartiles for 

each minute within an hour. Figure 9 shows a memory utilization pattern of rising steps, 

since the heaviest load at the beginning of the hour requires the most memory for IIS to 

manage the page requests and the least amount of free memory at the end of the hour 

when the number of page requests is the smallest. 

The box plot (Figure 9) also shows that a higher demand on the server generates a 

larger range of values and results in larger first and fourth quartiles. As demand shrinks, 

so does the variability of demand on memory. The largest range of values occurs during 

Minute 18, when free memory ranged from around 1.1 million to around 1.3 million 

bytes. With two gigabytes of RAM and a range of 0.2 million, this represents a shift in 
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utilization of around 2% between the low and high values during that minute from hour-

to-hour over the life of the sample. Table 1 shows that the network traffic also has a 

tightly clustered utilization range and a relatively small error rate. 

 
Figure 9: Box plot of Simulation Memory Utilization for each Minute.. 

The resource readings from the disk percent utilization time exhibited a different 

set of characteristics than the other four data sets. Both disk read and write times 

appeared to be very heavily skewed. As a result, the error rates remained below 50% 

through the first standard deviation above the mean and then soared above 500% for the 

last few minutes with the highest error rates (Figure 10, Table 1). 

 
Figure 10: MAPE Error Rate for EMA Hourly Disk Write Times.. 

The disk read and writes appeared to exhibit this large error rate because of the 

low amount of time required to complete normal tasks. Then, periodically, even under the 

simulation, the disk reads and writes became overwhelmed with an exceptional event that 

was much greater than the average, which created the heavily skewed results. These 
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outliers were also seen on the live server and deserve additional consideration in the 

future, since the methods used for this study did not show a high rate of predictability. 

 
Table 1: Simulation System Distribution of Each Minute Within an Hour.. 
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Every Quarter-Hour over a Day.. 

The patterns exhibited in the fifteen-minute aggregates were also found to have a 

predictable pattern in most cases. This part of the research aggregated ninety of the ten-

second raw data measurements into ninety-six seasonal data points. The distribution 

analysis exhibited by the received network transmissions (see Figure 11) was similar to 

other distributions in the research. Many of the distributions in both the minute and 

fifteen-minute blocks for the simulation frequently clustered 80% of the resource 

utilization level results into well-defined ranges. Figure 11 indicates that the number of 

bytes received over the network, in the first fifteen-minute cycle of a twenty-four hour 

period, was consistently between 960,000 and 1,117,000. Figure 11’s distribution 

analysis also indicates that 90% of the aggregates over the twenty-eight days occurred 

within that range. Because the first cycle in the season has such a high percentage of hits 

within the defined range, it also exhibits the smallest MAPE rate (0.07%) (see Table 2) of 

this part of the study. 

 
Figure 11: Distribution for Daily Cycle 0 of Received Bytes.. 
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The simulation data in the fifteen-minute cycles had only one set of error rates 

over 33%, which came from the declining disk write times over the analysis period and 

early spikes from the server OS. Disk write times ranged between 40 seconds and 58,090 

seconds over the life of the experiment. Even with that high value, Cycle 64 (Figure 12) 

remains bounded within the assigned confidence interval. 

 
Figure 12: Disk Writes that Exhibit a Large Error Rate.. 

The stair-step generated by the SURGE simulator started with the highest level of 

requests during the first fifteen minutes of the hour and stepped down to the lowest level 

in the last fifteen minutes of the hour, repeated for the term of the experiment. The box 

plot of the CPU utilization over the day shows the pattern (see Figure 13) generated by 

the simulator against the web services. In this case, the first set consistently pulled 

between 22 and 30 percent of the CPU while the last set settled between 14 and 16 

percent. 

These tight patterns are the norm throughout the study, but exceptions do exist. In 

Figure 14, the number of bytes sent from IIS in response to the simulator requests was 

confined to specific ranges for each fifteen minute cycle over the day, but the graph also 
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shows that there were outliers appearing down through 16 million. These outliers are 

likely to always exist, leaving an open question: do they occur at predictable intervals? 

 
Figure 13: CPU Box Plot for Cycles over a Day.. 

 
Figure 14: Net Send for Each Fifteen Minutes.. 

The fifteen-minute cycles, like the one-minute cycles, show a level of 

predictability when a known input from a simulator makes web requests. The fifteen-

minute forecasting shows similar or improved accuracy for SMA and EMA over Naïve 

prediction for CPU and network traffic utilization. Free memory and disk utilization were 

less accurate than the Naïve prediction for a daily seasonality.  
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Table 2: Simulation System Distribution of Each Fifteen-Minutes Within a Day.. 
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Live System Results.. 

Two clustered public web servers had the Logman utility configured and started 

in late January 2012; they logged the six resources of interest every ten seconds through 

the end of July. During that time, each server accumulated over 1.7 million log entries for 

analysis in this research. The live trace data from the first cluster machine was analyzed 

for each of the live data prediction series. From that dataset, the hourly analysis used data 

collected between February 26th and March 5th; the daily analysis used data collected 

between May 16th and July 15th; and the weekly analysis used the entire data set from the 

first cluster server which ranged from January 20th until July 26th, 2012. 

Six metrics were chosen for evaluation in this study and the numbers were run for 

each, but the numbers for the MAPE of the disk read metric ranged from a minimum of 

70.9% error to a mean error of 2403.3% and a maximum error of 140,946.5%. These 

values required further investigation due to the extremely large range. A review of the 

raw data found that many of the ten-second samples for disk read times were zero on the 

live web server. The disk read times of zero were then aggregated into very low values or 

zero, which exaggerated the error rate for this forecast. Further investigation into the time 

frame where the large forecasting errors occurred found that the web server was 

processing scheduled system backups. For the purposes of this study, the disk read times 

for the live system have been excluded from these results and an analysis of disk read 

times will be left for future consideration. 

Each Minute over an Hour.. 

Log entries from the live trace data were aggregated into one minute units before 

being used for forecasting. A single week of data was used, since that number of data 
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points permitted a good view of the prediction, the actual reading, and the two bands that 

define the confidence interval of the prediction (see Figure 15). The mean MAPE for the 

EMA prediction set over the hour was 132.36%, which happened in the 26th cycle. While 

the error seems to be large, it should be noted that the CPU had a mean utilization of 

2.38% and a median utilization of 1.29% with a standard deviation of 5.27%, yielding an 

80% confidence interval between 0% and 9.14%. 

 
Figure 15: CPU Utilization for Cycle Twenty-Six for the Hourly Forecast.. 

The large MAPE is seen throughout the live analysis due to the low CPU 

utilization levels, and the linear regression for Cycle 26 shows the early spike outside of 

the confidence interval along with six other data points (see Figure 16). Linear regression 

is normally used to show trend and correlation between two variables. This study is more 

interested in identifying the line that is the product of the least-squared error rate and the 

80% confidence bands. The linear regression provides another example of the resource 

being frequently bound within a utilization range. The tight clustering of CPU can also be 

seen in the box and whisker graph (see Figure 17) of the hourly cycles. The height of the 

box and whisker graph accommodates the periodic outliers that occur within each minute, 

as can be easily seen in Figure 15 and Figure 16 at the beginning of each graph. 
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Figure 16: Linear Regression for CPU Utilization Cycle 26.. 

In contrast, free memory for the EMA evaluation had a MAPE of 0.56% which 

occurred during Minute 24 of the hour (see Figure 18). Both the mean and the median of 

free memory during cycle 24 was 14.4 million with a standard deviation of 127,000. The 

80% confidence interval for this cycle of free memory ranged between 14.24 and 14.56 

million. The memory box and whisker graph (Figure 19) shows stabilization just below 

14.4 million with outliers between 13.8 and 15 million. 

 
Figure 17: CPU Box with Whiskers for Each Minute over an Hour.. 

A range of results can be seen in Table 3, reflecting the MAPE results for the 

minimum, mean, maximum, and ±STD values. Below each MAPE value is the minute 
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that most closely represents that error rate, along with the metric’s mean and STD. Blank 

values in the table indicate that the ±STD falls either below the minimum or above the 

maximum error rate. The error rate for the CPU and disk writes had a slightly smaller 

STD for both the SMA and EMA forecasting methods over the Naïve prediction method. 

The memory resource found that all three prediction methods had the same STD, while 

both network traffic utilization levels had a slightly smaller STD using EMA and a 

slightly larger STD using SMA over the Naïve forecast. 

 
Figure 18: EMA prediction for Hourly Cycle 24 of Free Memory.. 

 
Figure 19: Memory Box with Whiskers for Each Minute over an Hour.. 
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Table 3: Live System Distribution of Each Minute Within an Hour.. 

Because of the large number of zero readings pulled from the disk read times, the 

STD was large enough to create a deviation curve that was heavily skewed to the right. 
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This resulted in a negative result for the -STD position, and since MAPE is measured as 

an absolute value and is always positive, it doesn’t make sense to have a negative value; 

therefore, the boxes were left blank. The results also indicated that it isn’t reasonable to 

use either the SMA or EMA prediction when most of the readings are zero. While the 

Naïve forecast had a 70% MAPE, the EMA forecast rose to 4897% and the SMA forecast 

was at 18,265% for one standard deviation. 

The minute by minute cycle shows some improvement in forecasting of EMA for 

the available memory and disk writes over Naïve forecasting and similar results for 

network sent and received bytes. When SMA is compared to the Naïve forecasting, it 

showed an improvement only for the disk write times, which was also had a smaller 

average MAPE than EMA. For all of the other metrics, the SMA was substantially higher 

than the Naïve forecasts. Due to the large number of zeros for the disk read, a different 

methodology of measurement will be needed to determine predictability. 

Every Quarter-Hour over a Day.. 

The daily analysis was done over twenty-eight days and divided each day into 

fifteen-minute cycles. The web server used for the evaluation saw level utilization during 

Cycle 49 (See Figure 20). This time period started each day at 12:15 p.m. and frequently 

generated less than 100,000 bytes of incoming traffic to the web server. Only three of the 

days had their average traffic above the upper confidence interval. One day saw a level of 

around 750,000 bytes of incoming traffic. The mean for this cycle was 74,482 bytes with 

a STD of 107,260. The distribution of this cycle shows that about 95% of the traffic 

averages below 180,000 bytes (see Figure 21). 
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Figure 20: Linear Regression for Daily Cycle 49 of Received Data.. 

 
Figure 21: Distribution for Daily Cycle 49 of Received Data.. 

While Cycle 49 occurs just after noon, Cycle 14 represents the time slot of 3:30 

a.m. and shows a very low pattern of incoming data (see Figure 22). Most of the traffic 

was generating an average traffic level of 27,446, with nearly 80% of all traffic below 

40,000 bytes. Like Cycle 49, this time frame saw only a few average samples outside the 

80% confidence level. Eight points could be examined as outliers, with two of those 

samples hovering around an average of 120,000 bytes received over the fifteen-minute 

period. 
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Figure 22: Linear Regression for Daily Cycle 14 of Received Data.. 

The daily forecasting showed that both the SMA and EMA had a lower average 

MAPE for every resource, excluding the disk read times, over the use of Naïve 

forecasting. In each case, the STD of SMA and EMA were also smaller than the Naïve 

forecasting for the CPU, free memory, network traffic, and disk write times. 

Additionally, both the minimum and maximum errors for the SMA and EMA forecasting 

are lower than the Naïve forecast method. Unlike the hourly predictions, which showed 

some improvement and favored the EMA forecasting method, the daily patterns were 

most accurately predicted by the SMA forecasting method. 

In some cases, there was a substantial improvement in the prediction accuracy. 

The SMA for the CPU had an error rate (62%) that was a 24% improvement over the 

Naïve error rate (77%). The network bytes sent MAPE was improved by 28%, reducing 

the MAPE for the Naïve forecast from 269% to 210% for the SMA MAPE. The disk 

write time MAPE also saw a 22% improvement from 28% for the Naïve MAPE to 23% 

for the SMA MAPE. The free memory and bytes sent error rates also saw an 

improvement over the Naïve forecasting error, but both were less than 5%. 
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Table 4: Live System Distribution of Each Fifteen-Minutes Within an Day.. 
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Each Hour over a Week.. 

The length of the simulation was just over four weeks, which didn’t provide 

enough data for a weekly analysis. Even with the live data, the amount of time needed to 

gather enough records to use the moving averages totaled six months. During that period, 

approximately 1,681,000 records were collected and aggregated into approximately 

28,000 data points for analysis. Each data point represented the average utilization of the 

resource over a one hour period. A total of 168 cycles per week was then used to predict 

future utilization levels. Naïve, SMA, and EMA forecasting were used to determine how 

well these predictions fit within the resulting confidence interval. 

The hourly cycles showed improved predictability for available memory and disk 

write time for both the SMA and EMA forecasting over the Naïve method. The MAPE 

for the EMA prediction of the CPU utilization also showed marginal improvement over 

the Naïve error rate, while the SMA error rate for the CPU prediction was 13% worse. 

SMA was also 39% less accurate for the network bytes sent and nearly 54% worse for the 

network bytes received. 

The mean error rate of the Naïve prediction for the network bytes received was 

96.29% during the 82nd hour of the week. The linear regression chart (see Figure 23) and 

Naïve forecast chart (see Figure 24) show the results of the prediction for the aggregated 

data. The Naïve hour that represented the mean occurred on Tuesdays at 10:00 a.m. and 

had an averaged 162,700 bytes sent with a STD of 128,400 (see Figure 25). The SMA 

had the mean MAPE during the 129th hour of the week. The linear regression chart for 

the SMA analysis (see Figure 26) and forecast chart (see Figure 27) also indicate a tight 
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pattern of aggregate data. The SMA hour occurred on a Thursday at 9:00 a.m. and had a 

lower average of 108,400 bytes sent with a STD of 99,100 (see Figure 28).  

 
Figure 23: Linear Regression for Weekly Cycle 82 of Received Data.. 

 
Figure 24: Naïve Forecast for Weekly Cycle 82 of Received Data.. 

 
Figure 25: Distribution for Weekly Cycle 82 of Received Data.. 
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Figure 26: Linear Regression for Weekly Cycle 129 of Received Data.. 

 
Figure 27: SMA Forecast for Weekly Cycle 129 of Received Data.. 

 
Figure 28: Distribution for Weekly Cycle 129 of Received Data.. 

The error rate for the SMA was larger than the Naïve forecast for network bytes 

sent. However, SMA has a well-defined range of values with nearly 85% of the 
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aggregates falling between 4,000 and 16,000. In both cases the aggregates show a strong 

trend of declining traffic which is most notable in the middle of May: a drop most likely 

caused by the departure of the student body from the school, although it exists in a 

seasonal pattern of yearly events which is too large for this study to analyze. 

The box and whisker analysis of bytes sent from the live server for a weekly 

season is represented in Figure 29. The graph shows seven rises in outgoing traffic and 

consistent valleys between each peak. The highest utilization occurs each day from 

around 8:00 a.m. until about 11:00 p.m., peaking around 3:00 p.m. each day. The valley 

appears to be at its lowest values around 4:00 a.m. This cycle appears to repeat itself for 

each day over the week. 

 
Figure 29: Network Bytes Sent for Weekly Analysis.. 

Summary.. 

Both the SMA and EMA forecasting were found to be better predictors of 

resource utilization than Naïve forecasting for certain time periods. The best forecasting 

results were seen for live daily prediction of resource utilization. The worst results were 

seen from attempts to analyze the disk read times, most likely due to the large number of 

times during which that resource had no activity during the initial logging phase. Finally, 
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mixed results were seen from the live system when using the hourly or weekly 

forecasting. 

 
Table 5: Live System Distribution of Each Hour Within a Week..  
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary.. 

Conclusions.. 

Basic moving average forecasting is a viable method of prediction of web service 

resources including CPU, free memory, network bytes sent and received, and disk write 

times. In some cases, test results for moving averages were as good as those for Naïve 

forecasting. Only a few tests – disk write time for the simulator daily forecasting and 

network bytes sent/received for the live weekly forecast – found both moving average 

forecasts to be worse than Naïve forecasting by more than 10%. 

Linear regression, box and whisker, and line graphs provide visual indicators that 

each of the analyzed resources has a small range of seasonal data and falls within an 80% 

confidence level. Each seasonal test (hourly, daily, and weekly) had some success at 

predicting the resource utilization patterns. The most successful set of predictions was the 

daily analysis, which showed that both the SMA and EMA were better predictors than 

Naïve forecasting on the live web server. Even when SMA or EMA performed similarly 

to the Naïve forecast, linear regression showed that the resource range can be considered 

small with an 80% confidence interval when the range is compared to the full range of all 

data collected for that resource. 

For example, the CPU utilization on the live web server averaged around 3% with 

a 80% confidence interval of ±3%, effectively providing a range of 0% to 6% for CPU 

utilization. The live system had free memory averaging around 14,400,000 with an 80% 



  86 

 

confidence interval of ±325,000. Because free memory is very stable and the values are 

large, the MAPE was frequently below 1%. 

The network traffic statistics showed that received bytes were around 140,000 and 

±400,000 for the 80% confidence interval, and sent bytes around 60,000 with the 80% 

confidence interval of ±150,000. This provides an average range of 0 to 540,000 for 

network bytes received and 0 to 210,000 for network bytes sent. The Internet connection 

for the live web servers has a bandwidth of 32,768,000 bytes from a 250Mb Internet 

connection. The web server received bytes range represents about 1.6% of the maximum 

allowable traffic, while the bytes sent represents about 0.6% of the maximum allowable 

traffic. 

In each case, the range of the resource utilization created by the 80% confidence 

interval is small compared to the maximum possible range. The CPU exhibited a 6% 

range; the free memory range represented less than 0.1% of the total available memory; 

the network bytes received range represented about 4.1% of the total available 

bandwidth; and the network bytes sent range was about 1.6% of the available bandwidth. 

Each resource examined in this research found the range of utilization was relatively 

small compared to the total availability of that resource. 

Businesses rely on the availability of their Web servers (Al-Ghamdi et al., 2010; 

Hoffmann et al., 2006), and administrators use baselines and logging to understand the 

normal state of their systems. This research provides a foundation to begin to understand 

that administrators can monitor critical web server resources and create a variety of 

seasonal baselines, using moving averages to identify the common behavior of those 
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resources over hours, days, and weeks. This information may then be used to show when 

a chosen resource moves outside that baseline and begins to behave abnormally.  

A denial-of-service is currently recognized when the web service is no longer 

available (Schroeder & Harchol-Balter, 2006). This should be considered a failed state 

until service can be restored. With an understanding of long-term resource prediction, 

administrators have an additional tool to use in preventing the denial-of-service, and this 

tool will permit administrators to recognize when a resource is no longer behaving 

normally so they can begin to investigate the issue before the availability of the web 

server is compromised. Just as Krithikaivasan et al. (2007) used forecasting to help 

balance the network bandwidth to manage QoS and Abusina et al. (Abusina et al., 2005) 

used bands to determine the range within which the prediction was likely to fall, this 

research of web system resources can help to predict resource utilization, reducing the 

loss of service by understanding the difference between normal and abnormal utilization. 

The simulator (P. R. Barford, 2001) used for the first part of the study was based 

on human interaction with web systems. Abusina et al. (2005) also recognized the 

influence of human factors in network traffic patterns. This study reinforces that 

conclusion in the patterns seen from the analysis of the live web server. The patterns can 

also be seen in the weekly chart of network transmissions from the web server (see 

Figure 29) as it responds to the user’s requests rising during the day and falling at night. 

Implications.. 

Web server configurations are diverse and demands on that equipment have an 

even greater diversity (Andreolini et al., 2006). The variety of configurations and 

demands on each web server will require an administrator to determine if there are any 
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additional resources, beyond those discussed in this research, that need to be monitored 

(Hoffmann et al., 2006). Once the set of resources is selected, the baseline can be created. 

Each server will require its own baseline of predictions to be effective in maintaining the 

availability of the machine throughout forecasting and to address the unique demands of 

that unit (Abusina et al., 2005). Those differences come from different operating systems, 

functionality, or installed hardware. 

One purpose of this study was to identify the accuracy of SMA and EMA against 

Naïve forecasting and to identify that predictions can support web system availability. 

Once an analysis is completed, the administrator will have to select a moving average 

function to monitor and predict a reasonable next step for the resource based on the 

desired results. While those results fall within the accepted confidence interval, the 

administrator will have a reasonable assurance that the system is behaving normally and 

will continue to remain available to its users and services. 

This research shows that long-term resource utilization has a degree of 

predictability.  Through the use of SMA or EMA and confidence intervals, a range can be 

found to predict normal behavior in seasonal patterns that occur each hour, day, and 

week. Tests demonstrated that even when the error rate of the other prediction methods 

are higher than the Naïve prediction error rate, a defined range can be found that is 

substantially smaller than the available resource’s range. A less accurate prediction with a 

reasonable confidence interval can be used as long as the range is appropriate for the 

resource and the intended prediction. 

One implication of using long-term prediction to monitor resource utilization is 

the ability to detect when that resource is no longer acting normally, so that an 
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administrator can evaluate whether that abnormal behavior will jeopardize the availability 

of the system. An administrator who finds that a change in resource utilization will lead 

to a loss of availability may then take action to preempt the event or minimize it. 

Previous work in forecasting examined short-term prediction and indicated that 

long-term prediction was not reasonable since multiple steps were required to achieve 

that goal (Andreolini & Casolari, 2006; Istin et al., 2010). This research looked at the 

problem similarly to business and applied long-term research approaches to this problem. 

By using aggregate information that combined the data points for prediction instead of 

attempting to forecast multiple steps ahead or account for every fluctuation, the accuracy 

of the forecast was greatly increased (Papagiannaki, Taft, Zhang, & Diot, 2003), 

permitting long-term forecasts of hours, days, and weeks to be obtained. This provides a 

variety of opportunities for future research focusing on the overall behavior of the 

resource, instead of focusing on the resource utilization at one point in time. 

A wide variety of other services experience patterns of usage due to human 

activity (Arlitt & Jin, 1999; Huang, 2008; Rood & Lewis, 2008), and this research also 

had an underlying driver of human activity, in continuing to support the hypothesis that 

human activity on computers is also predictable. Applications have also been shown to 

exhibit predictable run times (Chen et al., 2005; Marzolla & Mirandola, 2007; Smith, 

Foster, & Taylor, 2004) and resource usage patterns. These applications are executed 

based on user demand, so if human activity helps determine resource demand, then the 

applications will also have a degree of impact on utilization as well. A few researchers 

(Mitzenmacher, 2000; Rood & Lewis, 2010) have also looked at human and application 

interactions’ effect on system availability of volunteers within a distributed system, 
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suggesting that future research using long-term techniques may also apply to systems of 

resources as a group as well as individually. 

Recommendations for Future Research.. 

A variety of research possibilities exist from this point. This research identified 

that an hourly seasonal view of the web server provided forecasting results with the 

smallest error rate. The use of the confidence interval to define a range for the result, 

instead of expecting a precise value, provides a more appropriate expectation for 

understanding normal use of a resource (Abusina et al., 2005; Papagiannaki et al., 2003). 

While this study extended previous work in network utilization (Krithikaivasan et al., 

2007) to other resources used by web services, future work should be able to extend this 

work to other servers and services including network servers, virtual servers, and 

distributed systems. 

Previous research has recognized the use of various seasonality for prediction, 

since resource loads frequently exhibit different characteristics in different time frames 

(Andreolini & Casolari, 2006) and not all of them lead to accurate prediction of future 

utilization. This research extends the use of seasonality from predicting several minutes 

ahead to examining predictions for hourly, daily, and weekly seasonal cycles. Other 

seasonal time frames will also need to be investigated to determine the most appropriate 

seasonal view each server class researched. Different seasonal results have been used in 

short-term prediction for cloud computing (Dinda, 1999), network services 

(Krithikaivasan et al., 2007), virtual systems (Park & Humphrey, 2008), and application 

utilization (Chen et al., 2005; Smith et al., 2004). These research areas built foundations 

in short term prediction which may now be extended into long-term resource prediction. 
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Once a normal level of resource utilization is understood, research may begin to 

focus on the outliers within the prediction system (Papagiannaki et al., 2003). Currently 

the volatility and outliers are an issue to stable prediction (Abusina et al., 2005; 

Andreolini et al., 2008; Krithikaivasan et al., 2007; Rood & Lewis, 2010). Future 

research may use the volatility and outliers as a unique pattern of interest. Researchers 

could then explore the probability of those patterns and begin to provide valuable 

information about predicting the probability of the next event.  

Prediction has also been used as a foundation to address the probability of a 

systems state and resource allocation. Krithikaivasan et al. (2007) used a probability-hop 

algorithm to determine when additional bandwidth was to be allocated, while Rood & 

Lewis (2008) used probabilities based on prediction to determine scheduling for a 

distributed system. Forecasting of resource utilization can lead to probability analysis. By 

determining the probability that a resource will remain within the forecast confidence 

interval, a level of normal may be understood, and the probabilities of abnormal may also 

be better defined. From there, a three position finite state machine as a guide for normal, 

abnormal, and failing systems. Research into a system’s state (Andreolini et al., 2006) to 

improve distributed system availability and increase the time available for graceful 

degradation was conducted using single step prediction. With the knowledge of this 

study, the system state could now be reflected by normal resource utilization within the 

designated confidence interval. 

Moving averages do not use feedback loops to update or adjust the prediction 

process to help correct estimation errors. Many short-term studies have used methods like 

ARMA, which incorporates a feedback loop to improve the prediction accuracy 
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(Sharifian et al., 2010). When changes are made to the system based on long-term 

forecasting, adjustments to future predictions will be needed or the administrator will be 

forced to wait through several seasons to regenerate the baseline for accurate forecasting 

(Papagiannaki et al., 2003). One example of such a use would be the combination of two 

virtual machines, after forecasting determines that most of the resources used heavily on 

one system are lightly used on the other. As soon as the two virtual machines are placed 

on the same hardware, the forecasting will change. Future research will need to find 

appropriate prediction methods to implement that feedback loop. 

Summary.. 

System resource prediction has been used by operating systems for the 

management of the program scheduler. Researchers (Dinda, 2002) focused on gathering 

data from system resources to predict the utilization level in the near future, so that the 

operating system could balance system resources to maintain system availability as much 

as possible. Research found that the use of data collected in fractions of a second did well 

at predicting the next step but were not able to easily predict the resource utilization 

several steps out (Istin et al., 2010). Results from those attempts found that the error rates 

increased with the number of steps and the predictions were less effective than using the 

last resource utilization level for the prediction. 

Research has also focused on web services (Schroeder & Harchol-Balter, 2006), 

because businesses are much more dependent on those systems than they were ten years 

ago. Many businesses now use web services as a primary method of customer contact and 

sales, so the availability of those systems is considered to be critical. Researchers took 

short-term prediction results and extended them for scheduling requests on web services. 
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But this research also found that if the scheduling was extended several steps into the 

future, the error rate was no longer reasonable. 

Research has used prediction to help manage QoS by rebalancing network 

bandwidth for traffic every fifteen minutes. Krithikaivasan et al.’s (2007) work was able 

to look at aggregates of five minutes in length and make adjustments every fifteen 

minutes. By extending the work to fifteen minutes, Krithikaivasan et al. (2007) showed 

that an aggregate coarser than fractional seconds is possible. Network utilization levels 

were aggregated into ninety-minute cycles to reduce the fluctuation seen at smaller time 

frames (Papagiannaki et al., 2003) to provide a range for the prediction instead of a single 

prediction value, since a value showing normal utilization is more important than a 

precise prediction at a single point in time (Abusina et al., 2005). 

This research used Naïve, SMA, and EMA forecasting to examine the 

effectiveness of providing long-term forecasting. By generating aggregates with a coarser 

granularity, the predictability of a resource’s utilization range was examined based on the 

seasonality of hours, days, and weeks. CPU utilization, free memory, network bytes sent, 

network bytes received, disk write time, and disk read time were selected as the resources 

that were evaluated. Disk read time, however, needed to be dropped from the analysis 

due to the large number of zero values in the data points and aggregate values. 

By comparing the average MAPE values for each of the predictions, the research 

could determine the most accurate method of prediction between Naïve, SMA, or EMA. 

Most of the resources within each season had the smallest error rate using the SMA or 

EMA methods of forecasting. These results existed for both the simulation and the live 

data collected for the study.  
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For one set of tests, the daily seasonal time frame for the live data, every resource 

saw improvement in the prediction error rate for both the SMA and EMA forecast 

methods. For CPU, network bytes sent, and disk write time, a substantial improvement 

was seen by the SMA over the Naïve prediction method. SMA for those three resources 

improved the prediction error rate by more than 20%. 

Previous research established the use of aggregation and utilization ranges 

(Abusina et al., 2005; Papagiannaki et al., 2003) for network traffic. The results of this 

research extended the use of aggregates and range evaluation to general computing 

resources as each resource utilization level was logged; then the data was aggregated into 

a timeframe appropriate for the seasonality of the prediction required. Once the 

aggregates were available, the information was processed using SMA or EMA to 

generate the prediction and confidence interval appropriate to the administrator’s needs. 

The real data aggregate was then compared to the prediction and confidence interval to 

determine if the resource was still acting normally, and the next forecast was then 

generated for the next cycle. 
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