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Edmond W. H. Lee1
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Abstract

A semigroup variety is a Rees-Sushkevich variety if it is contained in
a periodic variety generated by 0-simple semigroups. The collection of
all permutative combinatorial Rees-Sushkevich varieties constitutes an
incomplete lattice that does not contain the complete join J of all its
varieties. The objective of this article is to investigate the subvarieties of
J. It is shown that J is locally finite, non-finitely generated, and contains
only finitely based subvarieties. The subvarieties of J are precisely the
combinatorial Rees-Sushkevich varieties that do not contain a certain
semigroup of order four.

Mathematics Subject Classification: 20M07, 08B15.
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1 Introduction

Recall that a semigroup is 0-simple if it does not contain any nontrivial proper
ideals. The class of 0-simple semigroups is one of the most important classes
of semigroups. Indeed, as each finite semigroup can be obtained from finite
0-simple semigroups by a sequence of ideal extensions, the role that finite 0-
simple semigroups play in semigroup theory is comparable to the role that
finite simple groups play in group theory. Naturally, the varieties generated
by 0-simple semigroups and their subvarieties deserve special attention.

Following Kublanovsky [4], any subvariety of a periodic variety generated
by 0-simple semigroups is said to be a Rees-Sushkevich variety. Investigation
of the lattice of Rees-Sushkevich varieties has recently been initiated by Reilly,
Volkov, and the author (see [5]–[10], [12]–[14], and [19]). In particular, sev-
eral aspects of the lattice C of combinatorial Rees-Sushkevich varieties have
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been considered in [5]–[7], [10], and [19]. Recall that a semigroup variety is
combinatorial if all groups in it are trivial.

A semigroup variety is permutative if it satisfies some permutation identity.
Denote by P the set of all permutative varieties in C. It is easy to show that
P is a lattice (Proposition 5). However, the complete join J of all varieties in
P is not permutative (Proposition 11) so that P is an incomplete sublattice
of the subvariety lattice L(J) of J. The structure of L(J) is quite complex, for
it follows from a result of Vernikov and Volkov [17] that every finite lattice is
embeddable in L(J).

The objective of the present article is to investigate the variety J and its
subvarieties. Specifically, it is shown that the variety J is locally finite, non-
finitely generated, and contains only finitely based subvarieties. Consequently,
L(J) is a countably infinite lattice. It is also shown that the subvarieties of
J are precisely the varieties in C that do not contain a certain semigroup of
order four. The aforementioned properties of J are presented in Section 4.

2 Background

Let X+ and X∗ respectively be the free semigroup and free monoid over a
countably infinite alphabet X. Elements of X are referred to as letters, and
elements of X+ and X∗ are referred to as words.

The head and tail of a word u are respectively the first and last letters
occurring in u and are denoted by h(u) and t(u). The length of u is the
number |u| of letters occurring in u counting multiplicity. The content of u is
the set of letters occurring in u and is denoted by C(u). The set of length-two
factors of u is C2(u) = {w ∈ X+ : |w| = 2 and u ∈ X∗wX∗}. It is easy to see
that C2(u) = C2(v) implies that C(u) = C(v).

We write u = v when u and v are identical words and write u ≈ v to stand
for a semigroup identity. Let Σ be a set of identities. We write Σ � u ≈ v or

u
Σ≈ v if the identity u ≈ v is derivable from the identities in Σ. The variety

defined by Σ is the class of all semigroups that satisfy all identities in Σ and
is denoted by [Σ]. If V is a variety with V = [Σ], then Σ is said to be a basis
for V. A variety is finitely based if it possesses a finite basis.

A permutation identity is an identity of the form x1 · · ·xm ≈ x1α · · ·xmα

where x1, . . . , xm are distinct letters and α is a nontrivial permutation on
{1, . . . , m}. A permutative variety is a variety that satisfies some permutation
identity.

Lemma 1 (Perkins [11]) Each permutation identity implies the identity

x1 · · ·xmyzw1 · · ·wm ≈ x1 · · ·xmzyw1 · · ·wm (πm)

for some m ≥ 1. �
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We refer the reader to [3] and [2] respectively for undefined terminology in
semigroup theory and universal algebra.

3 The subvariety lattice L(A2) of A2

Recall that C denotes the lattice of all combinatorial Rees-Sushkevich varieties
and P denotes the set of all permutative varieties in C.

Denote by A2 the idempotent-generated 0-simple semigroup of order five
and by B2 the Brandt semigroup of order five:

A2 = 〈 a, b : a2 = aba = a, b2 = 0, bab = b 〉,
B2 = 〈 c, d : c2 = d2 = 0, cdc = c, dcd = d 〉.

These two semigroups play very important roles in the theory of semigroup
and especially in the theory of semigroup varieties. They appeared or were
investigated in, for example, [1], [3]–[16], and [19]. Denote by A2 the variety
generated by A2.

Proposition 2 ([10, Proposition 1.2]) The variety A2 is the largest com-
binatorial Rees-Sushkevich variety. Consequently, the lattice C coincides with
the subvariety lattice L(A2) of A2. �

In view of Proposition 2, any variety V in C is defined within A2 by some
set Σ of identities, that is, V = A2 ∩ [Σ].

Lemma 3 (Trahtman [15, 16]) The identities

x3 ≈ x2, xyxyx ≈ xyx, xyxzx ≈ xzxyx (1)

constitute a basis for A2. More generally, an identity u ≈ v holds in A2 if and
only if C2(u) = C2(v), h(u) = h(v), and t(u) = t(v). �

A word of length at least two is said to be connected if it cannot be written
as a product of two nonempty words with disjoint contents.

Lemma 4 Let u,v be connected words such that C(u) = C(v), h(u) = h(v),
and t(u) = t(v). Suppose σ is an identity that does not hold in the semigroup
B2. Then the identity u ≈ v holds in the variety A2 ∩ [σ]. In particular, the
following identities hold in any subvariety of A2 that does not contain B2:

xpyzqx ≈ xpzyqx, xpyzx ≈ xpzyx, xyzqx ≈ xzyqx, xyzx ≈ xzyx, (2)

xpy2qx ≈ xpyqx, xpy2x ≈ xpyx, xy2qx ≈ xyqx, xy2x ≈ xyx, (3)

x2yx ≈ xyx, xyx2 ≈ xyx. (4)



4 Edmond W. H. Lee

Proof. Without loss of generality, suppose C(u) = C(v) = {x1, . . . , xn}.
Denote by Fn the free object of A2∩[σ] over the generators {x1, . . . , xn}. Since
A2 is locally finite, Fn is a finite semigroup. It follows from [1, Exercise 8.1.6]
that the regular D-classes of Fn are subsemigroups.

Now u and v are regular elements of Fn by [10, Proposition 2.2], and it
follows from [1, Theorem 8.1.7] that they belong to the same D-class D, which
must be a rectangular band. Since C2(uv) = C2(vu), h(uv) = h(vu), and
t(uv) = t(vu), the identity uv ≈ vu holds in A2 by Lemma 3. Therefore u
and v are commuting elements in the rectangular band D and so must coincide
in Fn. �

Proposition 5 The set P constitutes a sublattice of L(A2).

Proof. Suppose U,V ∈ P. Clearly U ∩ V is a variety in C that satisfies
all (permutation) identities of U and V so that U ∩ V ∈ P. By Lemma 1,
there exist i, j ≥ 1 such that the permutation identities πi and πj hold in U
and V respectively. Then U∨V is a variety in C that satisfies the identity πm

where m = max{i, j}. Therefore U ∨ V ∈ P. �

Lemma 6 The identities

x2yzw2 ≈ x2zyw2, (5a)

x2y2z2 ≈ x2yz2, (5b)

define the same subvariety in A2, that is, A2 ∩ [(5a)] = A2 ∩ [(5b)].

Proof. It is straightforward to show that the identities (5a) and (5b) do
not hold in B2. Hence {(1), (5a)} � (3) and {(1), (5b)} � (2) by Lemma 4. It
follows that the inclusion A2 ∩ [(5a)] ⊆ A2 ∩ [(5b)] holds since

{(1), (5a)} � x2y2z2
(1)≈ x2xy2z2

(5a)≈ x2y2xz2

(3)≈ x2yxz2
(5a)≈ x2xyz2

(1)≈ x2yz2,

and the inclusion A2 ∩ [(5b)] ⊆ A2 ∩ [(5a)] holds since

{(1), (5b)} � x2yzw2
(1)≈ x2(xyzw)w2

(5b)≈ x2(xyzw)2w2

(2)≈ x2(xzyw)2w2
(5b)≈ x2xzyww2

(1)≈ x2zyw2.

�
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Note that by Lemma 4, all subvarieties of A2 ∩ [(5a)] satisfy the identities
(2), (3), and (4). This result will be used in the remainder of this article
without further reference.

A word is simple if all letters occurring in it have multiplicity one. Suppose
X is (alphabetically) ordered by <. A word u = x1 · · ·xm is said to be an
ordered word if x1 < · · · < xm. Clearly an ordered word is necessarily simple.
A word u is said to be in canonical form if any of the following conditions
hold:

(A) u = xvx for some ordered word v ∈ X∗ with x /∈ C(v);

(B) u = xyvxy for some ordered word v ∈ X∗ with x, y /∈ C(v) and x �= y.

Note that a word in canonical form is necessarily connected.

Lemma 7 Let u be a connected word. Then there exists a unique word u�

in canonical form such that C(u) = C(u�), h(u) = h(u�), and t(u) = t(u�).
Further, the identity u ≈ u� holds in the variety A2 ∩ [(5a)].

Proof. The existence and uniqueness of u� is easy to verify. Since any
word in canonical form is connected, the identity u ≈ u� holds in A2 ∩ [(5a)]
by Lemma 4. �

Lemma 8 A non-simple word u is equivalent within A2 ∩ [(5a)] to a word
pw�q where

(i) p,q ∈ X∗ are simple words;

(ii) w ∈ X+ is a connected word;

(iii) C(p), C(w), C(q) are pairwise disjoint sets.

Proof. By assumption, we may write u = pvq where p,q ∈ X∗ are
simple, v ∈ X+ is non-simple with h = h(v) and t = t(v) each occurring at
least twice in v, and C(p), C(v), C(q) are pairwise disjoint sets. (Note that
h = t is possible). The words v and v2 are equivalent within A2 ∩ [(5a)] since

v
(4)≈ h2vt2

(5b)≈ h2v2t2
(4)≈ v2.

Hence, by Lemma 7, the words u and pw�q are equivalent within A2 ∩ [(5a)]
where the word w = v2 is connected. �

Proposition 9 Every subvariety of A2 ∩ [(5a)] is finitely based.

Proof. The variety A2 ∩ [(5a)] is clearly finitely based. Suppose V is a
proper subvariety of A2∩ [(5a)]. Then V is defined within A2∩ [(5a)] by some
set Σ of identities. By Lemma 8, we may assume that all identities in Σ are
formed by words that are either simple or of the form pw�q. It follows from
[18] that V is finitely based. �
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4 Main results

Recall that J denotes the complete join of all varieties in P. This section
presents several properties of J and its subvarieties.

Proposition 10 J = A2 ∩ [(5a)].

Proof. It is easy to see that within A2, the identity (5a) is a consequence
of the identity πm for any m ≥ 1. Therefore J ⊆ A2 ∩ [(5a)].

Suppose V is a variety such that J ⊂ V ⊂ A2 ∩ [(5a)]. By Proposition 9,
V is defined within A2 ∩ [(5a)] by some finite set Σ of identities. We may
assume that the identities in Σ do not hold in A2 ∩ [(5a)]. By Lemma 8, we
may assume that all identities in Σ are formed by words that are either simple
or of the form pw�q. Further, since J contains semilattices, each identity in
Σ is formed by a pair of words with identical content. Let σ : u ≈ v be an
identity in Σ.

Case 1: Suppose both u and v are simple. Then σ is a permutation identity.
It follows that V ⊆ A2 ∩ [σ] ⊆ J, which is a contradiction.

Case 2: Suppose u is simple and v is non-simple (of the form pw�q).
Then u = x1 · · ·xm and v = v1xkv2xkv3 for some k ∈ {1, . . . , m} and some
v1,v2,v3 ∈ X∗ with C(v1v2v3) = C(u)\{xk}. Denote by ϕ the substitution
xk → xyzw and by χ the substitution xk → xzyw. Then

{(1), (2), σ} � uϕ
σ≈ vϕ

= v1 xyzw v2 xyzw v3

(2)≈ v1 xzyw v2 xzyw v3

= vχ
σ≈ uχ.

Hence V satisfies the permutation identity uϕ ≈ uχ, and we arrive at the
same contradiction in Case 1.

Therefore Cases 1 and 2 are both impossible, whence all identities in Σ are
formed by non-simple words of the form pw�q. Suppose τ : u1 ≈ u2 is such
an identity in Σ, say ui = piw

�
i qi for i ∈ {1, 2}. It is easy to show that if

p1 = p2, q1 = q2, h(w1) = h(w2), and t(w1) = t(w2), (6)

then u1 = u2 so that the identity τ is contradictorily satisfied by A2 ∩ [(5a)].
Thus at least one of the four equalities in (6) do not hold, whence {(1), πm} � τ
for any m ≥ max{|u1|, |u2|}. But this contradicts the fact that A2 ∩ [πm] ⊆
J ⊂ V ⊆ A2 ∩ [τ ]. Consequently, the identity τ , and hence V, do not exist,
whence J = A2 ∩ [(5a)]. �
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Proposition 11 The variety J is not permutative. Consequently, the lattice
P is incomplete.

Proof. By referring to the identity basis for J in Proposition 10, it is easy
to show that J does not satisfy any of the identities πm and hence cannot be
permutative by Lemma 1. Therefore P does not contain the complete join J
of its varieties, whence it is a lattice (Proposition 5) that is incomplete. �

Proposition 12 The variety J is locally finite and non-finitely generated.

Proof. The variety J is locally finite since A2 is finitely generated. Let S
be a semigroup in J with |S| < m. For 1 ≤ i ≤ m, let a, b, gi, hi ∈ S. Since
the list g1, . . . , gm contains an element (say gi) that appears at least twice and
that S satisfies the identities (4), we have

g1 · · · gm
(4)
= g1 · · · gi−1g

2
i gi · · · gm.

By an identical argument, h1 · · ·hm
(4)
= h1 · · ·hjh

2
jhj+1 · · ·hm for some j. The

identities (2) and (5b) also hold in S so that

g1 · · · gm · ab · h1 · · ·hm

(4)
= g1 · · · gi−1(g

2
i gi · · · gm · ab · h1 · · ·hjh

2
j)hj+1 · · ·hm

(5b)
= g1 · · · gi−1g

2
i (gi · · · gm · ab · h1 · · ·hj)

2h2
jhj+1 · · ·hm

(2)
= g1 · · · gi−1g

2
i (gi · · · gm · ba · h1 · · ·hj)

2h2
jhj+1 · · ·hm

(5b)
= g1 · · · gi−1g

2
i gi · · · gm · ba · h1 · · ·hjh

2
jhj+1 · · ·hm

(4)
= g1 · · · gm · ba · h1 · · ·hm.

Hence S satisfies the identity πm. But J does not satisfy πm (Proposition 11)
and so cannot be generated by S. �

Proposition 13 Every subvariety of J is finitely based. Consequently, L(J)
is a countably infinite lattice.

Proof. The first part follows from Propositions 9 and 10, while the sec-
ond part holds since only countably many finite sets of identities exist up to
relabelling of letters. �

The last result of this article involves the semigroup

Y = 〈 e, f, s : e2 = e, f 2 = f, ef = fe = 0, es = sf = s 〉
of order four. It is easy to show that Y is isomorphic to a subsemigroup of the
0-simple semigroup B2 and so belongs to A2 by Proposition 2.
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Theorem 14 The following statements on a variety V in C are equivalent.

(i) V is contained in J;

(ii) V does not contain Y.

Consequently, J is the largest variety in C that does not contain Y.

Proof. Since e2sef 2 = 0 �= s = e2esf 2, the identity (5a) of J does not
hold in the semigroup Y so that statement (i) implies statement (ii).

Conversely, suppose statement (ii) holds. Let S be any finite semigroup in
V. It follows from [1, Proposition 11.8.1] and the identities (1) of A2 that S
satisfies at least one of the identities

(x2yz2)2 ≈ x2yz2, (ρ1)

x2yz2x2z2 ≈ x2yz2, (ρ2)

x2z2x2yz2 ≈ x2yz2. (ρ3)

The variety generated by S does not contain B2 so that S also satisfies the
identities (3) by Lemma 4. Note that

{(1), (3), ρ1} � x2yz2 ρ1≈ (x2yz2)2
(3)≈ (x2y2z2)2 ρ1≈ x2y2z2,

{(1), (3), ρ2} � x2yz2 ρ2≈ x2yz2x2z2
(3)≈ x2y2z2x2z2 ρ2≈ x2y2z2,

and by a symmetrical argument, {(1), (3), ρ3} � x2yz2 ≈ x2y2z2. Therefore
the identity (5b) holds in S.

We have thus shown that the identity (5b) holds in every finite semigroup
of the locally finite variety V and hence must also hold in V. Consequently,
V ⊆ A2 ∩ [(5b)] = J by Lemma 6 and Proposition 10. �
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