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Uncertainty is inherent in many real-world settings; for example, in a combat situation, 

darkness may prevent a soldier from classifying approaching troops as friendly or hostile. 

In an environment plagued with uncertainty, decision-support systems, such as sensor-

based networks, may make faulty assumptions about field conditions, especially when 

information is incomplete, or sensor operations are disrupted. Displaying the factors that 

contribute to uncertainty informs the decision-making process for a human operator, but 

at the expense of limited cognitive resources, such as attention, memory, and workload. 

 

This research applied principles of perceptual cognition to human-computer interface 

design to introduce uncertainty visualizations in an adaptive approach that improved the 

operator’s decision-making process, without unduly burdening the operator’s cognitive 

load. An adaptive approach to uncertainty visualization considers the cognitive burden of 

all visualizations, and reduces the visualizations according to relevancy as the user’s 

cognitive load increases. Experiments were performed using 24 volunteer participants 

using a simulated environment that featured both intrinsic load, and characteristics of 

uncertainty. The experiments conclusively demonstrated that adaptive uncertainty 

visualization reduced the cognitive burden on the operator’s attention, memory, and 

workload, resulting in increased accuracy rates, faster response times, and a higher 

degree of user satisfaction. 

 

This research adds to the body of knowledge regarding the use of uncertainty 

visualization in the context of cognitive load. Existing research has not identified 

techniques to support uncertainty visualization, without further burdening cognitive load. 

This research identified principles, such as goal-oriented visualization, and salience, 

which promote the use of uncertainty visualization for improved decision-making without 

increasing cognitive load. This research has extensive significance in fields where both 

uncertainty and cognitive load factors can reduce the effectiveness of decision-makers, 

such as sensor-based systems used in the military, or in first-responder situations. 
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1. Introduction 

Chapter 1 

 

Introduction 

Background 

As the cost of collecting and storing data decreases, and the demand increases for 

up-to-the-second information to aid in decision-making and analysis, user interface 

designers will be challenged to develop interfaces that allow end-users to access large 

volumes of data from a plenitude of sources without overwhelming the end-user or 

diminishing the user’s ability to interact with, analyze, and make decisions on the flow of 

information. As data collection moves out of the office or the factory floor, and into the 

field, the reliability of the data declines, due to faulty sensors, hostile or unanticipated 

environmental conditions, or technological limitations (Estrin, Govindan, Heidemann, & 

Kumar, 1999; Chong & Kumar, 2003). 

Vehicle tracking systems provide a good example of the hazards that affect data 

reliability. A GPS device in the vehicle receives signals from satellites that can help 

determine the vehicle’s latitude and longitude. The GPS coordinates are queued on a 

storage device in the vehicle, and periodically transmitted to a centralized server. In bad 

weather, or when travelling through an urban area, the GPS device may not be able to 

receive satellite signals; the signals may be distorted, resulting in inaccurate or imprecise 

GPS calculations; the operator may disable the GPS device, preventing data collection; 

some readings may be lost due to a faulty storage device or a network transmission 
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failure. To a dispatcher analyzing the GPS data, detecting out-of-band or unreliable data 

may be more critical than tracking the in-band, nominal data (for example, it is more 

critical to the dispatcher to know if the vehicle operator had disabled the GPS device). To 

provide a decision maker with complete context, a system must provide information 

about unreliable data, including enough state information for the system or the decision 

maker to determine the likely source of the uncertainty (Lim & Dey, 2009).  

The data sources for a vehicle tracking system are static (road and expected route 

information), profiled (vehicle type, vehicle operator information) sensed (GPS data, 

weather movements) and derived (actual route and speed calculations), each of which can 

be a source of error, or uncertainty in a context-aware system (Henricksen & Indulska, 

2004). Data fusion techniques involve the integration of data from multiple sources, for 

example, a vehicle tracking system that integrates GPS readings with camera readings for 

line-of-sight perspectives. Computational techniques can be used to resolve conflicts 

between multiple data sources (Zhao, Fang, & Jiang, 2007). For decision-support 

systems, however, integrating data from multiple, and potentially conflicting sources, 

introduces an additional challenge when displaying uncertainty. One way of viewing 

uncertainty is through a probability distribution function (Thomson, Hetzler, 

MacEachren, Gahegan, & Pavel, 2005). A decision maker can evaluate data sources that 

convey conflicting information according to their differing probability distribution 

functions, but only if the software designer conveys the degree of uncertainty in 

visualizations so the decision maker can interpret the inputs. 

Software visualizations that convey uncertainty information can provide a richer 

context for decision-making. However, visual elements must compete for limited end-
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user resources, such as attention and working memory (Wickens, 2002), factors that 

contribute to the user’s cognitive load. Cognitive load reduces a decision maker’s 

performance and ability to complete many decision-making tasks. This research discusses 

the effects of uncertainty and uncertainty visualization on the observer’s cognitive load. 

Problem Statement 

Real-world environments are plagued with uncertainties, from faulty sensors, 

unreliable location readings, sporadic network connectivity (Girardin & Nova, 2005) to 

environmental factors, such as bad weather, darkness, and unplanned intrusions. These 

conditions lead to uncertainty, which adversely affects the decision-making process, and 

can even add to the user’s cognitive load, further diminishing the user’s capability to 

interact with visualizations in an augmented reality system (Zuk & Carpendale, 2006). A 

number of researchers have proposed various techniques for displaying environmental 

information when there is uncertainty about the information’s reliability (Skeels, Lee, 

Smith, & Robertson, 2010). These approaches are inspired by the insight that humans are 

accustomed to dealing with uncertainty in their daily lives, and are well-equipped to 

make decisions in that context. However, adding uncertainty visualizations to a crowded 

visualization canvas can also adversely affect a user’s cognitive load. As argued by 

Antifakos et al. (2004) displaying uncertainty information can increase cognitive load 

while providing some improvements that can offset or reduce cognitive load, and more 

research is needed to evaluate the trade-offs between the two approaches. 

By understanding the trade-offs between uncertainty visualization and cognitive 

load, technologists can more effectively represent the physical and cognitive aspects of 

an environment, especially in situations of high uncertainty and increased cognitive load 
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(van der Kleij, de Jong, te Brake, & de Greef, 2009). The need to represent uncertainty 

effectively without increasing cognitive load is especially acute in emerging 

technologies, such as context-aware systems. In context-aware systems, for example, the 

system may present unreliable conclusions due to the probabilistic nature of data sources 

(e.g. faulty sensors). Consequently, the user can lose trust in the system when faulty 

presentation leads to erroneous outcomes. Conveying data quality can improve the user’s 

level of trust in the system, but the presentation of data quality must be simplified in 

order to minimize the burden on the user’s cognitive load (Mühlhäuser & Hartmann, 

2009).  

However, the literature has not provided a proven theory for effective uncertainty 

visualization (Lapinski, 2009) and the effects of uncertainty visualization on reasoning 

(Zuk & Carpendale, 2007). Uncertainty visualization remains a persistent challenge, and 

consequently, implementation of uncertainty visualization has not met with widespread 

use (Zuk & Carpendale, 2006). 

Goal 

Techniques for conveying uncertainty can compete and conflict with conventional 

visualizations; for example, increasing the number of visual elements the user must track 

(called clutter) may burden the user’s working memory, and interlacing visual elements 

with orthogonal characteristics may degrade the user’s scanning strategies, affecting the 

user’s attention (Bunch & Lloyd, 2006). Consequently, adding uncertainty visualization 

to a system may increase a user’s cognitive load. However, uncertainty itself can 

contribute to cognitive load (Back & Oppenheim, 2001). The challenge is to convey 

sufficient degrees of uncertainty to the decision maker to reduce uncertainty-induced 
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cognitive load (intrinsic complexity), without increasing the decision maker’s cognitive 

load due to visual (extrinsic) complexity.  

Zuk and Carpendale (2007) acknowledged that uncertainty visualization may 

increase the user’s cognitive load, and described two methods for integrating uncertainty 

visualization without interfering with the user’s task performance: first, by reducing the 

role of uncertainty visualization to after-the-fact analysis, and second, by supporting dual 

visualization systems so the user can choose which view is best suited for the situation. 

For example, a dual visualization system would reserve complex interfaces for more 

sophisticated users, but display simpler interfaces for unsophisticated users in order to 

reduce distractions and lighten the user’s cognitive burden. The user can then adjust the 

complexity of the interface to match the user’s skill level (Shneiderman, Plaisant, Cohen, 

& Jacobs, 2010). This research builds on this research by proposing an adaptive 

visualization system. The adaptive visualization system affects the display of uncertainty 

visualization during conditions where cognitive load is high. The adaptive approach seeks 

to reduce cognitive load by examining the cognitive costs of all visualizations, and 

disabling the visualizations with the lowest degree of saliency. This approach is taken 

from the insight that uncertainty artifacts may play a more crucial role in the decision-

making process than ordinary data-driven artifacts in the decision making process. 

The goal of this research was to identify how adaptive uncertainty visualization 

can decrease cognitive load arising from uncertainty more than visualization increases 

cognitive load arising from complex user interfaces.  By mitigating the increase in 

cognitive load due to uncertainty, uncertainty visualization techniques can reduce the 

user’s overall cognitive load.  
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Hypothesis and Research Questions 

Uncertainty visualization is a term that describes techniques to represent 

uncertainty or ambiguity in information, to support the subject’s cognitive processes in 

decision-making (Zuk & Carpendale, 2007). Uncertainty affects decision-making by 

presenting an incomplete specification of the problem, reduced relevance of inputs, and 

lacks clear stopping criteria. Solving problems in a context of uncertainty requires non-

linear thinking, fragmented solutions, and step-wise refinements. Uncertainty 

visualization integrates the representation of data and uncertainty to augment the 

subject’s reasoning. 

The hurricane “uncertainty cone” is an example of uncertainty visualization. 

When a hurricane forms, The National Hurricane Service (a part of the National Oceanic 

and Atmospheric Administration) releases information to the public describing the 

storm’s location and projected path. A cone surrounds the projected path, indicating a 

forecast error that is averaged over 10 years. The purpose for displaying the cone of 

uncertainty was to aid the public in their decision-making process (Broad, Leiserowitz, 

Weinkle, & Steketee, 2007). Figure 1 below illustrates the projected path of Tropical 

Storm Dean, which originated in the Caribbean, and was projected to make landfall over 

the island of Puerto Rico. An uncertainty cone is used to depict the forecast error over 

three and five day periods. 
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Figure 1. Example Graphic of the Five-Day Track Forecast Cone (Definition of 

the NHC Track Forecast Cone, 2011) with permission. National Weather Service 

This research examined the effects of adaptive uncertainty visualization on the 

user’s cognitive load. Uncertainty can increase the user’s cognitive load (Zuk & 

Carpendale, 2006). Visualization techniques can be used to reveal and explain the source 

and degree of uncertainty, so that problem solvers can make more informed decisions 

(Skeels, Lee, Smith, & Robertson, 2010). This approach capitalizes on the fact that 

humans are generally good problem solvers, although a user’s judgment may be biased 

(Tversky & Kahneman, 1974). Adding visual elements to a display, however, can also 

increase the user’s cognitive load. For example, displaying uncertainty characteristics 

may increase clutter (Bunch & Lloyd, 2006). Consequently, there may be a trade-off 

between the reduction in cognitive load by displaying uncertainty factors, and the 
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increase in cognitive load by displaying additional visual elements (Antifakos, 

Schwaninger, & Schiele, 2004). 

Cognitive load can be assessed by measuring mental load, mental effort, and 

performance using an empirical approach that includes primary and secondary task 

measurements, as well as subjective rating scales (Paas, Tuovinen, Tabbers, & Van 

Gerven, 2003).In this study, performance, attention, and workload were assessed using 

primary and secondary tasks. Measurements for both the primary and secondary tasks 

included response time and accuracy rate. The secondary task was used to measure the 

cognitive burden imposed by the primary task. In addition, cognitive load effects were 

measured qualitatively by surveying participants’ subjective impressions using a 

questionnaire. Responses were rated according to a Likert scale. 

The hypothesis of this research is that adaptive uncertainty visualization will 

significantly reduce a user’s cognitive load in an environment where both stress and 

uncertainty abound. The hypothesis (H) is that knowledge workers will exhibit better 

performance and improved decision-making using adaptive uncertainty visualization than 

when a standard interface is employed. The null hypothesis (H0) is that knowledge 

workers will exhibit no better performance or improved decision-making using adaptive 

uncertainty visualization than when a standard interface visualization is employed. 

This study addressed the following research questions: 

1. Does adaptive uncertainty visualization improve the system operator’s level of 

performance in completing assigned tasks? Performance was measured by the 

accuracy rate in completing assigned tasks.  
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2. Does adaptive uncertainty visualization improve the system operator’s level of 

attention in handling multiple activities? Attention was measured by the 

response time required to complete assigned tasks. 

3. Does adaptive uncertainty visualization reduce the burden on the system 

workload? Workload was measured by the accuracy rate in completing 

assigned secondary tasks. 

In addition to the quantitative measurements described above, a survey was used 

to provide qualitative assessment of the operator’s memory, attention, and 

workload. Accordingly, the hypothesis was evaluated using both quantitative and 

qualitative methods. 

Relevance and Significance 

The proliferation of mobile devices such as smart phones and tablets has raised 

interest in the development of pervasive computer systems (Baldauf, 2007). The goal of 

pervasive or ubiquitous systems is to integrate computing devices with a user’s everyday 

experiences. Context-aware systems adapt to the user’s environment, including the user’s 

location, by using sensors, user profile information, and decision-making processes. 

Augmented reality systems interact with the user’s environment by using a device to 

overlay virtual artifacts on top of physical objects in the user’s line of sight, so the user 

sees a combination of virtual cues, and physical objects (Zhou, Duh, & Billinghurst, 

2008). Pervasive, context-aware systems using advanced visualization techniques, such 

as augmented reality, provide tools to a diverse group of users to improve performance 

and decision-making; for example, for first-responders responding to a disaster scene 

(Piekarski & Thomas, 2009). 
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Given the increased demand for context-aware and augmented reality systems in a 

number of critical areas, such as medical and battlefield environments (Lundström, 

Ljung, Persson, & Ynnerman, 2007; Sager, Grier, Jackson, Levchuk, & Stelzer, 2007), 

problem solving under uncertain conditions is likely to become more essential. Factors 

that increase the problem solver’s cognitive load are likely to increase as well. 

Accordingly, it will become increasingly more important to understand and quantify the 

trade-offs between exposing uncertainty to the problem solver, and the cognitive load this 

additional burden places on the problem solver (Antifakos, Schwaninger, & Schiele, 

2004). 

Because user interface designers do not know the effect that displaying 

uncertainty has on the user’s cognitive load, they are unable to fully exploit features of 

uncertainty visualization (Mühlhäuser & Hartmann, 2009). It is hoped that this research 

will encourage user interface designers to take advantage of uncertainty visualization 

wihout overloading the user in order to improve the user’s decision-making and problem 

solving tasks. 

Barriers and Issues 

According to de Jong (2009) there are a number of complications to measuring 

cognitive load. Cognitive load is typically measured using the following techniques: 

questionnaires given after a research experiment is conducted, so the participant can rate 

the results; measuring physiological characteristics, including heart rate and breathing 

variability, or by asking the participant to perform secondary tasks while participating in 

the experiment. There can be tremendous variability in responses when using 

questionnaires due to the wording of the questions, as well as the timing and frequency of 
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conducting the survey during the experiment. Further, it has not been proven that 

research participants are competent at evaluating their own cognitive load. 

Physiological measurements are also subject to a great deal of variability. For 

example, papillary reactions have been considered sufficiently sensitive for cognitive 

load studies, but the sensitivity diminishes with age. Some studies indicate that heart rate 

variability may be more sensitive to time pressures rather than cognitive load, although a 

combination of heart rate and blood pressure may be more sensitive to cognitive load 

studies. For example, in Haapalainen et al. (2010) six sensors were used to measure 

effects of cognitive load, including heat flux, ECG, EEG and pupillometry; however, 

only the heat flux and ECG produced accurate results. Discrepancies may have been due 

to the nature of the tasks the subjects were asked to perform, or the placement and 

sensitivity of the sensors. Finally, physiological measurements are intrusive and are likely 

to diminish the pool of participants (de Jong, 2009). 

Secondary tasks are more useful than questionnaires because they are performed 

concurrently with the primary task. The motivation for using secondary tasks as a 

measuring proxy is that the speed or accuracy of the secondary task is diminished as 

cognitive load increases on the primary task. However, this approach is not frequently 

used; in fact, in research by Paas et al. (2003), only 4 of 27 studies measuring cognitive 

load used secondary tasks as a measuring technique. A possible explanation is that 

secondary tasks may distract or impair the subject from completing the primary task. 

Overall, cognitive load studies provide measures that are characterized as relative, 

do not explore the multi-dimensional characteristics of cognitive load theory, and do not 
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account for varying windows of time, such as immediate versus long-term (de Jong, 

2009). 

Assumptions, Limitations and Delimitations 

Two limitations affected this research. The first limitation addresses the use of a 

simulation, and the second limitation addresses the measurement of cognitive load. 

Simulations 

First, as mentioned previously, a simulation was used to gather empirical 

information. Simulations have been characterized as a "third way" of conducting research 

(Axelrod, 2003) because the researcher starts with a set of assumptions that are designed 

into the simulation; however, simulations cannot provide deductive proofs, and can only 

be used to generate observations that support or refute a proposition. The researcher can 

improve the effectiveness of a simulation using an iterative approach; first formulating a 

theory, then building a computational model that generates results, and analyzing the 

results to refine the theory further (Emond & West, 2004). 

Simulations are effective when used to observe phenomena that cannot be directly 

detected; the data generated by simulation is subject to less noise because the influence of 

external factors can be reduced (Goldspink, 2002). Further, simulations are useful in 

capturing adaptive, problem-solving behaviors (Axelrod, 2003). 

A number of factors limit the benefit of using simulations in research. Because 

simulations are path-dependent and sensitive to the initial state (Goldspink, 2002; 

Axelrod, 2003) there is a challenge to repeatability of these experiments. In addition, the 

number and variety of variables involved in the execution of a simulation limit the ability 

to compare the outcomes of different simulations. Finally, social systems have 
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multidimensional characteristics that are difficult to measure (Goldspink, 2002); for 

example, prototypes are more effective at identifying usability errors than efficiency 

measures (Sauer, Seibel, & Rüttinger, 2010). 

Understanding these limitations, the goal of the researcher is to strengthen the 

experiment's validity through proper design and analysis. Validity is predicated on 

establishing a causal relationship between variables and observations that can be 

generalized in different settings (Oulasvirta, 2009). 

Measuring Cognitive Load 

A second limitation affecting this research was the measurement of cognitive 

load. First, a subject's cognitive load cannot be measured directly, and instead is induced 

indirectly by observing other phenomena, such as the subject's error rate or performance 

(de Jong, 2009). However, assessing a subject’s mental load, mental effort, and 

performance level can indirectly measure the subject’s degree of cognitive load (Paas, 

Tuovinen, Tabbers, & Van Gerven, 2003). Accordingly, this research was limited to 

measuring indirect effects of cognitive load. 

Delimitations 

Two delimitations were imposed to define the boundaries set for this research. 

First, the participants in the research were confined to knowledge workers. Knowledge 

workers are subject to information overload (Karr-Wisniewski & Lu, 2010) and high 

levels of stress and anxiety that can lead to high degrees of cognitive load (Kirsch, 2000). 

Further, knowledge workers frequently interact with visualization tools for decision-

making (Reinhardt, Schmidt, Sloep, & Drachsler, 2011). However, the findings in this 
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research may not be generalized to other populations or situations, such as a combat 

setting, or with first-responders. 

The second delimitation pertains to modality and simulation fidelity.  Distributing 

cognitive load across multiple modalities, such as auditory and visual channels can lead 

to increased learning effects when compared to single-modality techniques (Paas, 

Tuovinen, Tabbers, & Van Gerven, 2003). A subject may experience cognitive overload 

when an overwhelming amount of information is presented visually, but not experience 

cognitive overload if both auditory and visual signals are interspersed. In addition, multi-

modal techniques are critical to increased fidelity in a simulated environment, and high 

fidelity leads to improved learning outcomes (Liu, Macchiarella, & Vincenzi, 2009). 

Nonetheless, this study was focused on the visual modality. 

Definition of Terms 

The following is a list of key terms and acronyms used in the fields of cognitive 

load, uncertainty, and visualization. The terms are defined according to commonly 

accepted usage among researchers and practitioners in these areas of study. 

Attention: A set of cognitive processes that enable the detection and classification of 

stimuli by switching cortical processing and allocating resources (Sarter & Lustig, 

2009). 

Cognitive Bias: A tendency to favor one perspective over another due to cognitive 

factors, such as heuristics, rather than based on evidence (Kahneman, Thinking, 

Fast and Slow, 2011). 

Cognition: The act of acquiring, organizing, and using knowledge (Neisser, 1976). 

Cognitive load: A measure of the effort an observer expends to perceive and identify 

stimuli (Back & Oppenheim, 2001). 
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Cognitive Load Theory: A theory that holds that the resources allocated for cognitive 

processing are limited, and that learning is impaired when a task exceeds the 

capacity of the limited resources (de Jong, 2009). 

Confidence: The observer’s assessment of uncertainty in a system (Barthelmé & 

Mamassian, 2010). 

Fovea: The central part of the retina, the fovea possesses a higher number of 

photoreceptors, and has more neurons dedicated to visual processing (Eckstein, 

2011). 

GPS: Global Positioning System; a satellite-based system for providing time and location 

information. 

Heuristic: A problem-solving technique that seeks to answer difficult, time-consuming 

questions with adequate but incomplete solutions (Kahneman, 2011). 

Information overload: An overwhelming increase in the number of decisions a 

knowledge worker must make in an environment fraught with disruptions (Kirsch, 

2000). 

Perception: A continuous, cyclical, cognitive process, consisting of anticipation, 

exploration, and information pickup (Neisser, 1976). 

Saccade: Rapid, jerky steps by which the fovea moves toward a target during visual 

processing, which acts as a form of sampling (Eckstein, 2011). 

Simulation: An experimental approach to studying behavior using models (White & 

Ingalls, 2009). 

Uncertainty: A situation where the user has imperfect knowledge about information, a 

task, or a potential outcome; or lack of knowledge about the presence of error 

(Thomson, Hetzler, MacEachren, Gahegan, & Pavel, 2005). 

Uncertainty Visualization: A technique to augment software visualization with 

characteristics of uncertainty to promote alternate interpretations (Zuk & 

Carpendale, 2007). 

 

Summary 

Sensor systems frequently operate in environments that are plagued with 

uncertainty. Bad weather, temperature fluctuations, and hostile intrusions can affect the 

reliability of sensors that track and monitor these conditions. Faulty sensors can generate 
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unreliable location readings, and signals can suffer from sporadic network connectivity. 

Compromised source data can lead to uncertainty, which can adversely the decision-

making process, and can even add to the user’s cognitive load. Because humans are adept 

at problem solving under uncertain conditions, the presentation of uncertainty can lead to 

more effective decision-making. 

In stressful settings, such as a battlefield or an air traffic control tower, the user's 

cognitive load is already strained. Visualizing uncertainty elements add to the visual 

clutter that competes for the operator's limited attention. The operator must invest 

increased effort to process probabilistic assessments. Consequently, cognitive load 

increases, degrading the operator's performance and problem solving effectiveness. 

Given the importance of uncertainty in effective decision-making, there is a 

critical need for research that demonstrates how uncertainty visualization can be used 

without straining the operator's cognitive load. This research proposes to demonstrate 

how an adaptive visual system can provide relevant visualization of uncertainty to 

improve decision-making without further straining the operator's cognitive load.  
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2. Brief Review of the Literature 

Chapter 2 

 

Review of the Literature 

Introduction 

The following section contains a review of the literature regarding key aspects of 

this research: uncertainty visualization, cognitive processing, and cognitive load. 

Visualization draws heavily on perceptive, and attentive processes (Barrett, 2011), and is 

intimately linked to problem solving and decision-making (Zuk & Carpendale, 2007). 

However, cognitive resources are limited, and perception, cognition, and decision-

making activities must compete for scarce resources, such as working memory (Wickens, 

2002). The purpose of this literature review is to examine research in the areas of 

uncertainty visualization, cognitive processing, and cognitive load, in order to validate 

the relevance and significance of an investigation into the reduction of cognitive load 

through adaptive uncertainty visualization.  

Early Studies in Uncertainty Visualization 

Andre and Cutler (1998) characterized uncertainty in the context of aviation 

display, identifying three separate dimensions that could influence uncertainty: accuracy, 

precision, and time. Time uncertainty may arise when there is a delay in reporting the 

location of an erratic or fast-moving object due to a slow refresh rate on the display, or a 

lag in receiving data feeds from a sensor. Andre and Cutler conducted two experiments 
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using a simulated display to test the effectiveness of uncertainty visualization on pilots’ 

bias for risk and situational awareness. In the first experiment, position uncertainty was 

represented using three separate techniques: a numeric value that represented the degree 

of uncertainty; a red-yellow-green color scale (the color red indicating the highest degree 

of uncertainty); and a circle enclosing an object with a radius that increased with the level 

of position uncertainty. In the baseline condition, however, there were no visual cues of 

location uncertainty. The second experiment was similar to the first but used three 

separate techniques for representing heading uncertainty. Heading was a means of 

classifying whether another aircraft was friendly or hostile. The researchers found that 

under conditions of moderate uncertainty, pilots performed equally well when uncertainty 

was displayed or not; but under highly uncertain conditions, pilots performed better in 

terms of the number of collisions and misclassifications, when uncertainty factors were 

displayed than when uncertainty factors were not displayed.  

Finger and Bisantz (2000) studied the effectiveness of displaying uncertainty 

using various graphical formats as compared to quantitative indicators to aid in decision-

making tasks. In one study, subjects were asked to decide whether an image on a card 

was friendly or hostile. The researchers used a number of techniques to convey whether 

an object was friendly or hostile: icons with associative meanings (for example, a mask 

with a smile was paired to a mask with a frown); abstract shapes with no associative 

meaning (for example, the shape of an arc was paired with the shape of a triangle); and 

symbols that were both iconic and abstract (such as by pairing a green symbol to a red 

symbol). Uncertainty was conveyed quantitatively using a percentage, or by distorting the 

graphical image.  
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For example, an object with equal probability of being friendly or hostile was 

represented numerically with a score of 50%, or by a mask with a circle in place of its 

mouth.  According to the test results, subjects scored equally well when graphical formats 

were used as compared to numerical formats, and when the graphical format was 

combined with the numerical format, subject scores were not improved. 

Rukzio et al. (2006) researched the effectiveness of displaying system confidence 

in a form-filling application, and concluded that users did not rely on, and did not find 

helpful, the visualization of confidence. However, the researchers suggested that in 

circumstances where the user was more invested in outcome of a task (for example, in an 

online reservation system) they would be more likely to rely on confidence visualization.  

Cohen and Warren (1990) demonstrated that a user’s confidence in an expert 

system is closely tied to the level of confidence the system expresses. The study sampled 

user confidence in the expert system before and after presenting the system’s confidence 

in its recommendation. The confidence level the system displayed in its recommendation 

was adjusted to match the confidence level selected by the user; however, for half the 

participants the confidence level was increased by nine points (the “plus version”), while 

for the remaining half, the confidence was decreased by the same amount (the “minus 

version”). After the system displayed the confidence level in its own recommendation, 

the user’s confidence in the system was captured again. Subsequently, 94% of users who 

revised their confidence level at this stage changed their confidence level in the direction 

of the system’s confidence level; that is, if the system displayed a higher confidence level 

(the “plus version”) most participants also increased the confidence level they used to 
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assess the system. The outcome exemplified the anchoring heuristic identified by 

Kahneman and Tversky (1982). 

Techniques for Visualizing Uncertainty 

Sager et al. (2007) evaluated various techniques to visualize uncertainty. 

Uncertainty is generally represented by an additional piece of data, or by using a visual 

element that can describe both the physical element and its associated variability. 

Common visual techniques included the selection of color (for example, coloring an 

object using the familiar streetlight colors of red, yellow, and green might be used to 

indicate levels of confidence); by using texture (a cross-hatched texture could be used to 

indicate uncertainty) or a variety of icons (such as a question mark). These cues were 

found to be more effective than displaying numerical probabilities. However, significant 

shortcomings reduced the effectiveness of these techniques; for example, a particular 

object may have multiple sources of uncertainty (an unknown speed and trajectory for a 

moving object, for example); the uncertainty may increase or decrease over time; and the 

actions of other agents, such as enemy combatants, could not be adequately presented. 

The researchers developed a system for mitigating uncertainty by addressing these three 

deficiencies.  

Visualization and Perception 

Petre et al. (1998) asked several probing questions about the purpose and 

effectiveness of visualizations, and the impact on the user’s cognitive processing. One 

purpose of visualization is to change the viewer’s perspective so that a large-scale 

problem or situation can be compressed into a single view. A goal of this approach is to 
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reduce complexity or scale. Visualization can be used as a symbolic interpretation of an 

external system, rather than a facsimile. Accordingly, visualization can serve as a 

platform for display-based reasoning by presenting an improved model of the external 

system, and consequently assist the user in their reasoning about the external system. 

Visualization is then a tool for reasoning, and can modify the user’s tactics for 

information gathering, inspection, and comparison. Visualization can be used as an 

extension of the user’s cognitive processes by extending short-term memory (since the 

user can offload concepts or problem explorations that are not of immediate use) in order 

to make problems more tractable. Visualizations can also recast a problem using a 

different model, such as by generating associations the user did not originate, or by 

serving as a foil for the user to cast a problem using different paradigms. 

The contemporary understanding of visualization derives from research in 

neurophysiology and cognitive psychology (Petre, Blackwell, & Green, 1998). For 

example, Marr (1982) identified the computational aspects of vision as a form of complex 

information analysis. During visual processing, the mind scans a scene recursively, 

building abstractions from visual primitives. The first impression is characterized as a 

raw sketch, in which the mind evaluates attributes of visual primitives (such as position, 

contrast, and orientation) into abstractions like edges, blobs, and terminations. A critical 

aspect of visual processing is edge detection. Because physical surface changes are 

frequently marked by sudden changes in intensity, the brain uses filters to detect intensity 

changes on different scales. Once the viewer has formulated the primal sketch, the viewer 

then constructs a 2½-D sketch, which is comprised of depth, orientation, contours, and 

discontinuities. Finally, the viewer constructs a 3-D image, which is comprised of objects 
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that have volumetric properties in relation to the space they occupy. Marr’s work 

continues to have a profound impact on a number of fields, including cognitive science 

and neuroscience (Shagrir, 2010). 

Neisser described perception as a continuous, cyclical process, consisting of 

anticipation, exploration, and information pickup (Neisser, 1976). Perception is not a 

passive process; there is no homunculus inside an observer’s head that perceives objects 

from a retinal image. Instead, during perception, the mind develops a schemata, or plan 

for acquiring information. As information arrives, the schemata adapts its strategy for 

acquiring new information. To illustrate the effectiveness of schemata in information 

processing, experienced chess players can rapidly memorize the positions of chess pieces 

on a board because the player can associate the board layout with a schemata that rigidly 

prescribes the location of each piece. In fact, expert players may store thousands of 

schemata in memory. Neisser’s work in cognition fueled considerable research into 

object structure, memory, and attention through the mid-1990s; however, due to advances 

in brain imaging, research has been focused more recently on the localization of functions 

in areas of the brain, and on attention and awareness (Cavanagh, 2011). 

Barrett (2011) elaborated on the active role of the senses in perception. Senses are 

like tentacles that actively seek out and acquire information. The entire perceptual system 

is involved in perception, not individual organs; the senses work in concert. The 

perceptual system looks for affordances in the environment. Affordances represent the 

ways in which an observer can interact with an object. For example, the affordance of a 

rock to a person crossing the stream might be the opportunity to step on it. Perception is 
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not easily stratified into stimulus and response; rather, perception is a tight-looped 

process that involves both senses and motor functions.  

Csinger (1992)  examined long-standing theories in cognitive psychology on how 

the mind processes information. For example, pre-attentive processes are extremely fast 

(less than 100 milliseconds) and the brain can perform multiple pre-attentive processes in 

parallel. Attentive processing requires more time, and is relegated to tasks that are more 

complex. The brain can rank perceptual tasks on a continuum, from easy to difficult.  

Attention comprises a series of processes that focus sensory systems on certain 

characteristics of external stimuli by switching modalities and allocating resources, in 

order to optimize detection and classification (Sarter & Lustig, 2009). Attention can be 

categorized as selective, divided, and sustained. Selective attention describes perceptual 

processing where the observer focuses attention on one task to the exclusion of others, 

while divided attention describes perceptual processing where the observer can balance a 

number of concurrent tasks. If two tasks are similar, the observer is more effective by 

practicing divided attention; whereas if the two tasks are dissimilar, the observer is more 

effective by practicing selective attention. Sustained attention describes the degree to 

which an observer can maintain a state of readiness to perceive external events for an 

extended period. 

Carrasco (2011) categorized visual attention as spatial, feature-based, or object-

based. Spatial attention can be overt (that is, eye movements focus on the location of the 

subject’s attention) or covert (that is, the focus of attention is not accompanied by eye 

movements). Feature-based attention occurs when the subject’s attention is triggered by 

features in the visual field, rather than the location of these features. Features include 
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such characteristics as color, or orientation. Attention to the feature is enhanced globally, 

to all locations in the visual field, even to ignored locations (White & Carrasco, 2011). 

Object-based attention occurs when attention is triggered by an object’s structure. 

Because visual attention places tremendous demands on the brain’s finite resources, the 

brain limits the amount of energy devoted to attention processes. Accordingly, visual 

attention is a selective process; for example, directing a subject’s attention to one location 

in a visual field diminishes the attentional resources allocated to another location (Beck 

& Kastner, 2009). 

Not all tasks require a subject’s complete attention (Scerbo, Bliss, Freeman, 

Mikulka, & Robinson, 2005). In data-limited tasks, such as performing simple 

computations, the subject cannot improve performance by investing additional attention 

to task completion. Consequently, the subject has excess cognitive capacity that results in 

misdirected attention. Scerbo et al. (2005) categorized the subject’s thoughts during task 

execution as task-relevant, task-related, and task-irrelevant. Thoughts that are unrelated 

to the task may be characterized as a failure of focused attention. Task-unrelated thoughts 

can interfere with the subject’s task performance. Some task-unrelated thoughts, such as 

daydreaming, require the same spatial processing as complex cognitive activities, and 

may compete with the same modalities as the primary task. 

Perceptual studies also focused on the sensitivity of the brain to visual primitives, 

and that the amount of light perceived by the eye provides an early vision, similar to pre-

attentive processing. Early vision can detect the direction of light in a scene in a three-

dimensional orientation. Csinger (1992)  proposed a model of the visualization process 

using a permutation vector that contrasts a data surface with a perceptual surface. Steps 
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for visualization include identifying the dimensions of the data space that should be 

projected onto the stimulus space; identifying the perceptual properties that will be used 

as the dimensions of the stimulus space; and mapping from the data space to the stimulus 

space. 

The goal of mapping the data surface to the stimulus surface is echoed by Healy, 

et al. (1994). Given the challenge of presenting multi-dimensional data to an end-user for 

analysis, the researchers employed pre-attentive techniques in order to facilitate the user’s 

understanding. In one experiment, the researchers used two visual features – hue and 

orientation, to represent data characteristics of salmon migration. Subjects were shown 

displays for 450 milliseconds, and asked to provide a numerical estimate of the data 

visualization to the nearest 10%. The subjects were able to provide reasonable estimates 

of the numerical data, suggesting that the visual features of hue and orientation were 

equally effective. Accordingly, visualization techniques can be used effectively to 

improve the effectiveness of user comprehension by leveraging the way the user 

perceives and processes stimuli. 

Advances in visualization techniques will be limited by the lack of benchmarks 

and quantifiable measurements of effectiveness (Chen, 2005). Intrinsic quality metrics 

must be identified so that visualization techniques can be evaluated without referencing 

external sources. Chen cites the stress level used in multi-dimensional scaling as an 

example of an intrinsic metric; multi-dimensional scaling collapses multiple dimensions 

into two or three dimensions with minimal distortion. Accordingly, visualization 

techniques must be evaluated using intrinsic metrics to validate the fidelity to the 

underlying data and the degree to which intrinsic metrics are maintained. Another 
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challenge for researchers is the role visualization plays in causality and forecasting. 

Visualization can be a powerful method for enabling an analyst to find causality, for 

example, in such areas as medicine and forecasting. The challenge for visual reasoning is 

to help the analyst distinguish noise from information, and to reconcile unrelated or 

conflicting data. Since the analytical process is exploratory, the analyst must interact with 

the raw data, as well as the representations. 

Visual Search 

Bertin (1983) identified eight variables that characterized a graphics system: the 

planar variables denoting a visual element’s location in a visualization (x, and y), as well 

as six retinal variables: size, color, brightness, orientation, shape, and grain. Bertin further 

characterized variables according to how rapidly the variable could be perceptually 

processed: a variable was considered selective, for example, if its meaning could be 

perceived instantly, rather than sequentially processed in concert with other marks.   

Tufte (2001) developed general principles for effective visualizations. For 

example, graphical excellence could be achieved with a number of principles, such as 

presenting a large amount of data in a small space, or providing multiple layers of detail. 

Data ink maximization was a technique for presenting the largest amount of data with the 

smallest amount of ink, since excessive use of graphics could distract the observer. Data 

density was a metric used to measure the number of data elements by the entire graphical 

area. 

Ware’s (2004) research was grounded in cognitive psychology research. Ware 

identified additional marks that were processed pre-attentively, such as blur and flicker. 

Gestalt laws described the features of pattern recognition, such as relative size and 
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symmetry. These principles arose from theories in Gestalt psychology, such as the 

proposition that humans simplify visualizations by clustering and connecting elements of 

a scene (Wagemans, et al., 2012). For example, viewers may cluster together elements 

that are moving in the same direction. Further, humans have a tendency to add closure to 

shapes that are not completely closed, and to divide regions according to whether they 

fall inside or outside a closure (Ziemkiewicz & Kosara, 2010). 

Ware (2008) expanded on the perceptual aspects of visualization. According to 

Ware, the brain uses a nested loop for information gathering and problem solving. The 

outer loop deals with generalized problems, which it breaks down into individual tasks. 

For example, finding a route on a bus line can be decomposed into tasks such as locating 

the starting point, the terminal point, and identifying candidate routes between these 

points. A middle loop executes a series of eye movements, or “visual queries” to gather 

information from the environment. Finally, when the eye comes to rest for a brief period, 

or fixates, on an object, an inner loop initiates a series of visual tests to identify patterns. 

A fixation typically lasts less than two-tenths of a second, and the brain can process 

approximately 20 patterns per second; accordingly, the brain can process up to four 

patterns per fixation. A pattern is detected through a process known as binding, where 

neurons that trace the contour of a particular pattern are stimulated, and emit electrical 

signals. The brain then distills patterns into objects. In visualization design, features such 

as color, orientation, and texture can be tuned to assist the brain in pattern recognition, 

which enhances the cognitive process. 

In humans and other animals, light falling on a central part of the retina known as 

the fovea receives preferential treatment over peripheral areas (Eckstein, 2011). The 
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fovea possesses a higher number of photoreceptors, and has more neurons dedicated to 

foveal processing than peripheral regions of the retina. During visual processing, the 

fovea does not move directly toward the target; instead, the eye moves in rapid, jerky 

steps known as saccades. Saccades act as a form of sampling; the brain uses the 

information perceived at each saccade location in order to inform a decision-making 

process (such as object detection and classification). The saccade pattern is influenced by 

a number of factors, such as the frequency and characteristics of distracters, the presence 

of context cues; or the prevalence of targets in the visual field. 

Evaluating the Effectiveness of Uncertainty Visualization 

Zuk and Carpendale (2006) employed heuristic evaluation to assess the 

effectiveness of visualization techniques for conveying uncertainty. The authors selected 

the contributions of three researchers in perceptual design theory: Bertin, Tufte, and 

Ware, and focused on each contributor’s perceptual and cognitive principles.  

For example, a strategy for representing uncertainty in archeological 

reconstruction is to use markings that are sketch-like, as opposed to photo-realistic, as 

well as to use transparency to denote levels of uncertainty. The authors evaluated this 

technique in light of Bertin, Tufte, and Ware’s principles to assess the effectiveness of the 

technique. For example, using Bertin’s principles, transparency was an effective 

technique because the absence of marking indicates absence of data. Further, when 

evaluated according to Tufte’s principles, portraying uncertainty with photo-realistic 

effects could increase the “lie factor” (Tufte, 2001) of the depiction, overstating the 

confidence in the representation. Finally, graphical aspects such as contour can contribute 

to the viewer’s cognitive model, satisfying Ware’s perceptual theories. The heuristic 
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evaluation of an air traffic control system centered on the use of alerts that notified the 

observer of significant events. A color scheme was used to denote the level of 

uncertainty. The color technique satisfied Bertin’s principles, because of the variable 

“length”, that is, the spectrum of color changes between green (low uncertainty) and red 

(high uncertainty) allowed for a large number of uncertainty levels. However, according 

to Tufte’s principles, the data density was very low, indicating more data could be 

displayed in the same space, and numerical representations of uncertainty could be 

replaced with colors to enhance the user’s scanning strategy. According to Ware’s 

principles, however, the reliance on red and green colors could exclude color-blind 

people from completing tasks, and the high degree of color saturation could increase the 

observer’s stress level. Finally, since alert systems rely heavily on visual monitoring, the 

system could make better use of scanning strategies by employing motion and flicker 

(Zuk & Carpendale, 2006).  

Antifakos et al. (2004) analyzed the effectiveness of displaying uncertainty using 

a four-factorial model that focused on task difficulty, cost (that is, the risk/reward ratio of 

achieving a task), knowledge, and level of uncertainty (by determining whether to display 

the uncertainty, and if so, the quality of the display). The effectiveness of displaying 

uncertainty was proportional to the quality of the tip, the level of task complexity, and the 

benefit of a correct response. 

Van der Kleij et al. (2009) studied the effects of a network-aware system on a 

user’s mental effort in a mobile environment. In a mobile environment, network 

connectivity is not always reliable. When connectivity was sporadic or unreliable, the 

study participants reported low levels of process and outcome satisfaction. Further, 
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mental effort was found to be higher when network connectivity was sporadic and 

location uncertainty was displayed than when the network was not connected. However, 

study subjects commented that the visualization interface was not useful in decision-

making, and was not perceived as making the participants more effective in their tasks. 

Given that the interface was not perceived as useful or effective, the experiment likely 

increased the participant’s extraneous cognitive load without any improvement in 

intrinsic load.  

Applications with high levels of certainty can positively affect user impressions 

by displaying the uncertainty (Lim & Dey, 2011). The threshold for a high level of 

certainty was identified at 80-90% for non-critical applications. However, for 

applications with low levels of certainty, the user’s impression is dependent on whether 

the application takes the appropriate action (given the circumstances). If the application 

takes appropriate action, displaying uncertainty can compromise the user’s impression of 

the system; however, if the application fails to take appropriate action, displaying the 

level of uncertainty can actually improve the user’s impression of the system because the 

user becomes more aware of the complexity required to decide which action is 

appropriate. 

Defining Uncertainty 

Schunn et al. (2003) developed a taxonomy for uncertainty, first classifying the 

sources of uncertainty. There can be uncertainty in measurement; uncertainty in 

computation (for example, stemming from stale data collection, or the introduction of 

artifacts in algorithms that cloud the results); visualization uncertainty (for example, 

where a visualization makes a false or misleading representation of a state, or omits 
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critical information entirely), cognitive uncertainty, where the memory and perceptual 

limitations of the human problem solver may introduce uncertainties in a process. The 

problem solver may rely on several techniques for identifying systemic uncertainties, 

such as impossible representations (an object passing through a wall) or mismatched 

representations (for example, when two sensors provide conflicting information about the 

speed at which an object is traveling). When faced with uncertainties, the problem solver 

engages in a succession of strategies, such as checking for errors, identifying reliable 

inputs, calibrating the outputs of different sensors, and bounding the uncertainty in order 

to provide a resolution. 

Henricksen and Indulska (2004) described four sources of imperfect information 

in a context-aware system: sensed, static, profiled, and derived. These imperfections are 

introduced by the computing system that interacts with the problem solver, rather than 

uncertainties in the environment. Imperfections can be unknown (when there is no sensor 

data), ambiguous (when two sensors report conflicting readings), imprecise (when 

sensors cannot report to a degree of precision) or erroneous. Henricksen and Indulska 

modeled the uncertainties using Object Role Modeling (ORM) by associating facts with 

one or more quality indicators, and these indicators are classified with concrete metrics. 

Thomson et al. (2005) suggested that the term uncertainty denotes more than the 

lack of knowledge about the presence of error; instead, error is only one characteristic of 

uncertainty, and that uncertainty can describe situations with insufficient clearness or 

distinctiveness, accuracy or reliability; in short, where the user has imperfect knowledge 

about information, a task, or the outcome. Uncertainty can be quantitative, such as 
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positional and temporal errors; but can also include abstract factors, such as the reliability 

of information sources or the degree of coverage. 

Uncertainty can be understood using a probabilistic representation. Analysts make 

an assumption about the state of a system, which can be observed by collecting inputs 

from a variety of sources. The inputs from these sources can include measurements and 

locations, which are quantitative, but can also include statements and propositions. In a 

probabilistic model, uncertainty is the probability distribution of each source as compared 

to the actual system state. Consequently, Bayesian networks can be generated using the 

probability characteristics of each uncertainty type; for example, completeness 

uncertainty is subject to sampling error, resulting in variance and bias; interrelatedness 

uncertainty results from source correlation. Based on this probabilistic understanding of 

uncertainty, researchers can combine and propagate uncertainties, as well as identify 

composites of multiple uncertainties, to model more complex real-world situations. In 

addition, researchers can correlate visualization techniques that are most effective at 

representing each category of uncertainty, allowing each uncertainty to be displayed in its 

own dimension in order to improve the consistency of a visual model (Thomson, Hetzler, 

MacEachren, Gahegan, & Pavel, 2005). 

Fout and Ma (2011) proposed a framework for uncertainty propagation that 

encoded the source of uncertainty (e.g., whether uncertainty arose from source data or 

from an algorithm). Each stage of data processing contributes another layer of 

uncertainty, so the uncertainty layers are encoded in a range number. A range number is a 

hybrid structure that normalizes uncertainty factors and assigns the uncertainty a 

credibility rating. Another way to express a range number is value = approximate value ± 
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deviation. Range numbers can be presented as bounds around a central tendency. For 

example, a bar chart can be topped with a solid line to represent the reading with the 

highest probability, and multi-colored bands displayed above and below the solid line to 

represent probability bounds. 

Visualization, Uncertainty, and Problem Solving 

According to Tversky and Kahneman (1974) decision makers use a heuristic 

process to simplify problem solving. The heuristics can be categorized as 

representativeness, availability, adjustment, and anchoring. Each of these simplifications 

can lead to biases that reduce the effectiveness of the decision process. For example, a 

reader may place more weight in crime statistics if they happen to live in a high-crime 

area (availability); a person who is handed a one hundred dollar bill and asked to estimate 

the weight of a nearby object is likely to start with a guess of one hundred pounds. 

Tversky and Kahneman (1982) later expanded on this problem solving bias, called 

anchoring, or the suggestion effect. Suggestions may be warranted because they provide 

information, but the decision maker’s reliance on, rather than questioning of, the validity 

of a suggestion represents a bias. In the context of bounded rationality (Tversky & 

Kahneman, 1981), decision makers may choose to accept a simplistic frame of reference 

for a decision, in order to conserve mental activity. Accordingly, in the context of 

uncertainty, problem solvers tend to interpret probability subjectively, because 

uncertainty is not sufficiently codified and formalized.  

Kahneman (2011) described a dual process for decision-making. System 1 is the 

name given to a process that is automatic, responds quickly, and requires little effort; a 

System 1 process can react autonomously to an external stimulus. System 2, on the other 
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hand, is slower to react than System 1, but acts more deliberately; brings more resources, 

such as memory, to bear when solving a problem; and can solve complex computations 

that System 1 cannot solve. When confronted with a challenge, System 1 will attempt to 

solve the problem; however, if the problem is too complex for System 1, System 2 

intervenes in order to bring more resources to bear. Both systems are effort conserving; 

System 1 resorts to heuristics to simplify the decision-making process, frequently by 

substituting a simpler question for a more complex one. For example, when confronted 

with a question requiring statistical knowledge a person does not possess (such as 

predicting how popular a politician would be in six months) System 1 will instead 

substitute an easier question (for example, by responding with how popular the politician 

is at the current time). System 2 also seeks to conserve effort during problem solving. 

System 2 will intercede during problem solving when a person is confronted with a 

problem that is too complex for System 1 to solve; however, System 2 will not intervene 

when System when makes a sub-optimal decision due to its reliance on a faulty heuristics 

process.  

Zuk and Carpendale (2007) analyzed the effects of uncertainty on cognition in 

light of knowledge constructs, reasoning heuristics, and reasoning time frames. 

Uncertainty affects higher order knowledge constructs, such as arguments, which is the 

means by which a problem solver formalizes the problem-space for inferences and 

judgments. Uncertainty introduces ambiguity, lack of relevance, and incomplete 

knowledge of operation, resulting in partial solutions, or representational refinement, 

which increase cognitive load. Further, uncertainty may affect reasoning heuristics, 

leading to overconfidence when evidence strength is high and predictiveness is low or 
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under-confidence when evidence strength is low and predictiveness is high. Finally, time 

constraints can subject the problem solver to biases, and that biases can increase 

uncertainty. 

Juhnke et al. (2007) analyzed the effects of the human-computer dyad on problem 

solving in complex environments. The researchers describe interaction models between 

the human and the system. First, there is situational awareness, in which the human must 

be aware of the equipment used in the environment (systems awareness), as well as 

awareness of one’s goals and how to achieve them (task awareness), and awareness of 

one’s location (spatial awareness). The second interaction model is the action loop, which 

is a compressed process based on Norman’s (1988) stages of action, including perception, 

evaluation, and execution. Perception begins when the participant recognizes an event 

that requires the participant to respond. Evaluation occurs when the participant considers 

the event and identifies a response. Execution occurs when the participant responds. 

MacEachren et al. (2005) observed that the representation of uncertainty in 

geographic data tends to focus more on representational techniques than whether the 

representations contribute to better decision-making. For example, does uncertainty 

visualization encourage analysts to make better decisions in light of the levels of 

uncertainty, or cause the analysts to discount the uncertainty, even when that is not the 

most effective strategy? Does revealing uncertainty cause analysts to miss important 

relationships and associations, or does it encourage them to find patterns and 

relationships that do not really exist? 

Hancock, et al. (2005) contrasted the degree of uncertainty to the level of 

performance for processing information. The higher the level of uncertainty, the more 
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energy the subject must devote to searching for innovative solutions. The subject can 

process less information, and as a result, the performance of information processing is 

compromised. 

Atoyan et al. (2011) examined uncertainty visualization in dynamic environments, 

such as automated systems. Human decision makers approach problem solving with 

reasoning strategies that are fine-tuned to the situation. The heuristics decision makers 

follow can be classified as compensatory or non-compensatory. In a compensatory 

strategy, the decision maker allows a high-scoring attribute to compensate for a low-

scoring attribute. For example, a driver choosing a longer route with faster driving speeds 

is following a compensatory strategy (where travel distance and travel speed are two 

attributes of a route). Using a non-compensatory strategy, on the other hand, a decision 

maker does not make trade-offs between different attributes, and instead chooses the 

option having the highest value. For example, a driver who only chooses a route with the 

shortest travel distance is following a non-compensatory strategy.  

Compensatory strategies impose a higher degree of cognitive load than non-

compensatory strategies. Decision makers are more likely to use a non-compensatory 

strategy when faced with complex problems; however, under time-constraints, the 

compensatory strategy produces poorer results than the non-compensatory strategy 

because the decision maker does not have sufficient time to process alternatives. 

Visualizations can influence a user’s compensatory strategy. For example, an application 

that does not display multiple attributes concurrently, or does not allow the user to re-

order attributes discourages the user from following a compensatory strategy. When a 

decision maker integrates uncertainty information into problem solving, the decision 
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maker is following a compensatory strategy (the decision maker uses knowledge of 

missing or incomplete data to compensate for inappropriate system behavior). 

Cognitive Load Theory 

The problem solver must recognize the current problem state, and identify the 

differences between the problem state and the goal state. The act of problem solving can 

impose a substantial cognitive load on the problem solver (Sweller, 1988). Cognitive load 

provides a model for understanding the mental resources a problem solver can draw on 

when completing tasks – attention, and working memory. These resources are limited, 

but can be distributed between competing tasks (Wickens, 2002; Baddely, 2003). Sweller 

et al. (2011) argued that tasks that are biologically primary, such as human movement, 

can be easily acquired without undue burden on cognitive load; working with mechanical 

systems, however, may impose a higher burden on working memory because humans 

have not evolved the capacity to handle non-biological tasks. 

Wickens (2002) proposed a four-dimensional model for timesharing multiple 

resources. Each dimension was described with two opposite levels. Two tasks demanding 

resources from the same level would experience interference; however, two tasks 

demanding resources from opposing levels would be less likely to experience 

interference. The dimensions included staging, characterized by perception, and response; 

modalities, such as visual and auditory; visual channels, characterized by focal and 

ambient; and processing codes, characterized by spatial and verbal. For example, speech 

recognition is a different cognitive activity from speech production (perception versus 

response), and take place in different sections of the brain (frontal versus posterior). On 

the other hand, studies have shown that subjects can divide their attention between 
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auditory and visual inputs better than they can divide their attention between two auditory 

inputs, or two visual inputs (cross-modal versus intra-model). As Wickens observed, this 

observation may not be attributable to auditory and visual processing occurring in 

different parts of the brain; rather, two inputs in the same modality (for example, visual) 

may require scanning (if too far apart) or suffer from masking, if too close together 

(Wickens, 2002). Further, there is evidence that working memory is dedicated to different 

modalities, and as a result, tasks that a subject executes concurrently will only interfere 

with each other when the tasks share the same storage modality (Parasuraman & 

Caggiano, 2005). 

Kalyuga (2011) identified four general situations that can increase a user’s 

extrinsic cognitive load: 

1. Split-attention – occurs when graphical and textual elements are separated 

spatially or temporally; requires recall for the user to integrate separated 

elements. 

2. Redundancy – occurs when different sources provide the same information; 

for example, when explanatory text describes the elements of a graph or 

diagram. 

3. Transiency – occurs when elements are displayed to the user for an 

insufficient length of time to process the information; increases the load on the 

user’s working memory. 

4. Expert versus novice – presenting information with more detail than is 

required for an expert user, or insufficient detail for a novice user, burdens the 

user’s working memory. 
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Each of these deficiencies is mitigated through proper user interface design. For 

example, a split-attention scenario can be relieved by physically integrating spatially 

separated elements, or displaying elements concurrently; a transient scenario can be 

relieved by increasing, or allowing the user to customize the amount of time information 

is displayed. 

The goal of Cognitive Load Theory (CLT) advocates is to design effective 

interfaces that minimize the problem solver’s cognitive load (Oviatt, 2006). Advocates of 

Cognitive Load Theory distinguish between two types of complexity: intrinsic 

complexity, which arises directly from the execution of a task, and extrinsic complexity, 

which is introduced by mismatches in the interface. Oviatt proposed an interface design 

that enhanced user performance to reduce cognitive load, for example, by following 

interface principles, including accommodating the user’s extant workspace and work 

practices, and minimizing interruptions. 

Hollender et al. (2010) identified areas of convergence between CLT and Human 

Computer Interface (HCI) design principles. For example, the HCI design principles of 

recognition rather than recall, displaying only relevant information, or minimizing the 

amount of information the user must retain between dialog flows, are methods to reduce 

the load on working memory, which is also a key CLT objective. Furthermore, core CLT 

principles, such as the split-attention principle, infuse many usability guidelines, such as 

not requiring the user to remember information when looking at different sections of the 

same dialog. Not all CLT principles are matched in HCI research, however. The worked-

example effect, which describes how novice learners may benefit more from studying 
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examples solved by experts rather than struggling through ineffective problem solving 

exercises, is closely tied to learning effects rather than general usability issues. 

Garrabrants (2009) conducted an experiment using a software simulation of a 

battlefield. In order to achieve a high level of situational awareness, the decision maker 

had to process a large number of variables in a short period of time, a situation that 

frequently leads to cognitive overload. In the simulation, a hypervariate display was 

introduced. The design of this display observed visualization strategies to reduce the 

observer’s cognitive load. In particular, the hypervariate display was designed to take 

advantage of the observer’s pre-attentive processing using symbology so the observer 

could quickly gain situational awareness. Cognitive load was measured using three 

factors: workload, comprehension, and efficiency. Using the hypervariate display, the 

researcher found that participants showed improved cognitive processing using the 

hypervariate display, as opposed to a multivariate display. 

Summary 

There is a considerable body of research to explain the cognitive and perceptual 

factors that influence a person’s effectiveness as a decision maker in a variety of diverse 

environments. While humans are adept at problem solving in challenging conditions, 

innovations in computer design have provided additional tools to aid people in making 

decisions.  

Decision-making is especially challenging when incomplete or unreliable 

information is available. Visualization techniques have been used to generate a 

probabilistic model of an environment in order to encourage effective problem solving. 

The danger of these visualization techniques is that humans may ignore the probabilistic 
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nature of the information they received, and make false or unsupported inferences. 

Accordingly, it is critical to provide cues to the user that information is projected or 

estimated, and explain the source or degree of the unreliability of the information. 

Uncertainty then becomes another factor in the decision-making process. 

In stressful situations, uncertainty visualization can have diametric effects. While 

uncertain conditions can increase the cognitive load on a decision maker, so can the 

burden of added visualizations and decision points. 

This research contributes to the body of knowledge by identifying techniques to 

increase the use of uncertainty visualization in stressful environments without increasing 

the user’s cognitive load. As the use of computer systems proliferates into more 

environments, such as battlefields and emergency situations, research into improved 

decision-making will become increasingly critical. 
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3. Methodology 

Chapter 3 

 

Methodology 

Research Methods Employed 

Research was conducted using both quantitative and qualitative measurements to 

determine whether adaptive uncertainty visualization has a significant impact on reducing 

a user’s cognitive load. Software visualizations displaying uncertainty characteristics may 

also increase the user’s cognitive load (Bunch & Lloyd, 2006); there is a trade-off 

between the reduction in cognitive load by displaying uncertainty factors, and the 

increase in cognitive load by displaying additional visual elements (Antifakos, 

Schwaninger, & Schiele, 2004). The study capitalized on research in the visualization 

community by adapting the display of the uncertainty aspects in software visualizations 

to the user’s level of cognitive load (Zuk & Carpendale, 2007). A computer simulation 

was selected to test subjects under two conditions (using uncertainty visualization, and 

using a standard interface) in order to analyze dependent variables, such as memory and 

attention, as a measure of the user’s cognitive load. 

Experimental Design 

The hypothesis (H) of the research is that knowledge workers exhibit better 

performance and improved decision-making using adaptive uncertainty visualization than 

when a standard interface without uncertainty visualization is employed. This hypothesis 

was selected in order to answer the following research questions: 
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1. Does adaptive uncertainty visualization improve the system operator’s level of 

performance in completing assigned tasks?  

2. Does adaptive uncertainty visualization reduce the system operator’s level of 

attention?  

3. Does adaptive uncertainty visualization reduce the system operator’s 

workload?  

Ultimately, can the adaptive uncertainty visualization be calibrated to reduce 

cognitive load that stems from uncertainty without increasing the system operator’s 

overall cognitive load? 

The null hypothesis (H0) is that knowledge workers do not exhibit improved 

performance and decision-making using adaptive uncertainty visualization than when a 

standard interface was employed. For purposes of testing the statistical significance, 

alpha (α) is defined as .05. 

An analogue experiment was conducted using a simulation. Analogue 

experiments closely emulate a real-world setting so that the results can be more readily 

generalized (Oulasvirta, 2009). One of the principal advantages to experimentation with a 

simulation, as opposed to a field or in situ experiment, is that the data generated by 

simulation is subject to less noise because the influence of external factors can be reduced 

(Goldspink, 2002). Further, simulations are effective when used to observe phenomena 

that cannot be directly detected (Goldspink, 2002), and are useful in capturing adaptive, 

problem-solving behaviors (Axelrod, 2003). 

The experiment used a single independent variable, a number of controlled 

variables, and three dependent variables. Table 1 summarizes the independent, controlled, 
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and dependent variables of this experiment. The independent variable governs whether 

adaptive uncertainty visualization is displayed in the simulation. For the sake of brevity, 

this condition will be referred to as “uncertainty on/off” to indicate whether the adaptive 

uncertainty visualization was displayed. The dependent variables are memory, attention, 

and workload. These variables were measured quantitatively (using the subject’s 

accuracy rate and response time to complete tasks) and qualitatively (with an after-test 

survey). 

Table 1 

List of Independent, Dependent, and Controlled Variables 

Independent Controlled Dependent 

Uncertainty on/off 

 

Duration 

Number of objects 

Number of events 

Speed of objects 

Uncertainty size and range 

Memory 

Attention 

Workload 

 

The controlled variables include the duration of each round of the simulation; the 

number of objects the user interacted with, and the speed at which the objects moved 

about the simulation; the number of events the user responded to, and the duration and 

accuracy of uncertainty projections made by the simulation when adaptive uncertainty 

visualization was displayed. The controlled variables affected the degree of cognitive 

load imposed on the subject. For example, a longer-duration trial would impose a greater 

degree of fatigue on the operator; an increase in the number of objects, or the speed at 

which the objects travel, would increase the operator’s mental effort. The 
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multidimensional variables are correlated with the operator’s cognitive load (Paas, 

Tuovinen, Tabbers, & Van Gerven, 2003). A pilot phase (discussed further in the 

Instrumentation section) was used to determine the optimal setting for the controlled 

variables. 

In order to ensure that only the independent and controlled variables influenced 

the outcome, all other variables were held constant. This included the hardware the user 

interacted with, as well as the training instruction and material each user received. In 

addition, the simulation advanced time, and executed the same events at the same 

frequency during every round. Time-stepped simulations are used for human-in-the-loop 

simulations in order to ensure the user perceives a consistent flow of time and events 

during the simulation (Smith, 2000). 

The Population 

The study involved knowledge workers in a corporate setting. Knowledge work is 

a cognitive activity requiring substantial concentration and attention (Davis, 1999). 

Analysts, managers, and researchers fall under the definition of knowledge workers. 

Knowledge workers are suitable subjects for research because visualization tools are used 

increasingly to augment knowledge workers in the knowledge discovery effort (Eick & 

Fyock, 1996; Kandogan, 2001) and to reduce information overload (Karr-Wisniewski & 

Lu, 2010). Further, as documented by Kirsch (2000) the workplace environment for 

knowledge workers is characterized by high levels of cognitive load that induces anxiety, 

stress, and poor health. A number of studies have been conducted recently that correlate 

the disruptive effects of the workplace environment on worker productivity (Mansi, 

2011) and cognitive load (Speier & Vessey, 2003). 
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According to Huck (2008) a purposive sample starts with a large group of 

potential subjects; however, in order to be eligible to participate in the study, the subjects 

must satisfy certain criteria. Accordingly, the research restricted the sample to knowledge 

workers of adult age who have experience with computer software. A candidate was 

classified as having sufficient experience with computer software if they had used a 

computer for business or academic purposes for a period of two or more years, and if 

they used a computer for two or more hours a day. Participation was equally divided 

between male and female subjects. Demographic characteristics are summarized in the 

study’s findings in Chapter 4. 

Sample Size 

Choosing an effective sample size is critical to the validity of the research. A 

sample size that is too large results in an inefficient use of time and resources; while a 

sample size that is too small compromises the validity of the results (Triola, 2009). 

While conducting usability tests using the thinking-aloud technique, Nielsen 

(1990) observed that subjects were very adept at identifying usability issues. Virzi 

conducted three usability tests using small sample sizes and concluded that a sample size 

of five subjects was sufficient to identify 80% of known usability defects (Virzi, 1992). 

Virzi approximated the relationship between the mean probability of detecting a problem 

and the number of subjects with the formula(1 − 𝑝)𝑛, where p represented the mean 

probability of detecting a problem, and n represented the number of subjects. 

Accordingly, a researcher planning to isolate a problem experienced by 10% of the 

population at the 90% confidence level would choose a sample size of 22, according to 

the formula; at the 80% confidence level, the sample size would be 15 subjects. 
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A number of sources challenged this finding. Spool and Schroeder (2001) argued 

that e-commerce sites are significantly more complex than the systems tested in (Virzi, 

1992), and recommended a progressive approach of increasing the sample size as the 

number of identified issues and possible paths through the system increase. Faulkner 

(2003) argued that an increased sample size improved the probability of identifying more 

critical usability issues, and allowed results to be generalized to a larger population.  

Another method for calculating sample size is to refer to the sample size in 

previous studies (Ritter, Kim, Morgan, & Carlson, 2011). Table 2 lists a number of 

similar studies, as well as the sample size chosen for each study. 
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Table 2 

Sample Size in Previous Studies 
  

Study Sample Size Comments 

1. Haapalainen et al. (2010) 20 Students 

2. van der Kleij et al. (2009) 48 Students 

3. Garrabrants (2009) 18 Experienced 

volunteers 

4. Skeels et al. (2010) 18  

5. Girardin and Nova (2005) 60 Students 

6. Antifakos et al. (2004) 24 Students 

 10  

7. Healey et al. (1994) 12 
 

 15  

8. Speier and Vessey (2003) 136 Students 

9. Spool and Schroeder (2001) 49 Single-task test 

Mean 37.3 
 

Median 20 
 

Standard Deviation 36.9 
 

 

As Table 2 illustrates, the mean sample size in the previous studies is 37.3, while 

the median is 20. The mean is more sensitive to outliers than the median (Triola, 2009). 

The mean is higher than the median due predominantly to Speier and Vessey (2003) 

which used a sample size of 136 students. However, the authors of this research did not 

provide reasoning for such a high sample size, in terms of population variability, error 

rate, or confidence level. 
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In light of these findings, a sample size of 24 can be sufficiently generalized to 

describe the population of knowledge workers this study represents. 

Specific research method(s) to be employed 

Background 

A simulation follows a discrete-event approach when the model changes from 

state to state in discrete time points (Schriber & Brunner, 2009). A simulation tracks the 

passage in time using an internal stored value called a simulation clock. While the 

simulation time is not necessarily synchronized with the wall clock time in all discrete-

event simulations, the simulation and wall-clock time was synchronized for this research, 

following a time-stepped approach (Alt & Lieberman, 2010). 

In the simulation model, an executive process is responsible for advancing the 

simulation clock, and for carrying out actions that are scheduled to occur at specific 

times. These actions are enumerated in a structure known as the calendar, or future events 

list. The actions may be unconditional; for example, “At 20 seconds, a person enters the 

crosswalk”; while other actions are conditional; for example, “When the light changes to 

green, the person in the crosswalk begins to cross the street.” The executive is responsible 

for checking that conditions are satisfied before actuating a conditional action; if 

conditions are not satisfied, the action remains in the future events list. 

Entities represent the actors in a simulation. An external entity represents an actor 

introduced by the modeler, such as a package or a vehicle; while an internal entity is 

created by the incidence of certain states in the simulation, such as a machine failure, or 

collision. Entities instigate events, and events change the state of the model. Events may 

trigger other events; for example, the event, “person enters crosswalk” may trigger the 
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event, “vehicle stops before crosswalk”. An event is placed on the current event list, 

where it is actuated by the executive; in addition, events may also place other events on 

the future event list (Alt & Lieberman, 2010). 

Global variables refer to the limits or constraints in a model (White & Ingalls, 

2009). For example, a global variable can be used to limit the speed at which vehicles 

travel in a simulation. The combination of entities, events, rules, and global variables is 

referred to as an experiment. When a modeler requires unique statistical results, a random 

number generator is used to ensure distinct outcomes. This is known as a trial. A run 

refers to the initialization of the model, and the execution; the simulation then executes 

until a condition is met that terminates the execution (Schriber & Brunner, 2009). 

The Simulation 

The simulation was comprised of a security surveillance system. A monitor was 

used to display an area under surveillance. The area under surveillance mirrored a 

realistic setting, such as a power plant. In the pilot, four monitors were displayed 

concurrently in separate quadrants of the screen; however, the amount of activity proved 

to be too demanding for pilot subjects to interact with; consequently, the number of 

monitors was reduced to one. 

The monitor displayed an overhead, photographic view of the area under 

surveillance. The view was comprised of fixed landmarks, such as buildings and streets, 

as well as restricted areas, denoted by dashed rectangle. An example of the monitor is 

illustrated in Figure 2. 
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Figure 2. The monitor window displays an overhead, photographic view of a 

scene under surveillance (Figure created by G. Block using Microsoft Windows snipping 

tool). Reprinted with permission. 

 

In addition, mobile “agents”, such as people or vehicles, were represented using 

icons. Mobile agents represent entities in the simulation model. For example, the “view” 

of the power plant consisted of the overhead, photographic image of the power plant 

structure; an overlay of a fixed sensor that tracked movement; and an overlay of icons 

that represented agents, vehicles, and a security officer. The combination of overhead, 

photographic images of fixed landmarks, fixed sensors, and agents is called a scene.  

Agents 

Agents act in their own interests, according to a motive. A motive can be 

classified on a spectrum from “friendly” to “neutral” to “adversarial”. Adversarial agents 

seek to cause harm or damage to property or other agents. A friendly agent seeks to 
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monitor and maintain the safety and security of property. Neutral agents do not cause or 

prevent harm. Agents do not change their motives. A hostile agent’s intrusion into a 

restricted area is an “event” according the simulation model. The presence of an intruder 

in the work plant setting constitutes a threat.  

The Role of the Security Officer 

The security officer is an agent in the simulation that interacts with the subject 

when threats arise in the simulation. The security officer interacts with the subject 

through the display of dialog boxes that prompt the subject for a response. The subject, 

who plays the role of a dispatcher, responds to the security officer’s requests by selecting 

an option in the displayed prompt. Figure 3 illustrates the interaction between the security 

officer and the subject. 

 

Figure 3. The computer simulation monitor window displays a prompt for the 

dispatcher to respond to a threat (Figure created by G. Block using Microsoft Windows 

snipping tool). Reprinted with permission. 

 

When a hostile agent enters a restricted area for the first time, the appropriate 

response for the security guard is to issue a warning. The second time the hostile agent 
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enters the restricted area; the appropriate response is once again to issue a warning. On 

the third intrusion, however, the appropriate response is to call for backup in order to 

intervene with the intruder. The appropriate response for the situation is described in a 

textual guide known as the Dispatcher Instructor Sheet (exhibited in Appendix A). The 

Dispatcher Instructor Sheet is a printed card that is positioned beside the computer 

terminal, within easy view of the subject. The security officer can detect which hostile 

agent has entered a restricted area, but is not able to determine how many times the agent 

has already entered the restricted area, and therefore cannot independently produce the 

appropriate response in accordance with the rules defined in the Dispatcher Instruction 

Sheet. 

Sensors 

In the scene, a sensor is used to track the location of all agents. Sensors transmit 

location information visually to the dispatcher. Sensor transmissions are subject to 

sporadic network disruptions. When a sensor transmission is disrupted, the scene no 

longer displays the real-time location of agents. During network disruptions, the subject 

will see either the uncertainty visualization interface, or a standard interface, according to 

which round of testing the subject is undergoing. 

The Role of the Dispatcher (Subject) 

The subject of the experiment takes the role of dispatcher. The dispatcher 

observes the situations on the four monitors and interacts with the on-scene security 

officer in each situation. When a threat occurs, the security officer will “ask” the 

dispatcher whether to proceed with a particular response. The dispatcher may refer to the 

Dispatcher Instruction Sheet at any time during the simulation. However, the dispatcher 
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must respond to the security officer’s request within ten seconds; otherwise, the security 

officer will make an independent (and possibly wrong) decision. The security officer can 

detect which hostile agent has entered a restricted area, but is not able to determine how 

many times the agent has already entered the restricted area, and therefore cannot 

independently produce the appropriate response in accordance with the rules defined in 

the Dispatcher Instruction Sheet. 

The Secondary Task 

The dispatcher’s primary task is to interact with the security officer during threats 

in order to determine the most appropriate response, with a goal of restoring the situation 

to a normal state. In addition, the dispatcher has a secondary task. A table is displayed at 

the right of the simulation monitor. At preconfigured intervals, a record is inserted into 

the table, corresponding to a clock-in or clock-out activity for an “off-screen” security 

officer (not the security officer involved in the situation, however). The dispatcher must 

click on a section of the record to “approve” or “report” the activity. The determination to 

approve or report an activity is based on whether the officer is clocking in, or out, early, 

late or on time. According to the rules stated in the Dispatcher Instruction Sheet 

(exhibited in Appendix A) the subject should approve any activity that occurs on time; 

however, the subject should report any late clock-in, or early clock-out; and approve any 

early clock-in, or late clock-out. This exercise requires the subject to read and 

comprehend the text of the activity, and to recall which rule, as stated in the Dispatcher 

Instruction Sheet, is most appropriate. Once the activity is acknowledged, the record is 

removed from the table. The secondary task has no time limit for capturing a response; if 

the user fails to respond to more than ten activities, a vertical scroll bar appears in the 
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table, and additional prompts are queued off-screen. The secondary task is illustrated in 

Figure 4. 

 

Figure 4. The Activities List displays activities the dispatcher must approve or 

report (Figure created by G. Block using Microsoft Windows snipping tool). Reprinted 

with permission. 

The subject is advised that the monitor activities are high-priority, health, and 

safety issues that require “99%” of the subject’s attention. The clock-in activities are 

administrative, and the subject should only pay attention to these activities “as time 

permits”. Figure 5 displays both the primary task and secondary task panels side-by-side. 

The subject’s attention is split between the primary and secondary task panels. 
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Figure 5. Primary and secondary tasks displayed in split panels (Figure created 

by G. Block using Microsoft Windows snipping tool). Reprinted with permission. 

The Simulation 

A configuration script was used to configure the simulation at the start of each 

run. The configuration script determined the number and placement of agents. Time-

variant features, such as agent movement was configured in the script as well. When the 

simulation is initialized, the actions defined in the configuration script are placed in the 

simulation’s future events list. As the simulation progresses, the executive process moves 

actions from the future events list to the current events list, where the actions are 

executed.  

Uncertainty Visualization 

As mentioned before, disruptions in sensor transmissions are sources of 

uncertainty. Uncertainty was visualized as follows: 

 A visual indicator denoted when network connectivity was disrupted. 

 Visual indicators using color and a bounded polygon denoted the probabilistic 

location of mobile agents during network disruptions (Andre & Cutler, 1998). 
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Figure 6 illustrates the visual indicators used in the simulation during a disruption 

in network connectivity. During a network disruption, banners located at the top, bottom 

and edges of the monitor change from blue to red. Further, in the “uncertainty on” phase, 

a projection connects the last known location of each agent with the agent’s probable 

location. 

 

Figure 6. Uncertainty visualization using bounded polygons Figure created by G. 

Block using Microsoft Windows snipping tool). Reprinted with permission. 

The uncertainty interface provides a mechanism for modulating the effects of 

computer visualizations on the user’s cognitive load. When the uncertainty interface is 

employed, other less-essential visualizations are removed in order to offset the additional 

cognitive burden. That is, the salience of essential elements is increased by muting the 

display of non-essential elements. An element is considered essential if presentation 

contributes to achieving a goal. For example, vehicles in the simulation do not interact 

with agents and do not enter restricted areas; accordingly, vehicles are non-essential. 

Therefore, the display of vehicles is suppressed during network disruptions to minimize 
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cognitive load. In addition, the satellite image switches from a color display to a black 

and white display to sharpen the contrast between items of interest and inanimate objects. 

By reducing the cognitive burden or other, less-essential visualizations, uncertainty 

visualizations can be added to the screen without unduly burdening the user’s cognitive 

load. Accordingly, the decision maker can improve awareness of the environment with 

less danger of impairment from an increased cognitive burden. 

There were two rounds of the simulation, each lasting ten minutes. In one round, 

there were no visual indicators of uncertainty. This round is referred to as the 

“uncertainty off” round, or the standard interface. In the “uncertainty on” round, the 

visual indicators of uncertainty were displayed. The “uncertainty on” and “uncertainty 

off” rounds were counterbalanced: half of the population started with the “uncertainty 

off” display, while the other half of the population started with the “uncertainty on” 

display. 

Training 

Due to the complexity of the user interface and the amount of interactions 

required for the primary and secondary tasks, each subject was asked to participate in two 

short training rounds lasting two minutes each round. The purpose of the training round 

was to familiarize the subject with the components on the screen (such as the scene 

monitor, and clock-in/clock-out table) and how to interact with the components. In 

addition, the training session introduced the uncertainty visualization elements. The 

subject was permitted to ask questions, and to repeat the training round if necessary. The 

training results were not included in the analysis. 
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Instrument development and validation 

The simulation experiment was configured using a step-wise, iterative approach 

in order to increase the generalizability of the results. First, the researcher formulates a 

theory, and then builds a computational model that generates results to test the theory. 

The researcher then analyzes the results in order to refine further the theory, and repeats 

the process (Emond & West, 2004). Accordingly, the research used a pilot phase in order 

to validate the computational model. The pilot phase was used to define the configuration 

of the simulation and the setting of controlled variables. In addition, the pilot was used to 

develop benchmarks for subject responses, according to the configuration of controlled 

variables. When the pilot was completed, observations from this phase were used to 

specify design and interface changes in the simulation. For example, the number of 

monitors was reduced from four to one in order to better match the capabilities of pilot 

users. 

Tests were conducted on the same hardware to ensure no variance in results was 

introduced by differing screen dimensions or resolutions; or differing keyboard or mouse 

layout. A Gateway NV54 laptop computer was used, running Windows 7 Home 

Premium1. No server, wireless, or internet connection was required. 

The application recorded user inputs (both mouse and keyboard) in order to 

calculate response time and accuracy rates. Response time measures the duration, in 

seconds, between the initial display of a prompt, and when the user’s input is detected in 

response to the prompt. If the user did not respond to a prompt within a specified period, 

                                                 
1 Windows is a registered trademark of Microsoft Corporation in the United States and other 

countries. 
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or the testing round completes before the user was able to respond to a prompt, the 

application marked the prompt as not completed by the user. 

Formats for presenting results 

The subject’s primary task was to respond to prompts posed by the security 

officer when a threat occurred. This is a relatively complex task because the subject was 

required to assess the situation, recall the number of times a particular agent had already 

trespassed on a restricted area, and then recall (or quickly refer to) the Dispatcher 

Instruction Sheet in order to provide the correct response. Because each subject was 

likely to choose different problem solving techniques to the primary task, variability in 

the execution of the primary task was expected. 

The subject’s secondary task was the acknowledgment of clock-in and clock-out 

activities. Because this task was less complex, and less variable, the secondary task was 

considered as a good candidate for measurement. 

Immediately following the test, each subject was given a questionnaire to answer. 

The questionnaire was used to record subjective information from the subject. Similar to 

Garrabrants (2009) the questionnaire asked questions concerning the user’s awareness of 

the environment, perception of workload, and the degree to which the subject was able to 

operate efficiently. 

The subject’s performance was scored in both the primary and secondary tasks. In 

the primary task, the subject was scored according to the amount of time the subject 

requires to respond to a security officer prompt when a threat occurred, as well as 

whether the subject chose an appropriate response according to the Dispatcher Instruction 

Sheet. In the secondary task, the subject was scored according to the amount of time the 
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subject requires to acknowledge an activity record, as well as whether the subject 

provides the correct acknowledgment. The scores of both primary and secondary tasks 

were not displayed to the subject. 

Further, a repeated measure of analysis of variance (RM ANOVA) was performed 

in order to assess the possibility that bias was introduced by repeating the experiment on 

each participant (that is, sequencing effects). The purpose of a RM ANOVA is to 

determine the degree to which the sample data may cast doubt on the null hypothesis of 

the analysis of variance, which focuses on whether the means differ between tests (Huck, 

2008). 

The dependent variables were measured as follows: 

 Memory was quantitatively measured by the accuracy rate of responses in 

the primary task. 

 Attention was quantitatively measured by the amount of time required to 

complete the primary task.  

 Workload was quantitatively measured through accuracy rate of responses 

in the secondary task. 

The “uncertainty on” and “uncertainty off” rounds were counterbalanced: half of 

the population started with the “uncertainty off” display, while the other half of the 

population started with the “uncertainty on” display. This step was to offset or minimize 

bias introduced by the ordering of each interface (sequencing effects). Because each 

subject was tested twice (in two rounds), the subject’s performance may improve in the 

second round because of additional experience with the simulation. A primary hypothesis 

(H1) is that subject performance did improve with repeated testing; the null hypothesis 
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(H0) is that subject performance did not improve with repeated testing. If the within-

subject ANOVA results per subject are greater than the .05 confidence level, then the null 

hypothesis can be accepted. 

Subjective results from the “uncertainty on” and “uncertainty off” rounds were 

measured using a questionnaire with Likert-type scales (see Appendix B). Almost half of 

the published articles in the field of human computer interfaces use Likert-type scales to 

measure the user’s qualitative experience (Kaptein, Nass, & Markopoulos, 2010). 

Questionnaire results were categorized according to the correlated dependent variables 

(memory, attention, and workload). A t-test is typically used to evaluate a hypothesis that 

deals with two means (Huck, 2008; Kaptein, Nass, & Markopoulos, 2010). Accordingly, 

a t-test was conducted to determine if responses relating to the “uncertainty on” scenario 

were statistically significant than responses relating to the “uncertainty off” scenario. 

Responses that were not statistically significant (that is, with less than a .05 confidence 

level) will be ignored. 

Resource requirements 

Software 

The simulation software used was developed on the Microsoft Windows 7 

platform using Microsoft Visual Studio 2010 as the Integrated Development Environment 

(IDE), the Microsoft .Net framework 4.0, and the C# programming language. The 

simulation was developed by the author of this report, who has 20 years of experience in 

developing Windows-based graphical user interfaces. Developmental testing of the 

simulation was conducted by the author. 



63 

  

 

 

The application recorded user inputs (both mouse and keyboard) in order to 

calculate response time and accuracy rates. Response time measures the duration, in 

seconds, between the initial display of a prompt, and when the user’s input is detected in 

response to the prompt. If the user does not respond to a prompt within a specified time 

period, or the testing round completes, the application will mark the prompt as not 

completed by the user. 

Hardware 

The simulation was run on a Gateway NV54 with a Pentium Dual-Core processor 

running at 2.10 gigahertz, 4 gigabytes of random access memory (RAM) and Windows 7 

Home Premium. The display is 15.6 inches and the screen resolution is 1366×768. The 

subjects were supplied with a mouse and built-in keyboard. 

IRB Approval 

Human subjects were used to conduct this experiment. The subjects did not 

require extensive experience with graphical user interfaces, surveillance, or monitoring 

software (Liu, Macchiarella, & Vincenzi, 2009). Institutional Review Board (IRB) 

approval was required for this research. The IRB Approval Memorandum is presented in 

Appendix C. 

Summary 

The purpose of this research is to use both quantitative and qualitative 

measurements to determine whether adaptive uncertainty visualization has a significant 

impact on reducing a user’s cognitive load. Software visualizations displaying 

uncertainty characteristics may also increase the user’s cognitive load (Bunch & Lloyd, 

2006); there is a trade-off between the reduction in cognitive load by displaying 
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uncertainty factors, and the increase in cognitive load by displaying additional visual 

elements (Antifakos, Schwaninger, & Schiele, 2004). This research builds on uncertainty 

research in the visualization community by adapting the display of the uncertainty aspects 

in software visualizations to the user’s level of cognitive load (Zuk & Carpendale, 2007). 

The rigorous methodology presented in this section is intended to ensure a high 

degree of reliability and validity. Reliability and validity was maintained through the 

calculation of the appropriate sample size, the selection of subjects from the population, 

and the use of a counterbalanced approach to ensure the order of experiments would not 

influence the outcome. Further, the method for collecting and analyzing the results of 

experiments was subjected to statistical tests to maintain a high degree of reliability and 

validity. 
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4. Results 

Chapter 4 

 

Results 

Findings 

Three dependent variables were defined in Chapter 3: memory, attention, and 

workload. The dependent variables will be evaluated separately in order to assess the 

impact of adaptive uncertainty visualization on subjects with respect to each variable. 

Measurements were collected from seven primary tasks and three secondary tasks, 

including response time to complete each task, and the accuracy rate. The measurements 

contributed to the evaluation of each dependent variable; for example, measurement of 

the subject’s response time was used to assess the subject’s attention level. In addition, 

survey results were used to provide a qualitative assessment of each independent 

variable. Appendix D contains the table of quantitative measurements collected for each 

subject during the two successive runs of the study, while the table in Appendix E 

summarizes the qualitative survey results collected after the completion of the study for 

each subject, as well as all comments provided by the subjects.  

As described in Chapter 3, the study was conducted on each subject twice: once 

with, and once without the adaptive uncertainty visualization. The order in which each 

visualization was scheduled was alternated in order to counterbalance any sequencing 

effects, such as learning, or fatigue. In order to determine whether repeated exposure to 

the study affected a subject’s performance in terms of accuracy rates or response time, a 
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repeated measures analysis of variance (RM ANOVA) was conducted using the 

quantitative measurements. RM ANOVA analysis was conducted using Minitab version 

15, and the results of the analysis appear in the form of a Minitab session log in Appendix 

F. 

The RM ANOVA analysis evaluates two factors – between-subjects and within-

subjects. The within-subjects factor reflects the measurement of the dependent variable 

across all conditions for each subject, while the between-subjects factor reflects the 

measurement of the dependent variable across all subjects.  

To evaluate the influence of sequencing effects, the hypothesis (H) is asserted that 

performance and accuracy (as measured by response time and accuracy rate) changed 

significantly, when the subject repeated the study, while the null hypothesis (H0) is 

asserted that performance and accuracy did not change significantly. If the subject p 

values for within-subjects results is less than the confidence level alpha (α), which is 

defined as .05, the null hypothesis is rejected; if the subject p value exceeds the 

confidence level, then the null hypotheses is accepted. Within-subjects analysis was 

conducted on the measurements that contributed to the evaluation of each dependent 

variable, and the results appear in tables later in this chapter. 

Finally, a t-test was conducted on the qualitative survey results to determine 

whether the responses regarding the uncertainty visualization display were significantly 

different from the responses regarding the standard display. The results of the analysis 

appear in the form of a Minitab session log in Appendix F. Minitab was also used to 

produce the charts and graphs included in this chapter. 
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About the Sample 

Data was collected from a sample consisting of 24 subjects who used a computer 

for business or academic purposes for a period of two or more years, and for two or more 

hours a day. The sample was evenly divided among male and female participants (that is, 

12 male and 12 female subjects). Subject age ranged from 18 to 62, with a mean age of 

38. In addition, the subject’s education ranged from subjects with high school only, to 

others with doctoral degrees, with a mean of 3.7 (just less than a 4-year degree). 

Education was scaled according to the number of years of college each subject had 

completed following high school; for example, three of the subjects had completed two 

years of college, while two of the subjects had completed eight years of college. The 

distribution of values for subject age and education are presented in Figure 7 and Figure 

8. 
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Figure 8. Histogram. Education of Subjects (years post high school) 

Analysis of Memory Factors 

The effects of the interface on memory was measured by the accuracy rate for 

completing seven primary tasks. The accuracy rate represented the number of correct 

responses the subject provided in completing each of the seven primary tasks. In order to 

provide an accurate response, the subject needed to remember how many times a 

particular agent in the simulation had received a warning for entering a restricted area. As 

outlined in the Dispatcher Instruction Sheet (included in Appendix A), the subject was to 

issue a warning the first two times an agent entering a restricted area, and request backup 

to remove the agent on the third attempt. 

Table 3 lists the p values for both the between-subjects and within-subjects factors 

for the primary tasks examined in the memory analysis. As the table indicates, the within-

subjects p values for all factors are greater than the alpha (α) of .05, supporting the null 
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hypothesis that sequencing effects arising from repeated exposure to the study were not a 

significant factor. Accordingly, the factors can be evaluated to determine the effects of 

uncertainty visualization on the subject’s memory. 

Table 3 also lists the between-subject p values for tasks A-G. The between-

subjects measurement assesses the effect of the interface on the subject’s memory. As the 

table indicates, the between-subjects p values for tasks B, D, E, F, and G are less than the 

alpha (α) of .05, so the null hypothesis (H0), that the interface did not significantly 

influence the subject’s memory, is rejected. The hypothesis that the interface significantly 

influences the subject’s memory is accepted. Appendix F lists the complete RM ANOVA 

results for the primary task in the form of the Minitab session log. 

Table 3 

Probability (p) Values for Memory Factors  

 

Between-Subjects and Within-Subjects Accuracy Rate 

 

Factor Between Subjects (p) Within Subjects (p) 

Task A 0.328 0.630 

Task B 0.029* 0.158 

Task C 0.539 0.318 

Task D 0.001* 0.216 

Task E 0.004* 0.144 

Task F 0.015* 0.824 

Task G 0.002* 0.332 
* indicates a p value < .05 

Figure 9 and Figure 10 display the distribution of values for subject accuracy rate 

in the primary task for both the standard interface, and the uncertainty visualization 

interface. The mean accuracy rate for the uncertainty visualization display was 
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significantly higher than the mean accuracy rate for the standard display, while the 

variance was significantly reduced. 
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Figure 9. Histogram. Primary Task Accuracy. Standard Interface 
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Figure 10. Histogram. Primary Task Accuracy. Uncertainty Interface 
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Figure 11 compares the mean accuracy rate for several representative primary 

tasks measured with both the standard display, as well as the uncertainty visualization 

display. Inspection of the graph illustrates that the uncertainty visualization interface 

improved the accuracy rate for completing the primary task. As Figure 11 illustrates, the 

mean accuracy for task C was slightly higher under the standard interface than the 

uncertainty interface, whereas the uncertainty interface improved the accuracy rate for the 

remaining tasks. Participant accuracy rates for task C may have differed from other tasks 

due to vagaries in the scheduling of tasks in the simulation; while other tasks were 

executed concurrently, dividing the operator’s attention among multiple tasks, task C 

executed when no other tasks were running, reducing the burden on the operator’s 

cognitive load. 
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Figure 11. Bar Chart. Primary Task Mean Accuracy. Both Interfaces 

Appendix B lists the survey questions asked of each subject immediately 

following the two test runs. Responses ranged from a value of one (“Strongly Disagree”) 
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to five (“Strongly agree”). Questions 2, 5, 7, 8, 13, 17, and 18 addressed the subject’s 

perception of how the interface influenced their ability to remember the status of the 

agents in the simulation, and thus their accuracy rate in responded to prompts. A t-test 

was conducted on the survey responses, and the results are listed in Appendix F. Results 

greater than the alpha (α) of .05 indicated that there was no statistical significance 

between subject responses concerning the standard interface versus the uncertainty 

visualization interface. Results for question 13 were greater than the alpha (α) of .05, so 

responses for these questions were not considered. Responses for the remaining questions 

are listed in Table 4. 

Table 4 

Mean Responses for Survey Questions for Memory  

 

Memory 

 

Question Standard 

Interface 

Uncertainty 

Interface 

2. Easily distinguish between critical and non-critical tasks 3.3 4.6 

5. Knew the status of all individuals 2.8 3.9 

7. Confident about decisions 3.1 4.0 

8. Able to make good decisions 3.7 4.4 

17. Made fewer errors 2.0 3.6 

18. Easy to track individuals and remember who they were 2.9 4.1 

The response scale is 1-5, where 1=strongly disagree, 5=strongly agree 

Both quantitative and qualitative results conclusively demonstrated that the 

subject’s memory was significantly improved in the uncertainty visualization display as 

opposed to the subject’s ability to recall when using the standard display. The demand on 

the subject’s memory was higher in standard display, resulting in a lower accuracy rate. 
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Analysis of Attention Factors 

The effects of the interface on attention was measured by the response times for 

completing seven primary tasks. The response time represented the duration, in seconds, 

between the time a response was presented to the subject, and the time the subject 

responded in completing each of the seven primary tasks.  

Table 5 lists the p values for both the between-subjects and within-subjects factors 

for the primary tasks examined in the attention analysis. As the table indicates, the 

within-subjects p values for A, B, C, D, E, and F factors are greater than the alpha (α) of 

.05, supporting the null hypothesis that sequencing effects arising from repeated exposure 

to the study were not a significant factor. Accordingly, the factors can be evaluated to 

determine the effects of uncertainty visualization on the subject’s attention. 

Table 5 also lists the between-subject p values for tasks A-G. The between-

subjects measurement assesses the effect of the interface on the subject’s level of 

attention. As the table indicates, the between-subjects p values for tasks A, B, D, E, and F 

are less than the alpha (α) of .05, so the null hypothesis (H0), that the choice of interface 

did not significantly influence the subject’s level of attention, is rejected. The hypothesis 

that the choice of interface significantly influences the subject’s attention is accepted. 

Appendix F lists the complete RM ANOVA results for the primary task in the form of the 

Minitab session log. 



74 

  

 

 

Table 5 

Probability (p) Values for Attention Factors  

 

Between-Subjects and Within-Subjects Response Time 

 

Factor Between Subjects (p) Within Subjects (p) 

Task A 0.000* 0.462 

Task B 0.003* 0.185 

Task C 0.681 0.637 

Task D 0.012* 0.764 

Task E 0.017* 0.646 

Task F 0.002* 0.881 

Task G 0.630 0.011* 
* indicates a p value < .05 

Figure 12 and Figure 13 display the distribution of values for subject response 

time in the primary task for both the standard interface, and the uncertainty visualization 

interface. The mean response time for the uncertainty visualization interface was 

significantly lower than the mean response time for the standard interface, while the 

variance was significantly reduced. 
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Figure 12. Histogram. Primary Task Response Time. Standard Interface 
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Figure 13. Histogram. Primary Task Response Time. Uncertainty Interface 

Figure 14 compares the mean response times for several representative primary 

tasks measured with both the standard display, as well as the uncertainty visualization 

display. Inspection of the graph illustrates that the uncertainty visualization interface 

reduced the response time for completing the primary task.  
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Figure 14. Bar Chart. Primary Task Mean Response Time. Both Interfaces 

Appendix B lists the survey questions asked of each subject immediately 

following the two test runs. Responses ranged from a value of one (“Strongly Disagree”) 

to five (“Strongly agree”). Questions 1, 3, 6, 11, 14, 19, and 20 addressed the subject’s 

perception of how the interface influenced their ability to stay attentive to assigned tasks, 

and thus their response time in responded to prompts. A t-test was conducted on the 

survey responses, and the results are listed in Appendix F. Results greater than the alpha 

(α) of .05 indicated that there was no statistical significance between subject responses 

concerning the standard interface versus the uncertainty visualization interface. Results 

for questions 11, 14, and 20 were greater than the alpha (α) of .05, so responses for these 

questions were not considered. The responses for the remaining questions are listed in 

Table 6. 
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Table 6 

Mean Responses for Survey Questions for Attention  

 

Response Time 

 

Question Standard 

Interface 

Uncertainty 

Visualization 

Interface 

1. Knew when a situation required attention 3.6 4.9 

3. Could concentrate on critical decisions 3.7 4.4 

6. Easy to switch between tasks 3.2 4.1 

19. Movement improved target detection 3.0 4.8 

The response scale is 1-5, where 1=strongly disagree, 5=strongly agree 

Both quantitative and qualitative results conclusively demonstrated that the 

subject’s level of attention was significantly improved in the uncertainty visualization 

display as opposed to the subject’s ability to recall when using the standard display. The 

demand on the subject’s attention was higher in standard display, resulting in a lower 

response time. 

 

Analysis of Workload Factors 

The effects of the interface on workload was measured by the accuracy rate for 

completing three secondary tasks. The accuracy rate represented the number of correct 

responses the subject provided in completing each of the three secondary tasks. In order 

to provide an accurate response, the subject needed to read and comprehend a notification 

in the simulation indicating a security officer had arrived for, or departed the security 

post. As outlined in the Dispatcher Instruction Sheet (included in Appendix A), the 
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subject was to report any late arrival or early departure; approve any early arrival or late 

departure; and approve any on-time arrival or departure. 

Table 7 lists the p values for both the between-subjects and within-subjects factors 

for the secondary tasks examined in the workload analysis. As the table indicates, the 

within-subjects p values for all secondary factors are less than the alpha (α) of .05, 

supporting the hypothesis that sequencing effects arising from repeated exposure to the 

study were a significant factor. Accordingly, the factors cannot be evaluated to determine 

the effects of uncertainty visualization on the subject’s workload. 

Table 7 also lists the between-subject p values for all secondary tasks. The 

between-subjects measurement assesses the effect of the interface on the subject’s 

workload. As the table indicates, the between-subjects p values for all secondary tasks 

exceed the alpha (α) of .05, so the hypothesis that the choice of interface significantly 

influences the subject’s attention is rejected. Appendix F lists the complete RM ANOVA 

results for the secondary task in the form of the Minitab session log. 

Table 7 

Probability (p) Values for Workload Factors  

 

Between-Subjects and Within-Subjects Accuracy Rate 

 

Factor Between Subjects (p) Within Subjects (p) 

Task 1 0.317 0.000* 

Task 2 0.580 0.000* 

Task 3 0.150 0.000* 
* indicates a p value < .05 
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Figure 15 and Figure 16 display the distribution of values for subject accuracy 

rate in the secondary task for both the standard interface, and the uncertainty visualization 

interface.  
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Figure 15. Histogram. Secondary Task Accuracy. Standard Interface 
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Figure 16. Histogram. Secondary Task Accuracy. Uncertainty Interface 
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During the simulation study, the researcher observed a number of subjects execute 

“strategies” using the secondary tasks. For example, one subject ignored secondary tasks 

that described a security officer as arriving or departing late or early. These tasks were 

two-factored tasks, because the subject first had to comprehend whether the officer was 

arriving or departing; then the subject had to comprehend whether the officer was early or 

late. This task was computationally more extensive than the on-time task, which only 

required that the subject determine whether the officer arrived on time. By concentrating 

on the on time tasks, the subject was able to increase the number of correct responses for 

that task category, but at the expense of the other categories. Another subject chose to 

ignore all of the secondary tasks when two or more agents were present on the screen (as 

part of the primary task). As a result, the accuracy rate and response time variance was 

high for all secondary tasks. This was manifested in very low p values for the within-

subjects factors. 

Appendix B lists the survey questions asked of each subject immediately 

following the two test runs. Responses ranged from a value of one (“Strongly Disagree”) 

to five (“Strongly agree”). Questions 4, 9, 10, 12, 15, and 16 addressed the subject’s 

perception of their situational awareness, and thus their accuracy rate in reading and 

comprehending prompts in the secondary task. A t-test was conducted on the survey 

responses, and the results are listed in Appendix F. Results greater than the alpha (α) of 

.05 indicated that there was no statistical significance between subject responses 

concerning the standard interface versus the uncertainty visualization interface. Results 

for questions 12, and 16 were greater than the alpha (α) of .05, so responses for these 



81 

  

 

 

questions were not considered. The responses for the remaining questions are listed in 

Table 8. 

Table 8 

Mean Responses for Survey Questions for Workload  

Question Standard 

Interface 

Uncertainty 

Visualization 

Interface 

4. Prioritize critical and non-critical tasks 3.2 4.5 

9. Able to make good decisions during active times 3.4 4.4 

10. Able to make good decisions during critical events 3.2 4.2 

15. Certainty about actions required 3.1 4.2 

The response scale is 1-5, where 1=strongly disagree, 5=strongly agree 

While quantitative results did not support the hypothesis, qualitative results 

conclusively demonstrated that the subject’s workload was significantly improved in the 

uncertainty visualization display as opposed to the subject’s ability to recall when using 

the standard display. The demand on the subject’s workload was higher in standard 

display, resulting in a lower response time. 

Summary of Results 

A study was conducted using 24 subjects who were identified as knowledge 

workers who use computers each day for academic or professional purposes. The sample 

was evenly divided between male and female subjects, and ages ranged from 18 to 62 

years. A computer simulation was chosen for the study to maintain a constant set of 

independent variables across all subjects. The computer simulation was designed to 

increase the subjects’ cognitive load in order to determine whether adaptive uncertainty 
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visualizations significantly affected dependent variables, such as memory, attention, and 

workload that represented the cognitive load each subject experienced. The dependent 

variables were assessed quantitatively by measuring the response time and accuracy rates 

of completing simulation tasks, and qualitatively by examining responses to a survey 

conducted at the end of each experiment. Because subjects were tested twice (once with a 

standard interface and once with the uncertainty visualization interface) results were 

validated using repeated measures of analysis of variance (RM ANOVA) to determine 

whether subjects were influenced by sequencing effects. 

The results indicated that the cognitive burden on the subjects’ memory, attention, 

and workload was significantly diminished when using the uncertainty visualization 

interface, in contrast to when the subjects used the standard interface. Subjects were able 

to complete tasks in less time, and with a higher accuracy rate. Further, the subjects 

perceived they were more effective when using the uncertainty visualization interface, in 

contrast to when the subjects used the standard interface 
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5. Conclusions, Implications, Recommendations, and Summary 

 

Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

Conclusions 

The study simulated an environment with an elevated level of activity in order to 

stress the subject’s cognitive load. A primary task exercised the subject’s ability to recall 

the status of up to four individual agents at a time, while requiring the subject to scan 

visually a region in order to detect when agents entered certain restricted areas. A 

secondary task exercised the subject’s ability to read and comprehend alerts. Because 

both tasks were presented concurrently, the subjects were required to exercise both 

divided and sustained attention. 

An analysis of the research using the computer simulation demonstrated that 

subjects were able to perform their primary tasks with a higher accuracy rate using the 

adaptive uncertainty display than when using a standard display. In addition, subjects 

were able to complete the primary tasks in less time using the adaptive uncertainty 

display. This finding was reinforced by qualitative results from a survey conducted 

immediately after each simulation test; subjects accorded the adaptive uncertainty display 

a higher degree of user satisfaction than the standard display.  

A repeated measure of analysis of variance (RM ANOVA) indicated that 

sequencing effects significantly influenced the subject’s accuracy rate and response time 

in completing the secondary tasks. Nonetheless, subjects were able to complete the 
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secondary tasks in substantially less time with a similar level of accuracy. For example, 

the mean response time for completing Task A using the standard interface was 17.05 

seconds, and with the uncertainty interface, the mean response time was 12.94 seconds.   

Analysis of Research Questions 

Chapter 1 presented the hypothesis that adaptive uncertainty visualization 

significantly reduce a user’s cognitive load in an environment where both stress and 

uncertainty abound. The hypothesis (H) asserted that knowledge workers exhibit better 

performance and improved decision-making using adaptive uncertainty visualization than 

when a standard interface is employed. The null hypothesis (H0) was that knowledge 

workers exhibit no better performance or improved decision-making using adaptive 

uncertainty visualization than when a standard interface was employed. 

Chapter 1 also presented the following research questions: 

1. Does adaptive uncertainty visualization improve the system operator’s level of 

performance in completing assigned tasks?  

2. Does adaptive uncertainty visualization improve the system operator’s level of 

attention in handling multiple activities?  

3. Does adaptive uncertainty visualization reduce the burden on the system 

operator’s workload?  

The purpose of the first research question was to determine whether the 

uncertainty interface improved performance factors, such as memory. The computer 

simulation tested the subject’s memory by requiring the subject to remember the status of 

up to four agents at a time, and to provide a response in accordance with simple rules. 

Both the quantitative data, as measured by the subject’s accuracy rate, and the qualitative 
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responses from survey questions, indicate the subjects were able to recall the status of all 

agents at a higher rate or accuracy using the uncertainty display than with the standard 

display.  

The second question was related to the user’s level of attention. Because the 

subject was challenged with two concurrent tasks, the subject’s attention was divided by 

the demands of each task. Consequently, when the simulation displayed an alert that 

required the subject’s attention, the subject had to divert attention from their current point 

of focus to the section of the screen where the alert was displayed. The amount of time 

required for the subject to regain focus on a target area was reflected in the response time 

for providing a response to a particular task. Both the quantitative data, as measured by 

the subject’s response time, and the qualitative responses from survey questions, indicate 

the subjects were able to regain focus on a target area with a significantly lower response 

time using the uncertainty display than with the standard display. 

The final question was concerned with the user’s workload. The computer 

simulation tested the subject’s workload by requiring the subject to read and comprehend 

the text of an alert as part of the secondary task, and to provide a response in accordance 

with simple rules. A repeated measure of analysis of variance (ANOVA) indicated that 

subject performance on the secondary task was unduly influenced by sequencing events. 

However, the qualitative responses from survey questions indicate the subjects had 

greater comprehension of the text of alert notifications using the uncertainty display than 

with the standard display.  

The study clearly supports the hypothesis that adaptive uncertainty visualization 

significantly reduces a user’s cognitive load in an environment where both stress and 
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uncertainty abound. Subjects exhibit better performance and improved decision-making 

using adaptive uncertainty visualization than a standard interface as measured by 

memory, attention, and workload. Accordingly, the null hypothesis (H0) that knowledge 

workers exhibited no better performance or improved decision-making using adaptive 

uncertainty visualization than when using a standard interface can be rejected. 

Implications 

The proliferation of large-area networks, inexpensive sensors, and mobile devices 

has increased demand for context-aware applications that integrate the user with the 

environment in which the user is located; yet data from the environment can be faulty and 

unpredictable (Mühlhäuser & Hartmann, 2009). The combination of increased data flow, 

and greater and more diverse types of uncertainty, poses a challenge for user experience 

designers (Santos, Cardoso, Diniz, & Ferreira, 2010).  

The unique characteristics of real-world settings can impose a cognitive burden 

on decision-makers that reduces the effectiveness of their decisions. These characteristics 

include time constraints, high stakes, and ill-structured problems. Decision-makers adapt 

strategies in order to cope with the effects of these uncertainties, using such techniques as 

reduction (to reduce the level of uncertainty), forestalling (preparing a contingency plan), 

and suppression (that is, increase risk-taking by ignoring the effects of uncertainty). 

Further, novices and experts respond with different strategies; for example, experts are 

more likely to build stories to account for phenomena, while novices are more likely to 

use checklists (Atoyan, Robert, & Duquet, 2011). 

Emerging applications for pervasive, context-aware systems include emergency 

first-responder services, military, security, and disaster relief scenarios (Arabo, Shi, & 
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Merabti, 2011). Each of these scenarios require humans to make high stake decisions in 

an environment with a high degree of uncertainty. For example, military personnel are 

increasingly deployed to combat terrorism, counterinsurgencies, or for extended 

peacekeeping operations. These engagements are often protracted, with diffuse source of 

threats, and ill-defined rules of engagement. Soldiers are often fatigued, subject to 

numerous types of stress, and suffer limited cognitive functioning. The combination of 

uncertain situational factors and psychological factors can have adverse consequences for 

soldiers. and the successful fulfillment of their mission (Sharma & Sharma, 2012). 

First-responders operate in a high stake environment with a compressed 

timeframe, where lives may be lost in a few minutes. Emergency medical technicians 

(EMTs) form a mental model prior to arriving at the scene of an emergency that is based 

on information provided by a dispatcher, and the EMT’s own past experiences. Once the 

EMT arrives on the scene, additional information from onlookers, the victim, or the 

EMT’s own observations refine and shape the mental model. The EMT then develops a 

response, called a situated action that is more reflective of unforeseeable contingencies 

rather foreseeable outcomes. Finally, the EMT makes decisions about care and treatment 

of the victim that balance the exigency of providing immediate care with the urgency of 

transporting the victim to a hospital or emergency unit. While formation of the mental 

model is critical to timely and accurate decision making, the EMT may be hampered by a 

number of factors inherent to emergencies. For example, situational stress can degrade 

the EMT’s perception of the mental model; the EMT may have difficulty transforming 

the mental model of past situations to the present; unforeseen contingencies may cause 

deviations from mental models (Rahman, 2012). 
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The current study demonstrated the hypothesis that adaptive uncertainty 

visualization significantly reduces a user’s cognitive load in an environment where both 

stress and uncertainty abound. This hypothesis has clear implications for situations where 

participants are subject to high cognitive load, such as soldiers on the battlefield or on 

peacekeeping missions, or first-responders in emergencies. There are many scenarios 

where a human decision maker could benefit from having visibility to uncertainty factors; 

for example, a soldier on a peacekeeping mission may determine that a sensor providing 

stale or out-of-date information has been tampered with or disabled, indicating the 

presence of insurgents. A fire official at the scene of a fire may revert to line-of-sight 

verification when an application showing the interior of a building indicates a low degree 

of confidence in presenting the structural integrity of interior walls. Sacrificing the 

presentation of uncertainty factors in order to spare a system user from additional burdens 

on cognitive load may also deprive the user of essential inputs that could improve 

decision-making, or enable intuitive heuristics or compensatory actions that lead to 

problem solving. 

Adaptive uncertainty visualization provides a mechanism for modulating the 

effects of computer visualizations on the user’s cognitive load. When an uncertainty 

visualization is added to a screen, other less-essential visualizations are removed in order 

to offset the additional cognitive burden. That is, the salience of essential elements is 

increased by muting the display of non-essential elements. An element is considered 

essential if presentation contributes to achieving a goal. For example, inanimate objects 

in the background of an image can be depicted with a wireframe rather than a textured 

image; or background colors can be muted to sharpen the contrast between items of 
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interest and inanimate objects. By reducing the cognitive burden or other, less-essential 

visualizations, uncertainty visualizations can be added to the screen without unduly 

burdening the user’s cognitive load. Accordingly, the decision maker can improve 

awareness of the environment with less danger of impairment from an increased 

cognitive burden. 

Recommendations 

While this study conclusively demonstrates that adaptive uncertainty visualization 

can significantly reduce cognitive load, the nexus of cognitive load and uncertainty 

visualization is fertile with areas for further investigation and refinement. The study was 

confined to a sample of 24 knowledge workers; this population is subject to information 

overload (Karr-Wisniewski & Lu, 2010) and high levels of stress and anxiety that can 

lead to high degrees of cognitive load (Kirsch, 2000). The knowledge worker 

classification encompasses a large population with a great degree of variety in terms of 

background, capabilities, and motivation. This can lead to a large variability in 

experiment performance, which can reduce the reliability of research findings. For 

example, two of the research subjects remarked that the simulation was “too slow”, while 

two others remarked that the simulation was “too fast”. While knowledge workers 

frequently interact with visualization tools for decision-making (Reinhardt, Schmidt, 

Sloep, & Drachsler, 2011) there are cognitive load factors unique to real-world settings, 

such as time compression and an ability to form a mental model (Atoyan, Robert, & 

Duquet, 2011). As a result, the findings of this study may not be generalized to other 

populations or situations, such as a combat setting, or with first-responders, since the 

cognitive load characteristics of these settings are unique (Arabo, Shi, & Merabti, 2011); 
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Rahman, 2012). Accordingly, an important area of future study would be to test adaptive 

uncertainty visualization in simulated combat or first-responder settings. 

Another important area of future study is adaptable versus adaptive modulation of 

the cognitive effects of visualizations. Atoyan et al. (2011) define an adaptive system as 

one in which the system makes the decision to automate activities on behalf of the 

operator, while an adaptable decision allows the operator to grant or revoke the 

automation. Certain aspects of adaptive systems can increase uncertainty (such as when 

adaptive effects are unpredictable) or lower user acceptance (when the user resents or is 

frustrated by automation). Adaptable systems can increase user acceptance and foster 

trust in the system. In the context of uncertainty visualization, an adaptable system could 

allow the operator to decide which visual elements are cognitively burdensome but add 

little to decision-making, or which techniques to use to minimize the cognitive burden of 

non-essential visualizations. For example, the operator could choose to shade a moving 

object or reduce the refresh interval so the object’s movement is not continuous. 

Adaptable uncertainty visualization methods could also be applied to the emerging field 

of augmented cognition, where a system modulates the type and volume of information 

provided to an operator based on an assessment of the operator’s state (Juhnke, Mills, & 

Hoppenrath, 2007). 

Confidence levels exert a strong influence on the operator’s acceptance of a 

system (Cohen & Warren, 1990). There is a threshold of system confidence that 

influences the operator’s acceptance of the system; below the threshold, it may be 

harmful for the system to disclose factors affecting uncertainty. A confidence threshold 

for non-critical applications is within an 80-90% confidence range, but this range may 
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vary according to the situation (Lim & Dey, 2011). In the current study, the confidence 

level was fixed at 85% as a control variable. Consequently, the study did not examine the 

influence of low or varying confidence levels on cognitive load. Low or varying 

confidence levels could be cognitively burdensome to the operator, an outcome that could 

negate the benefits of displaying uncertainty factors.  

Several subjects in the study observed that the simulation did not sufficiently 

suppress non-essential elements. While the display of a number of distractors was 

suppressed during simulated outages (such as passing vehicles), other non-critical 

elements were not suppressed (such as neutral targets that were not moving). According 

to the rules of the simulation, both non-moving objects and passing vehicles contributed 

little to decision-making (since they did not enter restricted areas) but because the weight 

of the cognitive assigned to movement was higher than stationary objects, the simulation 

suppressed vehicles rather than neutral objects. Further study on classification of the 

cognitive burden of visual elements would support a more sophisticated algorithm for 

determining which visual elements to modulate and in which priority, in order to reduce 

or maintain the same level of cognitive load. Using the same approach to classifying the 

cognitive burden of uncertainty visualizations support a more fine-grained approach to 

offsetting the additional cognitive burdens of uncertainty by reducing the cognitive 

burden of non-essential elements. Further research could identify whether a multi-faceted 

approach to the classification of cognitive burden of visual elements is appropriate (for 

example, by classifying a composite cognitive burden of different facets of a visual 

element, such as its movement, size, color, or brightness).  
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Humans are successful in solving complex problems in multimodal environments 

every day. For example, the task of driving involves a combination of visual, auditory, 

and haptic stimuli. Multimodal stimuli can have a detrimental effect in high workload 

environments, but for some cognitively challenging tasks, such as vehicle navigation, 

audiovisual stimuli can improve performance (Sigrist, Rauter, Riener, & Wolf, 2012). 

This finding is consistent with the multiple resource model proposed by Wickens (2002). 

Examples of auditory signals include auditory alarms, which alert an operator to an 

urgent condition, or sonification of system variables, where the volume or tone of a sound 

is modulated according to system parameters. The current study is unimodal, focusing 

solely on visual stimuli. Future research could explore the other modalities in which 

uncertainty can be represented (for example, haptically), or how cognitively burdensome 

tasks could be offloaded to underused modalities (such as by switching to auditory 

stimuli when the visual senses are overloaded). 

Summary 

Uncertainty is inherent in many real-world settings; for example, an emergency 

medical technician arriving on the scene of an emergency may have incomplete or 

inaccurate information regarding the source or severity of injuries, preventing the 

technician from making a valid assessment concerning treatment. In an environment 

plagued with uncertainty, decision-support systems, such as sensor-based networks, may 

make faulty assumptions about field conditions, especially when information is 

incomplete, or sensor operations are disrupted. Because humans are adept at problem 

solving under uncertain conditions (Tversky & Kahneman, 1974) the presentation of 

uncertainty can lead to more effective decision-making. 
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In stressful settings, such as a battlefield or an air traffic control tower, the user's 

cognitive load is already strained. Visualizing uncertainty elements add to the visual 

clutter that competes for the operator's limited attention. The operator must invest 

increased effort to process probabilistic assessments. Consequently, cognitive load 

increases, degrading the operator's performance and problem solving effectiveness. 

A considerable body of research exists to explain the cognitive and perceptual 

factors that influence a person’s effectiveness as a decision maker in diverse 

environments. While humans are adept at problem solving in challenging conditions, 

innovations in computer design have provided additional tools to aid people in making 

decisions. For example, visualization techniques have been used to generate a 

probabilistic model of an environment in order to encourage effective problem solving. 

The danger of these visualization techniques is that humans may ignore the probabilistic 

nature of the information they receive, and make false or unsupported inferences. 

Accordingly, it is critical to provide cues to the user that information is projected or 

estimated, and explain the source or degree of the unreliability of the information. 

Uncertainty then becomes another factor in the decision-making process. However, in 

stressful situations, uncertainty visualization can have diametric effects. While uncertain 

conditions can increase the cognitive load on a decision maker, so can the burden of 

added visualizations and decision points. 

Given the importance of uncertainty in effective decision-making, there is a 

critical need for research that demonstrates how uncertainty visualization can be used 

without straining the operator's cognitive load (Antifakos, Schwaninger, & Schiele, 

2004). This research demonstrated that an adaptive visual system could provide relevant 



94 

  

 

 

visualization of uncertainty to improve decision-making without further straining the 

operator's cognitive load. This research contributes to the body of knowledge by 

identifying techniques to increase the use of uncertainty visualization in stressful 

environments without increasing the user’s cognitive load.  

This research used both quantitative and qualitative techniques to measure 

whether adaptive uncertainty visualization has a significant impact on reducing a user’s 

cognitive load. Since software visualizations that displaying uncertainty characteristics 

may also increase the user’s cognitive load (Bunch & Lloyd, 2006); there is a trade-off 

between the reduction in cognitive load by displaying uncertainty factors, and the 

increase in cognitive load by displaying additional visual elements (Antifakos, 

Schwaninger, & Schiele, 2004). The research builds on uncertainty research in the 

visualization community by adapting the display of the uncertainty aspects in software 

visualizations to the user’s level of cognitive load (Zuk & Carpendale, 2007). 

In this study, 24 subjects (identified as knowledge workers who use computers 

each day for academic or professional purposes) were subjected to a computer 

simulation. The sample was evenly divided between male and female subjects, and ages 

ranged from 18 to 62 years. The computer simulation was chosen as the model for testing 

the hypothesis of the study to maintain a constant set of independent variables across all 

subjects. The computer simulation was designed to increase the subjects’ cognitive load 

in order to determine whether adaptive uncertainty visualizations significantly affected 

dependent variables, such as memory, attention, and workload that represented the 

cognitive load each subject experienced. The dependent variables were assessed 

quantitatively by measuring the response time and accuracy rates of completing 
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simulation tasks, and qualitatively by examining responses to a survey conducted at the 

end of each experiment. Because subjects were tested twice (once with a standard 

interface and once with the uncertainty visualization interface) results were validated 

using repeated measures of analysis of variance (RM ANOVA) to determine whether 

subjects were influenced by sequencing effects. 

The results indicated that the cognitive burden on the subjects’ memory, attention, 

and workload was significantly diminished when using the uncertainty visualization 

interface, in contrast to when the subjects used the standard interface. Subjects were able 

to complete tasks in less time, and with a higher accuracy rate. Further, the subjects 

perceived that they operated more effectively when using the uncertainty visualization 

interface, in contrast to when the subjects used the standard interface. 

The research supported the hypothesis that adaptive uncertainty visualization 

significantly reduces a user’s cognitive load in an environment where both stress and 

uncertainty abound. This hypothesis has clear implications for situations where 

participants are subject to high cognitive load, such as soldiers on the battlefield or on 

peacekeeping missions, or first-responders in emergencies. There are many scenarios 

where a human decision maker could benefit from having visibility to uncertainty factors; 

for example, a soldier on a peacekeeping mission may determine that an erratically 

behaving sensor may have been tampered with or disabled, indicating the presence of 

insurgents.  

While this study demonstrated conclusively that adaptive uncertainty visualization 

significantly reduces cognitive load, the implications of uncertainty visualization on 

cognitive load merit further research and investigation. For example, humans are highly 
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successful in completing complex tasks, such as driving, in a multimodal setting that 

includes auditory, visual, and haptic stimuli (Sigrist, Rauter, Riener, & Wolf, 2012). 

Presenting uncertainty factors across multiple modalities may provide different effects to 

a user’s cognitive load than a single modality. In addition, researching uncertainty 

visualization in the context of adaptable systems may offer insights on how a system 

operator can offset the cognitive burden of coping with uncertainty by minimizing stimuli 

from other, less essential sources. These insights can inform and refine the design of 

adaptive systems, such as the emerging field of augmented cognition. 
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Appendices 

Appendix A. Participant Instructions 

Background 

The “probability cone” is a familiar sight to Florida residents. Because 

weather forecasters cannot predict the path of a hurricane with a high degree 

of certainty, a “cone” is used to portray the hurricane’s probable path. 

 

 
 

Projecting the path of a hurricane involves a great deal of uncertainty, 

since wind, current and temperature patterns can alter a hurricane’s course in 

unpredictable ways. The probability cone conveys to the reader the 

hurricane’s likely path, and allows the reader to make an informed decision 

about whether they should prepare, or plan to evacuate. 

To a person unfamiliar with the meaning of the cone, however, it’s 

easy to misinterpret the size of the cone as indicating the expected size of the 

hurricane! This illustrates how a graphic that was intended to convey one 

piece of information – the hurricane’s probably path – may inadvertently 

misinform the reader by suggesting it portrays the hurricane’s size. 
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Purpose 

The purpose of this research is to determine the effectiveness of a 

graphic, such as the “probability cone” in a high-stress situation. For 

example, imagine you’re the captain of a fire team working to extinguish a 

blazing building. You have to make many decisions in a short period of time 

with imperfect information, and a wrong decision can endanger lives. If you 

knew how far the fire had spread inside the building, you could make a 

better decision on whether your crew could safely enter the building. Using 

your tablet to explore a 3-D image of the building, you map out the likely 

path of the blaze based on where the fire originated, the layout of the 

building’s ventilation system, etc. Would a visual “cone of probability” help 

you make better decisions about where the fire was headed, or simply add to 

your stress and anxiety, possibly resulting in poorer decisions? 

 

What to Expect 

First, I’d like to thank you for agreeing to participate in this research!  

The sample will include twenty-three other “subjects”. The process will be 

identical for all twenty-four subjects, with only minor variations. I will ask 

you to read and sign some paperwork (there’s always paperwork!); then 

we’ll review the “simulation”.  

 

The simulation involves a fictional security company that patrols 

different restricted sites. You will play the role of a “dispatcher” in two 

timed “rounds of ten minutes each. The dispatcher is not on-site, but works 

in the call center in the company’s headquarters. The dispatcher seems an 

overhead “view”, or “camera” of the site, and can watch the activities on the 

site in order to provide instructions to the security officer who is on the 

premises. There are sporadic network outages that prevent the camera from 

transmitting images to the dispatcher. In one round, you will see the 

equivalent of the “probability cone” which predicts where people have 

moved during the network outage. In another round, you’ll see a static 

“freeze frame” because the simulation makes no effort to predict where 

people have moved while the system is offline.  

 

During these rounds, your responses will be timed, and the accuracy 

of your responses will be measured. These measurements will be used to 

analyze the effectiveness of the “probability cone” in improving your 

decision-making. Finally, you’ll be asked to complete a quick survey (the 

last piece of paperwork – I promise!). 
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Dispatcher Instruction Sheet 

As a dispatcher, you will have two tasks. Your primary task is to watch the 

monitor on the left side of the screen. 

 

Your secondary task is to monitor the clock-in log. However, this is only as time 

permits. For example, as you scan the monitor, you may see that nothing is happening 

that requires your attention; then, you may then scan the clock-in log for activities to 

approve or report. 

The Monitor 

A security officer is posted on-site to guard a restricted area. If an intruder enters 

the restricted area, the security officer will prompt you, the dispatcher, for instructions on 

how to best respond. You have ten seconds to respond. 

 

Watching the monitor 

is your primary task  

Watching the clock-in 

log is your secondary 

task  
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The rule for responding to the security officer’s prompt is as follows: 

A person entering a restricted area must be given two warnings; after two 

warnings, you must call for backup 

The Clock-In Log 

The clock-in log records when security officers clock in, or out, of their post.   

 

When the officer clocks in on time, you should approve the activity; however, 

when the officer clocks out early, you must report the activity. The rule for approving or 

reporting activity is as follows: 

  

 Clocking in early or on-time  Clocking in late 

 Clocking out on-time or later  Clocking out early 

 

  



101 

  

 

 

Dispatcher Instructions 
All dispatchers must follow the instructions below. 

Security Monitor 
A person entering a restricted area must be given two warnings; after 

two warnings, you must call for backup 

 

 

Clock-in/Clock-out log 

1.  Clocking in and clocking out on time 

Clocking in 

2.  Clocking in early   

Clocking in late 

Clocking out 

3.  Clocking out late   

Clocking out early 
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Appendix B. User Survey 
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Appendix C. IRB Approval Memorandum 
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Appendix D. Simulation Results 

 

Simulation Results - Primary Task 

  

Task A Task B Task C Task D Task E Task F Task G 

Subject Interface A
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A
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A
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ti

o
n

 

A
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u
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cy
 

D
u
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ti

o
n

 

 1 Standard 3 8 2 6 2 7 2 8 2 7 3 8 2 5 

 1 Uncertainty 3 4 3 7 3 9 3 6 3 4 2 4 3 7 

 2 Standard 3 6 3 9 3 8 2 8 2 7 2 7 2 6 

 2 Uncertainty 3 7 3 7 3 5 3 6 3 5 3 5 3 8 

 3 Standard 3 8 3 8 3 5 3 8 2 7 3 8 2 8 

 3 Uncertainty 3 6 3 5 3 4 3 4 3 8 3 5 3 7 

 4 Standard 3 4 2 6 2 6 2 8 2 6 3 6 2 6 

 4 Uncertainty 3 4 3 5 3 5 3 6 3 6 3 6 3 4 

 5 Standard 3 6 2 6 2 3 3 8 3 8 3 7 2 7 

 5 Uncertainty 3 4 3 5 2 5 3 5 3 6 2 4 3 6 

 6 Standard 3 5 3 5 3 5 3 4 3 8 3 7 3 6 

 6 Uncertainty 3 5 2 5 3 5 3 5 3 6 2 5 3 6 

 7 Standard 3 7 1 5 3 8 3 8 3 8 2 4 3 10 

 7 Uncertainty 3 3 2 8 2 4 3 4 3 4 2 7 2 7 

 8 Standard 3 7 2 6 3 5 3 7 3 7 3 6 3 8 

 8 Uncertainty 3 4 2 6 2 6 3 5 3 4 3 6 3 6 

 9 Standard 3 6 3 4 3 3 2 6 2 8 2 3 2 8 

 9 Uncertainty 3 5 3 4 2 4 3 7 2 4 3 5 3 5 

10 Standard 2 7 1 9 3 7 3 8 2 8 2 7 3 5 

10 Uncertainty 3 4 3 6 3 7 3 6 3 7 3 6 3 9 

11 Standard 2 6 2 8 2 7 2 8 2 8 2 9 2 7 

11 Uncertainty 3 7 2 5 2 6 3 5 3 5 3 6 2 8 

12 Standard 3 7 3 9 3 6 3 7 3 7 2 7 3 5 

12 Uncertainty 3 4 3 4 3 6 3 4 3 6 2 5 3 8 

13 Standard 3 7 2 9 3 6 2 8 3 9 2 8 2 8 

13 Uncertainty 3 4 2 5 3 5 3 7 3 4 3 6 3 4 

14 Standard 3 6 3 4 3 8 3 8 1 6 3 8 3 7 

14 Uncertainty 3 4 3 3 3 5 3 6 3 6 3 6 3 7 

15 Standard 3 7 3 6 3 5 3 8 3 8 2 7 2 7 

15 Uncertainty 3 4 3 5 3 5 3 5 3 5 3 7 2 5 

16 Standard 3 9 3 19 3 8 3 7 2 8 2 9 3 8 

16 Uncertainty 3 5 3 5 1 5 3 9 2 6 3 5 3 6 

17 Standard 3 7 2 9 3 9 3 8 3 8 2 7 2 6 

17 Uncertainty 3 5 3 7 3 5 3 5 3 7 3 7 3 7 

18 Standard 3 8 2 6 2 7 2 6 3 8 2 7 2 7 

18 Uncertainty 3 4 3 6 3 5 3 6 3 8 3 6 2 10 

19 Standard 3 6 2 9 3 6 3 8 3 7 3 8 3 6 

19 Uncertainty 2 4 3 5 3 5 3 6 3 7 3 5 3 8 

20 Standard 3 8 3 11 3 7 2 10 3 7 2 8 2 14 

20 Uncertainty 3 8 3 10 3 7 3 8 3 15 3 6 3 15 

21 Standard 3 7 2 4 3 5 2 7 3 7 2 8 2 5 

21 Uncertainty 3 5 3 3 3 5 2 5 3 5 3 6 3 3 

22 Standard 3 4 3 6 3 5 3 9 3 6 3 5 1 11 

22 Uncertainty 3 6 3 5 3 8 3 5 3 4 3 7 3 5 
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23 Standard 2 6 3 8 3 6 3 6 3 6 3 7 3 6 

23 Uncertainty 3 5 2 5 3 10 3 9 3 7 3 7 3 7 

24 Standard 3 5 3 10 3 4 2 6 2 8 1 9 3 2 

24 Uncertainty 3 4 3 5 3 10 3 9 3 6 3 5 3 4 

 

 

Simulation Results - Secondary Task 

  

Task 1 Task 2 Task 3 

Subject Interface A
cc

u
ra

cy
 

D
u

ra
ti

o
n

 

A
cc

u
ra

cy
 

D
u

ra
ti

o
n

 

A
cc

u
ra

cy
 

D
u

ra
ti

o
n

 

 1 Standard 1.00 19 0.83 24 0.89 22 

 1 Uncertainty 1.00 14 0.83 14 0.89 14 

 2 Standard 1.00 3 0.83 3 1.00 3 

 2 Uncertainty 1.00 2 0.92 5 1.00 4 

 3 Standard 1.00 11 0.92 8 0.94 11 

 3 Uncertainty 1.00 16 0.75 12 0.94 13 

 4 Standard 1.00 2 0.83 4 1.00 2 

 4 Uncertainty 1.00 2 0.92 3 0.89 4 

 5 Standard 1.00 3 0.92 4 1.00 4 

 5 Uncertainty 1.00 3 0.92 6 1.00 5 

 6 Standard 0.24 116 0.12 89 0.19 96 

 6 Uncertainty 0.35 50 0.12 33 0.27 47 

 7 Standard 1.00 5 1.00 5 0.85 7 

 7 Uncertainty 1.00 3 0.94 6 0.88 6 

 8 Standard 1.00 34 0.29 39 0.92 37 

 8 Uncertainty 0.94 34 0.00 30 0.96 34 

 9 Standard 1.00 4 1.00 4 0.85 4 

 9 Uncertainty 1.00 13 0.94 8 0.96 10 

10 Standard 1.00 8 1.00 9 0.96 8 

10 Uncertainty 1.00 5 1.00 5 0.96 6 

11 Standard 1.00 6 0.94 6 0.96 7 

11 Uncertainty 1.00 6 0.94 7 0.96 6 

12 Standard 0.94 8 0.94 8 0.92 9 

12 Uncertainty 1.00 13 1.00 22 0.92 20 

13 Standard 1.00 9 1.00 11 0.96 15 

13 Uncertainty 0.94 11 1.00 12 0.92 11 

14 Standard 1.00 3 1.00 4 0.96 4 

14 Uncertainty 1.00 2 1.00 3 0.96 3 

15 Standard 1.00 3 1.00 5 0.96 5 

15 Uncertainty 1.00 3 1.00 4 0.96 4 

16 Standard 0.59 42 0.59 49 0.50 44 

16 Uncertainty 0.94 24 0.53 55 0.38 35 

17 Standard 1.00 4 0.00 3 0.96 4 

17 Uncertainty 1.00 3 0.00 2 0.96 3 

18 Standard 1.00 4 1.00 6 0.96 7 

18 Uncertainty 1.00 5 1.00 6 0.96 9 

19 Standard 1.00 37 0.94 17 0.92 43 

19 Uncertainty 1.00 29 1.00 26 0.92 24 

20 Standard 0.94 37 0.94 34 0.88 33 

20 Uncertainty 1.00 28 1.00 31 0.96 26 

21 Standard 1.00 14 0.82 12 0.81 13 

21 Uncertainty 1.00 15 1.00 9 0.92 13 
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22 Standard 0.94 11 0.82 13 0.77 13 

22 Uncertainty 1.00 10 1.00 12 0.96 9 

23 Standard 1.00 9 1.00 8 0.96 10 

23 Uncertainty 0.94 6 1.00 6 0.92 7 

24 Standard 0.76 88 0.41 74 0.38 70 

24 Uncertainty 0.71 18 0.65 66 0.62 61 
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Appendix E. Survey Results and Participant Comments 

Survey Results – Standard Interface 

Subj
ect 

Q
1 

Q
2 

Q
3 

Q
4 

Q
5 

Q
6 

Q
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Q
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Q
9 

Q
1
0 

Q
1
1 

Q
1
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Q
1
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Q
1
4 

Q
1
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Q
1
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Q
1
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Q
1
8 

Q
1
9 

Q
2
0 

Ave
rage 

1 2 2 2 1 1 2 2 3 3 2 5 2 3 2 1 1 1 1 1 5 2.1 

2 5 4 5 5 3 4 3 4 4 5 5 4 5 5 5 4 4 3 2 1 4.0 

3 3 3 4 3 2 3 3 3 2 2 5 2 5 2 2 2 2 3 2 4 2.9 

4 4 3 3 4 2 3 3 3 3 3 5 3 2 2 2 5 2 4 3 2 3.1 

5 2 4 4 4 2 3 3 4 2 2 3 4 3 4 5 4 1 3 3 2 3.1 

6 3 2 3 3 4 3 3 5 4 2 4 3 5 2 5 5 2 3 3 3 3.4 

7 4 5 4 4 5 5 5 5 5 4 5 1 5 3 5 5 4 5 4 5 4.4 

8 5 5 5 4 2 1 3 2 2 3 1 1 1 1 3 1 1 1 2 3 2.4 

9 2 3 5 5 5 5 4 5 5 5 5 5 5 5 2 1 1 3 4 5 4.0 

10 5 4 3 4 2 1 3 3 2 3 4 3 5 1 1 3 1 5 3 2 2.9 

11 3 2 5 2 2 5 2 2 3 3 2 4 5 1 1 4 1 2 3 4 2.8 

12 2 3 5 1 4 2 4 4 4 4 5 1 2 4 1 1 4 1 1 2 2.8 

13 3 2 2 3 2 4 3 4 2 1 4 2 2 5 2 2 1 2 4 3 2.7 

14 4 4 4 5 4 4 5 5 5 4 5 5 5 3 5 5 2 5 4 4 4.4 

15 5 4 4 3 4 5 4 4 4 4 1 3 3 2 5 3 5 4 5 3 3.8 

16 3 3 2 4 2 2 1 2 1 1 1 1 2 2 3 1 1 1 3 3 2.0 

17 4 2 5 2 2 1 4 5 5 4 1 2 2 1 3 2 2 1 4 2 2.7 

18 3 2 2 2 3 2 2 4 4 3 4 5 2 2 5 5 1 2 1 1 2.8 

19 4 3 4 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 4 5 4.6 

20 5 3 3 3 1 2 2 2 2 2 5 1 1 2 1 1 1 2 1 4 2.2 

21 4 4 3 4 3 4 1 4 3 3 2 4 5 3 3 4 2 2 5 4 3.4 

22 5 5 5 5 3 5 4 5 5 5 1 5 4 5 5 5 2 5 5 1 4.3 

23 4 4 3 2 3 4 4 4 4 4 3 2 3 2 2 5 2 4 4 4 3.4 

24 2 2 3 1 1 3 1 1 3 2 2 3 4 2 2 1 1 3 2 3 2.1 
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Survey Results – Uncertainty Visualization Interface 

Subj
ect 

Q
1 

Q
2 

Q
3 

Q
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Q
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Q
6 

Q
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Q
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Q
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Q
1
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Q
1
1 

Q
1
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Q
1
3 

Q
1
4 

Q
1
5 

Q
1
6 

Q
1
7 

Q
1
8 

Q
1
9 

Q
2
0 

Ave
rage 

1 5 5 5 5 5 4 5 5 5 5 5 5 4 4 5 5 5 4 5 1 4.6 

2 5 4 5 5 5 1 3 4 5 5 5 5 5 5 5 4 4 5 4 1 4.3 

3 4 5 5 5 4 5 4 4 4 4 5 3 5 5 5 5 4 3 4 2 4.3 

4 5 5 5 5 4 5 4 4 4 3 5 4 3 3 4 5 3 4 5 4 4.2 

5 5 4 4 4 4 5 5 5 4 4 3 5 5 4 5 5 5 5 4 5 4.5 

6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5.0 

7 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 4 5 5 1 4.6 

8 5 5 5 5 2 5 3 2 5 5 1 1 2 1 3 1 5 5 5 4 3.5 

9 5 5 5 5 5 5 4 5 5 5 5 5 5 5 2 1 2 5 5 5 4.5 

10 5 5 3 5 2 1 5 5 2 3 4 1 5 1 3 3 5 5 5 5 3.7 

11 5 4 5 3 2 5 3 2 4 4 3 4 5 2 2 4 2 2 5 1 3.4 

12 5 5 5 5 5 5 4 5 3 5 5 4 2 1 5 5 2 5 5 4 4.3 

13 5 5 2 5 5 4 5 5 5 5 4 4 3 5 5 4 3 3 4 3 4.2 

14 5 5 5 5 5 5 5 5 5 4 5 5 5 3 5 5 4 5 5 2 4.7 

15 5 5 4 3 4 5 4 4 4 4 1 3 3 2 5 3 5 4 5 3 3.8 

16 4 4 3 4 2 3 1 3 2 1 1 1 2 2 3 1 2 1 4 5 2.5 

17 5 2 5 2 4 1 4 5 5 1 2 3 3 1 4 3 3 1 5 2 3.1 

18 5 5 5 5 3 3 2 4 5 5 4 5 3 3 5 5 3 5 5 5 4.3 

19 5 3 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 4.7 

20 5 4 4 3 2 4 4 4 5 4 5 2 2 5 2 1 2 4 5 4 3.6 

21 4 5 3 5 3 4 3 4 4 4 2 4 5 3 4 4 3 3 5 5 3.9 

22 5 5 5 5 4 5 5 5 5 5 1 5 4 5 5 5 3 5 5 1 4.4 

23 5 5 3 4 5 5 5 5 5 5 3 3 3 5 4 5 4 4 5 2 4.3 

24 5 5 5 5 4 3 4 5 4 4 5 3 4 4 4 5 5 5 5 3 4.4 

Ave
rage 
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Respondent Interface Remarks 

1 Standard During the network outage it was easy to be distracted because there 

was no movement 

2 Both If you have a video game background, the system was pretty easy to 

operate 

5 Standard Required me to pay more attention because I could not tell what was 

going on; couldn’t look away to take care of other things 

5 Uncertainty I was able to relax rather than stare at the screen 

6 Both Too many things were happening; it was hard to keep up with 

everything 

7 Both It’s like a video game only slower 

8 Uncertainty I felt safer when I saw the cones because I had a better idea what was 

going on 
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Respondent Interface Remarks 

9 Standard I had to work harder because I had no idea where people were 

moving and it was harder to find them 

11 Both It was hard to take the simulation seriously because the task was so 

different from what I usually do; photographs or video that was on 

the ground would be more realistic 

12 Standard I could only do one thing at a time when there was a network 

disruption 

12 Uncertainty I knew how much time I had to attend to other tasks, so it was easier 

to look away from the monitor during a network disruption 

13 Standard I got a false sense of security when nothing moved on the screen 

13 Uncertainty I definitely had more time to respond 

14 Both Graphic component of the simulation wasn’t necessary to making a 

decision, but it did help in deciding how much time I had 

16 Both Things moved too fast and there were too many things happening at 

the same time 

17 Both I was required to handle tasks, like counting/memorization or 

evaluating simple rules, that the computer could easily do; the system 

should have recognized my stress level and disabled any clock-in 

prompts when the network was down 

19 Uncertainty It would have been stressful if the probability cone were really large, 

or the predictions about direction were incorrect; I didn’t really need 

the graphics to make decisions 

22 Both The simulation wasn’t realistic – they were just “dots”; that made it 

hard to treat tasks as if they were critical 

23 Both The clock-out tasks were annoying and made it really hard to 

concentrate 

24 Standard I have a hard time focusing and paying attention; not seeing any 

movement forced me to focus, which isn’t a bad thing; however, I 

couldn’t pay any attention to the other tasks then 
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Appendix F. Minitab Output 

 

—————   12/20/2012 1:26:40 PM   ———————————————————— 
  

 

Welcome to Minitab, press F1 for help. 

Retrieving project from file: 

'C:\USERS\GREG\DOCUMENTS\COLLEGES\NSU\DISSERTATION\WIP\4. 

RESEARCH\MINITAB\DISSERTATION.MPJ' 

 

Results for: Task 1 Results.MTW 
  

ANOVA: Task A Correct, Task B Correct, ... versus Interface, Participant  
 
Factor       Type    Levels 

Interface    fixed        2 

Participant  random      24 

 

Factor       Values 

Interface    0, 1 

Participant   1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 

17, 18, 19, 20, 21, 22, 23, 24 

 

 

Analysis of Variance for Task A Correct 

 

Source       DF       SS       MS     F      P 

Interface     1  0.08333  0.08333  1.00  0.328 

Participant  23  1.66667  0.07246  0.87  0.630 

Error        23  1.91667  0.08333 

Total        47  3.66667 

 

 

S = 0.288675   R-Sq = 47.73%   R-Sq(adj) = 0.00% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant   -0.00543      3  (3) + 2 (2) 

3  Error          0.08333         (3) 

 

 

Analysis of Variance for Task B Correct 

 

Source       DF       SS      MS     F      P 

Interface     1   1.3333  1.3333  5.41  0.029 

Participant  23   8.6667  0.3768  1.53  0.158 

Error        23   5.6667  0.2464 

Total        47  15.6667 
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S = 0.496364   R-Sq = 63.83%   R-Sq(adj) = 26.09% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant    0.06522      3  (3) + 2 (2) 

3  Error          0.24638         (3) 

 

 

Analysis of Variance for Task C Correct 

 

Source       DF       SS      MS     F      P 

Interface     1   0.0833  0.0833  0.39  0.539 

Participant  23   6.0000  0.2609  1.22  0.318 

Error        23   4.9167  0.2138 

Total        47  11.0000 

 

 

S = 0.462351   R-Sq = 55.30%   R-Sq(adj) = 8.66% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant    0.02355      3  (3) + 2 (2) 

3  Error          0.21377         (3) 

 

 

Analysis of Variance for Task D Correct 

 

Source       DF      SS      MS      F      P 

Interface     1  1.6875  1.6875  13.80  0.001 

Participant  23  3.9792  0.1730   1.41  0.206 

Error        23  2.8125  0.1223 

Total        47  8.4792 

 

 

S = 0.349689   R-Sq = 66.83%   R-Sq(adj) = 32.22% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant    0.02536      3  (3) + 2 (2) 

3  Error          0.12228         (3) 

 

 

Analysis of Variance for Task E Correct 

 

Source       DF       SS      MS      F      P 

Interface     1   1.6875  1.6875  10.18  0.004 

Participant  23   5.9792  0.2600   1.57  0.144 

Error        23   3.8125  0.1658 
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Total        47  11.4792 

 

 

S = 0.407137   R-Sq = 66.79%   R-Sq(adj) = 32.13% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant    0.04710      3  (3) + 2 (2) 

3  Error          0.16576         (3) 

 

 

Analysis of Variance for Task F Correct 

 

Source       DF       SS      MS     F      P 

Interface     1   2.0833  2.0833  6.93  0.015 

Participant  23   4.6667  0.2029  0.67  0.824 

Error        23   6.9167  0.3007 

Total        47  13.6667 

 

 

S = 0.548384   R-Sq = 49.39%   R-Sq(adj) = 0.00% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant   -0.04891      3  (3) + 2 (2) 

3  Error          0.30072         (3) 

 

 

Analysis of Variance for Task G Correct 

 

Source       DF       SS      MS      F      P 

Interface     1   2.5208  2.5208  11.64  0.002 

Participant  23   5.9792  0.2600   1.20  0.332 

Error        23   4.9792  0.2165 

Total        47  13.4792 

 

 

S = 0.465280   R-Sq = 63.06%   R-Sq(adj) = 24.51% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant    0.02174      3  (3) + 2 (2) 

3  Error          0.21649         (3) 

 

  

ANOVA: Task A Durat, Task B Durat, ... versus Interface, Participant  
 
Factor       Type    Levels 
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Interface    fixed        2 

Participant  random      24 

 

Factor       Values 

Interface    0, 1 

Participant   1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 

17, 18, 19, 20, 21, 22, 23, 24 

 

 

Analysis of Variance for Task A Duration 

 

Source       DF       SS      MS      F      P 

Interface     1   36.750  36.750  24.68  0.000 

Participant  23   35.667   1.551   1.04  0.462 

Error        23   34.250   1.489 

Total        47  106.667 

 

 

S = 1.22030   R-Sq = 67.89%   R-Sq(adj) = 34.39% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant    0.03080      3  (3) + 2 (2) 

3  Error          1.48913         (3) 

 

 

Analysis of Variance for Task B Duration 

 

Source       DF       SS      MS      F      P 

Interface     1   54.187  54.187  10.81  0.003 

Participant  23  168.479   7.325   1.46  0.185 

Error        23  115.312   5.014 

Total        47  337.979 

 

 

S = 2.23910   R-Sq = 65.88%   R-Sq(adj) = 30.28% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant      1.156      3  (3) + 2 (2) 

3  Error            5.014         (3) 

 

 

Analysis of Variance for Task C Duration 

 

Source       DF       SS     MS     F      P 

Interface     1    0.521  0.521  0.17  0.681 

Participant  23   59.479  2.586  0.86  0.637 

Error        23   68.979  2.999 

Total        47  128.979 

 

 

S = 1.73179   R-Sq = 46.52%   R-Sq(adj) = 0.00% 



114 

  

 

 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant    -0.2065      3  (3) + 2 (2) 

3  Error           2.9991         (3) 

 

 

Analysis of Variance for Task D Duration 

 

Source       DF       SS      MS      F      P 

Interface     1   27.000  27.000  12.42  0.002 

Participant  23   36.917   1.605   0.74  0.764 

Error        23   50.000   2.174 

Total        47  113.917 

 

 

S = 1.47442   R-Sq = 56.11%   R-Sq(adj) = 10.31% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant    -0.2844      3  (3) + 2 (2) 

3  Error           2.1739         (3) 

 

 

Analysis of Variance for Task E Duration 

 

Source       DF       SS      MS     F      P 

Interface     1   21.333  21.333  6.66  0.017 

Participant  23   62.917   2.736  0.85  0.646 

Error        23   73.667   3.203 

Total        47  157.917 

 

 

S = 1.78966   R-Sq = 53.35%   R-Sq(adj) = 4.67% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant    -0.2337      3  (3) + 2 (2) 

3  Error           3.2029         (3) 

 

 

Analysis of Variance for Task F Duration 

 

Source       DF      SS      MS      F      P 

Interface     1  22.687  22.687  12.19  0.002 

Participant  23  25.979   1.130   0.61  0.881 

Error        23  42.813   1.861 

Total        47  91.479 
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S = 1.36434   R-Sq = 53.20%   R-Sq(adj) = 4.36% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant    -0.3659      3  (3) + 2 (2) 

3  Error           1.8614         (3) 

 

 

Analysis of Variance for Task G Duration 

 

Source       DF       SS     MS     F      P 

Interface     1    0.750  0.750  0.24  0.630 

Participant  23  192.250  8.359  2.66  0.011 

Error        23   72.250  3.141 

Total        47  265.250 

 

 

S = 1.77237   R-Sq = 72.76%   R-Sq(adj) = 44.34% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant      2.609      3  (3) + 2 (2) 

3  Error            3.141         (3) 

 

 

Results for: Task 2 Results.MTW 
  

ANOVA: Task 1 Correct, Task 2 Correct, ... versus Interface, Participant  
 
Factor       Type    Levels 

Interface    fixed        2 

Participant  random      24 

 

Factor       Values 

Interface    0, 1 

Participant   1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 

17, 18, 19, 20, 21, 22, 23, 24 

 

 

Analysis of Variance for Task 1 Correct 

 

Source       DF        SS        MS      F      P 

Interface     1  0.003532  0.003532   1.04  0.317 

Participant  23  1.098545  0.047763  14.12  0.000 

Error        23  0.077783  0.003382 

Total        47  1.179860 

 

 

S = 0.0581537   R-Sq = 93.41%   R-Sq(adj) = 86.53% 
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                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant    0.02219      3  (3) + 2 (2) 

3  Error          0.00338         (3) 

 

 

Analysis of Variance for Task 2 Correct 

 

Source       DF       SS       MS      F      P 

Interface     1  0.00180  0.00180   0.32  0.580 

Participant  23  4.24074  0.18438  32.25  0.000 

Error        23  0.13149  0.00572 

Total        47  4.37403 

 

 

S = 0.0756099   R-Sq = 96.99%   R-Sq(adj) = 93.86% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant    0.08933      3  (3) + 2 (2) 

3  Error          0.00572         (3) 

 

 

Analysis of Variance for Task 3 Correct 

 

Source       DF        SS        MS      F      P 

Interface     1  0.007037  0.007037   2.21  0.150 

Participant  23  1.698260  0.073837  23.23  0.000 

Error        23  0.073100  0.003178 

Total        47  1.778398 

 

 

S = 0.0563762   R-Sq = 95.89%   R-Sq(adj) = 91.60% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant    0.03533      3  (3) + 2 (2) 

3  Error          0.00318         (3) 

 

  

ANOVA: Task 1 Durat, Task 2 Durat, ... versus Interface, Participant  
 
Factor       Type    Levels 

Interface    fixed        2 

Participant  random      24 

 

Factor       Values 

Interface    0, 1 
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Participant   1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 

17, 18, 19, 20, 21, 22, 23, 24 

 

 

Analysis of Variance for Task 1 Duration 

 

Source       DF       SS     MS     F      P 

Interface     1    562.1  562.1  2.95  0.100 

Participant  23  17622.1  766.2  4.02  0.001 

Error        23   4388.6  190.8 

Total        47  22572.8 

 

 

S = 13.8133   R-Sq = 80.56%   R-Sq(adj) = 60.27% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant      287.7      3  (3) + 2 (2) 

3  Error            190.8         (3) 

 

 

Analysis of Variance for Task 2 Duration 

 

Source       DF        SS      MS     F      P 

Interface     1     65.00   65.00  0.84  0.370 

Participant  23  16768.69  729.07  9.38  0.000 

Error        23   1788.45   77.76 

Total        47  18622.15 

 

 

S = 8.81809   R-Sq = 90.40%   R-Sq(adj) = 80.37% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 

                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant     325.66      3  (3) + 2 (2) 

3  Error            77.76         (3) 

 

 

Analysis of Variance for Task 3 Duration 

 

Source       DF        SS      MS      F      P 

Interface     1    194.52  194.52   3.15  0.089 

Participant  23  16635.81  723.30  11.73  0.000 

Error        23   1418.42   61.67 

Total        47  18248.75 

 

 

S = 7.85306   R-Sq = 92.23%   R-Sq(adj) = 84.12% 

 

 

                                  Expected Mean 

                                  Square for Each 

                                  Term (using 
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                 Variance  Error  restricted 

   Source       component   term  model) 

1  Interface                   3  (3) + 24 Q[1] 

2  Participant     330.81      3  (3) + 2 (2) 

3  Error            61.67         (3) 

 

 

Results for: Survey Results.MTW 
  

ANOVA: Q1, Q2, ... versus Interface  
 
Factor     Type   Levels  Values 

Interface  fixed       2  0, 1 

 

 

Analysis of Variance for Q1 

 

Source     DF      SS      MS      F      P 

Interface   1  20.021  20.021  30.24  0.000 

Error      46  30.458   0.662 

Total      47  50.479 

 

 

S = 0.813718   R-Sq = 39.66%   R-Sq(adj) = 38.35% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error         0.6621         (2) 

 

 

Analysis of Variance for Q2 

 

Source     DF      SS      MS      F      P 

Interface   1  21.333  21.333  25.60  0.000 

Error      46  38.333   0.833 

Total      47  59.667 

 

 

S = 0.912871   R-Sq = 35.75%   R-Sq(adj) = 34.36% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error         0.8333         (2) 

 

 

Analysis of Variance for Q3 

 

Source     DF      SS     MS     F      P 

Interface   1   6.750  6.750  6.58  0.014 

Error      46  47.167  1.025 

Total      47  53.917 
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S = 1.01260   R-Sq = 12.52%   R-Sq(adj) = 10.62% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          1.025         (2) 

 

 

Analysis of Variance for Q4 

 

Source     DF      SS      MS      F      P 

Interface   1  18.750  18.750  15.42  0.000 

Error      46  55.917   1.216 

Total      47  74.667 

 

 

S = 1.10253   R-Sq = 25.11%   R-Sq(adj) = 23.48% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          1.216         (2) 

 

 

Analysis of Variance for Q5 

 

Source     DF      SS      MS      F      P 

Interface   1  15.188  15.188  11.07  0.002 

Error      46  63.125   1.372 

Total      47  78.313 

 

 

S = 1.17144   R-Sq = 19.39%   R-Sq(adj) = 17.64% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          1.372         (2) 

 

 

Analysis of Variance for Q6 

 

Source     DF      SS     MS     F      P 

Interface   1   9.187  9.187  4.93  0.031 

Error      46  85.792  1.865 

Total      47  94.979 

 

 

S = 1.36566   R-Sq = 9.67%   R-Sq(adj) = 7.71% 
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                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          1.865         (2) 

 

 

Analysis of Variance for Q7 

 

Source     DF      SS      MS     F      P 

Interface   1  11.021  11.021  8.34  0.006 

Error      46  60.792   1.322 

Total      47  71.813 

 

 

S = 1.14959   R-Sq = 15.35%   R-Sq(adj) = 13.51% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          1.322         (2) 

 

 

Analysis of Variance for Q8 

 

Source     DF      SS     MS     F      P 

Interface   1   6.021  6.021  5.23  0.027 

Error      46  52.958  1.151 

Total      47  58.979 

 

 

S = 1.07297   R-Sq = 10.21%   R-Sq(adj) = 8.26% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          1.151         (2) 

 

 

Analysis of Variance for Q9 

 

Source     DF      SS      MS     F      P 

Interface   1  11.021  11.021  9.14  0.004 

Error      46  55.458   1.206 

Total      47  66.479 

 

 

S = 1.09801   R-Sq = 16.58%   R-Sq(adj) = 14.76% 

 

 

                                Expected Mean 

                                Square for Each 



121 

  

 

 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          1.206         (2) 

 

 

Analysis of Variance for Q10 

 

Source     DF      SS      MS     F      P 

Interface   1  12.000  12.000  8.28  0.006 

Error      46  66.667   1.449 

Total      47  78.667 

 

 

S = 1.20386   R-Sq = 15.25%   R-Sq(adj) = 13.41% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          1.449         (2) 

 

 

Analysis of Variance for Q11 

 

Source     DF       SS     MS     F      P 

Interface   1    0.750  0.750  0.29  0.593 

Error      46  118.917  2.585 

Total      47  119.667 

 

 

S = 1.60784   R-Sq = 0.63%   R-Sq(adj) = 0.00% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          2.585         (2) 

 

 

Analysis of Variance for Q12 

 

Source     DF       SS     MS     F      P 

Interface   1    4.688  4.688  2.18  0.146 

Error      46   98.792  2.148 

Total      47  103.479 

 

 

S = 1.46548   R-Sq = 4.53%   R-Sq(adj) = 2.45% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 
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1  Interface                 2  (2) + 24 Q[1] 

2  Error          2.148         (2) 

 

 

Analysis of Variance for Q13 

 

Source     DF      SS     MS     F      P 

Interface   1   1.688  1.688  0.94  0.337 

Error      46  82.625  1.796 

Total      47  84.313 

 

 

S = 1.34022   R-Sq = 2.00%   R-Sq(adj) = 0.00% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          1.796         (2) 

 

 

Analysis of Variance for Q14 

 

Source     DF       SS     MS     F      P 

Interface   1    6.750  6.750  3.03  0.088 

Error      46  102.500  2.228 

Total      47  109.250 

 

 

S = 1.49274   R-Sq = 6.18%   R-Sq(adj) = 4.14% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          2.228         (2) 

 

 

Analysis of Variance for Q15 

 

Source     DF       SS      MS     F      P 

Interface   1   14.083  14.083  7.27  0.010 

Error      46   89.167   1.938 

Total      47  103.250 

 

 

S = 1.39227   R-Sq = 13.64%   R-Sq(adj) = 11.76% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          1.938         (2) 
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Analysis of Variance for Q16 

 

Source     DF       SS     MS     F      P 

Interface   1    7.521  7.521  2.92  0.094 

Error      46  118.458  2.575 

Total      47  125.979 

 

 

S = 1.60474   R-Sq = 5.97%   R-Sq(adj) = 3.93% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          2.575         (2) 

 

 

Analysis of Variance for Q17 

 

Source     DF       SS      MS      F      P 

Interface   1   30.083  30.083  19.61  0.000 

Error      46   70.583   1.534 

Total      47  100.667 

 

 

S = 1.23872   R-Sq = 29.88%   R-Sq(adj) = 28.36% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          1.534         (2) 

 

 

Analysis of Variance for Q18 

 

Source     DF       SS      MS     F      P 

Interface   1   16.333  16.333  8.77  0.005 

Error      46   85.667   1.862 

Total      47  102.000 

 

 

S = 1.36467   R-Sq = 16.01%   R-Sq(adj) = 14.19% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          1.862         (2) 

 

 

Analysis of Variance for Q19 
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Source     DF      SS      MS      F      P 

Interface   1  36.750  36.750  39.39  0.000 

Error      46  42.917   0.933 

Total      47  79.667 

 

 

S = 0.965904   R-Sq = 46.13%   R-Sq(adj) = 44.96% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error         0.9330         (2) 

 

 

Analysis of Variance for Q20 

 

Source     DF      SS     MS     F      P 

Interface   1   0.021  0.021  0.01  0.920 

Error      46  93.958  2.043 

Total      47  93.979 

 

 

S = 1.42919   R-Sq = 0.02%   R-Sq(adj) = 0.00% 

 

 

                                Expected Mean 

                                Square for Each 

                                Term (using 

               Variance  Error  restricted 

   Source     component   term  model) 

1  Interface                 2  (2) + 24 Q[1] 

2  Error          2.043         (2) 
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