
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

1996

Design Information Recovery from Legacy System
COBOL Source Code: Research on a Reverse
Engineering Methodology
Robert Lee Miller
Nova Southeastern University, millerrl@att.net

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Robert Lee Miller. 1996. Design Information Recovery from Legacy System COBOL Source Code: Research on a Reverse Engineering
Methodology. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and
Information Sciences. (727)
http://nsuworks.nova.edu/gscis_etd/727.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Design Information Recovery from Legacy System COBOL Source Code:
Research on a Reverse Engineering Methodology

by

Robert Lee Miller

A Dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

School of Computer and Information Sciences
Nova Southeastern University

1996

We hereby certify that this dissertation, submitted by Robert L. Miller, confonns to
acceptable standards and is fully adequate in scope and quality to fulfill the dissertation
requirements for the degree of Doctor of Philosophy.

J~ ~
Chairperson of Dissertation Committee

Jacques Levin, Ph.D.
Dissertation Committee Member

Dissertation Committee Member

Approved:

~---.....
Edward Lieblein, Ph.D.
Dean, School of Computer and Infonnation Sciences

School of Compeer and Infonnation Sciences
Nova Southeastern University

1996

Date

Date

Certification Statement

I hereby certify that this dissertation constitutes my own product and that the words or
ideas of others, where used, are properly credited according to accepted standards for
professional publications.

An Abstract of a Dissertation Submitted to Nova Southeastern University
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Design Information Recovery from Legacy System COBOL Source Code:
Research on a Reverse Engineering Methodology

by
Robert L. Miller

October 1996

Much of the software in the world today was developed from the mid-1960s to the mid-
1970s. This legacy software deteriorates as it is modified to satisfY new organizational
requirements. Currently, legacy system maintenance requires more time than new system
development.

Eventually, legacy systems must be replaced. IdentifYing their functionality is a critical
part of the replacement effort. Recovering functions from source code is difficult because
the domain knowledge used to develop the system is not routinely retained. The source
code is frequently the only reliable source of functional information.

This dissertation describes functional process information recovery from COBOL source
code in the military logistics system domain. The methodology was developed as an
information processing application. Conceptual and logical models to convert source code
to functional design information were created to define the process. A supporting data
structure was also developed.

The process reverse engineering methodology was manually applied to a test case to
demonstrate feasibility, practicality, and usefulness. Metrics for predicting the time
required were developed and analyzed based on the results of the test case.

The methodology was found to be effective in recovering functional process information
from source code. A prototype program information database was developed and
implemented to aid in data collection and manipulation; it also supported the process of
preparing program structure models.

Recommendations for further research include applying the methodology. to a larger test
case to validate findings and extending it to include a comparable data reverse engineering
procedure.

ACKNOWLEDGMENTS

Completing a doctoral dissertation is a long and arduous process that requires
extraordinary dedication, commitment, and perseverance. Throughout this effort, support
was provided by a group of people to whom lowe a deep debt of gratitude. For without
their support, this research project would have never been completed.

I am indebted to my dissertation advisor, Dr. Junping Sun, who offered critical
encouragement, advice, and criticism. I also wish to thank Dr. Jacques Levin and Dr.
Marlyn Kemper Littman, dissertation committee members. They guided me in the
transformation of a fuzzy concept into a worthwhile research project.

I am grateful to the staff and faculty of the Nova Southeastern University School of
Computer and Information Science. They are, without exception, dedicated to assisting
the doctoral student.

A co-worker, JoAnn Gody) Morley listened patiently and provided valuable ideas and
suggestions during preliminary applications of the concepts upon which this research is
based. Thanks for your confidence, jody.

Many thanks to Heather Pierce, also a co-worker, who read the early drafts and made sure
they were written in English. Her help was invaluable in keeping my writing concise and
to the point.

Finally, my deepest gratitude and appreciation to my wife, Fumiko, for her understanding,
tolerance, and support.

R.L.M.

Abstract iii

Acknowledgments IV

Table of Contents V

List of Tables xiii

List of Figures xv

Chapter

L Introduction 1

Table of Contents

Statement of the Problem 1

Barriers and Issues 2

Barriers to Reverse Engineering 2

Issues in Reverse Engineering 3

Importance of the Topic 4

Significance of the Research 7

Definition of Terms 8

Brief History of Reverse Engineering 9

Objectives of the Research 10

Scope of the Research 11

Research Questions Investigated 12

Research Methodology 13

Phase I: Approach Selection 13

Phase II: Methodology Development 13

Phase III: Case Problem Selection 14

Phase IV: Methodology Application 14

Phase V: Methodology Assessment 15

Limitations and Delimitations of the Research 15

Limitations of the Research 15

Delimitations of the Research 16

Contributions of the Research 17

Theoretical Contribution 17

Managerial Contribution 17

Criteria for Success 19

Documented Reverse Engineering Methodology 20

Validated Methodology 20

Program Information Database Conceptual and Logical Data Models 21

Work Load Estimation Metrics 21

Summary 21

n. Review of the Literature 23

Introduction 23

Programming Languages 25

Programming Language Syntax 26

Programming Language Semantics 27

Programming Language Components 28

Job Control Language (JCL) 29

The COBOL Language 30

COBOL ffistory 31

COBOL Structure 32

Nature of COBOL 41

COBOL Disadvantages 43

COBOL Advantages 49

Program Understanding 49

The Meaning of Program Understanding 52

Software Psychology 53

Factors Affecting Program Understanding 55

Domains and Program Understanding 59

Approaches to Program Understanding 61

The Need for Reverse Engineering 63

Legacy Systems 64

Software Aging 66

Business Changes 68

Business Process Reengineering 68

Client/Server Technology 69

Object-Oriented Technology 70

Software Maintenance 70

Reverse Engineering Economics 71

Reverse Engineering 74

Reverse Engineering Objectives 82

The Basis for Reverse Engineering 83

Reverse Engineering Problems 84

Design RecoverylInverse Engineering 90

Existing Reverse Engineering Procedures 91

Software Physical Structure 97

Knowledge-based Program Understanding Tools 98

Transformation Tools 99

Program Plans 99

Data Flow Diagrams 100

Functional Abstraction Tools 100

Computer Assisted Reverse Engineering (CARE) Tools 101

Summary 104

m. Methodology 109

Research Methods Employed 110

Specific Procedures Employed 111

Description of Phase 1 - Reverse Engineering Approach Selection 111

Description of Phase 2 - Reverse Engineering Methodology
Development 113

Description of Phase 3 - Case Study Subject Selection 114

Description of Phase 4 - Reverse Engineering Methodology Application
114

Description of Phase 5 - Methodology Assessment 115

Execute the Reverse Engineering Synthesis Plan 115

Problem Definition 116

The Operational Environment 116

Operational Problems 117

COBOL Program Environment 118

A Forward Engineering Model 120

Essential Points in the Forward Engineering Model 121

Information Loss in Forward Engineering 128

A Model of the Reverse Engineering Process 131

Differences in Forward and Reverse Engineering 13 1

Problems Associated with Reverse Engineering 134

A Formal Method of Reverse Engineering - Clean-SpecifY-SimplifY
140

A Structural Approach to Reverse Engineering - Program Schematics
143

A Program Understanding Approach to Reverse Engineering - DESIRE
151

A Data-Oriented Reverse Engineering Technique - Component
Extraction 155

A Data Repository Approach to Reverse Engineering - System
Description Database 160

Reverse Engineering Approach for Air Force Logistics Systems 164

A Model On-line Program 166

A Model Batch Program 169

A Model Fourth Generation Language (4GL) Program 171

Reverse Engineering Process Output Products 173

Developing the Reverse Engineering Methodology 178

Purpose 178

Scope 178

Strategy 179

Goals 183

The Conceptual Process Model 184

The Conceptual Data Model 189

The Definitional Model 196

The Logical Model 199

The Logical Process Model 199

Logical Modeling Technique 199

Logical Model Services 201

The Logical Data Model 250

Fonnats for Presenting Results 252

Projected Outcomes 252

Resource Requirements 253

Reliability and Validity 253

Summary 254

Chapter IV. Results 255

Data Analysis 255

Implementing the Program Information Database 256

Selecting Case Study Components 257

Applying the Methodology 265

Findings 270

Documentation 270

Program Source Code 273

Job Control Language 274

Methodology Assessment 275

Comparison of User and Derived Function Model 277

Metrics 278

Source Lines of Code 284

Procedure Division Lines of Code 288

Number of Procedure Division Paragraphs 291

Complexity Index 294

Metrics Analysis Summary 298

Methodology Changes 300

Summary of Results 302

Chapter v~ Conclusions

Conclusions 304

Implications 307

Recommendations 308

Summary 309

Appendix

A. Glossary 315

B. Reverse Engineering Methodology Conceptual Model Data Flow Diagrams and
Process Descriptions 322

C. Reverse Engineering Methodology Logical Data Model Table Descriptions 404

D. Permission to Use Source Code 417

E. Biographical Sketch of Student 419

References 421

List of Tables

Table

1. ANSI-74 COBOL Consists ofa Nucleus and 11 Modules 33

2. COBOL Program Field Assignments 34

3. General Structural Elements of COBOL Programs 37

4. Reverse Engineering Tools and Methodologies 92

5. Nominal Reverse Engineering Tools Available Commercially 102

6. The Nine Subsystems Vary in Size and Programming Language 119

7. List of Functional Units 145

8. Linear Circuits 149

9. Application 1 - LC Components 150

10. Conceptual Data Model Entity List 192

11. Conceptual Data Model Relationship List 194

12. Skeletal Table List 197

13. Batch Programs 260

14. IDEAL (On-line) Programs 260

15. CICS COBOL (On-line) Programs 261

16. Time Required for Preliminary Program Review 267

17. Time Required for Job Control Language Review 268

18. Time Required for Detailed Program Structure Analysis 269

19. Time Required for Function Analysis and Process Assignment 271

20. Example of COBOL Data Names and Equivalent Full-Text Data Names 275

21. Paragraphs Extracted from Programs and Used in the Domain Model 278

22. Number of Program Paragraphs Allocated to Functions 279

23. Summary of Program Review and Analysis Time 281

24. ANOV A for the SLOC Linear Regression Analysis 286

25. ANOVA for the PDLOC Linear Regression Analysis 289

26. ANOV A for the NOP ARA Linear Regression Analysis 292

27. ANOVA for the CI Linear Regression Analysis 296

28. Summary of Regressions Analysis Results 298

29. Comparison of Initial, Actual, and Computed Reverse Engineering Time 299

List of Figures

Figure

1. Reverse engineering and related processes are transformations between or within
abstraction levels 10

2. Sample COBOL coding sheet 35

3. Structural elements of COBOL programs 36

4. COBOL Environment Division structure 39

5. Sample COBOL program 44

6. System forward engineering and reverse engineering 60

7. Decision matrix: what to do with an old system 73

8. Software option strategy matrix 73

9. Virtual overlapping between code and program design 87

10. Forward engineering process model AO diagram 122

11. Process Al decomposition 123

12. Process A2 decomposition 124

13. Process A3 decomposition 125

14. Process A23 decomposition 126

15. Software system development knowledge transfer 127

16. Reverse engineering AO process model diagram 132

17 . Network of non-subroutine units 147

18. Trunk of the tree LC 148

19. Three kinds of recovered components 157

20. Model CICS on-line program 167

21. Model COBOL batch program 170

22. Model 4GL program 172

23. External interfaces of a system component 182

24. Context diagram 186

25. Level 0 diagram 187

26. Conceptual data model 190

27. Sample program implementation model 238

28. Logical Data Model 251

29. SLOC scatterplot 282

30. PDLOC scatterplot 283

31. NOP ARA scatterplot 283

32. CI scatterplot 284

33. SLOC regression line 285

34. Residuals plot SLOC 287

35. Regression line PDLOC 288

36. Residuals plot PDLOC 290

37. NOPARA regression line 292

38. NOP ARA residuals plot 294

39. CI regression line 295

40. Residuals plot CI 297

Chapter I

Introduction

Computing, also termed data processing, information systems, or computer science, is a

relatively new human activity. Depending on when the beginning of the era of widespread

electronic computer use is established, computing is 30 to 40 years old. Thus, there is no

significant history of computing as is found with other human endeavors. For example,

mathematics and chemistry have histories that extend hundreds or even thousands of

years. Modern science in general is based on well established axioms, principles,

hypotheses, and theories. This is not the case with data processing, nor in particular with

the software development process. Although research continues, there is still much not

known, nor well understood, about computer software and the way it is developed. Even

less is known about extracting system design information from existing system software--a

process called reverse engineering.

Statement of the Problem

In the world today there are billions of lines of COBOL program source code representing

legacy systems that are 20 or more years old. Maintaining these systems is time

consuming and extremely expensive because the code is difficult to understand. The

1

2

system documentation is incomplete, incorrect, or outdated. The source code is often the

only reliable source of information regarding the functions performed by the system and

the business rules under which the functions are carried out. Replacing legacy systems is

complex because it is difficult to extract design information from COBOL source code.

By using a formal reverse engineering methodology, the systems analyst or maintenance

programmer can extract design information from legacy system source code quickly and

with accurate results to support systems replacement or systems maintenance.

Barriers and Issues

Barriers to Reverse Engineering

A major barrier to reverse engineering is methodologists' tendency to ignore software

maintenance and devote most of their attention to developing new systems (Brittain,

1991). Another barrier to reverse engineering is the lack of automated tools to support

the process. Kerr and McGovern (1991) predicted reverse engineering would reach

maturity in 1995 with a standard repository design and full-function reverse engineering

tools. It is significant that this prediction appeared in a trade magazine; such bold

predictions are seldom, if ever, seen in formal technical journals. Five years after this

prediction not only is there no standard repository design, there is still no full-function

reverse engineering tool.

Desmond (1992) observed that the promise of automated tools was that they would make

it possible to abstract the logic of an old application and reapply that abstraction in a new

application. He suggested that software professionals, however, have learned how

difficult it is to extract business rules from COBOL process logic. Moreover, he raised

the possibility that investments in existing systems may even be a sunk cost, with no

recovery value.

3

Frazer (1992) suggested that "without the aid of automated tools the effort required to

reverse engineer an existing system is likely to be similar to that required for developing a

new one" (p. 237). Frazer also said without automated support, the success or failure of a

reverse engineering project depends, to a large extent, on human skills.

The interest in automated tools capable of reverse engineering functional design

information from legacy systems is based, in part, on the success of reverse engineering

tools designed to extract data structures from COBOL source code. Desmond (1992)

cited, as an example, a highly successful tool from Bachman Information Systems

(Burlington, MA) which provides such capabilities.

Issues in Reverse Engineering

Y ourdon (1989b) identified several management issues related to what he identified as

RE3 (reengineering, restructuring, and reverse engineering). A major issue is potential

savings, especially with respect to replacing a system rather than trying to prolong its life.

Other issues include: (a) how to begin, (b) identifYing obstacles, (c) overcoming

resistance, the possibility offailure, and (d) the amount of manual effort required.

4

Yourdon (l989b) also identified technical issues: (a) RE3 technologies work when

expectations are modest, (b) there is no way to tum bad code into good code, bad designs

into good designs or bad systems into good systems, and (c) there are major technical

difficulties associated with reverse engineering because the mapping from analysis to

design, and from design to code, is not a one-to-one mapping.

Importance of the Topic

Worldwide, it has been estimated there are between 90 billion (Connal & Bums, 1993)

and 100 billion (Davis, 1991a) lines oflegacy system source code in existence. Eighty

percent of this source code is written in COBOL (Al-Jarrah & Torsun, 1979; Davis,

1991a; Weinman, 1991). Connal and Bums (1993) estimated the existing systems were

written by 2.5 million different programmers and make up 60 million different programs.

It has been estimated that the total US investment in existing software is more than $2.3

trillion and the cost of maintaining it is more than $30 billion a year (Davis, 1990). Boehm

(1987) estimated the worldwide cost of maintaining software would be $800 billion by the

year 2000.

Tilley, Miiller, Whitney and Wong (1993) observed that "the software profession has

reached a turning point, one where more people are employed to maintain existing

applications than to develop new systems from scratch" (p. 142). Britcher and Craig

(1986) have identified the problem of upgrading large, complex systems written in

unstructured languages and according to designs that make modification difficult as the

major challenge currently facing software system managers.

Rabin (1992) says that achieving competitive advantage in today's international markets

demands the efficient use of resources. Two of these key resources are current software

systems and the employees who developed them. The systems represent sizable

investments in capital. The information system employees have acquired a wealth of

information about these production applications and the business principles they support.

Therefore, neither the systems nor the knowledge of the employees who developed them

can be eliminated without significant resource loss.

Brown (1993) suggested an increasing number of organizations are finding themselves

dependent on software written many years ago. A survey conducted by HCS,

Incorporated (reported in Weinman, 1991) indicated 80 percent ofprograrnmers and

analysts in Fortune 1000 companies are engaged in software maintenance activities. A

Sentry Market Research survey conducted in 1993 (as reported in Hanna, 1993)

indicated maintenance dominates the system developer's time: maintenance activities

comprised 43 percent, while new development activities comprised only 31 percent.

5

Volpe and Welty (cited in Weinman, 1991) estimated the world's total resource

consumption devoted to the maintenance of existing software systems is more than $120

billion per year. According to Weinberg (1982), the principal mode of software design has

become design by maintenance. He claimed the vast majority of design decisions being

put into effect today are created by maintenance programmers, not designers.

6

Maintenance or replacement of legacy application software systems is a growing problem

for the data processing industry and is one of the fundamental driving factors for the

current interest in reverse engineering and the broader area of reengineering. A recent

Datamation report (Hayley, Plewa & Watts, 1993) indicated the average chief information

officer was involved with 4.4 reengineering projects in 1993 compared with 1.6 such

projects in 1992, an increase of 175 percent. Frazer (1992) said "reverse engineering is

emerging as one of the most significant developments in the short history of software

engineering and the opportunities are immense for those able to provide genuine solutions

for very real problems" (pp. 223-224).

There is a close connection between software maintenance and reverse engineering in at

least two major areas: (a) Prolonged maintenance of software systems eventually leads to

interest in replacing these systems, and (b) it is necessary to understand software to effect

both maintenance and reverse engineering. Davis (1991 b) estimated nearly half of the

typical software maintainer's time is spent analyzing code in an attempt to understand it.

lt is therefore realistic to expect that reverse engineering techniques can also contribute to

extending the life of existing systems by postponing replacement. If maintenance

programmers are able to better understand software then the overall cost of maintenance

can be reduced, making continued maintenance a more economically viable option.

7

Significance of the Research

Replacing legacy systems tends to be cost and time prohibitive, but the main obstacle may

often be risk. As Ulrich (1990a) noted, time and cost to replace a system, while not

insignificant, are secondary to the risk of lost functionality in the replacement system.

Chikofsky and Cross (1990) noted there is a cost associated with understanding software.

This cost includes both the time involved in comprehending the software and the time that

may be lost because of misunderstanding. The potential cost savings for improving

software understanding therefore lies in two areas. The first is in reverse engineering

where the primary interest is in reducing the time required to extract some functional level

of understanding for the purpose of replacing the old system with a new system. The

second is in ongoing maintenance where the primary interest is in reducing both the time

required to understand the software and the time lost to misunderstanding. The significant

difference between software understanding for system replacement and software

understanding for system maintenance is the level of detail and, consequently, the degree

of accuracy required. Partee (1993) suggested a clear picture of legacy systems

dramatically improves productivity and accuracy by making systems easier to maintain.

Identifying legacy system functions is one of the early considerations in designing

replacement systems; it is normally identified as the "current system analysis" or a similar

activity. According to Yourdon (1989a), as much as 80 to 90 percent of the functions of

a replacement system will be the same as the functions of an existing system. This

8

probability of functional overlap suggests that it is necessary to review the existing system

before developing a replacement system. A current system analysis is needed to ensure

that functionality is either included in the replacement system or that the functions that will

not be included in the replacement system are eliminated intentionally.

Although design information recovery from legacy systems is an important aspect of

systems maintenance as well as systems replacement projects, it has proven extremely

difficult to achieve. According to Arango, Baxter, Freeman and Pidgeon (1986), it is not

possible to completely recapture the design, but the "approximation error" (the difference

between the original and the recaptured design) should be as small as possible.

Definition of Terms

Several key terms must be defined to set the stage for this research. In its relatively short

history, reverse engineering has been defined in different ways dependent on the focus or

interest of the particular researcher. With the advent of reverse engineering, for example,

it was necessary to differentiate between forward engineering and reverse engineering

(forward engineering is sometimes called traditional engineering). According to

Chikofsky and Cross (1990),jorward engineering is the process of converting or

transforming high-level abstractions and logical implementation-independent designs to the

physical implementation of a system. They define reverse engineering as the process of

analyzing a system to identifY its components and their interrelationships and to represent

the system in another form or at a higher level of abstraction. Reverse engineering is the

9

process of transforming or moving from one level of description of a system to another

level which is regarded as more abstract or "earlier" in terms of the standard life cycle

(Lano, Breuer, & Houghton, 1993). In simpler terms, reverse engineering is the recovery

of the original system design, or some parts of the original design, from program source

code. In yet simpler terms, reverse engineering can be considered computer

"unprogramming. "

Brief History of Reverse Engineering

One of the first uses of the term reverse engineering occurred in a paper written by M. G.

Rekoff(1985) which appeared in the IEEE Transactions on Systems, Man, and

Cybernetics. Rekoff defined reverse engineering as "developing a set of specifications for

a complex hardware system by an orderly examination of specimens of that system" (p.

244). Rekoffnoted these specifications are prepared by people other than the original

designers without the benefit of original drawings or other documentation, except possibly

operations and maintenance manuals. In his view, reverse engineering is just a special case

of system engineering. Rekoff believed the goal of reverse engineering is to create a clone

or to create a surrogate. A clone is an exact duplicate of the original article, while a

surrogate performs the same function but is not necessarily an exact copy.

Cross, Chikofsky and May (1992) view reverse engineering as a component ofa much

more comprehensive methodology which focuses on software reuse. In order of

application, this structure includes: (a) reverse engineering (includes redocumentation and

10

design recovery), (b) restructuring, (c) reengineering (includes redevelopment and

renovation), and (d) reclamation.

Chikofsky and Cross (1990) suggest the relationship between these elements and the

forward engineering methodology are as shown in Figure 1. Note that reverse engineering

can take place at a level higher than source code.

Requirements Forward Design Forward Implementation
Engineering Engineering

Reverse Reverse
Engineering

Design
Recovery

. - - - -

Reengineering Reengineering
(Renovation) (Renovation)

Restructuring Restructuring Restructuring,
Redocumentation

Figure 1. Reverse engineering and related processes are transformations between or
within abstraction levels.

Note. Adapted from "Reverse Engineering and Design Recovery, A Taxonomy," by E. J.
Chikofsky and J. H. Cross, 1990,1EE£ Software, 7, p. 14.

Objectives of the Research

The objective of this research was to develop a practical, applied methodology supported

by definitive reverse engineering techniques to support the recovery of high-level design

information from legacy system COBOL source code. Although there has been extensive

11

research in reverse engineering, much of the work has been experimental and performed in

an academic rather than a real-life environment. Previous research tends to focus on

theoretical aspects of reverse engineering rather than on applied concepts. Specific

objectives ofthis research were:

1. To develop a useful, applied approach to high-level design information recovery from

legacy system COBOL source code.

2. To support the validity of the approach by reference to relevant theory.

3. To demonstrate feasibility ofthe approach in a case study.

4. To provide support for the utility of the approach in a case study.

5. To assess the value of the approach for practical application.

6. To form a foundation for future research.

Scope ohhe Research

A comprehensive approach to this study might have been to examine reverse engineering

practices in a number of organizations. Organizations in various business areas that use

different programming languages could have been studied. The results of such an

approach might reveal some significant new base of knowledge to advance the practice of

reverse engineering. However, a broad approach of this nature would raise other issues-

such as the ability to generalize results across multiple application domains, programming

languages, systems' ages and sizes, criticality of systems, and a host of other factors.

12

Because a realistic environment for the study was considered essential, a single

organization type and programming language was chosen. The author has a long

association with the Federal Government, specifically the Department of Defense, and is

aware of the problems encountered in developing, maintaining, and replacing computer

based applications in the military environment. The U. S. Air Force's Air Materiel

Command was selected as the organization because of the proximity to the author of its

headquarters at Wright-Patterson Air Force Base in Dayton, Ohio. This organization was

also selected because it relies upon several hundred business-type, computer-based

systems to carry out its world-wide logistics support mission. These systems are usually

written in the COBOL language (a standard applications programming language in the

Department of Defense). Many systems are 20 years old and are expected to be viable

for 15 or 20 years into the future (Bennett, 1991). Bennett refers to them as "geriatric"

rather than "legacy" systems. These systems, however, are critical to daily operations,

represent a significant original development investment, and are difficult to replace

because of the excessive costs involved.

Research Questions Investigated

The following research questions were investigated:

1. Can a reverse engineering methodology be derived from an exhaustive study and

understanding of the forward engineering process?

2. Can a reverse engineering methodology based on a sound theoretical basis be tested

and validated by applying the methodology in a real world environment?

3. Can useful system design information be extracted from legacy system source code

using the aforementioned reverse engineering methodology?

13

4. Will use of a reverse engineering methodology allow analysts to extract essential

elements of high-level systems design information from legacy system COBOL source

code more efficiently than an unstructured approach?

Research Methodology

This research was composed offive key phases: Approach Selection, Methodology

Development, Case Problem Selection, Methodology Application, and Methodology

Assessment.

Phase I: Approach Selection

Approach selection involved an examination of the overall domain of reverse engineering~

a critical review of the results and limitations of previous and ongoing reverse engineering

research; assessing existing reverse engineering techniques; evaluating reverse engineering

tools; evaluating the limitations, advantages, practicality, and effectiveness of

methodologies relative to the target environment; and determining the fundamental basis

of the methodology.

Phase II: Methodology Development

In the second phase of the research the actual reverse engineering methodology was

developed. Methodology development was based on identifying techniques and

14

procedures for implementing the fundamental approach identified in the Phase I. This

phase included the identification of relevant source program information such as interfaces

with other programs and input and output files. This phase also included developing

suitable diagramming techniques and designing a repository for recording recovered

design information. The final component of this phase was a methodology for evaluating

the viability of a recovered design model to be applied at the end of Phase III.

Phase III: Case Problem Selection

This phase involved the selection of a suitably sized case problem for applying the reverse

engineering methodology. System segment or subsystem size, representativeness of

programs included, complexity of source code, and similar factors were considered in

selecting the case problem.

Phase IV: Methodology Application

Methodology application involved the employment of the reverse engineering

methodology developed in the Phase II to an actual problem. For this research, a

subsystem of a larger logistics management system typical of the legacy systems found in

the U.S. Air Force was used.

The case study approach allowed the methodology to be tested in a "live" environment.

Functional and logical documentation was not used during methodology application in

order to simulate the unavailability of high-level design information. Extracts oflimited

physical design infonnation were used as supporting infonnation during source code

analysis. After the methodology application was completed, the resulting system model

was infonnally compared with functional infonnation contained in the high-level

documentation.

Phase V: Methodology Assessment

15

In this phase the results of the methodology application were reviewed to assess the

effectiveness of the reverse engineering methodology. Recovered design infonnation was

compared with actual design infonnation. Errors or deviations from the actual design

were analyzed and assessed to support an evaluation of the methodology effectiveness and

to identify possible changes to the methodology

Limitations and Delimitations of the Research

Limitations of the Research

There is one principal limitation of this research: the selection of the system for the test

application and reverse engineering methodology assessment. The programs that

comprise the selected system are not representative of the complexity of worldwide legacy

system programs. Another randomly selected system or a series of randomly selected

systems subjected to the same methodology may result in different findings and

conclusions.

16

Delimitations of the Research

The first delimitation of the research concerns the selection of the COBOL programming

language. COBOL has certain features that promote better program understanding than

other languages. On the other hand, COBOL also includes features that make program

understanding more difficult. The results of applying the reverse engineering methodology

to other languages, such as FORTRAN, C, or PASCAL, may be significantly different

than results achieved with COBOL.

The second delimitation is the operating system environment selected for the case study.

The mM MVS operating environment has certain features (such as a relatively

complicated job control language (JCL» that both contributes and detracts from the

effectiveness of recovering design information from source code. A different operating

environment (e.g., Honeywell) has a less complex JCL and may have a different effect on

the ability to extract design information from source code.

The third and final delimitation is the orientation of the research. While it is well known

that both data structure and process structure are equally important in software

engineering, this research focused only on the recovery of functional process design

information. Although it is not possible to completely avoid the data structure issue in

reverse engineering, it was addressed only coincidentally. This delimitation, however, is

not felt to have a serious impact on the results of the research because data structure

design information is relatively easy to recover from legacy systems.

Contributions of the Research

Theoretical Contribution

Current theories of reverse engineering are primarily based on mathematical concepts.

17

Few reverse engineering theories address its application in a real-life environment. The

exploratory nature of this research contributes to qualitative aspects of reverse engineering

theory. The primary contribution is an elucidation of how design information is actually

extracted from program source code, the sufficiency of recovered data, an assessment of

data not present in the source code, identification of missing data, and a scheme for

uncovering the missing data.

Managerial Contribution

Primarily, reverse engineering research is presented in academic papers in technical

journals. Often, the intent is to present theoretical proofs of a solution to a reverse

engineering problem. These papers tend to be difficult to read and understand.

Moreover, it is often difficult to see how the research results can be applied to actual

problems. In addition, despite the predominant position of COBOL in legacy systems,

academic reverse engineering research is often conducted using PASCAL, C, and

FORTRAN. This research focused on the COBOL language and addresses real-life

problems faced by working technicians.

18

Academic research on reverse engineering tends to center on automated methods of

design recovery by creating assistant-type tools or by applying knowledge-based, or

artificial intelligence, techniques. Trade journals, on the other hand, frequently take a

simplistic approach to the problem of reverse engineering and lead information system

managers to believe that automated tools capable of eliminating the difficulties associated

with reverse engineering are, or will soon be, available.

This research fills in the information gap between academic journals and trade magazines

with respect to reverse engineering. F ocusing o~ a practical methodology that can be

applied by information system practitioners resulted in a teachable, usable, potentially cost

saving methodology for information system managers. The availability of this

methodology, ifit results in only a 0.01 percent reduction in the cost of performing system

maintenance, has a potential value of$30 million in the United States alone (0.01 x $30

billion estimated by Davis (1991a) as the cost of maintaining software each year in the

US). The value ofthe reverse engineering methodology to design information recovery

oriented toward systems replacement is more difficult to calculate, but probably equally

significant.

Retrieval of functional information from legacy system source code could become more

effective and efficient. The planning, goal creation, application of techniques, and defined

output products for the proposed reverse engineering methodology can replace the "trial

and error" approach that is commonly used by inexperienced technicians.

19

There is a staggering amount of information available related to reengineering and reverse

engineering. Reviewing even a small sample of this information is a time-consuming

effort. This research contributes to information system professional education and general

knowledge by consolidating relevant reverse engineering and peripheral information into a

single reference source. This research, in effect, serves as a "bridge" between the

theoretical, mathematics-based, academic world and the real-life world of the information

systems technician.

Criteria for Success

An essential element for any research project is an objective criteria for determining

success. An objective measure must be established to determine when the research has

been completed and to evaluate its success. The success of this research is represented by

its contribution to the practical interpretation and application of reverse engineering theory

in an operational environment. Given the nature of computer software and its complexity,

traditional testing and evaluation techniques are difficult to apply to software-related

research. The results of traditional evaluation techniques are likewise difficult to interpret.

Therefore, the success criteria established for this research, as detailed in the following

sections, relied more on practical, demonstrated usefulness than on theoretical evaluation.

20

Documented Reverse Engineering Methodology

The result of the research is a formal, documented reverse engineering methodology

specifically tailored for the types oflegacy systems now in operation within the U.S. Air

Force Materiel Command. The methodology consists of a series of techniques associated

with specific output products that represent the steps to be followed in applying the

methodology.

The techniques included in the methodology were based on the results of formal theory

and research, or on the results of practical application within the target environment. The

specific objective of the methodology was to begin with source code and, as rapidly as

possible, reverse engineer a model of the system at a level of abstraction higher than the

source code. The methodology supports multiple levels of abstraction. The ultimate goal

was to identify a purely functional representation of a legacy system that can be used as

the basis for a requirements specification document for a replacement system.

Validated Methodology

The reverse engineering methodology was validated within its intended purpose of

recovering functional design information from legacy system source code. . The validity of

the methodology was demonstrated by a case study which showed the extraction of

functional design information from a portion of an actual legacy system. The extracted

design information was compared with the functionality of the system as ascertained from

documentation.

21

Program Information Database Conceptual and Logical Data Models

Conceptual and logical data models for a program information data base were developed

to support the methodology. The conceptual model is represented as an entity

relationship diagram. The logical model is represented as a table diagram that can be used

to implement the database in any relational database management system. A prototype

database consisting of major tables and relationships was implemented on a personal

computer and used in the test case. The database design was modified as a result of the

test case. When coupled with processes to reduce the number of manual steps in the

methodology, this database could be the foundation for a reverse engineering assistant

tool.

Work Load Estimation Metrics

Four metrics for use in estimating time required to reverse engineer a program were

examined. All four were shown to have a linear relationship with reverse engineering

analysis time. Two metrics, source lines of code and program complexity, were shown to

be the two most reliable. The complexity index was developed as part of the reverse

engineering methodology.

Summary

This chapter provided background information on reverse engineering and stated the

problem, research objectives, scope, limitations, and contributions. The research

22

methodology and the success criteria were also highlighted. Chapter II reviews the

research literature and the development of reverse engineering practices, procedures, and

tools. Chapter II also reviews the literature in three related areas: programming

languages, the COBOL language, and program understanding. Chapter III discusses the

methodology followed in conducting the research. Chapter IV presents research findings.

Chapter V articulates conclusions, implications, recommendations and the summary.

Introdu.ction

Chapter II

Review of the Literature

From a theoretical point of view, there is never a need to reverse engineer a computer

based information system. Software does not wear out nor is it consumed in use; once a

system is operational it should run indefinitely. However, there is a significant disparity

between this theory and real world application--demonstrated by the urgent need for a

reverse engineering methodology to deal with the deteriorating legacy system source code

existent in most information systems departments. A review of the literature reveals a

gradual shift in interest from programming languages in the 1960s, to software

development methodologies in the 1970s, to software maintenance in the 1980s, and to

reengineering and reverse engineering in the 1990s. Despite considerable theoretical

research in reverse engineering, the practical application of research results remains a

problem today.

Organized into nine sections, this chapter provides a basic understanding of reverse

engineering, as well as other areas directly related to or impacting reverse engineering.

The first section addresses programming languages. A general understanding of the

nature of programming languages, including syntax and semantics, is important for

applying reverse engineering.

The second section surveys the COBOL programming language, the language of primary

focus in this thesis. The background of the language and some of the major aspects of its

syntax are discussed, but the section is not a tutorial on the language.

The third section explores literature related to program understanding. Erogram

understanding is crucial to both software maintenance and reverse engineering. Although

information derived by analyzing programs is used is differently in maintenance and

reverse engineering, the understanding techniques are the same.

The fourth section scans literature relative to the need for and current interest in reverse

engmeenng.

The fifth section addresses reverse engineering terminology, objectives, components, and

problems.

The sixth section reviews representative reverse engineering techniques, methodologies,

and tools. Techniques are activities or procedures used in performing reverse engineering,

but are not, by themselves, "start-to-finish" approaches. Methodologies are complete

approaches to reverse engineering. Tools are computer-based contrivances designed to

implement techniques and methodologies or to support manual reverse engineering efforts.

The separation of methodologies and tools, in some cases, is arbitrary; many research

tools are based on computer implementations of methodologies.

The final section is a summary of the literature.

Programming Languages

In a simplistic sense, a computer language is a way of instructing a computer to perform

useful work for humans. Some early definitions, in fact, reflected this view. Abelson and

Sussman (1985), however, contended a programming language is more than just a means

of instructing a computer to perform tasks, suggesting a language also provides the

framework within which people organize ideas about processes.

Sammet (1972) defined a programming language as a set of characters and rules for

combining them which have the following characteristics:

1. Machine code knowledge is unnecessary;

2. There is good potential for conversion to other computers;

3. There is an instruction explosion (from one to many); and

4. There is a notation which is closer to the original problem than assembly language

would be.

Pratt (1984) suggested a programming language is any notation for the description of

algorithms and data structures. Gopal and Schach (1989) argued "a program can be

visualized as an abstract function that generates the output value of the variables based on

the specified input values" (p. 133).

Raphael (1966) contended some form of the following components is present in every

programming language: (a) an elementary program statement, (b) a mechanism for linking

one program statement to another, and (c) a means by which the program can obtain data

inputs.

Pratt (1984) stated that programming languages consist of two parts: syntax and

semantics. Program syntax is the form in which programs are written. Semantics is the

meaning given to the various syntactic constructs.

Cohen (1991) noted meaning is not referred to in formal languages because the main

interest is in syntax alone, not semantics or diction. The word "formal" is intended to

mean strictly formed by the rules.

Programming Language Syntax

Generally speaking, computer language grammar rules are all syntactic rather than

semantic (Cohen, 1991). Pratt (1984) explained computer language grammar as a formal

definition of the syntax of a programming language. Grammar consists of a set of

definitions (rules or productions) that specify the sequences of characters (lexical items)

that form allowable programs in the defined language.

Pratt (1984) identified the most prominent syntactic elements ofa computer language:

1. The character set - ASCII is common; may limit the input/output devices used.

2. Identifiers - FORTRAN uses 6 characters, COBOL 30.

3. Operator symbols.

4. Key words and reserved words - A keyword is an identifier used as a fixed part of the

syntax of a statement. IF, THEN, ELSE in COBOL. A keyword is a reserved word if

it may not also be used as a programmer chosen identifier.

5. Noise words - Optional words which may be inserted in statements to improve

readability. COBOL provides many such options. In the statement GO TO <label>,

the keyword GO is required, but TO is an optional noise word which carries no

information and is used only to improve readability.

6. Blanks - Spaces.

7. Delimiters and brackets - A delimiter is a syntactic element used simply to mark the

beginning or end of some syntactic unit such as a statement or expression. Brackets are

paired delimiters, e.g., parenthesis or BEGIN ... END pairs.

Programming Language Semantics

As cited earlier, Cohen (1991) viewed the rules of computer language as being syntactic

rather than semantic. Because the syntax of computer languages is much simpler than

natural language, there is correspondingly less semantic meaning.

Programming Language Components

Pratt (1984) identified the major components of any computer language:

1. Free and fixed field formats. COBOL uses a combination; procedure division fields

tend to be free while working storage fields tend to be fixed.

2. Expressions are the basic syntactic building block. In COBOL, expressions are less

important than statements.

3. Statements are the most prominent syntactic component in most languages. Each

COBOL statement has a unique structure involving special key words, noise words,

alternative constructions, optional elements, etc.

4. Overall program-subprogram structure. Possibilities include separate subprogram

definitions, nested subprogram definitions, data descriptions separated from executable

statements (as found in COBOL), and unseparated subprogram definitions.

Raphael (1966, pp. 69-70) offered the following hierarchy of program components:

1. Elementary program statements (commands, requirements, or implicit specifications):

a. Command - An imperative statement that commands the action to be taken

without saying anything about what effect will thereby be achieved. The elementary

statements of most conventional programming languages are exclusively commands.

b. Requirement - Describes the effect to be achieved without saying anything about

the actions to be taken in achieving the effect nor requiring that programmers know

how the effect will be achieved.

c. Implicit specification - Similar to a requirement, but programmers must know

something about what actions will be take to achieve the desired effect.

2. Subprogram linkage - Provides a convenient building block to assist programmers in

organizing a complex program.

a. Explicit call - The subroutine itself must know how and where to find its

arguments, where to put its results, and how to get back to the calling program

(e.g., CALL SUBR(Arg)).

b. Execute call- A subroutine call syntactically indistinguishable from the basic

instructions ofa programming language (e.g., a macro). Rarely used for structure;

more often used to eliminate duplicate code sections.

c. Function composition - The mathematical idea of a function carried over into

programming to designate a subroutine that calculates a single number, the value of

the function.

Job Control Language (JCL)

Dependent on the operating system of a computer, job control language (JCL) is used to

control the way computer programs execute, and how they allocate and manage file

structures associated with a job. According to Burson, Kotik, and Markosian (1990), the

initial problem faced by anyone maintaining or modifying applications controlled by the

IBM JCL is to understand data flow among the programs and datasets. JCL Job

statements organize groups of programs, Execute statements start specific programs, and

DD statements link internal program file names to external hardware devices.

The COBOL Language

The COmmon Business Oriented Language (COBOL) has a history unique among the

programming languages developed during the short life span of the computing industry.

COBOL affected the way systems were designed and continues to have an impact on the

maintenance of the numerous COBOL legacy systems found in government and

commercial organizations. A thorough understanding of the nature of COBOL is essential

for the reverse engineer working with legacy systems, however, this section only provides

highlights of the language.

Lientz and Swanson (1980), in a comprehensive survey of data processing organizations,

found COBOL, at 52 percent, to be the most widely used programming language in the

United States. A later survey performed by Sentry Market Research (as reported in

Keyes, 1992) indicated COBOL is also the most widely used language for maintenance

and reengineering (at 65 percent and 51 percent respectively) while C and C++ are

noticeably less popular (under 10 percent).

According to Fiorello and Cugini (1984), COBOL is by far the most commonly used

language within the Federal government: of approximately 500,000 application software

programs, 50 to 60 percent (250,000 to 300,000) are written in some form of COBOL.

COBOL History

In the spring of 1959, a group known as the Conference on Data Systems Languages

(CODASYL) held a meeting at the University of Pennsylvania (Cunningham, 1962). The

group concluded it would not be possible or practical to apply present or future hardware

improvements unless software considerations were given major attention--primarily, the

development of a common programming language for all computers. It was proposed that

this common language have two or more requirements phases, including a language that

was problem-oriented, but machine independent, followed by a general purpose

programming language; a language that was systems-oriented and computer independent;

systems specifications could be written in a language significant to people as well as

machines (Cunningham, 1962).

At that time, the Department of Defense (DOD) was the largest single user of computers.

At the urging of the CODASYL group, the DOD agreed to sponsor the common

programming language project (Friedman & Cornford, 1989). In May 1959, a meeting

was held in the Pentagon (Sammet, 1981); attendees included people from government,

the user community, and six computer manufacturers (Gelemter & Jagannathan, 1990).

Three main topics were discussed: the time and cost of reprogramming when changing

from one computer to another, the inflexibility of programs on simple machines, and the

desirability of program interchange (compatibility) between machines (Cunningham,

1962). Data description and statement language task groups were also established.

A COBOL language, COBOL-60, was designed and then implemented by several

manufacturers in 1960 (Gelemter & Jagannathan, 1990).

In 1960 the DOD decreed all data processing computers purchased must be supplied with

a COBOL compiler (Friedman & Comford, 1989). Sammet (1981) suggested this edict

was responsible for COBOL becoming a de facto standard even before it became an

official one.

According to Sammet (1981), who served on one of the language design committees,

COBOL was intended from its inception to be used on large (by 1959 standards)

computers built for "business data processing," although there was never any real

definition of that phrase. Sammett identified the criteria used in the design of COBOL, in

decreasing order of importance, as: naturalness, ease of transcripton to required media,

effectiveness of problem structure, and ease of implementation.

A revised version of COBOL, COBOL-6l, was introduced in 1961 and formed the core of

all future versions of the language (Gelemter & Jagannathan, 1990).

COBOL Structure

The COBOL standard is organized in a modular fashion that allows the language to be

implemented on a wide range of hardware (Pratt, 1984). The definition is composed ofa

nucleus and a set of 11 modules, each of which has between one and three levels (see

Table 1). The minimum COBOL implementation consists of the features that make up the

lowest level of the nucleus and the modules. Table handling and sequential input/output

are the only modules with non-null minimum levels.

Table 1
ANSI-74 COBOL Consists ofa Nucleus and 11 Modules

Component Level 2 Levell Minimum
level

Nucleus 2 1

Table handling 2 1

Sequential 1-0 2 1

Relative 1-0 2 1 Null

Indexed 1-0 2 1 Null

Sort-merge 2 1 Null

Report writer 2 1 Null

Segmentation 2 1 Null

Library 2 1 Null

Debug 2 1 Null

Inter-program 2 1 Null

communications

Communications 2 1 Null

Note. Adapted from "Discussion and Correspondence: A Study of COBOL Portability,"
by J. M. Triance, 1978, The Computer Journal, 23, p. 278.

Because COBOL was originally set up for punched card input (Stem & Stern, 1979), the

language was designed using clearly defined fields. Table 2 explains the various fields on a

COBOL coding sheet.

Table 2
COBOL Program Field Assignments

Card column Purpose Description
1 - 6 Sequence number area Page (2 positions) and sequential number

(4 positions).
7 Continuation field A hyphen (-) for nonnumeric literals (* is

recognized as a comment line).
8-11 A margin (field) Division, section, and paragraph names

begin in the A margin, and must appear
on a line with no other entries.

12-72 B margin (field) All other clauses and statements appear
in this area.

73-80 Identification Area for punched cards~ typically used
for the program name.

Figure 2 is a sample COBOL coding sheet that shows the field layouts.

COBOL's program organization is monolithic and made up of four divisions (Stevenson,

1975): (a) identification, (b) environment, (c) data, and (d) procedure. These divisions

are comprised of structural elements (see Figure 3). According to Pratt (1984) the intent

was to separate machine dependent and machine-independent program elements and to

separate data descriptions from algorithm descriptions to allow changes in one without

affecting the other.

- -I SYSTEM I .
PUNCHING INSTRUCTIONS I PAGE OF I I PROGRAM --------~---

fGnAPHIC I I I 1 I I I .II
* I l PROGRAMMER -[OllIE I PUNCH I I I I I I I II

CARD fORM.

SEQUENCE
AlA 18 COBOL STATEMENT -I IDENTIFICATION tpAGEI Ist"IA 1I

I • • I

COBO L Coding Form

I I I I
.. ,

Ii' I I
i I - - -

Ii 1

(\ I
I

I ti' I I I
(,i, I I I
L .' i i I
U;. i

I

I , i
,

.
I i - .- - - - - - _. - - -, til I I

1 I J T
I: I j I I , ,

I I
11; i I I
1 () I I .-
1 ' I I I
I.' I I
1 q i I
/!} I , .

!
I

I -

-t i I i I • . , . I I ,.
" '"

, :II OJ "
,.

Figure 2. Sample COBOL coding sheet.

Note. Adapted from Structured COBOL: American national standard (p. 9), by V. T. Dock, 1979, S1. Paul, MN: West.

Program

Division

Section

Paragraph

Sentence

Statement

Clause

Word Element

Figure 3. Structural elements of COBOL programs.

Note. Adapted from The Revolutionary Guide to COBOL (p. 13), by Y. Handel and B.
Degtyar, 1994, Birmingham, England: WROX Press.

Table 3 defines the structural elements of COBOL programs.

Table 3
General Structural Elements of COBOL Programs

Element Description
Word Made up of one or more characters.
Clause Made up of characters or words and specifies an attribute of an entry.
Entry A group of clauses ending with a period.
Statement A syntactically valid combination of words and characters that begins

with a verb that makes the computer do something (used in the
Procedure Division).

Sentence A sequence of statements, the last of which is terminated by a period and
followed by a space. The period is especially important in conditional
if/then/else constructs to ensure they are properly terminated.

Paragraph Consists of one or more sentences. May be executed as a procedure.
Paragraph name can be used as a label for GO TO.

Section Consists of one or more paragraphs. May be executed as a procedure.
Division Consists of one or more paragraphs or sections.

Note. Adapted from The Essentials o/COBOL I (p. 27), by R. Cezzar, 1989, Piscataway,
NJ: Research & Education Association.

The Identification Division identifies the program to the computer (Handel & Degtyar,

1994). This division contains six paragraphs, of which only the first is required:

PROGRAM-ID
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

The Identification Division is the least significant of the four divisions because it has no

affect on execution; its purpose is to identify ajob (program). Stern and Stern (1990)

suggested some of the optional entries (such as AUTHOR, INSTALLATION, and

DATE-WRITTEN) provide extremely useful documentation for non-data processing

personnel. This reflects the expectation of the original CODASYL group that managers

and functional users would read COBOL programs because of its English-like format; it is

doubtful this has occurred to any great extent.

The Environment Division describes the computer equipment used by a specific program

(Stem & Stem, 1979). It contains paragraphs needed to connect the program with its

environment; in particular, it interfaces the data file and device names in the program with

the operating environment (Handel & Degtyar, 1994). See Figure 4 for structure

delineation.

The Configuration Section contains five paragraphs (of which only the first two are

required):

SOURCE-COMPUTER.
OBJECT-COMPUTER.
PROGRAM-COLLATING-SEQUENCE.
SEGMENT-LIMIT.
SPECIAL-NAMES.

The Input-Output Section links logical program files with physical files on an external

device, and contains two paragraphs:

FILE-CONTROL.

1-0 CONTROL.

Describes the files used in the program.

This paragraph is only relevant to files that occupy multiple
volumes, or single volumes that contain multiple files (such
as magnetic tape) (Handel & Degtyar, 1994).

Environment
Division

I
I I

Configuration Input-Output
Section Section

Paragraphs

Source-Computer i-- - File-Control

Object-Computer i-- --- 1-0 Control

Program Collating
i--

Sequence

Segment-Limit i--

Special Names i--

Figure 4. COBOL Environment Division structure.

Note. Adapted from The Revolutionary Guide to COBOL (p. 19), by Y. Handel and B.
Degtyar, 1994, Binningham, England: WROX Press.

The Data Division describes input and output formats to be processed by the program, as

well as constants and work areas needed to process the data (Stern & Stern, 1979). The

Data Division is divided into two sections: (a) the File Section, and (b) the Working

Storage Section.

The File Section links program logical files with physical files on external devices and

defines all data areas of the input and output files. The Working Storage Section is used

. to set up memory for fields that are not part of the input or output files.

COBOL data names may be up to 30 characters long. Data names must begin with an

alphabetic character and consist of letters, digits, and hyphens. Data names may not begin

or end with hyphens, contain embedded blanks, or contain COBOL reserved words.

The general COBOL data organization is made up of files, records, fields, group items,

and elementary items (Stern & Stern, 1979):

1. File - The overall classification of data pertaining to a specific category; the major

grouping of data containing information of a specific nature; or a major classification

of data in a data processing environment.

2. Record - A unit of grouped data within a file that contains information of a specific

nature.

3. Field - A group of consecutive storage positions reserved for a specific kind of data.

4. Group Item - A data field that is further subdivided; a major field consisting of minor

fields.

5. Elementary Item - A data field not subdivided.

The Procedure Division contains the instructions necessary to read input, process it, and

create output. The Procedure Division contains all instructions to be executed; logic is

contained within the instructions.

Within the Procedure Division, the traditional paragraph form is terminated by the

appearance of the next paragraph name or the End statement (Stevenson, 1975):

Paragraph-name.
[body of paragraph]

Next-paragraph-name.
or

Paragraph-name.
[body of paragraph]

EN D-paragraph.

COBOL syntax is designed so programs will be "English-like" or "self-documenting"

(Gelemter & Jagannathan, 1990), and is modeled on simple English sentences rather than

mathematical expressions. English, as opposed to mathematical notation, is less concise

and more varied. The operation assign variable C the value oj variable A divided by

variable B can appear in COBOL as:

DIVIDE A BY B GIVING C. or

DIVIDE B INTO A GIVING C. or

COMPUTE C = AlB. or

DIVIDE B INTO A GIVING C REMAINDER D.

Nature ojCOBOL

Control organizing constructs in COBOL are simple: conditional statements, GO TOs,

and a looping construct called the PERFORM statement. The PERFORM statement

supports both bounded and unbounded (FOR loop and WHILE loop style) iterations

(Gelemter & Jagannathan, 1990).

COBOL is described as basically a constructive language, but it includes highly declarative

elements: (a) the range of values a variable can take is specified by the PICTURE

declaration; and (b) active typing (e.g., the MOVE CORRESPONDING statement) can

cause a substantial amount of activity to occur implicitly (Gelemter & Jagannathan, 1990).

Al-Jarrah and Torsun (1979) performed a static analysis of340 COBOL programs

collected from commercial and industrial installations. Program sizes ranged from 50 to

5,000 lines of code. The average COBOL program was 666 source cards. The average

length of user defined names was 7.81 characters (out ofa possible 30 characters). The

average number of files was 3. The USAGE clause was not specified in 80.5 percent ofall

data items (defaulting to DISPLAY and reflecting the preponderance of non

computational data in commercial computing). The OCCURS clause is used to declare

arrays; its low frequency (14.9 percent) reveals arrays are not widely used by COBOL

programmers. Five verbs (MOVE, IF, GO TO, PERFORM, and ADD) accounted for 84

percent of the verbs. The total frequency of comments (NOTE xxx and * in column 7)

was 3.35 percent.

In a survey of 100 representative on-line and batch programs from the German

commercial sector, Sneed and Jandrasics (1987) reported:

1. Programs consisted of one module [a separately compilable and testable unit].

2. All sections were connected via common data in the DATA DIVISION.

3. Programs were well-structured.

4. Programs contained data which were not used at all.

5. The average number of data definitions was 1104.

6. The average size of the PROCEDURE DIVISION was 2255 lines.

Figure 5 is a sample of a typical batch-oriented COBOL program.

COBOL Disadvantages

Hicks (1975) noted a problem with the COBOL looping construct because it only allows

an exit from the top. Hicks maintains the typical loop in business programming does not

have an exit at the top or the bottom, but somewhere in between.:

Goguen (1975) noted the PERFORM ... THRU format of the PERFORM statement is a

hazard in providing a means to "fall through" from one paragraph to another.

One of the objectives in developing the COBOL language was to make it possible for

nonprofessionals to write programs. However, Weinberg (1971) suggested this was not

necessarily a good objective because COBOL allowed nonprofessionals to write

programs. The quality of programs produced in the mid 1960s and early 1970s by these

inexperienced programmers contributed to the problem of dealing with legacy systems

today.

000001
000002

. 000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038
000039
000040
000041
000042
000043
000044

IDENTIFICATION DIVISION.
PROGRAM-ID. DELlNRPT
AUTHOR. JOHN SMITH .
INSTALLATION. ACME PAINT, INC.
REMARKS. THIS PROGRAM PREPARES A REPORT BY NAME OF THOSE
PATRONS WHOSE CONTRIBUTIONS WERE BELOW TARGET.
INPUT CONTAINS THE PATRON NAME, TARGET CONTRIBUTION,
ACTUAL CONTRIBUTION AND DATE OF CONTRIBUTION.
DATE-WRITTEN. JANUARY, 1970.
DATE-COMPILED. JANUARY, 1970.
SECURITY. UNCLASSIFIED
ENVIRONMENT DIVISION
CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
PROGRAM-COLLA TING-SEQUENCE.
SEGMENT-LIMIT.
SPECIAL-NAMES.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PATRON·FILE
ASSIGN TO SYS006-UT-2400-S.

SELECT DEFICIENCY-LIST
ASSIGN TO SYS009-UR-1403-S

DATA DIVISION.
FILE SECTION.
FD PATRON-FILE

RECORD CONTAINS 74 CHARACTERS
LABEL RECORDS ARE STANDARD.

01 PATRON-RECORD.
05 PR-NAME.
05 FILLER
05 PR-TRGT -CON
05 PR-ACTL-CON
05 PR-CON-DATE

10 PR-CON-MONTH
10 PR-CON-DA Y
10 PR-CON-YEAR

FD DEFICIENCY-LIST.

PIC X(18).
PIC X(42).
PIC 9(4).
PIC 9(4).

PIC X(2).
PIC X(2).
PIC X(2).

RECORD CONTAINS 132 CHARACTERS
LABEL RECORDS ARE OMITTED.

Figure 5. Sample COBOL program.

000045 01 DEFICIENCY-LINE.
000046 05 FILLER PICX.
000047 05DL-NAME PIC X(18).
000048 05 FILLER PIC XX VALUE SPACES.
000049 05 DL-CON-MONTH PIC XX.
000050 05 FILLER PICX VALUE "I".
000051 05 DL-CON-DA Y PIC XX.
000052 05 FILLER PICX VALUE "I".
000053 05 DL-CON-YEAR PIC XX.
000054 05 FILLER PIC X(4) VALUE SPACES.
000055 05 DL-TRGT -CON PIC 9(4).
000056 05 FILLER PIC XXX VALUE SPACES.
000057 05 DL-ACTION-CON PIC 9(4).
000058 05 FILLER PIC XXX VALUE SPACES.
000059 05 DL-AMT -DEF PIC 9(4).
000060 05 FILLER PIC XXX VALUE SPACES.
000061 05 DL-DEF-PERCENT PIC 99.9.
000062 05 FILLER PICX VALUE '0/0'.
000063 05 FILLER PIC X(73) VALUE SPACES.
000064
000065 01 TOTAL-LINE.
000066 05 FILLER PICX.
000067 05 TL-DEF-PATRONS PIC 999.
000068 05 FILLER PIC X(38) VALUE SPACES.
000069 05 TL-AMT-DEF PIC 9(6).
000070 05 FILLER PIC X(81) VALUE SPACES.
000071
000072 WORKING STORAGE SECTION.
000073
000074 01 WS-SWITCHES.
000075 05 WS-EOF-SWITCH PIC XXX.
000076
000077 01 WS-ARITHMETIC-WORK-AREAS.
000078 05 WS-AMT-DEFICIENT PIC 9(4).
000079 05 WS-TOTAL-AMT-DEF PIC 9(6).
000080 05 WS-DEF-FRACTION PIC V999.
000081 05 WS-DEF-PERCENT PIC 99V9.
000082 05 WS-DEF-PATRON PIC 999.
000083
000084 PROCEDURE DIVISION.
000085
000086 OOO-PRINT-DEFICIENCY-LiST.
000087 OPEN INPUT PATRON-FILE
000088 OUTPUT DEFICIENCY-LIST.
000089 PERFORM 100-INITIALIZE-VARIABLE-FIELDS.
000090 READ PATRON-FILE
000091 AT END MOVE ·YES" TO WS-EOF-SWITCH.
000092 PERFORM 200-PROCESS-PATRON-RECORD
000093 UNTIL WS-EOF-SWITCH IS EQUAL TO "YES·.

Figure 5. (continued)

000094
000095
000096
000097
000098
000099
000100
000101
000102
000103
000104
000105
000106
000107
000108
000109
000110
000111
000112
000113
000114
000115
000116
000117
000118
000119
000120
000121
000122
000123
000124
000125
000126
000127
000128
000129
000130
000131
000132
000133
000134

PERFORM 700-PRINT -TOTAL-LINE.
CLOSE PATRON·FILE

DEFICIENCY-LIST.
STOP RUN.

1 00-1 NITIALIZE-VARIABLE-FlELDS.
MOVE "NO· TO WS-EOF-SWITCH.
MOVE ZERO TO WS-TOTAL-AMT-DEF.

WS-DEF-PATRONS.

200-PROCESS-PATRON-RECORD.
IF PR-ACTL-CON < PR-TRGT-CON
PERFORM 210-PROCESS-DEFICIENT-PATRON.
READ PATRON-FILE

AT END MOVE "YES· TO WS-EOF-SWITCH.

210-PROCESS-DEFICIENT-PATRON.
MOVE PR-NAME TO DL-NAME.
MOVE PR-TRGT-CON TO DL-TRGT-CON.
MOVE PR-ACTL-CON TO DL-ACTL-CON.
MOVE PR-CON-MONTH TO DL-CON-MONTH.
MOVE PR-CON-DAY TO DL-CON-DAY.
MOVE PR-CON-YEAR TO DL-CON-YEAR.
SUBTRACT PR-ACTL-CON FROM PR-TRGT-CON

GIVING WS-AMT-DEF.
MOVE WS-AMT-DEF TO DL-AMT-DEF.
DIVIDE PR-ACTL-CON BY PR-TRGT-CON

GIVING WS-DEF-FRACTION.
MULTIPLY WS-DEF-FRACTION BY 100

GIVING WS-DEF-PERCENT.
MOVE WS-DEF-PERCENT TO DL-DEF-PERCENT.
WRITE DEFICIENCY-LINE

AFTER ADVANCING 2 LINES.
ADD WS-AMT-DEF TO WS-TOTAL-AMT-DEF.
ADD 1 TO WS-DEF-PATRONS.

PRINT-TOTAL-LINE.
MOVE WS-DEF-PATRONS TO TL-DEF-PATRONS.
MOVE WS-TOTAL-AMT-DEF TO TL-TOTAL-AMT-DEF.
WRITE TOTAL-LINE

AFTER ADVANCING 3 LINES.

Figure 5. (continued)

Note. Adapted from "Function Recovery Based on Program Slicing," by F. Lanubile and
G. Visaggio, 1993, Proceedings of the IEEE Conference on Software Maintenance, p.
40l.

Pratt (1984), Gelernter and Jagannathan (1990), Price, et al. (1993), and Markosian,

Newcomb, Brand, Burson, and Kitzmiller (1994) identified numerous problems with the

COBOL language:

1. COBOL has no statement bracketing and no local variables.

2. COBOL has no subroutines.

3. COBOL source programs are bulky and verbose. Programmers must generate more

text than required in other languages.

4. COBOL allows implicit programming through type coercion. Conversion routines can

be invoked implicitly and automatically simply by writing an assignment statement that

involves variables with different formats.

5. COBOL has no procedures.

6. There are no subprograms that accept parameters. There is a standard definition for a

procedure construct, and it may be implemented "optionally" in extended versions of

the language (the COBOL ANSI standard developed in 1974).

7. Names declared in the data division are global to the program.

8. A COBOL paragraph may be invoked from many places in different ways.

9. The working storage section is like an all-engulfing common area, making it very

difficult to limit side effects. COBOL variables are global. Any program component

can directly access any variable field.

10. The PERFORM verb (the heart of COBOL control flow) has many formats.

Hennell, McNicol, and Hawkins (1980) and Lano, et al. (1993) offered additional COBOL

problems:

1. COBOL uses data formats instead of data types.

2. COBOL allows the mixed use of PERFORM statements and the ordinary fall-through

execution of paragraphs.

3. Some versions of COBOL include unstructured constructs (i.e., GO TO and ALTER

GO TO).

4. COBOL has too many specialized verbs and variant verbs, the exact semantics of

which requires specialized programmer knowledge.

5. In COBOL a line may contain multiple statements, making it difficult to label jump

from and jump-to points.

6. Detection of the choice clause may be made difficult if the THEN keyword is absent.

7. The SEARCH statement, which has a logical structure not found in other high-level

languages, may make the identification of a choice clause difficult.

Ricketts, DelMonaco, and Weeks (1989) claimed data flow analysis for COBOL is more

difficult than many other languages because:

1. Actions on elementary data elements affect group items.

2. Actions on group items affect elementary items.

3. Multiple conflicting definitions for the same physical storage locations are common

(the REDEFINES clause, for example).

4. COBOL is not a strongly typed language; all data definitions are global. Unintended

side effects are often inherent in old systems.

Ricketts, et al. (1989) pointed out that in COBOL, code analysis (i.e., the discovery of

data definitions, flows, and rules, wherever they exist in source code) includes file and

record declarations in Environment and Data Divisions, data flows within programs and

between files in the Procedure Division, and data flow between programs in the Linkage

Section and in JCL data definition (DD) statements.

COBOL Advantages

Gelernter and Jagannathan (1990) suggested the record structure features of COBOL are

an advantage because it is possible to "isolate a piece of the broader naming environment,

enclose it in a wrapper, give it a name, and treat it as a single (compound) unit within the

top-level environment" (p. 161).

Lano, et al. (1993) noted COBOL data declarations provide information about program

data structure and associate records and record fields to files.

Program Understanding

Program understanding is the process of reading a program or a series of programs in a

system for the purpose of extracting the semantic content; in most cases, the target

program has been written by someone other than the reader. This process is required in

both maintep.ance and reverse engineering. Standish (1984) estimated 50 to 90 percent of

maintenance time is devoted to program comprehension.

Ourston (1989) argued that computer automatic program recognition (understanding) is

similar to natural language research. Although computer program languages are more

structured that natural language, there is an infinity of possible expressions and possible

interpretations.

As Sage (1993) noted, it is difficult to describe any large and complex system in terms of

any ofthe three fundamental dimensions of structure,junction or purpose because these

dimensions are neither mutually exclusive, nor collectively exhaustive. In the case of a

computer system, the understanding process of these dimensions is predicated on

understanding the individual programs that comprise the system.

Dietrick and Calliss (1992) used the term code analysis and described it as a generic term

denoting programmer activities where the primary emphasis is on examining a piece of

program code. Two important aspects are: (a) determining dependencies between

program components, and (b) analyzing program component use.

Kozaczynski, Letovsky and Ning (1991) identified three understanding-intensive tasks

related to software:

1. Validation and Verification - Given a piece of code, verifY the functional behavior

meets its specification.

2. Maintenance - As the need for software understanding always occurs on an "as

needed" basis, the maintainer obtains the minimum information necessary to make a

change.

3. Reuse - Answers the question, "What does a given component do?" Can occur within

a system, between systems, or between a system and a library of reusable components;

reuse can occur at the code component or abstract design leve1.

Maintenance, reverse engineering, and reuse are based on the ability to recognize,

comprehend, and manipulate design decisions in source code (Rugaber, Ornburn, &

LeBlanc, 1990). A current software engineering challenge is developing technology to

make old software systems more comprehensible (Kozaczynski, et al., 1991). As Berns

(1984) proposed, "Program maintainability and program understanding are parallel

concepts: the more difficult a program is to understand, the more difficult it is to

maintain" (p. 14).

Scherlis (1984) discussed the need to understand the causal connections between software

requirements and the computer programs that realize them and compared this

understanding with the causative nature of mathematical logic to mathematical reasoning.

Biggerstaff, Mitbander, and Webster (1994) discussed the concept assignment problem.

They defined this as the problem of discovering the human-oriented concepts of

computational intent (through a process of analysis, experimentation, guessing, and

crossword puzzle-like assembly) and assigning them to their realizations within a specific

program or its context.

The Meaning of Program Understanding

Martin and McClure (1983) defined understandability as the ease with which the function

of a program and how it achieves this function can be understood by reading the program

and its documentation. Martin and McClure claimed an understandable program allows

a reader to determine the program objectives, assumptions, constraints, inputs, outputs,

components, relationships to other programs, and status.

Choi (1993) said "Understanding a program involves assigning meaning to a program text,

more meaning than is literally there" (p. 40). Robson, Bennett, Cornelius, and Munro

(1991) echoed Choi's view: "Comprehension involves applying the [program] syntactic

knowledge to develop an internal semantic representation" (p. 80).

Chen, Heisler, Tsai, Chen, and Leung (1990) defined program understanding in terms of

maintenance: "One cannot maintain a program unless one understands it. Program

understanding can be a complex task for large applications. Program understanding often

involves the specification, the design and the code as well as the interrelationships between

them" (p. 4).

Berns (1984) viewed a program as a set of static definitional statements and a set of

executable statements; definitions establish the attributes and interrelationships of certain

program elements, such as symbolic names. Berns suggested program understanding

involves understanding how the dynamic portion of a program manipulates and controls

the static elements.

Biggerstaff, et al. (1994) said program understanding is achieved when it is possible to

explain the program, its structure, its behavior, its effects on operational context, and its

relationship to its application domain. This explanation takes place in a form much

different than that used to construct the program.

Software Psychology

Weiser and Shneiderman (1987) defined software psychology as "the study of human

performance in using computer and information systems" (p. 1399). Program

understanding falls into the category of using computer and information systems, and is a

subject of interest to software psychologists. An abundance of literature on the process of

programming and program understanding is found in the study of software psychology.

Shneiderman (1980) identified psychological complexity as a factor related to program

comprehension. He defined psychological complexity as "characteristics which make it

difficult for humans to understand software" (p. 67). Shneiderman suggested program

complexity can be logical, structural, or psychological:

1. Logical complexity involves program characteristics that make a proof of correctness

difficult, long, or impossible (due to the number of distinct possible program paths).

2. Psychological complexity (comprehensibility) refers to characteristics which make it

difficult for humans to understand software (e.g., the number of IF statements,

module size, and the number of non-normal exits from a decision statement). This

factor can also be influenced by structural and logical complexity or other factors such

as code comments and external documentation.

3. Structural complexity. There are two elements in this factor:

a. Absolute structural complexity is a measure of the number of modules that make up

a program (Stevens, Constantine & Myers, 1974; cited in Shneiderman (1980)). A

module is defined by Dietrick and Calliss (1992) as a named collection of program

components where a programmer has control over the program components that are

imported from or exported to the surrounding environment. A program is made up of

a hierarchy of modules, consisting of instructions, data, and the underlying execution

control mechanism (Tian & Zelkowitz, 1992).

b. Relative structural complexity is the ratio of the number of module linkages to the

number of modules.

Weiser and Shneiderman (1987) discussed the semantic knowledge of application domain

and programming concepts necessary for software understanding.

1. Semantic knowledge of application domain. The programmer's knowledge of some

field or application area. This knowledge is independent of the computer

implementation and is level structured (low-level, mid-level, and high-level) .

. 2. Semantic knowledge of programming concepts. The programmer's knowledge of

programming practices, algorithms, file structures, data structures, programming

language features, operating systems, etc. This knowledge is independent of a

particular program's application domain.

3.· Syntactic knowledge. The details about how to express a semantic knowledge concept

in a programming language. Syntactic knowledge is language dependent, arbitrary,

requires rote memorization, and is forgotten unless frequently rehearsed.

Factors Affecting Program Understanding

Sage (1977) noted a common difficulty in comprehending a complex system is no one

person has enough knowledge to develop a complete set of descriptive elements. Data

about a complex system is often incomplete or faulty. The model structure of the complex

system may also be unverified or incomplete.

Program structure is the organization and expression of program logic (Boehm-Davis,

Holt, & Schultz, 1992). Miller and Strauss (1987) claimed a structured program is better

than an unstructured one because it is easier for a programmer to bound (e.g., in analyzing

a routine, the programmer need not be concerned with the invoker or any routine invoked

by the module under analysis).

Van Zuylen and Estdale (1993) defined program comprehension as the construction of a

multi-level, multi-view, representative internal semantic structure. This process is

described as follows:

1. A software engineer must understand a program's internal semantic structure.

2. Most semantic knowledge can be derived from source code.

3. Most programs contain a mixture of source code, an interaction with the environment

(e.g., a DBMS), a transaction processing system, and calls to external procedures

which are external to the program (i.e., user interface libraries).

4. The semantics are found by combining information from language semantics with

information from software environment documentation and library specifications.

Software engineering knowledge is stored partly in the mind of the software engineer

and partly in the software environment documentation.

S. The source code is interpreted; the semantics are determined by transforming

information from source code and software engineering knowledge into a

representation of the program's semantics.

Program documentation, especially external documentation, is an important contributor to

program understanding if it is well written and kept up to date. Younger (1993),

explained program (or system) documentation as anything that provides information about

a software system including source code, JCL, test data, developed documents, user

documentation and code analysis results.

Van Zuylen (1993) said documentation can be considered a collection of different views of

a system. Some low-level technical documentation can be extracted from source code

(e.g., flow charts and cross reference tables). However, van Zuylen claimed higher level

documentation that represents the design and specification of a program cannot be derived

completely automatically; human intervention is necessary.

According to Grumman and Welch (1992), documentation rarely corresponds completely

to the current state of the software even in new applications where a formalized,

structured development method was used.

Weinberg (1971) listed four program aspects that may impact understanding:

1. Machine limitations - A programmer may include coding to overcome machine

limitations, but it is rarely explicitly marked. One area where machine limitations are

rife is intermediate storage.

2. Language limitations - Some languages are more suitable for a particular application:

FORTRAN for scientific and engineering applications, COBOL for business

applications. Using an inappropriate language can inhibit program comprehension.

3. Program limitations - Some code may have been written merely because the

programmer did not have complete knowledge of the computer or the language.

4. Historical traces - Some pieces of code may have been written for obscure historical

reasons.

Gillis and Wright (1990) proposed high-level comprehension of existing source code is

becoming more difficult to achieve as systems increase in overall size and complexity;

much of the time spent trying to comprehend source code is not productive because either

initial text design documents are not clearly representative of what was coded or post

coding documentation is not current.

Naming conventions can also affect a program's understandability. As Miller and Strauss

(1987) noted, poor data and procedure names inhibit program understanding. Moreover,

inconsistent names for fields used in multiple programs make program understanding more

difficult by preventing knowledge about one program from being transferred to another.

Teasley (1994) tested the hypothesis that poor program naming style affects

comprehension of function, but not other types of comprehension. Results of the

experiment did not support the hypothesis for expert programmers, but it did support the

hypothesis for junior programmers.

Elshoff and Marcotty (1982) indicated program readability depends on the reader's

familiarity with programs, knowledge of the application area, and individual programming

style; these are independent of the program.

Domains and Program Understanding

Hall (1992) described domain analysis as the process of acquiring understanding of an

application area. Layzell and Macaulay (1994) described domain knowledge as referring

to the knowledge of working practices within the organization, knowledge of the

organization's business functions and knowledge of the organization's computer systems.:

Brooks (1983) described the programming process as one of constructing mappings from

the problem domain, through intermediate domains, and into the programming domain.

Comprehending a program involves reconstructing part or all of these mappings.

Kozaczynski and Wilde (1992) illustrated the importance of domain concepts as shown in

Figure 6. Note the domain shift (conceptual leap) that occurs between the logical objects

and the first components of the implementation domain. Kozaczynski and Wilde argued

this shift is one reason for difficulty in reverse engineering.

Kozaczynski, Ning, and Engberts (1992) described a program as containing language

concepts and abstract concepts. Language concepts are syntactic entities (e.g., variable

declarations, modules, and statements) defined by the syntax of a programming language.

Abstract concepts are language-independent ideas of computation and problem solving

methods (e.g., programming concepts, architectural concepts, and domain concepts.

System Requirements

+ Business Concepts

+ Logical Objects

+
Application Specific Data
Objects, Algorithms, and
Constraints

t
Generic Data Objects, Algorithms,

and Constraints

t
Programming Concepts

t
System Code

Business Domain

Domain Shift
(Conceptual Leap)

Implementation Domain

Figure 6. System forward engineering and reverse engineering.

Note. Adapted from "On the Reengineering of Transaction Systems," by W. Kozaczynski
and N. Wilde, Journal of Software Maintenance: Research and Practice, 4, p. 148.

Programming concepts are general coding strategies, data structures, and algorithms.

Architectural concepts are associated with interfaces to execution environment

components (e.g., operating systems, transaction monitors, networks, and the databases).

Domain concepts are application or business logic functions implemented in code.

Winograd (1979) identified three description domains for complex systems: subject,

interaction, and implementation. Each domain is appropriate (and necessary) for

understanding some aspect of the system, i.e.:

1. Subject Domain - Descriptions of objects (e.g., buildings, rooms, courses,

departments) and processes (e.g., the scheduling of events).

2. Domain ofInteraction - Relevant objects take part in the system's interactions (e.g.,

users, files, forms, maps, statistical summaries). Processes include querying the

system, scheduling a new event, and proposing a schedule for a new quarter.

3. Domain of Implementation - The objects in this domain include everything from

individual memory lists and subroutines to subsystems (e.g., the file system, the

memory management system, the operating system), running processes, hardware

devices and code segments.

Approaches to Program Understanding

Bush (1993) looked at mathematical representation as a way of understanding programs.

Bush said the most useful mathematical formalism for representing the semantics of

computer programs is graph theory--the study of nodes (computational statements) and

the connections between them (control flow statements).

Harandi and Ning (1988) suggested programs can be viewed from four levels of detail in

increasing order of abstraction: (a) implementation, (b) structure, (c) function, and (d)

domain. Steps to reach each of these levels, working from lowest level to highest level,

are:

1. Implementation Level - Remove program language and implementation specific

features. Understanding at this level requires knowledge of language syntax and

semantics.

2. Structure Level - Further abstract language dependent details to show details of

program component dependencies.

3. Function Level- Relate pieces of program to their functions to reveal logical (versus

syntactical or structural) relationships.

4. Domain Level- Abstract further by replacing the program's algorithmic nature with

concepts specific to an application domain.

Biggerstaff (1989) identified questions a software engineer asks when trying to understand

a system:

1. What are the modules? Some languages formalize the notion of a module; program

structures are associated with informal semantic concepts to create semantically rich

natural language abstractions (conceptual abstractions) representing the essential

concept underlying the module.

2. What are the key data items? What abstract, informal concepts do they relate to?

What is their relationship to previously identified modules?

3. What are the software engineering artifacts? These can include problem description

language (PDL), dataflows, module refinements and a data dictionaries.

4. What are the informal design abstractions? These are expressed in natural language

prose.

5. What are the relationships of design abstractions to code? Data flow diagram

segments are associated with implementation code. A set of organized structures are

established to help understand code-oriented details.

The Need for Reverse Engineering

Tamai and Torimitsu (1992) surveyed 95 software applications in 1991 and measured the

age of the software when it was replaced. The average lifetime was reported to be 10.1

years, with a maximum and minimum of30 and 2 years respectively; the standard

deviation was 6.2 years. Generally, they found that small-scale software tends to have a

shorter life and the age of software systems is approximately the same regardless of

application area.

Arango, Baxter, Freeman and Pidgeon (1985) noted that the original design for most

software is inaccessible because the original requirements analysis and specifications, if

recorded, are out of date. The existing software usually contains implicit assumptions

about the environment, but design and environment information recorded in documents

cannot be automatically processed.

Pfrenzinger (1992) said existing systems have turned into the Achilles' heel of information

system departments. Many aging systems are the backbone of a company's critical

production processing, but they are difficult to change, expensive to replace, vulnerable to

many problems, and are impossible to understand. Their documentation is outdated and

useless. Aging systems consume 75 percent of the information system budget. As

organizations move in new directions, legacy systems can't be made to follow.

Legacy Systems

Atkins (1994) suggested legacy systems were originally designed as transaction

processing machines to help run operations, not as decision support engines. Therefore,

systems are now incapable of satisfying the information requirements of the organizations

they support.

Welch and Grumann (1993) reported the cost of adding new functions to old systems

increases dramatically, while response times to implement such changes increases

disproportionally. They suggested the impact oflegacy systems on data processing

budgets is significant, requiring 50 to 90 percent of maintenance resources. Moreover,

Welch and Grumann said this represents the cost of standing still.

Ning, Engberts, and Kozaczynski (1994) said many large companies are facing the

problem of legacy systems inhibiting business growth and capacity to change. Limited

options for dealing with legacy systems are available:

1. Develop a new system to replace the legacy system. The legacy system may contain

critical business rules that are assets to the organization, but those embedded in the

code may not be accurately and explicitly documented.

2. Encapsulate a legacy system to allow it to be used as a whole under a new execution

environment or within a new system.

3. Recover reusable components from the legacy system.

Holloway (1992) supported this notion as well. Holloway said all information technology

sites have major investments in software applications in terms of code and data structure

and these are an irreplaceable corporate asset.

Lenihan (1993) characterized legacy systems as typically more than seven years old, using

outmoded or unique technologies, having ineffective reporting systems, and poorly

structured program code, and using system and human resources inefficiently.

Mattison (1993) observed that legacy systems are not just a part of business, they are the

business because they define how people do their jobs, how they communicate, and how

they relate to each other. In this respect, legacy systems describe the infrastructure of the

corporation; they are tools, the end product of years of work and effort by hundreds of

dedicated people. Rather than being useless, outmoded or wasteful, they are essential to

an organization's existence.

Hickey and Jennings (1994) described a typical legacy system in an auto insurance

company that consists of more than 2 million lines of COBOL, ALC, and PLII code.

Programs average about 1,000 lines of code (with many exceeding 5,000 lines), and are

complex, poorly structured, and undocumented. The programs date to 1975 and have

been maintained by 100 different programmers. Since original developers and users have

moved on, no one person really understands the system. An average of 180 maintenance

and enhancement projects are implemented on the system each year.

Software Aging

Boehm (1981) summarized Lehman's (1980) first two laws oflarge program evolution:

1. Continuous Change - A large program being used undergoes continuous change or it

becomes progressively less usefu1. Boehm's comment was that all large programs

have a non-trivial investment segment.

2. Increasing Complexity - As a large program is continuously changed, its complexity

increases unless work is done to maintain it.

Beck and Eichmann (1993) suggested long-lived components frequently accumulate

substantial functionality over their lifetimes--the kitchen sink syndrome. As more

functions are added, the comprehension required for modification or reabstraction

becomes increasingly difficult.

Welch and Grumman (1993) said systems, in general, become more complicated and less

manageable the more they are changed, modified, or extended. This is particularly true in

data processing systems because of the nature of most computer languages.

Even successful software inevitably evolves and the process of evolution leads to

degraded structure and increasing complexity unless remedial actions are taken (Bennett,

1993; Griswold & Notkin, 1992).

Frazer (1992) identified some of the characteristics exhibited by the typical system viewed

as a suitable candidate for reverse engineering:

1. Design specs are missing or incomplete.

2. The code is poorly structured.

3. The system requires excessive corrective maintenance.

4. The documentation is out of date.

S. Some modules have become overly complex.

6. Migration to a new software platform is required.

7. Migration to a new generation of hardware is required.

8. Hard coded parameters are subject to change. (p. 217)

Jacobson and Lindstrom (1991) noted all systems have a limited lifetime, independent of

application domain or technological base. Each change to a system erodes the structure,

making the following change more expensive. Eventually the cost of changes will become

too high and the system will not be able to support its function.

Corbi (1989) said as changes and enhancements are introduced into maturing systems

structure begins to deteriorate; design is altered by modifications; data structures are

altered; documentation becomes outdated; key systems become less and less maintainable.

Business Changes

Welch and Grumman (1993) said most existing data processing systems were originally

designed to do a single specific job. Systems were not designed in anticipation of changes

in the wayan organization does business. As functions are changed, added or extended

the application eventually is incapable of supporting them.

Business Process Reengineering

Some of the current popularity of reverse engineering is driven by the interest in business

process reengineering. Davenport (1993) said in the face of intense competition and

business pressures of the 1990s, businesses must achieve 50 to 100 percent improvement

levels in key processes. This interest in process improvement or business process

reengineering (BPR) requires a basic reorganization of the business processes that underlie

existing information systems. Many managers are beginning to realize that information

technology applied to "broken" processes is not an effective use of resources. Ulrich

(1991) estimated productivity gains of more than 70 percent are possible if companies

examine the processes currently supporting their business and redesign them to reflect

efficient ways to achieve organizational objectives.

Client/Server Technology

Currently, client/server architecture is an area of great interest. According to Turner,

Neuse and Goldgar (1993), many factors are driving the trend toward client/server

processing: users are demanding easier, faster access to information and applications;

information system budgets are being reduced in terms of the overall revenue percentage;

and the capacity and capability of smaller machines and networks has improved. They

believe the shift away from monolithic mainframe environments requires organizations to

understand their legacy systems: A fundamental question for migrating a legacy system to

the client/server environment is what part will run on the server and what part will run on

the client? Software understanding is required to answer these questions.

According to Hayes (1994), successful recovery and regeneration requires a legacy

application with a well-designed architecture, a rationalized data model, and a high degree

of structure in its processes. Older, unstructured applications contain too many

convoluted and redundant data structures and procedures to provide a useful base for

reverse engineering

Object-Oriented Technology

According to Keyes (1992), object-oriented techniques are seen as a route to enhanced

information systems productivity. There is great interest in this area because of the

promises being made by proponents of the techniques. From a reverse engineering

perspective, it is not clear what the relationship should be with object-oriented analysis,

design, and programming. From a practical standpoint, it may be that reverse engineering

is independent of eventual target implementation, particularly in the case of functional

design recovery to support system replacement.

Software Maintenance

The ever-increasing cost and complexity oflegacy system maintenance is one ofthe major

drivers for the interest in reverse engineering. Friedlander and Toothman (1994)

suggested that less than 10 percent of any information system budget is being directed at

competitive advantage because the demand for system maintenance consumes more than

50 percent of professional resources in most organizations.

Jones (1986, as cited in Corbi, 1989) said the major difference between new development

and enhancement work is the enormous impact that the base (existing) system has on key

activities. As an example, in a new system design, user's requirements are explored and

then moved into design; in an enhancement project, the user's requirements are often

forced to fit into existing data and structural constraints. A significant portion of the

design effort is therefore devoted to exploring the current programs to determine how new

features can be added, as well as their impact on existing functions.

Arango, et al. (1985) noted the impact on maintenance of missing authors. In most cases,

the software maintainers are not the original authors, are usually distant in time from the

original implementation, and are likely to regenerate approximations of the original

abstractions that were used. Avoiding approximation is difficult, and approximation

errors are typically amplified by repeated maintenance steps. Over its lifetime, a system is

modified until it bears little resemblance to its original structure.

Griswold and Notkin (1992) identified another maintenance problem: maintaining

structure is a complex and costly activity because two logically independent software

activities--maintenance (correction, enhancement, retargeting) and restructuring--are

intermingled in almo'st all software process models.

Reverse Engineering Economics

As FIPS Pub 106 (1984) advises government information systems managers, there comes

a time when all information systems must be redesigned. A major concern is how to

determine whether a system is hopelessly flawed or whether it can be successfully

maintained.

Sneed (1984) described the results of an effort to reengineer one large system.

Respecifying the application programs took 17 man-months to complete--about one

person-month of specification per 1400 lines of code. The ratio of program code to

specification documentation averaged 3 to 1 (i.e., for three pages of code there was one

page of specification documentation). Discussions with users identified problems with

the recovered specifications; four man-months was required to revise the specifications to

accommodate the user's views. Sneed estimated the cost of the reengineering effort was

two-thirds of the original development cost.

Sakthivels (1993) identified two major costs associated with maintenance. Deterioration

cost is the increase in the maintenance cost. Obsolescence cost is the savings foregone by

not using the latest technological developments to reduce maintenance costs. This cost

also includes the loss of revenue by not using the improved substitute.

Jacobson and Lindstrom (1991) developed a matrix based on changeability and business

value to aid in making decisions about old software (see Figure 7).

Ulrich (1991) cited a similar software option strategy matrix developed by PRISM and

Hammer based on the organizational impact and the functional condition of a system (see

Figure 8).

Changeability

Easy Maintain Enhance

I
__________ -1 _____ _

Discard Reengineer

Hard~------------------------~~
L~ ill~

Business Value

Figure 7. Decision matrix: what to do with an old system.

Note. Adapted from "Re-engineering of Old Systems to an Object-Oriented
Architecture," by I. Jacobson and F. Lindstrom, 1991, Proceedings ojOOPSLA 1991 (p.
341). New York: Association for Computing Machinery.

Good

Functional
Condition

Poor

Organizational Impact
L ow ill h L Ig] ow

Maintain
or Technology Maintain

Technology Migration

Migration

Maintain
Phase Out Replace or

Enhance

Figure 8. Software option strategy matrix.

illh Ig]

Maintain

Enhance

Note. Adapted from "Business Re-engineering and Software Re-engineering: The
Relationship and Impact," by W. M. Ulrich, 1991, CASE Trends, 3, p. 36.

Reverse Engineering

Literature on reverse engineering is not extensive, although the amount of published

information is increasing. Available information is frequently associated with software

reengineering and maintenance. The connection between reverse engineering and

maintenance is far from coincidental. As Cross, et al. (1992) noted, software reverse

engineering is tightly coupled with software maintenance because maintenance activities

have provided the motivation for many reverse engineering tools.

Rekoff (1985) defined reverse engineering as the "act of creating a set of specifications for

a piece of hardware by someone other than the original designers, primarily based upon

analyzing and dimensioning a specimen or collection of specimens" (p. 244). Rekoff's

definition is concerned with hardware (of any kind) and reflects the origin of software

reverse engineering in other engineering fields.

Reverse engineering was originally conceived to support software maintenance and was

developed in that area (Canfora, Cimitile & Munro, 1994). According to Garnett and

Mariani (1990) reverse engineering "involves the reversal of the design process ... to

restructure or document the code" (p. 186).

Rochester and Douglas (1991) proposed a reverse engineering definition that stresses its

relationship to reengineering: reverse engineering recaptures the essential design,

structure, and content of a complex computer system. Reengineering restructures a

system to take advantage of new technology without changing functions and features.

The two processes are closely related because there is no systems reengineering without

first reverse engineering their content.

Ulrich (1 990b) referenced the IDM User Group Guide for a definition of reverse

engineering: "The process of extracting, standardizing and documenting data descriptions

and program logic from an implementation-dependent form to an implementation

independent form and migrating to an automated software engineering environment" (p.

42). This definition leans toward the view that reverse engineering is a part of the larger

reengineering process.

Breuer and Lano (1991) made a distinction between reverse engineering and inverse

engineering. They said reverse engineering is going all the way back to the design stage

from the source code, while inverse engineering is going back only as far as the

specification.

Benedusi, Cimitile, and de Carlini (1992) described reverse engineering as a collection of

theories, methodologies, and techniques to support: (a) the design and implementation of

a process to extract and abstract information from existing software and the production of

documents consistent with the code, and (b) the addition of knowledge and experience

that cannot be automatically reconstructed from code to these documents.

Tilley, et al. (1993) said reverse engineering is the identification ofa system's current

components and their dependencies, and the extraction of system abstractions and design

information.

O'Hare and Troan (1994) described "incremental reverse engineering" as the ability to

process different modules of a software system at different times (as opposed to all

modules at the same time).

Cross, et al. (1992) noted that the continuing evolution oflarge, long-lived systems leads

to lost design information. Reverse engineering, particularly design recovery, is a way to

salvage whatever is possible from the existing system.

Sneed (1992) viewed reverse engineering as a process of deriving a specification from the

original program source code with less emphasis on automation and more on supporting

the human software engineer.

Bennett (1993) observed that the need for reverse engineering can arise for many different

reasons, and there are many different ways of performing reverse engineering (including

functionality changes).

Chikofsky and Cross (1990) maintained reverse engineering can be performed at any level

of abstraction and at any stage of the life cycle because it does not involve changing the

subject system or creating a new system based on the reverse-engineered subject system.

Reverse engineering is thus viewed as a process of examination, not a process of change

or replication. Chikofsky and Cross identified two subareas of reverse engineering,

redocumentation and design recovery:

1. Redocumentation is the creation or revision of a semantically equivalent representation

within the same relative abstraction level. The resulting forms of representation are

usually considered alternate views (e.g., data flow, data structure, and control flow)

intended for a human audience.

2. Design recovery is a subset of reverse engineering in which domain knowledge,

external information, and deduction or fuzzy reasoning are added to observations of

the subject system to identify meaningful higher-level abstractions beyond those

obtained directly by examining the system.

Karakostas (1992) offered a more formal definition of reverse engineering that stresses the

transformation from language X to language Y, where Y is a form more understandable to

humans. Karakostas claimed it is often desirable to reverse engineer a system to a user

oriented domain model (i.e., a conceptual model or a requirements model). This kind of

reverse engineering is based on three kinds of knowledge: (a) knowledge about the

software model (source code), (b) knowledge about the application domain, and (c)

knowledge about transforming the software model to the domain model.

Early versions of structured analysis and design techniques suggested the first step in

developing an information system should be to prepare a model of the current system

(Yourdon, 1989a). Building the current system model often resulted in a great deal of

time being spent on a problem that was difficult, if not impossible, to resolve. Current

structured methodology (Yourdon, 1989a) suggests a current model of the existing system

is not built unless it is absolutely necessary. This step was dropped because a good

methodology for extracting design information from legacy systems does not exist.

Munro (1992) identified four levels of reverse engineering: (a) inverse (step back to

engineering specification), (b) renovation (step back to design), (c) reengineering (step

back to code), and (d) redocumentation. Redocumentation is included as a reverse

engineering technique because it allows some degree of overall system understanding

without being concerned about how the program works.

According to Choi and Scacchi (1990), reverse engineering is used to first generate a

design description from an implementation description, then to generate a specification

description from the design description. It requires abstraction of four system properties:

1. Structural - Described by the resources exchanged among modules and subsystems

through interconnected interfaces.

2. Functional- Described by the semantics of the exchanged resources. For example,

operational resources (those that perform an operation) are abstracted by precondition

and postcondition assertions. Non-operational resources (those that store a value) are

abstracted by type definitions.

3. Dynamic - Described by the procedural algorithms that transform imported resources

into exported resources. Dynamic properties are intramodular.

4. Behavioral- Described by the behavior of its objects (modules) in terms of relations

among objects, their attributes, and the actions that manipulate them.

Harandi and Ning (1990) identified backward program abstraction steps and their related

forward program development steps:

1. Implementation Level- Abstracts a program's language and implementation-specific

features. Requires knowledge of language syntax and semantics, and possibly some

knowledge of the implementation representation.

2. Structure Level - Reveals structure from different perspectives; results in an explicit

representation of the dependencies among program components.

3. Function Level - Relates pieces of a program to their functions to reveal logical (as

opposed to syntactical or structural) relationships.

4. Domain Level- Replaces the algorithmic nature of the function level with concepts

specific to the application domain. For example, in the context of student record

keeping, a program functionally understood as 'computing average by summing its

inputs divided by the number of inputs' is interpreted as a 'grade-point-average

computation'routine.

Darlison and Sabanis (1993) suggested reverse engineering is concerned with creating

models of existing systems, in much the same way as 'normal' system specifications are

concerned with making models of non-existent systems. Reverse engineering is more or

less synonymous with system understanding. According to Cross, et al. (1992), structural

analysis of source code can result in code understanding in and of itself, "however, if

humans do not ascribe meaning to code structures, structural analysis cannot determine

the function of the code, neither in isolation nor within a larger organizational framework"

(p.220). If this statement is accepted as being true, it follows that computer-based

function recovery from code is not possible. Cross, et al. also addressed this issue. They

argued that reverse engineering toolsfacilitate the generation or regeneration of graphical

program representations (e.g., data flow diagrams, control flow diagrams, structure charts,

and entity-relationship diagrams) from other forms. Non-graphical representations can

also be created to form an important part of system documentation. The significant point

is that these representations do not present information that is not already contained in the

program source code; they merely portray it in a different manner.

Holloway (1992) proposed that reverse engineering process be viewed in terms of moving

through four distinct stages:

1. Stage 1 - Reverse Construction. Involves turning code into program design, JCL into

job descriptions, and database schema to physical database design structures.

2. Stage 2 - Reverse Internal Design. Involves the translation of program design and job

descriptions into dialogue design, batch suite screens, and screen and report designs.

3. Stage 3 - Reverse External Design. Involves the translation of dialogue design, batch

suite design, and transaction network design.

4. Stage 4 - Reverse Detailed Requirements. Involves the translation of physical

database design into a conceptual data model, and the translation of transaction

network design to a functional model.

Connal and Burns (1993) suggested a four-step reverse engineering process: (a) constrain

the system, (b) organize the components and data structures, (c) identify and rectify

terminology redundancies, and (d) develop current working documentation. The four

steps are defined as follows:

1. Constrain the System - In conjunction with discussions with users, analyze JCL or link

maps to determine the scope of the system.

2. Organize the Components - All system components must be brought together and

organized into a single repository for control and maintenance.

3. Document the System - The current system must be documented by mapping external

linkages and data element flows through the system.

4. Identify and Rectify Terminology Redundancies - Legacy systems contain the same or

very similar data names that refer to completely different business terms.

Ulrich (1990b) noted progress in reverse engineering has been made in two key areas:

repository technology and data reverse engineering. Process (functional) reverse

engineering efforts have not been as successful. As Breuer and Lano (1991) observed,

many commercial software packages generate documentation and information about data

structure and program control flow from source code, but are not capable of identifYing

the functionality of the code.

Walker (1994) claimed the publicity related to technology success in general and of

computing in particular gives people the impression that all problems can be solved by

technology if enough effort is applied. The focus on successful efforts ignores attempts

that end in failure; the publicity given to "automated reverse engineering tools" falls into

this category.

Rekoff (1985) eloquently summarized the difficulty associated with reverse engineering:

It should be recognized that the business of reverse engineering is not really greatly
different from that of detective work in a criminal investigation or of conducting
military intelligence operations. One has a cornucopia of what seems to be trivial
and unrelated information that must be glued together in such a way that it provides
the information required to resolve the need. (p. 245)

Reverse Engineering Objectives

According to van Zuylen (1993), understanding is one of the main objectives of reverse

engineering. Chikofsky and Cross (1990) said the primary purpose of reverse engineering

is to increase the overall comprehensibility of a system for both maintenance and new

development.

Munro (1992) argued that an objective of inverse (reverse) engineering is to use formal

transformation to achieve intellectual system understanding. Formal in this case means

using logical representations of systems that can be mathematically manipulated.

Debest, Rudiger, and Wagner (1992) suggested that the objective of reverse engineering is

to recover something that would not have been lost if quality standards had been followed

throughout the software development, operation, and maintenance process.

Frazer (1992) argued that the primary purpose of reverse engineering is to aid in system

comprehension and to provide a basis for maintenance or future development. Frazer

identified six reverse engineering objectives: (a) facilitate reuse, (b) provide missing or

alternative documentation, (c) recover lost information, (d) assist with maintenance, (e)

migrate from one hardware or software platform to another, and (f) bring the system

under control of a CASE environment.

The Basis for Reverse Engineering

Reverse engineering is based on five fundamental theories (Chen, et al., 1990):

1. Theory One - Explicit representations of structural and functional code elements will

aid program understanding.

2. Theory Two - Representations can be classified as either structural or functional. The

structural view identifies the components making up the software. The functional

view describes the application's functionality and subfunctionality.

3. Theory Three - The structural model consists of three views: part-of, connected-to

and path.

4. Theory Four - A role or functionality can be associated with each element of the

structural view.

84

5. Theory Five - The functional hierarchy associated with the program is important

during maintenance. This functionality is not related to requirements specification and

design but to the dynamic characteristics of an application.

Reverse Engineering Problems

Chikofsky and Cross (1990) noted the term "reverse engineering" originated from the

analysis of hardware. Reverse engineering is regularly applied to identifY hardware

designs from finished products. The hardware objective is to duplicate the item. The

software objective (ignoring illegal reverse engineering activity performed with the intent

of producing a similar product) is most often to gain a sufficient design-level

understanding to aid maintenance, strengthen enhancement, or support replacement.

Program understanding has been compared to natural language understanding (DeBaud,

Moopen, & Rugabers, 1994). Most current reverse engineering techniques are based on

program structure analysis using lexical, syntactic, and semantic rules because these

techniques are well known. However, program understanding based on structure alone is

as difficult as understanding essays, articles, or stories based solely on knowledge of rules

of English grammar.

85

McCabe and Williamson (1992) believe that reverse engineering exists to support forward

engineering. Additionally, they implied the results of the reverse engineering process can

be ported to a CASE tool to support forward engineering. This article, which appeared in

a trade magazine, did not adequately explain how the porting could be performed.

Pfrenzinger (1992) made a similar claim when he said the purpose of reverse engineering

is subsequent enhancement or replacement via forward engineering. Pfrenzinger said

reverse engineering can automate the manual step of understanding a system prior to

changing or replacing it. This article also appeared in a trade magazine and did not offer

any information about how this understanding could be achieved.

Darlison and Sabanis (1993) argued that it can be shown mathematically that some

information cannot be derived automatically from source code because of the undecidable

nature of the associated mathematical problem.

Grumman and Welch (1992) argued that it is not possible to extract from application code

a formal, functional, nor technical specification of an application. Grumman and Welch

stated that, in general, it is possible to say only what designers and programmers did, not

what they wished to do.

86

Rochester and Douglas (1991) suggested that, although reverse engineering is reasonably

obvious in concept, the layers on layers of old, maintained code written in a variety of

languages characteristic oflegacy systems makes it highly complex technically.

According to Kozaczynski, et al. (1992) reverse engineering requires that programming

concepts (e. g., instructions, variables, control structures) be recognized and associated

with generic data objects and algorithms. The meaning of these objects must then be

described in problem domain terms. Identified concepts, however, may have no donain

equivalent; when they implement platform-specific technical tricks for example.

Abstracting concepts in the application domain implies the use of informal knowledge

external to the software system and necessitates human intervention because some of the

information essential to the task is not present in source code and documentation

(Bachman, 1988; Canfora, Sansone, & Visaggio, 1992).

Arango, et al. (1986) asserted that human experience in reverse engineering is vital. It is

necessary to rely on a maintainer's experience and knowledge of the application domain as

well as on available documentation.

Antonini, Benedusi, Cantone, and Cimitile (1987) identified a problem frequently

encountered in reverse engineering (see Figure 9). Design components (A) may not be

87

found in code (B). Code components (C) may have no equivalents in design. B is the

area of consistency between between design and code.

Design
A

B

Code
C

Figure 9. Virtual overlapping between code and program design.

Note. Adapted from "Maintenance and Reverse Engineering: Low-level Design
Documents Production and Improvement," by P. Antonini, P. Benedusi, G. Cantone, and
A. Cimitile, 1987, Proceedings of the IEEE Conference on Software Maintenance (p. 91).
Los Alamitos, CA: IEEE Computer Society Press.

Grumman and Welch (1992) maintained it is not possible to extract the functional

specification from the application code, but it is possible to document the functionality to

support decisions about whether, how, and at what cost the application can be overhauled.

Canfora, et aI. (1994) proposed that the effort required to produce a descriptive

specification is generally less than the effort required to produce an operational

specification. The reverse engineering process first sets up low-level design documents to

aid in understanding the functions the software implements, and then tries to reach the

specification level by means of successive abstractions.

88

Wilde, Gomez, Gust, and Strasburg (1992) observed that although software engineering

practice dictates saving the mappings from user functionalities to code segments, it is

relatively rare to encounter a project that still conserves these mappings after a prolonged

period of maintenance. Even if traceability was provided during development, this

documentation is often the first casualty of the time pressure associated with keeping a

system operational.

Warden (1992) identified another major problem associated with reverse engineering.

During system specification and design a significant amount of non-procedural business

knowledge is used to make system architecture, data design, and procedural processing

decisions, but these decisions are seldom documented, maintained, and made available

during maintenance.

Warden (1992) divided reverse engineering into a family of tasks at three major levels:

1. Implementation Level - Concerned with documenting code characteristics such as

program structure, control flow complexity, internal data complexity, and standards

violations.

2. Design Level- Concerned with documenting design characteristics such as modularity,

coupling, cohesion, depth factoring, and file design complexity. May be documented

at a partial or global design level.

3. Business Level - Concerned with documenting in a nonprocedural way the business

functions which a system performs. The descriptions obtained are design independent.

89

Byrne (1991) suggested the most important problem in reverse engineering is

implementation bias. It is necessary to separate design information from implementation

information. For traceability, the recovered design should record links between recovered

design and the original sources. Byrne also concluded that domain information can aid in
~

recovering information about the purpose and significance of a function.

Pfrenzinger (1992) indicated it is much easier to determine "how" an existing system

operates, than it is to determine "what" and "why" it operates. Code does not contain the

information to determine the "what" and "why." !fit does, it is often so obscure that it

would require an expert to decipher the code or add the missing information. One of

Pfrenzinger's main points is that the higher the target level on the reverse engineering

scale, the less automatic and the more manual the reverse engineering process becomes.

Frazer (1992) identified interfaces with other systems as a potential problem area in

reverse engineering because it is difficult to abstract interface design information from only

one side of the interface. Frazer said considerable manual effort is required to understand

interfaces.

Hickey and Jennings (1994) observed that programs are not capable of understanding a

business, reading code, and making a connection between the two. The essential elements

of system design can only be developed by people who understand the business problem

90

and who are experienced with the internal detail of the existing system. In addition, it

takes human beings to read the code, infer its meaning, and recast it in a structured form.

Design Recovery/Inverse Engineering

Robson, et al. (1991) defined inverse engineering as the process of extracting high-level

representations from source code. Inverse engineering involves screening out noise

present in source code to provide a more abstract view of a system.

Wilde, et al. (1992) claimed locating user functionalities in existing system source code is

a special case of the general problem of design recovery. They reported that, although

many sophisticated methods for design recovery have been proposed, all of the work

involved static rather than dynamic analysis. They suggested the best sources of

information for design recovery, if available, are the developers and maintainers who have

experience with the system.

Biggerstaff(1989) agreed, saying source code does not contain much original design

information. Biggerstaff said additional information sources, both human and automated

are necessary. Design abstractions must be developed from a combination of code,

existing documentation, personal experience, and general knowledge about a problem and

the application domain.

91

Lenihan (1993) saw design recovery as the fifth and final phase of a refurbishment effort:

"Design recovery captures certain elements of the current system design, incorporates

these elements into a Computer Aided Software Engineering (CASE) tool and provides

engineers with the ability to accurately document the functional and technical aspects of

the system" (p. 23).

Existing Reverse Engineering Procedures

While useful data reverse engineering tools are available, process reverse engineering tools

are not. Artificial intelligence and knowledge-based systems have been the subject of

considerable research, but have not been implemented in commercial tools.

Table 4 is a comprehensive, but not exhaustive, list of 59 research and commercial reverse

engineering tools, techniques, and methodologies developed between 1980 and 1994. The

table is arranged in chronological order and indicates the language or languages each tool

accommodates. The comments column describes the general nature of the tool. Twenty

five tools (42 percent) are designed for COBOL or are language independent.

Eleven tools (19 percent) fall into the software physical structure category (i.e., control

graphs, call graphs, structure charts, and syntax trees). Tools in this category are: Tool

AURUM, IA, AdaAN, RETA, BAL/SRW, NuMIL, DPUTE, Schematics, MAP, Rigi, and

UIFG. Six are suitable for use with COBOL.

Table 4
Reverse Engineering Tools and Methodologies

Year ToolIMethod name Language(s)
1980 Tool AURUM COBOL, et al.
1980 PUDSY PASCAL
1982 Eureka Countdown Langugageindependent
1983 MAP COBOL
1985 ME2 PASCAL
1985 PROUST PASCAL
1986 TMM Common LISP

1987 IA COBOL

1988 Programmer's Ada
Apprentice

1988 NoName-1 C

1988 LogiScope COBOL, et aL

1988 MicroScope Common LISP
1988 PAT PASCAL
1989 AdaAN Ada subset
1989 PUNS Assembler
1989 DESIRE C

1990 PM Ada, et al.

1990 STREAM Amore, PROLOG

Researcher(s)
Wagner
Lukey
Zvegintzov
Warren
Collofello & Blaylock
Johnson & Soloway
Arango, Baxter,
Freeman, & Pidgeon
Antonini, Benedusi,
Cantone, & Cimitile
Rich & Waters

Calliss, Khalil, Munro, &
Ward
Meekel & Viala

Ambras & ODay
Harandi & Ning
Gopal & Schach
Cleveland
Biggerstaff

Reynolds, Maletic, &
Porvin
Karakostas

Comments
Visualization of software structure
Program schemata matching
Physical program inspection
Paragraph structure charts
Syntactic analyzer for maintenance
Knowledge-based program understanding
Transformation

Control flow graphs, nested trees, cross
references
Program language learning tool based on
program plans
Knowledge-based transformation to known
plan
Commercial tool - control and call graphs,
complexity analysis
Knowledge-based using frames and rules
Knowledge-based cliche recognition
Visibiltiy flow graphs
Program information database
Variation of program plans for program
understanding

•

Knowledge-based program understanding i

i

Domain modeling
\0
IV

Table 4. (continued)

Year ToolIMethod name Lan2uage(s)
1990 RETA Assembler

1990 BAL/SRW Assember
1990 Alchemist C
1990 NuMIL C
1990 CSS COBOL, FORTRAN
1990 Recognizer Common LISP
1990 NoName-2 Language independent

1990 REFINE Language independent

1991 ReForm Assembler
1991 Maintainer's Assistant Assembler
1991 DPUTE COBOL

1991 COBOL/SRF COBOL

1991 SEES COBOL, C

1991 SourcelRF COBOL, JCL
1991 Schematics Language independent
1991 LaSSIE Language independent

Researcher(s)
Chen, Heisler, Tsai,
Chen, & Leung
Kozaczynski
Garnett & Mariani
Choi & Scacchi
Breuer & Lano
Rich & Wills
Hausler, Pleszkock,
Liner, & Hevner
Burson, Kotik, &
Markosian
Bennett
Yang
Joiner, Tsai, Chen,
Subramanian, Sun, &
Gandamaneni
Kozaczynski, Letovsky,
& Ning
Avellis, Iacobbe,
Palmisano, Semeraro, &
Tinelli
Napier
Lerner
Devanbu, Brachman,
Selfridge, & Ballard

Comments
Program syntax tree representation

Pro~am structure charts
Software reclamation for reuse
Program structure recovery
Program transformation
Program cliche recognizer, graph parser
Function abstraction

Database-based transformation; program
templates
Transformation
Program transformation to Z
Modified COBOL dependence graphs
(data centered)

Knowledge-based program
understanding.
Knowledge-based assistant

Commercial tool
Program structure graphic
Knowledge-based

\0
w

Table 4. (continued)

Year ToollMethod name Language(s)
1992 IASSys Ada

1992 FACET COBOL
1992 TRANS COBOL

1992 COBOL! Analyst COBOL
1992 IRENE COBOL
1992 NoName-3 COBOL, C
1992 Rigi COBOL, et al.

1992 DMS Language independent
1992 NoName-4 PASCAL

1992 Data tool PASCAL, PROLOG

1993 Web structures ALGOL-60 subset

1993 WSL Assembler
1993 UIFG C
1993 RECAST C
1993 ViaJRenaissance COBOL
1993 REDO COBOL

1993 Legacy Workbench COBOL
1993 ARM Language independent

Researcher(s)
Canfora, Sansone, &
Visaggio
Howden&Pak
Kozaczynski, Ning, &
Engberts
Eliot
Karakostas
Grumman & Welch
MOller, Tilley, Orgun,
Corrie, & Madhavji
Baxter
Benedusi, Cimitile, & de
Carlini
Canfora, Cimitile, & de
Carlini
Maggiolo-Schettini,
Napoli, & Tortora
Ward
Harrold & Malloy
Edwards & Munro
Lanubile & Visaggio
Lano, Breuer, &
Haughton
Hayes
Keller & Nance

Comments
Dynamic data flow diagrams

Structural and logical abstractions
Knowledge-based program plans and
transformation
Commercial tool
Domain knowledge-based
Functional, directed graphs
Subsystem composition graphs

Design maintenance system
Hierarchical data flow diagrams

Knowledge-based intermodular data flows

Transformation

Program transformation
Unified interprocedural flow graphs
Convert source code to SSADM
Commercial tool
Program transformation to Z

Commercial tool
Abstraction refinement

\0
.&;:..

Table 4. (continued)

Year ToolIMethod name Language(s)
1993 MGAP PASCAL
1994 PIAS C
1994 RE-Analyzer C

1994 NoName:'S C
1994 QDA CMS2, Assembler
1994 Episodic Processes None

1994 SeeSYS Proprietary

Researcher! s)
Laffick
Khan
O'Hare & Troan

Quilici
Howden & Wieand
Von Mayrhauser &
Vans
Baker & Eick

Comments
Modified goal and plan language learning
Adiabatic multi-perspective abstraction
Data flow diagrams, entity-relationship
diagrams
Program plans recognition (theoretical)
Informal correctness checking
Program comprehension process

Large system visualization

I

\0
\.Jl

Nine tools (15 percent) are classified as knowledge-based program understanding tools.

Tools in this category are: PROUST, NoName-l, MicroScope, PM, COBOLlSRF,

SEES, LaSSIE, IRENE, and Data Tool. Four are suitable for use with COBOL.

Eight tools (14 percent) fall into the transformation category. Tools in this category are:

TMM, CSS, REFINE, ReForm, Maintainer's Assistant, Web Structures, WSL, and

REDO. Three are suitable for use with COBOL.

96

There are eight tools (14 percent) in the program plans category. This category includes

program plans, program cliches, program schema, and program templates. Techniques in

this category may overlap other categories. For example, a tool locates an unknown

program plan in source code and matches it with an existing plan in a plan library; after the

match, the unknown plan is replaced by a known plan. While this is actually a form of

transformation, the underlying principle is the program plan. Tools in this category are:

PUDSY, Programmer's Apprentice, PAT, DESIRE, Recognizer, TRANS, MGAP, and

NoName-5. Only one tool is designed for COBOL.

Four tools (7 percent) fall into the data flow diagramming category. Tools in this category

are: IASSys, NoName-4, RECAST, and RE-Analyzer. None are designed for COBOL.

There are three tools (5 percent) in the functional abstraction category. The focus in this

category is abstraction--moving away from source code to a higher level of knowledge.

97

Tools in the category are: NoName-2, FACET, and ARM. All are oriented for use with

COBOL.

Five tools (7 percent) are commercial products. Inaluded in this group are: LogiScope,

SourcelRF, COBOL/Analyst, VialRenaissance, and Legacy Workbench. All are suitable

for use with COBOL.

Eleven tools (19 percent) do not fit into any of the other major groups. The Eureka

Countdown is one of the few techniques based on manual code examination. PUNS is a

support tool based on the construction and automatic population of a program information

database. PIAS (adiabatic multi-perspective abstraction) takes a revolutionary approach

to reverse engineering. Episodic Process is an explanation of the program comprehension

process rather than a tool. Other tools in the category include: ME2, STREAM,

Alchemist, NoName-3, DMS, QDA, and SeeSYS. Three tools support COBOL.

Software Physical Structure

Physical structure representations do not contribute significantly to reverse engineering.

Reverse engineering focuses on recovering high-level functional design information from

source code. Tools concentrating on code-level information are more suited to program

maintenance than to reverse engineering; most commercial tools, except data structure

recovery tools, fall into this category.

98

Knowledge-based Program Understanding Tools

Knowledge-based program understanding tools apply artificial intelligence techniques

(e.g~, expert systems and predicate logic) to support software understanding.

Mathematical or logical models are frequently used to represent programs. The

fundamental concept in this approach is that all properties of a program can, in principal,

be discovered from the text of the program itself by means of purely deductive reasoning-

the application of valid rules of inference to sets of valid axioms. As Biggerstaff (1989)

noted, research tools are applied to small-scale problems and are not focused on informal

information sources.

Generally speaking, computer-based tools in this category attempt to model the way

people understand programs or extract new information from source code by making

inferences from existing information. Like other areas of artificial intelligence, the use of

knowledge-based techniques in software reverse engineering research has not been

extremely effective. Computer-based reverse engineering tools based on artificial

intelligence have met with limited success, even with small programs. There appears to be

little practical value for these tools in a real world environment. As Tan and Dietz (1994)

noted, program understanding is essentially a human-centered activity, not a machine

centered activity.

99

Transformation Tools

Transformation tools automatically transform source code into more readable or

understandable forms. Transformation tools focus on low-level program information and

are generally more suited to reengineering than reverse engineering. Transformation tools

frequently produce program representations (i.e., Z) that are more difficult for people to

read and understand than the original source code. However, these representations are

more easily processed by computers, and are often used to transform unstructured code to

structured code, or to convert one language to another; they are seldom applied to raise

the level of abstraction--the goal of reverse engineering.

Program Plans

The program plan approach to reverse engineering takes an unknown plan or structure

and identifies it to a known plan. The collection of known plans then equals program

understanding. This category also focuses on code-level knowledge, although there is a

slight degree of abstraction away from pure programming language in some tools. Some

transformation tools apply the program plan technique by substituting a plan in one

language for the same plan in another language.

There are several problems associated with the plans approach to reverse engineering.

One problem is the need for a large plans library against which source code can be

compared. Another problem is that source code corresponding to a program plan may be

dispersed in multiple parts of a program. A third problem is that search and compare

100

operations are severely impacted by combinatorial explosion, although some tools have

implemented techniques to limit searches. This approach has only been successful with

small programs containing simple logic and is not considered viable for practical reverse

engineering.

Data Flaw Diagrams

Traditional data flow diagrams (DFD), usually associated with requirements analysis, are

an excellent way of graphically describing a network of external data sources and

destinations, processes, and data stores connected by data flows. Each primitive (bottom

level) process has an associated process description to explain details ofthe process that

cannot be shown graphically.

DFD based on program source code, however, portray physical details of program

structure and operation in a graphical format rather than in a textual format. If traditional

DFD (based on high-level functions) are generated from a reverse engineering process,

some functional abstraction activity--possibly manual--would have been required to

produce them. In this sense, functional abstraction DFD are a means of displaying reverse

engineering results rather than actual reverse engineering.

Functional Abstraction Tools

Functional abstraction, the category with the fewest tools, is a step in the right direction

for reverse engineering. However, these tools are still in the research stage. If they can be

developed at all, computer-based abstraction tools suitable for practical application are

many years in the future.

Computer Assisted Reverse Engineering (CARE) Tools

101

The use of current computer-based tools in relation to reverse engineering offers little in

the way of capturing functional information from legacy systems. Available reverse

engineering tools are useful for automatically extracting database management system

structure directly from COBOL data division entries.

Control graphs, call graphs, data flow graphs, structure charts, entity-relationship

diagrams, logic flow diagrams, reserved word reports, and variable "where-used" reports

are relatively easy to extract from source code. Commercial reverse engineering tools are

typically capable of generating these products. However, these documents cannot capture

and represent semantic abstractions as the functionality associated with software/data

structure.

The U.S. Air Force Software Technology Support Center Re-engineering Tool Report

(Sullenaur, Olsen, & Murdock, 1992) listed 67 products classified as reverse engineering

tools. However, most of the tools are not reverse engineering tools. Of the 67 tools

listed, only 11 are used with COBOL (see Table 5).

102

Table 5
Nominal Reverse Engineering Tools Available Commercially

ToollMethod name Comments
Application Browser Produces documentation
Autoflow Produces flow charts and functional calling

trees
ENVISION Produces documentation
IMSCASE Imports code to KnowledgeWare's ADW

CASE Tool
InterCASE Imports code to ADW Design Work

Station
InterCycle "Reverse engineers" code into a repository
Logiscope Analyzes source code complexity
PM/SS Performs impact analysis
REFINE/COBOL Performs redocumentation and code

converSIOn
REVENGG Abstracts structure and program

interaction
SOFTWARE Refinery Performs redocumentation and code

converSIOn

According to descriptions written by VIASoft, Incorporated (as reported in Sul1enaur, et

al., 1992):

VIAlInsight is a COBOL analysis tool that completely automates [italics added] the
understanding process for programmers. It captures and displays logic and data
path information, giving programmers the data they need to understand and maintain
existing programs.

VIAlRenaissance is more of a truly reverse engineering product that provides for
recovery and reuse of existing business applications that allows programmers to
examine programs graphically or in source code form. (pp. B-llO-lll)

Neither of these products are classified as reverse engineering tools in another part of the

same document.

103

According to the product literature for RE/Cycle (CGI, Berwyn, PA), the tool perfonns

semantic analysis of applications, i. e.:

1. Data Division - Identifies relations between elementary data items and data structures;

establishes copy books and files.

2. Procedure Division - Establishes relations between program entities.

3. Inter-program Analysis - Matches program to program to ensure components (file

descriptions, inter-file relationships, and group-elementary item relationships used in

linkage and common areas) are homogenous and create relationships.

4. Screen Analysis - Physical screen layout.

S. Data Standardization - Homonyms, synonyms, on-line edits, and updates.

This is an excellent example of the misuse of tenns. Although the claim is that semantic

analysis is perfonned, the examples given are syntactic analysis (i.e., the structure of the

program is described rather than its meaning).

The final example of marketing material for a commercial tool is for Excelerator (Index

Technology, Cambridge, MA). Their literature describes the capabilities of Excel era tor

for Design Recovery as including these features:

1. Reads COBOL source code, Infonnation Management System (IMS) database

definitions, IMS/Message Fonnat Services (MFS), Customer Information Control

System (CICS)lBasic Mapping Support (BMS); and generates physical models stored

in a dictionary. IMSIMFS and CICSIBMS data is converted to screen designs.

2. Produces structure charts showing the hierarchy of paragraphs and sections as

functions.

3. Produces data model diagrams from IMS database definitions; groups related fields

into structures called segments; and shows the hierarchical relationships among the

segments.

4. Produces data definitions by extracting the definitions [descriptions] from files,

working storage, and linkage sections from the program data division, screen maps,

and IMS segments; stores information in the dictionary.

104

5. Produces reports, including cross reference lists, where used lists, unreferenced

paragraphs, unreferenced data, data item assignments, file input/output reports, and a

measure of cyclomatic complexity.

The output of this tool, while primarily graphics based, is still at the program level. There

is no design recovery; it is physical implementation recovery.

Except for potentially useful data design recovery, there are no commercially available

tools that address the problem of design information recovery, despite claims to the

contrary.

Summary

Early in the history of computing, machine costs were extremely high while personnel

costs were low. The cost of programming systems was relatively small compared to the

105

high cost of computers. Huge computer systems were created by programming teams

made up of many programmers. Analysis and design techniques were crude by today's

standards, and systems were designed and developed without regard to future

maintainability. It is not clear whether the anticipated life of a computer system was even

a consideration when the bulk of original computer programming was occurring during the

late 1960s and 1970s.

During the period of rapid original software development in the 1960s and 1970s,

maintenance was a small part of the systems development life cycle. By the late 1970s, the

activity required to maintain existing systems began to exceed the activity devoted to new

systems development. By the 1980s, maintenance of existing software began to be

recognized as a major problem for the information technology industry. It was evident old

system architectures were constraining new designs.

By the 1990s, the effect of long-term maintenance of systems originally developed in the

1960s and 1970s was evident--each modification to an existing system increased the

difficulty of the next modification. Systems that were not well engineered became

maintenance nightmares under the brunt of numerous modifications and enhancements.

Personnel costs for the maintenance and replacement of legacy systems became the single

most expensive part of the software life cycle.

106

Documentation for legacy systems is frequently absent or outdated. In most cases, the

only reliable source of information is the source code. Maintenance programmers are

faced with the problem of not only trying to understand the intent of the original

programmer, but also the intent of every maintenance programmer who has made a

change to the system. For maintenance programmers, program understanding has become

and increasingly important skill.

Program understanding is now a significant research subject, and many approaches have

been proposed. One problem with this research, however, is that recovering design

information from source code is more difficult than creating the software. Software

psychology is one field of great interest in the information systems industry, but it is more

descriptive than predictive in nature. Software psychologists are able to observe

programmers as they write computer programs or try to understand existing programs,

and they are able to describe the procedures followed. They are not able, however, to use

this knowledge to appreciably reduce the complexity of software development and

understanding. Computer software remains a unique activity not well understood.

Software reengineering techniques have been introduced to deal with the problem of

maintaining legacy systems. Software reengineering focuses on extending the life of

legacy systems by restructuring the code in accordance with modern software

development techniques by rehosting applications from one computer platform to another,

or by translating one language to another. Some success has been reported with

107

reengineering techniques, but it is not clear whether reengineering is less expensive than

total systems replacement.

The "software is a form of mathematics" component of the information systems industry

has offered proof that program transformation is logically possible and is a straightforward

process that can be performed by a computer. Many computer-based reengineering tools

(both experimental and commercial) have been developed. There is evidence these tools

are useful in dealing with some aspects of the legacy system problem. There.is also

evidence, however, that the usefulness of these tools is often exaggerated. One aspect of

reengineering tools seldom discussed is how much they can extend the life of legacy

. systems.

The inadequacy or the inappropriateness of reengineering has led to reverse engineering.

The basic philosophy of reverse engineering recognizes that a legacy system must be

replaced. The task of reverse engineering is to recover the business functions, business

rules, and data structure contained in legacy systems and restate this information at an

appropriate level of abstraction to support replacement. With the possible exception of

creating documentation for legacy systems where none exists, reverse engineering is not

considered in this dissertation to be a maintenance activity.

Data structure recovery from legacy systems is a relatively simple part of reverse

engineering. Even if a legacy system is constructed around flat file structures, there are

108

reasonably straightforward procedures (both manual and automated) for performing data

structure recovery (Keller, 1983). As data structure reverse engineering is less

complicated than function or process reverse engineering, it is not directly addressed in

this research. It is recognized, however, that a reverse engineering methodology would

not be complete without techniques and procedures to capture data structure.

There are many reports in the literature on experimental reverse engineering

methodologies and tools. A common characteristic of these methodologies and tools is

that they are applied to relatively simple programs; it is often difficult to see how they can

be applied to real-world systems consisting of millions of lines of code. In many cases, the

resulting graphing techniques and alternative notations are more difficult to understand

than the source code from which they were derived. In particular, logic-based approaches

(artificial intelligence or expert system) are ineffective for application to large-scale

systems.

The task faced by the reverse engineer is a difficult one. One point made clear by the

literature is that complete design recovery from legacy system source code alone is not an

achievable goal. Between system functional requirements and software program

implementation, essential elements of information are lost. Although it might seem

possible to apply the software development process in reverse, in effect undoing the

forward engineering process, this missing information makes design information recovery

extremely difficult.

Chapter III

Methodology

This chapter explains how the reverse engineering investigation was conducted.

The format of the investigation was centered around two methods: (a) basic research, and

(b) exploratory development. Basic research is systematic, intensive study to gain

knowledge and understanding of reverse engineering. Exploratory development is

systematic application of reverse engineering knowledge to meet a specific need.

As discussed in Chapter I, establishing the reverse engineering methodology involved five

phases: (a) approach selection, (b) methodology development, (c) case problem selection,

(d) methodology application, and (e) methodology assessment. The last three phases are

discussed in Chapter IV, Results.

Approach selection focused on identifying the basic reverse engineering methodology to

be developed (i.e., knowledge-based, mathematical, abstraction). Approach selection was

supported by a review and analysis of existing reverse engineering methods and tools, as

well as a detailed analysis of the domain in which the methodology is to be employed.

110

Methodology development was based on a development plan centered around the

information engineering method of performing requirements analysis. The development

plan concentrated on the synthesis of procedures to produce the results identified as

requirements.

Case problem selection involved the choice of a suitable application for evaluating the

reverse engineering methodology. The major limiting factor in this phase was selecting an

application small enough to be manageable, but large enough to be realistic.

Methodology application involved the use of the design information recovery technique on

the selected case problem. The objective in this phase was to evaluate the methodology

and to identify changes or enhancements to address problems encountered during the case

study.

Research Methods Employed

The essence of reverse engineering is recovering information about a system design from

the incarnation of the system--the program source code. Viewed from this perspective,

reverse engineering can be considered an information processing problem. The input is

known (legacy system source code) and the desired output is known (design information);

what remains to be defined is the process to convert input to output. This process,

although simplified, is the same faced by any information system developer.

111

However, it must be stressed that reverse engineering is a human information processing

problem, and not only a computer information processing problem. Sufficient evidence in

the literature supports the contention that design recovery from source code is an

unsolvable problem for a computer system, and reasonable doubt exists as to whether a

computer system alone will ever be able to extract design-related information from source

code.

The information engineering approach to identifYing and specifying requirements for an

information processing system described by Miller (1995a, 1995b) formed the core for

synthesizing the reverse engineering methodology. Application of this information

engineering technique was modified slightly because the intent was to develop a manual

reverse engineering methodology rather than a computer-based methodology. Computer

implementation of the manual methodology is an independent problem and should be

addressed in a separate study.

Specific Procedures Employed

Description of Phase 1 - Reverse Engineering Approach Selection

The objective of Phase 1 was to select a category or basic model of a reverse engineering

methodology. There were five tasks in Phase I.

112

In Task 1.1, the problem was defined as clearly and precisely as possible. The operational

environment (the application domain area) was described to establish the scope and

boundaries of the investigation. The programming environment and the operational

problems to be addressed by the methodology and the programming environment were

also described.

In Task 1.2, a forward engineering reference model was developed. This model provided

the framework for the construction of the reverse engineering methodology.

In Task 1.3, five distinct methodologies were selected from those described in Chapter II

and analyzed in detail to identifY applicable features, techniques, or methods for the

specific problem application domain.

In Task lA, three program reference models were developed (batch, on-line, fourth

generation language). These models portray the general structure of the various

components found in the target system. The reference models were also used in Phase 2,

reverse engineering methodology development.

In Task 1.5, the output products to be produced by the reverse engineering methodology

were defined. The output products represent the final result of the methodology and

describe the vehicle for presenting results.

113

Description oj Phase 2 - Reverse Engineering Methodology Development

Phase 2 was the core of the research. The objective of Phase 2 was to describe a reverse

engineering methodology suitable for use in the specific environment described in the

problem definition. There are normally four tasks associated with this phase; the fourth

task, prepare physical model, was omitted in this application. Each task consisted of a

process component and a data component (defined later in this chapter). There were 3

tasks in Phase 2

In Task 2.1, the purpose, goals, and objectives of the reverse engineering methodology

were identified, defined, and described. Functions of the methodology were described in a

hierarchical form using key areas, tasks, sub-tasks and activities. The narrative description

of functions was augmented by a visual process model. A high-level conceptual data

model defining the data structure required to support the functions was produced.

In Task 2.2, the activities (primitive functions) from the conceptual model are normally

expanded to add frequency, location, organization, and other information useful for

implementing requirements in an information system; this activity was omitted in this

application. The data model was expanded to include the "business rules" that define the

relationships between the conceptual model entities, and a definition model was produced.

In Task 2.3, each of the conceptual processes was decomposed into a series of services.

The services were linked in this step with pertinent data model components. The

114

conceptual data model was converted to a logical data model by applying table formation

rules to each relationship. Attributes were assigned to the tables and the tables were

normalized to the third normal form.

Description of Phase 3 - Case Study Subject Selection

The objective of Phase 3 was to select a subsystem or part of a subsystem to be used in

the application of the reverse engineering methodology formulated in Phase 2. There were

three tasks in this phase.

Task 3.1 involved establishing selection criteria for the case study subject. In Task 3.2,

the method to be used to select two or more candidate components of the system was

established. Task 3.3 was an evaluation of the candidate subsystems using criteria

established in Task 1 and resulted in the identification of the final test case subject to be

used in Phase 4.

Description of Phase 4 - Reverse Engineering Methodology Application

The objective of Phase 4 was to test the reverse engineering methodology developed in

Phase 2 against the case study identified in Phase 3. There were three tasks in this phase.

Task 4.1 was the execution of the reverse engineering process model using the selected

system component. The objective was to recover detailed design information from the

source code. This was the "experimental" phase of the investigation. Task 4.2 was the

collection of analysis-related information. This included the time required to analyze

various components, problems encountered during the analysis, and problem solutions.

This information became the raw data for the investigation results described in Chapter

IV. Task 4.3 was the analysis of statistical data generated during application of the

methodology.

Description of Phase 5 - Methodology Assessment

115

The objective of Phase 5 was to assess the reverse engineering methodology in both

qualitative and quantitative terms with respect to its usefulness in recovering design

information from the specific application domain. The results of this phase are presented

in Chapters IV and V. There were six distinct tasks in this phase.

In Task 5.1, the design of the system component was compared with reverse engineered

design information. In Task 5.2, significant design discrepancies were identified in the

reverse engineered model. Task 5.3 involved the analysis of differences between the

original and the reverse engineered designs. In Task 5.4, design differences were

evaluated. In Task 5.5, methodology faults were identified and assessed. The assessment

was based on the design discrepancies identified in Task 3 and Task 4. In Task 5.6,

possible methodology changes were suggested.

Execute the Reverse Engineering Synthesis Plan

This section describes the execution of the research methodology outlined in the previous

section. The reverse engineering knowledge accumulated through the literature review

116

was assimilated and combined with existing problems and needs familiarity to formulate a

structured reverse engineering approach. A high-level description of the procedures to be

followed in recovering design information from source code and related documents was

produced. A visual model of the methodology was presented in the form of leveled data

flow diagrams. The conceptual, definition, and logical data structure models required to

support the methodology were also produced.

Problem Definition

The problem addressed by this research is how to recover sufficient design information

from an existing legacy system to support system replacement. A secondary problem

addressed is how to recover source code information to generate high-level

documentation when essential information is not available or is so outdated it is unusable.

The software maintenance problem is implicitly addressed because of the close association

between program understanding for design information recovery and program

understanding for correcting and modifying legacy systems.

The Operational Environment

The system domain for the reverse engineering methodology is military logistics. The

specific domain is logistics systems managed by the u.s. Air Force Logistics Command at

Wright-Patterson Air Force Base, Dayton, Ohio. One system was selected as the subject

for this reverse engineering investigation as a matter of convenience and accessibility, and

because the researcher has experience with the system. Source code for an operational

117

system was provided by the Air Force with the understanding that functional users and

system maintainers would not be able to support the investigation. In a real world setting,

the reverse engineer would depend on functional users, maintainers, and developers for

external system information.

Operational Problems

One of the fundamental logistics systems within the Air Force Logistics Command is a

requisition processing system, the Stock Control and Distribution (SC&D) System. This

system processes requests for items from Air Force bases and other agencies and tracks

the issuance, financial accounting, and transportation of items from the issuing warehouse

to the requesting unit. The SC&D system has existed in some form for many years and

traces its ancestry to the second generation IBM 7080/7090 system.

In the mid-1980s, the SC&D System was modernized by converting it to an on-line system

using a database management system. Software reengineering was the primary

methodology used. Many batch programs were simply converted to operate as

subroutines in an on-line mode. The large program sizes do not suggest there were

extensive efforts to modularize the system nor to redesign it for easier maintainability.

The modernized system is now ten years old and has been subjected to intensive

maintenance. Degradation due to maintenance has occurred and will eventually dictate the

development of a replacement system.

118

A problem for the government when the next modernization program begins is that system

redesign and maintenance knowledge may not be available. The contractor who

performed the conversion and maintenance work will tum the system over to the

government or possibly another contractor for continued operation and maintenance; the

institutional knowledge regarding the system redevelopment will go with the contractor's

employees.

COBOL Program Environment

The SC&D System (automated system designator D035) consists of nine subsystems

identified with suffixes A, B, C, J, K, L, R, S, and T. D035A, the Item Manager

Wholesale Requisition Process (IMWRP), is the heart of the requisition processing

system; the other subsystems support related functions.

The SC&D System is comprised of nearly 2,000 programs (see Table 6). Most of the

programs are written in COBOL and mM CICS COBOL (53.6 percent) with the

remainder written in IDEAL (37.9 percent) and other languages (8.4 percent). In total,

there are more than two and one-half million lines of source code.

Some 307 input files are received from various systems; 113 of these are received on a

daily basis. Nearly 400 output files are generated and sent to various systems; 230 of

Table 6
The Nine Subsystems Vary in Size and Programming Language

Average
Subsystem Number Lines of Code LOC per COBOL
designator programs (LOC) program COBOL CICS IDEAL Others Database
D035A 270 589,000 2,181 106 52 90 22 CA DataCommIDB
D035B 66 71,000 1,076 66 0 0 0 Flat Files
D035C 196 104,000 531 20 176 0 0 VSAMlFlat Files
D035J 212 343,000 1,618 102 4 106 0 CA DataCommIDB
D035K 487 725,000 1,488 258 5 190 34 CA DataCommIDB
D035L 64 110,.000 1,718 47 0 11 6 CA DataCommIDB
D035R 235 340,000 1,447 73 2 141 19 CA DataCommIDB
D035S 220 286,000 1,300 58 4 92 66 CA DataCommIDB
D035T 176 302,000 1,715 60 0 100 16 CA DataCommIDB

Totals 1926 2,760,110 1,433 790 243 730 163

Note: Adapted from Maintenance Analysis of the Stock Control and Distribution System (p. 6), KPMG Peat Marwick
Mangement Consultants, February, 1993.

.......

.......
\0

120

these are generated on a daily basis. D035A, the component of primary interest in the

investigation, receives 123 input interface files from 39 systems and generates 161 output

interface files for 57 external systems.

A significant aspect of the SC&D System is the amount of time spent on maintenance.

According to a report prepared by KPMG Peat Marwick in 1993, from August 1989 to

November 1992, the mean number of monthly hours spent on maintenance was 11,550;

the range was 4,000 to 26,800 hours. Dividing the mean value by 160 (a 160-hour person

month) equals slightly more than 72, indicating the average number of full-time people

engaged in maintenance. The report also indicated there was an additional enhancement

and modification backlog of 206,511 hours, enough work for 108 full-time people for one

year.

A Forward Engineering Model

It is clear from the literature that reverse engineering depends on, among other factors,

knowledge, skill, and experience with forward systems engineering. It seemed

appropriate, therefore, to begin work on a reverse engineering process model by first

describing a general forward engineering model.

Most forward engineering process models begin with an activity alternatively called

requirements analysis, requirements acquisition, or requirements definition. The activity

is most closely related to the functional user. Most models end with an activity called

121

implementation. The implementation activity is most closely related to the hardware on

which the completed system will operate.

A simplistic view of forward engineering identifies all other activities occurring between

the requirements and implementation as design. This simplistic view is not sufficient for

understanding reverse engineering because it omits too many important details. The

design part must be expanded in order to understand the overall process.

Figures 10 through 14 are a 10w-levelIDEFO model of a generic forward engineering

process. One process (A2) is decomposed to the next lower level in Figure 14.

Essential Points in the Forward Engineering Model

In the early phases of forward engineering, functional skills are the critical resource. As

system development moves closer to design and implementation, technical skills begin to

playa more important role. The "mechanism" flows (the flows entering the bottom of the

processes in Figures 10 through 14) show the shift in the means used to perform forward

engineering.

At a high level of abstraction, two distinct knowledge classes associated with software

development are observed: domain knowledge and technical knowledge. Domain and

technical knowledge are shown as "control" flows (the flows entering the top of the

processes in Figures 10 through 14). The literature supports this observation.

Requirements

... ...

Domain Knowledge
Tehnical Knowledge

Conce~tual Data Model
Justification Documents ...

Analyze ..
Requirements Functional Description

~~~~~~~------------~ 
Domain Knowledge ... 

Tehnical Knowledge All--
~r----r-.....I 

122 

Domain Worker 

Technician 

Requirements Traceability Matrix 

Logical Data Model 
... 

.. - System Specification Design 
~ U ndocumnted Knowledge 

System ~documented 
Knowledge 

r--

Technical Knowledge 

A2 

Domain Worker 

Technician 

Additional Requirements 

... ... 
Implement 

System 

Documentation .. .... 
Operational Sys~m 

Undocumented .... 

~~~I~ge __ .... 

Physical Databa~
A3 ...

'--lr---r---l

Computer System

Technician

Figure 10. Forward engineering process model AO diagram.

Domain Knowledge

Domain Knowledge li'hU' Knowl,'" •
Requirements , • ~

Create
Conceptual
Data Model

Conceptual Data Model lID

Functional Problems
iii!

High-Level Functions ...
Assess
System
Needs

All

t
Technician

Conceptual Requirements

Detailed ReQuirements
Al4

Technical Knowledge t
Domain

t
Database

•
Expert U"BmU Technician

.... -.. Develop
System
Concept

Concepot of Operations

A12

Target Language Knowledge

Technical Knowledge

•••
Functional Description

D . S '11
omam pecla 1st

F
. T h . I SpecifY

unctlOnal Requirements ec meal Manager F . untlOnal

Performance Re uirements Requirements ~ Undocumented
Knowledge

Interface Requirements - - - - - -
AI3

• . t
Domam Worker

Technician

Figure 11. Process Al decomposition.

--..

-.,..

......
tv
\..oJ

Conceptual Data Model
Database Knowledge • Domain Knowledge

Functional DeSCriPti0-l I T,chnical Knowledge

t
.... -...

Create
...... I Logical

~Dat~Model Undocumented p-!,
Knowledge

........

Additional
Specify
System

Requirement. ~equirement
i

A21

•
Technician

Detailed Reguirements

Undocumented
Knowledge

Technical Knowledge

Constraints

• • -

A24

•
Database
Technician

Logical Data Model ..

Requirements Traceability Matrix ...
-111" ...

Module Assignments -Allocate
System

compo""'''1 U,"7,umented Knowledge

A22

T,lUm

Target Language Knowledge
Technical Knowledge

•••
System Specification

...

... -...
..... Derived Requirements

Design
Modules

:!1~docu~~n~ed !<~o~!e~g~ ___ - Additional Requirements ,
A23

• Technician

Figure 12. Process A2 decomposition. -N
~

Target DBMS

Language
Syntax
Knowledg\

File
Information ... -

~tl:Il1fu>~cjfication

Program Specification
, i

•

.. Create
Programs

Source
I Code

....
A32

•
Programmer

Target System
Knowledge Knowledge

Conceptual
Data Model.

Logical
Data Model ...

t t
Create

Physical
Database

A35

tDatabase
Analyst

Database
Specification

Physical
Database Design

...

..

Undocumented
Information ...

Operating
System

tKno,",;ledge

Create
Machine
Language

A33

•• +
Loader

Link Editor

Compiler

...

Packaging Knowledge • •
Undocumented Information

Create
Program

Specs

------- -------JIiao--

i Program Specification.
A31 I

• Analyst

Job Control Language

Object Code

Operating Details

Undocumented
Knowledge IIiI

Standards

U
Document

System

A34

......
....

User's Manual
~

Operations Manual
Maintenance Manual

~

t Documentation
Specialist

Figure 13. Process A3 decomposition. -N
V1

Undocumented
Knowledge

Module Assignments

Domain Knowledge
I Target Language 1. lIP ,Knowledge

Create
Conceptual

Design Conceptual Design

'-- Undocumented
L..._ A2;,.:;::;3;;,;1:.J Knowledge Design Experience

l~

Technician

Functional
Description

Errors

... ...

... ..
Evaluate

Conceptual
Design

A232-

Technician

Evaluated
Design

-...
... ...

Refined Desilln

126

Design Experience

Target Language
Knowledge

Refine
Conceptual

Design

A233

Technician

Additional
Requirements _

lO"

System Specific,ll!ion

Undocumented"

~o~I~~g~_ ...

Figure 14. Process A2l decomposition

127

The major transition points in the forward engineering model occur between the

Requirements and Design phases and between the Design and Implementation phases.

These transition points are traditionally marked by the delivery of a documentation

product representing the end of one phase and the beginning of the next. However, the

forward engineering process is continuous, and the documents produced at the transition

points are essentially snapshots of the status of the process at a point in time.

The forward engineering model diagrams include a flow identified as "undocumented

knowledge." This flow represents knowledge used in the forward engineering process,

but not included in the documentation.

An observation suggested by the forward engineering model is the transfer of knowledge

between domain specialists and technicians during software system development (see

Figure 15).

Technical
Knowledge

Techni ci 3I! __

Domain Specialist

Time

Domain
Knowledge 1 __ Do=:m::3.1.::· n:..S:::,;p!::e:.:c:.;;ial=is:.:;..t __

Technicial!. / /'

Time

Figure 15. Software system development knowledge transfer.

128

The left side of Figure 15 represents the domain of technical knowledge and portrays

relative levels for technicians and domain specialists. Knowledge levels remain relatively

constant, but not flat. It is assumed that both groups slightly increase the overall level of

technical knowledge as a result of software system development.

.The right side of Figure 15 represents domain knowledge. Domain specialists have a high

level of domain knowledge at the start of a software system development effort, and their

knowledge increases slightly over time. This increase is a result of the thought and study

given to the processes that are modeled for implementation in a management information

system. The most significant change is shown for the rapidly increasing level of

domain knowledge gained by technicians. In order to make the transition from a nearly

pure domain model to a nearly pure technical model, technicians must acquire sufficient

domain expertise to translate functional processes and domain objects into the imperfect

world of implementation technology.

Information Loss in Forward Engineering

Documents produced during forward engineering do not contain the actual knowledge

used to develop software. Documentation produced at the end of a phase includes only

the results of analysis or design work; intermediate activities and decisions are not

recorded.

129

There are three types of information loss during forward engineering (Brown (1983):

1. Closure - When application domain information is translated to another form (i.e., a

specification), informal knowledge is lost because of the closed body of text.

2. Idealization - Simplifications of the application domain are made for reasons of

conciseness and cogency of the specification. For example, business rule exceptions

may be ignored to make the specification concise and uncluttered.

3. Domain - Program representations involve concepts from the application domain, and

are not often represented in code. These concepts may only be known informally by

the system user.

One of the problems with documentation is that it is difficult or impossible to record all

the knowledge gained during systems analysis and design. Continuous informal

communication usually occurs between domain experts (users) and technicians

(developers). After technicians have achieved a basic level of domain understanding, they

gradually expand their knowledge by forming specific questions and assimilating the

answers provided by domain specialists. This interaction may constitute the bulk: of

informal communication.

Much of this informal communication, especially in the initial forward engineering stages,

is verbal and specifically aimed at facilitating the transfer of domain knowledge to

technicians. Information transfer takes place at a low level of detail over a considerable

period of time. Because the information is unstructured, it is difficult to organize in a

fonn suitable for inclusion in documentation. It is hypothesized that most of this

infonnation is never captured in the end-of-phase documentation.

130

"After the fact" documentation (i.e., documentation created after the system was designed

and developed) supports the hypothesis that documentation does not contain actual

systems development knowledge. When a software system has been completed, the loss

of domain knowledge acquired during development is complete. The only source of

infonnation available is then the source code. Source code listings stored in binders

marked "system documentation" are not uncommon.

The infonnation lost during forward engineering may be summarized as follows:

1. Non-procedural business knowledge used to make decisions.

2. Problem specification known infonnally by the analyst or programmer (undocumented

knowledge).

3. Design justification (reveals how the implementation solves the problem contained in

the specification).

4. Design decisions based on the problem of representing the application domain in

systems constrained by the realities of imperfect technologies and imperfect

programming languages.

A Model of the Reverse Engineering Process

Conceptually, reverse engineering is the opposite of forward engineering. Therefore, a

possible starting point for a reverse engineering model can be created by reversing the

forward engineering process model.

131

Figure 16 is an AO diagram for a reverse engineering process model. This model was

created by reversing the forward engineering process model inputs and outputs and

deleting some of the mechanisms and controls. It should be clear even from this high-level

diagram that simply reversing the forward engineering process is not an adequate

approach for developing a reverse engineering methodology. If the decomposition were

continued, the result would be processes that could not be implemented. It could be

argued that the problem is the modeling technique rather than the process being modeled.

The modeling technique, however, is arguably flawed because it allows the construction of

a process model ultimately decomposing to a series of small, unsolvable problems.

Differences in Forward and Reverse Engineering

The forward engineering model previously described would elicit confidence from most

information system technicians because it is based on a substantial base of successful

experience. An information technician is reasonably confident that a software system will

result from executing the activities of the forward engineering model.

Qperational System

Documentation

Domain Knowledge

Technical Knowledge

System Specification

Extract
System

Specification

Al

Techilician

i---------r------- ------.,.

Undocumented
Knowledge

Domain Knowledge
Technical Knowledge

FWlctional Description _____ ...

Extract
Undocumented

FWlctional
Knowledge

Description 1------=;----,
Domain Knowledge

Technical Knowledge

A2

T echilician
Extract

FWlctional
Requirements

A3

T ecluiician

Design
InfOlIDation

-

Figure 16. Reverse engineering AO process model diagram.

132

This confidence is absent in the reverse engineering model. The difficulty of

understanding source code written by a third person, even if it is well-structured and

documented, is evident to any maintenance programmer.

133

The objective of forward engineering is to implement a computer information system. The

steps between requirements and implementation are coincidental and are not essential to

writing programs (although they simplify the process). Systems can be developed by the

"just start coding" approach. There is no equivalent "just start uncoding" approach for

reverse engineering. The complexity of reverse engineering, even for relatively simple

systems, can be overwhelming.

During forward engineering, a finite set of functional requirements is translated or

transformed from a well-specified problem domain to a well-specified technical domain.

During the transformation, the domain aspects are gradually "lost" and the design becomes

purely technical. During forward engineering there is a clear target, implementing a

system, and the possible implementations are only limited by technology.

During reverse engineering from the technology-based model to the domain-based model,

there are a finite but large number of possibilities. The target of reverse engineering is not

clear except for a broad range of possibilities within a specific application domain.

134

In the forward engineering process, the path taken through the technical possibilities is

immaterial as long as the system created satisfies its intended purpose. In reverse

engineering there is significantly less flexibility. Not only must a reverse path through the

various design decisions be identified, it must be the same path. In other words, the

reverse engineering process must identify the same design information or requirements

upon which the implemented system was based.

Problems Associated with Reverse Engineering

Human capabilities and capacities are one of the most important problem areas associated

with reverse engineering. Given that software development is a human activity, albeit

supported by computer-based tools, it is obvious that reverse engineering is also a human

activity.

A fundamental problem of computer-based reverse engineering tools is that computers are

limited in how they can represent software internal complexity. Humans are able to

understand software complexity without representing its internal structure. Humans are

not efficient, however, at handling the large volumes of information associated with

reverse engineering a system.

In the early years of data processing, programmers were in great demand because of their

unique skills. As a result, many legacy system programs were coded by inexperienced

programmers not adept at writing COBOL.

135

A reverse engineer must have extensive experience with top-down modeling techniques.

It is easy to develop a high-level model that is so shallow it has no real content; it is also

easy to develop a low-level model that contains so much detail it is incomprehensible.

Knowing when the correct level has been achieved is the secret of good modeling~ and

extensive functional modeling experience is the secret of being a good modeler.

There are few people with in-depth knowledge of how legacy systems were constructed or

what they do.

Reverse engineering ability depends, in part, on program and application domain

familiarity and programming style.

A major part of reverse engineering is the problem of discovering human-oriented

concepts of computational intent and assigning them to their realizations within a specific

program or its context (see Biggerstaff, et aI., 1994).

Human-oriented terms used to represent knowledge are succinct, ambiguous, informal,

and intelligible to other humans. Computational-oriented terms are based on a narrow and

restricted grammar and vocabulary. There is little or no connection between human

oriented terms and formal computer language.

136

As pointed out by DeBaud, et al. (1994), most reverse engineering begins by analyzing

program structure with lexical, syntactic, and semantic rules. Debaud, et al. compared this

with trying to read English knowing only the rules of English grammar.

As Pfrenzinger (1992) noted, the higher the target level on the reverse engineering scale,

the less automatic and more manual the reverse engineering process becomes. Formal

methods (e.g., mathematical models, wide-spectrum languages, and artificial intelligence

techniques) are difficult for humans to understand, but they are suitable for automated

reverse engineering tools.

Concepts from source code must be correlated across multiple perspectives. Reverse

engineering is based on the ability to recognize, comprehend, and manipulate design

decisions in source code. Causal connections between requirements and computer

programs must be identified.

A reverse engineer must be able to explain each program and relate its structure and

behavior, as well as its relationship to the application domain. The terms used to explain

programs are significantly different from the language elements used to write the source

code. A reverse engineer must be able to assign more meaning to program text than what

is included the source code.

137

There are three levels of aggregation in reverse engineering: (a) low-level understanding

"<

of source code, (b) mid-level understanding of algorithms and data, and (c) high-level

understanding of overall program function.

Syntactic knowledge of COBOL must be applied to uncover the semantic meaning of the

source code. Sources external to the source code may be required to determine semantic

meaning.

According to Munro (1992), a software system consists of the following elements: source

code, JCL, databases, object code, documentation, design information, requirements

details, specification details, knowledge of analysts and programmers who developed the

system, and the knowledge and expertise of maintenance programmers. Many of these

elements may be missing in a legacy system.

There may be operational functions in legacy systems that are not used because the results

are incorrect, unreliable, or incomplete. To correct the problems, new code may added.

As old code is seldom removed; the source code continues to increase in size and

complexity.

Most legacy systems were not well engineered during development, complicating reverse

engineering. As legacy systems were developed over many years, the code base is

extremely large.

138

According to Sage (1993), it is difficult to describe large complex systems by structure,

function, or purpose because these views are not mutually exclusive nor collectively

exhaustive.

As noted by Ornburn and Rugaber (1992), program text is inherently ambiguous; it is

difficult to identify the purpose of program structure without contextual information not

found in text. A reverse engineer must be able to draw on a broader knowledge base,

reconstruct the missing context, and determine the functional intent of the software

design.

A reverse engineering methodology must provide a method for abstracting design

information above the source code level as rapidly as possible. The volume of source

code and the fundamental manual nature of reverse engineering dictate this principle.

COBOL statements have three features: semantic (what the statement does), syntactic

(how the statement is formed), and lexical (rules by which elements of the syntax are

formed). A reverse engineer must have a comprehensive understanding of these features.

COBOL, as a formal language, has syntactic content but not semantic content. However,

there may be some semantic content depending on the names used for variables, e.g., ADD

A TO B GIVING C and ADD BASIC-PAY TO OVERTIME-PAY GIVING TOTAL-PAY. Both

139

statements are syntactically correct, but the second has semantic content not present in the

first. There is no 1: 1 mapping between the syntax and the semantic content.

Textual material other than program source code can play an important part in reverse

engineering if it is available, accurate, and current. System documentation is almost

universally poor and must be used with caution during reverse engineering.

There are two kinds of system documentation: low-level physical implementation details

and high-level conceptual overviews. Documentation between these two levels is rare.

The probability of extracting an accurate model from existing system documentation is

small. Small systems, which are relatively easy to model, tend to have the best

documentation. Large systems, which are more difficult to model, tend to have

inadequate documentation. The quality of system documentation appears to be inversely

proportional to its value as a reverse engineering tool.

Because of the number of input and output files coming from and going to other systems,

interfaces playa crucial role in reverse engineering in the Air Force logistics systems

domain. Interfaces tend to have the same problems associated with source code and

documentation. Interfaces are nominally described in Memoranda of Agreements (or

Interface Control Documents), but the agreements tend to be short on information

content, outdated, inaccurate, and in conflict with the actual content of the interface files.

140

The following considerations are relevant to interfaces:

1. Input Source - The input source may not be easily identifiable because of an

intermediate communications system that collects transactions from multiple sources.

2. Sending System - It may be important to know what process in the sending system

produces the interface file. For example, many interface files are copies of

intermediate files produced at a particular point in a batch process as a matter of

converuence.

3. Receiving System - In the reverse engineering environment, two receiving systems are

considered: the target system being reverse engineered and the system that receives

the output interface files from the target system. In both cases it is important to know

how a receiving system uses the data in an interface file, i.e., Is all the data used? Is

some of it not needed?

A Formal Method of Reverse Engineering - Clean-Specify-Simplify

Lano, et al. (1993) described object-oriented methods and tools to reverse engineer

COBOL application programs to program specifications. The basic concept (identified

here as Clean-Specify-Simplify) is to recover design and function from programs by

creating object-based abstractions. The main process is transformation: COBOL source

code is transformed to Uniform; Uniform is transformed to functional description

language; and functional description language is transformed to Z specification language.

Byproducts of the process include data flow diagrams, entity-relationship diagrams, and

call-graphs.

141

The method is largely automated and is comprised of three stages:

1. Stage 1 - Clean. Restrict original language to a small subset of permissible constructs.

Translate the source code to an intermediate language (Uniform), eliminating

redundant language constructs. Translate asserted relationships between data values

into statements about invariants in the program's run-time behavior.

2. Stage 2 - SpecifY. Create prototype objects by grouping associated variables using

data flow diagrams for guidance. Object-based entity descriptions consist of attribute

lists and initial values. Associated operators are not yet included. Split code into

phases. Phases are "maximal logically connected sections of code within which no

files are opened or closed, or have their read/write status changed" (Lano, et aI., p.

15). Phase functionality is automatically obtained and transformed to intermediate

functional language.

3. Stage 3 - Simplify. Incorporate abstracted functional descriptions into the outline

objects as descriptions of their operations. Print a full specification in Z or Z ++ using

the object-based abstraction and associated textual documentation.

The basis for the Clean-Specify-Simplify approach to extracting functional information

from source code as described by Breuer and Lano (1991) is based on the belief that some

concept of functionality can be derived from looking at program input and output relative

to the internal data structures specified by the program. Detailed functionality, however,

can only be discovered by line-by-line source code analysis

Positive aspects of this technique are:

1. It is designed specifically for COBOL.

2. It recognizes the need for a formal reverse engineering plan.

3. It recognizes the need for interaction with maintainers rather than relying solely on

source code.

142

4. It establishes higher-level abstractions in Stage 1 by finding files described in the file

section and environment division and representing them as objects. Flags, counters,

and other information related to each object are added as they are identified.

5. If the recovered objects are viewed as opaque, abstraction is achieved by eliminating

implementation details. Real (higher-level) abstractions of object semantics can be

produced by replacing captured functionality with more general specifications.

6. It is related to the process view of systems because the global functions identified as

object class methods correspond exactly to the processes.

Negative aspects of the technique are:

1. It is meant to produce only program-level information. The objective is to produce

program specifications from source code and to preserve the specifications in sufficient

detail to recreate the original program.

2. It is designed to support maintenance, reengineering, and reuse rather than design

recovery.

3. COBOL code is abstracted to produce explicit mathematical descriptions of

functionality and object classes representing the application design. These

representations are difficult to understand.

A Structural Approach to Reverse Engineering - Program Schematics

143

Lerner (1991) developed a reverse engineering approach based on program schematics.

Lerner described the technique as a reengineering approach to decompose a single

program with several applications into several programs, each for a single application.

The source program used in the example--a six-year old, 1,800-line BASIC program with

over 300 transfers of control written for a Commodore 128 computer--was reengineered

to an IBM personal computer with MS-DOS BASIC with a 64,000 bytes memory. The

source code listing was not included with the description.

Lerner (1991) detailed a six-step reverse engineering enactment process. The process

evolves through four steps of creating documentation "in-the-small" and through two

steps of creating documentation "in-the-large." Creating documentation in-the-small is the

process of dissecting a program into formal units, declaring names of these units, creating

functional units, and defining the immediate impact environment of the functional units.

Creating documentation in-the-large involves declaring and semantically describing linear

program circuits and system applications.

144

Step 1 - Dissect Program into Fonnal Units. Six rules describe the processes perfonned in

this step:

1. A fonnal unit is a segment of code which starts with a program statement to which

control is transferred from anywhere in the program. Statements such as GO TO,

GOSUB, CALL, and PERFORM transfer control; the objects of these verbs are

formal units.

2. A starting statement label (or a line number) defines a unit entrance. The entrance is

identified by a "0."

3. A fonnal unit ends where another fonnal unit starts.

4. A subroutine fonnal unit ends with a return-like statement.

5. A non-subroutine unit does not have a return-like statement.

6. A unit program statement that transfers control to another formal unit is called a unit

exit. Exits are numbered in sequence.

Step 2 - Declare Names ofFonnal Units. Fonnal units are numbered for identification.

Non-subroutine units are identified by one set of numbers (e.g., 100-499). Subroutine

units are identified by a different sequence of numbers (e.g., 500 and up).

Step 3 - Create Functional Units (see Table 7). There are three options for creating

functional units: (a) a fonnal unit and a functional unit have the same segment of code, (b)

a fonnal unit is dissected to create several functional units, and (c) several consecutive

fonnal units are combined to create a single functional unit. The name of a functional unit

145

is identified from the code. The name may also be derived from program remarks, if they

are present, or from a maintenance programmer.

Table 7
'List of Functional Units

Non-subroutine units Subroutine units
Unit number Unit name Unit number Unit name

100 Heading 500 Record Rrintout
101 Dimensions 501 Change file name
102 Disk 502 Partlboard list
103 Read disk 503 Array is full

Note. Adapted from "A Standard Approach to the Process ofRe-engineering Long-lived
Systems," by M. Lerner, 1991 (Summer), CASE Trends, 3, p. 19.

Step 4 - Define Immediate Impact Environment of Functional Units. Units that transfer

control immediately to a particular functional unit create an input environment. The input

environment describes the impact of many on one. Those units to which a particular unit

transfers control create an output environment. The output environment describes the

impact of one on many. A combination of the immediate impact environment of each unit

with the segment of code that belongs to the unit creates schematic documentation in-the-

small, and is the basis for local analysis. In-the-large documentation is used for global

program analysis.

Step 5 - Declare Linear Program Circuits. A linear circuit (LC) is a succession of at least

three non-subroutine units. An LC starts with the first unit and ends with the last unit.

Declaring LC starts with mapping a network of non-subroutine functional units (see

146

Figure 17 for a portion of this map). Figure 17 contains three types of non-subroutine

units: (a) a transiting unit - one-to-one unit (e.g., unit 101); (b) a branching unit - one-to

many unit (e.g., unit lOS); and (c) a rooting unit - many-to-one unit (e.g., unit 107). The

first unit can be the beginning unit of the program, a branching unit, or a transiting unit.

The last unit may be the end unit of the program, a rooting unit, or a transiting unit. The

first LC must create a trunk ofthe tree ofLC. The trunk starts from the beginning of the

program and ends at the program end.

Figure IS is the program LC 001. It starts with beginning unit 100 and ends with end unit

12S. This LC represents the trunk of the tree ofLC. After the trunk was defined, the next

LC starts from a branching unit, which belongs to the trunk and at the same time is the

closest to the program end. Branching unit lOS is the closest to the end unit from which

the next LC start.

Proceeding backward from the end of the program, all other LC are declared until each

functional unit belongs to at least one LC. Each LC represents a certain mode of system

operation. The purpose of this mode is described by the LC name. Some of the 29

declared LC from the sample program are listed in Table S. Trees of subroutine units, if

complicated, can be described by LC to make them readable.

147

....... - - - - - - - - A transiting unit (1: 1)

A branching unit (1 :M)
,

, A rooting unit (M: 1)

Figure 17. Network of non-subroutine units.

Note. Adapted from "A Standard Approach to the Process ofRe-engineering Long-lived
Systems," by M. Lerner, 1991 (Summer), CASE Trends, 3, p. 20.

148

Figure 18. Trunk of the tree Le.

Note. Adapted from "A Standard Approach to the Process ofRe-engineering Long-lived
Systems," by M. Lerner, 1991 (Summer), CASE Trends, 3, p. 20.

149

Table 8
Linear Circuits

Number Name First unit Last unit
001 Create genetic matrix 100 128
002 Create LC name 110 155
003 LC name amend 156 161
004 LC name delete 154 158

Note. Adapted from "A Standard Approach to the Process ofRe-engineering Long-lived
Systems," by M. Lerner, 1991 (Summer), CASE Trends, 3, p. 20.

Step 6 - Define System Applications. A program application is a family ofLC that

performs a specific data processing task defined by the user. Defining which LC belong to

a program application starts with mapping all branching and rooting non-subroutine

units, which are the first and the last units defining LC. This map is used to declare

program applications, each being a family of interrelated LCs.

In the sample, Application 1 consists of six LC--OOl, 007, 008, 010, 011, and 012 (see

Table 8). LC 001 consists of23 non-subroutine units--lOO, 101, 102, etc. (see Table 9)--

and 40 subroutine units (not shown in the example). Extracting these functional units

from the original program resulted in a collection of all program statements involved in

application 1. This procedure was repeated for the other five LC.

150

Table 9
Application 1 - LC Components

Linear circuit number Linear circuit name
001 Create genetic matrix
007 Print genetic matrix
008 More create?
010 Delete link
011 Amend link
012 Start genetic matrix

Note. Adapted from "A Standard Approach to the Process ofRe-engineering Long-lived
Systems," by M. Lerner, 1991 (Summer), CASE Trends, 3, p. 21.

Positive aspects of the approach are:

1. The technique is based on physical inspection of the program source code.

2. Schematics are a logical, straightforward technique for extracting functional

applications from the source code.

3. Schematics are primarily graphics-based and reasonably easy to prepare and use.

4. Schematic mapping offers a method for abstracting to a higher level than program

code.

Negative aspects of the approach are:

1. The schematic technique was apparently designed for a dialect of BASIC with limited

capabilities.

151

2. COBOL programs to be reverse engineered are larger and more complex than BASIC

programs performing the same function; schematic diagrams for these programs may

be too large to work with easily.

3. COBOL programs use labels, rather than line numbers, as addresses for GO TO,

GOSUB, and PERFORM statements.

4. COBOL syntax is more complicated than BASIC--variable and file names are longer,

and data and procedure divisions are separate program components.

A Program Understanding Approach to Reverse Engineering - DESIRE

The DESign Information Recovery Environment (DESIRE) is a program understanding

assistant system developed by Biggerstaff, et al. (1994). According to the developers, two

key properties distinguish this design recovery model from similar models:

1. Use of Informal Information - The model exploits multiple kinds of information. It

uses informal information from outside of the sphere of programming languages and

exploits a human-oriented, associative style of retrieval and analysis.

2. Use of a Domain Model - The model exploits multiple sources of information. It uses

a domain model to help the software engineer understand and interpret foreign

systems. The domain model is a knowledge base of expectations (i.e., patterns of

program structures, problem domain structures, language structures, naming

conventions) that provide frameworks for code interpretation. These frameworks can

be used to replace missing design information.

152

DESIRE uses the Common Lisp Object System (CLOS). Key structures in the source

code are represented in CLOS by object classes. Domain model classes are used to search

for instances in the code and to bind instance variables to the domain key structures,

subject to analytic approval. The instance variables point to the segments of code that

implement the domain object. The first step is to create a set of instances of the idiomatic

structures expected. Each instance can be bound to source code in one of two ways-

direct or indirect.

In direct binding, a pattern instance is bound directly to a segment of code.

Implementation is via a linguistic idiom representing the expected linguistic form of a

conceptual abstraction. The idiom is implemented as a set of regular expression patterns

that match the various natural language forms in source identifiers or comments. When an

unrecognized expression of the conceptual abstraction is encountered, it is added to the

domain model. In indirect binding, a pattern instance is bound indirectly through a sub

instance (through a close match of the substructure to the program code).

A linguistic idiom expresses natural language tokens generalized into search patterns

associated with key data structures; data object idioms express the substructure

relationship within complex data structures.

Idiom pattern matching to code is inexact. An automated aide is typically able to produce

only partial matches. Some instances of the idiom are unbounded and some elements of

153

the structure are unexplained; this part of the interpretation work must be completed by a

software engineer.

The conceptual abstraction instances produced by design recovery go beyond what can be

represented in programming languages (Biggerstaff, 1989). They are represented in both

rigid formal terms and informal and flexible terms. Biggerstaff said these artifacts are not

simply optional, informal additions to the formalisms expressed in the programming

languages, but complementary representations necessary and critical to the mental

structuring and assimilation of the final design.

A considerable amount of design information cannot be formally captured in program

source code because programming languages do not contain the necessary constructs to

express such information as the informal conceptual abstractions behind the code

(Biggerstaff, 1989).

Biggerstaff, et al. (1994) identified two general tasks required when attempting to assign

concepts to code:

1. Identify which entities and relations out of the often overwhelming numbers in a large

program are important.

2. Assign important entities and relations to known (or newly discovered) domain

concepts and relations.

154

Task 1 relies heavily on generic, formal information such as data structures, functions, and

calling relations, as well as informal information such as grouping and association clues.

Task 2 relies more heavily on domain knowledge (i.e., knowledge of the problem domain

entities and typical application architectures and relationships).

Task 1 uses generic knowledge to infer that statements are related to one another in a

non-casual way because they are: (a) grouped together (proximity), (b) bracketed with

blank lines, (c) exhibit a strong surface similarity among many of the formal and informal

tokens, and (d) exhibit coupling via common tokens among several definitions.

Task 2 features suggesting concept assignments are: (a) natural language token meanings,

(b) occurrence of closely associated concepts, (c) individual relations paralleling those in

the model, and (d) the overall pattern of relationships in the model.

Positive aspects of the approach are:.

1. The importance ascribed to informal external information in augmenting reverse

engineering techniques.

2. The concept of a domain model that captures information to support the reverse

engineering process.

3. Non-exclusive reliance on the automated system to recognize and identify program

plans.

155

Negative aspects of the technique are:

1. The technique is based on the program plans approach.

2. The technique is primarily an automated assistant tool.

3. The domain model is established as a knowledge base of expectations and is limited by

difficulties associated with collecting knowledge from domain experts.

4. Domain knowledge must be stored in a format that can be processed by a computer.

5. The benefit of available domain information is limited by the form in which it is stored.

A Data-oriented Reverse Engineering Technique - Component Extraction

According to Lanubile and Visaggio (1993), business systems are data-oriented because

most of their tasks are related to manipulating large amounts of data stored in a database.

They maintained that most of the knowledge needed to understand business systems, both

conceptual domain and implementation software models, is contained within the system

data.

Lanubile and Visaggio (1993) proposed a method to identify and extract environment

dependent components and domain-dependent components from a business application

system. Environment-dependent components depend on the technological environment of

a system and usually consist of basic operations on a database, report production, display

of interface maps, or user machine dialogue. Domain-dependent components characterize

a class of problems in the same application domain and typically consist of computational

156

formula or business rules. Differentiating between these components is advantageous for

adaptive maintenance or platform migration.

The component extraction technique is described as part of a reverse engineering process

model for data-oriented applications. Lanubile and Visaggio (1993) claimed the detailed

knowledge of external inputs and outputs increases the application domain knowledge and

provides clues for understanding the procedural code.

The component extraction technique is comprised of two phases: data recovery and

function recovery. The data recovery phase is based on a reference information model

applied to all information systems in the same class of problems. The reference

information model is expressed in terms of entities, hierarchies of entities, and meaningful

relationships between entities by using entity-relationship diagrams. Data recovery

provides knowledge about external data. By analyzing file declarations, reports, and

input/output maps, the following distinctions are made:

1. Conceptual Data - Data associated to an entity or relationship of the reference model.

2. Control Data - Flags used to control program logic.

3. Structure Data - Fields used to build data structures independent of the programming

environment.

The reference model provides a template for classifYing conceptual data in the code

declaration. Data derived from other primitive conceptual data is derived data. The

157

computation formula or the business rule for derived data is recorded in a data dictionary.

Identifying derived data is important because these values represent expectations about the

existence of transform functions in the source code. Modeling data in terms of entities and

relationships leads to expectations about source code components containing basic data

structure operations: create, read, update, and delete.

In the function recovery phase, programs are separated into distinct components

performing a single function (see Figure 19).

Source

External
Input

,...-_--:11--_--,

Sink

External
Output

External. !External
Input Output ,r

Transform

Figure 19. Three kinds of recovered components.

Note. Adapted from "Function Recovery Based on Program Slicing," by F. Lanubile and
G. Visaggio, 1993, Proceedings of the IEEE Conference on Software Maintenance, p.
397.

The components and their functions are:

1. Source Module - Obtains information from external sources (i.e., READ-NEXT-

RECORD, OBTAIN-TRANSACTION).

2. Sink Module - Sends data to external device (i.e., ADD-RECORD, PRINT

REPORT).

3. Transform Module - Transforms input data into some other form (i.e., COMPUTE

INSTALLMENT-AMOUNT, VERIFY-LOAN-REQUEST).

158

Source and sink modules are environment-dependent components; transform modules are

domain-dependent components. Transform modules also correspond to processes in a

data flow diagram.

Extraction is the process of capturing all statements that directly prepare data and execute

the input or output source.

Lanubile and Visaggio (1993) implemented their component extraction approach by

program slicing. Program slicing finds portions of source code that directly or indirectly

affect the values of variables at a given instruction. The slicing methodology was modified

to include only statements that characterize source, sink, and transform modules. A

commercial tool, VINRenaissance, was used to perform the slicing.

Lanubile and Visaggio (1993) reported the recovered slices from large programs can be

unmanageable. Their function recovery process was not completely automated because

the slicing algorithm was not fully supported. The tool had drawbacks when program

159

slicing was applied to files with multiple record types or when the slicing criterion did not

contain the variable of the slicing criterion itself

Positive aspects of the technique are:

1. Based on the fundamental data processing model--input is processed and converted to

output.

2. Stresses the importance of understanding external input and output as a way of

understanding internal processes.

3. Can be manually implemented.

4. Theoretically separates input and output slices related to the environment from

transform slices related to the application domain.

5. The number of slices to be analyzed for reverse engineering is reduced by the number

of input and output slices.

Negative aspects of the technique are:

1. Centers on recovering executable code components suitable for reuse in another

application in the same domain.

2. The recovered code slices are at the program level; there is no abstraction to a higher

level.

3. The number of slices recovered from a large program can be difficult to manage.

4. Slices may be too complex to easily understand.

160

A Data Repository Approach to Reverse Engineering - System Description Database

Ostrolenk, Tobin, Altes, and Younger (1993) described a reverse engineering repository

called the System Description Database (SDDB). The SDDB was developed as a part of

the European REDO project (van Zuylen, 1993).

SDDB was required to store and interrelate information about an application, including

program source code, life cycle documents, diagrams, notes, and links created by a reverse

engineer, application data models, and formal specifications. Source code included

compilable program modules, job control language (JCL) scripts, database management

system schema, and transaction specifications (i.e., IBM Customer Information Control

System (CICS) tables).

Six categories of source code information were identified for SDDB:

'1. Original Source Text - The layout and appearance of source code.

2. Abstract Syntax - Source language constructs used to express program functionality.

3. Statement Semantics - Defined in terms of requirements for a compiler in a particular

language and modeled as an abstraction from textual and syntactic constructs available

in a particular language.

4. Data Usage - Includes the type and location of explicit references to variables,

constants, and files.

5. Control Flow - Information affecting the sequence of statements, procedures, and

program and job execution.

6. Data Definitions - Types of all variables, constants, and files.

161

The SDDB subset for COBOL representation defined approximately 120 entities and 160

relationships. An additional 50 relationships were added to represent calls to the database

management system. A significant amount of database complexity results from the need

to store syntactic representation of the source code.

A data dictionary stores information about records, arrays, COBOL level-88 entries, file

devices, paragraphs, sections, alphabets, and operating system constants and switches.

These components are stored as subtypes of the entity SYMBOL. Each SYMBOL is

associated with a type definition and is related directly to the program in which it is

described.

COBOL paragraphs are modeled as entities composed of statement sequences. Other

statement sequences are stored in the same manner (e.g., THEN and ELSE clauses of IF

statements, ON SIZE ERROR exception clauses).

Operating system environment software (e.g., JCL, file handlers, and transaction

processing monitors) is modeled in the conceptual schema. Information is stored in the

form of explanations of what the software does when a request is issued by an application.

System software service calls are usually formatted by CALL statements to a specific

module with a parameter list. Database interactions are modeled in a similar fashion.

Documentation such as specifications, design documents, and user documentation are

stored in hierarchical structures as sections, subsections and paragraphs. Document

version control is also provided.

162

Notes and links provide powerful mechanisms to support documentation. Links are a

means of connecting two entities stored in the database; notes provide a means to annotate

these entities.

Notes provide a means to incrementally add information to the database. Notes consist of

unstructured text linked to entities in the database and are used to record information

about the entity to which they are linked. When they are created, notes and links are

"stamped" with the author's identity and creation date.

Other components of the SDDB are: database editor, query tool, source code browser,

documentation browser, note tool, and link tool.

The note tool is considered a particularly significant piece of the SDDB. The process of

reverse engineering is seen by Ostrolenk, et al. (1993) as one of incremental acquisition of

knowledge in an iterative, rather than a linear, fashion. There is a need for a tool to be

used to record knowledge acquired during this process. Notes can be used by individual

maintainers as an aid to help them in their study of an application, and to record the

understanding gained.

163

aspects of the technique are:

concept of a centralized repository for collecting information about an application.

ability to collect information about various aspects of an application, including

files, database management systems, and operating system calls.

ability to store documentation related to an application on-line and to access it

ability to store information about the types and locations of explicit references to

r~,Q.u'""", constants, and files.

data dictionary capability for records and files (i.e., structures above the attribute

feature allows relationships to be established between any two objects stored

notes feature allows unstructured textual knowledge to be immediately stored in

aspects of the technique are:

towards source code; the original layout and format of source code is

details of program structure (e.g., the sequence of statements and procedures).

structure supporting the tool is large (120 entities, 210 relationships).

164

4. The tool has more reengineering features than reverse engineering procedures.

5. There is insufficient emphasis on abstraction to a level higher than source code.

Reverse Engineering Approach/or Air Force LOgistics Systems

Of the eight general types of reverse engineering techniques and methodologies previously

discussed in Chapter II, none were considered to be ideally suited to the domain of Air

Force logistics systems.

Software Physical Structure - This group of techniques focuses on code-level information;

they do not provide an approach to recovering high-level functional information.

Knowledge-based Program Understanding - Without exception, these tools are still in the

research stage. None has been successfully applied to a complex system.

Transformation - This group of techniques focuses on converting one form of language to

another form with little or no human intervention. There is no change in the abstraction

level of the source code.

Program Plans - These techniques are still in the experimental stage and operate only on

simple programs.

165

Data Flow Diagrams - When recovered from program source code, these techniques stress

physical program structure rather than functional data flows.

Functional Abstraction - These techniques are still in the research phase; none have been

applied to complex systems.

Commercial Products - With the exception of data reverse engineering tools, tools on the

market today are not true reverse engineering products. They are more properly identified

as reengineering and maintenance tools.

Other Techniques - Two techniques are of interest from this category: manual code

examination and the program information database. Other techniques in this group are

either too complex to be applied to real world problems or are more appropriate for

maintenance and reuse purposes.

Based on the literature review, evaluation of current research relative to reverse

engineering, and detailed evaluation of five promising techniques, it was concluded that

the most effective approach to reverse engineering for the Air Force logistics system

applications is a form of manual code examination supported by a reverse engineering data

repository .

166

The manual code review approach reflects the inherent ability of a human to abstract

complex software directly into higher-level abstractions without encountering the

limitations and data losses associated with representations manipulated by and stored in

computer systems. The data repository approach recognizes human difficulties in dealing

with the complexities of large systems. A data repository provides data storage and

retrieval capabilities to assist a reverse engineer in collecting, recording, ordering, relating,

interpreting, and recovering design information from a legacy system.

A Model On-Line Program

A randomly selected program from the Stock Control and Distribution (SC&D) system

source code was used to develop a model ofan on-line, CICS COBOL program (see

Figure 20). The source code was reviewed to determine the size of each division and to

isolate non-COBOL statements (i.e., CICS commands and database management system

commands).

Program ZZLAI543, Program Stock List Changes Related Items, was originally written in

1989. There have been 66 subsequent versions of the program authored by 11

maintenance programmers. The program consists of 7,699 lines of source code,

significantly larger than the average of2,255 lines reported by Sneed and Jandrasics

(1987). The Identification Division contains 878 lines; of these, 871 lines were notes

related to program maintenance changes. Maintenance notes are relatively cryptic and

provide limited information relative to program changes.

IDENTIFICATION DIVISION.
PROGRAM-ID. ZZXXXXNNN.

ENVIRONMENT DIVISION.
DATACOM SECTION.

MONITOR IS CICS
ID-AREA IS I D-AREA-IDEA TE
PRINT GEN.

DATA DIVISION.
WORKING STORAGE SECTION.

Flags, control records, transactions, input records
DATA-VIEW DVDF203U

PREFIX IS DIFU-
ACCESS KEY IS NUN-KEY.

LINKAGE SECTION.
Transaction Work Area (TWA), parameters.

PROCEDURE DIVISION.
EXEC CICS HANDLE

ABEND
LABEL (9999-CICS-ABEND)

END-EXEC.

EXEC CICS ADDRESS TWA (BLL-TWA)
PERFORM IN ITIALIZE-SEC THRU EXIT
PERFORM PROCESS-TRANS THRU EXIT

END-EXEC.

EXEC CICS RETURN
END-EXEC.
GOBACK.

PERFORMED PARAGRAPHS.
READ AND HOLD XYZ WHERE KEY EQUAL value.
FREE LAST XYZ.
READ AND HOLD NEXT XYZ.
UPDATEXYZ.
DELETEXYZ.
WRITEXYZ.

EXEC CICS LINK PROGRAM ('ZZXXXNNN')
COMMAREA (parms)
LENGTH (nnn)

END-EXEC.

Figure 20. Model CICS on-line program.

167

168

The Environment Division consists of 11 lines and contains a Datacom Section identifying

CICS as the monitor. As expected for an on-line program, no files are used by the

program.

The Data Division consists of 1,445 lines, slightly more than the average 1,100 lines

reported by Sneed and Jandrasics (1987). Much of the working storage space is set up for

various transactions and records generated during program processing. Database tables

accessed by the program were described in the working storage section as Dataview

statements (DVxxxnnx); 31 tables are identified for program access. Also included in the

Data Division is a short Linkage Section used to define a Transaction Work Area (TWA)

and three parameter fields for use by calling and called programs.

The Procedure Division consists of 5,336 lines of code, substantially larger than the

average of2,250 lines. COBOL input/output verbs do not work under CICS; therefore,

CICS commands are used (Lim, 1986). Several CICS execute commands are included in

the Procedure Division; one of these is the LINK PROGRAM ('xxxxxnnn') command

used to pass control to another program. Database access commands (e.g., Read and

Hold, Update, Write, Delete, and Free) are numerous. There are few comments or

notations in the Procedure Division.

The large size of the Data and the Procedure Divisions and the number of database tables

accessed suggests complicated program logic and multiple transaction types.

169

A Model Batch Program

A COBOL program using multiple files was selected to develop a model of a batch

program (see Figure 21). The source code was reviewed to identify division sizes and to

identify unique DatacomlDB database commands and accessed tables.

Program ZZLAD058, Extract Transaction Data for Interface Systems, was written in

1986. There have been 55 subsequent versions of the program authored by 16

maintenance programmers. The program consists of 3 ,23 9 lines of source code, much

larger than the average of2,255 lines reported by Sneed and Jandrasics (1987).

The Identification Division consists of 204 lines; 195 lines are notes related to program

maintenance changes. Maintenance notes are relatively detailed and indicate how

particular parts of the program have been changed.

The Environment Division consists of36 lines and includes 27 file select statements.

The Data Division consists of 778 lines, about 300 lines less than the average reported by

Sneed and Jandrasics (1987). Only four database tables are identified in Dataview

statements.

The Procedure Division consists of 2,219 lines, close to the average size of 2,250 lines

reported by Sneed and Jandrasics (1987). The Procedure Division has several major

IDENTIFICATION DIVISION.
PROGRAM-ID. ZZXXXXNNN.

ENVIRONMENT DIVISION.
DATACOM SECTION.

ID-AREA IS ID-AREA-IDENT.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM370.
OBJECT-COMPUTER. IBM370.
INPUT-OUTPUT SECTION.
FILE-CONTROL

SELECT A3543BO ASSIGN TO UT-S-A353BOU.

DATA DIVISION.
FILE SECTION.
FDA353BO

LABEL RECORDS ARE STANDARD
RECORDING MODE IS F
RECORD CONTAINS 90 CHARACTERS
BLOCK CONTAINS 0 RECORDS
DATA RECORD IS 53BO-D009A-D1.

01 53BO-D009A-DI PIC X(90).

WORKING STORAGE SECTION.
Flags, control records, transactions, input records

DATA-VIEW DVINF01 U
DATADICTIONARY NAME IS DVINF01U
PREFIX IX INF-.

DATA-VIEW DVCTF02R
ACCESS KEY IS ·value'.

PROCEDURE DIVISION.
ENTER-DA TACOM-DB.

OOOO-MAINLINE.
PERFORM 1000-ACCEPT-CNTRL-REC THRU 1000-EXIT.
PERFORM 11 OO-PROCESS-CNTRL THRU 11 OO-EXIT.
PERFORM 8500-DISP-TOTALS THRU 8500 EXIT.
CALL 'SUBPROG' USING X, Y, Z.

PERFORMED PARAGRAPHS.
READ DVCTF02R WHERE value = value.
FOR EACH DVINF01 U

WHERE (value = value)
HOLD RECORD.

WHEN END.
WHEN ERROR.

Figure 21. Model COBOL batch program.

170

171

components and primary processing is based on daily, weekly, biweekly, monthly, and as

required processing as determined by a control record input. There are a total of 51 open

for-output statements for 27 files.

A Model Fourth-Generation Language (4GL) Program

A randomly selected IDEAL application was used to develop a model of a fourth

generation language (4GL) program (see Figure 22). IDEAL, a component of the

DatacornJDB database management system, is an easy-to-use application program

generator designed to facilitate access to database tables. IDEAL program structure

resembles COBOL, but is less wordy. IDEAL is most often used for on-line programs.

The various parts of an IDEAL program are similar to the four main divisions of a

COBOL program. Line numbers are not used; source code lines are estimated.

Program ZZLAI304, Route D035A On-line Transactions, was originally written in 1988.

There have been 39 versions prepared by 14 authors. The program consists of 1,340 lines

of source code. A direct comparison with average COBOL program size is not possible

because of language differences. A remarks section contains 300 lines explaining the

maintenance changes.

The Program Section contains about 80 lines of source code and a short description of the

program function. The program was created to route on-line transactions received by a

172

->PROGRAM ZZXXXXNNN
STATUS PROD IDEAL
DATE CREATED
DATE MODIFIED
DATA COMPILED
RUN STATUS PRIVATE
LANGUAGE IDEAL
SHORT-DESC'text'
TEXT1 'text'
USES-DATAVIEW DVITF12R
USES-PROGRAM ZZXXXNNN

->WORKING DATA
1 WS-PARM-3

2WS-MSG-ID X4
2 W-MSG-DESC X72

->PARAMETER DATA
1 PARM-1 UI

2 PARM-DATE X8
2 JULJ-DATE X5

1 PARM-2 X 200 UI

->PROCEDURE DATA
«MAIN» PROCEDURE

SELECT
WHEN WS-FIL-ID = 'value'

DO P804-ZZXXXNNN
WHEN NONE

processing
END SELECT

SET parameters
ENDPROC

- -------------- ------- - - - - - - - - - - -

«P804-ZZXXXNNN» PROCEDURE

SET BEFORE-AFTER = 'BEFORE'
SET CALL-PROGRAM = 'ZZXXXNNN'
CALL ZZXXXNNN USING parameters
RELEASE PROGRAM ZZXXXNNN
SET BEFORE-AFTER = 'AFTER'

ENDPROC
END-PROGRAM

Figure 22. Model 4GL program.

173

communications application to the proper processing program based on file identification

and transaction type. This section identified one database table and 44 called programs.

The Working Data Section contains 60 lines of source code and establishes temporary

working storage locations.

The Parameter Data Section contains 11 lines of source code. This section is equivalent

to the Linkage Section in a COBOL program and is used to communicate between calling

and called programs.

The Procedure Section contains 1,000 lines of source code. This section consists of a

Main Procedure and a series of subroutines or called procedures.

Reverse Engineering Process Output Products

The reverse engineering methodology was developed to recover functional design

information from legacy system source code to support the preparation of a replacement

system functional description. General requirements for the information in the

methodology output products were:

1. The functions implemented in the legacy system should be described in technology

independent form. These descriptions should be neutral with respect to who performs

a function and how the function is performed.

2. The functional description should be in narrative form in non-technical terms to

facilitate review and validation by domain area specialists.

3. The functions should be presented in a hierarchical structure to facilitate activity

grouping and to allow the structure to be reviewed from several levels.

4. A conceptual data structure in the form of an entity-relationship diagram should be

included.

174

5. A data dictionary defining domain objects, terms, and attributes used in the functional

process and the conceptual data models should be included.

6. A graphic model of the functional processes capable of displaying data sources, data

destinations, internal data flows, external data flows, process relationships, and major

data stores.

7. A description of each input interface from an external system. The narrative should be

detailed enough to capture the functional requirements of the interface.

8. A description of each output interface to an external system. The narrative should be

detailed enough to capture the functional requirements of the interface.

9. An electronic repository to capture primitive, intermediate and high level results of the

reverse engineering effort to support verification and additional analysis should be

constructed to support manual efforts.

Within the Department of Defense, Military Standard 498 (MIL-STD-498, 1994)

establishes requirements for documentation of military software systems. The format and

175

content requirements for documents are contained in data item description (DID)

attachments.

Two document types are appropriate for describing data recovered by reverse engineering:

an Operational Concept Document (OCD) and a Database Design Description (DBDD).

The OCD requirements are described in the DID DI-IPSC-S1430 attachment. Specific

content requirements for the OCD are delineated in paragraph 10.2, Content

Requirements. The portion of the contents pertinent to reverse engineering design

information recovery is (OCD) paragraph 5.3, Description of the New or Modified

System, specifically subparagraphs b through e:

b. Major system components and the interconnections among these components.

c. Interfaces to external systems or procedures.

d. Capabilities/functions of the new or modified system.

e. Charts and accompanying descriptions depicting inputs, outputs, data flow, and
manual and automated processes sufficient to understand the new or modified
system or situation from the user's point of view. (p. 5)

The DBDD requirements are specified in the DID DI-IPSC-S1437 attachment. Specific

content requirements for the DBDD are delineated in paragraph 10.2, Content

Requirements. The portion of the contents pertinent to reverse engineering design

information recovery is (DBDD) paragraph 4, Detailed Design of the Database:

This section shall be divided into paragraphs as needed to describe the detailed
design of the database. The number of levels of design and the names of those

176

levels shall be based on the design methodology used. Examples of database design
levels include conceptual, internal, logical, and physical. (p.4)

Subparagraphs of paragraph 4, Name of Database Design Level, delineate the following

content:

This paragraph shall identify a database design level and shall describe the data
elements and data element assemblies of the database in the terminology of the
selected design method. The information shall include the following, as applicable,
presented in any order suited to the information to be provided:

a. Characteristics of individual data elements in the database design.

b. Characteristics of data element assemblies (records, messages, files, arrays,
displays, reports, etc. in the database design. (p. 5)

Although this research concentrated on process reverse engineering as opposed to data

reverse engineering, both documentation requirements were identified to clearly reflect the

additional work required to develop a comprehensive reverse engineering methodology.

Two products were proposed to meet the requirements for the OCD: a conceptual

process model and a visual process model (Miller, 1995a). The conceptual process model

is presented in a hierarchy of key areas, tasks, subtasks, and activities representing the

functional processes implemented in a legacy system. Each primitive (bottom-level)

activity is described in narrative format in application domain terminology. Descriptions

are abstracted to ensure no implementation-specific details are retained in the narrative

and are neutral with respect to who performs the activities. The narrative descriptions are

supported and clarified by the visual process model.

177

The visual process model is based on traditional data flow diagrams (DFD). DFD

complement the narrative description by displaying information (e.g., sources and

destinations of data flows) that is not easily represented in narrative format. The DFD

approach can also be used as a diagramming tool to capture low-level program

information. Programming information can then be abstracted into higher-level conceptual

process models.

The entity-relationship diagram (ERD) approach is the recommended modeling tool for

data reverse engineering. Available methodologies and tools for data reverse engineering

are described by Aiken (1996).

Interfaces with external systems (both input and output) were modeled as functions in the

conceptual process model. Each input or output file is associated with a separate activity

(i. e., separate activities for daily and monthly versions of an input or output interface file)

in the narrative and visual versions of the process model.

An electronic repository to store reverse engineering information was proposed as a tool

in managing the large volume of information in the application of the methodology.

Although.not a product of the methodology, such a repository aids in the production of

required output products. The requirements for the repository were defined during

methodology development in the next section.

Developing the Reverse Engineering Methodology

Purpose

178

The purpose of the reverse engineering methodology is to define and describe techniques,

processes, and procedures to aid in the recovery of design information from a legacy

system. Recovered design information is used to support the creation of a replacement

system functional description.

Scope

The methodology focused on the military logistics system domain, specifically legacy

systems written in COBOL and operating on ffiM mainframe computers with an

MVSIESA operating system. The database management system used in the target

environment is CA-DatacomlDB.

At the high level, a complete methodology, including data structure recovery,was

described. The emphasis at the low level was on the recovery of design information from

processes embedded in source code.

A major premise was that reverse engineering is a component of software engineering and

subject to the same rigor and discipline as any other software engineering component.

The information system (reverse engineering methodology) to be designed was envisioned

as a manual system; good development practice demands that requirements and

preliminary system design be implementation independent. Thus, the ultimate

179

implementation of the system was not a consideration during requirements analysis and

specification. The physical implementation phase normally associated with instituting a

system on a computer was omitted. The conceptual, definition, and logical phases provide

sufficient information to manually apply the methodology.

Strategy

Several important points relative to reverse engineering were clear from the literature

review and drove the strategy behind the reverse engineering methodology. Process

reverse engineering is a human activity. Efforts to develop computer-based tools to

recover design information from source code have been successful only with small

programs in a research environment. The intelligence required for reverse engineering

must be provided by specialists.

Source code alone is insufficient to recover design information. In the forward

engineering process, there is a considerable loss of domain knowledge when requirements

are mapped to physical system implementation. Lost domain knowledge must be provided

from external sources. Documentation does not contain sufficient domain knowledge to

support reverse engineering. Domain specialists must support any reverse engineering

project. Aiken (1996) estimated participation by functional and technical personnel in data

reverse engineering projects can greatly reduce the amount of time and resources required.

180

The number of legacy systems in need of reverse engineering is staggering and continues

to grow. A reverse engineering methodology must support rapid abstraction to a level

higher than source code.

Computer-based tools are needed to support the collection and management of recovered

design information. The volume of data to be manipulated during reverse engineering is

too massive to be manually accomplished.

Both data and process reverse engineering are necessary. There is an inseparable link

between data and processes. A complete reverse engineering methodology must address

both areas. Data reverse engineering is less complicated than process reverse engineering.

There are a number of available data reverse engineering tools capable of creating

database schema from existing COBOL files and data division structures. However,

automated tools do not recover knowledge of the data structures. Reverse engineers must

study and understand the recovered structure before true reverse engineering takes place.

Anything less is transformation rather than reverse engineering.

A major hypothesis in this investigation was that it is possible to reverse engineer an

unstructured system into a hierarchical structure. This hypothesis is based on the

observation that the lack of structure in a system is found in program code, i.e., the system

is made up of a group of programs that bear little direct correlation to the structure of the

problem. Maintenance difficulties associated with legacy systems are caused, at least in

part, because the correspondence between problem structure and program structure is

difficult to identifY.

181

By identifYing functions implemented in code and separating the functions from the

implementation environment, a reverse engineer can create a hierarchical structure suitable

for forward engineering a replacement system. A forward engineering model based on

. hierarchical abstraction is therefore considered appropriate for the purpose of supporting

understanding of a reverse engineering model.

In reverse engineering, there are two areas of concern with respect to software: (a) the

internal syntax and semantics of a program, and (b) the external interfaces with the

program environment. The internal program area is the most complicated of the two areas

and is the heart of the reverse engineering problem.

External interfaces are relatively simple to identifY as only a limited number of forms are

possible. As shown in Figure 23, there is one input-only possibility (conceptually a

terminal, but actually a keyboard), one output-only possibility (screen display), and two

create-read-update-delete possibilities (files and database tables). The remaining

consideration is how system components (programs or modules) interact with each other.

System component links (caller/called relationships) exist in two forms and two degrees.

Keyboard

File

Create

Read

pdatelDel ete

Create

Parameter
Call - With
Return

Database
Table

System
Component

Call- NOI

Return

I Can With
Return

System
Component

I

Read

Display

Parameter
Call- No
Return

Figu.re 23. External interfaces of a system component.

The two forms are a call to a sub-component and a return to caller (represented as a

182

double-headed arrow), and a call to a sub-component with no return to caller (represented

as a single headed arrow). The two degrees are a weak call (no data is passed)

represented by a dashed line, and a strong call (data is passed) represented by a solid line.

A reverse engineering methodology must be capable of capturing these interactions from

source code and storing them in a format that supports the interpretation and abstraction

of the internal program syntax and semantics.

Goals

Specific goals of the reverse engineering methodology were:

1. Easy to use, meaningful, and complete (Kaposi & Pyle, 1993).

2. Teachable and repeatable.

3. Practical and usable rather than theoretical.

4. Based on detailed knowledge and understanding of the nature of software and its

forward engineering development.

S. Create a flexible framework to accommodate software systems of varying size, age,

complexity, and criticality.

183

6. Clearly specify the tools and techniques to be used and the problems they are designed

to work on (Canfora, et al., 1994).

7. Develop a representation with minimal restriction on the possible abstractions of

information recovered, and not restrictive to a particular form of technical

documentation (Grumman & Welch, 1992).

8. IdentifY operations to be carried out, inputs to be used, and outputs to be produced

(Benedusi, Cimitile, & de Carlini, 1989).

9. Provide a data store to accommodate the quantity and complexity of data involved

(Ostrolenk, et aI, 1993).

10. Support complex problems by making multiple passes over the data, doing something

simple in each pass (Orr, 1981).

11. Allow incremental reverse engineering by processing different system components at

different times.

184

12. Apply abstraction to reduce the volume of data to be manipulated.

13. Allow a reverse engineer to identifY important abstractions using insight, knowledge of

the application domain, and knowledge of systems design (Bennett, 1993).

14. Allow for information solicitation from system functional users.

15. Allow domain specialists to provide missing domain knowledge to augment recovered

design information.

16. Allow for verification of recovered information by domain specialists.

17. Describe recovered functions in non-technical narratives easily understood by

functional users.

18. Augment the functional narrative descriptions with a visual model showing

components, their dependencies and interactions, major sources and destinations of

inputs and outputs, and conceptual data stores.

19. Recover conceptual constructs rather than mathematical representations (Mays, 1994).

20. Identify the purpose (telos) of software constructs in terms of application domain

concepts (Karakostas, 1990).

21. Produce readable and understandable system models (McLaughlin, Estdale, & Tobin,

1993).

The Conceptual Process Model

The reverse engineering conceptual process model was presented as a hierarchical

decomposition of key areas (single-digit numbers), tasks (two-digit numbers), and

activities (three-digit numbers). The key areas, tasks, and activities represent a leveled

185

modeling approach to control the decomposition complexity. At each level in the model

there are seven components (plus or minus two). Primitive elements, normally activities,

are described in narrative form. Only the key areas are presented here; the complete

decomposition hierarchy is presented in Appendix B. The narrative conceptual model was

augmented by a visual process model. The visual process model uses traditional data flow

diagrams to graphically represent the key areas, tasks, and activities described in the

conceptual process model and to identify conceptual data stores. Each numbered element

in the narrative process model is represented in a data flow diagram process. The

complete visual process model is also located in Appendix B.

The context diagram establishes boundaries around the reverse engineering methodology

(see Figure 24). The methodology is represented by a single process (a circle at the center

of the diagram); major external entities (squares on the left and right of the diagram)

provide data to the process or receive data from the process; data flows (directed, named

arrows) represent the high-level flow of information into and out of the model. A data

store (rectangle) indicates the necessity to temporarily hold some data while it is not

flowing through the model. The symbols used in the context diagram are used in all lower

level decomposition diagrams.

The level 0 diagram shows how the key areas interrelate in the first level below the

context diagram (see Figure 25). The seven key areas of the reverse engineering

methodology are briefly described here.

I Functional
Organization Knowledge

I Personnel

Legacy
System

Managers

System
Infonnation

Project
Requirements

Reverse
Engineer

system
o

Figure 24. Context diagram.

Project
Plan

Reverse
Engineered

Model

Managers

:MIL-SID
Document

-00
0'1

Legacy
System

Component
Info

Project

Managers I Requirements

Organ
Personnel

Legacy
System

Documentation
Knowledge

Documentation

Project
Plan

Component
Info

Document
Info

Managers

Domain
Model

Domain
Knowledge Organ

Personnel
Legacy
System

System
Info

Functional
User

Design Info

Analysis Results

Extracted
Design

Component
Info

Component Info

Organ
Personnel

Domain Model

1...-___ Functional
Knowledge

Figure 25. Level 0 diagram.

Extracted
Design Info

MIL-STD-
498

Document

Project
Team

-00
-...l

Key Area 1. Plan Reverse Engineering Project - This functional area results in the

creation of a project plan specifying the scope, objectives, resource estimates, and

schedule for completing a specific reverse engineering project.

188

Key Area 2. Locate Project Documentation - Legacy system documentation, even if it is

outdated, incomplete, or incorrect, is useful as a source of domain information and for

understanding original intent. This functional area results in the location of available

external documentation.

Key Area 3. Review External Documentation - This functional area results in the

preliminary assessment of documentation usefulness. Available external documentation is

collected and cataloged to support the reverse engineering effort. Useful documentation is

extracted and provided to the reverse engineering team.

Key Area 4. Prepare Domain Model- Domain knowledge represents the majority of

missing source code information. This functional area results in the creation of a narrative

description of the functional hierarchy perceived by domain specialists and functional users

as being implemented in the legacy system. The resultant model serves as a target

structure where recovered design information is placed.

Key Area 5. Analyze Source Code - The main focus of the reverse engineering

methodology is to analyze legacy system source code to extract design information. This

functional area stresses the methodical review and collection of information about

programs to permit modeling without further reference to source code.

189

Key Area 6. Extract Design Information - This functional area represents the

interpretation of available program information to form the preliminary extracted design

information model. Intuition, previous software engineering experience, deductive

reasoning, causal connectivity, semantic concept formation, and fuzzy logic techniques

may be applied to complete the key area. Domain specialists and functional users are

consulted to aid in model development.

Key Area 7. Document Design Information - This functional area results in the delivery of

the reverse engineering product. The recovered design information is consolidated into a

preliminary model using the domain model as a framework. The preliminary model is

verified by domain specialists and functional users, refined as necessary, and produced as a

final model according to the deliverable format specified in the project plan.

The Conceptual Data Model

The conceptual data model, represented as an entity-relationship diagram (ERD) in Figure

26, shows the high-level data structure required to support the reverse engineering

processes described in the conceptual process model. Entities were identified from

narrative process descriptions and visual process model data stores. Relationships were

identified by determining associations between entities.

Object I
17

1

Attribute

1
Process

16

M

13

uu,;uonary
18

Table

Narrative
15

MI 1M
File

11

~,~ Comment
61

MI
Transaction

I
7

Document
2

M
.>---*f Paragraph

4

r-__________________ ~I M

Metric
3 M

Note
5

Figure 26. Conceptual data model.

.&.'L-__ ,.."

121M - -I-

1

......
\0 o

191

The ERD consists of entities (rectangles) describing objects from the legacy system about

which data is to be stored, and relationships (diamonds) showing associations between the

entities. Entities are identified with singular nouns; relationships are identified with verbs.

Each relationship is annotated as to its membership class (obligatory or non-obligatory)

and membership degree (one to one, one to many, or many to many).

Obligatory membership is shown with a black dot on the intersection of the entity box and

relationship line. Non-obligatory membership is shown with a dot on the relationship line

outside the entity. A one-to-one relationship is shown with a 1 next to both entities

connected by a relationship. A one-to-many relationship is shown with a 1 next to one

entity and an M next to the other entity in a related pair. A many-to-many relationship is

indicated by an M next to each of the related entities.

A separate numbering scheme is used to identify each entity and relationship. Entities are

defined in Table 10, and relationships are defined in Table 11.

192

Table 10
Conceptual Data Model Entity List

Entity Entity Entity Description(s)
number name identifier

1 Component ID-Component A COBOL program, subroutine, or
4GL routine making up a system.

2 Document No-Seq-Doc A formal or informal publication
describing a system component.

3 Metric No-Seq-Metric Estimated and actual time required
to reverse engineer a system
component.

4 Paragraph No-Seq-Para A subdivision of a system
component consisting of a name
and a series of statements identified
by a (starting) line number.

5 Note No-Seq-Note In-line text describing the purpose
or function performed by a
paragraph (type I).

Text written by a reverse engineer
to describe a component paragraph
(type A).

6 Comment No-Seq-Comment Component text describing a
program's purpose or general
processing; usually found in
COBOL Remarks section or
IDEAL program headers (type I).

Text written by a reverse engineer
to explain a system component
(type A).

7 Transaction Doc-ID-Code A transaction identified by a
common document identifier code
(DIC).

8 Table No-Seq-Table A data structure associated with a
database management system.

9 Attribute No-Seq-Attribute A column in a database table or a
characteristic of an object
represented by a table. Roughly
equivalent to a data element.

193

Table 10. (continued)

Entity Entity Entity Description(s)s
number name identifier

10 Screen ill-Screen A terminal display generated by a
component for data input and
output.

11 File ill-File A collection of data records not
associated with a database
management system. May be
internal or external to the system.

12 Record No-Seq-Record A data structure associated with a
file and made up of data elements.

13 Element No-Seq-Element A data field associated with a file
record. May be a structure.

14 Function No-Seq-Function The name of a process performed
by a component. Established by a
reverse engineer as a result of
interpreting a component
paragraph.

15 Narrative No-Seq-Narrative The natural language description of
a function performed by a
component paragraph.

16 Process No-Seq-Process A hierarchical component of a
domain model representing the
general functions implemented in a
system. Consists of key areas,
tasks, subtasks, and activities in
descending order. Provides the
framework for organizing functions
into the reverse engineered
function model.

17 Object No-Seq-Object Domain elements acted upon by
the domain model processes. May
become data entities when a
reverse engineered function model
is forward engineered.

18 Dictionary No-Seq-Entry A repository for storing definitions
of acronyms, attributes, and data
elements and descriptions of
domain objects.

194

Table 11
Conceptual Data Model Relationship List

Relationship Relationship Associated Description
number name entities

1 Displays Component Associates a terminal screen with
Screen the component displaying it.

2 Uses Component Identifies the files used by a system
Files component and identifies file

activity (i.e., read, write, update).
3 Explains Component Associates descriptive comments

Comment with a particular component.
4 Contains Component Associates extracted paragraph

Paragraph names with the source component.
5 Collects File Associates record formats with the

Record files they are used in.
6 Describes Paragraph Relates descriptive notes with a

Note particular component paragraph.
7 Supports Component Associates specific life-cycle

Document documents with a component.
8 Processes Component Associates transactions with a

Transaction particular component.
9 Identifies Transaction Associates a transaction with a

Record specific record format.
10 Measures Component Associates a component with the

Metric specific metric values used to
measure the component.

11 Includes Paragraph Identifies one or more functions
Function extracted from a paragraph.

12 Accesses Component Identifies the database tables
Table accessed by a component.

13 Links Component A recursive relationship associating
Component a component with its subordinate

called components.
14 Clarifies Function Links descriptive text with a

Narrative reverse engineered function title.
15 Owns Function Relates a reverse engineered

Process function to a specific parent
activity in the domain model
process.

16 Stores Table Identifies the specific attributes
Attribute contained in a database table.

17 Defines Dictionary Associates an attribute with its
Attribute definition in the dictionary.

195

Table 11. (continued)

Relationship Relationship Associated Description
number name entities

18 Shows Dictionary Associates a data element with its
Element definition in the dictionary.

19 Gathers Record Relates a data element to the
Element record it appears in.

20 Establishes Dictionary Associates a domain object with a
Object dictionary entry that explains it.

21 Contains Process A recursive relationship showing
Process the hierarchical structure of the

domain model.

The Definitional Model

The definitional process model is normally used to add timing, frequency, and location

information to activities. This step was omitted as the objective is to define a manual

methodology.

196

The definitional data model or high-level conceptual data model (the ERD) was expanded

into a detailed definitional model by applying relational table formation rules to the entity

relationships (Howe, 1983). One entity, Dictionary (E-18), and five relationships (R-9, R

IO, R-17, R-18, and R-20) did not result in table formation. The list of skeletal tables

formed is shown in Table 12.

197

Table 12
Skeletal Table List

Entity (E-n)
or Identifier

Table Table Relationship (P = Primary,
number name number (R-n) F = Foreign)

1 Acronym Added No-Seq-Acronym (P)
2 Attribute E-9 No-Seq-Attribute(P)
3 Comment E-6 No-Seq-Comment (P)
4 Component E-1 ID-Component (P)
5 Component-Comment R-3 ID-Component (F)

No-Seq-Comment (F)
6 Component-Component R-13 ID-Component-Calls (F)

ID-Component-Called (F)
7 Component-Document R-7 ID-Component (F)

No-Seq-Doc (F)
8 Component-File R-2 ID-Component (F)

ID-File (F)
9 Component-Paragraph R-4 ID-Component (F)

No-Seq-Para (F)
10 Component-Screen R-l ID-Component (F)

ID-Screen (F)
11 Component-Table R-12 ID-Component (F)

No-Seq-Table (F)
12 Component-Transaction R-8 ID-Component (F)

Doc-ID-Code (F)
13 Document E-2 No-Seq-Doc (P)
14 Element E-13 No-Seq-Element (P)
15 File E-11 ID-File (P)
16 File-Record R-5 ID-File (F)

No-Seq-Record (F)
17 Function E-14 No-Seq-Function (P)

198

Table 12. (continued)

Entity (E-n)
or Identifier

Table Table Relationship (P = Primary,
number name number (R-n) F = Foreign)

18 Metric E-3 No-Seq-Metric (P)
19 Narrative E-15 No-Seq-Narrative (P)
20 Narrative-Function R-14 No-Seq-Narrative (F)

No-Seq Function (F)
21 Note E-5 No-Seq-Note(P)
22 Object E-17 No-Seq-Object (P)
23 Paragraph E-4 No-Seq-Para (P)
24 Paragraph-Function R-ll No-Seq-Para (F)

No-Seq-Function (F)
25 Paragraph-Note R-6 No-Seq-Para (F)

No-Seq-Note(F)
26 Process E-16 No-Seq-Process (P)
27 Process-Function R-15 No-Seq-Process (F)

No-Seq-Function (F)
28 Process-Process R-21 Is-Parent-Of (F)

Is-Child-Of (F)
29 Record E-12 No-Seq-Record (P)
30 Record-Element R-19 No-Seq-Record (F)

No-Seq-Element (F)
31 Screen E-IO ID-Screen iF)
32 Table E-8 No-Seq-Table (P)
33 Table-Attribute R-16 No-Seq-Table (P)
34 Term Added No-Seq-Term (P)
35 Transaction E-7 Doc-ID-Code (P)

199

The Logical Model

In the logical modeling phase, the conceptual process model and the definitional data

model were further refined to produce the preliminary reverse engineering design. Logical

modeling is the intermediate step between the functional concept of what is accomplished

and the initial how it will be accomplished. One of the objectives oflogical modeling is to

identifY the association between process and data. The output of this phase was a reverse

engineering methodology that can be manually applied.

The logical process model validates the logical data model by showing where every table

is created and read (and possibly updated and deleted). At the end of the modeling phase,

unused tables reflect either missing processes or extraneous data. Processes not supported

by a table indicate either missing data or extraneous processes. Tables accessed by a

service are identified along with the key for the table. Table attributes used by a service

are omitted for brevity, but are implied by descriptions of the services.

The Logical Process Model

Logical Modeling Technique

Logical process modeling was accomplished by applying service analysis (Davis & Shah,

1985). Service analysis identifies the input, output, and processing functions required in a

system. Services describe unit tasks performed by individuals. The ultimate goal of

service analysis is to develop a comprehensive requirements statement for use in the

design phase. An abbreviated form of service analysis was used here.

200

Activities from the conceptual process model are analyzed to identifY a series of services

required to perform the activity. A service description or service profile is normally

prepared to describe each service in detail. The degree of detail depends on how physical

design is to be accomplished. For this application, the identification of manual services

and a supporting data structure mark the end of analysis; the amount of detail required in

the services is therefore limited. The services described herein, however, could be

extended into the design phase to produce a computer-based tool to perform many of the

services and to partially automate the remainder.

Services are identified by using the activity number and title from the conceptual data

model (located in Appendix B) and listing a series of lettered services as subparagraphs.

Many of the tasks from key area 7 are skipped because they deal with data reverse

engineering. Activities are combined into a single series of services when they are

associated with the same data.

Tables used in a service are identified by name (underlined) and number. Table identifiers

are indicated by (I); foreign keys in a table are identified by (F). Note that associative

entity tables Goin tables) contain two foreign keys; the foreign keys comprise the

identifier. Complete table descriptions including attributes are contained in Appendix C.

201

Logical Model Services

1.1.1 Identify Target System - 1.1.5 Identify Project Deliverable.

a. Review project requirements directive.

b. Determine identity of the system to be reverse engineered.

c. Determine scope of reverse engineering effort.

d. IdentifY constraints levied against effort (e.g., required completion data, number

of personnel available, budget limitations, and functional users).

e. Determine final documents to be produced.

f ClarifY provisions of tasking directive with the issuing authority.

Tabiesiidentifiers: None.

1.2.1 IdentifY Run Unit.

a. Review batch operations documents.

b. IdentifY program work units.

c. Print work unit job control language (JCL).

Tabiesiidentifiers: None.

1.2.2 IdentifY Component.

a. Extract component (program) names from batch JCL.

b. Review CICS Processing Program Table (PPT).

c. Extract component name from DFHPPT macro statements.

d. Review CICS Program Control Table (PCT).

e. Extract TRANSID from DFHPCT macro statement.

TableslIdentifiers:

Component (4)
ID-Component (I)

1.2.3 ClassifY Component - 1.2.4 Determine Component Type.

202

a. Record component class: PR for program or SR for subroutine. Subroutine

components normally have a PROCEDURE DIVISION USING statement.

b. Record component type: BA for batch or OL for on-line. On-line components

can be identified by the MONITOR IS CICS statement or by the absence of input

and output files.

TableslIdentifiers:

Component (4)
ID-Component (I)

1.2.5 Create Subsystem Structure.

a. Review operational documents.

b. Extract subsystem structure information.

c. Prepare subsystem structure diagram.

d. Store structure diagram in RE library.

TableslIdentifiers: None.

1.3. 1 Copy Source Code - 1.3.5 Print Reference Listing.

a. Copy source text from mainframe system in ASCII text format.

203

b. Establish a directory structure for storing source code on a personal computer.

c. Load source text into individual subdirectories.

d. Print directory contents.

e. Store directory listings in RE library.

TableslIdentifiers: None.

1.4.1 Extract Descriptive Information - 1.4.4 . Extract Linking Information.

a. Review component source listing.

b. Record descriptive information

c. Extract header comments (Type = I).

d. Write descriptive comments (Type = A).

e. Count input files.

f Count output files.

g. Count input-output files.

h. Count display screens.

1. Count output reports.

J. Count number of programs called.

k. Record time required for initial component review.

TableslIdentifiers:

Component (4)
ill-Component (I)

Component-Comment (5)
ill-Component (F)
No-Seq-Comment (F)

Comment (3)
No-Seq-Comment (I)

Metric (18)
No-Seq-Metric (I)
No-Seq-Metric (F)

1.5.1 Assess Component Structure - 1.5.3 Assess Naming Conventions.

a. Review program source listing.

b. Count GO TO statements.

c. Count PERFORM statements.

d. Count REDEFINES statements.

e. Count number of paragraphs.

204

f. Sample paragraph length to calculate average paragraph size in lines of code.

g. Assign program structure rating (1 = good, 10 = poor).

h. Review in-line comments for number and clarity.

1. Assign comment rating (1 = good, 10 = poor).

J. Sample program names to calculate average size in number of characters.

k. Assign name rating (l = good, 10 = poor).

TableslIdentifiers:

Component (4)
ID-Component (I)

1. 5.4 Assign Complexity Index.

a. Retrieve component size values and ratings.

b. Compute complexity index as follows (round all decimal values to the nearest

whole number):

Index-Complexity = ((No-Files-In) -2) x 10 +

(No-Files-Out -1) x 10+

(No-Files-IO -1) x 10 +

(No-Screens -1) x 10 +

(No-Reports - 1) x 10 +

(No-Lines-Source - 2250)/100) +

No-Versions +

No-Authors +

(No-Data-Div-Lines - 1,100)/100) +

(No-Proced-Div-Lines - 1,200/100) +

No-Program-Called +

No-GOTO-Stmnts

(No-Para-Lines-Avg - 50)/10) +

Program-Structure-Rating +

Rating-Comments +

Rating-Names

TableslIdentifiers:

Component (4)
ID-Component (I)

1.6.1 Identify Domain Specialist - 1.6.2 Identify Functional Technician.

a. Interview functional managers, operations personnel, and maintenance

personnel.

b. Identify domain specialist point of contact for each program component.

c. Identify functional technician point of contact for each program component.

TableslIdentifiers:

Component (4)
ID-Component (I)

205

206

1.6.3 Estimate Personnel Required.

a. Review component summary information (number of programs, languages,

sizes).

b. Assess application domain complexity.

c. Estimate time required for organizational personnel to prepare domain model.

d. Estimate time required for organization personnel to assis.t in code review.

e. Provide estimate of personnel required for project plan.

Tabiesiidentifiers:

Component (4)
ID-Component (I)

1.7.1 Review Component.

a. Prepare list of components by size and complexity index.

b. If metrics are available, use past experience to estimate person-hours required

to reverse engineer each component.

c. If metrics are not available, make best estimate of time required to reverse

engineer each component.

Tabiesiidentifiers:

Component (4)
ID-Component (I)
No-Seq-Metric (F)

1. 7.2 Consolidate Resource Projection.

Metric (18)
No-Seq-Metric (I)

a. Summarize initial estimates of reverse engineering analysis time required by

component.

207

b. Divide estimated total time in hours by number of personnel available to

determine calendar time required.

c. Divide estimated total time in hours by number of days (or weeks, months) to

determine number of reverse engineers required.

Tabiesiidentifiers:

Component (4)
ID-Component (1)
No-Seq-Metric (F)

Metric (18)
No-Seq-Metric (1)

1.7.3 Prepare Work Schedule - 1.7.4 Write Project Plan.

a. Using the consolidated projection and available resources, prepare a work

schedule showing the sequence of activities and projected completion dates for

each component.

b. Using the completed work schedule and target system description, objectives,

scope, deliverable format, and constraint information from the tasking directive,

prepare a reverse engineering project plan.

c. Distribute plan to appropriate managers and members of the project team.

Tabiesiidentifiers: None.

2.1 Identify Requirements Documentation - 2.9 Prepare Document List.

a. Interview configuration, operations, technical, and functional personnel to

identify relevant system documentation.

b. Prepare a preliminary list of available documentation and locations.

c. Update document information.

TableslIdentifiers:

Document (13)
No-Seq-Doc (I)

3.1 Collect Document - 3.2 Catalog Document.

a. Locate each document on the list.

b. Copy document if original is not available.

c. Catalog document and file in the RE library.

d. Update the document index.

TableslIdentifiers:

Document (13)
No-Seq-Doc (I)

3.3 Evaluate Document.

208

a. Determine date written, date last changed, requiring directive, and number of

pages.

b. Evaluate document for relative worth in supporting the reverse engineering

effort in regards to number of changes, content, and clarity of writing.

c. Assign a document usefulness rating (1 = poor, 10 = high).

d. Prepare a short document evaluation narrative for the document.

TableslIdentifiers:

Document (13)
No-Seq-Doc (I)

3.4 Identify Missing Document.

a. Prepare a list of documentation not available or not found.

b. Make a "not available" entry for a missing document or for a document not

prepared during system development in the RE library.

c. Notify managers of missing documentation.

d. Request managers provide informal documentation to replace missing

information.

TableslIdentifiers:

Document (13)
No-Seq-Doc (1)

3.5 Locate Traceability Matrix.

Component-Document (7)
ID-Component (F)
No-Seq-Doc (F)

209

a. Review available documentation to locate requirements traceability information

(links requirements elements with preliminary design elements and preliminary

design elements with physical program components).

b. Review operational systems related to the target system (the traceability matrix

may be implemented in an automated system).

c. If found, store the traceability matrix in the RE library.

TableslIdentifiers: None.

3.6.1 Review Functional Description (FD) - 3.6.7 Review Database Specification (DB).
NOTE: Data reverse engineering is not addressed in this investigation.

a. Review FD Sections 2,3, and 4; extract relevant portions.

b. Review SS Sections 2 and 4; extract relevant portions.

c. Review SSS Sections 2 and 4; extract relevant portions.

d. Review US or PS Sections 2 and 3; extract relevant portions by program

identification.

e. Review MM Section 2; extract high-level system structure information.

f Review OM Sections 2 and 3; extract relevant portions.

g. Review UM Section 4 for potentially useful information; extract if found.

h. Place extracted docpmentation in the RE library.

1. Update document index information.

J. Update component-document information for documents that pertain

specifically to a particular component.

TableslIdentifiers:

Document (13)
No-Seq-Doc (I)

Component-Document (7)
ID-Component (F)
No-Seq-Doc (F)

4.1.1 Assign Facilitator - 4.1.2 Assign Modeling Specialist.

a. Review qualifications of available reverse engineers.

b. Assign reverse engineer as facilitator to lead the domain analysis modeling

group.

c. Assign reverse engineer as a data modeling specialist to support the domain

analysis model effort.

TableslIdentifiers: None.

210

211

4.1.3 Select Functional Analyst - 4.1.4 Select Technical Analyst.

a. Determine major domain areas represented in the target system.

b. Poll managers for nominations for functional analysts familiar with the domain

areas.

c. Poll operations managers for nominations for technical analysts familiar with the

target system.

d. Review qualifications of functional and technical analysts.

e. Select functional analyst for each domain area.

f Select technical analysts familiar with major subsystems of the target system.

g. Coordinate selections with appropriate managers.

Tabiesiidentifiers: None.

4.1.5 Prepare Modeling Schedule - 4.2.1.4 Establish Domain Activity.

a. Prepare preliminary domain modeling schedule based on anticipated complexity

of the application domain and four-hour modeling sessions.

b. NotifY participants of modeling session times and locations.

c. Conduct modeling training session to familiarize participants with the concepts

of functional decomposition and the procedures used to develop an outline

function model.

d. IdentifY the major key areas of the application domain. Between seven and nine

key areas are identified and serve as the major subdivisions of the application

domain area. All domain area specialists and functional user analysts selected for

the domain modeling exercise are present during modeling sessions. After the key

212

areas have been established and validated, only those personnel with knowledge in

a particular key area participate in the modeling sessions. Identify key areas with

single digit numbers.

e. Establish tasks within each key area. Tasks are lower-level functions carried

out to complete a key area. Between five and nine tasks are identified for each key

area. Tasks are identified with two-digit numbers.

f Establish subtasks within each task. Subtasks are lower-level functions

performed to complete a task. Subtasks are optional and may appear at multiple

levels depending on the complexity of the upper level function. Between five and

nine subtasks may be established for a task or another subtask. Subtasks have a

minimum three-digit identifying number.

g. Establish activities. Activities are the lowest level functions contained in the

domain model and represent specific tasks executed to satisfY the task or subtask

at the next higher level. Activities normally represent things people do, have

specific start and stop points, have clear inputs, and result in clear outputs.

Activities may be a higher than normal level in an application domain modeL

Activities have a minimum three-digit identifYing number, but may have more if

there are subtasks between tasks and activities.

TableslIdentifiers: None.

4.2.2 Validate Outline Domain Model- 4.2.3 Revise Outline Domain Model.

a. Format draft outline domain model.

213

b. Distribute draft outline domain model to other functional users for review and

comment.

c. Review comments and suggested changes to outline domain model with the

domain modeling group.

d. Revise the outline domain model according to approved changes.

Tabiesiidentifiers: None.

4.2.4 Create Described Domain Model- 4.2.5 Validate Domain Model.

a. Conduct a "how to write functional narrative descriptions" training session for

the domain modeling group.

b. Make writing assignments. Narrative descriptions for the domain model are

written by domain specialists and functional users with the best qualifications in a

particular area. Individuals--not groups--write narrative descriptions.

c. Review narrative descriptions for uniformity and proper level of detail. Return

descriptions to authors, as required, for corrections and updates.

d. Consolidate narrative descriptions and format for distribution.

e. Distribute described domain model to organizational personnel for review and

comments.

Tabiesiidentifiers: None.

4.2.6 Prepare Final Domain Model- 4.2.7 Publish Domain Model.

a. Review comments and suggested changes to the domain model with the domain

modeling group.

b. Revise the outline domain model according to approved changes.

c. Prepare domain model for publishing.

d. Distribute domain model to functional users and reverse engineers.

e. Store the domain model in the RE library.

Tabiesiidentifiers:

Process (26)
No-Seq-Process (I)

Process-Process (28)
Is-Parent-Of (F)
Is-Child-Of (F)

4.3.1 Identify Major Domain Element - 4.3.3 Identify Related Systems.

a. Identify candidate domain element.

b. Consult with functional users and domain specialists.

c. Define domain element.

d. Define relationship with other domain elements using functional user and

domain specialist input.

e. Identify interfacing systems.

f Identify related (but not interfacing) systems as appropriate.

g. Define interfacing and related systems as domain objects.

h. Store object information in the RE library.

TableslIdentifiers:

Object (22)
No-Seq-Object (I)

214

215

4.3.4 Prepare Draft Technical Model- 4.3.7 Publish Technical Model.

a. Interview technical personnel with knowledge of the target system technical

environment.

b. Model the current technical environment of the target system.

c. Prepare draft technical model (graphic and narrative).

d. Distribute the technical model to technical personnel for review and comment.

e. Review the comments and recommended changes to the model.

f Prepare final technical model by incorporating recommended changes.

g. Publish the technical model and provide to members of the reverse engineering

team.

h. Store the technical model in the RE library.

TableslIdentifiers: None.

4.4.1 IdentifY Object - 4.5 Establish Project Dictionary.

a. IdentifY candidate domain object (captures a semantic primitive in the

application domain).

b. Consult with functional users to validate the object.

c. With the assistance of a knowledgeable functional user, define the object.

d. Store the object and definition in the RE library.

TableslIdentifiers:

Object (22)
No-Seq-Object (1)

216

4.5.1 Define Acronym - 4.5.2 Define Term.

a. Record unknown acronym.

b. Record unknown term.

c. Consult with functional personnel to identify and define unknown acronyms and

terms.

d. Store defined acronyms and terms in the RE library.

TableslIdentifiers:

Acronym (1)
No-Seq-Acronym (I)

4.5.3 Prepare Acronym Report.

a. Extract acronyms from RE library.

b. Sort in alphabetical sequence.

c. Format acronym report.

d. Distribute to reverse engineers.

TableslIdentifiers:

Acronym (1)
No-Seq-Acronym (I)

4.5.4 Prepare Term Report.

a. Extract terms from RE library.

b. Sort in alphabetical sequence.

c. Format terms report.

d. Distribute to reverse engineers.

Term (34)
No-Seq-Term (I)

217

Tabiesiidentifiers:

Tenn (34)
No-Seq-Tenn (I)

5.1.1 Group Component - 5.1.2 Assign Reverse Engineer.

a. Using the system technical diagram, assign a group number to each component

in the target system.

b. Assign a reverse engineer by name to each component in the target system

Tabiesiidentifiers:

Component (4)
ill-Component (I)

5.1.3 Print Component Summary Report.

a. Extract component data from the RE library.

b. Fonnat the component summary report for each target system component

c. Distribute printed reports to reverse engineers and the reverse engineering

project manager.

Tabiesiidentifiers:

Component (4)
ill-Component (I)

Comment (3)
No Seq-Comment (I)

5.1.4 Record Component Status.

Component-Comment (5)
ill-Component (F)
No-Seq-Comment (F)

a. Retrieve specific component data from the RE library.

b. Update reverse engineering percent complete.

TableslIdentifiers:

Component (4)
ID-Component (I)

5.2.1 Review Identification Division.

a. Read batch COBOL component identification division.

b. Evaluate introductory comments.

218

c. Record comments if they explain or clarify the component and have not been

previously recorded (type = I).

d. Write explanatory comment if necessary (type = A); multiple comments may be

written during the reverse engineering effort.

e. Record the beginning line number of type I comment.

Tabiesiidentifiers:

Comment (3)
No-Seq-Comment (I)

5.2.2 Review Input-Output Section.

Component-Comment (5)
ID-Component (F)
No-Seq-Comment (F)

a. Read batch COBOL component environment division file section.

b. Search for SELECT statements.

c. Extract internal file name (identifier following SELECT).

d. Make list of internal file names.

219

e. Extract external file name (identifier following ASSIGN TO). May refer to a

device rather than a physical file name (e.g., SYS006-UT-2400-S), in which case

the file name should be retrieved from the JCL.

f Extract file organization; default is sequential.

g. Extract access mode (sequential, random, or dynamic); default is sequential.

h. Determine file type (system internal = I, system external = E).

i. Determine file media.

Tabiesiidentifiers:

File (15)
ID-File (I)

5.2.3 Review File Section.

Component-File (8)
ID-Component (F)
ID-File (F)

a. Read batch COBOL component data division file section.

b. Search for FD statements for each file in file list.

c. Find 01 level record name for an FD statement.

d. Extract record name (identifier following 01 level designator).

e. Extract layout for file records.

f Extract data elements for records.

Tabiesiidentifiers:

File-Record (16)
ID-File (I)

Record-Element (30)
No-Seq-Record (F)
No-Seq-Element (F)

Record (29)
No-Record-Seq (I)
Doc-ID-Code (F)

Element (14)
No-Seq-Element (I)

220

5.2.4 Review Working Storage Section.

a. Read batch COBOL component data division working storage section.

b. Find DATA-VIEW statement.

c. Record name of variable following DATA-VIEW (e.g., DVCTF02F) as a table

used by this component.

d. Find in-line comment.

e. Record in-line comment and its line number (type = I, internal).

f Find data record identified by a comment, if any.

Tabiesiidentifiers:

Table (32)
No-Seq-Table (I)

Comment (3)
No-Seq-Comment (I)

5.2.5.1 Find File OPEN Statement.

Component-Table (11)
ill-Component (F)
Name-Table (F)

Component-Comment (5)
ill-Component F)
No-Seq-Comment (F)

a. Read batch COBOL component procedure division.

b. Find OPEN statement.

c. Identify file activity (e.g., input, output, input-output).

d. Record file activity (II, 00, 10).

e. Repeat until all files found in SELECT statements have been matched with an

OPEN.

f Create a File Open Error note for technical personnel (file not matched with an

OPEN statement).

TableslIdentifiers:

Component-File (8)
ID-Component (F)
ID-File (F)

5.2.5.2 Find File READ Statement.

a. Read batch COBOL component procedure division.

b. Find READ INTO statement.

c. IdentifY record format associated with this input file.

d. Repeat for all input files found in an OPEN INPUT statement.

e. Update transaction (if this is a new DIC) and transaction activity (read).

TableslIdentifiers:

File-Record (16)
ID-File (F)
No-Seq-Record (F)

Component-Transaction (12)
ID-Component (F)
Doc-ID-Code (F)

5.2.5.3 Find File WRITE Statement.

Record (29)
No-Seq-Record (I)
Doc-ID-Code (F)

Transaction (35)
Doc-ID-Code (1)

a. Read batch COBOL component procedure division.

b. Find WRITE FROM statement (this statement may not be used in all

programs).

c. IdentifY record format associated with this output file.

d. Update transaction (if this is a new DIC) and activity (create).

e. Repeat for all files found in an OPEN OUTPUT statement.

221

TableslIdentifiers:

File-Record (16)
ID-File (F)
No-Seq-Record (F)

Component-Transaction (12)
ID-Component (F)
Doc-ID-Code (F)

5.2.5.4 Find Database Table Name.

Record (29)
No-Seq-Record (I)
Doc-ID-Code (F)

Transaction (35)
Doc-ID-Code (I)

a. Read batch COBOL component procedure division.

b. For each table used by the component, find the table name.

c. Determine the use of the table (create, read, update, delete).

d. Record the actual table name and prefix if given in a comment field and not

already identified.

TableslIdentifiers:

Component-Table (11)
Component-ID (F)
No-Seq-Table (F)

Table (32)
No-Seq-Table (I)

5.2.5.5.1 IdentifY Source Paragraph - 5.2.5.5.5 IdentifY Transform Paragraph.

a. Read batch COBOL component procedure division.

b. Find COBOL paragraph name (e.g., 5250-NSN-CHANGE).

c. Read paragraph note, if present, and paragraph content.

d. Determine paragraph type:

(1) Source (input) - skip.

(2) Sink (output) - skip.

222

223

(3) Computation (e.g., COMPUTE PMRU-ACT -QTY = PMRU-CTY *

CONV-FAC).

(4) Business rule (e.g. IF condition THEN action).

(5) Transform and all others (may be a combination of computation,

business rule, and transforms).

e. Record the paragraph name.

f Record the paragraph starting line number.

g. Record the paragraph note and type (I = internal).

h. Record the paragraph note starting line number.

i. Write descriptive note, if necessary (type = A, added).

Tabiesiidentifiers:

Component-Paragraph (9)
ID-Component (F)
No-Seq-Para (F)

Paragraph (3)
No-Seq-Para (I)

5.2.5.6 Find Document Identifier Code (DIC).

Note (21)
No-Seq-Note (I)

Paragraph-Note (25)
No-Seq-Para (F)
No-Seq-Note (F)

a. Read batch COBOL component procedure division.

b. Find three-character document identifier codes (e.g., ZAK, XAA, ZSC) in text

(e.g., IF INPUT-DOC = "XAA") or in comments (e.g., * THIS PARAGRAPH

PROCESSES THE XAA RECORD).

c. Determine activity with respect to the DIC (create, read, update).

d~ Add DIC if it is not already in the list of transactions; if available, also add a

description of the transaction.

Tabiesiidentifiers:

Component-Transaction (12)
ID-Component (F)
Doc-ID-Code (F)

5.2.5.7 Identify Called Component.

Transaction (35)
Doc-ID-Code (I)

a. Read batch COBOL component procedure division.

b. Find CALL statements.

c. Extract component name (in quotes following the CALL statement).

d. Find USING statement, if present.

e. Record the parameters following the USING statement as a character string

with each item separated by a comma and space (e.g., "x, Y, Zit).

f Set data pass to Y if a USING statement was found.

g. Set data pass to N ifa USING statement was not found.

Tabiesiidentifiers:

Component-Component (6)
ID-Component-Calls (F)
ID-Component-Called (F)

5.3.1 Review CICS Identification Division.

a. Read CICS COBOL component identification division.

b. Evaluate introductory comments.

224

225

c. Record comments if they explain or clarify the component and have not been

previously recorded (type = I).

d. Write explanatory comment ifnecessary (type = A).

e. Record the beginning line number of type 1 comments.

Tableslldentifiers:

Comment (3)
No-Seq-Comment (I)

5.3.2 Review CICS Working Storage Section.

Component-Comment (5)
ID-Component (F)
No-Seq-Comment (F)

a. Read CICS COBOL component data division working storage section.

b. Find DATA-VIEW statement.

c. Record name of variable following DATA-VIEW (e.g., DVCTF02F) as a table

used by this component.

d. Find in-line comment.

e. Record in-line comment and its line number (type = I, internal).

f Find data record identified by a comment, if any.

Tableslldentifiers:

Table (32)
No-Seq-Table (I)

Comment (3)
No-Seq-Comment (I)

Component-Table (11)
ID-Component (F)
Name-Table (F)

Component-Comment (5)
ID-Component F)
No-Seq-Comment (F)

5.3.3.1 Find CICS File Read Statement.

a. Read batch COBOL component procedure division.

b. Find CICS read statement for virtual storage access method (VSAM) file.

Format is EXEC CICS :xxxxx:xxx where :xxxxx:xxx may be:

READ
STARTBR
ENDBR
READNEXT

(start browse)
(end browse)
(read next record)

READPREV (read previous)
RESETBR (reset browse)
READUPDATE(read for update)

226

c. IdentifY the file name associated with this read command. Following the read

command is a DATASET (ddname) statement. The name of the file is "ddname."

d. IdentifY record format associated with this input file. Following the

DATASET(ddname) statement is an INTO (area-name) statement. The "area-

name" represents the record for this input file.

e. Update transaction (if this is a new DIC) and transaction activity (read).

TableslIdentifiers:

File-Record (16)
ID-File (F)
No-Seq-Record (F)

Component-Transaction (12)
ill-Component (F)
Doc-ID-Code (F)

File (15)
ID-File (I)

5.3.3.2 Find CICS File Write Statement.

Record (29)
No-Seq-Record (I)
Doc-ID-Code (F)

Transaction (35)
Doc-ID-Code (I)
Description-DIC

Component-File (8)
ID-Component (F)
ID-File (F)

a. Read CICS COBOL component procedure division.

b. Find CICS write statement for virtual storage access method (VSAM) file.

Format is EXEC CICS xx:xxxxxx where xx:xxxxxx may be:

WRITE
REWRITE
UNLOCK

227

c. Extract the file name. Following the write command is a DATASET (ddname)

statement. The file name is "ddname."

d. Identify record format associated with this output file. Following the

DATASET (ddname) statement is a FROM (area-name) statement. The record for

this output file is "area-name."

e. Update transaction (if this is a new DIC) and activity (create).

Tabiesiidentifiers:

File-Record (16)
ID-File (F)
No-Seq-Record (F)

Component-Transaction (12)
ID-Component (F)
Doc-ID-Code (F)

File (15)
ID-File (I)

5.3.3.3 Find CICS File Delete Statement.

Record (29)
No-Seq-Record (I)
Doc-ID-Code (F)

Transaction (35)
Doc-ID-Code (I)

Component-File (8)
ID-Component (F)
ID-File (F)

a. Read CICS COBOL component procedure division.

b. Find EXEC CICS DELETE statement for VSAM file.

228

c. Extract the file name associated with this input-output file. Following the

delete command is a DATASET (ddname) statement. The name of the file is

"ddname." The record associated with the file is identified by other file commands.

TableslIdentifiers:

Component-Transaction (12)
ID-Component (F)
Doc-ID-Code (F)

File (15)
ID-File (I)

5.3.3.4 Find CICS Database Table.

Transaction (35)
Doc-ID-Code (I)

Component-File (8)
ID-Component (F)
ID-File (F)

a. Read CICS COBOL component procedure division.

b. For each table used by the component, find the table name.

c. Determine the use of the table (create, read, update, delete).

d. Record the actual table name and prefix if given in a comment field and not

already identified.

TableslIdentifiers:

Component-Table (11)
Component-ID (F)
No-Seq-Table (F)

5.3.3.5 Find Terminal Statement.

a. Read CICS COBOL procedure division.

Table (32)
No-Seq-Table (1)

b. Find CICS terminal statements. Terminal statements take the form EXEC CICS

X:XXX:XXXX:, where x:xxx:xxxx: is one of the following:

RECEIVE MAP (map-name) MAPSET (map set-name) INTO (data-area)

SEND MAP (map-name) MAPSET (map set-name) FROM (data-area)
RECEIVE INTO (data-area)
SEND FROM (data-area)

c. Identify screen. Use the "map-name" value as the screen name.

d. Set screen type to C (CICS).

e. Identify screen activity (input or output) from the SEND or RECEIVE

command or display only from the BROWSE command.

TableslIdentifiers:

Component-Screen (10)
ill-Component (F)
ill-Screen(F)

Screen (31)
ill-Screen (I)

229

5.3.4.1 Identify CICS Source Paragraph - 5.3.4.5 Identify CICS Transform Paragraph.

a. Read CICS COBOL component procedure division.

b. Find COBOL paragraph name (e.g., 0200-PROCESS-TRANS).

c. Read paragraph note, if present, and paragraph content.

d. Determine paragraph type:

(1) Source (input) - skip.

(2) Sink (output) - skip.

(3) Computation (e.g., COMPUTE ACTUAL-QTY = EST-QTY *
CONV-FAC).

(4) Business rule (e.g. IF NUMBER-ENTRIES> 2 THEN action).

(5) Transform and all others (may be a combination of computation,

business rule, and transforms).

e. Record the paragraph name.

f Record the paragraph starting line number.

g. Record the paragraph note and type (I = internal).

h. Record the paragraph note starting line number.

i. Write descriptive note, if necessary (type = A, added).

TableslIdentifiers:

Component-Paragraph (9)
ID-Component (F)
No-Seq-Para (F)

Paragraph (3)
No-Seq-Para (1)

Note (21)
No-Seq-Note (1)

Paragraph-Note (25)
No-Seq-Para (F)
No-Seq-Note (F)

5.3.4.6 Find CICS Document Identifier Code (DIC).

a. Read CICS COBOL component procedure division.

230

b. Find three-character document identifier codes (e.g., AOl, A02) in text (e.g., IF

INPUT-DOC = "XAA") or in comments (e.g., * CHECK DATE ON AOl).

c. Determine activity with respect to the DIC (create, read, update).

d. Add DIC if it is not already in the list of transactions; if available, add a

description of the transaction.

Tables/Identifiers:

Component-Transaction (12)
ID-Component (F)
Doc-ID-Code (F)

5.3.4.7 Identify CICS Called Component.

Transaction (35)
Doc-ID-Code (1)

a. Read CICS COBOL component procedure division.

231

b. Find EXEC CICS LINK PROGRAM ('module-name') statement (implies return

to calling program) or EXEC CICS XCTL (,module-name') statement (does not

return control to calling program).

c. Extract component name in quotes following LINK PROGRAM statement.

d. Find COMMAREA statement following LINK PROGRAM ('module-name')

statement, if present. If not present, no data is passed to the called component.

e. Leave the parameters for the call blank (detailed analysis,ofprogram logic is

required to determine values established in the COMMAREA before the call is

made).

f Set data pass to Y if a COMMAREA statement was found.

g. Set data pass to N if a COMMAREA statement was not found.

Tabiesiidentifiers:

Component-Component (6)
ID-Component-Calls (F)
ID-Component-Called (F)

5.4.1 Review Header.

a. Read 4GL component header (identified by ->PROGRAM module-name).

b. Find comments in SHORT-DESC 'text' statements, TEXT n statements or

following: (colon).

c. Record comments if they explain or clarifY the component and have not been

previously recorded (type = I).

d. Write explanatory comment if necessary (type = A).

e. Record the beginning line number of type 1 comment (reference listings of

IDEAL programs have line numbers added).

f Find USES-DATA VIEW statement. Record the database table name that

follows the USES statement (e.g., DVCTF02F).

g. Find USES-PROGRAM statement.

h. The module name following the USES-PROGRAM statement is a called

program for this component.

Tabiesiidentifiers:

Comment (3)
No-Seq-Comment (1)

Table (32)
No-Seq-Table (I)

Component-Comment (5)
ID-Component (F)
No-Seq-Comment (F)

Component-Table (11)
ID-Component (F)
Name-Table (F)

Component-Component (6)
ID-Component-Calls (F)
ID-Component-Called (F)

5.4.2 Review Working Data.

a. Read 4GL working data section (identified by ->WORKING DATA).

b. Find in-line note (identified by: (colon».

c. Record in-line comment and line number.

d. Set comment type to internal.

Tablesiidentifiers:

Comment (3)
No-Seq-Comment (I)

Component-Comment (5)
ID-Component F)
No-Seq-Comment (F)

232

5.4.3 Review Parameter Data.

a. Read 4GL parameter data section (identified by ->P ARAMETER DATA).

b. Find in-line comment (identified by: (colon) characters).

c. Record in-line comment and its line number (type = I, internal).

TableslIdentifiers:

Comment (3)
No-Seq-Comment (I)

5.4.4.1 Review Main Procedure Data.

Component-Comment (5)
ID-Component F)
No-Seq-Comment (F)

233

a. Read 4GL procedure data section (identified by ->PROCEDURE DATA and

«MAIN» PROCEDURE statements).

b. Find in-line comment (identified by one or more: (colon) characters).

c. Record in-line comment and its line number (type = I, internal).

TableslIdentifiers:

Comment (3)
No-Seq-Comment (I)

5.4.4.2 Find 4GL Database Table.

Component-Comment (5)
ID-Component F)
No-Seq-Comment (F)

a. Read 4GL component procedure data (identified by ->PROCEDURE DATA).

b. Find the table name for each table used by the component.

c. Determine the use of the table (create, read, update, delete).

d. Record the actual table name and prefix if given in a comment field and not

already identified.

TableslIdentifiers:

Component-Table (11)
Component-ID (F)
No-Seq-Table (F)

5.4.4.3 Find 4GL Terminal Statement.

Table (32)
No-Seq-Table (I)

a. Read 4GL component header (identified by ->PROGRAM program-name).

234

b. Find USES-PANEL statement. Terminal screens in IDEAL are called panels.

c. The component name following the USES-PANEL statement is the name of an

IDEAL program that generates a screen of the same name (e.g., USES-PANEL

ZZNAII02).

d. Record the screen name in the RE library and set the type to I (IDEAL).

e. Read 4GL procedure data (identified by «MAIN»PROCEDURE and by

individually identified procedures).

f Find TRANSMIT, REFRESH, and SET statements for each screen identified in

a USES-PANEL statement to verify screen use (e.g., TRANSMIT ZZNAII02,

REFRESH ZZNAI102, SET ZZNAII02 = DVT220U BY NAME). Set activity to

DS = display or 10 = input/output.

TableslIdentifiers:

Component-Screen (10)
ID-Component (F)
ID-Screen (F)

Screen (31)
ID-Screen (I)

5.4.4.4.1 Identify 4GL Source Procedure - 5.4.4.4.5 Identify 4GL Transform Procedure.

a. Read 4GL component procedure data (identified by ->PROCEDURE DATA).

235

b. Find 4GL procedure name. Procedures begin with a name and the word

PROCEDURE (e.g., «P700-INITIALIZE» PROCEDURE) and end with

ENDPROC. IDEAL procedures are executed with a DO statement, much like the

COBOL PERFORM.

c. Read procedure note, if present, and procedure content.

d. Determine paragraph type:

(1) Source (input) - skip.

(2) Sink (output) - skip.

(3) Computation (e.g., COMPUTE QTY = PMRU-ACTY * F AC)

(4) Business rule (e.g., IF condition THEN action).

(5) Transform and all others.

e. Record procedure name.

f Record procedure starting line number.

g. Record procedure note and type (I = internal).

h. Record procedure note starting line number.

i. Write descriptive note, ifnecessary (type = A, added).

Tabiesiidentifiers:

Component-Paragraph (9)
ID-Component (F)
No-Seq-Para (F)

Paragraph (3)
No-Seq-Para (I)

Note (21)
No-Seq-Note (I)

Paragraph-Note (25)
No-Seq-Para (F)
No-Seq-Note (F)

5.4.4.4.6 Find 4GL Document Identifier Code (DIC).

a. Read 4GL component procedure data (identified by ->PROCEDURE DATA).

236

b. Find three-character document identifier codes (e.g., ZAK, XAA, ZSC) in text

(e.g., IF DOC = "XAA") or in comments (e.g., * PROCESSES THE XAA).

c. Determine activity with respect to DIC (create, read, update).

d. Add this DIC if it is not already in the list of transactions; if available, add a

description of the transaction.

TableslIdentifiers:

Component-Transaction (12)
ID-Component (F)
Doc-ID-Code (F)

4.4.4.7 IdentifY 4GL Called Component.

Transaction (35)
Doc-ID-Code (I)

a. Read 4GL component procedure data (identified by ->PROCEDURE DATA).

b. Find CALL statements.

c. Extract component name following CALL statement (e.g., CALL ZZOT0123).

d. Find USING statement, if present.

e. Record parameters following USING statement as a character string with each

item separated by a comma and space (e.g., "X, Y, ZIt).

f Set data pass to Y if a USING statement was found.

g. Set data pass to N if a USING statement was not found.

TableslIdentifiers:

Component-Component (6)
ID-Component-Calls (F)
ID-Component-Called (F)

237

6.1.1 Verify Component Status - 6.1.2 Print Program Model.

a. Verify the initial component review has been completed. If not complete, do

not proceed; complete initial review.

b. Prepare the program model listing (see Figure 27).

TablesfIdentifiers:

Transaction (35)
Doc-ID-Code (I)

Comment (3)
No-Seq-Comment (I)

Component-Comment (5)
ID-Component (F)
No-Seq-Comment (F)

Component-File (8)
ID-Component (F)
ID-File (F)

Component-Screen (10)
ID-Component (F)
ID-Screen (F)

Component-Transaction (12)
ID-Component (F)
Doc-ID-Code (F)

Note (21)
No-Seq-Note (I)

Paragraph-Note (25)
No-Seq-Para (F)
No-Seq-Note (F)

Table (32)
No-Seq-Table (I)

Component (4)
ID-Component (I)

Component-Component (6)
ID-Component-Calls (F)
ID-Component-Called (F)

Component-Paragraph (9)
ID-Component (F)
No-Seq-Para (F)

Component-Table (11)
ID-Component (F)
Name-Table (F)

File (15)
ID-File (I)

Paragraph (23)
No-Seq-Para (I)

Screen (31)
ID-Screen (I)

238

Program-ID: ZZLAW070.

Program Name: Extract backorder Master Data for D016, D032 and Q072.

Called by: None.

Calls: ZZLARI71 Passes/returns Error codes/error messages.

Comments (Internal): 1-339. BACKORDER FILE FOR INTERFACE WITH D032.
ALSO USED TO GENERATE A SIMILAR FILE FOR.
INTERFACE WITH D016 AND Q072.

Comments (Added): A-OOO. Program also appears to be modifying estimated
shipping dates.

Input Files: BATCH-PARM-FILE (SYSIN).
Contains control information for generating report for 15th
of month or end of month.

Output Files: BACKORDER-OUT -FILE (ZZ0070AO) (External).
Contains all open backorder records meeting selection criteria
established by interfacing systems.

Database Tables: DVBOF02U (SCD-BACKORDER-REC) (R) Backorders.

Transactions:

DVITF13R (SCD-1TEMS-REC) (R) Item data.
DVRQF03R (SCD-REQUIS-REC) (U) Requisition.

AE3
AE4
AE5

(C) ABC transaction.
(C) DEF transaction.
(C) GHI transaction.

Procedure Division Extracts:

01607-1

01610

PROCESS SCD-BACKORDER-REC, CREATE BACKORDER-OUT
RECORD.
1100-PROCESS-BO.

Figure 27. Sample program implementation model.

01696-1
01696-A
01698

01856-1
01858

02121-1
02121-A
02124

02341-1
02243

02263-1

02267-1

02272-1

02305-1
02307

02651

02661-1

02664

02740-1
02742

CHECK RECORD TO SEE IF IT CONTAINS CRYPTO DATA.
Temporary MMC = CA, CI, CS, or XU.
1250-CRYPTO.

CHECK TO SEE IF THE STOCK NUMBER HAS CHANGED.
1700-CHECK-STKXREF.

239

MOVE DATA TO BW-WRK BUFFER LOAD CONSTANT VALUES.
This is the main processing routine.
3100-BILD-BO-WRK.

DETERMINE THE CORRECT ESTIMATED SHIPPING DATE (ESD).
3125-CHECK-ESD.

THE BACKORDER HAS NOT EXPIRED PAST ORIGINAL ESD.

THE BACKORDER HAS NOT EXPIRED PAST CALCULATED ESD.

THE BACKORDER HAS EXPIRED PAST CALCULATED ESD.

COMPUTES THE CORRECT ESD FOR THE BACKORDER
3150-COMPUTE-ESD.

51 00-PROCESS-AE3-TRANS.

TIllS PROCEDURE CHECKS THE PROCESS SWITCHES AND
CALLS THE APPROPRIATE PROCEDURE TO CONTINUE
PROCESSING.
5500-COMPL-TRANS-PROC.

TIllS PROCEDURE PROCESSES SAP-AE TRANSACTIONS.
5520-PROCESS-SAP-AE.

Figure 27. (continued)

6.1.3 Retrieve Program Reference Listing.

a. Retrieve the printed program reference listing from the RE library.

b. Check listing to ensure it is complete. If the listing is for an IDEAL

component, ensure it has been printed with continuous line numbers.

TableslIdentifiers: None.

6.1.4 Print Documentation List - 6.l.5 Print Contact Point.

a. Print the list of available documentation.

b. Print assistance contact points.

TableslIdentifiers:

Component (4)
ID-Component (I)

Component-Document (7)
ID-Component (F)
No-Seq-Doc (F)

6.2.1 Review Program Model.

a. Review the initial program model.

Document (13)
No-Seq-Doc (I)

Comments

b. Ensure critical information has been included.

c. Note discrepancies.

TableslIdentifiers: None.

6.2.2 Review Documentation.

240

a. Using the list of documentation available for the component, review available

documents and document extracts.

b. IdentifY component purpose.

c. IdentifY component objectives.

d. IdentifY assumptions and constraints.

e. Update the RE library.

Tabiesiidentifiers:

Component (4)
ID-Component (I)

6.2.3 Review Source Code.

a. Review source code for familiarization using the printed reference listing.

b. Compare the source listing with the program model. Randomly check

paragraph and note line numbers from the program model with the source code

listing.

c. Adjust the program model, if necessary, and reprint it.

TableslIdentifiers: None.

6.2.4 Prepare Input-Output Diagram - 6.2.9 Produce Final Implementation Model.

a. Prepare a data flow context diagram for the component; show inputs and

outputs, tables, and interface files.

b. Validate input and output shown in the program model with source code.

c. If necessary, consult with technical and domain specialists to resolve

discrepancies or to enhance understanding of the component.

d. Resolve discrepancies between documentation, source code, and the initial

implementation model.

241

242

e. Identify changes required.

f Modify the RE library as necessary to correct the implementation model.

g. Print the final implementation model (see services under 6.1.2).

TableslIdentifiers: Any table in the database.

6.3.1 Segment Component.

a. Review the program implementation model.

b. Group paragraphs in logical groups if the model structure is not already in this

form.

c. Record the paragraph group assignments in the RE repository.

d. Ensure that links to subprograms are represented in the logical paragraph

structure.

e. Reprint the program implementation model.

TableslIdentifiers:

Component (4)
ill-Component (I)

Paragraph (23)
No-Seq-Para (I)

6.3.2 Identify Key Data Item.

Component-Paragraph (9)
ill-Component (F)
No-Seq-Para (F)

a. Using the program implementation model listing as a guide, review the

reference listing to identify the major data structure or structures manipulated in an

extracted paragraph.

b. Identify the domain object represented by the data structure.

c. Note the domain object on the program implementation model.

TableslIdentifiers: None.

6.3.3 Create Structural Model.

243

a. Using the program implementation model, the input-output diagram, and the

reference listing, prepare a high-level structural model of the program under

review.

b. Show major processing blocks and domain objects represented, as well as the

relationships between the processing blocks.

TableslIdentifiers: None.

6.4.1 Analyze Paragraph - 6.4.3 Assign Meaning.

a. Using the program implementation model, structural model, input-output

diagram, documentation and input from technical and domain specialists, analyze

individual paragraphs in the reference listing.

b. Paragraphs not in the implementation model are reviewed, if necessary, to

facilitate understanding of the transform paragraphs.

c. Interpret a transform paragraph and assign functional meaning to it by writing a

short paragraph describing the function performed by the code. The description is

written in non-technical, domain-oriented terms. Jargon, abbreviations, acronyms,

and unique terms are avoided. A properly written functional statement should be

no more than a paragraph of three or four sentences.

d. Record the functional narrative in the RE library, associating it with the

paragraph in the implementation model it represents.

TableslIdentifiers:

Function (17)
No-Seq-Function

Paragraph-Function (24)
No-Seq-Para (F)
No-Seq-Function (F)

6.5.1 Print Outline Domain Model.

Paragraph (23)
No-Seq-Para (I)

244

a. The outline domain model prepared at the beginning of the reverse engineering

analysis is extracted from the RE library.

b. Print one copy of the domain model in normal spacing; this version is used as a

guide for allocating functions to the model.

c. Print one copy of the domain model with each activity (primitive-level function)

placed on a separate page. This version is used to allocate extracted functions to a

specific area in the domain model.

Tabiesiidentifiers:

Process (26)
No-Seq-Process (I)

6.5.2 Produce Draft Function Model.

Process-Process (28)
Is-Parent-Of (F)
Is-Child-Of (F)

a. Verify all components in the target system have been analyzed (percent

complete is equal to 100).

245

b. Print a list of the functions extracted from each system component. A separate

function list is prepared for each component.

c. Assign a function to the domain model by writing the unique function number

under the appropriate activity number in the printed domain model.

d. When all extracted functions have been assigned to an activity, review the

assignments to ensure there are no more than nine sub elements under any activity.

e. Introduce new subtasks into the domain model, if necessary, to preserve the

seven-plus or minus two rule of hierarchical structure.

f. Reassign extracted function (numbers) to newly created subtasks.

g. Update the domain model structure with added subtasks.

h. Enter the function numbers and associated domain model processes into the RE

library. An extracted function is copied to its parent and assigned the parent's

number plus another digit (e.g., extracted function assigned to activity 1.2.3

becomes activity 1.2.3.1; activity .1.2.3 becomes subtask 1.2.3 because it now has

children).

Tables/Identifiers:

Component (4)
ID-Component (I)

Function (17)
No-Seq-Function (I)

Narrative (19)
No-Seq-Narrative (I)

Component-Paragraph (9)
ID-Component (F)
No-Seq-Para (F)

Paragraph-Function (24)
No-Seq-Para (F)
No-Seq-Function (F)

Narrative-Function (19)
No-Seq-Narrative (F)
No-Seq-Function (F)

246

6.6.1 Distribute Draft Function Model- 6.6.5 Produce Function Model.

a. Print the function model from the RE library. The function model consists of

the hierarchical outline structure from the domain model with the functional

narrative extracted from system components.

b. Distribute the draft function model to domain specialists and functional users

throughout the organization, soliciting comments, recommendations, and proposed

changes. Comments and changes are submitted as individual documents, one entry

per document. Establish a suspense date for submitting comments.

c. Review comments as they are received from reviewers. Reject proposed

changes that do not reflect specific corrective actions.

d. Organize acceptable comments according to model sections.

e. Consolidate duplicate comments.

f Reassemble the original group who prepared the domain model.

g. In facilitated modeling sessions, proposed changes to the function model are

individually reviewed, discussed, and accepted or rejected for incorporation into

the model. Changes not accepted are annotated as to reason and returned to

originator. Accepted changes are marked for implementation after the modeling

session is completed.

h. Implement approved changes to the function model by revising appropriate

entries in the RE library.

i. Print and distribute the final function model to appropriate organization

managers and functional users.

Tabiesiidentifiers:

Function (17)
No-Seq-Function (I)

Narrative (19)
No-Seq-Narrative (I)

Process (26)
No-Seq-Process (I)

Process-Process (28)
Is-Parent-Of (F)
Is-Child-Of (F)

Paragraph-Function (24)
No-Seq-Para (F)
No-Seq-Function (F)

Narrative-Function (19)
No-Seq-Narrative (F)
No-Seq-Function (F)

Process-Function (27)
No-Seq-Process (F)
No-Seq-Function (F)

6.7.1 Prepare Context Diagram - 6.7.3 Describe Key Area.

247

a. Using the narrative from the function model as a starting point, prepare a data

flow context diagram for the proposed new system. A context diagram represents

the entire system as a single process, identifies the major sources and destinations

of data and the major data flows entering and leaving the system.

b. Prepare a level 0 diagram by showing how the key areas from the function

model are related to each other and how each interfaces with the environment

through data sources and destinations.

Tabiesiidentifiers: None.

7.l.1.1 - 7.1.2.6 Data modeling activities. Omitted.

248

7.2.1 Format Major System Components.

a. Assemble the proposed new system context diagram, the level 0 data flow

diagram, and the narrative description of the function model key areas.

b. Format for inclusion in paragraph S.3.d of the Operational Concept Document.

TableslIdentifiers: None.

7.2.2 Describe External Interface.

a. Extract information from the RE library for external files (type E).

b. Combine repository information with interface agreement details.

c. Format material for inclusion in paragraph S.3.c of the Operational Concept

Document.

Tables-Attributes:

File (IS)
ID-File (1)

7.2.3 Format System Function.

a. Print functional key areas, tasks, and subtasks (select process KA, TA, ST).

b. Format for inclusion in paragraph S.3.d of the Operational Concept Document.

TableslIdentifiers:

Function (17)
No-Seq-Function (I)

Process (26)
No-Seq-Process (I)

Process-Process (28)
Is-Parent-Of (F)
Is-Child-Of (F)

Paragraph-Function (24)
No-Seq-Para (F)
No-Seq-Function (F)

Process-Function (27)
No-Seq-Process(F)
No-Seq-Function (F)

249

7.2.4 Format Functional Hierarchy.

a. Print function model key areas, tasks, subtasks and activities from the RE

repository (select process KA, TA, ST, and AC).

b. Combine function model and data flow diagrams.

c. Format for inclusion in paragraph S.3.e of the Operational Concept Document.

TableslIdentifiers:

Function (17)
No-Seq-Function (I)

Narrative (19)
No-Seq-Narrative (I)

Process (26)
No-Seq-Process (I)

Process-Process (28)
Is-Parent-Of (F)
Is-Child-Of (F)

7.3.1-7.3.2 Data modeling activities. Omitted.

Paragraph-Function (24)
No-Seq-Para (F)
No-Seq-Function (F)

Narrative-Function (19)
No-Seq-Narrative (F)
No-Seq-Function (F)

Process-Function (27)
No-Seq-Process(F)
No-Seq-Function (F)

250

The Logical Data Model

The logical data model was created by populating skeletal tables (developed during the

definitional model phase) with attributes. Attributes were identified during logical process

modeling.

Populated tables for the reverse engineering methodology support tool are described in

Appendix C. These tables are all in third normal form.

The logical data model was represented schematically by a table diagram showing paths

between tables (see Figure 28). The paths are links between table identifiers. The

diagram shows table names, table numbers, and primary and foreign keys. Keys are

located at the top of the table block. Associative entity tables Goin tables) have two

foreign keys making up the identifier. Two entity tables (Component (4) and Record (29))

have foreign keys. Identifiers in these two tables are designated with (I); the foreign keys

are identified by (F). Directed lines on the diagram show links between tables based on

identifiers; the arrowheads point to foreign keys.

The logical data model can be implemented in any relational database management system

with few changes. The conceptual and logical data models along with the detailed table

descriptions, for example, contain sufficient detail to implement the RE library using one

of several personal computer-based database management systems (e.g., Access, Paradox,

Approach, FoxPro).

ID-Screen ~ ID-Screen :J
Screen

31
ID-Component-

Component-

N S T bi - Screen to), 0- eq- a e

Table
32 ID-Component

~ No-Seq-Table
No-Seq-Table C

omponent-
No-Seq-Attribute r-- Table 11

Table-Attribute , 33

No-Seq-Attribute I--
ID-Component

~ ID-File
Attribute 2

Component-
File 8

No-Seq-Object
No-Seq-Metric ~

Object
22 Metric

18

No-Seq-Acronym
I...-- ID-File

Acronym
1 File

15

No-Seq-Term

Term
34

r- Doc-ID-Code No-Seq-Doc f-4- No-Seq-Doc ~ No-Seq-Para

Transaction ~ ID-Component Document No-Seq-Function
35 13

Component- Paragraph-

• Doc-ID-Code
Document 7

I
Function 24 ID-Component No-Seq-Para

Component-
No-Seq-Para No-Seq-Para ...

Transaction 12 ... ID-Component Paragraph 23
- No-Seq-Note

Component- Paragraph-Note
Paragraph 9 25

I , - No-Seq-Comment
ID-Component (I) - ID-Component

..IIIIroo..
Comment No-Seq-Note

No-Seq-Metric (F) 3 ... No-Seq-Comment Note
Component Component- 21

No-Seq-Function ~ 4 Comment 5

\ - 1N0 -Seq-Narrative I
I

No-Seq-Function I---
ID-Component-Calls [No-Seq-Narrative Narrative-

r-- Function 20 Function
ID-Com ponent-Called Narrative 17
Component- 19

No-Seq-Record
Component 6 I III"- No-Seq-Element

No-Seq-Record (I) No-Seq-Element
Element

Doc-ID-Code (F) r--.... ID-File Record-Element 14 ...
Record 29 30

No-Seq-Record ~ No-Seq-Function •
File-Reco rd ..- -16 Is-Parent-Of -- I No-Seq-Process

Is-Child-Of- No-Seq-Process Process-
Function 27

Process-Process Process 26
28

Figure 28. Logical data model.
tv
VI -

252

Formats for Presenting Results

The reverse engineering methodology developed in this chapter is presented as a

structured hierarchy of techniques and procedures to be followed in extracting design

information from source code. The hierarchy allows the methodology to be viewed at

multiple levels. A methodology visual process model augments the narrative descriptions.

Conceptual and logical data models portray data structure required to support reverse

engineering processes.

Chapter IV describes the application of the the reverse engineering methodology to a

small subcomponent of an actual military logistics system. The results (the as-built model)

were presented in a conceptual process model representing the functional design

information extracted from the case study programs. The as-built model was used to

assess the reverse engineering methodology.

Metrics to support reverse engineering time estimates are also presented in Chapter IV.

These metrics are presented in the form of effort (time) per line of code by various

program types and sizes and are based on data collected during methodology application.

Projected Outcomes

The reverse engineering methodology was defined in detail in this chapter, but was not

tested against actual programs. The following outcomes were anticipated following

methodology application to the case study.

253

1. New methodology activities will be identified as a result offinding additional sources

of design information in the program code.

2. The effectiveness of a manual process over a computer-based process will be

demonstrated.

3. Major functional components will be extracted from the source code.

4. Internal and external interfaces will be identified from the source code.

Resource Requirements

Minimal resource requirements were needed to apply the reverse engineering

methodology. Source code from the system selected for analysis was extracted from the

mainframe system and loaded as ASCII text on the disk drive of a personal computer.

Programs and JCL were printed for review. Microsoft Word for Windows was used to

augment the printed programs and JCL with a search function on electronic versions of

the subject programs. No other resources were required to support the investigation.

Reliability and Validity

Reliability of the reverse engineering methodology was difficult to measure. The main

driver of reliability is the reverse engineer, not the methodology itself Reliability depends

on the reverse engineer's training, experience, domain knowledge, and intuition.

254

Validity of the methodology also depends on the skill of the reverse engineer, but is easier

to objectively measure. Validity was established by comparing extracted design

information with known design information.

Summary

This chapter explained the methodology used to develop a practical reverse engineering

methodology. Forward engineering and reverse engineering models were compared to

substantiate that reverse engineering is not the logical reverse of forward engineering.

Reverse engineering research techniques, methodologies, and tools were reviewed and

analyzed. Five specific techniques were examined for possible use in a practical reverse

engineering methodology. Although none of the tools were satisfactory, each contained

some positive features.

A reverse engineering methodology was developed by applying the information

engineering approach to information systems design. The methodology was presented in

the form of narrative descriptions of tasks to be performed to recover design information

from legacy systems. The narrative description was augmented by a visual process model

of activity interrelationships and by conceptual and logical data models required to

accomplish reverse engineering. The plan for evaluating the methodology by applying it

to a case study was presented and explained.

Chapter IV

Results

This chapter addresses Phase 3 (Case Study Subject Selection), Phase 4 (Reverse

Engineering Methodology Application), and Phase 5 (Methodology Assessment). The

Data Analysis, Findings, and Summary of Results sections describe the application of the

proposed process reverse engineering methodology to a case study of actual COBOL and

IDEAL programs.

The Data Analysis section describes the program information database implementation,

case study component selection, and methodology application. The Findings section

includes methodology assessment, metrics, and proposed methodology changes. The

Summary of Results explains the results obtained from the process reverse engineering

methodology.

Data Analysis

The reverse engineering methodology developed in Chapter 3 was manually applied to a

test case from an operational environment. The objective was to demonstrate

methodology feasibility and to evaluate its potential usefulness and applicability to large

scale reverse engineering efforts. The material used in the test case was too voluminous

256

to be included herein; however, each product specified in the methodology was retained

with individual case study components. The sequence of activities was altered slightly to

compensate for the lack of knowledgeable functional users to participate in the domain

model development. Methodology output products were often incomplete because

functional users were unavailable for review, correction, or explanation of unidentified

acronyms, document identifier codes, and special terms. Unknown or unclear information

is indicated with a question mark (7) in the program information data base and in printed

output products.

Implementing the Program Information Database

The program information database described by the logical model in Chapter 3 was

implemented in the database management system Microsoft Access Version 2.0 in a

Windows 3. 1 environment. Using a simple interactive process, Access supported physical

data structure development from the logical model. Access' ability to enforce referential

integrity was also a significant factor in its selection.

Individual entity and relationship Ooin) tables were created according to the logical model.

Table attribute names were assigned according to the logical model: hyphens were

omitted and both upper and lower case letters were used.

After tables were constructed and validated against the model, table associations were

established with the Access relationship editor. Relationship details (e.g., referential

integrity rules, cascade deletes, and cascade updates) were also established with the

relationship editor.

Using Access Wizards, data entry forms were created for each table in the database for

which data was collected. The Component table, the largest in the database, was

supported by multiple input forms, each of which contained relevant attributes for a

particular activity (e. g., initial program review and program structure analysis).

257

Thirty-five queries were developed to display data from the database. Acronym lists,

database table lists, and document identifier code lists were used frequently during

program analysis to support program understanding and to provide a vehicle for collecting

aejditional data.

At the end of the methodology application phase, 3,134 rows had been added to the

database. Nine tables (Attribute, Component-Document, Component-Screen, Document,

Narrative, Narrative-Function, Object, Screen, and Table-Attribute) were not used

because either the data was not available, data modeling was not emphasized, or the table

was not required. Two tables (Narrative and Narrative-function) were determined to be

redundant.

Selecting Case Study Components

The first step in applying the reverse engineering methodology was to establish selection

criteria for a suitable test case. The Stock Control and Distribution system is composed of

258

nine subsystems, one of which--the Item Manager Wholesale Requisition Process

(IMWRP, D035A)--was selected as the test case. The case study was selected using the

following criteria:

1. Small to limit the amount of time required to show the methodology's practicality and

usefulness.

2. Large enough to gather preliminary metrics to estimate methodology feasibility on

large-scale systems.

3. Large enough to uncover weaknesses in the methodology and to suggest

enhancements.

4. Representative of system programs and in a related group or subsystem.

5. A large number of interfaces.

6. The same mix of programs as contained in the overall system.

7. Simple enough to permit development of a domain model without functional user

assistance.

Nearly 33 million characters ofD035A source code were downloaded from the SC&D

mainframe system in . TXT format and established in a directory on a personal computer.

The source code included COBOL and IDEAL programs, screen formats, and JCL.

Using a high-level list of activities from the D035A functional description, a single

component of the system was selected for detailed examination. The Cataloging

Management Data (CMD) component is a relatively independent segment of the system

and was easily isolated from other components. CMD contains both batch and on-line

programs and is representative of logistics legacy systems.

259

The system functional description identified 26 major functions associated with catalog

management data. A program-to-function allocation list indicated these functions were

implemented in 203 program units. However, a review of the program units revealed only

59 unique program identifiers; programs implemented many different functions in a one

to-many relationship. For example, one of the 26 functions was implemented in 19

different program components. The one-to-many relationship between programs and

functions suggested extensive reengineering rather than system redesign during the

modernization (i.e., existing or restructured programs were linked to high-level functions

based on the incarnate system).

Source code files from the CMD function were examined individually to select programs

with small, medium, and large numbers of lines of code. This examination was based

solely on surface features (e.g., program language, on-linelbatch program, program size,

and number offiles used). The lack of functional structure simplified case study selection

because the same program components were likely to be identified regardless of the

functional component selected. Ten programs (17 percent of the 59 unit programs) were

selected as a reasonable sample size for the case study. The mix of program types was

established with the same program percentages ofD035A (40 percent batch COBOL, 33

percent IDEAL, and 20 percent CICS COBOL). These percentages are also

representative of the makeup of the SC&D system (41 percent batch COBOL, 38 percent

260

IDEAL, 13 percent CICS COBOL 38 system (41 percent batch COBOL, 38 percent

IDEAL, and 13 percent CICS COBOL, and 8 percent other). Application of the D035A

percentages to the sample size of ten programs resulted in four batch COBOL programs,

four IDEAL programs, and two CICS COBOL programs.

Tables 13 through 15 list the programs selected for the case study and pertinent size

information. "Number of functions implemented" refers to the 26 major CMD functions

identified in the SC&D functional description extract. "Source listing pages" refers to the

number of printed pages of source code in single column, ten pitch format.

Table 13
Batch Programs

Number of
Program functions Lines of Source listing
identification implemented code pages
ZZLAD057 6 2054 46
ZZLAD058 6 3239 73
ZZLAD513 2 6826 139
ZZLAD555 10 5423 122

Table 14
IDEAL (On-line) Programs

Number of
Program functions Lines of Source listing
identification implemented code pages
ZZLAI304 19 1719 39
ZZLAI501 1 3413 76
ZZLAI504 7 2203 80
ZZLAI505 10 3581 80

261

Table 15
CICS COBOL (On-line) Programs

Number of
Program functions Lines of Source listing
identification implemented code pages
ZZLAI544 3 2505 56
ZZLAI550 1 5426 122

The ten programs (36,389 lines of code) were extracted from the source code in .TXT

files and converted to Microsoft Word 6.0 .DOC files. Microsoft Word was used to print

source code listings in reduced font size and double column format to reduce the volume

of printed material. The line numbering feature was used to add line numbers to IDEAL

source programs not normally numbered. The "Find" (search) function was used during

program analysis to locate various program elements in source code.

Program ZZLAD057 - Extract MICAP Requisition Data. This batch COBOL program

reviews back orders for items needed to return equipment to mission capable (MICAP)

status and extracts relevant data for an interfacing system. Multiple documents from the

database are retrieved to complete the data extract, and processing is not complicated.

The program is executed once in a two step job. Although this program is not functionally

related to cataloging management data and should not have been included in the functional

area, it was reverse engineered.

Program ZZLAD058 - Extract Interface System Transactions. This batch COBOL

program retrieves interface data from interface tables in the database and writes the data

262

to appropriate output files. Although the program uses 27 different output files, no real

processing is performed; data is merely transferred. However, the program is relatively

complex because files are conditionally written, dependent on the content of a control

record read during the execution of multiple jobs at various points in time. Detailed

analysis was not performed on the program because it contains no functional processing.

Fourteen provisional functions to produce interface files for other systems were noted for

possible inclusion in the domain model.

Program ZZLAD513 - Screen Locally Assigned Stock Number. This batch COBOL

program is executed with a series of other programs and performs complicated analysis

and manipulation of item interchangeable and substitutable (I&S) data. The program

changes existing I&S structure, creates new I&S structure, and generates update

transactions for interfacing systems.

Program ZZLAD555 - Preprocess D043 Stock List Changes. This batch COBOL

program consists of five major parts and is executed five times from a JCL stream of nine

steps. In addition to the five execution steps, there is a step to create a disk file from an

input tape and three sort steps. Five control records read by the program during execution

determine which of the five parts is performed.

The first part (check label) checks the label of an external system tape to ensure the file

has not already been processed. The second part (expand transactions) adds unit price

information to stock list changes. The third part (reject duplicates) eliminates duplicate

263

records from old and new master files, a requirement because stock list changes with

effective dates in the future are recycled via the old master file. The fourth part (release

records) creates a file of stock list changes ready for release and creates an old master file

of changes not ready for release; the old master is then used in the next processing cycle.

Part five (monitor transactions) generates JCL to execute and monitor the release of stock

list changes via a complicated on-line procedure.

Parts one, three, and five were eliminated from the analysis because they are

implementation dependent parts of the program and. The two remaining parts were

subjected to detailed analysis (approximately nine percent of the procedure division lines

of code).

This program is an example of the kind of difficulties encountered in legacy systems.

There is no logical reason to combine five unrelated steps into one complicated program.

Although a significant amount of time was required to analyze the program, very little

functional information was extracted.

Program ZZLAI304 - Route External System Data. This on-line IDEAL subroutine

program receives a transaction image from a calling program, identifies the document

type, and passes the transaction to one of 45 subroutines for processing. As no processing

is performed by the program, it was eliminated from further analysis.

264

Program ZZLAI50 1 - ZAAlZF A Processor. This on-line IDEAL subroutine program

processes new index item record establish transactions (ZAA) and master item establish

transactions (ZFA). The subroutine is called from one D035A (SC&D) program and four

D035K programs and calls six subroutines. Interface records are created and stored in the

database for eventual dispatch to interfacing systems.

Program ZZLAI504 - Process Stock List Change Data, Part II. This on-line IDEAL

subroutine program performs specialized processing related to a stock number change.

Processing includes posting stock number changes to related records (e.g., backorders,

due-out records, usage records, unit of issue, and interchangeable and substitutable stock

number data).

Program ZZLAI505 - Stock List Change. This on-line IDEAL subroutine program is one

of the main stock list change processing components. The program is called by five

programs (four within SC&D, and one from D035K) and conditionally calls 12 other

subroutines to post stock list changes to the database. Subroutines called by the program

generally perform derivative actions necessitated by stock list changes (e.g., writing data

for interfacing systems, requesting item inventories, and processing errors).

Program ZZLAI544 - Print Stock List Change Notice. Despite a relatively simple title,

this on-line CICS COBOL program processes stock list change data to update database

tables for a shipping system. Comments in the program (unchanged since the program

was written) indicate this was originally a batch program within the Shipping Information

265

System (D035T). The stock list change notices are actually stock list change transactions

for distribution to other systems through database interface records. The subroutine is

called by three programs and calls two subroutines.

Program ZZLAI550 - Edit Stock List Changes. This on-line CICS COBOL subroutine

program is an edit only routine. The program is called by three other programs and calls

one subroutine. The program reads 37 database tables, but does not update the database.

The program edits various stock list change transactions and returns results to the calling

program. Because edit routines are of little value in determining system functions this

program was eliminated from further analysis.

Applying the Methodology

Because participation by expert functional users in the development of the domain model

was not possible, it was necessary to simulate development using available documentation

and general domain knowledge. The domain model was created early in the methodology

application to avoid introducing detailed knowledge derived through program reverse

analysis. Extracts of the SC&D Functional Description (FD) and the System Specification

(SS) for the CMD area were used as source data.

A data collection form was prepared to support initial program analysis. Data collected

from individual programs was recorded on the forms and used to enter program data into

the database.

266

Initial program analysis included the collection of identifying information (e.g. program

identification, program class and type, language, number of versions, number of authors,

source lines of code, size of data and procedure divisions, number of program variables,

and number of input and output fIles). Program header comments were collected when

they explained program purpose or processing procedures. Comment line numbers were

recorded to facilitate source code reference.

The second level of analysis was program structure review of the ten case study programs.

The objective was to develop an index of program complexity to predict the analysis time

required for review. A hypothesis was that the most frequently used metric, source lines

of code, was not be a suitable estimator for the degree of difficulty in recovering

functional design information from source code. The complexity index computed for each

program considered the following factors: the number of GO TO, PERFORM, and

REDEFINES statements, the number of paragraphs, and the average number of source

lines per paragraph; a subjective rating as to program structure, comments, and naming

conventions; and a complexity rating calculation that considered the number of input and

output fIles, data and procedures division sizes, and other program average data. The

complexity rating calculation was also based on benchmark data reported by COBOL

program researchers (i.e., the average number of COBOL data division statements is

1,000; the average number of procedure division statements is 1,200; and the average

number of statements in a performed paragraph is 50) (Sneed & Jandrasics, 1987). The

267

complexity index was used as the basis for an initial prediction of the amount of time

required to reverse engineer each program in the test case.

Table 16 summarizes time required for preliminary program analysis.

Table 16
Time Required for Preliminary Program Review

Program Initial review time Structure review Total review time
name (minutes) time (minutes) (minutes)
ZZLAD057 20 65 85
ZZLAD058 25 40 65
ZZLAD513 30 45 75
ZZLAD555 35 30 65
ZZLAI304 20 15 35
ZZLAI501 30 15 45
ZZLAI504 22 30 52
ZZLAI505 40 35 75
ZZLAI544 40 25 65
ZZLAI550 35 37 72
Total time 297 337 484
Mean time 29.7 33.7 48.4

The program structure analysis was detailed and designed to support the development of a

program model in order to make further source code reference unnecessary. Structure

analysis included JCL review for batch programs, preparation of job and job step diagrams

for batch programs, calling program diagrams for on-line programs, and input-output data

flow diagrams for batch and on-line programs. The results of the JCL analysis are shown

in Table 17. (Three non-functional programs are excluded).

268

Table 17
Time Required for Job Control Language Review

Data flow diagram
Program JCLlProgram call preparation Total review time
name review (minutes) (minutes) (minutes)
ZZLAD057 25 10 35
ZZLAD513 65 20 85
ZZLAD555 463 15 478
ZZLAI501 15 15 30
ZZLAI504 8 20 28
ZZLAI505 40 27 67
ZZLAI544 20 18 38
Total time 636 125 761
Mean time 90.86 17.86 108.71

Other data collected during program structure analysis included calling programs, called

programs, input and output files used, database tables used, and a list of non-

implementation dependent program paragraphs. Program paragraphs were read to extract

functionally-oriented code and to eliminate implementation-oriented code (e.g.,

paragraphs that open, close, read, and write files; paragraphs that read or write database

tables; and paragraphs that edit or validate data). Initially, paragraphs not easily classified

as functional or implementation oriented were included to preserve program form or flow.

Paragraph header notes were extracted if they contained expanded paragraph names,

purpose or procedure information. When additional information could be derived from

the paragraph code, "added" notes were also created. Program line numbers for the first

lines of notes and paragraphs were recorded to facilitate source code reference. Table 18

summarizes the time required for this part of the program structure analysis.

269

Table 18
Time Required for Detailed Program Structure Analysis

Number of
Program Number of source paragraphs Total analysis time
name code paragraphs extracted (minutes)
ZZLAD057 34 15 410
ZZLAD513 113 38 590
ZZLAD555 62 39 1000
ZZLAI501 43 27 335
ZZLAI504 39 39 398
ZZLAI505 50 47 787
ZZLAI544 41 22 313
Totals 382 227 3833
Mean 54.57 32.29 547.57

Because data extracted from the test case programs (especially comments, notes, and

paragraph titles) was so extensive, it was impractical to manually produce the physical

program models. Relevant tables from the program information database were exported

to FoxPro for Windows Version 2.6 to support automatic production of the physical

program models. F oxPro was chosen because of the author's previous experience with

the FoxPro command language. Changes were made to names because ofFoxPro's eight-

character table name and ten-character data name restrictions.

The next step was program function analysis--the interpretation of extracted program

paragraphs and conversion to functions for eventual assignment to the domain model.

Functional analysis was accomplished by extracting a list of paragraph numbers from the

database for each test case program. Using the physical program model and the program

paragraph listing, each paragraph was evaluated for domain model suitability. Paragraphs

270

were often "rolled up" to create a higher level abstraction; in only two instances was a

program paragraph expanded into more than one function. The paragraph number to

function number data was recorded in the data base to allow tracing. Function

descriptions were synthesized by interpreting notes associated with program paragraphs,

restating them in functional terms, or extracting the meaning of the individual or combined

groups of paragraphs. Where the meaning of an extracted paragraph could not be

interpreted from the source code, a question mark (?) was inserted. In an actual reverse

engineering application, functional users or technicians would be consulted to interpret

problem paragraphs.

The final step in the reverse engineering effort was to assign the derived functions to

activity "slots" in the domain model, creating upper level subtasks as necessary to maintain

balanced decomposition.

Table 19 summarizes the time required for function analysis and process assignment.

Findings

Documentation

The planned primary source of information for the domain model was an extract of the

CMD Functional Description (FD). The FD extract was crudely written and poorly

structured. Functional process descriptions were generally oriented to physical

implementations of the two systems replaced by the modernized SC&D.

271

Table 19
Time Required for Function Analysis and Process Assignment

Analysis
Program Paragraphs Paragraphs Functions time
name extracted used developed (minutes)
ZZLAD057 15 14 8 115
ZZLAD513 38 27 16 85
ZZLAD555 39 14 10 100
ZZLAI501 27 21 11 100
ZZLAI504 39 35 14 60
ZZLAI505 47 31 18 48
ZZLAI544 22 13 4 190
Totals 227 155 81 698
Mean 32.29 22.14 11.57 99.71

Descriptions tended to be disjointed narrative that hinted at business rules without clearly

specifying them. Functional process descriptions did not match high-level input and

output descriptions even when included. Some descriptions mentioned specific data files

while others did not. Functions were unbalanced--some were written at high level, others

at low level. Many lower-level functions were implied but not clearly specified. Even

physical process descriptions were incomplete, stressing certain functional details and

omitting others.

Three problems with the FD extract were immediately apparent: (a) the document was

written in terms of the processing accomplished by predecessor systems rather than

functional requirements to be performed by the modernized system; (b) the functions

272

were written at such a high level of abstraction that they had meaning only to a functional

expert capable of filling in the missing information; and (c) the development of a

management information system from the FD was an impossible task.

Even though the FD extract was not an ideal document, the initial domain model was

developed by extracting tasks, subtasks, and activities from process descriptions.

Intermediate levels were synthesized to introduce a hierarchical decomposition. The

completed CMD domain was extremely shallow, consisting of only 28 activities. This was

judged to be inadequate for the reverse engineering effort.

The next documentation level in the systems development life cycle, an extract of the

System Specification (SS), was used to extend the FD-based domain model. The basic

structure of the FD was maintained in the SS. A measure of additional detail and new

functions were also added in a few instances. The major improvement to the SS was the

addition of "as built" design-oriented information to replace incorrect FD information.

Several levels of data flow diagrams supported the SS processing descriptions. Most of

the SS process descriptions simply restated the narrative descriptions for equivalent FD

functions. The inputs and outputs for SS processes were used to surmise activities.

The final domain model contained 9 tasks, 42 subtasks, and 140 activities, and represented

SC&D IMWRP Key Area 6, Cataloging Management Data. While this domain model

would not be produced in the same form by a group of functional domain experts during

facilitated modeling sessions, it was considered adequate as a high-level structural

framework into which extracted program activities could be placed.

Program Source Code

273

Program source code was reasonably well structured. Paragraphs tended to be short and

performed single, well-defined activities. The paragraph numbering structure facilitated

paragraph tracking. However, the logic of several programs could have been broken out

into several shorter programs.

Maintenance change comments at the beginning of programs were extensive, as were the

number of maintenance changes. Some comments provided clarifying information about

terms and document identifiers, but generally they were oflimited value to the reverse

engineering effort. The major problem was that a change made in one version of a

program could be eliminated in a later version of the program. Tracking changes to

determine which were not changed again was not considered practical where the reverse

engineering objective is to achieve abstraction above the code level as quickly as possible.

Comments in source code were sparse or absent. Generally, each paragraph contained a

header comment with a full text title for the COBOL paragraph name. Additional in-line

comments, when present, were limited to cryptic notes about an aspect of a paragraph's

functions. In-line comments contained a significant number of inaccuracies and errors.

For example, code comments were sometimes not changed even when the source code

was changed. Substantial domain knowledge was assumed by in-line comment authors

274

(i.e., document identifier codes, acronyms, and special terms were used freely without

explanations). At the end of the test case analysis 227 document identifier codes had been

identified while only 123 had been defined.

The use of short data names made program understanding more difficult. Although

COBOL permits variable names of up to 30 characters, many names were too short to

allow identification. Table 20 provides examples of data names encountered versus the

actual name (when known).

Job Control Language

Job control language (JCL) was far more important to batch program reverse engineering

than originally believed. In several instances, complex program activity was

incomprehensible without lengthy JCL analysis. JCL analysis was performed in three

phases: (a) JOB analysis, (b) JCL analysis, and (c) JCL STEP analysis. Job flow diagrams

and job step diagrams were prepared for batch programs to augment the source code

review. A program calling/called chart was prepared for on-line programs.

Methodology Assessment

Methodology application was relatively straightforward and essentially followed the steps

outlined in Chapter III. Steps involving functional and technical users were not

performed. If these resources were available, analysis time would have been reduced

significantly. For example, considerable analysis time was spent in deciphering acronyms

that functional users could have clarified immediately.

275

Table 20
Example of COBOL Data Names and Equivalent Full-Text Data Names

Equivalent full-text data name (30
Program Data Name characters or less)

EQP-SPCL-CD EQUIPMENT -SPECIALIST -CODE
CRIT -ITM-CD CRITICAL-ITEM-CODE
MNG-DIV-CD MANAGER-DIVISION-CODE
EAID-CD ?
FC ?
SHLF-LF-CD SHELF-LIFE-CODE
BGCD ?
REJ-CD REJECT -CODE
MSN-ESNTL-CODE MISSION-ESSENTIAL-CODE
WRM-IND W AR-RESERVE-MATERIEL-INDICATOR
STK-FND-CR-IND ?
DVW-NAME ?
JULI-DATE JULIAN-DATE
FUNC-CODE FUNCTION-CODE
RET-CODE RETURN-CODE
STK-NR STOCK-NUMBER
F3 ?
U-I UNIT -OF-ISSUE

Some deviation from the methodology was exercised in selecting program paragraphs for

domain model inclusion. It was not always possible to definitively categorize a program

paragraph as input, output, or transform; therefore, these paragraphs were included in the

initial list. Questionable paragraphs were later deleted during the detailed analysis phase

when the functional essence was identified.

The three levels of program review (initial analysis, structure analysis, and paragraph

analysis) supported incremental acquisition of program knowledge. The approach forced

the author to review the broad program scenario before the detailed logic.

276

Extensive paragraph analysis was not usually required to decipher the function. Database

tables and working storage data structures were often adequate to suggest the nature of

the processing. Better results would have been achieved if functional and technical

personnel had been available to add additional insight.

The most difficult part of the methodology was the interpretation of program paragraphs

and the conversion to functions. Although the preceding abstraction process reduced the

number of paragraphs to be analyzed, considerable time was required to execute the

understand-interpret-translate-describe-assign procedure for each source code paragraph

deemed to be a function.

The ability to interpret and translate functions required expert domain knowledge. The

unavailability of this knowledge resulted in gaps in the narrative activity descriptions in the

final extracted domain model. These gaps, however, were not considered fatal. The

extracted domain model represents a useful view of the target subsystem that can be

reviewed, refined, and finalized with the participation of domain-intelligent users and

technicians.

The process reverse engineering methodology was at times hampered by a lack of detailed

data structure knowledge. Limited analysis of database structure was required to

understand functional process information; this analysis was performed informally. The

program information database contains tables for file record and database table layouts,

but these were not used during the test case application. A parallel data reverse

engineering methodology would have improved the process reverse engineering effort.

Comparison of User and Derived Function Models

277

It was assumed prior to beginning the investigation that available documentation would

support an assessment of the extracted domain model. However, the test case indicated

that the results of the domain modeling exercise as augmented by the reverse engineering

of program activities resulted in a functional process description infinitely more detailed,

understandable, and useful than existing system documentation. Another objective of the

case study was to use the domain model to validate the methodology. However, the

existing domain model in the FD was so shallow that it was not suitable for methodology

validation.

Two hundred twenty-seven paragraphs were initially extracted from the 382 test case

program paragraphs. Seventy-two of these paragraphs were deleted during detailed

program function analysis because they did not equate to functional activities. Many were

upper-level program structure paragraphs that called lower level functions. These

"duplicate" paragraphs were not immediately apparent during initial paragraph analysis,

particularly when lower-level perform statements were located in upper-level paragraph

bodies.

Table 21 summarizes information relative to paragraphs extracted from programs.

278

Table 21
Paragraphs Extracted from Programs and Used in the Domain Model

Program Number of Paragraphs Paragraphs Percent Percent
name paragraphs selected used selected used
ZZLAD057 34 15 14 44.1 41.2
ZZLAD513 113 38 27 33.6 23.9
ZZLAD555 62 39 14 62.9 22.6
ZZLAI501 43 27 21 62.8 48.8
ZZLAI504 39 39 35 100.0 89.7
ZZLAI505 50 47 31 94.0 62.0
ZZLAI544 41 22 13 53.7 31.7
Totals 382 227 155 59.4 40.6

Table 22 shows the disposition of the 228 extracted paragraphs after the paragraph-to-

domain model function allocation. The majority of the program paragraphs were assigned

to a single domain model activity. In only two cases did a paragraph break out into more

than one domain model activity; these two paragraphs are not included in the total in the

table.

Metrics

In a legacy system reverse engineering project, a fundamental problem is estimating the

amount of work and time involved. Therefore, a secondary objective of this research was

to develop predictor metrics to support an estimation of the amount of time required to

reverse engineer a program.

Table 22
N umber of Program Paragraphs Allocated to
Functions

Number of
Number of paragraphs Total
functions in function paragraphs

53 1 53
9 2 18
5 3 15
2 4 8
3 5 15
0 6 0
1 7 7
1 8 8
1 9 9
1 10 10
0 11 0
1 12 12

Total 155

Candidate factors for these predictor metrics included source lines of code (SLOC),

procedure division lines of code (PDLOC), number of procedure division paragraphs

(NOP ARA), and complexity index (CI).

SLOC is the "standard" metric for estimating the amount of work related to software

279

development or software maintenance. Although SLOC is not always a good predictor, it

is understood and commonly used. PDLOC, a variation of SLOC, emphasizes the

program procedure division--the area of primary interest for process reverse engineering.

NOP ARA, also a variation of SLOC, focuses on the lowest structure level addressed by

the methodology. Developed as a part of this research, the complexity index (CI)

quantifies multiple factors that may contribute to the difficulty in reverse engineering

legacy system source code. The search for predictor metrics focused on these four

factors.

280

Table 23 summarizes test case program analysis time for various phases of the reverse

engineering effort. Three programs were not analyzed beyond the initial review stage

because they were implementation oriented and did not contain functional processes. An

exception is Program ZZLAD555: although only 40 percent of this program is

functionally oriented, an an inordinate amount of time was spent in discovering and

understanding the processing performed. In a normal reverse engineering environment,

much less time would have been spent on the program after the relevant portions were

identified. To compensate for the extra, non-productive effort, only 40 percent of the

actual analysis time is recorded in the table for the last two activities (DPSA and PF A).

Other table entries are reasonably accurate measures of elapsed clock time recorded as the

methodology steps were executed.

The analysis times for initial program review (IPR), program structure review (PSR), job

control language (JCL) review, and data flow diagram(DFD)/calling chart preparation

were relatively constant. However, JCL mean analysis time was increased significantly by

the time spent on Program ZZLAD555. IfZZLAD555 is excluded from the calculation,

the mean and standard deviation for this value are 29 minutes and 18 minutes respectively

(these values are shown in parentheses in Table 23). Preliminary analysis steps

Table 23
Summary of Program Review and Analysis Times

Program ID IPR PSR JCL DFD DPSA PFA Total SLOC PDLOC NOPARA CI
ZZLAD057 20 65 25 10 400 115 645 2054 1267 34

91
ZZLAD058 25 40 - - - - - - - - 355
ZZLAD513 30 45 65 20 590 85 835 6826 4020 113 285
ZZLAD555 35 30 185 15 400 100 765 5423 3493 62 254
ZZLAI304 20 15 - - - - - - - - 126
ZZLAI501 30 15 15 15 335 100 510 3413 2110 43 208
ZZLAI504 22 30 8 20 398 60 538 2203 1542 39 124
ZZLAI505 40 35 40 27 787 48 977 3581 2141 50 279
ZZLAI544 40 25 20 18 313 190 606 2505 1487 41

53
ZZLAI550 35 37 - - - - - - - - 145
Mean 30 34 51 (29) 18 462 100 697
Standard 7 14 57 (18) 5 156 43 170
deviation

Note: IPR=initial program review, PSR=program structure review, JCL=job control language (batch) or program call chart (on
line), DPSA=detaiied program structure analysis, PFA=paragraph function analysis; mean and standard deviation rounded to
nearest whole minute. The times shown do not include database data entry time.

N
00

282

represented a small amount of overall analysis time and could be estimated using the mean

and standard deviations.

Detailed program structure analysis (DPSA) and program function analysis (PF A)

represented the major part of the reverse engineering effort. Since SLOC, PDLOC,

NOP ARA, and CI are also presumed to influence reverse engineering time, a direct linear

relationship was hypothesized.

Scatterplots of SLOC, PDLOC, NOP ARA, and CI values and total reverse engineering

times were prepared to identify possible linear trends (see Figures 29-32). Although the

,,-..... 20 I I 00

3
0 a ~
'-" 15 - -
Q) a e y . a . -
~ 1
00 aaa

10 :!..a .-00 a >.. a -C':S

~ 5
200

I I

400 600 800

x.
1

100s SLOe

Figure 29. SLOe scatterplot.

283

,.-., 20 I I CI.l J6.2K ~ :::s
0

::r:: 0
'-'" 15 ,.... -
(]) !
S y. 0 .-
~ 1
CI.l 000 10 _00 -.-CI.l 0 ;>-. 0 ro
~

I I « ~8.5J 5
100 200 300 400

J30-, x·
1

AOO-,

100s PDLOC

Figure 30. PDLOC scatterplot.

,.-., 20 I I if.! J6.28-l I-<
:::s
0

::r:: 0
'-'" 15 I-- -

Cl.)

8 y. 0 .-
~ 1
if.! 000 10 i"- °c -.-if.! I:b ;>-. .--.
CI:S

~ ~8.5-l
5 0

I I
50 100 150

)4-, x. J13-,
1

Program Paragraphs

Figure 31. NOPARA scatterplot.

284

,-. 20 I I til _16.28~
S
0

0 ::c:
........", 15 I- -

(1) 0

.S y. 0
f-; 1
til 000 0

C .- 10 r- -
til 0

~ 0

~ c8.5~
5 0

I I
100 200 300

53~ x. 285~
1

Complexity Index

Figure 32. CI scatterplot.

number of data points is small, each of the plots showed an overall trend toward linearity.

Therefore, linear regression was selected as the statistical analysis method for

development of predictor metrics.

Source Lines of Code

Source lines of code (SLOe) were rounded to the nearest 100 lines and identified as the

regression analysis x-axis (predictor) variable. Total analysis time was converted to hours

and fractions of hours and identified as the regression analysis y-axis (response) variable.

The computed regression line formula was determined to be y = 8.3043 + 0.0089x where

y is the estimate of total analysis time required in hours, 8.3043 is the y-intercept, and

0.0089 is the slope of the regression line. The data plots and regression line are shown in

Figure 33.

285

~ c16.28~
20 I I

til

E3
0 c ::r:

'-'" y. 15 I- -
Q.) 1 ... -0
.9 CCC dPO
~

...
a·x.+ b ~o"

...
til

10 -..... 1 til

~
C C

~ c8.5~ I I
5
200 400 600 800

210 J x.
1

L680~

100s SLoe

Figure 33. Regression line SLOe.

The regression line was checked by showing the means (x = 371.4286, Y = 11.61) are on

the regression line (y = 8.3043 + 0.0089 (371.4286) = 11.61). The y-intercept equals 8

hours and 18 minutes. The variance of the regression line is 8.0176 and the standard

deviation is 2.8315. A predicted value ofy for an x value within the range ofx data values

analyzed should be within plus or minus one standard deviation 95 percent of the time.

Table 24 is the analysis of variance (ANOVA) table for the SLoe linear regression

analysis.

286

Table 24
ANOV A for the SLOe Linear Regression Analysis

Source of Degrees of Sum of Mean of
variation freedom squares squares

Regression 1 14.8194 14.8194
Error n-2 33.2864 6.6573
Total 6 48.1058

If there is a relationship between SLOe and reverse engineering analysis time, the slope of

the regression function is not equal to zero. Therefore, the null and alternate hypotheses

are:

The null hypothesis is rejected ifF* is greater than F.05 {I, n - 2} = 6.61. AS F* = 2.2260

is not greater than 6.61, the null hypothesis is rejected and it is concluded that ~l. =I:- o. It

is concluded there is a linear association between the number of source lines of code (in

1 OOs) and reverse engineering analysis time.

The regression standard error estimate is 2.5802. The coefficient oflinear determination

is 0.3081; the coefficient oflinear correlation is 0.5550. As residual points do not appear

to be randomly scattered above and below the horizontal axis, the assumption of linearity

is questionable (see Figure 34). Tests of equal variance or normality are not possible

because there are not enough data points, but the plotted points do not appear to be

equally spread. Since Se = 2.5802, all of the residuals have absolute values less than 2Se,

287

indicating no deviation from normality. As the residual for 3,600 SLOC (4.77) is within

2Se, it is not considered an outlier.

A.77~
5 UI I

CIl

ca
~ y. 0

p .- 1 0 0 CIl
(1) 000 0
~

0

L-2.83 ~ -~OO I I

400 600 800

L210~ x· L680~
1

100s SLOe

Figure 34. Residuals plot SLOe.

Confidence intervals for the slope of the regression line at the 95 percent level are

-0.0064 to 0.2421. Therefore, the predicted reverse engineering analysis time for a 3,000

line program at the 95 percent confidence level is:

Low value: y = 8.3043 + (-0.0064) (300) = 6.3843

High value: y = 8.3043 + 0.0242 (300) = 15.5643

The value predicted from the regression line is y = 8.3043 + 0.0089 (300) = 10.9743. It is

estimated that reverse engineering a 3,000-line program will take between 6 hours and 24

288

minutes and 15 hours and 36 minutes. A prediction derived directly from the regression

formula is approximately 11 hours.

Procedure Division Lines of Code

Procedure division lines of code (PDLOC) were rounded to the nearest 100 lines and

identified as the regression analysis x-axis (predictor) variable. Total analysis time was

converted to hours and fractions of hours and identified as the regression analysis y-axis

(response) variable. The computed regression line formula was determined to be

y = 8.4786 + 0.0137x, where y is the estimate of total analysis time required in hours,

8.4786 is the y-intercept, and 0.0137 is the slope of the regression line. The data plots and

the regression line are shown in Figure 35.

-- J6.2SJ CI.l
20 I I

3
0 0 ::r::
'-' y. 15 - -
0 1

.§ 000
... -

..,."",,*--0
E--

a·x.+ b
......

_1:10'"
...

CI.l

10 1 -CI.l

~ 0 0
ro

~
cS.5J I I 5

100 200 300 400

J30J X. AOOJ
1

100s PDLOC

Figure 35. Regression Hne PDLOC.

289

The regression line was verified by showing that the means (x = 228.5714, Y = 11.61) are

on the regression line (y = 8.4786 + 0.0137 (228.5714) = 11.61). The y-intercept equals 8

hours and 15 minutes. The variance of the regression line is 8.0176 and the standard

deviation is 2.83 15. A predicted value of y for a value of x in the range of data analyzed

should be within plus or minus one standard deviation 95 percent of the time. Table 25 is

the analysis of variance (ANOVA) table for the PDLOe linear regression analysis.

Table 25
ANOV A for the PDLOC Linear Regression Analysis

Source of Degrees of Sum of Mean of
variation freedom squares squares

Regression 1 12.6355 12.6355
Error n-2 35.4703 7.0940
Total 6 48.1058

The PDLOe regression analysis null and alternate hypotheses are the same as the SLOe

hypotheses:

As F* = (1.7040) is not greater than 6.61, the null hypothesis is rejected and it is

concluded that Pl. ::j::. O. It is concluded there is a linear association between the number of

procedure division lines of code (in 1 OOs) and reverse engineering analysis time.

290

The regression standard error of the estimate is 2.6635. The coefficient of linear

determinations is 0.2627; the coefficient oflinear correlation is 0.5125. As residual points

do not appear to be randomly scattered above and below the horizontal axis, the

assumption of linearity is questionable (see Figure 36). Tests of equal variance or

A.92 .J

5 I I

rn
"a .g y. 0

0 .- 1 0 0 rn
<1) 000 0 p:::

0

"-2.86
.J -100 I I

200 300 400

J 3O .J x· AOO.J
1

100sPDLOC

Figure 36. Residuals plot PDLOC.

normality are not possible because there are not enough data points, but the plotted points

do not appear to be equally spread. Since Se = 2.6635, all of the residuals have

absolute values less than 2Se, indicating no deviation from normality. As the residual for

2,100 PDLOC (4.92) is within 2Se, it is not considered an outlier.

Confidence intervals for the slope of the regression line at the 95 percent level are

-0.0128 to 0.0402. Therefore, the predicted reverse engineering analysis time for a

program with 1,500 procedure division lines of code at the 95 percent confidence level is:

Low value: y = 8.4786 + (-0.0128) (150) = 6.5586

High value: y = 8.4786 + 0.2421 (150) = 14.5086

291

The value predicted from the regression line is y = 8.4786 + 0.0137 (150) = 10.5536. It is

estimated that reverse engineering a program with a 1,500 lines of procedure division code

will take between 6 hours and 36 minutes and 14 hours and 36 minutes. A prediction

derived directly from the regression formula is 10 hours and 30 minutes.

Number of Procedure Division Paragraphs

The number of procedure division paragraphs (NOP ARA) in each program was used as

the regression analysis x-axis (predictor) variable. Total analysis time was converted to

hours and fractions of hours and identified as the regression analysis y-axis (response)

variable. The computed regression line formula was determined to be y = 8.7128 +

0.0531x, where y is the estimate of total analysis time required in hours, 8.7128 is the y

intercept, and 0.0531 is the slope of the regression line. The data plots and the regression

line are shown in Figure 37.

The regression line was verified by showing that the means (x = 54.5714, Y = 11.61) are

on the regression line (y = 8.7128 + 0.0531 (54.5714) = 11.61). The y-intercept equals to

8 hours and 42 minutes. The variance of the regression line is 8.0176; the standard

,deviation is 2.8315. A predicted value of y for a value of x within the range of data

analyzed should be within plus or minus one standard deviation 95 percent of the time.

292

r--- J6.28~
20 I I en

~
0 c :::r:

"-" y. 15 r- -...
C1) 1 c
.$ ccc C ... ,
E-< ...

a·x·+ b
...

en 0 1 10 I-- C -en ,.e. l:b
~

~ L8.5~ I I
5 0 50 100 150

)4~ x. J13~
1

Number Paragraphs

Figure 37. NOPARA regression line.

Table 26 is the analysis of variance CANOVA) table for the NOPARA linear regression

analysis.

Table 26
ANOVA Table for the NOPARA Linear Regression Analysis

Source of Degrees of Sum of Mean of
variation freedom squares squares

Regression 1 12.4946 12.4946
Error n-2 35.6112 7.1022
Total 6 48.1058

293

The NOP ARA regression analysis null and alternate hypotheses are the same as the SLOC

hypotheses:

Ho: f31 = 0

HI: f31::;t:O

As F* = (1.7543) is not greater than 6.61, the null hypothesis is rejected and it is

concluded that f31. ::;t: O. It is concluded there is a linear association between the number of

program paragraphs and reverse engineering analysis time.

The regression standard error estimate is 2.6687. The coefficient oflinear determination

is 0.2957; the coefficient oflinear correlation is 0.5116. As residual points do not appear

to be randomly scattered above and below the horizontal axis, the assumption of linearity

is questionable (see Figure 38). Tests of equal variance or normality are not possible

because there are not enough data points, but the plotted points do not appear to be

equally spread. Since Se = 2.6687, all of the residuals have absolute values less than 2Se,

indicating no deviation from normality. As the residual for 50 paragraphs (4.91) is within

2Se" it is not considered an outlier.

Confidence intervals for the slope of the regression line at the 95 percent level are

-0.0495 to 0.1557. Therefore, the predicted reverse engineering analysis time for a

program consisting of 40 paragraphs at the 95 percent confidence level is:

A.91 ~
5 I

Cf.I

~
0 ..g y. 0

0 1 ~ Cf.I 0 Q) 000
~ 0

L-1.81 ~ -5 I I

0 50 100

L34~ X·
1

Program Paragraphs

Figure 38. NOPARA residuals plot.

Low value: y = 8.7128 + (-0.0495) (40) = 6.7328

High value: y = 8. 7128 + 0.0.1557 (40) = 15.0208

150

LIB ~

294

The value predicted from the regression line is y = 8.7128 + 0.0531 (40) = 10.8368. It is

estimated that reverse engineering a 40 paragraph program will take between 6 hours and

42 minutes and 15 hours. A prediction derived directly from the regression formula is 10

hours and 48 minutes.

Complexity Index

The computed program complexity index (el) was used as the regression analysis x-axis

(predictor) variable. Total analysis time was converted to hours and fractions of hours

and identified as the regression analysis y-axis (response) variable. The computed

regression line formula was determined to be y = 7.7835 + O. 0207x, where y is the

295

estimate of total analysis time required in hours, 7.7835 is the y-intercept, and 0.0207 is

the slope of the regression line. The data plots and the regression line are shown in Figure

39.

J6.28~
20 I I ,,-..

00

!3
0 c ::x::

-.....,..; y. 15 - -
(\.) 1 c
.5 ccc ...

... tI
E-<

a·x. + b 00 c c 1 10 - -00

~
c c

~ ,8.5 ~ I I
5 0 100 200 300

,53~ x· L285.;
1

Program Complexity Index

Figure 39. CI regression line.

The regression line was verified by showing that the means (x = 184.8571, Y = 1l.61) are

on the regression line (y = 7.7835 + 0.0207 (184.8571) = 1l.61). The y-intercept equals 7

hours and 48 minutes. The variance of the regression line is 8.0176; the standard

deviation is 2.8315. A predicted value ofy for a value ofx within the range of data

analyzed should be within plus or minus one standard deviation 95 percent of the time.

Table 27 is the analysis of variance (ANOVA) table for the CI linear regression analysis.

296

Table 27
ANOV A for the CI Linear Regression Analysis

Source of Degrees of Sum of Mean of
variation freedom squares squares

Regression 1 23.1138 23.1138
Error n-2 24.9910 4.9983
Total 6 48.1058

The CI regression analysis null and alternate hypotheses are the same as the SLOC

hypotheses:

As F* = (4.6243) is not greater than 6.61, the null hypothesis is rejected and it is

concluded that ~l. 7:- o. It is concluded there is a linear association between program CI

and reverse engineering analysis time.

The regression standard error estimate is 2.2357. The coefficient of linear determination

is 0.4804; the coefficient oflinear correlation is 0.6932. As residual points seem to be

randomly scattered above and below the horizontal axis, the assumption of linearity

appears to be met (see Figure 40). Tests of equal variance or normality are not possible

because there are not enough data points, but the plotted points are nearly equally spread.

Since Se = 2.3575, all of the residuals have absolute values less than 2Se, indicating no

deviation from normality. As the residuals for CI values 208 and 279 (-3.59 and 2.72

respectively) are within 2Se" they are not considered outliers.

297

,2.72., 5 I I

0
CI.l ..-

0 ~ 0
~ y. 0 a .- 1 0

CI.l
(L) 000 0 ~

0

,-3.59., -5 I I
0 100 200 300

53., x. ,285.,
1

Complexity Index

Figure 40. Residuals plot CI.

Confidence intervals for the slope of the regression line at the 95 percent level are

-0.0040 to 0.0454. Therefore the predicted reverse engineering analysis time for a

program with a CI of 150 at the 95 percent confidence level is:

Low value: y = 7.7835 + (-0.0040) (150) = 8.3835

High value: y = 7.7835 + 0.0454 (150) = 14.5935

The value predicted from the regression line is y = 7.7835 + 0.0207 (150) = 10.8834. It is

estimated that reverse engineering a program with a CI of 150 will take between 8 hours

and 24 minutes and 14 hours and 36 minutes. A prediction derived directly from the

regression formula is 10 hours and 54 minutes.

298

Metrics Analysis Summary

Table 28 summarizes the results of the regression analysis. Note that calculations

producing variance (8.0176) and standard deviation (2.8315) are based on the y-axis

variable (reverse engineering analysis time). These values are the same for all factors and

are not included in the table.

Table 28
Summary of Regression Analysis Results

Linear
Intercept! Range of Standard Linearity correlation

Factor Slope 95%CI error coefficient coefficient
0.0640

SLOC 8.3 to 2.5802 0.3081 0.5550
0.0089 0.2421

8.5 - 0.1280
PDLOC 0.0137 to 2.6635 0.2627 0.5125

0.0402
8.7 - 0.0495

NOPARA 0.0531 to 2.6687 0.2957 0.5116
0.1557

7.8 - 0.0004
CI 0.0207 to 2.2357 0.4804 0.6932

0.0454

Based on the results of the analysis, it is concluded that the source lines of code (SLOC)

and the complexity index (CI) are reasonable prediction variables for estimating the time

required to reverse engineer a COBOL program. Of the two factors, CI has the lowest Se,

the highest coefficients oflinear determination and linear correlation, and the narrowest 95

percent confidence intervals for the regression line slope.

299

SLOC is a suitable predictor value because it is available from source code listings without

detailed analysis. CI is also a suitable predictor value, but requires detailed program

analysis before assigning the CI rating. While SLOC can be used to establish the initial

estimate of reverse engineering time, CI can be used to make a refined estimate after

completing program structure review.

At the beginning of the case study, "best guess" estimates of the time required to reverse

engineer each of the seven programs were made based on program size. Table 29

compares initial estimates, actual time, and time projected using the SLOC and CI

regression formulas.

Table 29
Comparison of Initial, Actual, and Computed Reverse Engineering Times

Initial Actual CI SLOC
Program SLOC estimate time estimate estimate
name (lOOs) CI (hours) (hours) (hours) (hours)
ZZLAD057 210 91 9.0 10.8 9.7 10.2
ZZLAD513 680 285 28.0 13.9 13.7 14.4
ZZLAD555 540 254 16.0 12.8 13.0 13.1
ZZLAl501 340 208 1l.0 8.5 12.1 11.3
ZZLAl504 220 124 10.0 9.0 10.4 10.3
ZZLAl505 360 279 13.0 16.3 13.6 11.5
ZZLAl544 250 53 10.0 10.1 8.9 10.3

The SLOC and CI regression formulas can only be used for values that fall between 2, 100

and 6,800 lines of code and for complexity indices that fall between 53 and 285 (i.e.,

within the observed ranges on which the regression analysis was based). Of the 59

programs of the CMD subsystem, at least 30 fall within the SLOC ranges. The SLOC

300

estimator could therefore be used to project reverse engineering time for these programs.

Programs with SLOC and CI outside these ranges must be reverse engineered and the

results used to update the regression analysis in order to provide a broader estimation

range.

Methodology Changes

The major change to the methodology was the additional analysis of batch program JCL.

The process used in the test case was:

1. JCL listings were searched for STEP statements identifYing test case programs (e.g.,

//STEPOlO EXEC PGM=ZZLAD057).

2. Identification of the JCL stream was extracted from the JCL header (e.g., ZZJAD202).

3. JOB listings were searched for occurrences of the JCL header name, with a P

replacing the J (e.g., ZZJAD202 = ZZP AD202).

4. JOB and JCL listings were printed and placed with program listings.

The JOB stream comments often contained a short description of the program and

identification of the files produced. File notes did not indicate which programs in a series

created the files; this information was obtained from individual STEP DD statements.

The JOB and STEP JCL statements were used to prepare job flow diagrams and

input/output data flow diagrams. In a full-scale application of the methodology, the

sequence would be reversed to identifY individual programs from JOB statements.

In addition to showing methodology feasibility, the test case was used to evaluate the

adequacy of the program information database. Table changes were:

301

1. Component (Table 4) - A six position numeric attribute, Avg-Data-Name-Length, was

added.

2. Function (Table 17) - Text-Function was changed to a Memo field.

3. Narrative (Table 19) - The table was deleted. A narrative field was contained in

Function.

4. Narrative-Function (Table 20) - The table was deleted.

5. Record (Table 29) - A 30-character attribute, Record-Name; was added. Layout

Record-Text.was deleted.

6. Table (Table 32) - Name-Table-Actual and Table-Prefix were deleted. An eight

character attribute, Data-View-Name, was added.

Two other database changes were identified but not implemented: (a) the line numbers of

CALL, LINK, or EXECUTE CICS LINK statements should be recorded in the

Component-Component table (Table 6) to facilitate statement location during detailed

program analysis, and (b) a one-character field should be added to the Paragraph table

(Table 23) to record the disposition of a paragraph selected from a program (X = not

used, M = paragraph combined with at least one other paragraph to form a single function,

S = paragraph assigned to a single function, and C = paragraph was split into more than

one function).

302

Summary of Results

The process-oriented reverse engineering methodology was demonstrated to be both

feasible and practical in recovering functional information from legacy system COBOL

source code. The steps outlined in the methodology can simplify the complex activity of

converting program code to functional information. The test case also demonstrated the

critical importance of involving knowledgeable functional people in reverse engineering

activities, during both the preparation of a high-level domain model and the interpretation

and assignment of extracted program paragraphs to domain model activities.

Difficulties in understanding programs because of limited data structure knowledge

confirmed the belief that a comprehensive reverse engineering methodology must include a

data structure recovery component to complement the process recovery component.

The program information database implemented to support the test case was useful in

collecting and managing the data related to programs and functions. The program

implementation model automatically produced from the database after completion of

program structure analysis dramatically reduced the need to refer to program source code.

Although not produced during the test case application, the functional process model

(domain model) could have been maintained in the database and automatically printed.

303

Elements of the domain model stored in a hierarchical structure could easily be extracted

at various detail levels to support documentation efforts or to produce functional

requirement documents for a system replacement project.

Two possible metrics for predicting work effort associated with reverse engineering were

isolated and shown to produce reasonable projections. Although source lines of code

(SLOC) was thought to be an inaccurate estimator, a reasonable linear relationship was

shown to exist. A complexity index (CI) computed using information about individual

programs was also shown to have a linear relationship with reverse engineering time. The

SLOC regression formula can be used to estimate the effort required to reverse engineer a

system by calculating estimated time for individual programs in the system. The

advantage of this predictor is that it can be found easily by counting lines of code and

without any other program analysis. The CI predictor requires more detailed program

knowledge, but can be used to refine initial program reverse engineering time estimates

based on SLOC.

Confidence intervals at the 95 percent level for both SLOC and CI were also computed.

Although the sample size used in the test case was small, there is a reasonable expectation

that the results will be corroborated with the application of the methodology to an actual

system.

Conclusions

Chapter V

Conclusions

The six objectives established for the investigation in Chapter I were satisfied with the

design and application of the process reverse engineering methodology described in

Chapters III and IV. These objectives were:

1. Develop a useful, applied approach to high-level design information recovery.

2. Support the validity of the approach by reference to relevant theory.

3. Demonstrate methodology feasibility by using a case study.

4. Demonstrate methodology utility by using a case study.

5. Assess the approach for practical application.

6. Form a foundation for future research.

A comprehensive review of the literature and research in the areas of software forward

engineering, reengineering, maintenance, programming languages, program understanding,

and reengineering and reverse engineering tools provided the foundation for developing a

process reverse engineering methodology. To limit the scope of the investigation, data

reverse engineering was excluded. The methodology was designed to recover functional

design information from legacy system COBOL source code in the Air Force logistics

304

305

systems environment; it was developed by combining top-down information engineering

techniques with conventional bottom-up program analysis techniques. The top-down

component was designed to replace domain knowledge that was lost during forward

engineering. The bottom-up component was designed to identify and separate

implementation dependent program components from functional components in order to

reduce the amount of source code requiring interpretation.

The methodology was successfully applied to a test case composed of actual programs,

demonstrating the feasibility and practicality of the approach. A prototype program

information database as constructed and populated to support the methodology. The

database was extremely useful in recording and manipulating the large amount of test case

program information. Using the methodology, recovered functional information was more

accurate, detailed, and useful than the original formal system documentation.

The methodology is detailed in its approach and can be used to train junior analysts.

Properly trained junior analysts can perform much of the up-front reverse engineering

work, while the critical part of the methodology (i.e., interpreting source code paragraphs

and developing domain model functions) requires more experience. Experienced analysts

can then perform the more difficult aspects of the reverse engineering methodology.

Although difficult to verify, the methodology is believed to be more efficient than an

unstructured "brute force" approach to reverse engineering because it provides for

306

planning, measurement, and control and separates the process into several distinct phases,

each with well-defined outputs.

As program source lines of code were not believed to be a satisfactory indicator of reverse

engineering difficulty, the following factors were evaluated as possible predictive metrics:

procedure division source lines of code, number of program paragraphs and a program

complexity index. Linear relationships were revealed between all factors and reverse

engineering analysis time. Two metrics, source lines of code and the program complexity

index, were found to be more accurate predictors. Source lines of code were judged to be

reasonably accurate for initial estimates of program reverse engineering time. The

complexity index, which requires more detailed program analysis to compute, was judged

to be more accurate for revised estimates.

To keep the investigation at an achievable level, the reverse engineering methodology was

limited to a single application domain (military logistics), a single programming language

(COBOL), an ffiM MVS/CICS operating system environment, and a small case study.

Results may differ in other application domains or environments, or with a larger test case.

The number of reverse engineered programs was smaller than anticipated--three programs

determined to be non-functional were discarded after initial analysis. In addition, the test

case programs did not include all of the features addressed in the methodology (e.g., on

line screens, and CICS files). Therefore, some components of the methodology were not

exercised.

307

A major constraint was the unavailability of functional area specialists to supply domain

knowledge during methodology application. The literature review clearly showed that

missing domain knowledge in source code was the principal impediment to reverse

engineering. At the end of the test case, some activities remained undefined or

speculative. These results were not considered a reflection of a weakness in the

methodology, however, because the extracted domain model must be validated by the

functional user community before it can be considered complete.

Implications

The proposed methodology is believed to be the first practical, start-to-finish process

reverse engineering approach to be described. Unlike research projects focused on

automatic reverse engineering methods seldom suitable for practical use, the methodology

was designed for application by working reverse engineers. The utility of the

methodology was demonstrated by its application to a test case of nearly 40,000 lines of

source code.

Reverse engineering is so tightly coupled with human intelligence that current artificial

intelligence and knowledge-based techniques are not able to automatically reverse

engineer source code. For reverse engineering to be successful, functional domain experts

must provide missing domain knowledge.

308

Reverse engineering techniques must be tailored to specific environments. Different

operating systems, programming languages, file structures, and database management

systems will require minor methodology modifications. The fundamental concepts of the

methodology, however, are applicable to a variety of environments.

Reverse engineering case studies oflarge legacy systems are rare. This investigation

contributes to the information systems field by presenting the results of a formal case

study. Sufficient case study documentation allows the research to be duplicated for

verification purposes or to extend the methodology.

The major contribution of this research is a new approach to reverse engineering that

recognizes the critical importance oflost domain knowledge. The creation of a structured

domain model as a preliminary reverse engineering activity before source code analysis is a

new reverse engineering approach.

Recommendations

Process reverse engineering for design information recovery offers many opportunities for

further study:

1. Applying the methodology to a small system to further validate results.

2. Implementing the manual methodology as a computer-based tool to enhance its

effectiveness in reverse engineering large systems. A computer-based source code

scanner capable of performing initial analysis and program structure review appears to

be feasible and could significantly reduce program analysis time. Providing the ability

to scan source code paragraphs in order to highlight significant information and

automatically enter it into a database could further reduce analysis time.

309

3. Testing the teachability of the methodology by designing an experiment wherein two

groups of reverse engineers attempt to recover design information from a small

system. One group would be given formal training in the methodology, the other

would not. The reconstructed designs and the amount of time required to complete

the designs would be compared to determine if learning took place and to demonstrate

the effectiveness of the methodology training.

4. Completing the methodology by incorporating a data reverse engineering component.

The data reverse engineering component could be satisfied by integrating an existing

data modeling methodology into the process methodology or by applying the

information engineering approach to methodology design.

S. Refining the source lines of code and complexity index regression models with

additional data to improve their value as reverse engineering predictor values. This

refinement could be combined with larger test cases from different domains.

Summary

The extent of the problem of aging information systems is reflected in the estimate that

there are 100 billion lines of legacy source code worldwide, 80 percent written in

COBOL. In the United States alone, approximately $30 billion per year is spent on

maintaining legacy system code. More people are maintaining legacy system code than

developing new code.

310

Investment in legacy system software is substantial in terms of original development costs,

long-term maintenance costs, and embedded business knowledge. Legacy systems are

vital elements of production in many organizations and are often the only complete and

accurate source of business rules.

As software ages it begins to deteriorate as new functions are added and old functions are

modified. Each software change makes the next change more difficult. Maintenance costs

continue to increase until system operation is economically unsound or ceases.

Eventually, the software must be replaced.

Legacy system replacement is difficult because of cost, time, and risk. Of these three

factors, the risk of lost functionality in replacement systems is considered to be the most

significant. As much as 90 percent of the replacement system functionality is likely to be

the same as existing system functionality. A necessary first step in system replacement is

an analysis of the existing system to ensure that functionality is included in the new system

or intentionally eliminated.

Reverse engineering, the extraction of information at a level above program source code,

is based on the need to understand software for maintenance and system replacement

purposes. The difference in reverse engineering for maintenance and for replacement is

primarily one of degree. Reverse engineering for maintenance requires precision; reverse

engineering understanding for replacement requires more abstract understanding.

311

Programming languages consist of two components: syntax. and semantics. Syntax.

specifies the way the elements of the language are used together to create valid

statements. Semantics is the meaning associated with the syntactic structure.

Programming language syntax. is much simpler than natural language syntax.. There is also

a corresponding decrease in the semantic context. Because it has limited semantic

content, legacy system source code is difficult to understand.

Program understanding (i.e., reading a program to extract its semantic content) is difficult

because program structure, function, and purpose are not mutually exclusive nor

collectively exhaustive. Program complexity exists in three forms: (a) logical- the

number of possible paths through a program, (b) structural - the number of modules and

their interrelationships, and (c) psychological - the characteristics of software that make it

difficult for humans to understand (e.g., the number of IF statements, module size, and

non-normal exits from decision statements).

A critical element in both forward and reverse engineering is semantic knowledge of the

application domain. During the beginning phases of information systems development, a

great deal of domain knowledge is necessary to describe functional requirements. As

systems development progresses, this semantic domain knowledge is replaced by technical

implementation knowledge. Unless domain knowledge is captured in life cycle

documentation (e.g., functional descriptions, systems specifications, user manuals), it is

lost during system implementation.

312

The limited semantic knowledge contained in programming languages does not allow

retention of domain knowledge with source code except in the form of program

comments. The universal reluctance of system developers to prepare documentation and

programmers to prepare source code comments contributes to the problem of functional

knowledge recovery.

System and program documentation is almost universally inadequate--it does not contain

the semantic knowledge used to build a system, and more often describes the system as it

was implemented in technical rather than functional terms. When source code is modified,

the documentation is seldom updated even in cases where the original documentation

contained domain knowledge. Within a relatively short period of time, system

documentation and source code differ in existing system semantic content.

The problems associated with aging legacy systems began to be recognized in the late

1980s and early 1990s and became a driving force in reverse engineering research.

Because of the massive amount of legacy system code in existence, research on reverse

engineering focused on automated or computer-aided solutions. Artificial intelligence and

knowledge-based reverse engineering techniques were extensively explored, and were

found to be inadequate except for small programs with simple logic. Other reverse

engineering techniques are more properly classified as reengineering techniques; they do

not abstract knowledge about software systems at a level higher than program code.

313

A major conclusion resulting from a comprehensive review of the literature in the area is

that reverse engineering, like original software development, is primarily a human activity;

automatic reverse engineering of functional design information from program source code

is an unsolvable problem for a computer. Source code is incomplete and must be

augmented with the domain knowledge lost during systems development.

The domain analysis-based process reverse engineering methodology described in this

research recognizes the need to replace missing domain knowledge. The top-down

component of reverse engineering--the functional domain model produced with the

assistance of knowledgeable users--serves to outline high-level functional key areas and

tasks represented in source code. The bottom-up component of reverse engineering--the

extraction of domain oriented program components--is guided by the structure of the

domain model. In effect, the hierarchical structure of the domain model provides target

slots into which low-level source code activities can be placed.

Program component extraction is accomplished in two steps. The first step consists of

preparing a program structural model that identifies major inputs, outputs, and

connectivity with other programs. Explanatory program header comments and in-line

program paragraph notes are extracted and recorded in a program information database.

Non-implementation dependent program paragraphs are extracted and stored in the

program information database. The database is used to automatically prepare the program

structure model. The program structure model reduces the need to work from source

314

code and is the first level of abstraction above the program level. The second step consists

of using the program structure model to convert program paragraphs to their functional

activity equivalents. This conversion is accomplished with the assistance of both

application domain specialists and information system technicians. Functional activities

and their narrative descriptions are then assigned to the appropriate structure within the

top-down domain model. The completed domain model is verified with functional users

and modified as required to present a functional description suitable for specifying a

replacement system.

A prototype program information database was developed to support the methodology.

The process reverse engineering methodology was evaluated against a test case made up

of real programs. The results of the test case were extremely positive and demonstrated

the approach feasibility. Two metrics suitable for predicting the amount of time required

to reverse engineer a program were identified and evaluated.

Reverse engineering legacy system source code is, without question, a difficult task further

complicated by poor documentation, programming, and maintenance practices. There is

ample evidence to suggest that new systems being developed are not significantly better

than those developed 10,20, and 30 years ago; they are the legacy systems of tomorrow.

There is a continuing and perhaps critical need for information technicians to learn and

apply effective reverse engineering skills. Information system technicians may need to

become specialists in reverse engineering--a field that will be identified as "software

gerontology. "

Appendix A

Glossary

315

316

Abstraction. A high-level representation made up of words and pictures at a level higher
than a system and that accurately reveals the system, its components (data and
function), and their interrelationships (Pfrenzinger, 1992).

Adiabatic. The volumetric compressibility/expandability of any aspect of the program
information space with minimum loss of dependency information (Khan, 1994).

Application (data processing). All the functionalities used for a particular, identifiable, and
discrete purpose (Grumann & Welch, 1992).

Architectural design (preliminary design, software product design). Identifies the software
components, decoupling and decomposing them into processing modules and
conceptual data structures, and specifying the interconnections among components
(Fairley, 1985).

Call graph. A diagram that identifies the modules in a system or computer program and
shows which modules call one another (ANSIlIEEE Std 610.12, 1990).

Computer program. A combination of computer instructions and data definitions that
enable computer hardware to perform computational or control functions
(ANSIlIEEE Std 610.12, 1990).

Concept phase. The period of time in the software development cycle during which the
user needs are described and evaluated through documentation (i.e., statement of
needs, feasibility study, system definition) (ANSIlIEEE Std 610.12, 1990).

Data flow diagram. A diagram that depicts data sources, data sinks, data storage, and
processes performed on data as nodes, and logical flow of data as links between the
nodes (ANSIlIEEE Std 610.12, 1990).

Descriptiveness. The extent to which software contains information regarding its
objectives, assumptions, inputs, processing, outputs, components, revision status, etc.
(peercy, 1981).

Design. Identifies software components (functions, data streams, and data stores)
specifying relationships among components, specifying software structure,
maintaining a record of design decisions, and providing a blueprint for the
implementation phase (Fairley, 1985).

Design Recovery. A subset of reverse engineering in which domain knowledge, external
information, and deduction or fuzzy reasoning are added to the observations of the
subject system to identify "meaningful" higher-level abstractions beyond those
obtainable directly by examining the system itself (Cross, Chikofsky & May, 1992).

317

Detailed design (software design specification). Concerned with how to package the
processing modules and how to implement the processing algorithms, data structures,
and interconnections among modules and data structures (Fairley, 1985).

Directed graph. A graph in which direction is implied in the internode connections
(ANSIlIEEE Std 610.12, 1990).

Domain. A coherent set of systems that exhibits common features and functionality across
existing and proposed instances. A domain may be defined as a vertical or horizontal
component within a larger context, (e.g., window systems are a horizontal domain,
microwave instrument firmware is a vertical domain) (Ogush, 1992).

Domain Analysis. The process of identifying and organizing knowledge about some class
of problems--the problem domain--to support the description and solution of those
problems (Arango & Prieto-Diaz, 1991).

Extraction (in reverse engineering). The process of extracting parts of a program, such as
the extraction of the call tree or program slice; also involves the choice of particular
modules to be examined or particular program paths (Howden & Pak, 1992).

Flow chart. A control flow diagram in which suitably annotated geometrical figures are
used to represent operations, data, or equipment and arrows are used to indicate the
sequential flow from one to another (ANSIlIEEE Std 610.12, 1990).

Forward engineering. The traditional process of moving from high-level representations
and logical, implementation of a system; follows a sequence from the analysis of
requirements through the design, and finally to an implementation (Cross, Chikofsky
& May, 1992).

Functional decomposition. A type of modular decomposition in which a system is broken
down into components that correspond to system functions and subfunctions
(ANSIlIEEE Std 610.12,1990).

Functional requirement. A requirement that specifies a function that a system or system
component must be able to perform (ANSIlIEEE Std 610.12, 1990) ..

Graph. A diagram or other representation consisting of a finite set of nodes and internode
connections called edges or arcs (ANSIlIEEE Std 610.12, 1990).

Hierarchical decomposition. A type of modular decomposition in which a system is
broken down into a hierarchy of components through a series of top down
refinements (ANSIlIEEE Std 610.12,1990).

Implementation. Translation of design specifications into source code, and debugging,
documentation, and unit testing of source code (Fairley, 1985).

Job control language. A language used to identify a sequence of jobs, describe their
requirements to an operating system, and control their execution (ANSIlIEEE Std
610.12, 1990).

318

Maintenance. The process of modifying a software system or component after delivery to
correct faults, improve performance or other attributes, or adapt to a changed
environment (ANSIlIEEE Std 610.12,1990).

Module. A set of contiguous computer language statements which has a name by which it
can be separately invoked (Peercy, 1981).

Morphogenic. Structure changing (Buckley, 1972).

Morphology. The study of structure or form employing a definite behavioral approach
and methodology (Sage, 1977).

Morphostatic. Structure preserving (Buckely, 1972).

Narrow spectrum language. A language that covers only a limited range of abstractions;
usually intended for a particular phase of development (Keller & Nance, 1993)

Partitioning. Dividing or disaggregating an issue into parts such that it can be more
effectively represented or more easily understood through a description of the parts
(Sage, 1977).

Program. A description of a method of computation that is expressible in a formal
language (Partsch & Steinbrtiggen, 1983).

Program plan. An abstract representation of an algorithmic structure; it identifies the
building components of an algorithm in terms of a set of atomic program elements; it
also identifies the proper arrangement of components (Harandi & Ning, 1988).

Preliminary design. The process of analyzing design alternatives and defining the
architecture, components, interfaces and timing and sizing estimates for a system or
component (ANSIlIEEE Std 610.12, 1990).

Program scheme. The representation of a class of related programs; originates from a
program by parameterization. Programs can be obtained from program schemes by
instantiating the scheme parameters (Partsch & Steinbrtiggen, 1983).

Program slicing. The process of stripping a program of statements without influence on a
given variable at a given statement; slices are generally not contiguous pieces, but
contain statements scattered throughout code (Weiser, 1982).

Recapture (technologies). The attempt to recover the original design in an existing
software system by using reverse engineering and various program-understanding
tools (Muller, Tilley, Orgun, Corrie, & Madhavji, 1992).

Redesign. Improving an existing system by examining the functionality and making
enhancements and modifications without regard to the existing code (Ochs, 1993).

Redevelopment. Using an essential view of an information system to construct an
improved system (Ochs, 1993).

319

Redocumentation. The production of a semantically equivalent representation (often
paper based) of the target system at whatever level of abstraction is being addressed
(Frazer, 1992).

Reengineering. Software engineering activities designed to effect the transformation of
existing systems in order to achieve conformity with prevailing programming
standards, to implement in high-order languages for easier maintenance, to rehost to
other hardware platforms, or to retarget to other computer system architectures;
usually initiated to transform existing "bad" systems to new "good" systems (Yu,
1991).

Requirements analysis. The process that identifies the basic functions of the software
component in a hardware/software/people system; emphasis is on what the software is
to do and the constraints under which it will perform its function (Fairley, 1985).

Requirements specification. A document that specifies the requirements for a system or
component. Typically included are functional requirements, performance
requirements, interface requirements, design requirements and development standards
(ANSIlIEEE Std 610.12, 1990).

Restructuring. The transformation of a software system from one representation to
another, usually at the same relative abstraction level, while preserving the subject
system's external behavior (i.e., functionality and semantics) (Cross, Chikofsky &
May, 1992).

Reuse. Software engineering activities which focus on the identification of reusable
software for straight import, reconfiguration, and adaptation for new computing
system applications (Yu, 1991).

Reverse engineering. 1. Taking existing programs and their associated file and database
descriptions and raising their design objects from the implementation ("how") level to
the specification ("what") level of design (Bachman, 1988). 2. The process of
analyzing a subject system in order to identifY the system's components and their
interrelationships and to create representations of the system, possibly at a higher
level of abstraction (Cross, Chikofsky, & May, 1992). 3. The process of gaining a

320

basic understanding of a legacy system; the objective is to identify all components of
the system and understand what the system does in business terms (Connal & Bums,
1993). 4. The process of taking existing applications (database and programs) and
recycling them into a format that can be forward engineered (Kerr & McGovern,
1991). 5. The process of transforming or moving from one level of description of a
system to a level which is regarded as more abstract or "earlier" in terms of the
standard life cycle (Lano & Haughton, 1994). 6. A process that uses existing code to
extract and document a higher level model of the as-built information system (Ochs,
1993). 7. Software activities pertaining to computer-aided extraction of
specifications, design, and software components from existing software systems;
implies derivation of abstract specifications from existing "good"" software systems
and usually includes transverse engineering steps (Yu, 1991).

Semantics. The relationships of symbols or groups of symbols to their meaning
(ANSIlIEEE Std 610.12, 1990).

Software. The programs and documentation which result from a software development
process (Peercy, 1981).

Software development process. The process by which user needs are translated into a
software product. The process involves translating user needs into software
requirements, transforming the software requirements into design, implementing the
design in code, testing the code, and sometimes installing and checking out the
software for operational use (ANSIlIEEE Std 610.12, 1990).

Software documentation. The set of requirements, design specifications, guidelines,
operational procedures, test information, problem reports, etc., which in total form
the written description of the programs(s) from a software development process
(Peercy, 1981).

Software engineering. The application of scientific principles to: (1) the orderly
transformation of a problem into a working software solution, and (2) the subsequent
maintenance of that software through the end of its useful life (Davis, 1988).

Software psychology. The study of human performance in using computer and
information systems; its goal is to facilitate the human use of computers
(Shneiderman, 1980).

Software system. All the elements, such as the source code, the JCL for constructing and
running the system, databases, object code, documentation, design information,
requirements and specification details; it is also the knowledge and expertise of the
analysts and programmers who developed the system plus the knowledge and
expertise of the maintenance programmers who are carrying out the various
maintenance tasks in the continuing evolution of the system (Munro, 1992).

321

Source code. Computer instructions and data definitions expressed in a form suitable for
input into an assembler, compiler, or other translator (ANSIlIEEE Std 610.12, 1990).

Source program. A computer program that must be compiled, assembled, or otherwise
translated in order to be executed by a computer (ANSIlIEEE Std 610.12, 1990) ..

Specification. A recorded document of any software life-cycle activity (Cross, Chikofsky
& May, 1992).

Statement. In a programming language, a meaningful expression that defines data,
specifies program actions, or directs the assembler or compiler (ANSIlIEEE Std
610.12, 1990).

Structure. A hierarchy of information sets in which the elements at each level are related
(ordered) in terms of either sequence, alteration, repetition, concurrency or recursion
(Orr, 1981).

Structure chart. A diagram that identifies modules, activities or other entities in a system
or computer program and shows how larger or more general entities break down into
smaller, more specific entities (ANSIlIEEE Std 610.12, 1990) ..

Structural abstraction. The process of making simplifying reductions in program
structures; it can be described in terms of sequences, branching substructures, and
loops. It can also be described in terms of basic program structures: sequencing,
conditional branching, and iteration (Howden & Pak, 1992).

Syntax. The structural or grammatical rules that define how the symbols in a language are
to be combined to form words, phrases, expressions, and other allowable constructs
(ANSIlIEEE Std 610.12, 1990).

System. A collection of components organized to accomplish a specific function or set of
functions (ANSIlIEEE Std 610.12, 1990).

System life cycle. The period of time that begins when a system is conceived and ends
when he system is no longer available for use (ANSIlIEEE Std 610.12, 1990).

Teleology. The study of the purpose of things; considers a system to be organized as a set
of elements directed towards the realization of goals (Karakostas, 1990).

Understandability. The extent to which the purpose and organization of software are clear
to the reviewer (Peercy, 1981).

Wide spectrum language. A language in which all levels of abstraction from system
requirements to programs are expressible (Keller & Nance, 1993).

Appendix B

Reverse Engineering Methodology
Conceptual Model

Data Flow Diagrams
and

Process Descriptions

322

I Functional
Organization Knowledge

Personnel

Legacy
System

Managers

System
Information

Project
Requirements

Reverse
Engineer

system
o

DFD Context diagram

Project
Plan

Reverse
Engineered

Model

Managers

MIL-SID
Document

w
IV
w

Legacy
System

Component
Info

Project

Managers I Requirements

Organ
Personnel

Legacy
System

Documentation
Knowledge

Documentation

Project
Plan

Component
Info

Document
Info

Managers

Domain
Model

Organ
Personnel

Legacy
System

System
Info

Analysis Results

Extracted
Design .

Component
Info

Level 0 Diagram

Component Info

Organ
Personnel

Domain Model

'--__ ---I' Functional
Knowledge

Extracted
Design Info

Component
Details

unctional
User

MIL-STD-
498

Document

Project
Team

w
~

Project
,----...,. Requirements

Managers I ~ I

Legacy
System

Svstem Info

System Info

Component
Info

Plan Input Project Plan ~ I Managers I

Input

RE Repository

Component
Text

Reference
Listing

Library

RE Repository

Source
Code Text

Component
Info

Metrics

Contacts

DFD 1 - Plan reverse engineering project

Component Rating

Plan

Available
Personnel

...---.,1 Managers

w
tv
VI

Legacy
System

Target
System
Data

Project

Managers I I Requirements

Target System Description

Obiectives

Scope

DFD 1.1 - Initiate project

Constraints

w
N
0\

327

1.1.1 IdentifY Target System. The system to be reversed engineered is clearly identified
using the project requirements directive and available legacy system information.

1.1.2 IdentifY Project Objective. The reverse engineering project objectives are identified
from the project requirements directive. The objective is clearly stated to ensure the
project team understands why the project is being undertaken and what the expectations
are.

1.1.3 Determine Project Scope. The scope of the project is determined from the project
requirements directive and is clearly specified to ensure the project team understands the
boundaries.

1.1.4 IdentifY Project Constraint. Constraints, such as time allotted for the project,
required completion data, budget, number of personnel to be assigned, and similar
limitations are identified from the project requirements directive.

1.1.5 Identify Project Deliverable. The format and content of the final project deliverable
is identified from the project requirements directive. The deliverable requirement is
described in sufficient detail to allow the project team to prepare the final document.

Managers I JCL lilllr-I

Run Unit List

Program Info

Program

Program

Program

Program
Type

Program
Class

DFD 1.2 - Identify system components

Library

System
Structure
Diagram

Component

w
tv
00

329

1.2.1 Identify Run Unit. Individual batch system run units (jobs) for the specified system
are identified from available operations documents and program libraries.

1.2.2 Identify Component. Individual components (programs) of the target system jobs
are identified from available documentation or with the assistance of operations personnel.
On-line programs are identified by extracting program identifiers from CICS tables and
program libraries.

1.2.3 Classify Component. Components are classified as programs or subprograms
according to their system use.

l.2.4 Determine Component Type. Component types (e.g., batch, on-line) are
determined by examining the general structure of a program or by its location in a
program library.

1.2.5 Create Subsystem Structure. A preliminary model of the hierarchical program
structure is created by diagramming the execution sequence of batch programs and the
calling structure of on-line programs.

Legacy
System

Source
Code

JCL

Copybook

Database
Table

DFD 1.3 - Organize components w
w
o

331

1.3.1 Copy Source Code. System components are copied from the mainframe system in
. TXT format as individual files and stored on electronic media.

1.3.2 Copy Job Control Language (JCL). The JCL for the target system is copied from
the mainframe system in . TXT format as individual files and stored on electronic media.

1.3.3 Copy Copybooks. Copybooks contruning standard record layouts and other
commonly used data structures are copied from the mainframe system in . TXT format as
individual files and stored on electronic media.

1.3.4 Copy Database Table Descriptions. Database table descriptions (data structure
layouts) are copied from the mainframe system in . TXT format and stored on electronic
media.

1.3.5 Print Reference Listing. Documentation in .TXT files are converted to personal
computer word processing files and formatted for printing. Small font size and two
column printing is used to reduce the volume of printed material. Individual files are
retained in the word processing format for later review.

Source Code Text Comments

Descriptive Data

Size Info

DFD 1.4 -Record component information

1-0 Data Link Data

w
w
N

333

1.4.1 Extract Descriptive Information. Basic descriptive data for a system component is
extracted from its reference listing and recorded in the reverse engineering (RE)
repository. Header comments, date written, number of modifications, number of authors,
and similar information is recorded.

1.4.2 Extract Size Information. Size information is extracted from a component reference
listing and recorded in the RE repository. Size information includes information such as
source lines of code, data division lines of code, and procedure division lines of code.

1.4.3 Extract Input and Output Details. Input and output details are extracted from a
component reference listing and recorded in the RE repository. Information collected
includes the number of files accessed, number of reports generated, number of screens
associated with the component, and number of accessed database tables.

1.4.4 Extract Linking Information. The number oflinks (calling/called relationships) is
extracted from a component reference listing and recorded in the RE repository.

Source Code Text

Structure Rating

Comment
Rating

DFD 1.5 - Survey components

Name Rating

w
w
~

335

1.5.1 Assess Component Structure. A component reference listing is used to assess the
degree of program structure. The number of GO TO statements used, the number of
PERFORM statements used, and the total number of COBOL paragraphs in the
component are used to arrive at a rating stored in the RE repository.

1.5.2 Assess Component Comments. A reference listing is used to count the number of
comment lines in a component's source code. The number of in-line comments and the
information content of the comments are used to arrive at a rating which is stored in the
RE repository.

1.5.3 Assess Naming Conventions. A reference listing is used to assess the uniformity
and clarity of both variable names and paragraph names in a component's source listing.
COBOL names may be 30 characters long. The average number of characters in variable
and COBOL paragraph names and an assessment of the name meanings is used to assign a
rating stored in the RE repository.

1.5.4 Assign Complexity Index. Structure, comment, and naming ratings are retrieved
from the RE repository and used with other component details to calculate a preliminary
complexity index for each target system component. The complexity index is stored in the
RE repository.

Managers

Domain Specialist

Functional Technician

Available Personnel

Component

General
Component
Info

Name Rating

DFD 1.6 -Estimate organization resource requirements w
w
0\

1.6.1 Identify Domain Specialist. Managers and functional users are interviewed to
identify organizational personnel capable of providing expert domain knowledge to the
reverse engineering team. Depending on the complexity of the target system, several
specialists may be identified for each major domain area.

337

1.6.2 Identify Functional Technician. Managers and functional users are interviewed to
identify technical personnel with the greatest functional and technical knowledge of the
target system. Maintenance programmers are good candidates for providing technical
support to the reverse engineering team.

1.6.3 Estimate Personnel Required. The amount of time required of organizational
personnel is estimated based on the complexity of the target system components and the
application domain. Time requirements are based on creating the application domain
model and periodic meetings with reverse engineers to discuss functional aspects of source
code.

Component
Component
Details

Complexity
Index

Personnel
Resource Estimate

Target System Description

Obiectives

Scope

Deliverable Format

Constraints

Metrics

Metrics

Resource
Estimate

Projected
Analysis
Time

Projection

Consolidated
Projection

DFD 1. 7 - Prepare project plan

Project
Plan

Project
Plan

Managers

Project
Team

w
w
00

1.7.1 Review Component. Target system component details are reviewed to establish
data upon which to base resource estimates. Preliminary survey complexity indexes,
component size information, and metrics derived from previous reverse engineering
projects are used to project the resources required to reverse engineer a system
component.

339

1.7.2 Consolidate Resource Projection. Projected resource requirements for individual
components are consolidated to form an overall projection of the required reverse
engineering effort.

1.7.3 Prepare Work Schedule. The consolidated resource projection is combined with
personnel resource estimates to prepare a work schedule to complete the reverse
engineering project.

1.7.4 Write Project Plan. The target system description, objectives, scope, constraints,
deliverable format, and work schedule are used to write the project plan. The plan is
delivered to organizational management and provided to the reverse engineering team.

Documentation Knowledge

Managers
I ..

Documentation
Knowledge

FD Description

SS Description

SSS
Description

US Description

DFD 2 -Locate project documentation

MM Description

UM
Description

,

DB Description

w
~ o

341

2.1 Identify Requirements Documentation. Organizational personnel are interviewed to
determine the existence and location of target system requirements documentation. In the
military environment, administrative system documentation requirements are specified in
Department of Defense Standards (before 1995 DOD-STD-7935 or DOD-STD-7935A,
the predecessor to MIL-STD-498).

2.2 Identify Preliminary Design Document. Organizational personnel are interviewed to
determine the existence and location of a preliminary design document. Legacy system
design specifications are typically recorded in a system specification (SS). The SS is
normally a life cycle document.

2.3 Identify Detailed Design Document. Organizational personnel are interviewed to
determine the existence and location of a detailed design document. In a simple system,
all design specifications may be contained in an SS. In more complex systems, each
subsystem design is documented in a separate subsystem specification (SSS). The SSS is
usually a life cycle document.

2.4 Identify Program Design Document. Organizational personnel are interviewed to
determine the existence and location of a program design specification. Depending on the
age of the legacy system, this information may be found in a program specification (PS) or
a software unit specification (US). Individual program specifications may be presented in
separate documents or in separate sections of a single document. The PS and the US are
not normally life cycle documents.

2.5 Identify Program Maintenance Manual. Organizational personnel are interviewed to
determine the existence and location of a program maintenance manual (MM). The MM,
a life cycle document, is used to support ongoing system maintenance.

2.6 Identify Computer Operations Manual. Organizational personnel are interviewed to
determine the existence and location of the computer operations manual (OM). The OM
is normally a life cycle document. The OM describes the individual jobs of a batch system.

2.7 Identify System User Manual. Organizational personnel are interviewed to determine
the existence and location of a system user's manual (UM). The UM is normally a life
cycle document.

2.8 Identify Database Specification. Organizational personnel are interviewed to
determine the existence and location of a database specification (DB). The DB is normally
a life cycle document.

2.9 Prepare Document List. A document list identifying the name and location of system
reference material is prepared to support document collection.

Legacy
System

Available

Recovered
Document

Document

Document ID

Index
Data

Requirements
Mapping

Document

Document

Document
Extract

Document

Index
Data

Notice 1 Managers

DFD 3 - Review external documentation w
,.J:>.
IV

343

3.1 Collect Document. Available target system documentation is collected or copied and
placed in the RE library.

3.2 Catalog Document. Individual documents are described and indexed in the RE
repository.

3.3 Evaluate Document. Individual documents are evaluated for currency, correctness,
completeness, and potential value in supporting the reverse engineering effort.

3.4 Identify Missing Document. Documents not found during the collection process or
documents inadequate for reverse engineering are identified. Management is notified of
the deficiencies. Additional interviews with organizational personnel may be scheduled to
identify informal documentation suitable for replacing missing or inadequate documents.

3.5 Locate Traceability Matrix. Many military systems include a requirements traceability
matrix that maps functional requirements from the FD to the SS/SSS to the PS. If such a
document is located, it is copied and placed in the RE library.

Library
FD

Index

ss

SSS

us

FD
Extract

SS
Extract

SSS
Extract

OM

UM

DFD 3.6 - Review document

Index Data

UM Extract

Data Structure

w
t

345

3.6.1 Review Functional Description (FD). The FD is reviewed to identifY useful sections
for the reverse engineering effort. Portions of Section 2 (Systems Summary - Proposed
Methods and Procedures), Section 3 (Detailed Characteristics - Functional Area System
Functions), and Section 4 (Design Considerations - System Functions) are extracted for
the RE library. Index data is added to document files.

3.6.2 Review Systems Specification (SS). The SS is reviewed to identifY useful sections
for the reverse engineering effort. Portions of Section 2 (Summary of Requirements -
System Functions) and Section 4 (Design Details - System Logical Flow) are extracted for
the RE library. Index data is added to document files.

3.6.3 Review Subsystem Specification (SSS). Ifincluded in the system documentation,
the SSS is reviewed to identifY useful sections for the reverse engineering effort. Portions
of Section 2 (Summary of Requirements - System Functions) and Section 4 (Design
Details - System Logical Flow/System Data/Software Unit Descriptions) are extracted for
the RE library. Index data is added to document files.

3.6.4 Review Software Unit Specification. Application software may be specified in
program specifications (PS) or software unit specifications (US). The PS or US, if
available, is reviewed for suitability. Extracts of Sections 2 (Summary of Requirements -
Software Unit Description/Software Unit Functions) and Section 3 (Environment
Interfaces) are added to the RE library. Index data is added to document files.

3.6.5 Review Program Maintenance Manual (MM). The MM is reviewed to recover
high-level structure information. Portions of Section 2 (System Description - System
Organization/System Requirements Cross Reference) and Section 5 (Software Unit
Maintenance Procedures) are extracted and placed in the RE library. Index data is added
to document files.

3.6.6 Review Computer Operations Manual (OM). The OM is reviewed to identifY
useful material. Portions of Section 2 (System Overview - System Organization/Software
InventorylReport InventorylProcessing Overview) and Section 3 (Description of Runs -
Run InventorylRun Description) are extracted for the RE library. Index data is added to
document files.

3.6.7 Review User Manual (UM). The UM is reviewed for material of potential use.
Most of the material contained in the UM is found in other document types in different
formats, but general information contained in Section 4 (Processing Reference Guide) may
be extracted and placed in the RE library. Index data is added to document files.

3.6.8 Review Database Specification (DB). The DB is reviewed to extract data structure
information for data reverse engineering. Conceptual, logical, and physical data models
may be documented in the DB. For older legacy systems, this document should describe
the various master files supporting the system.

Organ
Personnel

Project
Team

Organ I
Personnel

Project
Team

Managers

Candidate

Candidate / MOdel~ Domain'
{]:;'",...,..t'n"",1 Model

Domain Model

Technical Model

Object

*
Library

Technical
Model

A

Model

Tenninology

Organ
Personnel I Domain Knowledge \ .'

DFD 4 - Analyze application domain

Object
Infonnation

Legacy
System

Definitions

Project
Team

w
.j::>.
0'1

Project
Team

Organ
Personnel

Project
Requirements

Candidate

Candidate

Managers I -.,

Facilitator
Name

Modeling Specialist Name

Functional
Analyst
Name

DFD 4.1- Initiate domain analysis

Technical
Analyst
Name

w
~
-....I

348

4.1.1 Assign Facilitator. A facilitator with experience in process and data modeling is
assigned to the reverse engineering project. The ideal facilitator has previous knowledge
and experience in the application domain; however, elicitation and modeling skills are
more important than domain knowledge.

4.1.2 Assign Modeling Specialist. Modeling specialists with extensive experience in
functional process modeling and conceptual data modeling are assigned to the reverse
engineering project. After completion of the domain modeling sessions, the modeling
specialists will be used as lead reverse engineers. The domain knowledge gained during
the modeling sessions allows the modelers to begin the reverse engineering with some
knowledge of the application area.

4.1.3 Select Functional Analyst. Functional analysts are selected from the organization's
staff of existing system users and domain specialists. Depending on the size of the system
to be reverse engineered, between two and four functional analysts are selected.
Recommendations from managers and co-workers are solicited to identifY the most highly
qualified individuals.

4.1.4 Select Technical Analyst. A technical analyst who has knowledge and experience
with the legacy system and its operating environment is selected for the reverse
engineering team. Recommendations are solicited from technical managers and co
workers to identifY the most highly qualified technician. In many cases, the person
responsible for maintaining the system is the most qualified candidate.

4.1.5 Prepare Modeling Schedule. A schedule for the domain modeling sessions is
established and coordinated with modeling team members. Working sessions are
scheduled for four-hour periods on alternate days. Functional users are able to provide
more accurate and more detailed input when there is time between sessions to consider
previous model input.

Organ
Personnel

Project
Requirements

Outline Model I Domain Model

Organ
Personnel

Proposed Change

Revised Outline

Description

DFD 4.2 - Model functional domain

Domain
Model

Organ
Personnel

Proposed
Change

Project
Team

w
..j:,.
\0

Legacy
System

Domain
Knowledge

Key Area

r-- Task

DFD 4.2.1 - Create outline model

Subtask

Activity

VJ
VI
o

351

4.2.1.1 Establish Domain Key Area. The first step in developing the domain model is
identifying the major functional areas (key areas) represented in the legacy system. Five to
nine key areas are identified. Dependent on the magnitude of the domain, each of the key
areas could be considered as individual domain model targets (i.e., a separate model is
created for each key area function). The titles for all functions in the process model are
specified in the format verb + adjective + direct object. Descriptions of the functions are
not written until the structure is finalized.

4.2.l.2 Establish Domain Task. Within each domain key area, five to nine tasks
required to perform the key area are identified.

4.2.1.3 Establish Domain Subtask. A subtask represents an intermediate decomposition
level between domain tasks and bottom-level activities and identifies the major actions
required to complete a domain task. Dependent on the complexity of the domain, multiple
subtasks may be identified.

4.2.1.4 Establish Domain Activity. Within each domain or subtask, five to nine activities
required to perform the task or subtask are identified. An activity is the lowest level
function in the domain hierarchy (i.e., a primitive function). An activity is normally
defined as an independent unit of work carried out by a single individual.

Domain
Knowledge

Legacy
System

Domain
Knowledge

Related

Technical ,
Personnel

Draft Technical
Model Organ

!Personnel

Proposed
Changes

Final
Technical
Model

DFD 4.3 - Model technical domain

Technical
Model

Project
Team

w
VI
N

353

4.2.2 Validate Outline Domain Model. The completed outline domain model is
distributed to other functional users for review and comment. This review ensures that all
users have the opportunity to provide input.

4.2.3 Revise Outline Domain Model. Recommended changes are discussed, and the
outline domain model is revised by the original modeling team.

4.2.4 Create Described Domain Model. A described domain model is created by writing
a narrative description for each activity in the outline process model. Narrative
descriptions are written by functional users and domain specialists on the modeling team
and are limited to a few sentences. Details of who performs the function and how it is
carried out are scrupulously avoided.

4.2.5 Validate Domain Model. The described domain model is coordinated with other
organizational users, domain specialists, and managers to ensure the model is
comprehensive, correct, and understandable.

4.2.6 Prepare Final Domain Model. The original model developers consider each
reviewer recommendation for incorporation into the domain model, and the final domain
model is prepared.

4.2.7 Publish Domain Model. The completed domain model is published and made
available to members of the reverse engineering team. The domain model structure is also
stored in the RE repository.

Domain Model

Functional I Object
User 1"1 ____ ---.;;.------.

Definition

Technica';..l .:..:.M;;;.::od;,.::;:e~l ____,
I11III I Library

Candidate
Object

Validated
Object

Definition

DFD 4.4 - Model domain object

Defined
Object

Definition Domain
Specialist

w
VI
~

355

4.3.1 IdentifY Major Domain Element. Major elements of the technical domain in which
the legacy system operates are identified by the functional technician and domain
specialists. Elements include other automated systems, operating locations, major inputs,
major output products, and primary customers.

4.3.2 IdentifY Element Relationship. Relationships between major elements of the
technical model are identified when these relationships are significant to legacy system
understanding.

4.3.3 IdentifY Related System. Related systems, especially those providing input to or
receiving output from the target legacy system, are identified and described.

4.3.4 Prepare Draft Technical Model. A technical model summarizing the environment
and systems related to the target legacy system is prepared in graphic and narrative form.

4.3.5 Validate Draft Technical Model. The draft technical model is coordinated with
functional users, domain specialists, and other technicians.

4.3.6 Prepare Final Technical Model. Changes recommended during the draft technical
model review are incorporated, and the final technical model is prepared.

4.3.7 Publish Technical Model. The final technical model is published and provided to all
members of the reverse engineering team.

4.4.1 IdentifY Object. A domain object captures a semantic primitive within the
application domain. Candidate objects are identified from the functional domain narrative
descriptions and the technical model.

4.4.2 Validate Object. Candidate domain objects are validated by functional users and
domain specialists.

4.4.3 Define Object. Valid domain objects are defined with the assistance of domain
specialists.

4.4.4 Store Object Definition. Object definitions are stored in a central repository for
access by the reverse engineering team.

Functional I Acronym IIIiIIao I
User

New Acronym

Acronym Definition

New Tenn Functional l '4IIIIIIII������t_--------.
User Tenn

Tenn

Tenn Definition

DFD 4.5 -Establish project dictionary

Project
Team

Tenns Report

w
VI
0\

357

4.5.1 Define Acronym. Acronyms encountered during the reverse engineering effort are
defined in an RE dictionary. Domain specialists validate the acronym's meaning before the
acronym is placed in the dictionary.

4.5.2 Define Term. Special terms encountered during the reverse engineering effort are
defined in a RE dictionary. Domain specialists or functional technicians validate
definitions before they are stored in the dictionary.

4.5.3 Prepare Acronym Report. A list of acronyms with their authenticated definitions is
periodically prepared and distributed to reverse engineering team members.

4.5.4 Prepare Term Report. A list of special terms with their authenticated definitions is
periodically prepared and distributed to reverse engineering team members.

Project
Manager

Available
Personnel

Error

Technical
Personnel

Library

RefurenceL Acronym I Project
Material Report ~ Manager "-

)~

Reference
Listing

Component

Reference
Listing

DFD 5 - Analyze source code

Project
Manager

w
V'o
00

....------. Available
Project Personnel

Manager

1 Library]

Structure Diagram

Reverse
Engineer
Name

Status

DFD 5.1 - Prepare for analysis

Status Update

Project
Manager

Project
Manager

w
VI
\0

360

5.1.1 Group Component. Target system components are grouped according to
subsystems or job steps to simplify reverse engineering. For efficiency, a reverse engineer
should be responsible for all the programs in a group.

5.1.2 Assign Reverse Engineer. A reverse engineer responsible for creating the program
model and recovering design information is assigned by name. The responsible reverse
engineer's name is recorded in the RE repository.

5.1.3 Print Component Summary Report. A summary report containing component
information collected during the preliminary review is printed and sent to the reverse
engineering project manager and the responsible reverse engineer. The summary report is
a tasking directive.

5.l.4 Record Component Status. The status of the reverse engineering effort for a
component is recorded in the RE repository. Includes date assigned to reverse engineer,
date reverse engineering started, expected completion date, percent completed, and actual
time required to complete. The responsible reverse engineer is responsible for periodically

. updating the status.

Reference Listing
Library Reference Listing

Comments

Records

Procedure _-----=:--
D~tails ~ I Component I

Error Project
Team

DFD 5.2 - Analyze batch COBOL component w
0\
>-'

362

5.2.1 Review Identification Division. The Identification Division is reviewed for
informative comments. Significant comments are extracted and stored with the
component description in the RE repository along with the source code line number. The
source code line number is used to point to a specific location in a component if later
verification or review is required.

5.2.2 Review Input-Output Section. The Environment Division Input-Output Section is
reviewed to identify file SELECT statements that identify internal and external file names.
File information is extracted and recorded in the RE repository.

5.2.3 Review File Section. The Data Division File Section is reviewed for FD statements
for each file used by the component. FD entries identifY records associated with an input
or output file. Multiple record types may be specified for a file. Records for each file are
recorded in the RE repository.

5.2.4 Review Working Storage Section. The Working Storage Section is reviewed to
identify database tables used, record formats, and other significant data structures or in
line comments. Tables used by the component are recorded in the RE repository.

Reference Listing
Library

Read
Details

Reference Listing
i

Paragraphs

DFD 5.2.5 - Review COBOL procedure division.

Notes

Transactions

Links

w
0'1 w

364

5.2.5.1 Find File OPEN Statement. The Procedure Division is scanned to find an OPEN
statement for each file identified in a SELECT statement. The OPEN statement indicates
how a file is used (e.g., input, output, or 1-0).

5.2.5.2 Find File READ Statement. The Procedure Division is scanned to find READ
statements for each file accessed as input by the component. Record formats associated
with the file are identified and stored in the RE repository.

5.2.5.3 Find File WRITE Statement. The Procedure Division is scanned to find WRITE
statements for each file accessed as output by the component. Record types written to the
file are identified and stored in the RE repository.

5.2.5.4 Find Database Table Name. The Procedure Division is scanned to locate each
database table accessed by the component. Activity with respect to the table (create, read,
update, or delete) is recorded in the RE repository.

Reference Listing

~
'"

~ ,

Library Reference Listin

DFD 5.2.5.5 - Identify COBOL paragraph W
0\
Ul

366

5.2.5.5.1 IdentifY Source Paragraph. A source paragraph is an environment-dependent
module and is ignored for abstraction purposes.

5.2.5.5.2 IdentifY Sink Paragraph. A sink paragraph is an environment-dependent module
and is ignored for abstraction purposes.

5.2.5.5.3 IdentifY Computation Paragraph. A paragraph containing a computation
formula is a domain-dependent paragraph and is extracted from the component. The
paragraph name, locating line number, in-line comment (if included), and a note summary
of the paragraph are extracted and stored in the RE repository.

5.2.5.5.4 IdentifY Business Rule Paragraph. A paragraph containing an identifiable
business rule is a domain-dependent paragraph. The paragraph name, locating line
number, in-line comment (if included), and a note summary of the paragraph are extracted
and stored in the RE repository.

5.2.5.5.5 IdentifY Transform Paragraph. A transform paragraph (i.e., one that is not a
source, sink, computation, or business rule) is a domain-dependent function and is
extracted from the component. The paragraph name, locating line number, and in-line
comment (if included) are recorded in the RE repository.

5.2.5.5.6 Find Document Identifier Code (DIC). The Procedure Division is scanned to
find DIC used in the component. DIC, descriptions, and activity (create, read, update, or
delete) are stored in the RE repository.

5.2.5.5.7 IdentifY Called Component. The Procedure Division is scanned to find CALL
statements. The name in single quotation marks following CALL is the subprogram name.
Parameters, if used, are recorded in the RE repository.

Reference Listing
Library Reference Listing

i

Records

DFD 5.3 - Analyze on-line component

Terminals

File Details I Files

Table Details

Tables

Paragraphs

w
0\
-...J

5.3.1 Review CICS Identification Division. The Identification Division of a CICS
component is reviewed for informative comments explaining the program. Significant
comments are extracted and stored in the RE repository along with the locating line
number.

368

5.3.2 Review CICS Working Storage Section. The Working Storage Section ofa CICS
component is reviewed to find database tables used, transaction formats, and other
significant data structures or in-line comments. Tables used by the component, comments,
and locating line numbers are stored in the RE repository.

Reference Listing
Library

Read Details

Reference Listin

Table Details

Files

Delete
Details

DFD 5.3.3 -ReviewCICS procedure division w
0\
\0

370

5.3.3.1 Find, CICS File Read Statement. The Procedure Division of a CICS component is
scanned to find virtual storage access method (VSAM) file read statements. Entry
sequenced data sets (ESDS), keyed sequential data sets (KSDS), or relative record data
sets (RRDS) may be used. File record layouts and activity (read or update) are stored in
the RE repository.

5.3.3.2 Find CICS File Write Statement. The Procedure Division ofa CICS component
is scanned to find file write statements. ESDS, KSDS, or RRDS files may be used.
Record layouts and file activity (i.e., create, update) are stored in the RE repository.

5.3.3.3 Find CICS File Delete Statement. The Procedure Division ofa CICS component
is scanned to find file delete statements. KSDS and RRDS files may be used. Record
layout and file activity (delete) are stored in the RE repository.

5.3.3.4 Find CICS Database Table. The Procedure Division ofa CICS component is
scanned to find each database table accessed by the component and to determine the
activity with respect to the table (create, read, update, or delete). The database table
name and activity are stored in the RE repository.

5.3.3.5 Find Terminal Statement. The Procedure Division ofa CICS component is
scanned to locate input and output associated with on-line terminals. Significant data
elements or data structures are identified and stored in the RE repository.

Reference Listing

~ ..

~ .,.

Library Reference Listin

DFD 5.3.4 - Identify CICS paragraph w
-..l

5.3.4.1 Identify CICS Source Paragraph. A CICS component source paragraph is an
environment-dependent module and is ignored for abstraction purposes.

5.3.4.2 Identify CICS Sink Paragraph. A CICS component sink paragraph is an
environment-dependent module and is ignored for abstraction purposes.

372

5.3.4.3 Identify CICS Computation Paragraph. A CICS component paragraph containing
a computation formula is a domain-dependent paragraph and is extracted from the
component. The paragraph name, locating line number, in-line comment (if included), and
a note summary of the paragraph are extracted and stored in the RE repository.

5.3.4.4 Identify CICS Business Rule Paragraph. A CICS component paragraph
containing an identifiable business rule is a domain-dependent paragraph. The paragraph
name, locating line number, in-line comment (if included), and a note summary of the
paragraph are extracted and stored in the RE repository.

5.3.4.5 IdentifY CICS Transform Paragraph. A CICS component transform paragraph
(i.e., one that is not a source, sink, computation, or business rule) is a domain-dependent
function and is extracted from the component. The paragraph name, locating line number,
and in-line comment (if included) are recorded in the RE repository.

5.3.4.6 Find CICS Document Identifier Code (DIC). The Procedure Division ofa CICS
program is scanned to find DIC used in the component. DIC, descriptions, and activity
(create, read, update, or delete) are stored in the RE repository.

5.3.4.7 Identify CICS Called Component. The Procedure Division ofa CICS component
is scanned to find EXEC CICS LINK or EXEC CICS XCTL commands (bi-directional
and uni-directional calls, respectively). The file identification in the PROGRAM option is
the link-to program name. The source code is analyzed to determine the generic data
passed to the link-to program through the communication work area. Linking details are
stored in the RE repository.

Reference Listing

Component Name
III

Library

Tables

Links

Reference Listing
•

Records

Procedure
Details

DFD 5.4 - Analyze 4GL component

Component

w
.....;j
w

374

5.4.1 Review Header. The header of a 4GL component is scanned for informative
comments, data tables used, and programs used (called). Significant comments, table
names, and program names used are stored in the RE repository. Locating line numbers
for comments (assigned when the source code was printed) are also recorded.

5.4.2 Review Working-Data. The Working-Data Section of a 4GL component is
reviewed to identify significant data structures, which are then stored in the RE repository.

5.4.3 Review Parameter Data. The Parameter-Data section ofa 4GL component is
reviewed for significant data structure or in-line comments, which are then stored in the
RE repository.

Reference Listing

Paragraphs

Procedure
Details

Library

Tables

Reference Listing ,

Screens

Transaction
Details

Link

Screen
Details

Notes

Transaction

Details , Links

DFD 5.4 .4 - Review procedure data w
-....l
VI

376

5.4.4.1 Review Main Procedure Data. The Main Procedure section of a 4GL component
is scanned for in-line comments. Significant comments are stored in the RE repository
with locating line numbers.

5.4.4.2 Find 4GL Database Table. The main procedure and all sub-procedures in a 4GL
component are scanned to find each database table accessed and to determine the table
activity (create, read, update, or delete). Database tables and activity are recorded in the
RE repository.

5.4.4.3 Find 4GL Terminal Statement. The main procedure and all sub-procedures in a
4GL component are reviewed to find input and output associated with an on-line terminal.
Significant data elements or data structures are identified and stored in the RE repository.

Reference Listing

~ ,

~ ,

Library Reference Listin

DFD 5.4.4.4 - Identify 4GL procedure W
-..J
-..J

378

5.4.4.4.1 Identify 4GL Source Procedure. A 4GL component source (input) procedure is
an environment-dependent module and is ignored for abstraction purposes.

5.4.4.4.2 Identify 4GL Sink Procedure. A 4GL component sink (output) procedure is an
environment-dependent module and is ignored for abstraction purposes.

5.4.4.4.3 Identify 4GL Computation Procedure. A 4GL component procedure containing
a computation formula is a domain-dependent procedure and is extracted from the
component. The procedure name, locating line number, in-line conunent (if included), and
a note sununary of the procedure are extracted and stored in the RE repository.

5.4.4.4.4 Identity 4GL Business Rule Procedure. A 4GL component procedure
containing an identifiable business rule is a domain-dependent module. The procedure
name, locating line number, in-line conunent (if included), and a note sununary of the
procedure are extracted and stored in the RE repository.

5.4.4.4.5 IdentifY 4GL Transform Procedure. A 4GL component transform procedure
(i.e., one that is not a source, sink, computation, or business rule) is a domain-dependent
module and is extracted from the component. The procedure name, locating line number,
and in-line conunent (if included) are recorded in the RE repository.

5.4.4.4.6 Find 4GL Document Identifier Code (DIC). The main procedure and all sub
procedures in a 4GL component are scanned to find DIC. DIC, descriptions, and activity
(create, read, update, or delete) are stored in the RE repository.

5.4.4.4.7 Identify 4GL Called Component. The main and sub-procedure sections of a
4GL component are scanned to identify CALL statements. The name following the CALL
statement is the subprogram name. If the USING statement follows the subprogram
identification, the call passes parameters (a strong call). Data elements following the
USING statement are interpreted to determine the generic data being passed to the
subprogram. CALL statement details are stored in the RE repository.

Organ
Personnel

Component
Reference
Material

Clarifications

Component
Information

RE Repository

RE Repository

Doma·
Model

Implementation
Model

Component
Information

DFD 6 - Extract design information

RE Repository

Draft Function Model

Change I Organ
--~ Personnel

User Knowledge

Process Model

User
Knowledge
---.

Organ
Personnel

w
-...l
\0

Component

Library

Reference
Listing

Component

DFD 6 .1 - Prepare for design extraction

Documentation
List

Contact
Point

w
00 o

6.1.1 Verify Component Status. The status of a component is verified to ensure the
preliminary review has been completed and the data necessary for design extraction is
available.

6.1.2 Print Program Model. The program model developed during earlier analysis is
retrieved from the RE repository, formatted, and printed.

6.1.3 Retrieve Program Reference Listing. The source code listing for a component is
retrieved from the RE repository.

381

6.1.4 Print Documentation List. The index to documentation available for a component is
retrieved from the RE repository and printed.

6.1.5. Print Contact Point. Domain specialist and technical specialist points of contract for
a component are retrieved from the RE repository and printed.

Input/Output
Details

Changes

Change

Output

Valid Input

Library
Input/Output
Diagram

Valid
Output

Technical

Domain
Specialist

Functional
Clarification

'4 .. , Tec~~al
Speciallst

Component Details
i

Implementation
Model

DFD 6.2 - Complete implementation model w
00
tv

383

6.2.1 Review Program Model. The previously prepared program model (skeletal
implementation model) is reviewed for completeness and accuracy. Changes are made if
appropriate and the RE repository is updated.

6.2.2 Review Documentation. Using the documentation index as a guide, available
documentation for the component is reviewed. Purpose, objectives, assumptions, and
constraints for the component are identified and stored in the RE repository.

6.2.3 Review Source Code. The original component source code is reviewed for
familiarization and to validate the thoroughness of the program model. If required,
additions and modifications are made to the program model.

6.2.4 Prepare Input-Output Diagram. A context level data flow diagram is prepared to
show all the input and output for the component. When appropriate, sources and sinks
are identified. Input includes files, records, DIC, and database tables.

6.2.5 Validate Output. Output data streams are validated against the source code and
data from the RE repository. Discrepancies are resolved by updating the model or by
noting errors in source documents.

6.2.6 Validate Input. Input data streams are validated against the source code and data
from the RE repository. Discrepancies are resolved by updating the model or by noting
errors in source documents.

6.2.7 Consult Domain Specialist. The responsible domain specialist is consulted
to resolve discrepancies found in the program model or documentation.

6.2.8 Consult Technical Specialist. The responsible technical specialist is consulted to
resolve technical discrepancies found in the program model or documentation.

6.2.9 Produce Final Implementation Model. The final implementation model is produced
by assembling the skeletal process structure, record layouts, screen diagrams, and other
clarifYing and supporting documents as appropriate.

Paragraphs
Component

Component Segment

Library

Reference
Listing

Structural
Model

Structural
Model ID

•

DFD 6.3 - Prepared structural model w
Q()
~

385

6.3.1 Segment Component. A component is segmented into multiple areas by grouping
the structural paragraphs into a logical group. Subprogram links are included in a group
or shown as a separate group. This task is simplified ifmeaningful paragraph names and
comments were used in the source code.

6.3.2 IdentifY Key Data Item. Key data items in each structural paragraph are identified
and related to abstract, informal concepts. The focus is on data structures representing
domain objects rather than on data elements describing objects.

6.3.3 Create Structural Model. A structural model is created to show the major
component paragraph groups and data items.

Domain
Domain I Knowld~ge

Specialist

r---- Functional
Funtional Knowledge

User

Paragraph
Concept ,

"-
"-

Paragraph
Data

Paragraph
Interpretation

.... -11""
Domain
Dependent
Paragraph

DFD 6.4 - Prepare functional model

Function
Narrative

w
00
0\

381

6.4.1 Analyze Paragraph. The structural paragraphs within a component group are
analyzed for understanding. If reference to original code is necessary, paragraph location
numbers are used to locate full text in the source listing. Available documentation is
reviewed and functional, technical, and domain specialists are consulted as required to
understand each paragraph.

6.4.2 Interpret Paragraph. Individual paragraphs are interpreted to transform the source
code information into functional equivalents. Domain-independent paragraphs (e.g., input
and output) should have been removed from the model; if not, they are discarded. Error
checking and validation routines should also be omitted; it is assumed all data is valid.

6.4.3 Assign Meaning. The computational intent of the text in each paragraph is
expressed in human-oriented terms instead of technically-oriented terms. Close
coordination with functional and technical analysts may be required. When completed, the
description of what a paragraph does should be free of conditional statements, validation
and error checking statements, and other computer or computer language concepts.
Narrative should be concise and clearly written using short, simple sentences.

Domain
Structure

Domain Model

Function
Narrative

Draft Function
Model

DFD 6.5 -Prepare draft function model w
00
00

389

6.5.1 Print Outline Domain Model. The outline domain model previously prepared is
printed for use in creating the final domain model. The outline model is printed to place
each activity on a separate page to allow space to enter the reverse engineered functions.

6.5.2 Produce Draft Function Model. The draft function model is prepared by assigning
each function from a program to an activity in the domain model.

Dreaft
Function
Model

Printed
Function
Model.

Organ
Personnel

Validated
Change

Proposed
Change

Change
Package

Function Model

Function
Model

DFD 6.6 -Prepare final function model

Final
Function
Model

w
\0
o

391

6.6.1 Distribute Draft Function Model. The draft function model is distributed to
functional and technical analysts in the organization who did not participate in the reverse
engineering project, as well as to the original members of the domain modeling team.

6.6.2 Collect Model Change. Comments and proposed model changes, additions, and
deletions are collected and reviewed for clarity, validity, and justification.

6.6.3 Organize Model Change. Proposed model changes are organized by model section.
Duplicates are consolidated into a single change package.

6.6.4 Resolve Model Discrepancy. Model discrepancies are resolved by reassembling the
members of the domain analysis group (key area 4). The domain analysis modeling group
reviews the structure and narrative content of the function model in facilitated modeling
sessions. Discrepancies are identified and resolved and proposed changes are accepted or
rejected.

6.6.5 Produce Function Model. The final function model is produced by making changes
approved by the domain analysis modeling group.

Function Model

Context
Diagram

Level 0
Diagram

Key Area
Description

DFD 6.7 - Prepare visual process model

Functional

Details IFunctional

• User

w
10
IV

393

6.7.1 Prepare Context Diagram. A context diagram for the proposed system is prepared.
The major external entities that provide data to and accept data from the system are
represented by a single process.

6.7.2 Create Level 0 Diagram. A level 0 diagram is the first lower-level decomposition of
the proposed system and identifies the key areas identified in the function model. The
level 0 diagram shows high-level system inputs and outputs, as well as interactions
between the key areas.

6.7.3 Describe Key Area. Key areas on the level 0 diagram are described in a single
paragraph to provide a high-level description of the functions performed. This is the
single exception to the rule that only primitive-level activities are described.

6.7.4 Create Decomposition Diagram. Lower-level decomposition diagrams are created
by preparing a data flow diagram for each level in the final function model.

Business
Rules unctional l ~ I

User

Legacy
System

Attribute

Function Model

Database Model

Data Model Details

Functional
Requirement

RE Repository

DFD 7 - Document design information

Operational
Concept

Doc

Requireme~ IFunctional
User

w
1.0
,J:..

unctionall Business Rules
User

Function Model

Legacy
System

Attribute

Conceptual
Data Model

Relationships

DFD 7.1 -Prepare database model

Data Dictionary

w
\0
Vl

Function Model Entity-Relationship
Diagram

Entity List

Library

I~ ,Functional
User

Relationship

DFD 7.1.1 - Create conceptual data model

Business
Rules List

w
\0
0\

397

7.1.1.1 Construct Entity-Relationship Diagram (ERD). An ERD showing the conceptual
data structure required to support the activities in the function model is constructed by
identifying the entities and relationships that exist between them.

7.1.1.2 Define Entity. Each entity on the ERD is assigned a sequential number which
identifies an entry on an entity definition list. Entities are defined with the assistance of
functional users and domain specialists. The identifier (key) for each entity is also
identified.

7.1.1.3 Define Relationship. Each relationship on the ERD is assigned a sequential
number which identifies an entry in a relationship definition list. Relationships are defined
with the assistance of functional users and domain specialists. The associated entities and
their keys are also identified.

7. 1.1.4 List Business Rule. Business rules for each relationship on the ERD are listed in
clear narrative (the ERD is coded to show the same information). Business rules consist
of two components: membership class and membership degree. Membership class
represents obligatory or non-obligatory participation in a relationship. Membership degree
represents the number of entity occurrences in a relationship (i.e., one to one, one to
many, or many to many).

[-Document

Associative
Entity
Table

Library

Defined

DataDictionary ,.. Attribute

Table
Fonnation I Library
Chart •

Entity
Table
List

Associative
Entity Table
List

Attribute

Populated
Table

Legacy
System

DFD 7.1.2 - Create logical data model

Nonnalized
Table

Library

Tables

Logical
Data
Diagram

w
\0
00

7.1.2.1 Create Table Formation Chart. A chart cross-referencing entities and
relationships with the tables formed is created to allow objects on the ERD to be
correlated with tables on the logical diagram. Tables are formed according to the
membership class and membership degree of each relationship.

399

7.1.2.2 Describe Entity Table. Each entity on the ERD results in the formation of a
logical table (a possible exception is a one-to-one relationship where the two entities are
consolidated into a single table). The table is described and its primary key and foreign
keys (if any) are identified.

7.1.2.3 Describe Associate Entity Table. Associate entity tables Goin tables or
relationship tables) are always created when there is a many-to-many relationship between
two entities; they may be created under other circumstances. The table is described and its
foreign keys (the primary keys from the two related tables) are identified.

7.1.2.4 Assign Attribute. Attributes (data elements) identified from legacy system files,
databases, reports, and forms are assigned to a logical table.

7.1.2.5 Normalize Table. Tables are reduced to first normal form, second normal form,
and then to third normal form to remove possible insertion, deletion, and update anomalies
from the logical design. Additional tables may be generated in this activity.

7.1.2.6 Create Logical Data Diagram. A logical data diagram is created by representing
each table as a rectangle on a chart. Table identifiers and foreign keys are also shown for
each table. Tables are connected by drawing directed lines from primary keys to foreign
keys. The logical table diagram represents the navigational paths between tables.

Library

Context
Diagram

Level 0

Operational
Concept Document
Paragraph 5.3b Operational

Concept
Document

Operational
Concept Document
Paragraph 5.3d

i

Operational
Concept Document
Paragraph 5.3c

Files

Operational
Concept Document
Paragraph 5.3e

DFD 7.2 - Prepare requirements document input

Function Model

.j:>.
o o

7.2.1 Format Major System Components. The data flow context diagram, level 0
diagram, and function model key area descriptions are formatted for inclusion as
Operational Concept Document paragraph 5.3.b.

7.2.2 Describe External Interface. External interfaces identified during the reverse
engineering effort are described in summary form to satisfy the requirements for
Operational Concept Document paragraph 5.3 .c.

7.2.3 Format System Function. Function model key areas, tasks, and subtasks are
formatted for inclusion in Operational Concept Document paragraph 5.3.d.

401

7.2.4 Format Functional Hierarchy. The function model activity descriptions and
associated data flow diagrams are formatted for inclusion in Operational Concept
Document paragraph 5.3.e. These two model components satisfy the requirement to show
charts and descriptions describing inputs, outputs, data flow, and manual and automated
processes.

Library

Entity List

Relationship List

Business Rules

Library Table Fonnation List

Entity Table List

Associative Enti

Database Design
Document
Paragraph 4.1 1--_______ --I...,IIII!IiIIo-I,Functional

User

Database
Design
Document
Paragraph 4.2

DFD 7.3 -Prepare database document input -!:>.

13

7.3.1 Format Conceptual Model. The ERD, entity and relationship definitions, and
business rules list are fonnatted for inclusion in the Database Design Description
paragraph 4.1. Individual documents are identified as subparagraphs.

403

7.3.2 Fonnat Logical Model. The table fonnation chart, table description, logical data
diagram, and table layouts are formatted for inclusion in Database Design Description
paragraph 4.2. Individual documents are identified as subparagraphs.

AppendixC

Reverse Engineering Methodology
Logical Data Model
Table Descriptions

404

Table Name:
Table Number:

Acronym
1

Key:
Foreign Key:

No-Seq-Acronym
None

Attributes:
Acronym
Name-Long
Description-Acronym
Reference
Date-Description
Author-Name

Table Name:
Table Number:

Attribute
2

Type
C
C
C
C
Date
C

Key:
Foreign Key:

No-Seq-Attribute
None

Attributes:
Name-Attribute
Type-Attribute
Size-Attribute
Description-Attribute

Table Name:
Table Number

Comment
3

Type
C
C
N
C

(counter)

(counter)

Key: No-Seq-Comment (counter)
Foreign Key: None

Attributes:
No-Line-Begin
Text-Comment
Type-Comment
Author-Comment
Date-Comment

Type
N
C
C
C
Date

Size
15
50
255
50

20

Size
50
2
2
255

Size
6
255
1
20

405

Table Name:
Table Number:

Component
4

Key: ID-Component
Foreign Key: No-Seq-Metric

Attributes: Type
Type-Prog C
Class-Prog C
Rating-Structure N
Rating-Comments N
Rating-Names N
Index-Complexity N
Name-Func-Tech C
Name-Domain-Spec C
Name-RE C
No-Files-In N
No-Files-Out N
No-Files-IO N
No-Screens N
No-Reports N
Language C
No-Group N
No-Lines-Source N
Name-Short C
Date-Written Date
No-Versions N
No-Authors N
CICS-Trans-ID C
No-Data-Div-Lines N
No-Proc-Div-Lines N
No-Var-Work-Stor N
No-Prog-Called N
No-GOTO-Stmnts N
No-Perf-Stmnts N
No-Paragraphs N
No-Para-Lines-Avg N
No-Redefine-Stmnts N
Percent-Complete N
InitiaI-Review-Complete C
Purpose-Text C
Objectives-Text C
Assumptions-Text C
Constraints-Text C
Avg-Data-Name-Length N

406

(C,8)

Size
2
2
2
2
2
2
20
20
20
2
2
2
2
2
10
3
6
50

3
3
4
6
6
6
2
3
6
6
6
6
3
1
255
255
255
255
6

Table Name:
Table Number

Foreign Key:
Foreign Key:

Attributes:
None

Table Name:
Table Number

Foreign Key:
Foreign Key

Attributes:
Data-Pass
List-Parms

Table Name:
Table Number:

Foreign Key:
Foreign Key:

Attributes:
None

Component-Comment
5

ID-Component
No-Seq-Comment

Type

Component-Component
6

ID-Component-Calls
ID-Component-Called

Type
Logical
C

Component-Document
7

ID-Component
No-Seq-Doc

Type

Size

Size
1
50

Size

407

Table Name:
Table Number:

Foreign Key:
Foreign Key:

Attributes:

Component-File
8

ID-Component
ID-File

Name-File-Internal
Name-File-External
Organization-File
Access-File
Activity-File

Type
C
C
C
C
C

Table Name:
Table Number:

Foreign Key:
Foreign Key:

Attributes:
None

Table Name:
Table Number:

Foreign Key:
Foreign Key:

Attributes:

Component-Paragraph
9

ID-Component
No-Seq-Para

Type

Component-Screen
10

ID-Component
ID-Screen

Activity-Screen
Type
C

Size
32
15
20
20
2

Size

Size
10

408

409

Table Name:
Table Number:

Component-Table
11
~

Foreign Key:
Foreign Key:

ill-Component
No-Seq-Table

Attributes:
Action-Table

Type
C

Table Name:
Table Number:

Component-Transaction
12

Foreign Key:
Foreign Key:

ill-Component
Doc-ill-Code

Attributes:
Doc-Activity

Table Name:
Table Number:

Document
13

Type
C

Key:
Foreign Key:

No-Seq-Doc (counter)
None

Attributes:
Type-Doc
No-Index
Evaluation-Text
Comments
Doc-Name
Requmng-Directiv
No-Pages
Location
Date-Written
Date-Last-Change
U sefulness-Rating

Type
C
C
C
C
C
C
N
C
Date
Date
N

Size
1

Size
1

Size
5
10
50
255
50
15
5
20

2

Table Name:
Table Number

Element
14

Key:
Foreign Key:

No-Seq-Element
None

Attributes:
Name-Element
Type-Element
Picture-Element
Layout-Structure
Description

Table Name: File
Table Number: 15

Key: ill-File
Foreign Key: None

Attributes:
Name-File-Short
Type-File
Media
Description-File

Table Name:
Table Number:

File-Record
16

Type
C
C
C
C
C

(C, 10)

Type
C
C
C
C

Foreign Key:
Foreign Key:

ill-File
No-Seq-Record

Attributes: Type
None

(Counter)

Size
32
1
15
255
255

Size
50
1
10
255

Size

410

Table Name:
Table Number:

Key:
Foreign Key:

Attributes:
Text-Function
Author-Text
Date-Written

Table Name:
Table Number

Key:
Foreign Key:

Attributes:

Function
17

No-Seq-Function
None

Metric
18

Type
C
C
Date

No-Seq-Metric
None

Time-Analysis-Initial
Time-Analysis-Revised
Time-Analysis-Final
Time-Analysis-Actual
Time-Revievv-lnitial

Type
N
N
N
N
N

Table Name:
Table Number:

Key:
Foreign Key:

Attributes:
Text-Narrative

Narrative
19

No-Seq-Narrative
None

Type
C

(counter)

(counter)

(counter)

Size
Memo
20

Size
6
6
6
6
6

Size
Memo

411

Table Name:
Table Number:

Narrative-Function
20

Foreign Key:
Foreign Key:

No-Seq-Narrative
No-Seq-Function

Attributes:
None

Table Name: Note
Table Number: 21

Key:
Foreign Key:

Attributes:

No-Seq-Note
None

Text-Note
No-Line-Begin
Type-Note

Table Name:
Table Numbr:

Object
22

Type

Type
C
N
C

Key:
Foreign Key:

No-Seq-Object
None

Attributes:
Name-Object
Type-Object
Description-Object

Type
C
C
C

(counter)

(counter)

Size

Size
255
6
1

Size
20
20
255

412

Table Name:
Table Number:

Key:
Foreign Key:

Attributes:
Name-Para
No-Para-Line
Group-No

Table Name:
Table Number:

Foreign Key:
Foreign Key:

Attributes:
None

Table Name:
Table Number:

Foreign Key:
Foreign Key:

Attributes:
None

Paragraph
23

No-Seq-Para
None

Type
C
N
N

Paragraph-Function
24

No-Seq-Para
No-Seq-Function

Type

Paragraph-Note
25

No-Seq-Para
No-Seq-Note

Type

(counter)

Size
32
6
3

Size

Size

413

Table Name:
Table Number:

Process
26

Key:
Foreign Key:

No-Seq-Process
None

Attributes:
Process-Text
No-Level
Type-Para
Model-Para-No
Title-Process
Comment

Type
C
N
C
N
C
C

Table Name:
Table Number:

Process-Function
27

(counter)

Foreign Key:
Foreign Key:

No-Seq-Process
No-Seq-Function

Attributes:
None

Table Name:
Table Number:

Foreign Key:
Foreign Key:

Attributes:
None

Type

Process-Process
28

Is-Parent-Of
Is-Child-Of

Type

Size
255
1
2
8
255
15

Size

Size

414

Table Name:
Table Number:

Key:
Foreign Key:

Attributes:

Record
29

No-Seq-Record
Doc-ID-Code

Record-Name
Description-Record

Type
C
C

Table Name:
Table Number:

Record-Element
30

(counter)

Size
30
255

415

---,
F oreigh Key:
Foreign Key:

Attributes:
None

Table Name:
Table Number:

Key:
Foreign Key:

Attributes:
Name-Screen
Screen-Type

No-Seq-Record
No-Seq-Element

Screen
31

ID-Screen
None

Type

(C, 10)

Type
C
C

Size

Size
15
1

Table Name: Table
Table Number: 32

Key:
Foreign Key:

No-Seq-Table
None

Attributes:
Name-Table
Table-Description
Data-'Iievv-Name

Type
C
C
C

Table Name:
Table-Number:

Table-Attribute
33

Foreign Key: No-Seq-Table

(counter)

Foreign Key: N o-Seq-Attribute

Attributes:
None

Table Name: Term
Table-Number: 34

Key:
Foreign Key:

Attributes:

No-Seq-Term
None

Term
Description-Term
Reference
Date-Description
Author-Name

Table Name:
Table-Number:

Key:
Foreign Key:

Attributes:

Transaction
35

Doc-ID-Code
None

Description-DIC

Type

Type
C
C
C
Date
C

Type
C

(counter)

(C,3)

Size
15
255
8

Size

Size
15
255
25

25

Size
255

416

AppendixD

Permission to Use Source Code

417

DEPARTMENT OF THE AIR FORCE
MATERIEL SYSTEMS GROUP (AFMC)

MEMORANDUM FROM AFMC MSG/SH
4225 Logistics Ave., Ste 22
Wright-Patterson AFB OH 45433-5761

FOR: MR. ROBERT L. MILLER
3243 Windmill Dr.
Beavercreek OH 45432

:.... 6 Fto I~~\,I

SUBJECT: Request for Government Software and Access to Documentation

418

1. We have received a response from our legal office about the information you requested in your
letter to 88 ABW/JAC, 14 December 1994. Although they had no legal objection to granting you
access to use the data for your dissertation (however, you must sign a Memorandum of
Agreement), we are having a problem identifying exactly what portion of the D035 system you
need. CPCI 1 of the D035 system is the Item Manager Wholesale Requisition System (D035A).
There is no subsystem ofD035A called "Cataloging Management Control Data Subsystem".

2. Since there is some confusion as to exactly what subsystem code is needed, I would suggest
that you contact my OPR for the D035 system, Ms. Laurie Wohlers, at 257-1500 extension 3402
to clarify your requirement. At that time we will be happy to work with you to provide the code
and documentation.

BRIANF. DREW
Director·
Asset Management DSM

Appendix E

Biographical Sketch of Student

419

420

Biographical Sketch of Student

Robert Miller is a senior project manager with I-NET, Incorporated, Dayton, Ohio.
Currently he is supporting the U.S. Air Force by investigating methods for making legacy
system information more readily available to users.

He was born in Sidney, Ohio, in 1941. After enlisting in the US Army in 1959, he served
as an administrative specialist. Assignments in this field took him to Okinawa and Fort
Sill, Oklahoma. In 1966 he attended the Department of State's Foreign Service Institute
intensive Japanese course. After a tour of duty in Hawaii, in 1969 he was selected as a
data processing student in the Army's civil schooling program. He earned an AA in
Business Information Systems from Orange Coast College in 1972.

After serving as a machine room shift supervisor with a field data processing unit in the
Republic of Vietnam, he was assigned to the Pentagon, Washington, DC. As a part-time
student over the next six years, he completed a BS in Technology of Management from
The American University and a MS in Systems Management from the University of
Southern California.

He was selected to attend the Army's Sergeants Major Academy in 1978 and upon
graduation was assigned to the military detachment of the Pacific Stars and Stripes
newspaper in Tokyo, Japan. While stationed there he was able to fulfill his ambition to
combine his Japanese and data processing training by working part-time for a Japanese
software company. Following a one-year assignment in Fort Huachuca, Arizona, he
retired from the Army as a Sergeant Major in 1983.

Returning to Dayton, Ohio, he was employed by Contel Information Systems and later
Century Technologies as a specialist in structured techniques and information engineering.
He joined I-NET in 1996.

He decided to pursue a doctoral degree in 1992, and after examining several programs
selected Nova Southeastern University because the school offered a degree in an area of
interest to him and because the program was designed for the working student.

Completion of the Doctor of Philosophy degree in Information Systems will enhance his
knowledge and appreciation for technology, planning, and management within the
information technology field.

References

Abelson, H., & Sussman, G. 1. (1985). Structure and interpretation of computer
programs. New York: McGraw-Hill.

421

Aiken, P. H. (1996). Data reverse engineering: Slaying the legacy dragon. New York:
McGraw-Hill.

Al-Jarrah, M. M., & Torsun, I. S. (1979). An empirical analysis of COBOL programs.
Software: Practice and Experience, 9, 341-359.

Ambras, 1., & O'Day V. (1988). Microscope: A knowledge-based programming
environment. IEEE Software, 5, 50-58.

ANSIIIEEE Standard 610.12-1990. (1990). IEEE Standard Glossary of Software
Engineering Terminology. New York: IEEE.

Antonini, P., Benedusi, P., Cantone, G., & Cimitile, A (1987). Maintenance and reverse
engineering: Low-level design documents production and improvement. Proceedings
of the IEEE Conference on Software Maintenance CSM '87,91-100.

Arango, G., Baxter, I., & Freeman, P. (1985). Maintenance and porting of software by
design recovery. Proceedings of the IEEE Conference on Software Maintenance CSM
'85,42-49.

Arango, G., Baxter, I., Freeman, P., & Pidgeon, C. (1986). TMM: Software
maintenance by transformation. IEEE Software, 3, 27-39.

Arango, G., & Prieto-Diaz, R. (1991). Domain analysis concepts and research directions.
In G. Arango & R. Prieto-Diaz (Eds.), IEEE tutorial on domain analysis and software
systems modeling (pp. 9-32). Los Alamitos, CA: IEEE Computer Society Press.

Atkins, M. (1994, September). Building a better bridge. Software Magazine, 14,6,8.

Avellis, G., Iacobbe, A, Palmisano, D., Semeraro, G., & Tinelli, C. (1991). An analysis
of incremental assistant capabilities of a software evolution expert system. Proceedings
of the IEEE Conference on Software Maintenance CSM '91,220-227.

Bachman, C. (1988, July 1). A CASE for reverse engineering. Datamation, 34, 49-56.

Baker, M. 1., & Eick, S. G. (1994). Visualizing software systems. Proceedings of the
16th International IEEE Conference on Software Engineering, 59-67.

Baxter, I. D. (1992). Design maintenance systems. Communications of the ACM, 35,
73-89.

422

Beck, J. & Eichmann, D. (1993). Program and interface slicing for reverse engineering.
Proceedings of the 15th IEEE International Conference on Software Engineering, 509-
518.

Benedusi, P., Cimitile, A, & De Carlini, U. (1989). A reverse engineering methodology
to reconstruct hierarchical data flow diagrams for software maintenance. Proceedings
of the IEEE Conference on Software Maintenance CSM '89,180-189.

Benedusi, P., Cimitile, A & de Carlini, U. (1992). Reverse engineering processes, design
document production, and structure charts. Journal of Systems Software, 19, 225-245.

Bennett, K. H. (1981). Automated support of software maintenance. Information and
Software Technology, 33, 74-85.

Bennett, K. H. (1993). An overview of maintenance and reverse engineering. In H. J.
van Zuylen (Ed.), The REDO compendium: Reverse engineeringfor software
maintenance (pp. 13-34). Chichester, England: John Wiley & Sons.

Berns, G. (1984). Assessing software maintainability. Communications of the ACM, 27,
14-23.

Biggerstaff, T. J. (1989). Design recovery for maintenance and reuse. IEEE Computer,
22, 36-49.

Biggerstaff, T. J., Mitbander, B. G., & Webster, D. (1994). The concept assignment
problem in program understanding. Proceedings of the 15th IEEE Conference on
Software Engineering, 482-498.

Boehm, B. W. (1981). Software engineering economics. Englewood Cliffs, NJ:
Prentice-Hall.

Boehm, B. W. (1987). Improving software productivity. IEEE Computer, 20, 43-57.

Boehm-Davis, D. A, Holt, R. W., & Schultz, A C. (1992). The role of program
structure in software maintenance. International Journal of Man-Machine Studies, 36,
21-63.

Breuer, P. T., & Lano, K. C. (1991). Creating specifications from code: Reverse
engineering techniques. Journal of Software Maintenance: Research and Practice, 3,
145-162.

423

Britcher, R. N., & Craig, 1. 1. (1986). Using modern design practices to upgrade aging
software systems. IEEE Software, 3, 16-24.

Brown, A 1. (1993). Specifications and reverse-engineering. Software Maintenance:
Research and Practice, 5, 147-153.

Brown, P. (1983). Why does software die? In R. S. Arnold (Ed.), IEEE tutorial on
software restructuring (pp. 109-116). Washington, DC: IEEE Computer Society
Press.

Buckley, W. (1972). A systems approach to epistemology. In G. 1. Klir (Ed.), Trends in
general systems theory (pp. 188-202). New York: John Wiley & Sons.

Burson, S., Kotik, G., & Markosian, L. (1990). A program transformation approach to
automating software re-engineering. Proceedings of the 14th Annual International
Computer Software and Application Conference COMPSAC-90, 314-322.

Bush, E. (1993, April). Flying car now surfs. Software Magazine, 13, 6.

Byrne, E. 1. (1991). Software reverse engineering: A case study. Software--Practice
and Experience, 21, 1349-1364.

Calliss, F. W., Khalil, M., Munro, M., & Ward, M. (1988). A knowledge-based system
for software maintenance. Proceedings of the IEEE Conference on Software
Maintenance CSA '88, 319-324.

Canfora, G., Cimitile, A, & De Carlini, U. (1992). A logic-based approach to reverse
engineering tools production. IEEE Transactions on Software Engineering, 18, 1053-
1064.

Canfora, G., Cimitile, A, & Munro, M. (1994). RE2: Reverse engineering and reuse re
engineering. Software Maintenance: Research and Practice, 6, 53-72.

Canfora, G., Sansone, L., & Visaggio, G. (1992). Data flow diagrams: Reverse
engineering production and animation. Proceedings of the IEEE Conference on
Software Maintenance CSM '92,366-375.

Cezzar, R. (1989). The essentials of COBOL 1. Piscataway, NJ: Research and
Education Association.

Chen, S., Heisler, K. G., Tsai, W. T., Chen, x., & Leung, E. (1990). A model for
assembly program maintenance. Journal of Software Maintenance: Research and
Practice, 2, 3-32.

Chikofsky, E. l, & Cross, l H. (1990). Reverse engineering and design recovery, a
taxonomy. IEEE Software, 7, 13-17.

Choi, E. M. (1993). Support for program understanding during maintenance via
chunking. Dissertation Abstracts International, 54, 2060B. (University Microfilms
No. DA9324219)

Choi, S. C., & Scacchi, W. (1990). Extracting and restructuring the design of large
systems. IEEE Software, 7, 66-71.

Cleveland, L. (1989). A program understanding support environment. IBM Systems
Journal, 28, 324-344.

Cohen, D. I. A. (1991). Introduction to computer theory. New York: John Wiley &
Sons.

Collofello, l S., & Blaylock, J. W. (1985). Syntactic information useful for software
maintenance. AFIPS Conference Proceedings, 54, 547-553.

424

Connal, D. G., & Burns, D. R. (1993, October). Reverse engineering: Getting a grip on
legacy systems. Data Management Review, 3, 24-27.

Corbi, T. A. (1989). Program understanding: Challenge for the 1990s. IBM Systems
Journal, 28, 294-306.

Cross, J. H, Chikofsky, E. l, & May, C. H (1992). Reverse engineering. Advances in
Computers, 35, 199-254.

Cunningham, l (1962). Why COBOL? Communications of the ACM, 5, 236-253.

Davenport, T. H, (1993). Process Innovation: Reengineering Work Through
Information Technology. Boston: Harvard Business School.

Darlison, A. G., & Sabanis, N. (1993) Data remodeling. In H. l van Zuylen (Ed.), The
REDO compendium: Reverse engineering for software maintenance (pp. 311-325).
Chichester, England: John Wiley & Sons.

Davis, A. M. (1988). A comparison of techniques for the specification of external system
behavior. Communications of the ACM, 31, 1098-1115.

Davis, J. (1990, July/August). CASE environments and re-engineering. CASE Trends, 2,
1-6.

Davis, J. (1991a, Summer). Software re-engineering: A beginner's guide. CASE
Trends, 3, 10-16.

425

Davis,1. (1991b, Fall). Software re-engineering: Capture tools. CASE Trends, 3, 30,
33-34.

Davis, R. K., & Shah, A D. (1985). Service analysis: Key to effective performance
management. Journal of Capacity Management, 3, 1-21.

Debaud, 1., Moopen, B., & Rugabers, S. (1994). Domain analysis and reverse
engineering. Proceedings of the 1994 IEEE International Conference on Software
Maintenance CSM '94, 326-335.

Debest, X. A, Rudiger, K., & Wagner, 1. (1992). REVENG: A cost-effective approach
to reverse engineering. ACM SIGSOFT Software Engineering Notes, 17, 60-67.

Desmond, 1. (1992, May). Reengineering reality check [Editor's letter]. Software
Magazine, 12, 1.

Devanbu, P., Brachman, R. 1., Selfridge, P. G., & Ballard, B. W. (1991). LaSSIE: A
knowledge-based software information system. Communications of the ACM, 34, 35-
49.

Dietrich, S. W. & Callis, F. W. (1992). A conceptual design for a code analysis
knowledge base. Journal of Software Maintenance;' Research and Practice, 4, 19-36.

Dock, V. T. (1979). Structured COBOL: American national standard. St. Paul, MN:
West.

Edwards, H. M., & Munro, M. (1993). RECAST: Reverse engineering from COBOL to
SSADM specifications. Proceedings of the 15th IEEE International Conference on
Software Engineering, 499-508.

Eliot, L. B. (1992, July). Software review: COBOL Analyst, SEEC, Inc. CASE Trends,
4, 68-70.

Elshoff, 1. L., & Marcotty M. (1982). Improving computer program readability to aid
modification. Communications of the ACM, 25, 512-52l.

Fairley, R. E. (1985). Software engineering concepts. NY: McGraw-Hill.

Fiorello, M., & Cugini, 1. (1984). Is COBOL-8x cost effective? AFIPS Conference
Proceedings, 53, 223-228.

FIPS PUB 106 (1984, June 15). Federal Information Processing Standard 106. Guideline
on Software Maintenance. Chapter 5. System Maintenance vs. System Redesign, pp.
14-17. Department of Commerce, National Institute of Standards and Technology.

Friedlander, P., & Toothman, W. E. (1994). Reengineering done right: Intermediate
solutions that are cost effective. Information Systems Management, 11, 7-15.

426

Friedman, A. L., & Cornford, D. S. (1989). Computer systems development: History,
organization and implementation. New York: John Wiley & Sons.

Garnett, E. S. & Mariani, J. A. (1990). Software reclamation. Software Engineering
Journal, 5, 185-191.

Gelertner, D., & Jagannathan, S. (1990). Programming Linguistics. Cambridge, MA:
MIT Press.

Gillis, K. D. & Wright, D. G. (1990). Improving software maintenance using system
level reverse engineering. In Proceedings of the IEEE Conference on Software
Maintenance CSM '90,84-90. Washington, DC: IEEE Computer Society Press.

Goguen, N. H. (1975). Control structures for structured programming in COBOL. In
Proceedings of a Symposium on Structured Programming in COBOL--Future and
Present (pp. 68-87). New York: Association for Computing Machinery.

Gopal, R., & Schach, S. R. (1989). Using automatic program decomposition techniques
in software maintenance tools. Proceedings of the IEEE Conference on Software
Maintenance CSM '89, 132-141.

Griswold, W. G., & Notkin, D. (1992). Computer-aided vs. manual program
restructuring. ACM SIGSOFT Software Engineering Notes, 17, 33-41.

Grumann, J., & Welch, P. J. (1992). A graph method for technical documentation and re
engineering ofDP applications. In P. A. V. Hall (Ed.), Software reuse and reverse
engineering in practice (pp. 321-353). London: Chapman & Hall.

Hall, P. A. V. (1992). Software reuse, reverse engineering and re-engineering. In P. A.
V. Hall (Ed.), Software Reuse and Reverse Engineering in Practice (pp. 3-31).
London: Chapman and Hall.

Handel, Y, & Degtyar, B. (1994). The revolutionary guide to COBOL. Birmingham,
United Kingdom: WROX Press.

Hanna, M. (1993, July). Can CASE bridge to object world? Software Magazine, 13,41-
45.

Harandi, M. T., & Ning, J. Q. (1988). PAT: A knowledge-based program-analysis tool.
In Proceedings of the Conference on Software Maintenance (pp. 312-318).
Washington, DC: IEEE Computer Society Press.

Harandi, M. T., & Ning, 1. Q. (1990). Knowledge-based program analysis. IEEE
Software, 7, 74-81.

427

Harrold, M. 1., & Malloy B. (1993). A unified interprocedural program representation
for a maintenance environment. IEEE Transactions on Software Engineering, 19, 584-
593.

Hausler, P. A, Pleszkoch, M. G., Linger, R. c., & Hevner, A R. (1990). Using function
abstraction to understand program behavior. IEEE Software, 7(1), 55-63.

Hayes, I. S. (1993, October). Product review: Legacy Workbench, KnowledgeWare,
Inc. Data Management Review, 3, 40.

Hayes, I. S. (1994, September). Protect software assets by migrating legacies.
Application Development Trends, 1, 65-66, 68, 70-73.

Hayley, K., Plewa, 1., & Watts, M. (1993, April 15). Reengineering tops CIO menu.
Datamation, 39, 73-74.

Hennell, M. A, McNicol, W. M., & Hawkins, 1. (1980). The static analysis of COBOL
programs. ACM SIGSOFT Software Engineering Notes, 5, 17-23.

Hickey, G. L., & Jennings, R. A (1994, February). USAA's reengineering turns IE on its
head. Application Development Trends, 1, 18-21.

Hicks, 1. R. (1975). Suggested changes to COBOL to facilitate structured programming.
In H. P. Stevenson (Ed.), Proceedings of a Symposium on Structured Programming in
COBOL--Future and Present (pp. 88-94). New York: Association for Computing
Machinery.

Holloway, S. (1992). Re-engineering business systems to use the next generation of
software. In P. A V. Hall (Ed.), Software reuse and reverse engineering in practice
(pp.271-282). London: Chapman & Hall.

Howden, W. E., & Pak, S. (1992). Problem domain, structural and logical abstractions in
reverse engineering. In Proceedings of the IEEE Conference on Software Maintenance
CSM '92 (214-224). Los Alamitos, CA: IEEE Computer Society Press.

Howden, W. E., & Wieand, B. (1994). QDA--A method for systematic informal program
analysis. IEEE Transactions on Software Engineering, 20, 445-462.

Howe, D. R. (1983). Data analysis for data base design. London: Edward Arnold.

428

Jacobson,1. & Lindstrom, F. (1991). Re-engineering of old systems to an object-oriented
architecture. In Proceedings of oOPS LA 1991 (pp. 340-350). New York: Association
for Computing Machinery.

Johnson, W. L. & Soloway, E. (1985). PROUST: Knowledge-based program
understanding. IEEE Transactions on Software Engineering, 11,267-275.

Joiner, J. K., Tsai, W. T., Chen, X. P., Subramanian, S., Sun, J., & Gandamaneni, H.
(1994). Data-centered program understanding. In Proceedings of the 1994 IEEE
International Conference on Software Maintenance CSM '94 (pp. 272-281). Los
Alamitos, CA: IEEE Computer Society Press.

Kaposi, A. & Pyle, 1. (1993). Systems are not only software. Software Engineering
Journal, 8, 31-39.

Karakostas, V. (1990). The use of application domain knowledge for effective software
maintenance. In Proceedings of the IEEE Conference on Software Maintenance CSM
'90 (pp. 170-176). Washington, DC: IEEE Computer Society Press.

Karakostas, V. (1992). Intelligent search and acquisition of business knowledge from
programs. Journal of Software Maintenance: Research and Practice, 4, 1-17.

Keller, R. (1983). The Practice of Structured AnalysiS. Englewood Cliffs, NJ: Prentice
Hall.

Keller, B. J. & Nance, R. E. (1993). Abstraction refinement: A model of software
evolution. Software Maintenance: Research and Practice, 5, 123-145.

Kerr, J. & McGovern, T. (1991, October). The three R's ofIS: Demystifying the
reverse engineering revolution. Database Programming and Design, 4, 19-21.

Keyes, J. (1992, June). Code trapped between legacy, object worlds. Software
Magazine, 12,39-41,44-45.

Khan, J. 1. (1994). Design extraction by adiabatic multi-perspective abstraction. In H. A.
Muller & M. Georges (Eds.), Proceedings of the 1994 IEEE International Conference
on Software Maintenance (pp. 191-200). Los Alamitos, CA: IEEE Computer Society
Press.

Kozaczynski, W. (1990). Basic assembler language software re-engineering workbench
(BAL/SRW). Proceedings of the IEEE Conference on Software Maintenance CSM
'90,215).

Kozaczynski, W., Letovsky, S., & Ning, 1. (1991). A knowledge-based approach to
software system understanding. Proceedings of the 6th Knowledge-Based Software
Engineering Conference, 162-170.

Kozaczynski, W., Ning, 1., & Engberts, A. (1992). Program concept recognition and
transformation. IEEE Transactions on Software Engineering, 18, 1065-1075.

Kozaczynski, W. & Wilde, N. (1992). On the re-engineering of transaction systems.
Journal of Software Maintenance: Research and Practice, 4, 143-162.

Laffick, B. W. (1993). A programming plans paradigm for a novice programmer's
support environment. Dissertation Abstracts International, 54, 3710B-3711B
(University Microfilms No. DA9332821).

Lano, K., Breuer, P. T., & Haughton, H. (1993). Reverse-engineering COBOL via
formal methods. Software Maintenance: Research and Practice, 5, 13-25.

Lanubile, F., & Visaggio, G. (1993). Function recovery based on program slicing.
Proceedings of the IEEE Conference on Software Maintenance CSM '93, 396-404.

429

Layzell, P. 1. & MaCaulay, L. A. (1994). An investigation into software maintenance-
perception and practices. Journal of Software Maintenance: Research and Practice, 6,
105-120.

Lehman, M. M. (1980). Programs, life cycles, and laws of software evolution.
Proceedings of the IEEE, 68, 1060-1076.

Lenihan, W. F. (1993, October). Refurbishing legacy systems. DataManagement
Review, 3, 21-23.

Lerner, M. (1991, Summer). A standard approach to the process ofre-engineering long
lived systems. CASE Trends, 3, 18-23.

Lientz, B. P. & Swanson, E. B. (1980). Software maintenance management: A study of
the maintenance of computer application software in 487 data processing
organizations. New York: Addison Wesley.

Lientz, B. P., & Swanson, E. B. (1981). Problems in application software maintenance.
Communications of the ACM, 24, 763-769.

Lim, P. A. (1986). CICSIVS Command level with ANS COBOL examples. New York:
Van Nostrand Reinhold.

Lukey, F. 1. (1980). Understanding and debugging programs. International Journal of
Man-Machine Studies, 12, 189-202.

430

Maggiolo-Schettini, A, Naoli, M. A, & Tortora, G. (1988). Web structures: A tool for
representing and manipulating programs. IEEE Transactions on Software Engineering,
14, 1621-1639.

Markosian, L., Newcomb, P., Brand, R, Burson, S., & Kitzmiller, T. (1994). Using an
enabling technology to reengineer legacy systems. Communications of the ACM, 37,
58-70.

Martin, J., & McClure, C. (1983). Software Maintenance: The Problem and Its
Solution. Englewood Cliffs, NJ: Prentice-Hall.

Mattison R (1993, October). Mattison Avenue [Column]. Data Management Review,
3,32,34.

Mayrhauser, A von, & Vans, A M. (1994). Comprehension processes during large scale
maintenance. Proceedings of the 16th IEEE International Conference on Software
Engineering, 39-48.

Mays, R G. (1994). Forging a silver bullet from the essence of software. IBM Systems
Journal, 33, 20-45.

McCabe, T. J. & Williamson, E. S. (1992, April 15). Tips on reengineering redundant
software. Datamation, 38, 71-74.

McLoughlin, F., Estdale, J., & Tobin, M (1993). Diagramming techniques. In H. J. van
Zuylen (Ed.), The REDO compendium: Reverse engineeringfor software maintenance
(pp. 139-149). Chichester, England: John Wiley & Sons.

Meekel, J. & Viala, M. (1988). Logiscope: A tool for maintenance. Proceedings of the
IEEE Conference on Software Maintenance CSM '88 (pp. 328-334). Washington, DC:
IEEE Computer Society Press.

Miller, J. C. & Straus, B. M., III. (1987). Implications of automatic restructuring of
COBOL. ACM SIGPLAN Notices, 22, 76-82.

Miller, R L. (1995a). Information Engineering: A balanced approach to information
systems requirements analysis and design. IEEE National Aerospace and Electronic
Systems Conference, 672-679.

Miller, R L. (1995b, September). Information systems requirements analysis and design:
A balanced approach. IEEE Aerospace and Electronic Systems Magazine, 10, 27-32.

Miller, R L., & Morley, J. (1996). Geriatric systems: The need for reverse engineering.
IEEE National Aerospace and Electronic Systems Conference, 497-504.

431

MIL-STD- 498. (1994, December). Software development and documentation.
Washington, DC: Department of Defense.

Muller, H. A, Tilley, S. R, Orgun, M. A, Corrie, B. D., & Madhavji, N. H. (1992) A
reverse engineering environment based on spatial and visual software interconnection
models. ACM SIGSOFT Software Engineering Notes, 17, 88-98.

Munro, M. (1992). Software maintenance, reuse and reverse engineering. In P. A V.
Hall (Ed.), Software and reverse engineering in practice (pp. 573-584). London:
Chapman & Hall.

Napier, B. (1991, Summer). Software review: SourcelRE, CGI Systems, Inc. CASE
Trends, 3, 40-42.

Ning,1. Q., Engberts, A, & Kozaczynski, W. A (1994). Automated support for legacy
code understanding. Communications of the ACM, 37(5), 50-57.

Ochs, T. (1993). Cleaning out the leftovers: Software reengineering. Software
Development, 1(6), 59-66.

Ogush, M. (1992). A software reuse lexicon. Crosstalk: The Defense Journal of
Software Engineering, 34,13-20.

O'Hare, A B. & Troan, E. W. (1994). RE-analyzer: From source code to structured
analysis. IBM Systems Journal, 33, 110-130.

Ornburn, S. B. & Rugaber, S. (1992). Reverse engineering: Resolving conflicts between
expected and actual software designs. Proceedings of the IEEE Conference on
Software Maintenance CSM '92, 32-40.

Orr, K. (1981). Structured requirements definition. Topeka, KS: Ken Orr &
Associates.

Ostrolenk, G., Tobin, M., Altes, A, & Younger, E. (1993). The system description
database and its infrastructure. In H. 1. van Zuylen (Ed.), The REDO compendium:
Reverse engineering for software maintenance (pp. 275-310). Chichester, England:
John Wiley & Sons.

Ourston, D. (1989). Program recognition. IEEE Expert, 4, 36-49.

Partee, S. (1993, July). Data administration in the '90s. Data Management Review, 3,6-
8.

Partsch, H, & Steinbruggen, R. (1983). Program transformation systems. ACM
Computing Surveys, 15, 199-236.

Peercy, D. A (1981). A software maintainability evaluation methodology. IEEE
Transactions on Software Engineering, 7, 343-352.

Pfrenzinger, S. J. (1992, July). Reengineering: How high and why? Database
Programming and Design, 5, 28-35.

432

Pratt, T. W. (1984). Programming languages: Design and implementation. Englewood
Cliffs, NJ: Prentice-Hall.

Price, M., Shenton, M., Davies, A, Khabaza, I., van Zuylen, H. J., & van den Bosch, P.
(1993). Domain-specific issues in reverse engineering. In H J. van Zuylen (Ed.), The
REDO compendium: Reverse engineeringfor software maintenance (pp. 51-78).
Chichester, England: John Wiley & Sons.

Quilici, A (1994). A memory-based approach to recognizing programming plans.
Communications of the ACM, 37, 84-93.

Rabin, S. (1992). Reengineering opportunities. Computer Language, 9, 51-53.

Raphael, B. (1966). The structure of programming languages. Communications of the
ACM,9,67-71.

Rekoff, M. G. (1985). On reverse engineering. IEEE Transactions on Systems, Man,
and Cybernetics, 15, 244-252.

Reynolds, R. G., Maletic, J. I., & Porvin, S. E. (1990). PM: A system to support the
automatic acquisition of programming knowledge. IEEE Transactions on Knowledge
and Data Engineering, 2, 273-282.

Rich, c., & Waters, R. C. (1988). The Programmer's Apprentice: A research overview.
IEEE Computer, 21, 10-25.

Rich, C., & Wills, L. M. (1990). Recognizing a program's design: A graph-parsing
approach. IEEE Software, 7, 82-89.

Ricketts, J. A, DelMonaco, J. c., & Weeks, M. W. (1989). Data reengineering for
application systems. Proceedings of the IEEE Conference on Software Maintenance,
174-179.

Robson, D. J., Bennett, K. H, Cornelius, B. J., & Munro, M. (1991). Approaches to
program comprehension. Journal of Systems and Software, 14, 79-84.

433

Rugaber, S., Ornburn, S. B., & LeBlanc, R. J., Jr. (1990). Recognizing design decisions
in programs. IEEE Software, 7, 47-54.

Sage, A. P. (1977). Methodology for large scale systems. New York: McGraw-Hill.

Sage, A. P. (1993). Object oriented methodologies in decision and information
technologies. Information and Decision Technologies, 19, 31-53.

Sakthivels, S. (1994). A decision model to chose between software maintenance and
software redevelopment. Journal of Software Maintenance: Research and Practice, 6,
21-143.

Sammet, J. (1972). Programming languages: History and future. Communications of
the ACM, 15, 601-610.

Sammet, J. (1981). The early history of COBOL. In R. Wexelblat (Ed.), The history of
programming languages (pp. 199-243). New York: Academic Press.

Scherlin, W. L. (1992). A visual software process language. Communications of the
ACM, 35, 37-43.

Shneiderman, B. (1980). Software psychology. Cambridge, MA: Winthrop.

Sneed, H. M. (1984). Software renewal--a case study. IEEE Software, 1, 56-63.

Sneed, H. M. (1991). Economics of software re-engineering, Journal of Software
Maintenance: Research and Practice, 3, 163-182.

Sneed, H. M. (1992b). Reverse engineering versus reengineering. Proceedings of the
IEEE Conference on Software Maintenance CSM '92,85-86.

Sneed, H. M. & Jandrasics, G. (1987). Inverse transformation of software from code to
specification. Proceedings of the IEEE Conference on Software Maintenance CSM '88,
102-109.

Standish, T. A. (1984). An essay on software reuse. IEEE Transactions on Software
Engineering, 10, 494-497.

Stern, N., & Stern, R. A. (1979). Structured COBOL Programming 3d edition. New
York: John Wiley & Sons.

Stevenson, H. P. (Ed.) (1975). Proceedings of a symposium on structured programming
in COBOL--future and present. New York: Association for Computing Machinery.

434

Sullennauer, c., Olsem, M., & Murdock, D. (1992). Re-engineering tool report. Hill Air
Force Base, UT: Software Technology Support Center.

Tarnai, T. & Torimitsu, Y. (1992). Software lifetime and its evolution process over
generations. In Proceedings of the IEEE Conference on Software Maintenance CSM
'92 (pp. 63-69). Los Alamitos, CA: IEEE Computer Society Press.

Teasley, B. E. (1994). The effects of naming style and expertise on program
comprehension. International Journal of Human-Computer Studies, 40, 757-770.

Tian, J., & Zelkowitz, M. V. (1992). A formal program complexity model and its
application. Journal of Systems Software, 17, 253-266.

Tilley, S. R, Muller, H. A, Whitney, M. J., & Wong, K. (1993). Domain retargetable
reverse engineering. In Proceedings of the IEEE Conference on Software Maintenance
CSM '93 (pp. 142-151). Los Alamitos, CA: IEEE Computer Society Press.

Triance, J. M. (1978). Discussion and correspondence: A study of COBOL portability.
The Computer Journal, 21, 278-281.

Turner, M., Neuse, D., & Goldgar, R (1993, October). Legacy systems: Optimizing the
move to client/server applications. Data Management Review, 3, 15-16,18.

Ulrich, W. M. (1990a, October). The evolutionary growth of software reengineering and
the decade ahead. American Programmer, 3, 14-20.

Ulrich, W. M. (1990b, December). From ugly legacies to artistic beauties. Software
Magazine, 10, 33-36, 39, 42-45.

Ulrich, W. M. (1991, September/October). Business re-engineering and software re
engineering: The relationship and impact. CASE Trends, 3, 35-38.

Wagner, H. (1980). Visualization of structures and traces of software systems (Tool
AURUM). In REbert, J. Lugger, & L. Goecke (Eds.), Practice in software
adaptation and maintenance (pp. 167-180). Amsterdam: North-Holland.

Walker, H. M. (1994). The limits of computing. London, England: Jones and Bartlett.

Ward, M. (1993). Abstracting a specification from code. Software Maintenance:
Research and Practice, 5, 101-122.

Warden, R (1992a). Re-engineering--a practical methodology with commercial
applications. In P. A V. Hall (ed.), Software reuse and reverse engineering (283-305).
London: Chapman and Hall.

435

Warren, S. (1982). MAP: A tool for understanding software. Proceedings of the 6th
International Conference on Software Engineering, 28-37.

Welch, P., & Grumman, J. (1993). The business case for reverse engineering .. In H. J.
van Zuylen (Ed.), The REDO compendium: Reverse engineeringfor software
maintenance (pp. 35-41). Chichester, England: John Wiley & Sons.

Weinberg, G. M. (1971). The psychology of computer programming. N ew York: Van
Nostrand-Reinhold.

Weinberg, G. M. (1982). Rethinking Systems Analysis and Design. Boston: Little,
Brown.

Weinman, E. (1991, Summer). Fighting the maintenance blues [Editorial]. CASE
Trends, 3, 6.

Weiser, M. (1982). Programmers use slices when debugging. Communications of the
ACM, 25, 446-452.

Weiser, M., & Shneiderman, B. (1987). Human factors of software design and
development. In G. Salvendey (Ed.), Handbook of human factors (pp. 1398-1415).
New York: John Wiley & Sons.

Wilde, N., Gomez, 1. A, Gust, T., & Strasburg D. (1992). Locating user functionality in
old code. Proceedings of the IEEE Conference on Software Maintenance CSM '92,
200-205.

Winograd, T. (1979). Beyond programming languages. Communications of the ACM,
22, 391-401.

Yang, H. (1991). The supporting environment for a reverse engineering system--the
maintainer's assistant. Proceedings of the IEEE Conference on Software Maintenance
CSM'91, 13-22.

Younger, E. (1993). Documentation. In H. 1. van Zuylen (Ed.), The REDO
compendium: Reverse engineeringfor software maintenance (pp. 111-121).
Chichester, England: John Wiley & Sons.

Yourdon, E. (1989a). Modern structured analysis. Englewood Cliffs, NJ: Prentice
HalL

Yourdon, E. (1989b, April). RE-3, Part 1: Re-engineering, restructuring, reverse
engineering. American Programmer, 2, 3-10.

Yu, D. (1991). A view on three R's (3Rs): Reuse, re-engineering, and reverse
engineering. ACM SIGSOFT Software Engineering Notes, 16, 69.

436

Zuylen, H. 1. van. (1993). Understanding in reverse engineering. In H. 1. van Zuylen
(Ed.), The REDO compendium: Reverse engineeringfor software maintenance (pp.
81-92). Chichester, England: John Wiley & Sons.

Zuylen, H. 1. van, & Estdale, 1. (1993). Views, representations and development
methods. In H. 1. van Zuylen (Ed.), The REDO compendium: Reverse engineeringfor
software maintenance (pp. 93-109). Chichester, England: John Wiley & Sons.

Zvegintzov, N. (1982, April). The eureka countdown. Datamation, 28, 172-178.

	Nova Southeastern University
	NSUWorks
	1996

	Design Information Recovery from Legacy System COBOL Source Code: Research on a Reverse Engineering Methodology
	Robert Lee Miller
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1482244232.pdf.ZnzcV

