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1. Abstract 

The oceanic whitetip shark, Carcharhinus longimanus, is a circumtropical pelagic 

shark of high conservation concern (IUCN Red List: “Critically Endangered” in the 

Western North and Western Central Atlantic and “Vulnerable” globally). I present the 

first, population genetic assessment of the oceanic whitetip shark on a global scale, based 

on analysis of two mitochondrial genome regions (entire 1066-1067 bp control region 

and 784 bp partial ND4 gene), and nine nuclear microsatellite loci. No population 

structure was detected within the Western Atlantic. However, highly significant 

population structure was detected between Western Atlantic and Indo-Pacific Ocean 

sharks across all markers. Additionally, a nominally significant signal of matrilineal 

structure between the Indian and Pacific Ocean sharks was detected by AMOVA and 

pairwise tests of the ND4 gene only (pairwise ΦST = 0.051, P = 0.046; pairwise Jost’s D 

= 0.311, 95% CI = 0.020, 0.0614). Although significant inter-basin population structure 

was evident, it was associated with deep phylogeographic mixing of mitochondrial 

haplotypes and evidence of contemporary migration between the Western Atlantic and 

Indo-Pacific Oceans. I theorize that semi-permeable thermal barriers are responsible for 

the differentiation between the Western Atlantic and Indo-Pacific set in a framework of 

global phylogeographic mixing. Relatively low mtDNA genetic diversity (concatenated 

mtCR-ND4 nucleotide diversity π = 0.32% ± 0.17%) compared to other circumtropical 

elasmobranch species raises potential concern for the future genetic health of this species. 

Overall, significant population structure exists, at a minimum, between the Western 

Atlantic and Indo-Pacific Ocean, and effective management strategies must take this into 

consideration. 

Keywords: Carcharhinus longimanus; oceanic whitetip shark; mitochondrial DNA; 

mitochondrial control region; ND4 gene; microsatellite; population genetics; genetic 

diversity; conservation 
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2. Introduction 

 The highly mobile, globally distributed shark species were traditionally assumed 

to exist in a state of genetic panmixia over their ranges due to their high dispersal 

potential and lack of apparent physical barriers to movement. This view is changing 

however, with large oceanic expanses, thermal conditions, and philopatric behaviors 

being increasingly observed as barriers to gene flow for even some of the most vagile 

shark species; e.g. the blacktip shark, Carcharhinus limbatus (Keeney & Heist 2006), the 

scalloped hammerhead, Sphyrna lewini (Duncan et al. 2006), the shortfin mako, Isurus 

oxyrinchus (Heist et al. 1996; Schrey & Heist 2003), the silky shark, Carcharhinus 

falciformis (Clarke et al. 2015), the whale shark, Rhincodon typus (Castro et al. 2007; 

Vignaud et al. 2014), and the white shark, Carcharodon carcharias (Jorgensen et al. 

2009; Jorgensen et al. 2012).  

 Many of the globally distributed shark species are subject to multi-national 

fisheries, and have suffered sharp declines over the past few decades due to overfishing 

(Ferretti et al. 2010; Dulvy et al. 2014). This situation is further exacerbated by demands 

of the international shark fin trade (Clarke et al. 2006a; Clarke et al. 2006c) and the 

growing market for shark meat (Dent & Clarke 2015). To date, the globally distributed 

truly oceanic sharks, which are exposed to perhaps the highest amount of fishing 

pressure, remain enigmatic regarding their population dynamics across their distributions. 

Genetic assessment of these overfished shark species, including their stock structure, 

genetic diversity and demographic history is of vital importance for informing 

management and conservation efforts (Graves 1996; Avise 1998; Dudgeon et al. 2012) 

and for illuminating mechanisms underlying population divergence in widely distributed 

marine species.  

The oceanic whitetip shark, Carcharhinus longimanus, a true oceanic, 

circumtropical epipelagic predator, is a prominent example of a globally overexploited 

shark species of particular conservation concern (Baum et al. 2015). Historically, this 

shark was among the three most abundant pelagic shark species alongside the blue shark, 

Prionace glauca, and the silky shark, Carcharhinus falciformis (Strasburg 1958; 

Compagno 1984). However, since the dawn of industrial fishing in the 1950s, the oceanic 

whitetip shark has suffered drastic declines in both abundance and biomass throughout 



3 
 

much of its range (Baum & Myers 2004; Ward & Myers 2005; Rice & Harley 2012; 

Baum et al. 2015). As a widely roving, opportunistic feeder, this species frequently falls 

victim to bycatch in pelagic longline, drift net, and purse seine fisheries (Bullis & Captiva 

1955; Beerkircher et al. 2002; Bonfil et al. 2008; Lawson 2011). Oceanic whitetip sharks 

are particularly vulnerable to pelagic longline fisheries which target the upper 125 meters 

of the water column (Tolotti et al. 2015). The international market demand for its large 

fins has also contributed to the broad scale decline of this species. The morphologically 

distinct fins of the oceanic whitetip shark are sold under the name liu qiu for 45 to 85 

USD/kg, making up 1.6% - 2.1% of the Hong Kong fin market in the early 2000s (Clarke 

et al. 2004; Clarke et al. 2006a; Clarke et al. 2006c; CoP16 Prop. 42 2013). Clarke (2008) 

estimated 80-120 thousand oceanic whitetip sharks were sourced from the Atlantic Ocean 

alone to supply the Hong Kong fin market in 2003, a peak year for fin imports to Hong 

Kong. As a species with biannual parturition, relatively low fecundity (1-14 pups per 

litter, mean = 6.2), an estimated 4-7 years to reach maturity, a slow growth rate (von 

Bertalanffy k = 0.099), and a moderate life span (17-22 years), the oceanic whitetip shark 

does not possess the life history traits necessary to recover quickly from overexploitation 

(Seki et al. 1998; Lessa et al. 1999; White 2007; Bonfil et al. 2008; Cortés 2008; Coelho 

et al. 2009; Tambourgi et al. 2013).   

 Due to drastic population declines, the IUCN Red List categorizes the oceanic 

whitetip shark as “Vulnerable” globally and “Critically Endangered” regionally in the 

Western North and Western Central Atlantic (Baum et al. 2015). Current global 

protection measures of the oceanic whitetip shark include a recent (in 2014) listing on 

CITES Appendix II (March 2013, CoP16 Prop. 42). On a smaller scale, regional fisheries 

management organizations have placed restrictions on the retention, landing, storing, 

selling, and/or transshipping of any part of or whole oceanic whitetip shark to enhance 

conservation measures (International Commission for the Conservation of Atlantic Tunas 

Rec. 10-07, Inter-American Tropical Tuna Commission Rec. C-11-10, Western and 

Central Pacific Fisheries Commission CMM 11-04, Indian Ocean Tuna Commission Res. 

13-06). Despite these sanctions and bans on finning, the rate of bycatch of this species 

remains high with current fishing practices (Clarke et al. 2013; Tolotti et al. 2015).  
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There remains a paucity of information on the ecology, population size, stock 

structure and genetic status of the oceanic whitetip shark. There is only one published 

stock assessment of this species in the Western and Central Pacific Ocean (Rice & Harley 

2012), which asserts that catch of oceanic whitetip sharks in this region has exceeded the 

maximum sustainable yield. Information on the movement ecology of the oceanic 

whitetip shark is limited to a few tagging and catch analysis studies (e.g. Kohler et al. 

1998; Musyl et al. 2011; Carlson & Gulak 2012; Howey-Jordan et al. 2013; Frédou et al. 

2015; Madigan et al. 2015; Tolotti et al. 2015). Telemetry studies have revealed that 

while oceanic whitetip sharks are capable of traveling large distances, they appear in 

some regions at least, to exhibit a degree of site philopatry (Howey-Jordan et al. 2013). It 

has been suggested that prey resources may be a driving mechanism for this behavior at 

least in one area (Madigan et al. 2015).  This species exhibits a strong preference for 

waters above 20°C, although it is capable of tolerating colder waters down to 7.75oC for 

short periods as exhibited by brief, deep dives into the mesopelagic zone below the 

thermocline, presumably for foraging (Howey-Jordan et al. 2013). However, exposures to 

these cold temperatures are not sustained (Musyl et al. 2011; Tolotti et al. 2015). The 

thermal preferences of oceanic whitetip sharks in conjunction with their reported range 

within 30° N and S suggest possible thermal barriers to inter-ocean basin movements 

around the southern tips of Africa and South America (Bonfil et al. 2008; Musyl et al. 

2011; Howey-Jordan et al. 2013; Gaither et al. 2015).  

To date, there are no published studies on the population genetic dynamics of the 

oceanic whitetip shark on any geographic scale to inform conservation efforts. My study 

presents the first population level genetic assessment of the oceanic whitetip shark, and is 

conducted on a global scale. Due to lack of evidence for inter-ocean basin migration and 

a preference for warm waters, I test the hypothesis that there is significant population 

differentiation between the Western Atlantic (W. Atlantic) and Indo-Pacific Ocean 

basins, similar to that seen with the silky shark, a pelagic congener  with comparable life 

history characteristics (Cortés 2008; Clarke et al. 2015). Furthermore, due to evidence of 

site philopatric behavior in the western North Atlantic (Howey-Jordan et al. 2013; 

Madigan et al. 2015), I test the prediction that this species will show relatively fine-scale, 

intra-basin genetic population structure in this geographic region. My study aims to 
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elucidate the global genetic connectivity, diversity, and demographic history of the 

oceanic whitetip shark by analyzing a suite of genetic markers: i) the entire mitochondrial 

control region (mtCR), ii) a 784  bp segment of the 5’ end of the ND4 gene, and iii) 11 

cross-species nuclear microsatellite (MSAT) markers. As the first study to examine the 

global genetic connectivity and diversity in the oceanic whitetip shark, it will contribute 

essential knowledge for the implementation of effective, scientifically based management 

strategies for this species of high conservation concern. 

 

3. Materials and Methods  

3.1. Sample Collection  

 A total of 171 oceanic whitetip shark tissue samples in the form of muscle tissue 

and fin clips were obtained via international collaboration between 1992 to 2015 from 10 

globally distributed sample locations: the Arabian Sea (ARA, n = 28), Indonesia (INA, n 

= 3),  Hawaii (HI, n = 4), the Line Islands of Kiribati (LI, n = 2), Taiwan (TWN, n = 32), 

and five regions within the Western Atlantic, including the Western North Atlantic  

(WNA, n = 18), the Cayman Islands (CI, n = 17), the Western Caribbean (WC, n = 6), 

Northeast South America (Guyana, Suriname, and French Guiana, NESA, n = 8) and 

Brazil (BRZ, n = 52) (Figure 1). In addition, a single sample was collected from an 

unknown location within the South Pacific. This sample was only included in ocean basin 

level analyses in which all samples were pooled into respective ocean collections. All 

samples were obtained with proper permitting in line with the regulations placed on this 

species, and preserved in 95% to 100% ethanol.  
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Figure 1 Sample distribution and sizes of oceanic whitetip sharks (n = 171). One 

additional sample was collected from an unknown location in the South Pacific (not 

depicted). The bottom left inset box details the distribution of samples within the Western 

Atlantic (gray box on main map) based on geocoordinate data. Blue polygons correspond 

to WNCA (Western North Central Atlantic) sample locations. The green polygon 

corresponds to BRZ (samples from Brazil). Abbreviations in inset: WNA, Western North 

Atlantic; CI, Cayman Islands; WC, Western Caribbean; NESA, Northeast South 

America. Abbreviations from left to right on main map: HI, Hawaii; LI, Line Islands of 

Kiribati; WNCA, Western North Central Atlantic; BRZ, Brazil; ARA, Arabian Sea; INA, 

Indonesia; TWN, Taiwan.  

3.2. Mitochondrial DNA Sequencing 

 Genomic DNA was extracted from tissue samples using the QIAGEN DNeasy 

Blood & Tissue Kit per manufacturer’s instructions (QIAGEN Inc. Valencia, CA). The 

entire mitochondrial, non-protein coding control region (mtCR) was amplified using the 

Forward and Reverse primers CR-F6 (5’-AAGCGTCGACCTTGTAAGTC-3’) DAS-R2 

(5’-GCTGAAACTTGCATGTGTAA-3’) (Clarke et al. 2015). A 784 bp region of the 

protein coding nicotinamide adenine dehydrogenase subunit 4 (ND4) gene was amplified 

using the primer pair ND4 (5’-CACCTATGACTACCAAAAGCTCATGTAGAAGC-3’) 
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(Arevalo et al. 1994) and H12293-Leu (5’-TTGCACCAAGAGTTTTTGGTTCCTAAGA 

CC-3’) (Inoue et al. 2001). Polymerase chain reactions (PCRs) were conducted in total 

volumes of 50 µL, containing 1 µL of unquantified genomic DNA, 200 µM each dNTP, 

250 µM each primer, 1 U HotStar Taq™  10x reaction buffer, and 2 U HotStar Taq™ 

DNA polymerase (QIAGEN Inc.). All PCR’s were performed on an MJ Research Inc. 

PTC-100™ Programmable Thermal Controller. PCR conditions for amplifying the mtCR 

were as follows: 15 min initial denaturation at 95°C, followed by 35 cycles of 94°C for 1 

min, 50°C for 1 min, 72°C for 2 min, and a 5 min final extension at 72°C. PCR 

conditions for amplifying the targeted region of ND4 were as follows: 5 min initial 

denaturation at 94°C, followed by 35 cycles of 94°C for 15 sec, 55°C for 30 sec, 72°C for 

1 min, and a 7 min final extension at 72°C. Each set of PCR reactions included a negative 

control with no genomic DNA to monitor for contamination. Reactions were visualized 

on a 1.2% agarose gel to check for successful amplification and contamination.  

  Amplicons were purified using the QIAquick PCR Purification Kit (QIAGEN 

Inc.) and cycle sequenced in both directions using the Forward primers (CR-F6 or ND4),  

Reverse primers (DAS-R2 or H12293-Leu), and, for the mtCR, the internal sequencing 

primer CRint555-F (5’-ACGGTTTGTGGTACATTAC-3’) (Clarke et al. 2015) with 

BigDye® Terminator v3.1 chemistry (Applied Biosystems Inc., Foster City, CA). 

Reactions were purified using the DyeEx 2.0 Spin Kit (QIAGEN Inc.) and sequenced 

using standard protocols on an ABI 3130 genetic analyzer (Applied Biosystems Inc.). 

Sequences were aligned using GENEIOUS v. 7.1.7 (http://www.geneious.com, Kearse et 

al. 2012) and checked by eye. All unique haplotypes were subsequently double strand 

sequenced using internal primers designed with PRIMER3 v. 2.3.4 (Rozen & Skaletsky 

2000); three for the mtCR: OWT507R (5’-CCATTAAAGGGAACTAGAGGACTG-3’), 

OWT903R (5’-CCAAACCCGGGGTGAGTC-3’) and OWT951F (5’-CCCCCTCCCCC 

TTAATATACAC-3’) and one for ND4: Clon415RND4 (5’-GGGGATGGAGGTAAAG 

CGAG-3’).  
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3.3. Nuclear Microsatellite Genotyping 

All samples were genotyped at a total of 11 nuclear microsatellite loci originally 

developed for other shark species (Table 1). Each locus was amplified in a 12.5 µL PCR 

cocktail containing the following conditions (unless otherwise specified in Table 1): 1 µL 

of unquantified genomic DNA, 300 µM each dNTP, 0.5 U HotStar Taq™ DNA 

polymerase (QIAGEN Inc.), 2 U HotStar Taq™  10x reaction buffer, additional MgCl2 

for a total concentration of 1.83 mM (1.5 mM from the 10x reaction buffer), 160 µM 

forward primer with a 5’-M13 tail (Schuelke 2000), 400 µM reverse primer and 400 μM 

fluorescently labeled universal M13 primer (5’ TGT AAA ACG ACG GCC AGT). To 

decrease genotyping errors, 6 of 10 of the reverse primers (Table 1) were manufactured 

with a 5’ tail (GTTTCTT) to promote adenylation of the 3’ forward strand, commonly 

referred to as the Plus A artifact (Smith et al. 1995; Brownstein et al. 1996). General 

thermal cycling conditions for PCR reactions were as follows: 15 min initial denaturation 

at 95°C, followed by 30-35 cycles of 94°C for 1 min, 1 min at the locus-specific 

annealing temperature (Table 1), 72°C for 1 min, and a final 20 min extension at 72°C. 

The fragments were separated by electrophoresis on an ABI 3130 genetic analyzer 

(Applied Biosystems Inc.), sized using the internal allele size standard LIZ 600, and 

scored using GENEMAPPER v. 3.7 (Applied Biosystems Inc.). To check for amplification 

and scoring errors, 18% of single-locus genotypes were randomly re-amplified. 

Individual samples that failed to amplify at three or more loci were dropped from the 

analysis.  
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Table 1. Amplified cross-species microsatellite loci with optimized amplification 

conditions: annealing temperature (Ta), number of cycles, and the fluorescently labeled 

M13 universal primer. (*) denotes loci amplified with a 7-bp 5’ tail modified reverse 

primer (GTTTCTTT, Brownstein et al. 1996). (**) denotes reaction conditions with half 

the normal concentration of forward primer, reverse primer, and M13 universal primer.  

Locus Source Size Range Ta (°C) Cycles M13 dye Original Species 

A2ASY* Taguchi et al. 2013 277-293 60 35 Pet P. glauca 

Cl13* Pirog et al. 2014 112-183 50 30 Vic C. leucas 

Cl15* Pirog et al. 2014 313-331 60 35 Ned C. leucas 

Cl17* Pirog et al. 2014 186-200 58 35 Vic C. leucas 

Cli107 Keeney & Heist 2003 118-132 55 35 Ned C. limbatus 

Cpe141 Bernard, unpublished 130-196 60 30 Vic** C. perezi 

Cpe334 Bernard, unpublished 163-179 60 30 Fam C. perezi 

Cpe352* Bernard, unpublished 161-169 65 35 Vic C. perezi 

Ct06* Ovenden et al. 2005 237-282 60 30 Pet C. tilstoni 

CY92Z* Taguchi et al. 2013 173-235 60 35 Fam P. glauca 

Pgla-02 Fitzpatrick et al. 2011 137-164 58 35 Vic P. glauca 
 

 

3.4. Population Structure, Phylogeography and Genetic Diversity Analyses 

Because several of my western Atlantic sampling sites were in relatively close 

proximity in the context of demonstrated long distance movements shown by oceanic 

whitetip sharks, the population structure analyses in the Atlantic were conducted in a 

hierarchical fashion. As a first step, each of the five collection sites in the western 

Atlantic (Figure 1 inset) was treated as an a priori subpopulation for the population-level, 

pairwise differentiation analysis with both mitochondrial and nuclear markers (see below 

for statistical methods). Given the absence of any significant differentiation (Appendix I) 

in all pairwise analysis, I pooled samples from the four northern hemisphere collection 

sites in the Western North Central Atlantic (shaded blue: CI, NESA, WNA, WC; Figure 1 

inset)  into one a priori population, hereafter designated the Western North Central 

Atlantic (WNCA, n = 49) (Figure 1). These samples were separated from the southern 

hemisphere BRZ sample group by the Amazon River Barrier, a known barrier in the 

stock structure and speciation of reef fishes (Rocha et al. 2005c; Santos et al. 2006; 
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Rocha et al. 2007). Thus, WNCA and BRZ were treated as two a priori populations in all 

subsequent population structure analyses.  

 

3.4.1. Mitochondrial DNA 

All mitochondrial DNA (mtDNA) analyses were performed across three distinct 

datasets: the mtCR (n = 167), ND4 (n = 166), and concatenated mtCR-ND4 data set (n = 

166). FABOX v. 1.41 (Villesen 2007) was used to collapse haplotypes and determine 

global and subpopulation specific haplotype frequencies. ARLEQUIN v. 3.5.1.2 

(Excoffier & Lischer 2010) was used to estimate intra-population diversity statistics 

including the number of polymorphic sites (S), haplotype diversity (h), and nucleotide 

diversity (π). Median-joining haplotype networks (ε = 0) (Bandelt et al. 1999) were 

constructed with POPART v. 1.7 (Leigh & Bryant 2015) to visualize the phylogeographic 

relationships among haplotypes. Ambiguous loops within networks were resolved 

following the criterion described by Pfenninger and Posada (2002) based on coalescent 

theory (Crandall & Templeton 1993).  

To examine global mtDNA population structure, analyses of molecular variance 

(AMOVA) was conducted using the fixation index ΦST in the program ARLEQUIN 

(significance estimated using 10 000 permutations) (Excoffier et al. 1992).  Pairwise tests 

for population-level differentiation were performed using two metrics: the fixation index 

ΦST (ARLEQUIN) and the genetic differentiation index Jost’s (2008) D (SPADE; 95% 

CIs estimated using 10 000 bootstrap replicates) (Chao & Shen 2010). ΦST, an analog of 

the classic F-statistic, FST (Weir & Cockerham 1984), compares the fixation of 

haplotypes within populations based on within-population heterozygosity and among-

population heterozygosity (Excoffier et al. 1992). ΦST can be superior to FST for sequence 

data because it is calculated from a genetic distance matrix between haplotypes 

effectively standardizing the metric and eliminating dependence on mutation rate 

(Excoffier et al. 1992; Kronholm et al. 2010; Meirmans & Hedrick 2011). F-statistics are 

more appropriate than other indices for inferring the influence of demographic events 

such as migration on genetic variance (Meirmans & Hedrick 2011). However, F-statistics 

are downwardly biased by within-population heterozygosity and by a small number of 

sampled populations (Bird et al. 2011; Meirmans & Hedrick 2011). Furthermore, Jost 



11 
 

(2008) argued that expected heterozygosity is an inappropriate and unintuitive measure of 

diversity as it does not scale linearly with increasing genetic diversity. Therefore, Jost’s 

D, a true index of genetic differentiation, was also estimated. D measures true allele 

frequency differences between populations (Jost 2008). D is not biased by a small 

number of sampled populations and is not reliant on within-population heterozygosity, 

therefore scaling linearly with haplotypic diversity. SPADE estimates an adjusted D 

which incorporates an unbiased Morisita similarity index correcting for sampling bias 

(Chao et al. 2008; Meirmans & Hedrick 2011). AMOVA and global pairwise population-

level comparisons were performed in a hierarchical fashion by portioning the overall 

dataset into three different tiers: Tier 1) all subpopulations with >25 samples (WNCA, 

BRZ, ARA and TWN), Tier 2) the three ocean wide groupings (W. Atlantic vs. Indian vs. 

Pacific), and Tier 3) the W. Atlantic vs. Indo-Pacific. All pairwise statistics and multiple 

comparison analyses with associated P-values were corrected using Benjamini and 

Hochberg’s (1995) false discovery rate (FDR).  

 

3.4.2. Nuclear DNA 

 Prior to all microsatellite marker analyses, the MICROSATELLITE TOOLKIT (Park 

2001) was used to check the dataset for duplicate samples and for large jumps in allele 

sizes indicative of genotyping errors. Null allele frequencies were estimated for all loci 

with FREENA for 100 000 bootstrap replicates (Chapuis & Estoup 2007). Deviations 

from Hardy-Weinberg Equilibrium (HWE) and Linkage Disequilibrium (LD) were 

estimated using probability tests with GENEPOP on the web v. 4.2 for 10 000 

dememorization steps, 1 000 batches, and 10 000 iterations per batch (Raymond & 

Rousset 1995; Rousset 2008). The program POWSIM v. 4.1 (Ryman & Palm 2006) was 

used to estimate the power of the microsatellite loci to detect statistical significance of a 

range of FST (0.001 to 0.02) with Fisher’s exact test. Each analysis was run for 10 000 

dememorizations steps, 1 000 batches, and 10 000 iterations per batch. Effective size (Ne) 

was set to 2 000 and number of generations (t) was set accordingly for the appropriate FST 

as described in the program manual (Ryman 2011). 
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3.4.2.a. Population-level analysis with Microsatellites 

Microsatellite analyses were conducted using the same three hierarchical sample 

partitions as the mtDNA analyses: Tier 1) WNCA, BRZ, ARA and TWN, Tier 2) W. 

Atlantic, Indian and Pacific, and Tier 3) the W. Atlantic and Indo-Pacific. The genetic 

diversity statistics, expected heterozygosity (HE) and observed heterozygosity (HO), were 

estimated for all a priori subpopulations with ARLEQUIN. Allelic richness (Ar), a 

standardized measure of the number of alleles across all loci per subpopulation, was 

estimated using the rarefaction method (Kalinowski 2004) with the program HP-RARE v. 

1.1 (Kalinowski 2005). This method was employed as it accounts for sample size 

differences and allows for comparison across all sampling populations and regions. The 

lowest number of alleles per locus per subpopulation from the Tier 1 sample grouping 

was employed to standardize Ar across all sample tiers. The inbreeding coefficient (Fis) 

was estimated using FSTAT v. 2.9.3.2 (Goudet 2001) across all loci for each sampling 

group.  

Three pairwise metrics were employed to estimate subpopulation differentiation: 

the fixation index FST (Weir & Cockerham 1984), the standardized fixation index G''ST 

(Meirmans & Hedrick 2011), and the index of genetic differentiation DEST (Jost 2008). 

G''ST and DEST are employed in addition to FST due to criticisms of FST regarding its 

tendency to underestimate genetic differentiation for highly polymorphic markers, its 

reliance on within-population genetic diversity, and its downward bias when the number 

of sampled populations is small (Hedrick 1999; Bird et al. 2011; Meirmans & Hedrick 

2011). G''ST, like Hedrick’s (2005) G'ST, addresses this downward bias of high 

heterozygosity by standardizing the maximum value of the metric to ensure an upper 

limit of 1. G''ST goes beyond G'ST by minimizing the bias introduced when the number of 

sampled populations is small, as is the case in this study (Meirmans & Hedrick 2011). 

Jost’s (2008) DEST is an estimator of Jost’s theoretical D which takes into account bias-

corrected within-population and among-population heterozygosities. This metric, as 

described previously, is an estimate of true genetic differentiation based on the difference 

of true allele frequencies between populations, is not biased by sample size and 

minimizes the bias of a small number of sample populations (Jost 2008; Meirmans & 
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Hedrick 2011). Each metric was estimated in GENALEX v. 6.5 run for 9 999 

permutations and 9 999 bootstrap replicates (Peakall & Smouse 2006, 2012). 

An unrooted neighbor-joining (NJ) (Saitou & Nei 1987) tree of Tier 1 

subpopulations was constructed with the program TREEFIT v. 1.2 (Kalinowski 2009) and 

visualized with TREEVIEW v. 1.6.6 (Page 1996). Nei et al.’s (1983) DA was used to 

calculate the genetic distance matrix for the tree. DA is a standardized distance measure 

that has little dependence on low frequency alleles which increase with sample size (Nei 

et al. 1983). 10 000 bootstrap replicates were performed and R2 was calculated to 

evaluate the accuracy of the tree. 

 

3.4.2.b. Individual-level analysis with Microsatellites 

To further examine global population differentiation by using genotypes of 

individuals, Bayesian cluster analyses were conducted in STRUCTURE v. 2.3.4  (Pritchard 

et al. 2000). The analyses were performed under an admixture model with correlated 

allele frequencies and sampling location information (LOCPRIOR). Incorporating the 

LOCPRIOR model increases the performance of STRUCTURE to define clusters when 

sample sizes are low and when genetic divergence between populations is relatively low 

(Hubisz et al. 2009). Two distinct analyses were performed: 1) with all ten sample 

groupings provided as LOCPRIOR, and 2) with each respective ocean basin (W. Atlantic, 

Indian, or Pacific) provided as LOCPRIOR. Each model was run for 10 replicates up to K 

= 11 and K = 4 respectively (K = number of sampling locations + 1) with 500 000 burn-

in and 500 000 Markov chain Monte Carlo (MCMC) repetitions. STRUCTURE 

HARVESTER Web v. 0.6.94 (Earl 2012) was used to summarize STRUCTURE results and 

compute the values of the ad hoc statistic Evanno’s (2005) ΔK. CLUMPP v. 1.1.2 

(Jakobsson & Rosenberg 2007) was used in conjunction with DISTRUCT v. 1.1 

(Rosenberg 2004) to produce graphic representations of STRUCTURE results.   

Contemporary, first generation (ecological scale) migration between the 

statistically differentiated populations, i.e., the W. Atlantic and Indo-Pacific (determined 

via pairwise analyses, see Results, Table 3), was examined with the program 

GENECLASS2 v. 2.0 (Piry et al. 2004). Rannala and Mountain’s (1997) Bayesian criterion 

was applied because it consistently outperforms other criterion for loci evolving under the 
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infinite allele model and the stepwise mutation model, such as microsatellite loci 

(Cornuet et al. 1999). The likelihood statistic L_home is the most appropriate statistic 

when there are possible unsampled source populations and was thusly employed in this 

analysis (Piry et al. 2004). The MCMC resampling method of Paetkau (2004) was 

implemented to estimate significance with 1 000 and 10 000 simulated individuals at α = 

0.01. This method is the only Makov chain (MC) method to account for sample size to 

reduce type I errors (Piry et al. 2004).  

 

3.5. Demographic History Analyses using Mitochondrial DNA 

Historical effective female population sizes (HNe(f)), were estimated for only the 

mtCR dataset using the mutation-scaled effective population sizes, Θ (Θ=2Ne(f)μ), 

generated by the coalescent software MIGRATE-n v. 3.6.11 (Beerli & Felsenstein 2001; 

Roman & Palumbi 2003; Beerli 2006). The Bayesian search strategy was implemented 

with one long chain of three consecutive replicates each with 8 simultaneous static heated 

chains run for 100 000 000 iterations and a burn-in of 10 000 000. The prior distribution 

of mutation-scaled effective immigration rate, M, was optimized with the minimum set at 

0, the maximum set at 10 000 and a delta of 1 000. The default prior distribution for theta 

was sufficient for this dataset.  

HNe(f) was calculated with minimum and maximum per generation mutation rates 

based on published elasmobranch divergence rates. Published mtCR divergence rates for 

elasmobranchs include those for the blacktip shark, Carcharhinus limbatus, 0.43% 

(Keeney & Heist 2006), the nurse shark, Ginglymostoma cirratum, 0.54% (Karl et al. 

2012), and the lemon shark, Negaprion brevirostris, 0.67% (Schultz et al. 2008). This 

leads to a minimum and maximum rate of substitutions/lineage/year of:  2.15 x 10-9 and 

3.35 x 10-9, respectively. I used 11.1 years (95% CI 9.4 – 13.0) as the median generation 

time estimate for the oceanic whitetip shark (Cortés 2008). A range of molecular clocks 

were calculated by multiplying the minimum and maximum rates of 

substitutions/lineage/year by the lower and upper bounds of the 95% confidence intervals 

for generation time resulting in a range from 2.02 x 10-8 to 4.36 x 10-8 

substitutions/site/generation. The ND4 and mtCR-ND4 datasets were not included in 

estimations of HNe(f) due to a lack of published mutation rates for ND4 in elasmobranchs. 
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4. Results 

4.1. Mitochondrial DNA Diversity, Phylogeography, and Population Structure 

 Sequencing the entire 1065-1067 bp mtCR in 167 individuals resulted in 30 

haplotypes with an overall GC content of 33.4% and 22 polymorphic sites, including 19 

transitions, 1 transversion, and 2 indels (Appendix II). Sequencing the 784 bp partial 

ND4 gene in 166 individuals resulted in 23 haplotypes with an overall GC content of 

40.3% and 23 polymorphic sites, including 22 transitions, 1 transversion, and 0 indels 

(Appendix II). Concatenating the data to 1849-1851 bp for 166 individuals resulted in 51 

haplotypes with an overall GC content of 36.3% and 45 polymorphic sites, including 41 

transitions, 2 transversions, and 2 indels.  

 Overall haplotype diversities for the mtCR, ND4 and concatenated mtCR-ND4 

data were 0.88 ± 0.02, 0.85 ± 0.02, and 0.94 ± 0.01, respectively. Overall nucleotide 

diversities for the mtCR, ND4 and mtCR-ND4 data were relatively low at 0.33% ± 

0.19%, 0.30% ± 0.18%, and 0.32% ± 0.17%, respectively. Both haplotype and nucleotide 

diversities were nominally lower in Indo-Pacific than W. Atlantic sharks across all three 

datasets and all analysis tiers (Tiers 1-3) (Table 2). However a post-hoc two-sample non-

parametric Welch t-tests performed on logit transformed data (values of zero adjusted to 

1.00 x 10-5) revealed no significant difference between nucleotide diversities of the 

pooled W. Atlantic and pooled Indo-Pacific samples at α = 0.05 (mtCR P = 0.424, ND4 P 

= 0.305, mtCR-ND4 P = 0.235).  
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Table 2 Genetic diversity statistics for the a priori populations across the three 

mitochondrial DNA datasets including: number of individuals sequenced (n), number of 

haplotypes (nh), number of polymorphic sites (S), haplotype diversity with standard 

deviation (h ± SD), and percent nucleotide diversity with standard deviation (π ± SD(%)). 

 

 

 

 

 Median-joining networks of the mtCR (Figure 2; Appendix III), ND4 (Figure 3) 

and mtCR-ND4 (Figure 4; Appendix IV) data sets revealed no clear phylogeographic 

partitioning of haplotypes, although each network had haplotypes restricted to the W. 

Atlantic that separated from the remainder of the network by 1 to 5 mutational steps 

(mtCR: 4 restricted haplotypes, ND4: 3 restricted haplotypes, mtCR-ND4: 6 restricted 

haplotypes). Mainly, there was a high degree of mixing of haplotypes from the different 

geographic sampling locations in the larger portion of the network. Furthermore, the 

majority of haplotypes found in only one single geographic location appear in the 

networks as singletons. For instance, in the mtCR dataset, 12 of 15 location-specific 

haplotypes appeared as singletons. Within the ND4 and mtCR-ND4 datasets, a similar 

pattern was observed, as 12 of 13 and 31 of 32, location-specific haplotypes were 

singletons, respectively. See Appendix V for haplotype frequencies by region. 

 

Region n nh S h± SD π ± SD (%) n nh S h± SD π ± SD (%) n nh S h± SD π ± SD (%)

Total Atlantic 97 22 17 0.91 ± 0.01 0.41 ± 0.23 96 18 18 0.85 ± 0.02 0.33 ± 0.20 96 32 34 0.94 ± 0.01 0.37 ± 0.20

Brazil 49 13 15 0.90 ± 0.02 0.42 ± 0.23 49 14 15 0.87 ± 0.02 0.33 ± 0.20 49 20 30 0.92 ± 0.02 0.38 ± 0.20

WN Central Atlantic 48 20 17 0.92 ± 0.02 0.40 ± 0.22 47 12 13 0.83 ± 0.04 0.33 ± 0.20 47 24 29 0.94 ± 0.02 0.37 ± 0.20

Total Indian 31 13 9 0.84 ± 0.05 0.19 ± 0.12 31 8 8 0.80 ± 0.04 0.29 ± 0.18 31 16 17 0.91 ± 0.03 0.23 ± 0.13

Arabian Sea 28 12 8 0.84 ± 0.05 0.18 ± 0.12 28 8 8 0.82 ± 0.04 0.28 ± 0.18 28 15 16 0.91 ± 0.03 0.23 ± 0.13

Total Pacific 39 12 13 0.70 ± 0.08 0.17 ± 0.11 39 10 10 0.71 ± 0.07 0.20 ± 0.13 39 18 23 0.88 ± 0.04 0.18 ± 0.11

Taiwan 32 11 10 0.71 ± 0.09 0.17 ± 0.11 32 10 10 0.76 ± 0.07 0.21 ± 0.14 32 17 20 0.91 ± 0.04 0.18 ± 0.11

Total Indo-Pacific 70 17 14 0.77 ± 0.05 0.18 ± 0.12 70 12 12 0.79 ± 0.03 0.24 ± 0.16 70 27 26 0.91 ± 0.02 0.21± 0.12

All Samples 167 30 22 0.88 ± 0.02 0.33 ± 0.19 166 23 23 0.85 ± 0.02 0.30 ± 0.18 166 51 45 0.94 ± 0.01 0.32 ± 0.17

ND4 mtCR - ND4mtCR
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Figure 2 A median-joining haplotype network of oceanic whitetip shark mitochondrial 

control region data, color-coded by sample locations. Mutations are shown as hatch 

marks. The black node (*) denotes a theoretical unsampled haplotype and is a relic of an 

ambiguous connecting loop broken based on coalescent theory.  
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Figure 3 A median-joining haplotype network of oceanic whitetip shark ND4 data, 

colored by sample locations. Mutations are shown as hatch marks. No ambiguous 

connecting loops were present. 
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Figure 4 A median-joining haplotype network of oceanic whitetip shark concatenated 

mtCR-ND4 data, colored by sample locations. Mutations are shown as hatch marks. 

Black nodes denote theoretical unsampled haplotypes. The two nodes connecting nodes 

(*) are relics of ambiguous loops broken based on coalescent theory. 



20 
 

Tier 1 AMOVA of the four a priori subpopulations (WNCA, BRZ, ARA, and 

TWN) across all three mitochondrial sequence datasets revealed among population 

variance only accounted for 3.99 to 4.79% of the total variance. Despite the low among 

population genetic variance, statistically significant structure was detected (overall ΦST = 

0.040 – 0.048, P = 0.002 – 0.010) (Appendix VI). Tier 2 AMOVA of the respective 

ocean basin collections (W. Atlantic, Indian and Pacific) increased the variance among 

populations (6.39% – 7.04%) and the overall fixation indices (overall ΦST = 0.064 – 

0.070, P = 0.000 – 0.001) indicating these sample partitions better describe the global 

genetic structuring (Appendix VI). The final Tier 3 AMOVA (W. Atlantic and Indo-

Pacific) exhibited the highest maximum among population genetic variance (5.96% – 

8.49%) and the highest maximum fixation index (overall ΦST = 0.060 – 0.085, P = 0.000 

– 0.001) (Table 3; Appendix VI). These two values increased from the Tier 2 AMOVA to 

the Tier 3 AMOVA in the mtCR and mtCR-ND4 datasets (Appendix VI). However, 

among population genetic variance and the overall fixation index actually decreased in 

the Tier 3 AMOVA of the ND4 dataset from the Tier 2 AMOVA (6.39% to 5.96%; ΦST 

0.064 to 0.060; Appendix VI). This indicates that the Tier 2 partitions of the ND4 dataset 

better describe the global genetic variance than the Tier 3 for this marker, suggesting 

genetic structure between all three oceans (W. Atlantic, Indian, and Pacific).  

 Population-level pairwise analyses of Tier 1 identified no significant 

differentiation between the two sampled W. Atlantic populations (BRZ and WNCA) 

across all three datasets and both metrics (ΦST and D; Table 3). Likewise, no significant 

differentiation was detected between the two surveyed Indo-Pacific populations (ARA 

and TWN; Table 3). The only a priori population pairwise comparison that was 

consistently significant after correction across both metrics and all datasets was BRZ vs. 

TWN, indicating the strongest signal of divergence between these two sampling regions. 

While mixed results were found across metrics and datasets, significant differentiation 

was found in all inter-basin comparisons. These differences were the highest for the 

mtCR ΦST and mtCR-ND4 ΦST and D comparisons, with pronounced differences between 

the W. Atlantic and Indo-Pacific populations (Table 3).  

Pairwise analyses of the three pooled ocean-wide sample collections (Tier 2) 

supported consistent differentiation between the W. Atlantic and the Indian Ocean and 
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the W. Atlantic and Pacific Ocean (Table 3). The Tier 2 analysis of the ND4 dataset was 

the only analysis that supported significant differentiation between the Indian and Pacific 

Oceans (pairwise ΦST =0.051, P =0.046; pairwise Jost’s D = 0.311, 95% CI = 0.020, 

0.614; Table 3).  

 

Table 3 Oceanic whitetip shark global, population-level pairwise differentiation 

estimates for mitochondrial data (mtCR, ND4, and concatenated mtCR-ND4; ΦST and 

Jost’s D) and microsatellite data (MSAT; FST, G''ST, and DEST). Shaded cells indicate 

significant differentiation after False Discovery Rate (FDR) correction for all indices 

except for the mitochondrial Jost’s D. Shaded cells for the mitochondrial Jost’s D 

analyses indicate 95% Confidence Intervals do not overlap with zero. Bold values 

indicate significance prior to FDR correction. Population abbreviations: ARA, Arabian 

Sea; BRZ, Brazil; TWN, Taiwan; WNCA, Western North Central Atlantic; ATL, 

Western Atlantic Ocean; IND, Indian Ocean; PAC, Pacific Ocean; INP, Indo-Pacific 

Ocean. 

 

 

 

 

4.2. Nuclear Microsatellite Diversity, Population Structure and Phylogeography 

 When preliminary analyses were conducted on the 11 microsatellite locus dataset, 

all a priori populations were found to be significantly out of HWE (Appendix VII) and 

significant deviations from LD were found after correction.  First, to eliminate Hardy-

Population 
Pairwise 
Comparison mtCR Φ ST

mtCR 
Jost's D ND4 Φ ST

ND4 
Jost's D

mtCR-ND4 

Φ ST

mtCR-ND4 
Jost's D

MSAT 

F ST

MSAT 

G ''ST

MSAT 

D EST

ARA v BRZ 0.077 0.280 0.048 0.375 0.065 0.431 0.014 0.050 0.039
ARA v TWN 0.000 0.033 0.026 0.222 0.013 0.130 0.008 -0.006 -0.005
ARA v WNCA 0.058 0.152 0.038 0.386 0.052 0.402 0.016 0.067 0.052
BRZ v TWN 0.099 0.533 0.084 0.297 0.093 0.618 0.013 0.052 0.041
BRZ v WNCA -0.013 0.056 -0.009 0.040 -0.012 0.128 0.006 0.007 0.005
TWN v WNCA 0.076 0.317 0.072 0.133 0.077 0.301 0.017 0.089 0.070

ATL v IND 0.058 0.221 0.042 0.414 0.053 0.444 0.013 0.062 0.049
ATL v PAC 0.087 0.445 0.085 0.233 0.087 0.502 0.014 0.078 0.061
IND v PAC 0.008 0.046 0.051 0.311 0.029 0.215 0.007 -0.009 -0.007

ATL v INP 0.085 0.359 0.060 0.230 0.076 0.442 0.012 0.073 0.057

I. a priori populations

II. Ocean Basins

III. Atlantic vs. Indo-Pacific
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Weinberg disequilibrium, the locus Cl13 was omitted as it was out of HWE in all 

populations with a heterozygote deficit (P =0.00 – 0.02; Appendix VII). Cl13 was also 

plagued by high null allele frequency estimates (11% - 22%; Appendix VII), which likely 

contributed to the deviation from HWE. Second, two loci, A2ASY and Pgla-02, showed 

significant evidence of LD after correction, suggesting that they fail to sort 

independently. As A2ASY possessed higher estimated null allele frequencies than Pgla-

02 (0% - 7% vs. 0% - 3%; Appendix VII) and showed deviations from HWE prior to 

correction (Appendix VII), it was eliminated from the dataset. Upon removing these two 

loci, the nine locus dataset showed no deviations from HWE (P = 0.07 – 0.42; Table 4) or 

evidence of LD after correction for multiple comparisons. Power analysis revealed that 

removing these two loci did not reduce the power to detect genetic differentiation. The 

nine locus dataset was able to detect significance within a 1% - 3% power difference of 

the 11 locus dataset at FST  ≤ 0.005. At FST > 0.005, both the nine and 11 locus sets were 

able to detect significance with 100% power (Figure 5).   

 

 

Figure 5 A summary of microsatellite power analyses conducted with the program 

POWSIM. The average proportion of significances across 100 repetitions of Fisher’s 

exact test is plotted against the FST values. Values were generated using the empirical 

allele frequencies of the Atlantic (n = 96) and Indo-Pacific (n = 68). 
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Overall observed and expected heterozygosity with standard deviations for all 

genotyped samples (n = 164) at the nine selected loci were 0.75 ± 0.13 and 0.77 ± 0.12, 

respectively, with a standardized allelic richness of 9.26 and an inbreeding coefficient Fis 

= 0.03 (Table 4). Allelic richness was calculated across each a priori population (n > 25), 

ocean region, and overall based on a sample size of 48 alleles, the lowest per locus 

sample size across all populations (Arabian Sea, Cpe352). All nuclear genetic diversity 

indices across W. Atlantic and Indo-Pacific sharks were very similar, thus no post-hoc 

testing was conducted (Table 4). 

 

Table 4 Overall diversity statistics for nine cross-species amplified microsatellite loci for 

the oceanic whitetip shark including: the number of individual genotypes included in the 

analyses (N), the average number of alleles with standard deviation (A ± SD), the 

observed heterozygosity with standard deviation (HO ± SD), the expected heterozygosity 

with standard deviation (HE ± SD), the inbreeding coefficient (Fis), the rarefaction 

calculated allelic richness (Ar) based on sample populations with 48 alleles, and the P-

value associated of deviation from Hardy-Weinberg Equilibrium (HWE). The nine loci 

used for these statistics were: Cl15, Cl17, Cli107, Cpe141, Cpe334, Cpe352, Ct06, 

CY92Z and Pgla-02.  

 

Region N A ± SD HO ± SD HE + SD FIS Ar HWE

Total W. Atlantic 96 12.00 ± 8.97 0.75 ± 0.13 0.76 ± 0.14 0.02 9.08 0.42 
Brazil 51 10.44 ± 6.82 0.72 ± 0.14 0.76 ± 0.13 0.04 8.93 0.18 
Western North Central 45 10.89 ± 7.85 0.77 ± 0.14 0.76 ± 0.14 -0.02 9.16 0.42 

Total Indian 29 9.67 ± 6.25 0.77 ± 0.15 0.78 ± 0.11 0.02 9.11 0.15 
Arabian Sea 26 9.33 ± 6.06 0.76 ± 0.16 0.78 ± 0.11 0.02 9.11 0.20 

Total Pacific 39 10.56 ± 6.25 0.76 ± 0.15 0.78 ± 0.10 0.03 9.30 0.33 
Taiwan 32 10.11 ± 5.65 0.76 ± 0.14 0.79 ± 0.10 0.04 9.37 0.32 

Total Indo-Pacific 68 12.11 ± 7.66 0.76 ± 0.13 0.78 ± 0.11 0.02 9.15 0.07 

All Samples 164 14.22 ± 9.62 0.75 ± 0.13 0.77 ± 0.12 0.03 9.26 0.10 
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Population-level pairwise MSAT analyses of the Tier 1 partitions did not reveal 

any differentiation between the north and south W. Atlantic subpopulations (WNCA vs. 

BRZ; Table 3) or between Indian and Pacific subpopulations (ARA vs. TWN; Table 3). 

However, inter-ocean differences were consistently found when comparing sharks from 

the W. Atlantic and those from the Indian and Pacific Oceans. For instance, both W. 

Atlantic populations (BRZ and WNCA) were significantly differentiated from the Indian 

(ARA) and the Pacific (TWN) groupings using all three pairwise metrics (FST, G''ST, and 

DEST; Table 3). 

Pairwise analyses of all samples pooled into respective oceans (Tier 2; W. 

Atlantic, Indian, and Pacific) further substantiated the differentiation between the W. 

Atlantic and Indian (FST = 0.013, P = 0.000; G''ST = 0.062, P = 0.000; DEST = 0.049, P = 

0.000) and the W. Atlantic and Pacific (FST = 0.014, P = 0.000; G''ST = 0.078, P = 0.000; 

DEST = 0.061, P = 0.000). Unlike the mtDNA ND4 analysis, no MSAT pairwise metric 

detected differentiation between the pooled Indian and pooled Pacific Ocean basin 

collections (FST = 0.007, P = 0.698; G''ST = -0.009, P = 0.698; DEST = -0.007, P = 0.698) 

(Table 3).  

The NJ tree generated with TREEFIT based on Nei et al.’s (1983)  DA exhibited 

high bootstrap support (99%) separating the W. Atlantic (BRZ and WNCA) from the 

Indo-Pacific (ARA and TWN) sample locations (Figure 6). The genetic differentiation 

shown in the tree was consistent with the pairwise analyses showing little differentiation 

between sample locations within ocean basins (i.e. BRZ vs. WNCA and ARA vs. TWN). 

The R2 value of 0.993 strongly supported the tree topography.  
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Figure 6 Radial neighbor-joining tree based on Nei’s (1983) DA of microsatellite data for 

the four a priori populations with 0.99 bootstrap support (10 000 bootstraps). No 

significant differentiation was found between the Western Atlantic populations (BRZ and 

WNCA) or between the Indo-Pacific populations (ARA and TWN). R2 = 0.993. 

Abbreviations: BRZ, Brazil; WNCA, Western North Central Atlantic; ARA, Arabian 

Sea; TWN, Taiwan. 

 

 Assessment using individual-level STRUCTURE analyses supported two global 

populations. Analysis performed with all 10 original sampling locations as LOCPRIOR 

(K = 1 to 11), indicated K=1 as the most likely state of nature (LnP(K) = -5519.47 ± 

0.72) (Appendix VIII). However, when ocean basin was used as location prior (i.e. W. 

Atlantic, Indian, and Pacific), K=2 was indicated as the best model (LnP(K) = -5612.57 ± 

15.02, ΔK = 0.30) (Appendix VIII). Alternatively, Evanno’s ΔK supported K=3 in the 
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second analysis (LnP(K) = -5613.11 ± 20.08, ΔK = 0.49) (Appendix VIII). This 

discrepancy between LnP(K) and ΔK was investigated with DISTRUCT plots (Figure 7). 

The DISTRUCT plots clearly indicated strong sorting of two clusters: the Western Atlantic 

and the Indo-Pacific (Figure 7a). At K = 3, strong differentiation between the W. Atlantic 

and Indo-Pacific remained, as clusters (or individual membership coefficients) of the W. 

Atlantic and Indo-Pacific individuals were substantially different from one another with 

respect to their relative assignment among the three clusters (Figure 7b). However, the 

addition of the third cluster provided no further resolution of the population genetic 

structure of this species, as individual membership coefficients showed increased 

admixture and assignment to the third cluster (shown in white) approached symmetry 

across all samples (1/K). When individual membership coefficients become proportional 

to K, in this case 1/3, it often indicates the analysis has overestimated the true value of K 

(Pritchard et al. 2010), suggesting a lower value of K is more appropriate.   

 

 

 

Figure 7 DISTRUCT plots summarizing STRUCTURE results of all genotyped samples: (a) 

K = 2, (b) K = 3. Each color corresponds to the membership coefficient of each 

individual belonging to a respective cluster.  

 

 GENECLASS2 analyses suggested a maximum of four potential first generation 

(F0) migrants between the two statistically differentiated populations (W. Atlantic and 

Indo-Pacific, P < 0.01, Table 5). The first simulation (simulated individuals = 1 000) 
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indicated one Indo-Pacific to W. Atlantic migrant (caught in WNCA, #172) and one W. 

Atlantic to Indo-Pacific migrant (caught in ARA, #135). A third significant possible 

migrant was also indicated (caught in BRZ, #95). However, while detected as significant, 

this individual had a greater likelihood of belonging to its home population (W. Atlantic, 

-log(L_home) = 17.610) than the alternate population (Indo-Pacific, -log(L) Alternate = 

19.740). This discrepancy may be due to incomplete sampling throughout the species 

range, as there may be additional unsampled genetic populations to which this individual 

belonged. The second simulation (simulated individuals = 10 000) results supported those 

of the first simulation; however, a fourth possible W. Atlantic to Indo-Pacific migrant 

was detected (caught in TWN, #12). Paetkau et al. (2004) noted that simulating much 

larger resampling populations (i.e. 10 000) than the actual dataset contains may increase 

type I errors. However, this individual had a much greater log likelihood of belonging to 

the alternate population (-log(L) Alternate = 15.945) than to its home population (-

log(L_home) = 18.390). Therefore, I will consider it a possible F0 migrant. 

 

Table 5 GeneClass2 results for potential F0 migrants using the L_home statistic and 

including two Bayesian simulations: 1 000 simulated individuals and 10 000 simulated 

individuals in the MCMC.  Each individual sample number is provided along with its 

home population, the location from which it was sampled, the negative log likelihood of 

belonging to its home population (-log(L_home)), the associated P-value, and the log 

likelihood of belonging to the alternate population (-log(L) Alternate). Shaded cells 

indicate a greater likelihood of the individual belonging to the alternate population. 

Abbreviations: ATL, Western Atlantic; INP, Indo-Pacific; ARA, Arabian Sea; BRZ, 

Brazil; TWN, Taiwan; WNCA, Western North Central Atlantic. 

Individual 95 172 135 12 
Sample population ATL ATL INP INP 
Sample location BRZ WNCA ARA TWN 

Bayesian 1 000 
-log(L_home) 17.610 17.826 19.554  
P-value 0.006 0.007 0.004  
-log(L) Alternate 19.740 17.226 17.145  

Bayesian 10 000 
-log(L_home) 17.610 17.826 19.554 18.390 
P-value 0.006 0.005 0.004 0.010 
-log(L) Alternate 19.740 17.226 17.145 15.945 
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 4.3. Demographic History   

MIGRATE-n estimated Θ for the W. Atlantic (mode = 0.00437, mean = 0.00469, 

95% C.I. = 0.00153 – 0.00793) and the Indo-Pacific (mode = 0.00450, mean = 0.00472, 

95% C.I. = 0.00167 – 0.00793) from the mtCR dataset. Estimating HNe(f) using the 

mode of Θ and the equation Θ =2HNe(f)μ resulted in a W. Atlantic range estimate of 50 

100 to 108 000 (95% CI range = 17 500 – 196 000) and an Indo-Pacific range estimate 

of 51 600 to 111 000 (95% CI range = 19 200 – 191 000). All ESS scores were above 

200, indicating ample mixing and convergence. 

 

5. Discussion  

 This study provides the first population genetic perspective on the oceanic 

whitetip shark, Carcharhinus longimanus, a highly exploited species. Prior to discussing 

the results, it is important to acknowledge study limitations. First, although the samples 

analyzed came from a global range, collections from a large part of this species’ 

distribution could not be obtained.  This limited the ability to analyze detailed structure 

within the vast Indo-Pacific in particular. However, the sample sizes are appropriate for a 

first assessment of the genetic diversity and population genetic connectivity dynamics on 

a broad scale. Second, my samples spanned multiple generations and multiple age classes 

with the majority of samples from an unknown age group. This negated my ability to 

properly explore contemporary effective population size. Lastly, species specific 

mutation rates for the mitochondrial control region are not available, requiring the use of 

mutation rates estimates from other shark species; thus my estimates of historical female 

effective population size should be considered a first assessment, needing subsequent 

refinement with a species-specific mutation rate if possible. 

 

5.1. Population Structure 

 No population structure was detected regionally within the W. Atlantic across any 

dataset, marker or analysis. The Western North and Western Central Atlantic has possibly 

exhibited the most marked declines of this species, where it is listed as “Critically 

Endangered” on the IUCN Red List (Baum et al. 2015). The lack of detected genetic 

differentiation with both mitochondrial and nuclear markers within the entire W. Atlantic 
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suggests some degree of historical and contemporary gene flow, and therefore 

demographic connectivity between the North, Central, and South W. Atlantic; this 

connectivity, implying movement of sharks, may reduce the risk of extirpation in any of 

these regions. In addition, the lack of structure within the W. Atlantic provides support to 

the hypothesis of Madigan et al. (2015) that oceanic whitetip shark site philopatry is not 

driven by reproductive behaviors. Within the Indo-Pacific, weak but nominally 

significant structuring was detected with the ND4 dataset. It has been argued that 

discrepancies between maternally inherited mitochondrial DNA structure and 

biparentally inherited nuclear DNA structure may indicate sex-biased gene flow. 

However, the mtCR and concatenated mtCR-ND4 data did not corroborate the 

differentiation seen with the ND4 gene within the Indo-Pacific. Therefore, I argue 

different mutation rates and effective population sizes between nuclear and mitochondrial 

markers more likely accounts for this apparent discrepancy (Buonaccorsi et al. 2001).   

 Globally, the mitochondrial and nuclear DNA analyses concordantly 

demonstrated weak but highly significant differentiation between the W. Atlantic and 

Indo-Pacific Ocean sharks (Table 3, Figures 6 and 7). While this species is capable of 

long distance movements, there is evidence of potential barriers to movement due to 

behavioral thermoregulation, with a preference for waters above 20°C (Bonfil et al. 

2008). However, my study shows genetic evidence of contemporary migration between 

the W. Atlantic and Indo-Pacific and deep evolutionary mixing of mitochondrial 

haplotypes. Based on these observations collectively , I propose oceanic whitetip sharks 

consist of a minimum of two contemporary, distinct genetic populations comprising 

sharks from the W. Atlantic and the Indo-Pacific, separated by semi-permeable thermal 

barriers to inter-ocean movements, particularly the Benguela Barrier around the tip of 

South Africa. This thermal barrier is a consequence of cold water upwelling caused by 

the northward Benguela Current along the southwestern African coast (Rocha et al. 

2005a). Historically, this upwelling system has subsided during interglacial warming 

periods allowing the warm, southward Agulhas Current to penetrate the cold waters of 

the South Atlantic providing opportunities for the movement of tropical species (Peeters 

et al. 2004). In contemporary times, the Agulhas Current spawns warm water eddies into 

the Atlantic (Gordon 2003). This system has played a crucial role in the dispersal of 
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species from the tropical Indian Ocean to the tropical Atlantic Ocean (Rocha et al. 2005a) 

and has been noted as an important thermal barrier in the genetic structuring of several 

tropical and subtropical species including sharks (Duncan et al. 2006; Bernard 2014; 

Vignaud et al. 2014; Clarke et al. 2015), marlin (Buonaccorsi et al. 2001), sea turtles 

(Bowen & Karl 2007), and rays (Richards et al. 2009). It is important to note that the 

contemporary migration between ocean basins appears infrequent enough to not 

counteract genetic drift leading to the observed genetic differentiation between the W. 

Atlantic and Indo-Pacific. I note also that the lack of structure within ocean basins 

appears to contradict the current telemetry tracking data which indicates patterns of site 

philopatry (Musyl et al. 2011; Howey-Jordan et al. 2013; Tolotti et al. 2015). However, 

sample sizes in the tracking studies are very small and not necessarily representative of 

the behavior of the species as a whole.  

The genetic differentiation between the Indian and Pacific Oceans indicated by 

the ND4 dataset but not the mtCR dataset bears discussion. One possible biological 

explanation for this ND4-based structure is that it reflects a relic of a historical barrier to 

gene flow, possibly represented by the Indo-Pacific Barrier (IPB). The IPB was a land 

bridge connecting Asia and Australia during sea-level low stands and was last present 

during the last glacial maximum in the Pleistocene (~18,000 years ago) (Rocha et al. 

2007). This barrier would have served to interrupt the species range of the oceanic 

whitetip shark, inducing thermal barriers around the southern coast of Australia. Flooding 

of the IPB would have allowed for secondary contact of the Indian and Pacific oceanic 

whitetip sharks. The weak and only nominally significant structure in ND4 suggests that 

this signal may be disappearing. A disappearing, historic signal is a hypothesis that would 

explain why the mtCR and nuclear microsatellites failed to detect the same structure. The 

latter two markers theoretically have fewer mutational constraints than the protein coding 

ND4 gene, which would facilitate the loss of this signal. The IPB has been recognized as 

an important biogeographic barrier in the genetic structuring of reef fishes including the 

whitetip reef shark, Triaenodon obesus (Whitney et al. 2012), and the peacock grouper, 

Cephalopholis argus (Gaither et al. 2011). Alternatively, the signal of genetic 

differentiation detected with the ND4 gene could represent a Type I error. The statistical 

significance of the ND4 pairwise ΦST between the Indian and Pacific Ocean is just below 
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the alpha of 0.05 (ΦST = 0.051, P = 0.046 ± 0.002) and the lower limit of the 95% 

confidence interval of Jost’s D was just above zero (Jost’s D = 0.311, 95% CI = 0.020, 

0.0614). It is plausible that this signal is not biologically relevant. Additional or complete 

sequencing of the oceanic whitetip mitogenome would reveal whether or not this signal 

of differentiation is biologically relevant to the contemporary genetic stock structure of 

this species.  

 To my knowledge, the only elasmobranch species to show less global genetic 

population structure is the basking shark, Cetorhinus maximus (Hoelzel et al. 2006; 

Finnegan 2014). The oceanic whitetip shark exhibits very similar structure to that of the 

whale shark, Rhincodon typus. Genetic analysis of the whale shark, also a globally 

distributed pelagic species, has revealed two genetic populations (the W. Atlantic and the 

Indo-Pacific) which exhibit some degree of connectivity (Castro et al. 2007; Schmidt et 

al. 2009; Vignaud et al. 2014). Although very little is known about the breeding behavior 

of whale sharks and oceanic whitetip sharks, feeding aggregations and feeding related 

site philopatry have been observed in both these species (Colman 1997; Bonfil et al. 

2008; Madigan et al. 2015).  

 Interestingly, the congeneric, largely pelagic silky shark, Carcharhinus 

falciformis, exhibits much greater evolutionary divergence and global matrilineal 

population structure than the oceanic whitetip shark, with two very distinct clades 

comprising W. Atlantic and Indo-Pacific lineages and at least five maternal genetic 

populations worldwide (Clarke et al. 2015). As the pelagic shark with the most similar 

life history characteristics, as assessed by Cortés (2008), one might expect these two 

species to share comparable genetic structuring. This appears not to be the case. It is 

important to note that Clarke et al. (2015) had a larger sample size (n = 276) and included 

samples from the Eastern Pacific. It is therefore plausible that with greater sample sizes 

and samples from the Eastern Pacific, genetic analysis of the oceanic whitetip shark may 

reveal more fine-scale, matrilineal population structure than detected in this study, 

particularly within the Indo-Pacific. However, the deep evolutionary mixing of the 

oceanic whitetip shark (Figures 2-4) suggests that any possible fine-scale structure would 

most likely be very weak, regardless of sample size. This is in stark contrast to the strong 

phylogeographic division seen in the silky shark with distinct W. Atlantic and Indo-
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Pacific maternal evolutionary lineages. Furthermore, the overall ΦST of the silky shark 

mtCR (ΦST = 0.49) is an order of magnitude greater than that of the oceanic whitetip 

shark mtCR (overall ΦST range = 0.048 to 0.085), reflective of the much stronger genetic 

structuring in the former. These genetic analyses suggest a marked difference in the life 

histories of the oceanic whitetip shark and the silky shark. This may be due to the 

observation that silky sharks are somewhat more coastally associated than oceanic 

whitetip sharks (Compagno 1984; Bonfil 2008; Bonfil et al. 2008).  

 My results are also an interesting commentary on marker selection in 

elasmobranch population genetics, as ND4 was the only analyzed marker to pick up a 

signal of differentiation between the Indian and Pacific Oceans. This supports Feutry et 

al.’s (2014) analysis of the speartooth shark, Glyphis glyphis, which challenges the 

pervasive use of mtCR in elasmobranch population genetics. They suggest that while the 

mtCR has proven to be highly variable in many vertebrates (Martin et al. 1992), there 

appears to be greater evolutionary constraints on the elasmobranch mtCR preventing 

statistical differentiation of biologically differentiated populations. Counterintuitively, in 

their study two coding genes, ND5 and 12S rDNA, were found to exhibit the highest 

degree of differentiation in the speartooth shark. Dudgeon et al. (2009) screened four 

mitochondrial markers in the zebra shark, Stegostoma fasciatum, and found the ND4 gene 

to be more diverse than the mtCR, CO1 and ATPase gene. Taguchi et al. (2014) screened 

three mitochondrial markers in the blue shark, Prionace glauca, and also found the ND4 

gene to be the most diverse compared to the mtCR and Cytb gene. Finnegan (2014) 

sequenced the complete mitogenome of 34 individual basking sharks, Cetorhinus 

maximus, and unexpectedly found three protein-coding genes accounted for ~37% of all 

observed mitogenomic polymorphisms: ATP8, CO2, and ND5.  Interestingly,  ND4 (π = 

0.16% ± 0.00) was more diverse than the mtCR (π = 0.13% ± 0.00) in the basking shark.  

The ND4 data for the oceanic whitetip shark exhibited greater nucleotide diversity 

within the Indo-Pacific than the mtCR data, which may account for this greater power of 

detection. However, globally, ND4 was actually less variable than the mtCR (Table 2). 

This challenges the notion of the aforementioned studies that marker variability 

automatically correlates to the ability to detect genetic structure. As discussed previously, 

I theorize that the structure detected with ND4 in the oceanic whitetip shark may be 
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reflective of a historical barrier to gene flow or is possibly a Type I error. Thus, further 

assessment of the most variable regions of the mitochondrial genome within different 

elasmobranch species, and how this relates to genetic differentiation, will be necessary 

for future elasmobranch population genetic studies. This will become continuously more 

feasible with advancements in next generation sequencing.  

 

5.2. Genetic Diversity 

 A general trend of higher mitochondrial DNA haplotype and nucleotide diversity 

in the W. Atlantic than the Indo-Pacific oceanic whitetip sharks was seen in this analysis 

(Table 2). However, these inter-basin differences were not statistically significant. The 

W. Atlantic and Indo-Pacific microsatellite diversity indices (i.e. observed 

heterozygosity, expected heterozygosity, and allelic richness) were comparable between 

these localities. The lack of a similar diversity trend in the nuclear data is most likely due 

to different effective population sizes and mutation rates for mitochondrial and nuclear 

DNA (Buonaccorsi et al. 2001). 

 Higher mtCR genetic diversity in the W. Atlantic than Indo-Pacific was also 

observed in the silky shark (Clarke et al. 2015), although this difference was statistically 

significant. Furthermore, the silky shark has higher nucleotide diversities than the oceanic 

whitetip shark in these two ocean regions. Compared to eight other circumtropical 

elasmobranch species (Appendix IX), as denoted by (Gaither et al. 2015), the oceanic 

whitetip shark has relatively low global mtCR genetic diversity (0.33% ± 0.19%) which 

is about half that of silky sharks (0.61% ± 0.32%) (Clarke et al. 2015) and about a third 

that of whale sharks (1.1% ± 0.6%) (Castro et al. 2007).   

 Comparing ND4 diversities, the oceanic whitetip shark had a very similar 

nucleotide diversity to the blue shark (0.21% ± 0.13%) in the Pacific (Taguchi et al. 

2014). As two historically abundant pelagic shark species, similar genetic diversities 

among these species are not surprising. The oceanic whitetip shark had a higher ND4 

nucleotide diversity (0.24% ± 0.16%) than the congeneric but coastal spinner shark, 

Carcharhinus brevipinna (0.13% ± 0.09%) (Geraghty et al. 2013). This supports the 

assumption that pelagic sharks have an intrinsically higher genetic diversity than coastal 

sharks due to a greater opportunity for gene flow (Karl et al. 2011). Unfortunately, ND4 
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has not been used to assess any pelagic elasmobranch on a global level until my study, so 

direct comparisons are not possible.  

The relatively low mtCR genetic diversity of the oceanic whitetip shark may be 

due to overexploitation. However, considering this decline is relatively recent in terms of 

evolutionary history, and that the genetic diversity is higher in the area where the most 

marked declines have been observed (i.e., WNCA, mtCR π ± SD% = 0.40 ± 0.22), these 

low diversity indices most likely reflect historic levels (Nei et al. 1975; Roman & 

Palumbi 2003). Furthermore, it has been asserted that pelagic species with broad habitat 

utilization should characteristically have higher diversity than their coastal and narrow-

niche counterparts (Karl et al. 2011; Habel & Schmitt 2012).Regardless of the cause of its 

low mitochondrial genetic diversity, this state suggests that the oceanic whitetip shark 

may be at an even greater risk  when it comes to evolutionary adaptability to a rapidly 

changing oceanic environment, and consequently strong conservation measures are 

appropriate for this species.   

 

5.3. Demographic History 

 Bayesian analyses indicated the global historical effective female population sizes 

(HNe(f)) of the oceanic whitetip shark to be approximately 50 100  to 111 000  (95% CI 

19 200 – 191 000). Estimates of HNe(f) in the Atlantic and Indo-Pacific are very similar,  

and most likely reflect the historic global meta-population due to episodes of gene flow 

between the two localities both historically and contemporarily (Hare et al. 2011).To 

convert the historical effective female population size to historical census size we would 

need to know the sex ratio, the ratio of breeding adults to effective population size, and 

the ratio of adults to juveniles (Roman & Palumbi 2003). Without this knowledge, I 

recognize that the estimated HNe(f) may be a fraction of the census size. Roman & 

Palumbi (2003) conservatively estimated the census size of humpback, fin and minke 

whales is 6 to 8 times greater than the Ne(f). I note, however, that the relatively large 

HNe(f) of oceanic whitetip sharks estimated in this study is consistent with the assumed 

high historical abundance of the oceanic whitetip shark.  
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5.4. Implications for Conservation 

The findings of this study support the need for implementation of management 

and conservation measures for the oceanic whitetip shark on at least a two global 

population level basis (i.e., W. Atlantic and the Indo-Pacific Oceans). All genetic markers 

utilized in this study (mtCR, ND4, mtCR-ND4, and 9 MSAT loci) indicated weak but 

highly significant differentiation between these two large ocean basins. Furthermore, 

relatively low mtDNA genetic diversity (Table 2; Appendix IX) raises potential concern 

for the future genetic health of these populations, further substantiating the need for 

international conservation management strategies for this rapidly declining oceanic 

species.  
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Appendix I. Oceanic whitetip shark Western North Central Atlantic (WNCA) 

subpopulation-level pairwise differentiation estimates for mitochondrial data (mtCR, 

ND4, and concatenated mtCR-ND4; ΦST and Jost’s D) and microsatellite data (MSAT; 

FST, G''ST, and DEST). No comparisons were statistically significant. Abbreviations: CI, 

Cayman Islands; NESA, Northeast South America; WC, Western Caribbean; WNA, 

Western North Atlantic. 

 

 

  

WNCA 
Pairwise 
Comparison mtCR Φ ST

mtCR 
Jost's D ND4 Φ ST

ND4 
Jost's D

mtCR-ND4 

Φ ST

mtCR-ND4 
Jost's D

MSAT 

F ST

MSAT 

G ''ST

MSAT 

D EST

CI vs. NESA -0.071 -0.316 -0.053 -0.371 -0.064 -0.167 0.027 0.037 0.029
CI vs. WC -0.035 -0.328 0.028 -0.003 -0.012 -0.224 0.024 -0.028 -0.020
CI vs. WNA 0.013 0.111 0.098 0.115 0.042 0.078 0.018 0.012 0.009
NESA vs. WC -0.105 -0.810 -0.070 -0.075 -0.092 -0.207 0.046 0.087 0.068
NESA vs. WNA -0.031 -0.159 0.046 0.242 -0.004 0.037 0.026 0.005 0.004
WC vs. WNA -0.068 -0.728 -0.091 -0.273 -0.075 -0.833 0.029 -0.017 -0.013
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Appendix II. Polymorphic sites within the oceanic whitetip shark mitochondrial control region haplotypes (ClonmtCR, n = 30) and 

ND4 (ClonND4, n = 23). Relative nucleotide position (bp) is listed. Consensus sequence details the most frequent nucleotide. 

Consistencies with the consensus sequence are denoted by a dot (·). Indels are denoted by a dash (―).  

 

  

bp 54 222 260 280 306 318 324 331 429 440 444 445 646 659 707 719 757 762 802 818 826 1015
CONSENSUS T G C A T T G T C A T G A T G G G C G C G ―
ClonmtCR1 · · · G · · · · · · · · · · · · · · · · · ·
ClonmtCR2 C A T · · · · · T · · · · · C A A · · · A ·
ClonmtCR3 C · T · · · · · · · · · · · · · · · · · A ·
ClonmtCR4 · · · · · · · · · · · · · · · · · · · · · ·
ClonmtCR5 · · · · · · · · · G C ― · · · · · · · · · ·
ClonmtCR6 · · · · · · · · · · · · · C · · · · · · · ·
ClonmtCR7 · · · · · · · · · · · · · · · · · · · · A ·
ClonmtCR8 · · · · · · · · · · · · · · · · · T · · A ·
ClonmtCR9 C · T · · · · · · · · · · · · · · · · · · ·
ClonmtCR10 · · · · · · · C · · · · · · · · · T · · · ·
ClonmtCR11 · · T · · · · · · · · · · · · · · · · · · ·
ClonmtCR12 · · · · C · · · · · · · · · · · · T · · · T
ClonmtCR13 · · · · · · A · · · · · · · · · · · · · · ·
ClonmtCR14 C · · · · · · · · · · · · · · · · · A · A ·
ClonmtCR15 · · · · C · · · · · · · · · · · · · · T A ·
ClonmtCR16 · · · · C · · · · · · · · · · · · · · · · ·
ClonmtCR17 · · · · · · A · · · · · · · · · · · · · A ·
ClonmtCR18 · · · · · · · · · · · · · · · · · T · · · ·
ClonmtCR19 C A T · · · · · T · · · · · C A A · · T A ·
ClonmtCR20 · · · · C · · · · · · · · · · · · T · T · T
ClonmtCR21 · · · · C · · · · · · · · · · · · · A · A ·
ClonmtCR22 · · · · · · · · · · · · G · · · · T · · · ·
ClonmtCR23 · · · · · · · · · · · · · · · · · · · · · T
ClonmtCR24 · · · · C · · · · · · · · · · · · · · · A ·
ClonmtCR25 · · · · · · · · · · · · · · · · · · A · · ·
ClonmtCR26 · · · · C · · · · · · · · · · · · T · · A T
ClonmtCR27 · · · · · C · · · · · · · · · · · · · · · ·
ClonmtCR28 C · · · · · · · · · · · · · · · · · A · · ·
ClonmtCR29 C A T · · · · · T · · · · · C A · · · · A ·
ClonmtCR30 C · T · · · · · T · · · · · C A A · · · A ·
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Appendix II cont. 

 

bp 5 38 65 78 83 125 179 182 191 195 206 240 316 336 350 459 498 542 562 632 635 672 749
CONSENSUS C T A G C T T C T G C G T C C T T T C A C G T
ClonND4_1 · · · · · · · · · · · · · · · · · · · · · · ·
ClonND4_2 · · T · · C · · · · · · · · · · · C · · · · C
ClonND4_3 · · T · · C · · · · · · · · · · · · · · · · C
ClonND4_4 · · · · · · C · · · · · · · · · · · · · · · ·
ClonND4_5 · · · · · C · · · · T · · · · · · · · · · · ·
ClonND4_6 · · T · · C · · · · · · · · · C · · · · · · C
ClonND4_7 · · · · · · · · · · · · · · · · · · · G · · ·
ClonND4_8 · · · · · C · · · · · · · · · · · · · · · · ·
ClonND4_9 · · · · · C · T · · · · · · · · · · · · · · ·
ClonND4_10 · · · · · C · · · · T · · · · · · · · · · A ·
ClonND4_11 T · · · · · · · · · · · · · · · · · · · · · ·
ClonND4_12 · · · · T · · · · · · · · · · · · · · · · · ·
ClonND4_13 · · T · · C · · · · · · · · T · · C · · · · C
ClonND4_14 · · · A · · · · · · · · · · · · · · · · · · ·
ClonND4_15 · · · · · · · · · A · · · · · · · · · · · · ·
ClonND4_16 · C · · · C · T · · · · · · · · · · · · · · ·
ClonND4_17 · · · · · · · · · · · A · · · · · · · · · · ·
ClonND4_18 · · · · · · · · C · · · · · · · · · · · · · ·
ClonND4_19 · · · · · · · · · · · · · · · · · · T · · · ·
ClonND4_20 · · · · · · C · · · · · C · · · · · · · · · ·
ClonND4_21 · · · · T · · · · · · · · T · · · · · · · · ·
ClonND4_22 · · · · · · · · · · · · · · · · · · · · T · ·
ClonND4_23 · · T · · C · · · · · · · · · · C C · · · · C
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Appendix III. The original median-joining haplotype network of the oceanic whitetip 

shark mitochondrial control region (mtCR) data prior to breaking ambiguous loops. 

Mutations are shown as hatch marks. The black node denotes a theoretical un-sampled 

haplotype. Abbreviation: WNCA, Western North Central Atlantic.  
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Appendix IV. The original median-joining haplotype network of the oceanic whitetip 

shark concatenated mtCR-ND4 data prior to breaking ambiguous loops. Mutations are 

shown as hatch marks. The black nodes denote theoretical un-sampled haplotypes. 

Abbreviation: WNCA, Western North Central Atlantic.  
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Appendix V. Oceanic whitetip shark haplotypes by ocean basin and sampling location of 

the mitochondrial control region (ClonmtCR) and ND4 (ClonND4). Abbreviation: 

WNCA, Western North Central Atlantic. 

 

 

  

Atlantic Indian Pacific Arabian Sea Brazil Hawaii Indonesia Line Islands South Pacific Taiwan WNCA

ClonmtCR1 3 ― ― ― 2 ― ― ― ― ― 1

ClonmtCR2 15 ― ― ― 8 ― ― ― ― ― 7

ClonmtCR3 ― 2 3 1 ― 1 1 ― ― 2 ―

ClonmtCR4 17 11 21 10 7 2 1 1 1 17 10

ClonmtCR5 ― ― 1 ― ― 1 ― ― ― ― ―

ClonmtCR6 1 1 2 1 ― ― ― 1 ― 1 1

ClonmtCR7 1 1 1 1 ― ― ― ― ― 1 1

ClonmtCR8 3 ― 2 ― 1 ― ― ― ― 2 2

ClonmtCR9 12 6 2 6 8 ― ― ― ― 2 4

ClonmtCR10 ― ― 1 ― ― ― ― ― ― 1 ―

ClonmtCR11 ― 2 1 2 ― ― ― ― ― 1 ―

ClonmtCR12 3 2 3 2 1 ― ― ― ― 3 2

ClonmtCR13 2 ― ― ― ― ― ― ― ― ― 2

ClonmtCR14 ― 1 ― ― ― ― 1 ― ― ― ―

ClonmtCR15 3 1 1 1 2 ― ― ― ― 1 1

ClonmtCR16 7 1 ― 1 2 ― ― ― ― ― 5

ClonmtCR17 7 ― ― ― 6 ― ― ― ― ― 1

ClonmtCR18 9 1 ― 1 7 ― ― ― ― ― 2

ClonmtCR19 4 ― ― ― 3 ― ― ― ― ― 1

ClonmtCR20 1 ― ― ― 1 ― ― ― ― ― ―

ClonmtCR21 1 ― ― ― 1 ― ― ― ― ― ―

ClonmtCR22 ― ― 1 ― ― ― ― ― ― 1 ―

ClonmtCR23 ― 1 ― 1 ― ― ― ― ― ― ―

ClonmtCR24 ― 1 ― 1 ― ― ― ― ― ― ―

ClonmtCR25 1 ― ― ― ― ― ― ― ― ― 1

ClonmtCR26 2 ― ― ― ― ― ― ― ― ― 2

ClonmtCR27 1 ― ― ― ― ― ― ― ― ― 1

ClonmtCR28 1 ― ― ― ― ― ― ― ― ― 1

ClonmtCR29 2 ― ― ― ― ― ― ― ― ― 2

ClonmtCR30 1 ― ― ― ― ― ― ― ― ― 1

Total 97 31 39 28 49 4 3 2 1 32 48

Ocean Basin Sampling Location
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Appendix V cont. 

 

 

  

Atlantic Indian Pacific Arabian Sea Brazil Hawaii Indonesia Line Islands South Pacific Taiwan WNCA

ClonND4_1 27 5 20 5 11 3 ― 1 1 15 16

ClonND4_2 20 ― ― ― 10 ― ― ― ― ― 10

ClonND4_3 13 10 5 8 8 1 2 ― ― 4 5

ClonND4_4 2 9 5 8 1 ― 1 1 ― 4 1

ClonND4_5 2 2 3 2 ― ― ― ― ― 3 2

ClonND4_6 ― ― 1 ― ― ― ― ― ― 1 ―

ClonND4_7 ― ― 1 ― ― ― ― ― ― 1 ―

ClonND4_8 4 1 1 1 3 ― ― ― ― 1 1

ClonND4_9 6 2 ― 2 1 ― ― ― ― ― 5

ClonND4_10 4 ― ― ― 2 ― ― ― ― ― 2

ClonND4_11 8 ― ― ― 7 ― ― ― ― ― 1

ClonND4_12 1 1 1 1 1 ― ― ― ― 1 ―

ClonND4_13 1 ― ― ― 1 ― ― ― ― ― ―

ClonND4_14 1 ― ― ― 1 ― ― ― ― ― ―

ClonND4_15 1 ― ― ― 1 ― ― ― ― ― ―

ClonND4_16 1 ― ― ― 1 ― ― ― ― ― ―

ClonND4_17 1 ― ― ― 1 ― ― ― ― ― ―

ClonND4_18 ― ― 1 ― ― ― ― ― ― 1 ―

ClonND4_19 ― ― 1 ― ― ― ― ― ― 1 ―

ClonND4_20 ― 1 ― 1 ― ― ― ― ― ― ―

ClonND4_21 2 ― ― ― ― ― ― ― ― ― 2

ClonND4_22 1 ― ― ― ― ― ― ― ― ― 1

ClonND4_23 1 ― ― ― ― ― ― ― ― ― 1

Total 96 31 39 28 49 4 3 2 1 32 47

Ocean Basin Sampling Location
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Appendix VI. AMOVA results generated in the program ARLEQUIN with the metric 

ΦST including the degrees of freedom (d.f.), sum of squares deviation (SSD), the variance 

component (VC), the percent variation (%V), the overall fixation index (ΦST), the 

associated P-value, and the P-value standard error (SE). As indicated in the first column, 

each AMOVA was performed on one of three mitochondrial datasets (mtCR, ND4, or 

mtCR-ND4) at one of three tiers of sampling partitions (Tier 1: Arabian Sea, Brazil, 

Taiwan, and Western North Central Atlantic; Tier 2: W. Atlantic, Indian, and Pacific; 

Tier 3: W. Atlantic and Indo-Pacific).  

Analysis Source of 
Variation 

d.f. SSD VC %V ΦST P-value P-value 
SE 

mtCR Tier 1                 

Among populations 3 15.100 0.08620 4.79 − − − 

Within Populations 153 262.288 1.71430 95.21 − − − 

  Total 156 277.389 1.80050 − 0.04787 0.00208 0.00045 

mtCR Tier 2 

Among populations 2 15.476 0.12664 7.04 − − − 

Within Populations 164 274.284 1.67246 92.96 − − − 

  Total 166 289.760 1.79910 − 0.07039 0.0004 0.00019 

mtCR Tier 3 

Among populations 1 14.261 0.15484 8.49 − − − 

Within Populations 165 275.499 1.66969 91.51 − − − 

  Total 166 289.760 1.82454 − 0.08487 0.00000 0.00000 

ND4 Tier 1 

Among populations 3 9.084 0.04856 3.99 − − − 

Within Populations 152 177.660 1.16882 96.01 − − − 

  Total 155 186.744 1.21737 − 0.03989 0.01040 0.00096 

ND4 Tier 2 

Among populations 2 9.710 0.07780 6.39 − − − 

Within Populations 163 185.634 1.13886 93.61 − − − 

  Total 165 195.343 1.21665 − 0.06394 0.00079 0.00030 

ND4 Tier 3 

Among populations 1 7.041 0.07279 5.96 − − − 

Within Populations 164 188.302 1.14818 94.04 − − − 

  Total 165 195.343 1.22097 − 0.05961 0.00129 0.00036 
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mtCR-ND4 Tier 1 

Among populations 3 24.435 0.13742 4.55 − − − 

Within Populations 152 438.283 2.88344 95.45 − − − 

  Total 155 462.718 3.02087 − 0.04549 0.00366 0.00059 

mtCR-ND4 Tier 2 

Among populations 2 25.547 0.20858 6.91 − − − 

Within Populations 163 458.176 2.81089 93.09 − − − 

  Total 165 483.723 3.01947 − 0.06908 0.00030 0.00017 

mtCR-ND4 Tier 3 

Among populations 1 21.664 0.23277 7.63 − − − 

Within Populations 164 462.059 2.81743 92.37 − − − 

  Total 165 483.723 3.05021 − 0.07631 0.00020 0.00014 
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Appendix VII. Locus by locus diversity statistics for cross-species microsatellites including the number of individuals genotyped (n), 

the number of alleles (a), the estimated null allele frequency (NA), the observed heterozygosity (HO), the expected heterozygosity (HE) 

and the P-value of deviation from Hardy-Weinberg Equilibrium (HWE). Bold values of NA indicate a high null allele frequency (NA > 

0.10). Shaded values of HWE indicate significant deviations from HWE after False Discovery Rate correction (FDR). Bold values of 

HWE indicate significant deviations from HWE prior to False Discovery Rate correction (FDR). “High. sign.” indicates a highly 

significant overall deviation from HWE across all loci. Note: upon removing the two loci A2ASY and Cl13, all populations are 

actually within HWE.  

  A2ASY Cl13 Cl15 Cl17 Cli107 Cpe141 Cpe334 Cpe352 Ct06 CY92Z Pgla-02 All Loci 

Total W. Atlantic 

n 96 96 96 96 96 96 96 95 93 94 96 95.45 

a 7 33 9 6 7 29 6 4 16 24 7 13.46 

NA 0.00 0.21 0.05 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03 

HO 0.64 0.49 0.61 0.61 0.72 0.94 0.67 0.60 0.91 0.86 0.78 0.71 

HE 0.61 0.89 0.67 0.64 0.73 0.95 0.65 0.57 0.91 0.89 0.79 0.75 

HWE 0.42 0.00 0.03 0.24 0.89 0.11 0.95 0.99 0.83 0.21 0.88 High. sign. 

Brazil   
n 51 51 51 51 51 51 51 51 49 49 51 50.64 

a 7 25 8 6 7 23 5 4 15 19 7 11.46 

NA 0.00 0.22 0.08 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 

HO 0.59 0.47 0.55 0.57 0.69 0.94 0.69 0.65 0.92 0.82 0.71 0.69 

HE 0.62 0.89 0.67 0.62 0.74 0.95 0.65 0.61 0.92 0.88 0.78 0.76 

HWE 0.48 0.00 0.05 0.28 0.79 0.03 0.91 0.94 0.42 0.27 0.31 High. sign. 
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WN Central Atlantic   
n 45 45 45 45 45 45 45 44 44 45 45 44.82 

a 6 22 8 5 7 26 5 4 16 20 7 11.46 

NA 0.00 0.20 0.00 0.02 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.02 

HO 0.69 0.51 0.69 0.67 0.76 0.93 0.64 0.55 0.91 0.91 0.87 0.74 

HE 0.61 0.89 0.69 0.67 0.72 0.95 0.65 0.52 0.91 0.90 0.81 0.76 

HWE 0.32 0.00 0.15 0.34 0.85 0.18 0.55 1.00 0.96 0.03 0.84 High. sign. 

             

Total Indian 
n 29 26 29 29 29 29 29 27 28 29 29 28.45 

a 6 17 6 8 6 24 6 4 14 12 7 10.00 

NA 0.04 0.14 0.04 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.02 0.03 

HO 0.62 0.62 0.59 0.79 0.83 0.97 0.59 0.74 0.93 0.90 0.59 0.74 

HE 0.74 0.87 0.66 0.78 0.73 0.95 0.70 0.70 0.91 0.89 0.70 0.79 

HWE 0.03 0.00 0.13 0.95 0.93 0.99 0.02 0.02 0.84 0.30 0.66 0.00 

Arabian Sea   
n 26 23 26 26 26 26 26 24 25 26 26 25.45 

a 6 16 6 8 6 24 6 4 12 11 7 9.64 

NA 0.07 0.11 0.07 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.03 0.03 

HO 0.58 0.65 0.54 0.81 0.81 0.96 0.62 0.71 0.92 0.92 0.58 0.74 

HE 0.75 0.84 0.66 0.76 0.72 0.96 0.72 0.70 0.91 0.88 0.70 0.78 

HWE 0.02 0.02 0.14 0.99 0.76 0.94 0.08 0.01 0.87 0.49 0.60 0.01 
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Total Pacific   
n 39 39 39 39 39 39 39 38 38 39 39 38.81 

a 7 21 6 6 8 19 6 4 19 18 9 11.18 

NA 0.02 0.15 0.00 0.03 0.04 0.00 0.00 0.08 0.00 0.02 0.00 0.03 

HO 0.64 0.59 0.77 0.72 0.67 0.97 0.64 0.53 0.97 0.82 0.77 0.74 

HE 0.65 0.89 0.73 0.76 0.74 0.93 0.69 0.66 0.92 0.88 0.72 0.78 

HWE 0.39 0.00 0.45 0.54 0.93 1.00 0.32 0.23 0.10 0.03 0.70 High. sign. 

Taiwan   
n 32 32 32 32 32 32 32 31 31 32 32 31.82 

a 6 21 6 6 8 19 6 4 16 17 9 10.73 

NA 0.03 0.13 0.00 0.02 0.07 0.00 0.00 0.07 0.00 0.04 0.00 0.03 

HO 0.63 0.63 0.78 0.72 0.63 0.97 0.69 0.55 0.97 0.78 0.75 0.73 

HE 0.66 0.90 0.74 0.74 0.75 0.93 0.71 0.67 0.92 0.89 0.73 0.78 

HWE 0.31 0.00 0.47 0.49 0.64 0.99 0.48 0.51 0.04 0.03 0.77 0.02 

             

Total Indo-Pacific 
n 68 65 68 68 68 68 68 65 66 68 68 67.27 

a 8 27 7 8 8 25 7 4 20 21 9 13.09 

NA 0.03 0.15 0.00 0.01 0.00 0.00 0.02 0.03 0.00 0.02 0.00 0.02 

HO 0.63 0.6 0.69 0.75 0.74 0.97 0.62 0.62 0.96 0.85 0.69 0.74 

HE 0.69 0.88 0.7 0.77 0.74 0.94 0.69 0.68 0.92 0.89 0.7 0.78 

HWE 0.03 0.00 0.21 0.95 0.99 0.97 0.07 0.03 0.45 0.01 0.89 High. sign. 
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All Samples   
n 164 161 164 164 164 164 164 160 159 162 164 162.73 

a 9 42 10 8 8 31 9 5 20 28 9 16.27 

NA 0.01 0.18 0.03 0.02 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.02 

HO 0.63 0.53 0.65 0.67 0.73 0.95 0.65 0.61 0.93 0.86 0.74 0.72 

HE 0.66 0.89 0.69 0.7 0.74 0.95 0.67 0.64 0.92 0.89 0.77 0.77 

HWE 0.02 0.00 0.11 0.54 0.76 0.36 0.24 0.10 0.95 0.01 0.98 High. sign. 
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Appendix VIII. STRUCTURE results of all samples for 2 simulations: (a) detailed LOCPRIOR 

and (b) ocean basin information given as LOCPRIOR. Mean LnP(K) is shown with blue circles 

and standard deviation lines on the left axis. ΔK is shown with red triangles on the right axis.  

 

 

 

  

(a) 

(b) 
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Appendix IX. A comparative table of global elasmobranch mtCR diversity statistics including 

number of individuals sequenced (N), number of haplotypes (NH), global haplotype diversity 

with standard deviation (h ± SD), global percent nucleotide diversity with standard deviation (π 

± SD(%)), and the appropriate reference. Each study included the entire mtCR for the respective 

species and globally distributed sampling locations. The table is sorted in ascending order of 

nucleotide diversity. Only circumtropical species as denoted by Gaither et al. (2015) are 

included.  

Species N NH h ± SD π ± SD(%) Reference 

Cetorhinus maximus 62 6 0.72 ± 0.03 0.13 ± 0.09 Hoelzel et al. 2006 

Galeocerdo cuvier 340 23 0.82 ± 0.01 0.27 ± 0.16 Bernard unpublished 

Sphyrna zygaena 303 31 0.88 ± 0.01 0.32 ± 0.18 Testerman 2014 

Carcharhinus longimanus 167 30 0.88 ± 0.02 0.33 ± 0.19 This Study 

Carcharhinus limbatus 364 37 0.84 ± 0.02 0.41 ± 0.23 Keeney & Heist 2006 

Carcharhinus plumbeus 329 67 0.96 0.48 Portnoy et al. 2010 

Carcharhinus falciformis 276 62 0.93 ± 0.01 0.61 ± 0.32 Clarke et al. 2015 

Sphyrna mokarran 272 90 0.90 ± 0.02 1.08 ± 0.55 Testerman 2014 

Rhincodon typus 69 44 0.97 ± 0.01 1.1 ± 0.6 Castro et al. 2007 
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