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Abstract 

As cosmopolitan species, loggerhead and leatherback turtles are confronted with a 

multitude of threats as they progress through their respective life stages. These range 

from depredation and poaching of eggs, hatchlings, and females on nesting beaches, to 

incidental hooking in pelagic longline fisheries and capture in trawl fisheries. Some 

threats are species specific on regional scales, though most impact both species. To 

confront these threats, various conservation strategies have been developed and 

implemented, including monitoring and caging of nests and changes to hook shape and 

trawl design. Here, current conservation methods are presented and discussed on a global 

scale for both species. Population modeling was employed to elucidate the impacts these 

strategies are having for loggerhead turtles in the North Atlantic. Unfortunately, even 

with the myriad of strategies employed throughout the world, most populations of these 

species are still declining. This arises due to a poor understanding of several of the 

fundamental elements of population dynamics for each species, deficient tracking of 

fisheries impacts, and a lack of unified conservation plans to address population declines 

on regional and global scales.  

 

 

 

Keywords: loggerhead, leatherback, conservation strategy, nesting beach conservation, 

nest depredation, fisheries management, pelagic longline fishery, circle hook, mackerel 

bait, passive net fishery, net height, trawl fishery, turtle excluder device, population 

modeling, population matrix, projection matrix, age-classified, age-based, stage-
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Introduction 

All seven extant sea turtle species have undergone drastic reductions in 

population sizes worldwide and are listed as endangered or critically endangered by the 

International Union for Conservation of Nature (IUCN; www.iucnredlist.org). The degree 

to which each species is endangered varies by population, with some populations 

showing indications of recovery (e.g., green turtles, Chelonia mydas, in Hawaii; Balazs 

and Chaloupka 2004) while other populations are still rapidly declining (e.g., leatherback 

turtles, Dermochelys coriacea, in the Mexican Pacific; Martinez, et al. 2007). In recent 

years, many conservation strategies have been employed in an attempt to better manage 

and protect these species. Unfortunately, turtles are still affected by a myriad of threats, 

including habitat degradation (Witherington, Hirama and Mosier 2011), pollution (J. G. 

Derraik 2002), overfishing and harvesting of eggs (Wilson and Tisdell 2001, Martinez, et 

al. 2007), direct interactions with humans on nesting beaches and at sea (Herrera-Silveira, 

et al. 2010), and incidental catch in fisheries (Wallace, et al. 2011). Globally, 

conservation and management initiatives to combat threats to sea turtle populations have 

been implemented (Dutton, et al. 2005, Engeman, et al. 2003). Among these, nesting 

beach conservation (i.e., the protection and monitoring of nesting beaches; Bjorndal, et 

al. 1999, Garcia, Ceballos and Adaya 2003) and fisheries management (the development 

and use of modified fishing techniques and gear; Arendt, et al. 2012, Price and Gearhart 

2011) offer varying degrees of by mitigating the effects of land- and sea-based threats 

(Dryden, et al. 2008, Green, et al. 2009) and are at the forefront of marine turtle 

conservation. Other conservation strategies employed for different purposes (e.g., coral 

reef marine protected areas, seagrass restoration) that, though do not specifically target 

turtles, can affect them by protecting and restoring foraging grounds (Pressey and Bottrill 

2009). 

Marine turtles are large bodied, highly mobile organisms with complex life 

history patterns that present a number of challenges to population level conservation and 

management (Gruss, et al. 2011). Though each marine turtle species exhibits different life 

histories, all have a surface-pelagic juvenile life stage (Wallace, et al. 2010). This, alone, 

poses a significant challenge in designing comprehensive management strategies 

(Wallace, et al. 2011). It has long been believed that during these pelagic “lost years”, 
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post-hatchling turtles were passive drifters that moved around the major ocean basins 

along boundary and other major ocean currents (Carr 1987a). However, recent satellite 

tracking evidence revealed that young turtles may actively seek out suitable pelagic 

habitats (Mansfield, Saba and Musick 2009, Putman and Mansfield 2015). This vagrant 

lifestyle brings juvenile turtles into the territorial waters of numerous nation-states and 

results in interactions with fishing gear in these highly productive habitats. 

All turtles spend time in terrestrial zones as eggs and early hatchlings on nesting 

beaches, with females returning at varied intervals to nest. Immediately after hatching, 

hatchlings orient and crawl toward the ocean and began the hatchling swim frenzy stage 

for the next 24 hours to several days (Wyneken and Salmon 1992, J. Spotila 2004). The 

remaining life stages differ among species, with notable variations between loggerheads 

and leatherbacks. Loggerheads will spend 7-10 years in the juvenile oceanic stage, slowly 

transitioning to deeper, benthic foraging habitats as they grow older and larger (J. Spotila 

2004, Heppell, et al. 2003, Heppell, Snover and Crowder, 2003). As subadults and adults, 

loggerhead turtles will recruit to neritic habitats, and generally limit their time in the 

pelagic environment to periods of migration between feeding grounds, mating grounds, 

and nesting beaches, though a small portion of Atlantic and Pacific populations will 

return to the oceanic zone as large juveniles and adults (Bolten 2003). In contrast, 

leatherback turtles will spend nearly their entire lives in the oceanic zone, returning to 

neritic zones to breed and nest, or for brief visits during their continuous migrations in 

pursuit of jellyfish and other soft-bodied animals. As they grow, leatherbacks will expand 

their foraging depth range, eventually able to dive as deep as 1230 meters as adults, 

though the majority of their time is spent above 200 m (J. Spotila 2004, Hays, Houghton, 

et al. 2004).  

The varied life histories of sea turtles complicate conservation attempts. In many 

cases, effective management strategies must be tailored to specific stages of a species life 

history (Gruss, et al. 2011). For example, due to the long distances traveled during the 

oceanic juvenile life stages, management and conservation measures are most effectively 

addressed using international treaties and conventions. However, regulations put forth 

from these agreements are difficult to enforce due to the expanse of the oceanic 

environment, the need for cooperation among various sovereign states, and other 
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compounding factors (Wold 2002). Much of the difficulty is attributed to the disparity 

between the implicit governing rights in different areas of the world’s oceans. That is, 

each state possesses sovereign rights over the natural resources that reside within its 

exclusive economic zone, which extends up to 200 nautical miles from the coast of each 

state. Conversely, on the high seas outside of these zones, no state maintains sovereign 

rights, and thus all resources may be exploited by all states. Specifically, exploitation 

may only occur in a way that benefits all states, and that resources must be conserved 

(Wold 2002). While these rules provide the authority for states to regulate threats to sea 

turtles, the inherent ambiguity provides no regulatory framework or guidelines towards 

this end, thus affording turtles, and other wide-ranging species, inadequate protection. 

There are international agreements that have significantly curbed past threats to 

sea turtles, namely, the Convention on International Trade in Endangered Species of Wild 

Fauna and Flora (CITES) and the Convention on the Conservation of Migratory Species 

of Wild Animals of 1979 (CMS). CITES has been largely responsible for dealing with 

overharvesting for consumption and commercial use, which was the major precursor to 

the modern threats sea turtles face today. This banned the trade of turtle products for all 

purposes, which removed the market for turtle fisheries, effectively preventing active 

legal taking of eggs and adults in most areas. Additionally, many legal instruments 

broadly address responsible fisheries practices, such as the United Nations Convention on 

the Law of the Sea, implemented in 1994; the 1995 United Nations Agreement on 

Straddling Fish Stocks and Highly Migratory Fish Stocks; and the 1995 FAO Code of 

Conduct for Responsible Fisheries. Unfortunately, these instruments exhibit many of the 

ambiguities mentioned above. 

While CITES has been effective in reducing the commercial trade of sea turtles 

and their parts, there remains no binding international policy, treaty, or convention that 

addresses land- and sea-based threats for sea turtles (Wold 2002). Instead, many regional 

fisheries bodies (RFB; i.e., any organization that oversees a defined fishery) have 

voluntarily incorporated bycatch reduction strategies, including those for sea turtles. 

Among these are the five Tuna Regional Fishery Management Organizations (RFMO), 

which include the Inter-American Tropical Tuna Commission (IATTC) and the 

International Commission for the conservation of Atlantic Tunas (ICCAT) that operate in 
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the eastern Pacific and Atlantic, respectively (Coelho, Fernandez-Carvalho and Santos 

2013); along with several other RMFOs who oversee non-tuna fisheries in world’s 

oceans. With the lack of international agreements, RFBs have implemented guidelines 

from other sources, such as the Food and Agriculture Organization of the United Nations 

(FAO). 

In recent years, the FAO has issued specific guidelines to reduce sea turtle 

bycatch. The most recent version of these guidelines outlines gear recommendations, 

fisheries management strategies, and the handling and release of incidentally captured 

turtles (FAO Fisheries and Aquaculture Department 2009). In 2007, the IATTC 

implemented the FAO guidelines for turtle bycatch mitigation; including lowering 

mortality of caught turtles and reducing injuries during release (Benaka, Cimo and 

Jenkins 2012). Additionally, the tuna RFMOs and RFBs commonly follow the guidance 

of the Inter-American Convention for the protection and Conservation of Sea Turtles 

(IAC). The IAC calls for measures barring the intentional taking of turtles, compliance 

with CITES, preventing habitat degradation on nesting beaches and in the water, 

encouraging research into turtle conservation, providing outreach and education to the 

public and stakeholders, and mitigating bycatch by modifying gear and using Turtle 

Excluder Devices (TEDs) (Inter-American Convention for the Protection and 

Conservation of Sea Turtles 2015). 

Many countries have introduced regulations to monitor turtle conservation within 

their own territories, including the United States, Australia, Brazil, Japan, and Portugal. 

These regulations help address bycatch on vessels that fly their flags, but also serve to 

organize the other major realm of sea turtle management: nesting beach conservation. In 

the United States, the active bycatch mitigation and nesting beach conservation strategies 

grew from the Endangered Species Act (ESA, 1973). The ESA lists all species of sea 

turtle, except the flatback, as threatened or endangered, thus mandating their conservation 

in national waters and on nesting beaches following the recovery plans written for each 

species in 1990 and 1991. Other countries have similar legal instruments, including Costa 

Rica (Ley de Conservacion de la Vida Silvestre 1992), and the multi-nation effort in the 

Mediterranean (Action Plan for the Conservation of Mediterranean Marine Turtles 1989).  
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To ensure that relevant conservation measures are implemented, RFBs and 

national governments alike have funded research into best practices for both nesting 

beach conservation and bycatch mitigation, though the latter is far better funded, 

especially in regard to longline research (Lewison and Crowder 2007). The Inter-

American Tropical Tuna Commission (IATTC), which includes the governments of 

twenty-five countries throughout the Americas, Europe, Asia, and the Pacific Island 

Nations, regulates conservation and management for tuna fisheries in the eastern Pacific 

Ocean. In 2007, the IATTC began actively conducting research investigating the impacts 

hook type, bait type, and fishing gear set depth, have on sea turtle and target species catch 

rates. Additionally, the IATTC implemented requirements for additional fisheries 

observers and mandates that all vessels carry equipment for the de-hooking and release of 

entangled turtles (IATTC, Resolution to mitigate the impact of tuna fishing vessels on sea 

turtles 2007). The role of these observers is to collect data on gear choice, fishery 

methods, and information on turtle-fishing gear interactions. Other groups, such as the 

Eastern Pacific Regional Sea Turtle Bycatch Program (Andraka, et al. 2013) and 

SELECT-PAL (Redução das capturas acessórias na pescaria de palangre desuperfície) in 

the South Atlantic (Santos, et al. 2013), are pursuing similar research and regulations. 

Bycatch mitigation measures differ significantly between fisheries due to 

variations in oceanographic conditions (e.g., depth, bathymetrics, current features), target 

catch, gear choices (e.g., longlines, trawl nets, seine nets), and geopolitical influences. 

For longlines, the most common measures are varying gear type (e.g., J-hooks to circle 

hooks), varying bait (e.g., squid to mackerel), and limiting temporal and geographic 

access to fisheries (O'Keefe, Cadrin and Stokesbury 2013, Amorim, et al. 2014). In trawl 

fisheries, Turtle Excluder Devices or Trawling Efficiency Devices (TEDs) are often used 

in fisheries that interact with sea turtles (Jenkins 2012). Other fisheries, such as pound net 

fisheries, also use gear modifications (e.g., net height modifications) to address sea turtle 

bycatch. 

Compared to the challenges of protecting turtles on the high sea, nesting beach 

conservation can often be addressed within the jurisdiction of a single country, (e.g., the 

United States, Australia, Brazil). In the United States, the ESA (1973) mandates the 

protection of sea turtles on the beaches, while the Action Plan for the Conservation of 
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Mediterranean Marine Turtles (1989) dictates the same protection for all 21 nation states 

surrounding the Mediterranean, as well as the European Community. In areas where 

nesting beach conservation is difficult to support due to funding issues, governmental 

instability, or other compounding factors, international conservation groups can aid in 

providing structure and guidance for beach management programs. The Wider Caribbean 

Sea Turtle Conservation Network (WIDECAST) is one such organization who supports 

nesting beach conservation, and other conservation initiatives, in over 40 countries in the 

Caribbean (Eckert 2005). 

Management programs differ from beach to beach, but common measures include 

protecting eggs from predation, both natural and anthropogenic, with the use of cages, 

predator removal, and effective monitoring (Kornaraki, et al. 2006, Martinez, et al. 2007). 

Additionally, programs that mitigate disorientation of nesting females and hatchlings by 

controlling beach lighting (Witherington and Martin 2000), and regulate development of 

the beach to maintain habitat integrity (Witherington, Hirama and Mosier 2011) are 

tailored to fit the needs of each beach. 

With the exception of natural nest depredation from terrestrial predators (which is 

limited due to nest depth), nesting beach protective measures are uniformly beneficial to 

both species. Protecting these crucial life stages (i.e., eggs, hatchlings, and nesting 

mothers) is a key step in maintaining sustainable populations. Conversely, different 

fisheries interact with the two species to differing degrees and at different life stages. 

Pelagic fisheries primarily affect loggerheads during their oceanic life stages, while 

leatherback turtles spend the majority of their lives in the pelagic environment, even as 

adults, and are exposed to these fisheries for more of their lifetime (Luschi, Hays and 

Papi 2003).  

Though protecting the initial life stages is important, previous population models 

for loggerheads in the North Atlantic found that survivorship during the juvenile life 

stages had the largest effect on long-term population trends (Heppell, Crowder, et al. 

2003). Thus, effectively managing fisheries to reduce their impacts on these sensitive life 

stages may be a larger priority than nesting beach conservation. Unfortunately, the 

survivorship and duration values used for these age classes are based on extrapolated 

estimates derived from life history tables, tagging studies, and other sources. Using 
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assumptions gathered during this review, along with updated estimates for survivorship, 

life stage duration, and age at sexual maturity, I adapted and updated the loggerhead 

population model. In doing so, I reaffirmed the assumptions from previous modeling 

exercises and created a new model structure that more accurately compensates for the 

variable nesting trends of the adult life stages. Estimation of the variables involved in this 

modeling requires intense, long-term studies that are lacking in the majority of sea turtle 

populations. Thus, my models will similarly focus on the North Atlantic loggerhead 

population, as values for annual survival rates, stage duration, and age at sexual maturity 

are not well established for leatherbacks (Turtle Expert Working Group 2007). 

Species Profiles 

Loggerhead Turtles 

Loggerhead turtles are a globally distributed species, with 10 subpopulations 

recognized by the IUCN (listed in Figure 1 as regional management units; Casale and 

Tucker 2015). Loggerheads begin their lives on beaches spread throughout the tropical 

and subtropical Atlantic, Pacific, and Indian Oceans, as well as the Mediterranean Sea, 

with the two largest nesting populations occurring along the East coast of Florida and 

Oman (J. Spotila 2004). After emerging from the nest and reaching the water, hatchlings 

spend the next few days in a “frenzy” and “postfrenzy” swim (Wyneken and Salmon 

Figure 1 Global loggerhead range highlighting Regional Management Units and nesting sites. RMUs were 

identified as being geographically and genetically distinct populations. (Adapted from Wallace, et al. 

2010.) 
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1992) oriented straight toward the nearest major ocean current. If an individual 

successfully evades the pitfalls that hatchling sea turtles face (e.g., terrestrial and marine 

predation, dehydration, exhaustion) they will be swept into the oceanic zone. Here, they 

seek out and ride major boundary currents and ocean gyres, e.g., the Gulf Stream-Azores 

system in the North Atlantic or Japan Current in the North Pacific (J. Spotila 2004, 

Putman, Bane and Lohmann 2010). In these systems, they find shelter and food in 

convergence zones, like those found along the boundaries of fronts and eddies (Carr 

1987a, Polovina, Kobayashi, et al. 2000).  

Post-hatchling loggerheads remain in the oceanic environment for 6.5-11.5 years, 

often referred to as the “lost years” (Bolten 2003a), with occasional stops at oceanic 

island chains, e.g., the Azores and Cape Verde in the Atlantic (Bolten, Bjorndal and 

Martins, et al. 1998). In the Pacific, hatchling and juvenile loggerheads spend time along 

a boundary region in the North Pacific known as the transition zone chlorophyll front 

(Polovina, Howell, et al. 2001, Kobayashi, et al. 2008). After reaching an average curved 

carapace length of 46-64 cm (depending on population), Atlantic loggerheads enter their 

sub-adult stage and recruit to neritic habitats where they will remain as they continue to 

develop into adults (Bolten 2003b). 

Adult Atlantic loggerheads spend the majority of their time in neritic zone 

foraging habitats largely comprised of mud and hard bottom areas such as bays, channels, 

and sounds, along with reefs and oil platforms (J. Spotila 2004). Loggerheads in tropical 

waters typically show little temporal variation in foraging sites (Rees, et al. 2010), while 

those in temperate waters may range hundreds of kilometers (J. Spotila 2004). A female 

loggerhead reaches sexual maturity at 17-33 years of age and an average carapace length 

of 92-103 cm (depending on population) with reproduction starting towards the end of 

this range for loggerheads in the North Atlantic (J. Spotila, 2004). The exact start of 

nesting season (females laying eggs on the beach) varies for loggerheads, but most occur 

during the summer months in each respective hemisphere (J. Spotila 2004).  

Depending on the extent of a population’s foraging range and its proximity to 

breeding habitats (adjacent to nesting beaches), loggerheads may travel through the 

oceanic zone to mate (Bolten 2003b). Loggerheads show high nesting site fidelity, 

returning to the same beach they hatched on even if they share foraging grounds with 
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other nesting populations (J. Spotila 2004). Loggerheads nest every 2-4 years, averaging 

3.9 clutches of roughly 112 eggs with an inter-nesting interval of 12-17 days (J. Spotila 

2004). The nests of loggerheads are shallow, compared to those of larger species, and are 

simple to locate, making them easy targets for depredation and poaching on beaches 

where nests are poorly protected. 

The diets of loggerheads change drastically between the oceanic (hatchling and 

juvenile) and neritic (juvenile, sub-adult, and adult) life stages (Bolten 2003b). In oceanic 

habitats, loggerheads feed at the surface on a variety of flora and fauna that gather at 

convergence zones, including sargassum, crab zoea, fish eggs, and barnacles (Bolten 

2003b, J. Spotila 2004). Once juveniles enter the neritic zone, they experience an 

ontogenetic shift and transition to benthic prey, particularly hard-shelled slow or sessile 

organisms such as crabs, conches, and mussels (oceanic juveniles may also demonstrate 

this prey selection during stopovers at seamounts and islands in waters less than 650 m; 

Bolten 2003b, J. Spotila 2004). By traversing such a wide variation in habitats, 

loggerheads encounter a varied assortment of fishing gear, from long lines as pelagic 

juveniles, to trawl fisheries in neritic habitats as adults.  

Leatherback Turtles 

The largest of the sea turtles, leatherbacks also exhibit the widest geographical 

range of any extant turtle species, venturing into the cold waters of the North Atlantic and 

around the southern tip of Africa during their trans-oceanic migrations (J. Spotila 2004, 

Nel 2012). The IUCN recognizes seven distinct subpopulations of leatherbacks spread 

throughout their cosmopolitan distribution (listed in Figure 2 as regional management 

units; Wallace, Tiwari and Girondot 2013). The Northeast Atlantic leatherback 

population has demonstrated moderate resilience to the threats that face it and is 

categorized as a population of “Least Concern” by the IUCN. The two other Atlantic 

populations, along with those in the Indian and Pacific Oceans, are all considered “Data 

Deficient” or “Critically Endangered” (Wallace, Tiwari and Girondot 2013).  

Like other sea turtles, their nesting beaches are largely limited to the tropics and 

sub-tropics adjacent to powerful ocean current systems. Contrary to most turtle species, 

though, leatherbacks do not exhibit high site fidelity to specific beaches. Instead, nesting 

leatherbacks form large nesting populations across multiple beaches within nesting 
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Figure 2 Global leatherback range highlighting Regional Management Units and nesting sites. RMUs were 

identified as being geographically and genetically distinct populations. (Adapted from Wallace, et al. 

2010.) 

regions; the largest is the Western Atlantic nesting population in French Guiana and 

Suriname, possibly including Trinidad and Guyana (Dutton, et al. 1999, Girondot, et al. 

2007). Leatherbacks nest throughout the Caribbean, in Gabon in the eastern Atlantic, in 

Indonesia and Japan in the western Pacific, along the Pacific coasts of Costa Rica and 

Mexico, and a couple spots in the Indian Ocean (J. Spotila 2004, Girondot, et al. 2007, 

Patino-Martinez, et al. 2008). In the western Pacific, nesting occurs nearly year-round 

due to the existence of two distinct nesting sub-populations: arboreal summer and 

arboreal winter. These arise from foraging populations in the North Pacific and South 

Pacific, respectively (Benson et al. 2007). These large-scale dispersion patterns make 

targeted management strategies difficult once the turtles leave the breeding grounds. 

Additionally, many of the beaches leatherbacks utilize are prone to excessive erosion (J. 

Spotila 2004), increasing the cost of nesting conservation programs as imperiled nests are 

often relocated (Burkholder and Slagle 2015). 

Leatherbacks feed on a variety of soft-bodied animals, including siphonophores, 

tunicates, and some crabs, though their primary prey is jellyfish (J. Spotila 2004). Unlike 

loggerheads, leatherbacks spend their entire lives devoted to feasting on jellyfish and do 

not experience dietary shifts between life-stages. 

In the oceanic zone, leatherbacks take advantage of oceanographic features that 

aggregate their prey, such as mesoscale eddies, oceanic fronts, and other areas of 
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retention (Luschi, Sale, et al. 2003, Benson, Eguchi, et al. 2011). Females will spend the 

2-3 year remigration interval traveling within and along these features, sometimes 

swimming thousands of kilometers between temperate and tropical foraging areas 

seasonally (Figure 3; Benson et al. 2011). Leatherbacks travel equal or greater distances 

to return to nesting beaches. Some individuals of the Indonesian nesting population have 

been tracked foraging as far away as the coast of California (Benson et al. 2011). 

Unfortunately, the oceanographic features that attract leatherbacks also attract 

commercially targeted species, such as tuna and swordfish. This, coupled with their long 

distance migrations, bring leatherbacks into the realm of different fisheries, leading to 

interactions with an array of gear types throughout their lifetimes. 

 
Figure 3 Tracks of tagged leatherback turtles from western Pacific nesting beaches and one eastern Pacific 

foraging ground. The map depicts inter-nesting and post-nesting movements, emphasizing the differences 

of high-use foraging areas for arboreal summer (red tracks) and winter (blue tracks) nesting populations, as 

well as turtles tagged in foraging grounds off central California (green tracks). Deployment locations 

shown in insert: Papua Barat, Indonesia (PBI), Papua New Guinea (PNG), Solomon Islands (SI), central 

California (CCA). Black boxes demarcate important ecoregions typically associated with oceanographic 

features (e.g., frontal features along boundary currents, convergence zones): South China, Sulu, and 

Sulawesi Seas (SCS), East Australia Current Extension (EAC), Tasman Front (TAS), Kuroshio Extension 

(KE), equatorial eastern Pacific (EEP), and California Current Ecosystem (CCE). (Adapted from Benson, E 

et al. 2011) 



 

17 

 

Threats 

Predation 

Sea turtles have evolved various life history strategies to deal with natural levels 

of predation at land and on sea. As they pass through different life stages, sea turtles 

become increasingly more resilient to the threats of predation. By producing large 

quantities of eggs, their life histories accommodate high mortality rates in the first several 

years of life, relying on higher survival of later life stages. As eggs, hatchlings, and small 

juveniles, both species are especially susceptible to predation. On land, foxes, raccoons, 

coati mundis, ghost crabs, and other predators will target eggs and hatchlings (J. Spotila 

2004). Once they enter the sea, hatchlings face a new group of predators, including sea 

birds, large fish, and sharks. Once turtles reach the juvenile stages, and continue to grow, 

fewer predators are able to prey upon them. As adults, only large sharks and saltwater 

crocodiles are capable of taking a turtle (J. Spotila 2004). Unfortunately, turtles no longer 

have to overcome only the natural threat of predation. Anthropogenic threats have 

become a much larger issue.  

Overfishing/Harvesting  

Overfishing has been, and continues to be, the primary force behind 

anthropogenically derived extinctions throughout the world’s ocean ecosystems (Jackson, 

et al. 2001). Historically, turtle populations have been devastated by exploitation through 

overfishing and overharvesting of eggs, e.g., 90% decrease in nesting loggerheads in 

Japan (Peckham et al. 2007), and near or total extirpation of leatherback populations 

throughout the Pacific (Spotila, et al. 2000). Globally, progress has been made through 

international cooperation, such as the Convention of International Trade in Endangered 

Species of 1973 (CITES), as well as national programs, like Mexico’s total ban on the 

harvest of turtles and eggs in 1990 (Aridjis 1990). Unfortunately, the illegal harvest of 

turtles and eggs persists, continuing to have negative impacts on sea turtle populations 

(Seminoff, Jones, et al. 2003, Wilson and Tisdell 2001). 

While direct harvesting of sea turtles has been greatly reduced globally, indirect 

capture of turtles in other fisheries (i.e. bycatch) still poses a significant, and arguably the 

most serious, threat to sea turtles.   
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Bycatch  

Though overfishing has historically been the primary driver of reductions of 

global sea turtle populations, the most consequential modern threat to sea turtles is 

unintentional capture, and often subsequent mortality, through fisheries bycatch 

(Lewison, et al. 2004, Wallace, Lewison, et al. 2010, Finkbeiner, et al. 2011, Lewison, et 

al. 2013). In the United States, minimum annual estimates of bycatch related sea turtle 

deaths were still 4600 after numerous bycatch mitigation measures (e.g., turtle excluder 

devices (TEDs), spatial and temporal closures) were introduced between 1996 and 2008. 

This estimate is down significantly (96%) from an estimated 71,000 deaths annually 

between 1990 and 1996 prior to the implementation of such measures (Finkbeiner, et al. 

2011). Both large-scale, commercial, and small-scale, artisanal, fisheries can have 

significant rates of bycatch, resulting in a substantial number of interactions dependent on 

fishing effort. 

Bycatch is not exclusive to any particular fishing technique or gear type and can 

result from the use of longlines, gillnets, seine nets, trawls, and even traps (Finkbeiner, et 

al. 2011, McClellan, et al. 2011). When Wallace et al. (2010) analyzed bycatch rates for 

three general categories of gear type, longlines displayed the highest impact, followed by 

trawls and gillnets, with longline rates more than doubling the other two combined (based 

on bycatch per unit effort). The impacts of each gear type varied regionally, and total 

bycatch for a specific region and gear type did not necessarily reflect the most severe 

interactions, i.e., the highest bycatch per unit effort (BPUE) did not necessarily align with 

the highest number of turtles taken per fishery (Wallace, et al. 2010). This highlights that 

even though bycatch rates for a particular large-scale fishery may be low relative to 

similar (or different) style fisheries, it can still have a large impact due to the sheer 

volume of the catch. Similarly, small-scale fisheries that land relatively small catches and 

yet have a high BPUE can have significant impacts on local turtle populations. 

The severity of the impacts for each gear type differs by species and within 

species, which can be observed for each distinct population (Cheng and Chen 1997, 

Finkbeiner, et al. 2011, Lewison, et al. 2013). To characterize these affects, Wallace et al. 

(2010) split each species into Regional Management Units (RMUs) based on 

geographically explicit populations identified by tracking data and genetics. Of the two 
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species investigated, loggerhead RMUs experience higher bycatch rates than leatherback 

RMUs (Lewison, et al. 2013). Globally, Lewison et al. (2013) found gillnets to be the 

primary gear type affecting leatherbacks, with loggerhead bycatch being more often 

associated with longlines. 

Survival rates are important to consider when evaluating the impacts associated 

with specific fisheries. Purse seine fisheries, for example, provide an interesting case. 

Though the net may surround turtles, the open-air design of purse-seines allows for 

turtles (and other bycatch) to be easily released with minimal stress to the animal. Thus, 

even with a global operation and intensive fishing effort, purse-seine fisheries have low 

impacts on turtle populations (IATTC 2004). Conversely, some small-scale gillnet 

fisheries have bycatch mortality rates of up to 90% (Gass 2006). These operations, then, 

pose a much more serious threat to turtle populations, even if they are limited to small 

geographic regions. 

Accurately addressing global bycatch, and even accurately estimating bycatch 

impacts and rates in specific fisheries, is constrained by the lack of standardized and 

widespread data (Davies, et al. 2009, Wallace, Lewison, et al. 2010, Lewison, et al. 

2013). Fisheries observers play a vital role in the quantification and understanding of 

global bycatch, including turtles (Benaka and Dobrzynski, The National Marine Fisheries 

Service's National Bycatch Strategy 2004). However, their primary focus remains in the 

large commercial fleets of developed countries, resulting in massive oversight of bycatch 

rates in smaller fisheries and less developed countries (Lewison and Crowder 2007, 

Peckham, Diaz, et al. 2007). As such, most estimates are extrapolations from low 

sampling values and can vary widely.  

Light-Pollution 

Though sea turtles are only exposed to detrimental artificial lighting during the 

short time they spend on nesting beaches as hatchlings and nesting females, the impacts 

of these interactions on turtle populations can be profound. Witherington and Martin 

(2000) define the peculiar nature of light pollution, stating, “For sea turtles, artificial light 

is best described not as a toxic material but as misinformation.” This definition highlights 

the disorientation that artificial lights induce in hatchling sea turtles while attempting to 
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locate the ocean (Witherington and Bjorndal 1991, B. E. Witherington 1992, 

Witherington and Martin 2000, Tuxbury and Salmon 2005, Donahou 2014).  

Upon emerging from the sand, hatchlings use visual cues to orient themselves 

toward the brightest horizon and crawl immediately towards the sea (on naturally dark 

beaches) (Salmon and Witherington 1995, Lohmann, et al. 1997). However, with the 

introduction of an artificial light source, nesting females and hatchlings can misinterpret 

the visual cues coming from the sea and instead orient themselves away from the sea, 

which often leads to exhaustion, excessive depredation, and dehydration (Witherington 

and Martin 2000, Tuxbury and Salmon 2005, Lorne and Salmon 2007). Even if a 

disoriented hatchling eventually makes it to the water after a landward crawl, their ability 

to swim offshore is diminished (Lorne and Salmon 2007). 

Light-pollution may also deter females from nesting on brightly lit beaches (B. E. 

Witherington 1992, Witherington and Martin 2000, Mazor, et al. 2013). Witherington 

(1992) indicated that not only light intensity influences nesting beach 

selection/deterrence, but also the type of light used (i.e. the spectrum of wavelengths 

emitted by each light source). Yellow low-pressure sodium-vapor (LSP) lamps, which 

emit long wavelength light, have a minimal effect on site selection by nesting females; 

while broad-spectrum lights, or those that emit an abundance of short wavelength and 

ultraviolet light, drastically reduce the amount of nests within the lighted area (B. E. 

Witherington 1992, Witherington and Martin 2000). 

Habitat Destruction 

Sea turtle habitat destruction is a multifaceted issue linked to varying life history 

phases of each species. As turtles navigate these different phases, (e.g., post-hatchlings 

and juveniles in pelagic convergence zones, recruiting later to neritic oyster beds and 

coral reefs as sub-adults, and then seeking appropriate nesting sites) they encounter 

different types of habitat degradation. In pelagic convergence zones, terrestrial and 

marine based anthropogenic debris gather alongside turtle prey and shelter, ranging in 

size from microplastics less than 1 cm in diameter (Cozar, et al. 2014) to huge 

commercial trawl nets and other pieces of derelict fishing gear (DFG; McElwee, 

Morishige and Donohue 2012). This debris can affect, often fatally, turtles through 

ingestion and entanglement (Carr 1987b, Derraik 2002).  
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Nearshore habitats can suffer degradation from DFG and plastic debris, as well as 

new dangers. On coral reefs, DFG cannot only ensnare turtles, but it can also destroy the 

habitat itself, by smothering and breaking corals (Donohue, et al. 2001, U.S. 

Environmental Protection Agency 2002). Seagrass beds can take up to four years to 

recover from watercraft propeller damage, while direct interactions between turtles and 

watercraft are usually far more serious and often fatal (Davenport and Davenport 2006). 

The effects of coastal development, e.g., habitat loss and light pollution, are 

detrimental to nesting activities for turtles. On these beaches, obstructions (e.g., beach 

furniture) and disorientation from lighting deter females from nesting and interfere with 

hatchlings successfully making their way to the ocean (Taylor and Cozens 2010). On a 

more global scale, sea-level rise is reducing the total nesting area available (Fish, et al. 

2005, Fish, et al. 2008). Coastal armoring further complicates this issue by removing the 

upper beach, preventing the inland retreat of beach structures (Dugan, et al. 2008, Fish, et 

al. 2008) and placing more obstacles onto the beach to deter nesting females 

(Witherington, Hirama and Mosier, Barriers to sea turtle nesting on Florida (United 

States) beaches: linear extent and changes following storms 2011). 

Tourism  

Coastal environments attract the largest annual percentage of tourists, creating a 

strong demand for coastal resorts, roads, and supporting infrastructure (Davenport and 

Davenport 2006). This infrastructure, along with millions of tourists, put high demand on 

coastal ecosystems through myriad impacts, including: pollution from sewage, 

antifouling compounds, and hydrocarbons (Davenport and Davenport 2006); light 

pollution (Lake 2008), large coastal structures, sand removal, and other nesting deterrents 

(Taylor and Cozens 2010); large influxes of plastics and other debris (Sheavly 2010); 

damage from watercraft, including propellers and anchors (Williams 1988); as well as 

many others. Poorly, or irresponsibly, planned resorts on nesting beaches can inflict long-

lasting damage, both to the habitat, as well as to local culture and politics (I. Cheng 1995, 

Venizelos and Corbett 2005). 

Aside from land-based tourism impacts, harassment of marine turtles and other 

organisms from divers or snorkelers (Meadows 2004) and other consumptive activities 

can have negative consequences for local ecosystems (Davenport and Davenport 2006). 
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Sea turtle sightings are a draw for tourists and divers at coral reefs and tropical 

destinations (Lucrezi, Saayman and van der Merwe 2013), yet divers often impose 

significant environmental impacts on local reefs. Coral reef damage from divers can 

result from direct contact, whether intentional or unintentional, by touching or handling 

with hands and kicking with fins, as well as by re-suspending sediment that may then 

settle on and smother corals (Barker and Roberts 2004). Areas of intense diving 

consistently show higher numbers of broken and damaged corals along with lower coral 

cover (Tratalos and Austin 2001, Hasler and Ott 2008). However, with increased 

awareness and education, divers may also serve a critical role in marine conservation. 

Divers value high biodiversity, including sea turtle presence, offering hope for an 

increased conservation push in threatened coral habitats (Schuhmann, et al. 2013). 

Pollution  

Anthropogenic influxes into the marine environment, from derelict fishing gear 

(U.S. Environmental Protection Agency 2002) to runoff of pesticides (Storelli and 

Marcotriciano 2000), continue to cause declines in sea turtle populations. Marine 

protected areas and fishing gear regulations can help mitigate some of these impacts, but 

these issues will largely need to be managed through targeted policies aimed at ocean 

cleanup and pollution prevention. Though pollution is a serious threat to all species of sea 

turtle, this topic will not be thoroughly discussed in this review. 

Modeling 

Population modeling has been used to estimate population trends in North 

Atlantic loggerheads, allowing for more informed management decisions. These models 

were based upon a population projection matrix, which is an adaption of the Leslie-Lewis 

matrix that is commonly used in mathematical ecology (Ricklefs and Miller 2000). The 

design of the matrix is adapted to reflect the lifecycle of the organism and is structured 

according to an age or life stage-based classification scheme, i.e., age-classified (A1) or 

stage-classified (A2) (Caswell 2001). In age-classified models, each step of the matrix is 

equal to one year, with the probability of surviving each year represented by P and the 

reproductive output of each year represented by F. Stage-classified models follow the 

assumption that individuals within a set of ages are subject to identical survival rates and 
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reproductive values (Caswell 2001). They share the reproductive parameter, F, but differ 

in the handling of survival rates. For many organisms, more than a single year is spent in 

each stage. To account for the process of surviving but remaining in the same stage class, 

the stage-classified matrices use P as the probability of surviving and remaining within 

the same stage i, and G as the probability of moving onto the next stage i + 1.  

 F1 F2 F3 F4 F5 

 P1 0 0 0 0 

A1 = 0 P2 0 0 0 

 0 0 P3 0 0 

 0 0 0 P4 P5  

 

 

 P1 F2 F3 F4 F5 

 G1 P2 0 0 0 

A2 = 0 G2 P3 0 0 

 0 0 G3 P4 0  

 0 0 0 G4 P5  

 

Traditionally, loggerhead population models have been constructed using a stage-

classified model (Crouse, Crowder and Caswell 1987, Crowder, et al. 1994, Caswell 

2001). However, to account for the long delays spent in each stage, as well as to more 

accurately model the complex reproductive patterns exhibited by sea turtles (i.e., the 

variation in years between nesting), Heppell (1998) reconfigured the matrices into an 

age-classified scheme. This has since become the population modeling approach that is 

employed by the Turtle Expert Working Group (TEWG) (National Marine Fisheries 

Southeast Fisheries Science Center 2001). 

When considering models and population growth rates, it is important to recall 

that they are not an exact representation of the population, but a guide. They do not take 

into account density-dependent or other compounding factors and thus should not be 

taken as an absolute. That is, if the population growth rate is positive, it will not continue 

to grow exponentially into perpetuity. Similarly, negative growth rates do not necessarily 

dictate the imminent demise of the population.  
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Statement of Significance 

Of the large volume of studies that discuss sea turtle conservation strategies, the 

majority of them limit their focus to the application of a single method to a single species, 

a single method on a few species, or multiple methods on a single species. There is a 

paucity of literature that investigates the application of multiple conservation techniques 

on multiple populations of different marine turtle species. Through this paper, I will 

provide a comprehensive review of the efficacy of two classes of conservation strategies 

(nesting beach conservation and fisheries management) for two turtle species (loggerhead 

and leatherback turtles) throughout their respective ranges and life stages. These two 

species were chosen due to their contrasting life history traits, shared conservation risks, 

and their wide distribution.  

Additionally, the most current loggerhead population models were last published 

in 2003 (Heppell et al.). To evaluate the effectiveness of conservation strategies since, 

these models were updated in this paper with parameters from the current literature. 

Methods 

A thorough search was performed using Web of Science and local library 

resources to find peer-reviewed publications, technical reports, conference proceedings, 

and resources relevant to each of the selected conservation categories: nesting beach 

conservation and fisheries management. The results of a subset of these studies were 

tabulated for review (Appendices I-IV). Study inclusion was determined from credibility 

of results (e.g., bycatch mitigation studies that did not encounter turtles were not 

included). These varied results were compared to determine best practices within each 

category, which were delineated by the threats that they address. Nesting beach 

conservation was split between mitigating the effects of light pollution, habitat 

degradation, and depredation. Due to a lack of quantifiable results, the first two were not 

tabulated. Fisheries management was delineated by fisheries type (i.e., longlines, passive 

nets, and trawl nets). 

To translate the effectiveness of conservation strategies into their effects on real 

populations, a case study was employed using a model population of North Atlantic 

loggerheads (Richardson and Richardson 1979). Keeping with the structure established 
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by the TEWG, I employed an age-classified model around the lifecycle framework used 

in Heppell, Crowder, et al. (2003) (Figure 4).  

Having defined the model structure, I evaluated four different model 

parametrizations. Model 1 parameterization utilized a set of parameters from Heppell, 

Crowder, et al. (2003) that most closely resembled the currently understood ASM 

estimated by Avens et al. (2015). Stage duration parameterization for the three new 

models (Models 2-4) followed updated parameters from the literature (Table 1). If there 

did not exist an updated duration value, the missing parameters were assumed and fitted 

to sum to ASM. Survival rate parameterization similarly utilized updated values from the 

literature. There was not an updated survival rate for large neritic juveniles; thus, the 

survival rate from Model 1 was used for Models 2-4 for this age class (Table 2).  

The resulting matrices are age-classified, with Pi values, the probability of 

surviving to the next year, along the subdiagonal (Table 3). In initial breeding year, 

which occurs in the column corresponding to the ASM (Table 1), all females are assumed 

to nest with the surviving proportion progressing to the next year.  

I modified the calculation of each element in the matrix to compensate for the 

remigration intervals exhibited by the breeder classes. Each year, the females observed on 

Table 1 Stage durations used in updated models. 
1
Heppell et al. 2003; 

2
Ramirez et al. 2015; 

3
Avens et al. 

2015; 
4
Assumed to compensate for age at sexual maturity. 

  

Oceanic 

Immature 

Small Neritic 

Immature 

Large Neritic 

Immature 

Age at Sexual 

Maturity 

Model 1 10
1
 11

1
 13

1
 35

1
 

Model 2 12
2
 11

1
 12

4
 36

3
 

Model 3 12
2
 11

1
 12

4
 36

3
 

Model 4 12
2
 11

1
 12

4
 36

3
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Figure 4 Life cycle graph of loggerhead matrix models. Adapted from Heppell, Crowder et al. 2003. 
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the beach constitute 44% of the total nesting female population, due to 

variations in remigration rates, i.e., 3%, 56%, 31%, 7%, and 3% of nesting females 

remigrate after one, two, three, four, and five years, respectively. I incorporated the 

transition probability (�� , eq. 1) into the calculation of each element, including 

reproductive output (F), where r is the remigration rate for that age (A3) (Monk, Berkson 

and Rivalan 2011).  

 0 0 0 F4 ×  �� F5 ×  �� 

 P1 0 0 0 0 

A3 = 0 P2 0 0 0 

 0 0 P3 0 0 

 0 0 0 P4 ×  �� P5 ×  ��  

      

For juvenile classes, �� is equal to 1. The probability of surviving to the next year is P.  

�� =  
��

� ∑ ��
���
���

(1) 

 

The transition probability, ψi, was incorporated into all parameters for the last five 

columns of the breeder class. This created a remigration cycle within the last five 

columns, with the appropriate proportion of remigrating breeder females nesting and 

returning to the beginning of the cycle each year, and the rest proceeding to the next year 

of the remigration cycle (Table 3). 

Within the fecundity term, F (eq. 2), the annual survival rate for the first year of 

life (0.6747), sex ratio (0.5), and reproductive output are accounted for. Reproductive 

output is equal to the average number of nests per female (4.1) multiplied by the average 

eggs per clutch (115) (Turtle Expert Working Group 1998). The annual survival rate is 

included in the calculation of fecundity because the model is built using a pre-breeding 

census. That is, the census of the population occurs immediately before each breeding 

Table 2 Annual survival rates used in updated models. 
1
Heppell et al. 2003; 

2
Bjorndal, Bolten and Martins 

2003; 
3
Sasso et al. 2006; 

4
Monk, Berkson and Rivalan 2011; 

5
Sasso, Epperly and Johnson 2011. 

  

Oceanic 

Immature 

Small Neritic 

Immature 

Large Neritic 

Immature 

Nesting 

Breeder 

Non-nesting 

Breeder 

Model 1 0.875
1 

0.7
1
 0.8

1
 0.85

1
 0.85

1
 

Model 2 0.72
2 

0.81
3
 0.8

1
 0.85

4
 0.85

4
 

Model 3 0.72
2
 0.81

3
 0.8

1
 0.41

5
 0.41

5
 

Model 4 0.72
2
 0.81

3
 0.8

1
 0.6

5
 0.6

5
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cycle, thus the eggs and hatchling class has already been through one year of life prior to 

the census (Heppell, pers. comm.).  

 

 � = ����� × ���� ×  �������� ���� × ��  ����! (2) 

 

To evaluate each projection matrix, the annual population growth rate (λ) was determined 

as the dominant eigenvalue of each matrix. Both λ and the stable stage distribution (w, 

the right eigenvector) were calculated using a custom Python script (Python Software 

Foundation. Python Language Reference, version 3.4). To evaluate the effect changes in 

each parameter (i.e., survival rate and stage duration) have on λ, an elasticity analysis was 

performed. This begins with calculating the sensitivity matrix, which, derived by using 

the left and right eigenvectors, w and v (eq. 3). Here, 〈#, �〉 is the scalar product of the 

eigenvectors. 

 

Table 3 Truncated age-classified matrix using survivorship values from Heppell, Crowder, et al. 2003. 

The matrix was necessarily expanded and modified to reflect suggested variations in these variables when 

running other models. Each survivorship parameter is repeated per the stage duration. For example, if the 

initial class duration were twelve years, 0.745 would be repeated for twelve columns along the 

subdiagonal. The top row represents fecundity. The final six columns represent the breeder class, with the 

nesting breeders accounted for along the other horizontal row. The final five columns represent the 

remigration cycle, accounting for the variation in remigration rates exhibited by loggerheads. The non-

nesting breeders are represented along the subdiagonal starting in the fifth to the last column. The 

parameters for each of the elements in the remigration cycle incorporate ψ, the transition probability for 

that remigration year. 
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 %��&' =  
()

(*+,
=  

-.+,/,0

〈/,.〉
 (3) 

 

Because the orders of magnitude differ greatly between parameters (e.g., F = 

159.061 and P1 = 0.875) the sensitivities for these values are difficult to compare. To 

determine the relative contribution of the parameters, these values were scaled into 

elasticities, where all the elasticities of the matrix elements sum to 1 (Velez-Espino, Fox 

and McLaughlin 2006). 

 

 1&' =  
*+,

)

()

(*+,
 (4) 

 

The elasticity of each stage is thus the sum of elasticities for each element in that stage.  

 

 123*45 � =  ∑ 16

78�9:,

6; 7�9�<�:,
 (5) 

 

Sensitivity and elasticity calculations were performed using MATLAB (R2012a, 

ver. 7.14.0; The Mathworks, Inc. 2012). Construction of the matrices, projection, and 

elasticity calculations followed the methods of Caswell (2001). The new values used for 

survivorship and stage duration were attained by searching the published literature for 

updated parameters (Tables 1 and 2). 

Review 

Nesting Beach Conservation 

The protection and monitoring of nesting beaches is imperative to population 

dynamics of turtles as it directly affects the beginning of the lifecycle (Appendix I). 

Without effective beach conservation programs, nesting success can be impaired due to 

avoidance by nesting females and increased hatchling mortality (Mann 1977, Taylor and 

Cozens 2010, Roe, et al. 2014). Risks to nesting beaches arise from a variety of sources 

both naturally and anthropologically derived. Among natural sources, severe storms, 

depredation, natural erosion and accretion, and tides can pose severe, though typically 
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unavoidable, threats to sea turtle nests (Boulon, Jr. 1999, B. E. Witherington 1999). 

Anthropogenic threats, such as light-pollution, vehicular traffic, and beach grooming, can 

often be addressed (B. E. Witherington 1999, Witherington and Martin 2000); while 

others, such as beach nourishment (Rumbold, Davis and Perretta 2001) and coastal 

armoring (B. E. Witherington 1999, Witherington, Hirama and Mosier 2011), may have 

lasting detrimental effects. 

The construction of sea walls, jetties, rock revetments, and other forms of coastal 

armoring may impact sea turtle nesting success (Witherington, Hirama and Mosier 2011). 

Jetties and groins can influence longshore flow, disturbing natural beach accretion cycles, 

and may lead to downstream erosion of coastal features (Mohanty, et al. 2012, Pietrafesa 

2012). This erosion can reduce or eliminate important nesting beaches. Similarly, 

artificial nourishment of nesting beaches with mined sand can alter the grain structure of 

the beach, making it less suitable for nesting. Poor placement of sea walls can reduce the 

availability of suitable beach above the high-tide line (HTL), forcing turtles to lay 

clutches closer to the HTL (Witherington, Hirama and Mosier 2011b) in areas where they 

can be exposed via erosion or inundated with seawater, leading to high mortality or total 

loss of the clutch. 

Though coastal armoring is typically permanent, its effects can be mitigated 

through the modification or removal of groins, dikes, berms, etc. (Cereghino, et al. 2012). 

However, the most effective way to address coastal armoring is through the strict 

enforcement of conservative setback requirements (i.e., the minimum distance a structure 

must be setback from a specific shoreline feature), which prevents the construction of 

permanent structures adjacent to the beach or on primary dunes. This can eliminate or 

significantly reduce the need for coastal armoring (B. E. Witherington 1999). The Coastal 

Zone Management Act of 1972 (CZMA) issued a national policy concerning the 

protection and preservation of the coastal zone, including the protection of coastal and 

dune systems, while allowing and encouraging the states to develop and implement the 

most appropriate management strategies for their respective regions with the provision of 

federal funds (16th U.S. Congress 2005). As of 2012, fourteen of the twenty-three coastal 

and Gulf coast states, excluding Alaska, had instituted statewide coastal setback 
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requirements based on a set distance in feet from various coastal features (e.g., vegetation 

lines or high tide lines) or long-term annual erosion rates (Randall and deBoer 2012). 

In Broward County, Florida, construction of coastal armoring is not permitted 

during marine turtle nesting season (Broward County Rules and Procedures for Coastal 

Construction). There is a 50-foot setback line in the county, and local legislation 

acknowledges the necessity of the natural beach and dune systems. However, 

construction of coastal armoring is still permitted if certain parameters are met: namely, 

that there is not a significant impact to the system and that the structure is at direct risk 

from natural coastal processes (Florida Department of Environmental Protection 2012).  

Lighting 

Mitigation of light pollution offers some of the easiest solutions, but many are 

difficult to enforce, as many coastal light sources are privately or commercially owned 

(Lake 2008). The most definitive way to combat light pollution is to simply turn coastal 

lighting off. However, since significant portions of coastal lighting are designed for 

safety, this is often not feasible. Instead, modifications to lighting schemes can often limit 

the impacts of artificial lighting on the beach or eliminate the spillover of light into 

coastal beach systems altogether (Witherington and Martin 2000). As both hatchling sea 

turtles and nesting females are impacted by bright, broad-spectrum lighting, switching to 

low-pressure sodium-vapor lamps can reduce the impact of coastal lighting, especially if 

the light-source is shielded and directed away from the beach. 

High mounted coastal roadway lighting can be especially problematic, 

illuminating long stretches of beaches when the lighting is poorly shielded, especially in 

the absence of natural dune systems. To counteract this, lighting can be embedded into 

the roadway, preventing the scattering of light onto adjacent beach systems (Bertolotti 

and Salmon 2005). When dune systems are present, shielded, low-mounted lighting can 

also be acceptable (Witherington and Martin 2000). 

Dune restoration is critical to aid in the shielding of artificial light sources. In 

natural systems, hatchling turtles are capable of using dune silhouettes to aid in 

seafinding as the silhouettes reinforce the contrast in brightness between land and the 

seaward horizon. However, if artificial lighting cannot be eliminated, but can be reduced 

in brightness, the silhouettes from high dune systems may still provide adequate cues to 



 

31 

 

properly orient hatchlings (Tuxbury and Salmon 2005). When reestablishing dunes, 

native coastal vegetation is necessary to ensure long-term establishment and retention of 

the dune system. The use of ornamental plants in substitution of native vegetation is 

discouraged due to the risk of spreading invasive species (Awale and Phillott 2014). Until 

the vegetation has matured to allow for adequate light shielding, light screens (e.g., shade 

cloth, privacy fences) may be used to enhance dune silhouettes (Witherington and Martin 

2000). In areas where artificial lighting cannot be quickly mitigated, shielded pathways 

that orient hatchlings seaward from the nest can be used as a temporary solution 

(Witherington and Martin 2000). 

Detrimental artificial lighting at private residences largely originates from patio 

lighting, interior lighting (visible through beach-facing windows) and general area 

lighting (e.g., used to illuminate pool areas). Commercial sources of lighting can be more 

intense, originating from sources that directly illuminate the beach intentionally, along 

with unexpected sources intended to light restaurants, bars, stairwells, walkways, or 

parking lots, along with other areas. These latter sources are common at beachfront hotels 

and resorts, where lighting considerations were limited to the benefits and safety of 

guests, and not to the potential 

impact to sea turtles (Knowles 

2007, Lake 2008). 

The implementation of 

lighting ordinances can be an 

effective way to reduce lighting 

impacts from beachfront homes 

and commercial properties 

(Figure 5). Broward County, 

FL implemented sea turtle 

lighting ordinances in 2000. 

Donahou (2014) observed an 

average annual decrease in 

hatchling disorientation from 

2006-2011 for the county, with 

 
Figure 5 Before and after photographs of two commercial 

properties that incorporated sea turtle friendly lighting (STFL). 

(Adapted from Barshel, et al. 2014.) 
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stronger improvements seen on beaches that are more compliant. Donahou also noted the 

existence of disorientation “hotspots” that correlated to coastal areas where compliance 

was minimal. Similar improvements were seen in Sarasota County and Manatee County. 

Barshel et al. (2014) reported hatchling disorientation at multiple coastal commercial 

properties and found that disorientation events dropped from an annual range of 50-300 

to zero after the implementation of turtle safe lighting.  

Depredation 

When depredation by mammals or other large predators is the primary threat to a 

nest, there exists a variety of proposed solutions. Among the most apparently 

straightforward management techniques for nesting beaches is the direct manipulation of 

sea turtle nests. This can be accomplished in a variety of ways (e.g., cages, translocation) 

and for a variety of reasons (e.g., excessive depredation risk, light pollution). However, 

the best treatment of turtle nests is no treatment (in situ). Relocating eggs leads increases 

egg mortality due to embryonic detachment to the egg wall, and non-natural egg 

chambers can affect sex ratios, among other complicating factors (Boulon, Jr. 1999). 

Thus, assuming natural conditions are intact and depredation risks are low, manipulation 

will likely not improve the hatching success of an in situ clutch. Unfortunately, these 

conditions rarely exist on sea turtle nesting beaches, and thus existing threats need be 

mitigated to achieve minimum hatchling mortality. To combat depredation, some 

management strategies include aversive conditioning, predator removal or control, or 

construction of cages around nest sites (Boulon, Jr. 1999). The latter two options are 

common, while the former has had limited applications.  

Aversive conditioning by conditioned taste aversion involves using treated bait 

(e.g., chicken eggs inoculated with toxic chemicals to condition turtle egg predators) to 

teach predators to avoid targeted prey items. Conditioned taste aversion (CTA) has seen 

mixed success using various techniques, thus its effectiveness is controversial. In 

controlled studies, mongoose (Nicolaus and Nellis 1987) and foxes (Baker, et al. 2007) 

were found to develop CTA to chemical-laced baits, but this was not long lasting in the 

mongoose. However, when CTA was compared against other protection methods against 

raccoons, there was no significant reduction in nest depredation rates (Appendix II; 

Ratnaswamy, et al. 1997). 
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Hatchling sea turtles fall prey to a number of predators on nesting beaches, 

including raccoons Procyon lotor, dogs Canis lupus spp., feral hogs Sus scrofa., coati 

mundis Nasua sp., foxes Vulpes vulpes, etc. (Boulon, Jr. 1999). When choosing a 

predator control method, care must be taken to ensure a thorough understanding of 

complex food web connectivity. Total predator removal may not be necessary, as often 

only a small percentage of individuals within a predator population will specialize in 

preying on turtle nests. Targeting and removing these problem individuals can be highly 

effective in reducing nest loss. With raccoons, nest predation is considered a learned 

behavior, and thus only the individuals within the population who have been taught to 

seek nests need to be removed. In Ten Thousand Islands, Florida, it took the removal of 

only 16 raccoons to reduce nest depredation from 76-100% in 1991-1994 to 0% in 1995 

and 1996 (Appendix II; Garmestani and Percival 2005). However, at Canaveral National 

Seashore, Florida, 50% of the resident raccoon population was removed without any 

reduction in nest depredation (Ratnaswamy, et al. 1997).  

Removal of top predators may have unintended consequences throughout an 

ecosystem, e.g., detrimental increases in herbivore abundance resulting in overgrazing 

away from the coastal system (Letnic, Ritchie and Dickman 2012); inadvertent increases 

in secondary predator abundance, resulting in increased depredation on turtle nests. The 

latter scenario was demonstrated by Barton and Roth (2008) in Florida where low 

raccoon abundance was correlated with higher ghost crab densities, which occurred 

where the nest depredation rates were highest. 

To control predator species that are not native to the area (e.g., feral hogs) or 

whose abundance can be reduced without significant ecological impact, possible options 

are removal/eradication through shooting or trapping and relocation/euthanasia (Boulon, 

Jr. 1999, Garmestani and Percival 2005, Engeman, Duffiney, et al. 2010). Shooting 

strategies can include public hunts, but shooting should only be used in unpopulated 

areas, while keeping in mind a possible response from animal rights organizations. 

Similarly, trapping using toxic bait or embarking on poisoning campaigns may 

unintentionally kill non-target species, including other locally important species, 

domesticated animals, and children if such strategies are not carefully controlled (Boulon, 

Jr. 1999). 
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Feral hogs are not native to any nesting beach, and thus their removal can be 

pursued aggressively. In the U.S., NMFS promotes the complete elimination of feral hog 

populations on sea turtle nesting beaches as part of the recovery plan for the northwest 

Atlantic loggerhead population (National Marine Fisheries Service and U.S. Fish and 

Wildlife Service 2008). On Cayo Costa Island, Florida, baiting and trapping/shooting 

effectively reduced nest depredation from 74% to 15% after two years of removal efforts 

(Appendix II; Engeman, et al. 2010).  

The spatial and temporal strategies of predator removal programs should be 

routinely refined to ensure an effective use of resources, both human and financial. This 

should be accomplished through continual monitoring to ascertain when, where, and 

which removal efforts should be applied in order to achieve maximum effects with 

minimal labor, leading to optimal hatching success. Prior to predator removal, nest 

depredation on Hobe Sound National Wildlife Refuge, Florida was at 95%. Initial 

removal of predatory raccoons and armadillos reduced depredation to 42%. Predator 

removal tactics were then optimized using passive tracking techniques, further reducing 

depredation to 28% (Appendix II; Engeman, et al. 2003). 

To prevent digging of the nest from the surface, cages constructed of metal mesh 

laid over the nest work well. Cage design can be tailored to fit specific protection needs, 

but typically follows a general pattern. In a basic design, metal mesh can be laid over the 

nest and secured at the corners with stakes or buried 5-10 cm below sand surface, 

effectively preventing digging entry from above (Ratnaswamy, et al. 1997, Yerli, et al. 

1997). The simplicity of this approach makes it preferable in areas with limited resources 

or without exceptionally persistent predators. On Canaveral National Seashore, Florida, 

screening of 2/3 of nests caused a 20-50% reduction in nest depredation compared to 

predator removal and CTA, which were both ineffective (Appendix II; Ratnaswamy, et 

al. 1997). Another comparison study on Dalyan Beach, Turkey, found that nest screening 

resulted in 0% fox depredation versus 63% depredation of unscreened nests (Yerli, et al. 

1997).  

In some areas, medium-sized predators (e.g., raccoons) may still be able to access 

nests, especially shallow nests, by digging between the mesh or entering from the side 

(Addison 1997). In these scenarios, a rectangular cage of galvanized metal or plastic 
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mesh buried 15-30 cm into the sand, with 

the bottom 15 cm bent outwards, will 

create a more substantial barrier to 

digging and tunneling predators (Figure 6; 

Addison 1997, Boulon, Jr. 1999). 

Addison and Henricy (1994) tested 

screens versus cages on Key Island, 

Florida. Of the screened nests, raccoons 

were still able to partially depredate 

11.4% and fully depredate 13.6% of 

experimental nests, while depredation of 

caged nests was 0% and 3.6%, 

respectively. A similar study by Kurz et 

al. (2011) found that plastic mesh screens 

were 25% less effective than cages at 

preventing nest depredation for highly 

motivated foxes on Bald Head Island, 

North Carolina. However, under normal 

conditions, both methods resulted in 0% 

depredation versus 33% for untreated 

nests (Appendix II).  

When choosing the mesh for cages 

or screens, predator size should dictate mesh size, e.g., for medium-sized mammals such 

as dogs and raccoons, 5x10 cm mesh is suitable. Smaller mammals, such as mongoose, 

will require smaller mesh; however, mesh of this smaller size must be removed prior to 

hatching to ensure hatchlings are not prevented from reaching the sand surface (Boulon, 

Jr. 1999). The larger mesh size does not appear to impede hatchling emergence (McElroy 

2006). Metal cages have been shown to distort the magnetic field within caged nests, but 

the effects of this distortion on turtles as hatchling or later in life have yet to be 

investigated (Irwin, Horner and Lohmann 2004). 

Figure 6 Comparison of cages (a) versus screens (b) 

in protecting nests against depredation. (a) The fox(es) 

attempted to dig into the egg chamber from all sides, 

but were prevented due to buried cage design. (b) 

Fox(es) were able to access the egg chamber by 

digging through, and eventually breaking, the mesh 

screen covering the nest. (Adapted from Kurz, Straley 

and DeGregorio 2012.) 
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Over the years, many nesting beach conservation programs have experimented 

with nest relocation, and when, where, and how often it should be applied. Through this 

experimentation, multiple issues have been discovered, such as polarization of sex ratios 

due to egg chamber temperature (J. Spotila 2004), and increasing the threat of damage 

from storms by aggregating nests on a small section of beach. Additionally, hatchling 

success from relocated nests is typically lower than in situ nests due to the stress of 

transport and reburial. In a review by Grand and Beissinger (1997), they found that 

hatching success for loggerheads was greater for in situ nests than relocated nest for a 

wide range of international nesting beaches, specifically in the absence of depredation 

risks. Similarly, hatchling success in Broward County, Florida was 83.6% for in situ nests 

and 69.4% for nest relocated due to erosion or inundation risks (Burkholder and Slagle 

2015). 

Thus, relocation of nests should always be a last resort and should only be 

undertaken if leaving the nest in its natural location will lead to imminent and near-total 

mortality of the clutch. Appropriate instances for nest relocation are nests laid 10 ft or 

less from high tide line or near areas of known high natural erosion; nests located near 

artificially lighted areas where lighting impacts cannot be mitigated, especially near 

highways; nests in areas undergoing active beach nourishment or sand mining; or areas 

where threats from depredation or poaching are too great and cannot be easily dissuaded 

(Boulon, Jr. 1999, Burney and Ouellette 2005). When necessary, however, nest relocation 

can be an effective management tool. In Gandoca Beach, Costa Rica, poaching was 

reduced from 100% to 15.5% annually with the use of nest relocation, combined with 

camouflaging of nests and nightly monitoring (Chacon-Chaverri and Eckert 2007). 

To ensure effective application, relocation methods should adhere to strict 

protocols. Improper egg transport during translocation may lead to detachment of the 

embryo from the egg case, resulting in embryo death. To prevent this, eggs should be 

collected within twelve hours of being laid; ideally, the eggs should be collected as 

nesting is occurring. Once collected, eggs should be reburied within six hours. If it is 

necessary to transport the eggs large distances, they should be secured in a sturdy 

container (e.g., a bucket) and insulated from vibration and hard shocks. Care should be 

taken to maintain consistent egg orientation as well, i.e. the same part of the egg should 
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always face up. Artificial nests should mimic as closely as possible the shape, depth, and 

egg deposit order as the original nest. When choosing reburial sites or hatchery locations, 

it is important to consider ground temperature and moisture content due to the likelihood 

of sexual polarization of the clutch due to nest chamber temperature. For a detailed 

description of collection and reburial procedures, see Boulon, Jr. (1999) and the Florida 

Fish and Wildlife Conservation Commission Marine Turtle Guidelines (2007).  

After nests are successfully relocated, additional nest protection like placing a 

cage or wire mesh, especially in a hatchery location where concentrated nests create a 

tempting source for depredation are commonly used. In hatcheries that are regularly 

monitored, placing fine fabric mesh can prevent the infiltration of insects, including 

sarcophagus flies (Chacon-Chaverri and Eckert 2007). 

Hatchling release needs to be facilitated if nests are moved to hatcheries without a 

clear, unencumbered path to the sea, or if the hatchery is far removed from the original 

nesting beach. Hatchery personnel should monitor nests every 30-60 minutes during the 

expected emergence period to allow for release as soon as possible after emergence. To 

avoid marine and terrestrial predators from being able to predict release areas, 

consecutive release sites should not be within several hundred meters of each other. 

Turtles should be allowed to crawl across the beach and enter the water unaided to 

facilitate natal beach imprinting. When transporting hatchlings prior to release, or if 

immediate release cannot be accomplished, turtles should be kept in a dark, damp, cool, 

cloth sack to discourage crawling and prevent the expenditure of energy reserves 

(Boulon, Jr. 1999).  

Fisheries Management 

Historically, a leading cause of sea turtle population decline worldwide is 

overharvesting of turtles, both at sea and on beaches, as well as the harvesting of turtle 

eggs (Jackson, et al. 2001, Lewison and Crowder 2007). While the direct taking of sea 

turtles has been drastically reduced, thanks largely to CITES and CMS, fisheries continue 

to have devastating effects on turtle populations through incidental bycatch (Bourjea, et 

al. 2008, Finkbeiner, et al. 2011). Fortunately, progress has been made. In the US, 
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fisheries-specific mitigation measures resulted in an ~94% decrease in fishery-related 

turtle deaths between 1990 and 2007 (Finkbeiner, et al. 2011).  

Aside from negative environmental impacts, bycatch also inflicts economic 

consequences by generating additional costs, impacts fishers by tarnishing their public 

image, causing conflicts within the fishing community, and can lead to smaller and lower 

quality yields (Hall, Alverson and Metuzals 2000). Therefore, it is important to include 

stakeholders (i.e., fishers), as well as resource managers, in discussions concerning 

fisheries management approaches, as they are the ones who must actually follow and 

enforce regulations (deReynier, Levin and Shoji 2010). 

Unfortunately, solutions to bycatch are not universal due to the variations in the 

global fisheries landscape. Fishery styles vary immensely, from small artisanal set nets, 

to massive pelagic purse seines, to pelagic long lines that are kilometers long and have up 

to several thousand hooks. Fisheries vary seasonally and spatially, fluctuate in 

technological advancement and limitations of access to physical and financial resources 

required for retrofits. There are also fundamental differences in strategies between ocean 

basins even within the same style of fishery (e.g., pelagic longline fisheries). Similarly, 

each species interacts with different types of fisheries and gear throughout their lifetime. 

The Food and Agriculture Organization of the United Nations (FAO) has 

delineated fishing gear into eleven major categories. The three of these that primarily 

impact sea turtles are “hooks and lines”, which includes longlines; “gillnets and 

entangling nets”, from which I will discuss drift nets and pound nets; and “trawl nets” 

(Figure 7; http://www.fao.org/fishery/topic/1617/en).  

Hooks and Lines 

In the Atlantic Ocean, pelagic longline fisheries (PLF) focus their efforts around 

major submarine (e.g., shelf breaks) and oceanic features (e.g., edges of fronts and warm-

core rings) that are often concentrated in a geographically small area (Boggs 2003). In 

contrast, PLF in the Pacific Ocean are not nearly as limited. They typically operate in 

waters deep enough (>4000m) that submarine features do not play a role in habitat 

formation for target species and instead operate along large ocean frontal boundaries 

(e.g., North Pacific Transition Zone, Subtropical Frontal Zone) (Boggs 2003). 
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Thus, the magnitude and 

complexity of the issue posed by global 

bycatch complicates the universal 

application of mitigation strategies and 

policies. Additionally, when policies are 

agreed upon and enacted in a particular 

fishery, there is often push back from the 

fishery due to the short-term economic 

constraints posed by the policy, such as 

investing in and implementing new 

technologies (e.g., TEDs, circle hooks) 

(Hall, Alverson and Metuzals 2000). 

The most common sources of 

bycatch arise from trawl and longline 

fisheries, where exposure to gear typically 

occurs in the neritic and pelagic zones, 

respectively. Loggerhead bycatch rates are 

generally higher than those of leatherbacks 

(e.g., 90% higher in a study done with 

pelagic longlines by Santos et al. (2013)). 

However, with significantly lower 

population sizes for leatherbacks, especially in the Pacific, these lower catch rates still 

pose a serious risk (Roe, et al. 2014).  

Gear modifications are among the most common measures implemented to 

mitigate bycatch. These differ between fisheries, such as hook choice, in longline 

fisheries, and Turtle Excluder Devices (TEDs), which have shown tremendous success in 

trawl fisheries (Epperly 2003). For longlining, several mitigation methods have been 

proposed, including changes to hook type, bait type, and set depth.  

There is a wide variety of hooks utilized by PLF, which vary in general shape (J 

versus circle) and can be offset to various degrees (Figure 8). The traditional and most 

commonly used hook type is the J hook, which has a high incidence of bycatch for 

 
Figure 7 Illustrations of four general types of fishing 

gear known to impact sea turtles: (a) trawl nets, (b) 

passive nets, (c) purse seines, (d) longlines. (Adapted 

from Lewison, et al. 2013.) 
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loggerhead turtles via hooking in the mouth or throat, and leatherbacks via hooking 

externally on the flippers (Santos, et al. 2013). A common alternative that has shown 

great promise for bycatch reduction is circle hooks. In the Brazilian PLF, Sales et al. 

(2010) observed a 55% and 65% reduction in bycatch rates for loggerheads and 

leatherbacks, respectively, when changing from 9/0 J-hooks to 18/0 circle hooks. 

Similarly, 16/0 circle hooks caught 70% less juvenile loggerheads than similarly sized J-

hooks in the Mediterranean swordfish longline fishery (SLF) (Appendix III; Piovano, 

Swimmer and Giacoma 2009).  

 An additional possible benefit of using circle hooks over J-hooks is the effect this 

can have on hooking location. Smaller J-hooks are more easily swallowed, often leading 

to deep-hooking, i.e., the hook being set in the lower esophagus or stomach. Larger circle 

hooks, on the other hand, are more difficult to swallow and are more likely to hook in 

areas of the mouth (e.g., tongue and jaw) or on external structures (e.g., flippers) (Parga 

2012, Parga, et al. 2015). In the Azores SLF, for example, rates of deep-hooking were 

13% for circle hooks, as compared to 60% and 52% for J-hooks and Japanese tuna hooks, 

respectively (Appendix III; Bolten and Bjorndal 2005).  

Figure 8 A sample of hook variety utilized in longlining operations. Many of these were used in referenced 

studies. (Adapted from Gilman, Zollett, et al. 2006.) 
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When turtles are deep-hooked, it can be substantially more difficult to remove the 

hook and line, and post-release mortality is assumed to be greater. Casale, Freggi, and 

Rocco (2008) evaluated the effects of longline hooking location and attached branch line 

length for rescued turtles collected in the central Mediterranean. They found that hooks 

lodged in the lower esophagus/stomach had a more severe impact than those hooked in 

the upper esophagus or mouth, and that hooks associated with attached branch lines 51.5 

cm or greater had a lower chance of survival.  

Indeed, hooking in the mouth and mandible is often preferred, as these hooks are 

easier to remove than swallowed hooks, possibly promoting post-release survival (Read 

2007, Alessandro and Antonello 2010). However, Parga (2012) debates the issue and 

suggests that damage to sensitive structures within the mouth, including the jaw joint and 

the glottis, could lead to potentially fatal disease and infection. She proposes that by 

having strong, muscular, and resilient esophagi, sea turtles may be more likely to survive 

deep-hooking, so long as the hook does not become lodged close to the heart or near 

major blood vessels (Parga 2012). In this regard, there exists a discussion as to the least 

consequential hooking location. 

Swimmer et al. (2013) used satellite tracking to estimate post-release mortality 

based on hook location for loggerheads caught in the North Pacific Ocean PLF. They 

found no significant difference in post-release days at liberty for turtles that were deep- 

versus shallow-hooked (Swimmer, et al. 2013). Though days at liberty may not 

accurately represent mortality, these results support the notion that deep-hooking is not 

inevitably more fat al than shallow-hooking. These implications are more relevant to 

loggerheads, as leatherback interactions with longline gear primarily result in 

entanglement or external hooking (Watson, et al. 2004). 

In conjunction with changing hook-type, variations in bait type have been found 

to influence sea turtle bycatch rates and hooking location. In the majority of studies 

surveyed, the traditional bait in PLF is squid, with mackerel as the experimental 

alternative. The application of 18/0 circle hooks with mackerel bait in the Northeast 

Distant SLF resulted in a 90% reduction in loggerhead bycatch and a significant shift in 

hooking location to the mouth when compared to the J-hook and squid control. For 

leatherbacks, this combination resulted in a 65% reduction compared to the control hook 
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and bait, whereas J-hooks with mackerel had a 66% reduction. Incidentally, seven of the 

eight leatherbacks that were hooked in the mouth, rather than externally, were captured 

on circle hooks (Watson, et al. 2005). In the Hawaiian SLF, this same combination 

reduced bycatch by 90% and 83% for loggerheads and leatherbacks, respectively, with a 

similar change in hooking location for loggerheads (Gilman, et al. 2007). Santos et al. 

(2013) had comparable results in the Portuguese SLF in the South Atlantic, where circle 

hooks baited with mackerel reduced bycatch by 87.5% for loggerheads and 100% for 

leatherbacks. In this study, circle hooks again shifted hooking location to the mouth for 

loggerheads, while leatherbacks were consistently hooked in the flipper or entangled in 

the line (Appendix III).  

It is believed that the shift in hooking location that is correlated to bait type arises 

from the methods that turtles (especially loggerheads) apply when eating different prey. 

Stokes et al. (2011) found that captive-reared loggerhead turtles would tear fish bait, 

usually stripping it from the hook, where squid was usually consumed whole resulting in 

higher rates of hook interaction for squid bait. 

Unfortunately, transitioning to circle hooks is not effective in preventing sea turtle 

bycatch in all fisheries. In the Uruguayan pelagic longline fishery, Domingo et al. (2012) 

found that the use of circle hooks had no significant impact on bycatch of either 

loggerheads or leatherbacks. In 2001 and 2002, Bolten and Bjorndal (2003) evaluated the 

performance of straight and offset J-hooks, along with 16/0 and 18/0 circle hooks in the 

Azores SLF. They found no significant difference in bycatch rates by hook type, though 

more loggerheads were deep-hooked on J-hooks than circle hooks. Additionally, a study 

using captive reared loggerheads showed a significant increase in ingestion rate for hooks 

less than 51mm wide, regardless of hook shape. This width corresponds to 16/0 circle 

hooks and 11/0 J-hooks. (Watson, Hataway and Bergmann 2003).  

Furthermore, though reduction of sea turtle bycatch may occur, utilizing circle 

hooks in some fisheries can significantly reduce the catch rate of target species and is 

therefore not a viable management strategy (Sales, et al. 2010, Amorim, et al. 2014). 

Thus, careful evaluation of hook choice impacts should be done in all fisheries before 

regulations are implemented to assure effective management and economic viability 

(Gilman, Zollett, et al. 2006). 
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Legislation involving circle hooks has been realized in several fisheries. As of 

July 2004 in the U.S. Atlantic PLF, the NMFS implemented regulations that mandated 

the use of 16/0, or larger non-offset circle hooks in all regions, except for the Northeast 

Distant waters, where 18/0 or larger circle hooks with less than a 10°offset were 

mandated (Stokes, Epperly and McCarthy 2012). In addition, these regulations required 

vessels to possess and utilize equipment designed to handle and release hooked or 

entangled sea turtles. While this is an important step in conservation legislation, the U.S. 

tuna fisheries only constitute 3% of the global tuna production (Gilman and Lundin 

2008). Fortunately, the IATTC and several of its partner organizations, including the 

Overseas Fisheries Cooperation Foundation of Japan and the World Wildlife Foundation 

(WWF), have sought to improve and self-regulate the interactions that the tuna longline 

fisheries in the eastern Pacific have with sea turtles. This project, Resolution C-04-07 of 

the IATTC (Inter-American Tropical Tuna Commission 2004), began in 2004 and 

involved monitoring turtle bycatch rates, evaluating mitigation strategies, and educating 

the industry through informational material and educational meetings. In 2008, the World 

Wildlife Fund began managing the project. Since the start of the project, approximately 

700 longline vessels from nine countries in the Eastern Pacific PLF have adopted the use 

of circle hooks and hook removal equipment voluntarily (World Wildlife Foundation 

2015). 

Water temperature has been shown to influence bycatch rates as well, due to the 

temperature preferences of turtles (Secretariat of the Pacific Community 2001, Boggs 

2003, Watson, Epperly and Shah, et al. 2005, Gilman, Zollett, et al. 2006). Several 

mapping tools and programs make use of this temperature preference by tracking sea 

surface temperature (SST) and other oceanographic features, and creating maps for turtle 

“hot spots”, or areas with increased risk for interactions between sea turtles and fishing 

gear (Howell, et al. 2008, Roe, et al. 2014, Howell, et al. 2015).  

In 2006, NOAA created a tool (TurtleWatch) for the Hawaii-based PLF that uses 

operational longline fishery characteristics, bycatch information, satellite-tracking data 

for loggerheads, and remotely sensed SST to create maps that indicate areas of high 

bycatch potential (Howell, et al. 2008). In 2013, satellite-tracking studies on leatherbacks 

were incorporated into the studies, allowing the modeling to be effective for both turtle 
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species in the North Pacific (Howell, et al. 2015). This tool maps the SST zones where 

species- specific interaction chances are high (17°-18.5°C for leatherbacks and 

loggerheads, 22.4°-23.4°C for leatherbacks) (Howell, et al. 2015). Roe et al. (2014) used 

similar modeling techniques to predict bycatch hotspots throughout the entire Pacific 

Ocean. Cambie et al. (2012) used a GIS-based method to develop maps for the Southern 

Italian Coast. The data from these studies suggest that it is difficult to avoid turtle bycatch 

altogether because both species, and especially leatherbacks, forage along and follow the 

same transitional frontal systems as the target species, (e.g., swordfish in the North 

Pacific Subtropical Frontal Zone) (Howell, et al. 2015). Thus, fishers are unlikely to 

avoid the areas of high interaction risk, as these are also the areas where target catch per 

unit effort (CPUE) is highest (Howell, et al. 2015). 

TurtleWatch is available in three languages to fishers and managers of the 

Hawaii-based SLF. While the initial fishing ground selection may not avoid the 

recommended zones, fishers are more likely to adapt their plan using the product once the 

hard cap limits for sea turtle interactions (annual catch of 17 loggerheads or 16 

leatherbacks for the Hawaiian SLF) are being approached (Howell, et al. 2015). Reaching 

these limits, introduced in 2004 by NMFS, warrants the institution of section 7 of the 

ESA and closure of the shallow set fishery for the rest of the calendar year (NMFS 2004), 

which occurred in 2002-2004 and again in 2006 (Gilman, et al. 2007). As these limits are 

applied to the entire fleet and not per vessel, fleet communication programs are important 

tools to disseminate information quickly within fisheries pertaining to incidental bycatch 

of protected species. Gilman, Dalzell, and Martin (2006) reviewed the bycatch data for 

the U.S. North Atlantic LSF and found a 50% reduction in BPUE for J-hooks after the 

industry began a fleet communication program that included reporting turtle/longline gear 

interactions. This suggests that voluntary fleet communication programs could 

substantially reduce bycatch while providing economic incentive (i.e. avoiding fishery 

closures). The latter of these is vital to encourage participation in the programs and to 

ensure compliance with mandated regulations (O'Keefe, Cadrin and Stokesbury 2013). 

Set depth, the depth at which fishing gear is deployed, is another factor in rate of 

sea turtle bycatch in longline fisheries. Set depth is usually fishery specific, however, 

SLF typically employs shallower sets (<40m) than tuna fisheries (>100m), due to 



 

45 

 

preferred target catch habitat (Secretariat of the Pacific Community 2001, Boggs 2003, 

Gilman, Zollett, et al. 2006). Thus, regulation of set depth is only relevant in fisheries that 

meet certain criteria (e.g., where target catch can still be maintained using deeper sets). 

Otherwise, other mitigation strategies must be explored. 

Gillnets and Entangling Nets 

Passive net fisheries (e.g., gillnets, trammel nets), both commercial and small-

scale, can have substantial impacts on sea turtle populations (Gass 2006, Peckham, 

Maldonado-Diaz and Koch, et al. 2008, Gilman, Gearhart, et al. 2010, Murray 2013, 

Peckham, Diaz, et al. 2007). Moreover, impacts from small-scale and artisanal fisheries 

may be comparable or greater than those of commercial fleets (Peckham, et al. 2007, 

Peckham, et al. 2008, Gilman, et al. 2010). Small-scale fisheries employ over 99% of the 

world’s fishers, 95% of which are in developing countries where conservation policies 

are often weak, if present, with little resources for regulation and enforcement (Berkes 

2001). This makes observing and quantifying the impacts of these fisheries difficult. 

Loggerhead turtles more commonly interact with passive net fisheries on their 

neritic foraging grounds. Pacific loggerheads that nest in Japanese rookeries spend 

considerable time foraging in the waters of Baja California Sur, Mexico (Peckham, et al. 

2007). In this area, Peckham et al. (2007) estimated a minimum annual bycatch of 1000 

loggerheads per year in just two small fishing fleets - a rate that rivals ocean wide 

commercial fishing operations. 

Due to their largely pelagic life history, leatherbacks primarily interact with 

passive net gear off nesting beaches during breeding season. This is especially prevalent 

in the Western Atlantic, which hosts the largest leatherback nesting population (Spotila 

2004, Gearhart and Eckert 2007, Gearhart, Eckert and Bergmann 2009). In Trinidad’s 

artisanal gillnet fishery, mortality from the over 3000 gillnet interactions was estimated at 

27-34% in 2000 and 32% in 2005 (Gass 2006, Lum 2006). This level of interaction 

between gillnets and leatherbacks inflicts financial hardship on local fishers due to the 

economic loss associated with net repair costs and lost fishing time (Gass 2006). 

Various strategies have been proposed to combat bycatch associated with these 

high mortality fisheries. Two studies in the Trinidad surface drift net fisheries evaluated 

the effects of manipulating the set depth of drift nets (Gearhart and Eckert 2007) and 
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shortening the height of the drift nets (Gearhart, Eckert and Bergmann 2009). Only the 

latter was successful in reducing leatherback bycatch rates (by 11-74%), though with a 

notable reduction in target catch (35-55%). However, the significant reduction in turtle 

interactions made the experimental height adjustment more attractive to local fishers 

(Gearhart, Eckert and Bergmann 2009). Peckham et al. (2009) also investigated changes 

to net profile, as well as tie-down length, and similarly saw no significant change in sea 

turtle bycatch rates. 

Other drift net strategies investigated included elimination of buoys on net float 

lines (Peckham, Maldonado-Diaz and Lucero, et al. 2009), changing the marking lights 

from white to red (Gearhart, Eckert and Bergmann 2009), and incidental take permits and 

fishery closures (Byrd, Hohn and Godfrey 2011) (Appendix IV). Of these, only the latter 

showed significant reductions in turtle bycatch rates, though fishery closures certainly 

reduced target catch volume. Eradication of their use is also an option, as seen in 

Morocco, which banned the use of driftnets in 2012 in recognition of their indiscriminate 

and destructive impacts (Appendix IV; Benhardouze, Aksissou and Tiwari 2012). 

Pound nets can also impact nearshore marine turtle populations. When the top of 

the “pound” or trap portion of the net is open to the air, there is less of an issue, as the 

turtle can simply wait to be released (assuming they do not become entangled in the 

framing nets). However, when the net design incorporates an underwater bag, the long 

soak times typically result in mortality for trapped turtles. Soak times for this style net are 

usually very long due to the complex nature of their design.  

Variations in design to mitigate turtle interactions and mortality include 

modifications to leader height and integration of release doors on the top of submerged 

nets. Leader modifications can allow the turtle to swim over the leader without being 

redirected to the pound and can reduce the risk of the turtle becoming entangled in the 

leader itself. In the Virginia pound net fishery, one study reduced the leader height by 

2/3, resulting in only one turtle interaction, as opposed to 21 interactions with the 

unmodified leader, most of which were loggerheads. The one interaction with the shorter 

leader was the only leatherback in the study, which became tangled in a rope attached to 

the leader (Figure 9; Silva, Dealteris and Milliken 2011). In Japan, Abe and Shiode 

(2009) performed trials with captive turtles to develop set-releasing doors for underwater 
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bags. By utilizing pointed-top nets that 

directed trapped turtles toward a self-

releasing door, approximately 80% of 

turtles were able to escape (Appendix 

IV; Abe and Shiode 2009). 

Though interactions with purse-

seines can result in mortality, the overall 

bycatch risk for sea turtles from purse-

seine fisheries is low. If turtles are 

encircled when the net is set, the lack of 

a top allows turtles to breathe until they 

can be released from the net. The IATTC estimated the sea turtle mortality associated 

with large purse-seine operations in the Eastern Pacific Ocean to range from 46-172 

annually for 1993-2002, with only one leatherback in the ten-year period and two 

loggerheads annually (IATTC 2004, FAO Fisheries and Aquaculture Department 2009). 

Trawl Nets 

Trawl fisheries have long been recognized as having a major impact on sea turtle 

populations, with shrimp trawls far exceeding the impacts of any other fishery in the U.S. 

by up to two orders of magnitude, prior to regulation. In the Southeastern Atlantic, U.S. 

Atlantic, and Gulf of Mexico (GOM) shrimp trawl fisheries, bycatch interactions and 

mortality events for all turtle species were estimated at 340,500 and 69,300, respectively, 

prior to regulation (Finkbeiner, et al. 2011). Due to soak times averaging 2-3 hours at a 

time, turtles entrained within a trawl net suffer high mortality rates (Jenkins 2012). 

Fortunately, TEDs have proven highly effective at mitigating turtle bycatch in trawl 

fisheries (Lewison, et al. 2013). Unfortunately, even after the implementation of TEDs, 

bycatch interactions in trawl fisheries still far exceed those in other fisheries by two to 

three orders of magnitude (133,400) and mortality events are still one to two orders of 

magnitude higher (3700) (Finkbeiner, et al. 2011). Even after TEDs had been required for 

more than 5 years, 70-80% of dead turtle strandings on U.S. beaches were related to 

shrimp trawl fisheries in 1995 (Crowder, Hopkins-Murphy and Royle 1995). 

Figure 9 Illustration of a pound net. In the studies 

reviewed, the height of the leader and pound sections of 

the net were reduced. (Adapted from Silva, Dealteris 

and Milliken 2011.) 
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Turtle excluder devices have proven to be effective in trawl fisheries throughout 

the world, including Australia (Brewer, et al. 2006), Kuwait (Al-Baz and Chen 2014), the 

Mediterranean (Alessandro and Antonello 2010), and the United States (Jenkins 2012). In 

other regions, trawl fisheries still capture thousands of turtles annually (e.g., greens and 

hawksbills in the Red Sea (Teclemariam, et al. 2009)), while others have seen major 

improvements with the implementation of TEDs (e.g., green, olive ridleys, and flatbacks 

in the Northern Prawn Fishery in Australia (Brewer, et al. 2006, Barwick 2011)). 

Unfortunately, though TEDs have been around for over 35 years and are used in over 40 

countries, there is little published data concerning their use and effectiveness outside of 

the U.S. and Australia. Since loggerhead and leatherback turtles most commonly interact 

with trawl gear in the Northwest Atlantic, Gulf of Mexico (GOM), and Mediterranean, 

this section will largely focus on the data produced from U.S. research. 

For the North Atlantic and the GOM, the National Marine Fisheries Service 

(NMFS) has largely been responsible for TED development and testing (Jenkins 2012). 

The NMFS began testing TED designs in 1976, leading to the release of the original 

NMFS TED in 1981 (Figure 10, Jenkins 2012). Since then, numerous modifications have 

been made to the initial design, and other variations developed for specific applications 

have been produced. For example, the Super Shooter TED, which was designed for 

shrimp fisheries, improved upon the NMFS TED by removing the external frame. 

Moreover, both the Modified Flounder TED and the Whelk TED II included openings on 

the bottom to prevent the exclusion of target catch (Figure 10; Jenkins 2012). 

These last two designs were developed after the NMFS began testing TEDs developed by 

the shrimp fishery industry in 1987. Soon after, the NMFS focused its efforts on testing 

and took over the design aspect of TEDs. Thus, the NMFS changed their focus to testing, 

modifying, and approving industry designed TEDs rather than developing their own 

designs (Jenkins 2012). Through extensive collaboration, an array of commercially and 

privately developed TEDs and TED accessories became available that provided solutions 

to various fishery-specific issues, including TEDs designed to prevent clogging by 

vegetation (the Anthony Weedless TED) and accessories to prevent chaffing/tearing of 

the net along the bottom edge of the TED (the Darien Roller) (Figure 10; Jenkins 2012). 
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The NMFS required the use of TEDs in 1987 in shrimp trawl fisheries and 

expanded the regulations in 1992 to include fisheries in certain areas of Virginia and 

North Carolina when summer flounder (Paralichthys dentatus) season and turtle season 

overlap (NOAA 1992, Epperly 2003). The TED designs approved by NMFS prior to 

2000 were 97% or more successful in the exclusion of small turtles, which were 

considered the cohort that had the highest interaction rate with trawl gear.  

However, though TEDs had proven successful in experimental trials, there 

appeared to be up to a 50% disparity between the realized bycatch reduction (estimated 

from stranding data) and the target reduction rate in the U.S. (Lewison, Crowder and 

Shaver 2003). Discrepancies in exclusion rates began to be noticed in the initial years 

following TED regulations. In South Carolina, Hopkins-Murphy and Murphy (1994) 

noticed the percent of total strandings comprised of adult females increased from 12.8% 

to 18.9% in the two years following TED implementation in 1988, suggesting that not all 

classes of turtle were excluded uniformly. A later study by Epperly and Teas (2002) 

analyzed stranding data from the Sea Turtle Stranding and Salvage Network (STSSN) 

and found that 33-47% of loggerhead strandings were individuals who were too large to 

fit through the standard TED openings. Specifically, the carapace height of larger turtles 

exceeded the TED heights of 10 inches in the GOM and 12 inches in the Atlantic 

(Epperly and Teas 2002). To ameliorate this issue, TED size requirements were increased 

to accommodate larger turtles. Regulations requiring the use of these larger TEDs were 

implemented in 2003, resulting in considerable reductions in both bycatch and mortality 

associated with trawl fisheries for both loggerheads and leatherbacks (Table 4; 

Finkbeiner, et al. 2011). 

In the Mediterranean, bottom trawl fisheries annually capture an estimated 30,000 

and kill an estimated 8000 loggerhead turtles (Casale 2011, Sala, Lucchetti and Affronte 

2011). Leatherbacks are uncommon in the region, with only 170 reported individual 

catches in the Mediterranean basin between 1981 and 2000, only 4.7% of which were 

caught in trawls (Casale, et al. 2003). Yet the promotion of TEDs remains difficult and 

regulations mandating their use in the Mediterranean are still non-existent (Domenech, et 

al. 2015). This is principally due to the large impact on target catch. Instead of the 

smaller shrimp species that are sought in U.S. waters, many of the fisheries in the 
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Mediterranean target finfish (Casale 2011). This becomes problematic, as TEDs 

developed for American fisheries will often exclude these target species (Lucchetti, et al. 

2008). Efforts are being made to address these shortcomings and several TED designs 

have been evaluated for use in different Mediterranean bottom trawl fisheries. Lucchetti 

et al. (2008) evaluated five TED designs, only one of which did not substantially reduce 

target catch and showed additional value through improving the quality of the catch by 

excluding large debris. In the Adriatic Sea, another study evaluated four TED variations: 

adjustable, flexible, semi-rigid, and the rigid aluminum Supershooter TED (Sala, 

Lucchetti and Affronte 2011). Of the four, only the semi-rigid and Supershooter TED 

reduced discards of non-target species and debris without significantly reducing target 

Table 4 Impacts of 2003 NMFS regulation mandating the use of enlarged TEDs in the U.S. trawl fisheries. 

These TEDs are capable of excluding adult loggerhead and leatherback turtles. Data take from Finkbeiner 

et al. 2011, Supplementary Material. 

Fishery 

(Bycatch) 

Loggerhead 

Pre-regulation 

Loggerhead 

Post-

regulation 

Leatherback 

Pre-regulation 

Leatherback 

Post-

regulation 

Mid-Atlantic 

Bottom Trawl 

637.8 616 0 1 

Mid-Atlantic 

Scallop 

Dredge 

306 90 0 0 

Mid-Atlantic 

Scallop Trawl 

132 132 0 0 

SE/Gulf of 

Mexico 

Shrimp Trawl 

163160 23336 3090 520 

     Fishery 

(Mortality) 

Loggerhead 

Pre-regulation 

Loggerhead 

Post-

regulation 

Leatherback 

Pre-regulation 

Leatherback 

Post-

regulation 

Mid-Atlantic 

Bottom Trawl 

111 265 0 0 

Mid-Atlantic 

Scallop 

Dredge 

579 67.5 0 0 

Mid-Atlantic 

Scallop Trawl 

0 0 0 0 

SE/Gulf of 

Mexico 

Shrimp Trawl 

62294 647 2311 15 
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catch. However, their effectiveness for turtle exclusion was inconclusive, as only one 

loggerhead was encountered during the study, though it was successfully excluded by the 

Supershooter TED being tested at the time (Sala, Lucchetti and Affronte 2011).  

A major issue that has continuously plagued the success of TEDs is that many are 

disabled by fishers once at sea (Caillouet Jr., et al. 1996). It is difficult to regulate and 

monitor the large commercial fleets of the GOM and Western Atlantic. Due to this, 

fishers are able to sew shut the escape flaps on TEDs, rendering them completely 

ineffective, without detection by management agencies. Much of the motivation behind 

this meddling is the belief that TEDs lead to major losses of target catch.  

In an attempt to change these opinions, proponents of TEDs often rebrand these 

devices as Trawling Efficiency Devices or simply classify them in the category of 

Bycatch Reduction Devices (BRD). The NMFS has employed the former since 1986 

(Watson, Mitchell and Shah 1986) while internationally, the broader BRD is most often 

applied (Burke, Barwick and Jarrett 2012, Al-Baz and Chen 2014). The use of these 

terms highlights the additional benefits of TEDs, aside from their turtle exclusion 

function. TEDs have been shown to reduce other forms of bycatch, including 

elasmobranchs, large marine sponges, and non-targeted finfish. In contrast to many 

claims, several styles of TED have been found to increase target catch (Jenkins 2012). 

Continued testing and promotion of these benefits will serve to bolster the acceptance and 

effective use of TEDs in global trawl fisheries. 

Modeling 

There have been many changes to population management for sea turtles in the 

past few decades. To ensure that management strategies keep pace with population 

statuses, it is important to update the models these decisions are based on. For the 

Western North Atlantic loggerheads, there have been several updates since Frazer (1983) 

initially created a life table for this population (Crouse, Crowder and Caswell 1987, 

Crowder, Hopkins-Murphy and Royle 1995, National Marine Fisheries Southeast 

Fisheries Science Center 2001, Heppell, Crowder, et al. 2003). However, there has not 

been an update to these models since Heppell, Crowder, et al. revisited them in 2003. 

Since then, there have been numerous updates to annual survival rates (Table 2), as well 
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as more definitive estimates of age at sexual maturity (ASM) and stage durations for this 

population (Table 1). 

For each model, the population growth rates, λ (derived from the eigenvalues and 

eigenvectors of the respective matrices), indicate that with current survival rate estimates, 

this population is still in decline (λ ≤ 1; Table 5, Figure 11). In Model 2, with an adult 

annual survival rate 0.85, reducing mortality of the small neritic class results in a 

population growth of less than 1% annually. However, with each of the lower adult 

survival rates proposed by Sasso, Epperly and Johnson (2011), mortality must be reduced 

by at least 30% for both neritic juvenile classes (Figure 11). Reducing mortality of all 

neritic and adult age classes results in population growth of 1-3% annually (Table 5). 

An evaluation of the elasticity analysis shows that the elasticity of λ to changes in 

annual survival rates for all juvenile stages is directly proportional to stage length (Table 

6, Figure 12). That is, λ is more sensitive to survival rates for stages with longer durations 

(e.g., oceanic immature and large neritic immature in Models 2-4). The new models also 

 
Figure 11 Population growth rate for each model with a 30% reduction in mortality for the indicated stages: no 

change; reduction in small neritic juvenile mortality; reduction in small and large juvenile neritic mortality; 

reduction in small and large neritic juvenile, as well as nesting and non-nesting breeders. Growth rate = λ – 1. 

Table 5 Values of λ for each model with subsequent 30% reduction in mortality for specified life stages. 

  

Original 

Survival 

Rates 

Small Neritic 

Immature 

Large and 

Small Neritic 

Immature 

All Neritic 

Juveniles and 

Adults 

Model 1 0.953 0.984 1.007 1.014 

Model 2 0.990 1.008 1.030 1.036 

Model 3 0.962 0.982 1.006 1.011 

Model 4 0.969 0.989 1.012 1.018 
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reinforce the conclusions that changes in egg and hatchling survival will have little 

impact on population trends (Crowder, Crouse, et al. 1994, Heppell, Crowder, et al. 

2003). Similarly, with the low survival rates of adults in Models 3 and 4, changes to those 

rates are less impactful than improving survivorship in the juvenile age classes. 

Discussion 

Of the threats investigated here, the majority have been targeted by assorted 

management strategies in place across the globe. Each conservation method affords 

varying levels of protection during different life stages of marine turtles. Similarly, some 

methods are more effective as conservation tools for each species.  

Nesting beach conservation exclusively targets threats posed against nesting 

mothers, developing eggs, and hatchling turtles. In general, these benefits extend to both 

species, while some threats are species specific. On beaches where measures are put into 

place to mitigate lighting, counteract poaching, or prevent damage associated with active 

Figure 12 Elasticity values for the annual survival rates of each stage. 

Table 6 Elasticity values of each stage for each model. Elasticity indicates the proportional impact each 

parameter has on λ. 

  

Fertility 
Oceanic 

Immature 

Small 

Neritic 

Immature 

Large 

Neritic 

Immature 

Nesting 

Breeder 

Non-

nesting 

Breeder 

Model 1 0.0235 0.2355 0.2590 0.3061 0.0720 0.1038 

Model 2 0.0242 0.2905 0.2663 0.2905 0.0531 0.0755 

Model 3 0.0275 0.3301 0.3026 0.3301 0.0045 0.0051 

Model 4 0.0270 0.3238 0.2968 0.3238 0.0127 0.0160 
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beach cleaning/nourishment, the benefits of these programs are shared by both species. 

Likewise, regulations that preserve and repair the structural integrity of nesting habitat, 

(e.g., limiting beach development, protection of dune systems, preventing or removing 

groins and jetties) benefit both species equally. 

Conversely, loggerheads are typically the main benefactor from programs whose 

focus is on preventing depredation, though leatherback nesting may also occur on the 

same beach (e.g., South Florida). On nesting beaches where opportunistically oophagous 

(i.e., animals that supplement their diet with eggs when available) predators exist, 

loggerhead nests suffer much higher predation rates than leatherback nests due to the 

relatively shallow nest depths of the former. Leatherback nests are not completely exempt 

from depredation, however, especially on beaches with large (e.g., wild pig) or 

particularly ambitious diggers (e.g., large raccoons). On these beaches, predator removal 

programs can lead to exceptional increases in nesting success for both species.  

The effectiveness of these programs varies, with caging programs having the 

largest influence on preventing nest depredation from foxes, raccoons, and armadillos. 

Nearly all of the studies showed significant reductions in depredation, with some 

completely preventing depredation. Predator removal programs, whether by trapping or 

shooting, are also largely successful, though success hinges on whether the correct 

individuals are targeted. For example, nest depredation has been identified as a learned 

behavior in raccoons. Thus, properly identifying and removing the animals that exhibit 

this trait results in much lower rates of depredation. Conditioned taste aversion has still 

not been shown to be an effective tool in reducing nest depredation. 

In areas where poaching is still uncontrolled, beach monitoring and relocation 

programs serve both species. The protection from monitoring programs can extend to 

nesting females as well. Beach monitoring programs are important tools to track 

population trends and identify potential concerns. However, to become effective 

conservation tools, they must incorporate strategies that address these concerns (e.g., 

marking off nests to prevent disturbance from tourists or beach cleaning equipment, 

relocating nests laid in risky areas).  

While protecting nesting habitat is crucial to supporting turtle populations, 

population modeling suggests that it may only be beneficial to a certain extent (Figure 12; 
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Crowder, Crouse, et al. 1994, Heppell, Crowder, et al. 2003). This is also supported by 

leatherback nesting trends in the Mexican Pacific, where intense nesting beach 

conservation over 20 years has not been able to reverse a severe and continuing reduction 

in leatherback nesting (Martinez, et al. 2007). However, it is difficult to discern whether a 

lack of response is due to factors affecting other life stages (e.g., bycatch in PLFs) or to a 

delayed age of sexual maturity. 

Based on the loggerhead population models, it is difficult to make any inferences 

about what effects targeted conservation at particular life stages will have on population 

rates of leatherbacks. The stark contrast in life histories between the two species prevents 

the juxtaposition of models from one to the other. Notably, the rapid growth to sexual 

maturity for leatherbacks (13-29 yrs; Avens and Snover 2013) geatly alters the life stage 

duration parameters. Though the loggerhead models provide little insight for leatherback 

population trends, case studies (such as the one from the Mexican Pacific above) 

highlight that without conservation efforts which encompass multiple life stages of each 

species, population recovery is often infeasible. 

The majority of the threats marine turtles face occur at sea by way of interactions 

with fishing gear. Longline, passive net, and trawl fisheries place significant burdens on 

turtle populations. However, due to the disparity in data reporting, with most observer 

data generated from PLFs, it is difficult to specify which fishery has the highest bycatch 

volume.  

For loggerheads, there is some variation among which life stages are impacted by 

each major fishery type, with small and large neritic juveniles more often affected by 

trawl fisheries (Lewison, Crowder and Shaver 2003). Pelagic longline fisheries most 

commonly interact with loggerheads during their small neritic juvenile stages (Watson, 

Epperly and Shah, et al. 2005). Due to their fully pelagic lifestyle, leatherbacks interact 

with similar gear types throughout their lifetime. Unfortunately, bycatch reports do not 

typically include size measurements for individual turtles, complicating the 

characterization of stage-specific impacts (Finkbeiner, et al. 2011).  

Bycatch rates in PLF are extremely low (e.g., .001-.034 turtles per 1000 hooks in 

the Pacific; Secretariat of the Pacific Community 2001), but due to the sheer number of 

hooks in the water, total bycatch numbers can still be devastating. The main management 
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strategy in these fisheries is gear modification, i.e., changing from J-hooks to circle 

hooks. The goal with this modification is to prevent turtles from biting/ingesting the 

hooks or, at the very least, change hooking location from internal to external locations. 

Circle hooks were recommended by many authors for bycatch mitigation due to their 

propensity to prevent hooks from being swallowed, instead diverting the hooking location 

externally or to the mouth (Watson, Epperly and Garrison, et al. 2004, Gilman, 

Kobayashi, et al. 2007, Sales, et al. 2010). External hooking (e.g., flippers, neck, tail) is 

considered low risk, as the hook does not affect highly sensitive areas.  

There remains some dispute over the advantage of hooking turtles in the mouth 

rather than the throat, due to the sensitivity of jaw structures and the resilience of the 

epigastric muscles that line the esophagus of turtles. Once hooked, though, external 

hooks remain easier to remove, especially if they hook in locations other than the mouth 

(e.g., flipper). In general, loggerheads are more likely to bite/swallow bait and thus 

become deep-hooked or hooked in the mouth; leatherbacks are typically externally 

hooked in a flipper and/or become entangled in leader lines.  

When changing hook styles, hook size and turtle size are also factors that warrant 

consideration. Changing to smaller circle hooks (16/0) from J-hooks is more effective in 

areas where juvenile turtles are the primary cohort interacting with gear. However, larger 

turtles are still capable of biting and swallowing the smaller circle hooks, thus making 

18/0 and larger circle hooks more effective at preventing turtle bycatch. In most studies, 

circle hooks displayed >50% reduction of turtle BPUE. Reduction rates were even greater 

when bait-type was switched from squid to mackerel. 

Concerning target catch, circle hooks and mackerel bait receive mixed results. In 

some fisheries, such as the Western Atlantic NED PLF, target catch was reduced by 86%. 

In others, the effect on target catch was insignificant with gear changes, with one study 

actually improving target catch.  

Another tool used in PLF predicts hotspots for turtle/fishery interactions by 

mapping SST gradients. While this tool provides reliable data, high turtle density 

correlates with high target catch density, thus discouraging fishers from making use of it 

unless cap limits are being approached. Other methods, such as altering set depth and day 
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versus night setting did affect turtle BPUE. However, both of these aspects are typically 

set by fishery best practices and thus are not amendable. 

In the northwestern Atlantic and a few southwestern Atlantic PLFs, 

approximately equal numbers of each species are captured as bycatch. Thus, a reduction 

in bycatch rates by switching to circle hooks with mackerel bait aids both species equally. 

In the Pacific, where leatherback populations have decreased up to 90%, the majority of 

turtles caught and internally hooked are loggerheads, and interactions with leatherbacks 

are exceedingly rare. Thus, while larger numbers of loggerheads are spared by 

implementing gear changes, the relatively smaller reduction in leatherback bycatch in this 

region is still significant and vital to the recovery of this population. 

The extensive amount of literature that discusses and focuses on longline bycatch 

is often understood to indicate that PLFs are the dominant fisheries that threaten sea turtle 

populations. However, the discrepancy in attention is more a factor of data availability. 

Pelagic longline fisheries receive intense scrutiny due to bycatch characteristics (i.e., sea 

turtles of higher reproductive value are more heavily impacted), the high-value of the 

target catch, and the locations of fishing grounds in international waters (Lewison and 

Crowder 2007). The result of this scrutiny is vast data production when compared to 

other fisheries. While PLF bycatch is certainly a significant factor, the impacts from other 

fisheries (i.e., gillnet and trawl fisheries) may be equitable to those of PLFs. Additionally, 

mortality in these other fisheries is often significantly higher than those reported in 

longlines. When hooked on shallow lines, turtles can typically still surface for air. In 

contrast, turtles caught in submerged gillnets and trawl nets are trapped until the gear is 

recovered, significantly increasing direct mortality once captured. 

The global passive set net industry is difficult to regulate and monitor as it largely 

consists of small-scale and artisanal fisheries. Collectively, their impact can be severe, 

especially in nearshore operations where seasonally intense fishing pressure along 

migration corridors and nesting beaches coincides with breeding season. These seasonal 

migrations can lead to frequent interactions with coastal passive nets (Gass 2006). 

Impacts from small-scale, nearshore fisheries intensely affect both species during their 

neritic life stages. For loggerheads, this is the majority of their adult life, but also includes 

the neritic juvenile stages when they begin recruiting to nearshore environments. 
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Modifications to leader height in pound net fisheries and overall net height in passive 

drift gillnet fisheries reduce interactions with loggerheads and leatherbacks, respectively.  

In gillnet fisheries, shortening the height of drifting gillnets can reduce the rate of 

turtle bycatch, though this reduction typically correlates with a reduction of target catch. 

However, due to the costs associated with net destruction from turtle interactions 

(especially leatherbacks), the reduction in target catch can be deemed an acceptable cost 

to some fishers. In pound net fisheries, lowering the leader height is effective at reducing 

turtle/gear interactions without affecting target catch. Other proposed methods, such as 

altering marking light color, changing tie-down length, and eliminating buoys showed no 

significant reduction in turtle bycatch in the reviewed studies. 

Trawl fisheries are reported by many authors to have the most deleterious effects 

on marine turtle populations. To combat the immense number of turtles being taken in 

trawl fisheries, the NMFS developed TEDs. The creation of the NMFS TED and the 

enforcement of later editions of the device have drastically reduced these impacts, 

especially in the U.S. shrimp trawl fisheries. Prior to 2003, TEDs were too small to 

exclude larger loggerheads and leatherbacks as they were initially designed to exclude 

only juvenile loggerheads, which were thought to be the primary cohort affected in 

shrimp trawl fisheries. However, adult loggerheads, as well as sub-adult and adult 

leatherbacks, also interact with trawl gear. This necessitated the expansion of TED 

openings, facilitating the exclusion of these larger individuals. Regulations put in place in 

2003 increased the minimum height requirements for U.S. TEDs, making them more 

effective for a broader range of age classes.  

In U.S. fisheries, loggerheads are still the dominant species encountered by trawl 

fisheries, and thus loggerheads constitute the majority of the drastic reduction in trawl 

bycatch. In other trawl fisheries, such as those throughout the Mediterranean and in the 

Bay of Bengal, the target catch of larger fish, instead of shrimp, is also often excluded by 

modern TEDs. Thus, further development of excluder technology is still needed in these 

regions. 

The severe impacts fisheries have on the neritic life stages of loggerheads, along 

with the sensitivity of population growth rates to survival in these stage, makes them an 

important target for improved conservation. Large circle hooks with mackerel and TEDs 
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have been shown to aid in reducing bycatch in these age classes. Thus, it is crucial that 

their implementation spread throughout all fisheries that interact with sea turtles. 

Conclusions 

Tackling the issue of global marine turtle bycatch is no small feat. It is a multi-

faceted issue, affected by variations in seasonal migrations, SST, gear type, target catch 

characteristics, turtle size, and a host of other factors. Each of these factors requires 

specialized management techniques that account for fishery-specific characteristics, local 

resource restrictions, effective enforcement, and the incorporation of stakeholder 

concerns and proposals. When formulating management strategies, several factors must 

be considered: local resource potential, feasibility of instituting effective enforcement, 

severity of threat, potential benefits to species of interest, and effect on target catch, if 

applicable. Within the two conservation categories discussed here, programs range in 

scope from local beach monitoring programs to gear regulation in entire fisheries. 

This review emphasizes the principle that there is no universal strategy to combat 

the threats that face each marine turtle species. Nor does there exist a generic fix to apply 

to threat classes as a whole. Management styles must be tailored to account for all factors 

that influence marine turtle and human interactions on a local and international scale. 

To accomplish this, targeted research is needed that includes input from the 

people who cause these interactions: fishers, tourism officials, hotel managers, beach 

maintenance workers, local villagers, and others. The impacts from turtle bycatch are 

often difficult to conceptualize for individual fishers and smaller fleets. When looking at 

vessel specific observations, interactions with turtles are rare events, with the majority of 

sets and trawls interacting with zero turtles. However, due to the sheer size of the global 

fishing fleet, these few interactions per vessel result in substantial population level 

impacts. Effectively communicating these concepts to stakeholders through targeted 

education is a key factor in understanding, and hopefully accepting, the necessity of 

mandated and suggested conservation strategies. 

Further research is needed into improving gear modifications for specific 

fisheries, including specialized hook shapes and sizes, passive net design, and improved 
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TEDs. In areas where trawls target larger species, better TEDs need to be designed that 

effectively exclude turtles while still maintaining target catch quality and quantity.  

Population models play a key role in effectively tailoring conservation efforts for 

local, regional, and global turtle populations. Even with the multitude of management 

strategies currently enforced, the models presented here still indicate that turtle 

populations are declining. For successful, robust population recoveries, conservation 

efforts that affect numerous life-stages, especially both juvenile neritic and adult stages, 

require expansion. As turtles within these stages interact with longlines, PLF 

management is further supported as crucial to turtle population recovery. Additionally, 

research must be continued into understanding our impacts on the different life stages for 

each population. More accurate survivorship and age class parameters will result in more 

reliable models to better inform management decisions.  
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Appendix I Beach monitoring management strategies. 
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Appendix III Fisheries management strategies in pelagic longline fisheries. 
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Appendix IV Fisheries management strategies in passive net fisheries. 
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