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The discovery of interesting patterns from database transactions is one of the major 

problems in knowledge discovery in database. One such interesting pattern is the 

association rules extracted from these transactions. The goal of this research was to 

develop and implement a parallel algorithm for mining association rules. We 

implemented a parallel algorithm that used a lattice approach for mining association 

rules. The Dynamic Distributed Rule Mining (DDRM) is a lattice-based algorithm that 

partitions the lattice into sublattices to be assigned to processors for processing and 

identification of frequent itemsets. We implemented the DDRM using a dynamic load 

balancing approach to assign classes to processors for analysis of these classes in order to 

determine if there are any rules present in them. 

 

Parallel algorithms are required for the mining of association rules due to the very large 

databases used to store the transactions. Some of the previous parallel algorithms are 

Count Distribution (CD), Data Distribution (DD), Candidate Distribution (CDD), 

Intelligent Data Distribution (IDD), and Hybrid Distribution (HD). However the costs 

associated with these algorithms are hash tree construction, hash tree traversal, 

communication overhead, input/output (I/O) cost and data movement respectively. These 

algorithms assign tasks to the processors using a static scheduling scheme. The main 

challenge for a static scheduling scheme is to determine the amount of time that will be 

needed to process each task. This information can then be used to compute the total time 

needed to process all the tasks and to divide these tasks among the processors so that an 

equal amount of tasks are assigned to each processor using processing time as the unit of 

measurement.  

 

Experimental results show that DDRM utilizes the processors efficiently and performed 

better than the prefix-based and Partition algorithms that use a static approach to assign 

classes to the processors. The DDRM algorithm scales well and shows good speedup.  



 

 

 

   

 

 

Acknowledgements 
 

I thank my advisor, Professor Junping Sun for his extraordinary patience while modifying 

and editing the earlier drafts of this dissertation. 

 

I would also like to thank all the members of my dissertation advisory committee for their 

comments and careful reading of the dissertation drafts, which resulted in the 

improvement of this research. In particular I thank Professor Michael J. Laszlo and 

Professor Jim Cannady. I thank Professor Barrington Chevannes for his comments and careful 

reading of this dissertation. 
 

My graduate study at Nova Southeastern was beneficial and enjoyable. I thank all the 

professors and members of staff in the graduate School of Computing and Information 

Sciences for their contribution to my study. 

 

Many thanks to Mr. Mark Powell and Mr. Joshua Morrison, Nova Southeastern 

University for the assistance given during the use of the Secure and Robust Distributed 

Information Systems (SARDIS) laboratory. I am also thankful to Mr. Colin Francis, 

University of Technology, Jamaica for the use of the multimedia laboratory. 

 

I thank my wife Nadine, son Alex and daughter Leanne for their love, understanding, 

support and sacrifice. During the tough times they were always there to support and 

encourage me. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

V 

 

   

 

  

Table of Contents 
 

 

Abstract  iii 

List of Tables  vii 

List of Figures ix 

 

Chapters 
 

1. Introduction  1 
1.1 Problem Statement and Goal  1 

1.2 Relevance and Significance  5 

1.3 Barriers and Issues  8 

1.4 Summary  9  

 

2.  Review of the Literature  10 
2.1 Historical Overview of the Theory and Research Literature 10 

2.1.1 Data Mining   10 

2.1.2 Data Mining Tasks  11 

2.2 The Theory and Research Literature Specific to Data Mining  12 

2.2.1 Association Rule Mining  12  

2.2.1.1 Classification of Association Rules  14 

2.2.2 Apriori Algorithm 15 

2.2.3 Database Organization 27 

2.2.4 Parallel Processing  31 

2.2.5 Partitioning of Candidate and Data   34 

2.2.6 Parallel and Distributed Algorithms   36  

2.2.7 Current State and Existing Methodologies 43 

2.2.7.1 Count Distribution (CD) Algorithm 45  

2.2.7.2 Data Distribution (DD) Algorithm     52 

2.2.7.3 Intelligent Data Distribution (IDD) Algorithm 60 

2.2.7.4 Hybrid Distribution (HD) Algorithm   68 

2.2.7.5 Comparison of Algorithms 81 

2.2.8 Lattice Theory 82 

2.2.8.1 Serial Prefix-Based Method with Bottom-Up Search Algorithm  91 

2.2.8.2 Parallel Prefix-Based Method with Bottom-Up Search Algorithm 111 

2.3 Dynamic Distributed Rule Mining (DDRM) 122 

2.4 The Contribution This Study Makes to Data Mining  123 

2.5 Summary 127 

 

3. Methodology   128 
3.1 Lattice Theoretic Approach 128 

                  3.1.1 Lattice Theory  128 

3.2 Dynamic Distributed Rule Mining  129 

      3.2.1 Message Passing Interface (MPI) 130 



 

VI 

 

   

 

      3.2.2 Lattice Partition 139 

3.3 Comparison of Prefix-Based and DDRM Algorithms  164 

      3.3.1 Static Approach 168 

3.4  Summary 177 

 

4. Results   178 
       4.1 Parallel Algorithms  178 

       4.2 Performance Parameters and Benchmark  180 

       4.3 Dynamic Distributed Rule Mining (DDRM) Algorithm  182 

       4.4 Experimental Results 183 

       4.5 Comparison of DDRM and Prefix-Based Algorithms 237 

       4.6 Summary 239 

 

5. Conclusions, Implications, Recommendations, and Summary 240    
       5.1 Conclusions  240 

       5.2 Implications  241 

       5.3 Recommendations 242 

       5.4 Summary 244 

 

Appendixes 
A. Data Structures Used in Implementation  246 

B. Function to Create Set of N-Itemsets   247 

C. DDRM Partition Function  248 

D. Generate All Classes Function   249  

E. Generate Two Classes Function 250 

F. Broadcast TID Vector Function 251 

G. Receive Broadcast of TID Vector Function 253 

H. Send Class Function 255 

I. Receive Class Function  257 

J. Send Frequent Itemsets Function 259 

K. Receive Frequent Itemsets Function  261 

L. Sample Data  263 

M. Sample Output For DDRM  264 

      

Reference List  269 



 

VII 

 

   

 

List of Tables 

Tables 

2.2.1. Candidate Itemsets in Hash Tree 24 

2.2.2. Count of Candidate Itemsets in Hash Tree 26 

2.2.3. Transaction Database 28 

2.2.4. Boolean Representation of Transaction Database 29 

2.2.5. Vertical View of Transaction Database 30 

2.2.6. Transaction Database  44 

2.2.7. Sample Database for HD Algorithm  75 

2.2.8. Transaction Database  88 

2.2.9. Vertical View of Transaction Database  89 

2.2.10. Tid-Lists Sorted on Number of Transactions  112 

2.2.11. Assignment of Tid-Lists to Processors   113 

2.2.12. Classes Sorted on Size   116 

2.2.13. Assignment of Classes to Processors   117 

2.2.14. Assignment of Tid-Lists to Processors After Exchange of Tid-Lists   118 

3.2.1 Typical Information for Controller  149 

3.2.2 Number of Intersections  150 

3.2.3 Comparison of DDRM and Prefix-based Algorithms 167 

3.3.1 Transaction Database  170 

3.3.2 Vertical View of Transaction Database  171 

4.1.1 Description of Census Data Fields  184 

4.1.2 Description of Data Files   185 



 

VIII 

 

   

 

4.1.3 Execution Time 189 

4.1.4 Speedup 194 

4.1.5 Scaleup 196 

4.1.6 Databases 198 

4.1.7 Supports (Census) 201 

4.1.8 Supports (KDD) 202 

4.1.9 Supports (KDDWIDE) 203 

4.1.10 Transaction Width 207 

4.1.11 Wait Time KDD20  218 

4.1.12 Wait Time KDD50  219 

4.1.13 Communication Time  220 

4.1.14 Turnaround Time  221 

4.1.15 CPU Utilization  222 

4.1.16 CPU Cycles  223 

  

 



 

IX 

 

   

 

List of Figures 

Figures 

2.2.1. Apriori Algorithm  16 

2.2.2. Hash Tree of Candidate 3-Itemsets 25 

2.2.3 Count Distribution (CD) Algorithm 48 

2.2.4 Local Count for CD 49 

2.2.5 Count After Global Reduction for CD  50 

2.2.6 Local Count of 3-Itemset for CD  51 

2.2.7 Data Distribution (DD) Algorithm  54 

2.2.8 Count After Assigning Partitions to Processors for DD   58 

2.2.9 Count After Complete Cycle for DD   59 

2.2.10 Pseudo Code for Data Movements for IDD   61 

2.2.11 Intelligent Data Distribution (IDD)   62 

2.2.12 Movement of Local Data Among Processors for IDD  66 

2.2.13 Count of Itemsets After One Cycle for IDD 67 

2.2.14 Data Movement Along Columns for HD   72 

2.2.15 Reduction Operation Along Rows for HD   73 

2.2.16 Hybrid Distribution (HD)  74 

2.2.17 Initial Count for HD 76 

2.2.18 Data Movement Along Columns for HD (1)  77 

2.2.19 Data Movement Along Columns for HD (2)  78 

2.2.20 Data Movement Along Columns for HD (3) 79 

2.2.21 Use of CD to Broadcast Local Counts (HD)  80 



 

X 

 

   

 

2.2.22 Lattice of Itemsets  90 

2.2.23 Pseudo Code for Bottom-Up Search   93 

2.2.24 Lattice Generation by Class I1   94 

2.2.25 Intersection of Itemsets in Class I1   95 

2.2.26 Lattice Generation by Class I2   104 

2.2.27 Intersection of Itemsets in Class I2  105 

2.2.28 Lattice Generation by Class I3  108 

2.2.29 Intersection of Itemsets in Class I3  109 

2.2.30 Lattice Generation by Class I4  110 

2.2.31 Pseudo Code for Parallel Prefix-Based Algorithm  114 

2.2.32 Assignment of Tid-Lists to Processors  119 

2.2.33 Assignment of Classes to Processors  120 

2.2.34 Assignment of Tid-Lists to Processors After Exchange of Tid-Lists  121 

3.2.1 Dynamic Distributed Rule Mining Algorithm   133  

3.2.2 Step 1 of DDRM:  Generation of Tid-Lists   137 

3.2.3 Step 2 of DDRM:  Generation of F2    138 

3.2.4 Procedure to Partition Lattice   140 

3.2.5 Sublattices of Itemsets   143 

3.2.6 Lattice for Class 1  144 

3.2.7 Lattice for Class 2   145 

3.2.8 Lattice for Class 3  146 

3.2.9 Lattice for Class 4   147 

3.2.10 Step 3 of DDRM:  Allocation of Classes    151 



 

XI 

 

   

 

3.2.11 Step 4 of DDRM:  Processing of Classes   152 

3.2.12 Step 5 of DDRM: Processing of Classes  154 

3.2.13 Intersection of Itemsets in Class I1   155 

3.2.14 Lattice Generated by Class I1   156 

3.2.15 Intersection of Itemsets in Class I2   157 

3.2.16 Lattice Generated by Class I2   158 

3.2.17 Intersection of Itemsets in Class I3  159 

3.2.18 Lattice Generated by Class I3  160 

3.2.19 Intersection of Itemsets in Class I4  161 

3.2.20 Lattice Generated by Class I4  162 

3.3.1 Intersection of Itemsets in Class I1   172 

3.3.2 Intersection of Itemsets in Class I2 173   

3.3.3 Intersection of Itemsets in Class I3 175 

4.2.1 Execution  Time for DDRM       190 

4.2.2 Execution Time for Prefix-Based 191 

4.2.3 Execution Time for Partition 192 

4.2.4 Execution Time for DDRM, Partition, and Prefix-Based 193 

4.2.5 Speedup for DDRM, Partition, and  Prefix-Based 195 

4.2.6 Scaleup for DDRM, Partition, and  Prefix-Based 197 

4.2.7 Number of Transactions 199 

4.2.8 Number of Transactions 200 

4.2.9 Support for Census 204 

4.2.10 Support for KDD 205 



 

XII 

 

   

 

4.2.11 Support  for KDDWIDE  206 

4.2.12 Transactions  Width 208 

4.2.13 Wait Time for KDD20  212 

4.2.14 Wait Time for KDD50   213 

4.2.15 Communication Time  214 

4.2.16 Turnaround Time  215 

4.2.17 CPU Utilization  216 

4.2.18 CPU Cycles  217 

4.2.19 CPU Utilization by Prefix_S1 (Station 1)  224 

4.2.20 CPU Utilization by Prefix_S2 (Station 1)  225 

4.2.21 CPU Utilization by Partition_S1 (Station 1)  226 

4.2.22 CPU Utilization by Partition_S2 (Station 1)  227 

4.2.23 CPU Utilization by DDRM (Station 1)  228 

4.2.24 CPU Utilization by Prefix_S1 (Station 2)  229 

4.2.25 CPU Utilization by Prefix_S2 (Station 2)  230 

4.2.26 CPU Utilization by Partition_S1 (Station 2)  231 

4.2.27 CPU Utilization by Partition_S2 (Station 2)  232 

4.2.28 CPU Utilization by DDRM (Station 2)  233 

4.2.29 CPU Utilization by Prefix (Station 4)  234 

4.2.30 CPU Utilization by Partition (Station 4)  235 

4.2.31 CPU Utilization by DDRM (Station 4)  236 

 



1 

 

 

   

 

Chapter 1 

Introduction 

 

1.1 Problem Statement and Goal 

     Many organizations are now finding it feasible economically to create ultra large 

databases of business and scientific data. This is made possible by the availability of 

inexpensive storage devices and developments in data capture technology (Agrawal & 

Shafer, 1996). Bar-code technology has made it possible to collect and store large 

amounts of sales data in retail organizations. The records associated with retail data are 

typically made up of transaction data and items bought in the transaction. These 

databases are viewed by organizations as important pieces of marketing infrastructure.  

     It is the desire of these organizations to institute information-driven marketing 

processes, managed by database technology, which will enable marketers to develop and 

implement customized marketing programs and strategies (Agrawal & Srikant, 1994).  In 

order to accomplish the above these organizations are turning to the application of data 

mining technology to assist in the process of extracting valuable information from these 

large databases. It is recognized that new marketing strategies can be generated based on 

the extraction of previously unknown information from these large databases. 

Organizations are now using this data for the mining of association rules. A probabilistic 

statement such as 98% of customers that purchase tires and auto accessories also get 

automotive services done is an example of an association rule. It is a statement about the 
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co-occurrence of certain events in a database (Hand, Mannila, & Smyth, 2001). 

According to Agrawal and Srikant (1994) finding all such rules is valuable for cross 

marketing and attached mailing applications. In addition, applications such as catalogue 

design, add-on sales, store layout, and customer segmentation based on buying patterns, 

are important areas of application of mining of association rules. 

     The goal of data mining is the discovery of unknown patterns in large databases using 

efficient techniques to find these rules. Due to the large volume of data stored in these 

databases, considerable work has been done using serial algorithms. As the volume of 

data stored in these databases increases, the performances of the serial algorithms 

decrease due to the large volume of data that is being processed serially. However, 

according to Agrawal and Shafer (1996) it is clear that even with the development of fast 

serial algorithms, they are still limited due to the volume of data to be processed. It is 

therefore, necessary to use parallel algorithms for the task of mining of association rules. 

Parallel architectures are now affordable due to the significant progress made in 

networking, memory, and processor technologies. These technologies have made it 

possible to access and manipulate massive databases in a reasonable amount of time 

(Agrawal & Shafer, 1996).  

     In association rule mining, the database is scanned for interesting relationships in a 

given data set. Interestingness is measured by rule support and confidence. For example, 

milk ⇒ bread [support = 5%, confidence = 70%]. Support of 5% means that 5% of all the 

transactions show that milk and bread are purchased together, and confidence of 70% 

shows that 70% of the customers purchasing milk also purchased bread. The goal of 
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mining association rules is to generate all association rules that have support and 

confidence greater than the user specified support and confidence, respectively. 

     In the original paper on the topic, mining of association rules can be divided into two 

steps (Agrawal, et al., 1993). In the first step the objective is to find all itemsets whose 

support is greater than the user specified minimum support (frequent itemsets). The 

second step uses the frequent itemsets to generate the desired rules. The first step requires 

more time and computation power than the second one. According to Zaki (2000) the 

search space for the discovery of all frequent associations in very large databases is 

exponential in the number of database attributes. In addition this is further complicated 

by I/O requirements for the millions of database objects. 

     The goal of this research was to develop and implement a parallel algorithm for the 

mining of association rules. The Dynamic Distributed Rule Mining (DDRM) algorithm 

uses a lattice to represent the search space for the generation of the frequent itemsets. 

DDRM partitions the search space and assigns each partition dynamically to the next 

available processor. An evaluation of the algorithm was carried out and its performance 

relative to the prefix-based algorithm proposed by Zaki (2000) with bottom-up search, 

which is a parallel algorithm for mining of association rules, was also determined. 

     According to Agrawal and Schafer (1996) because of the very large size of the 

databases needed to store the transactions used in the mining of association rules, parallel 

algorithms are required. Several parallel algorithms have been developed for the mining 

of association rules including Count Distribution (CD), Data Distribution (DD), 

Candidate Distribution (CDD), Intelligent Data Distribution (IDD), and Hybrid 

Distribution (HD). Agrawal and Shafer (1996) developed the CD, DD, and CDD 
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algorithms. The IDD and HD algorithms were both developed by Han, Karypis, and 

Kumar (2000). The IDD and HD algorithms have performed better than CD and DD. 

However, the cost associated with these algorithms includes hash tree construction, hash 

tree traversal, communication overhead, I/O operations, and the movement of data. 

     In DDRM there is no hash tree and the cost associated with I/O and communications 

are significantly reduced. It computes the frequent itemsets using an intersection 

operation in memory that requires no scanning of the database. This is different from the 

approach used by HD and IDD in which the database is scanned during the computation 

of the frequent itemsets. 

     The DDRM algorithm uses an equivalence operation to partition the search space 

lattice into sublattices to be assigned dynamically to processors for processing and 

identification of frequent itemsets. The Prefix-based algorithm uses a static approach to 

assign sublattices to the processors participating in the cluster. The system assigns a 

sublattice to each processor as it becomes available. Since the sublattices are assigned 

dynamically there will be a better utilization of the available processors. The partitioning 

of the lattice into sublattices can be controlled and used to determine the maximum size 

of a sublattice. If a sublattice is above the maximum size it will be partitioned into 

sublattices recursively until the size of each meets the required threshold. An outline of 

the approach is as follows: 

1. Divide the database among the processors 

2. All processors will contribute to the building of the tid-list 

3. Generate the sublattices  

4. Assign each sublattice to the next available processor  
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5. Update control processor with result 

6. Generate rules 

1.2 Relevance and Significance 

     Agrawal, et al. (1993) highlighted the issues associated with the generation of large 

itemsets during rule mining. They presented a template algorithm in which they 

addressed trade off between the number of passes and time wasted on processing itemsets 

that turned out to be small. They used an estimation procedure to determine what itemsets 

to measure in addition to two pruning procedures that prune detected itemsets that will 

not turn out to be large. 

     The Count Distribution (CD), Data Distribution (DD) and Candidate Distribution 

(CDD) algorithms were presented by Agrawal and Shafer (1996). These algorithms are 

parallel versions of the popular Apriori algorithm. CD, DD and CDD were designed for 

shared nothing systems. CDD incorporates detailed problem knowledge and removes 

processor dependence and synchronous communication from the process. However, this 

algorithm suffers from high communication overhead and the cost associated with the 

redistribution of the dataset. The performance of CDD is better than DD but not as good 

as CD. DD algorithm scales poorly and has a high communication cost; however DD 

exploits the aggregate memory of the multiprocessor better than CD. There is not a 

corresponding decrease in communication with decrease in computation.  

     CD reduces the communication overhead of DD significantly since it only broadcasts 

the candidate itemsets. Due to the fact that CD does not parallelize the computation of 

building the candidate hash tree, there is a bottleneck with a large number of processors. 
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CD scales linearly with the number of transactions.  It was found to be the best of the 

three algorithms showing linear speedup and excellent scaleup and sizeup behavior.  

     The Intelligent Data Distribution (IDD) and the Hybrid Distribution (HD) algorithms 

were proposed by Han, et al. (2000) and seek to overcome some of the challenges of CD 

and DD.  The IDD algorithm is similar to DD except that it uses a ring network. The HD 

algorithm combines CD and IDD to improve on the efficiency problem associated with 

IDD as the number of processors increases. IDD solves the communication problem of 

DD by using a ring-based all-to-all broadcast network. It eliminates the redundant work 

of DD by the use of a bit map and uses bin-packing to achieve equal distribution of the 

candidate itemsets. As more processors are added it becomes more difficult to balance the 

work with a smaller number of candidates. The hash tree is smaller for a smaller number 

of candidates and less computation work per transaction. HD inherits all the good 

features of IDD and reduces the amount of data movement. 

     Four hash-based algorithms for the parallel mining of association rules were presented 

by Shintani and Kitsuregawa (1996). These are the Non Partitioned Apriori (NPA), 

Simply Partitioned Apriori (SPA), Hashed Partitioned Apriori (HPA) and HPA with 

Extremely Large Itemset Duplication (HPA-ELD) algorithms. HPA-ELD was found to 

be faster than HPA in execution time and all four algorithms attained linearity for sizeup. 

     The Equivalence Class Transformation (ECLAT) algorithm is a localized algorithm 

for parallel mining of association rules and was presented by Zaki, Parthasarathy and Li 

(1997). ECLAT clusters related frequent itemsets and transactions.  The work is 

distributed among the processors to facilitate the computations of frequent itemsets 

independently by each processor and uses a vertical data layout. The interconnection of 
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the processors allows a user-level application to write to the memory of remote nodes, 

resulting in fast user-level messages and low synchronization costs. ECLAT performed 

better than CD and reduces the high communication and I/O overhead. 

     Cheung, Han, Ng, Fu and Fu (1996) developed the Fast Distributed Mining (FDM) of 

association rules algorithm. In addition they also developed FDM with Local Pruning 

(FDM-LP), FDM with Local Upper Bound Pruning (FDM-LUP) and FDM with Local 

Pruning and Polling-Site-Pruning (FDM-LPP), which are based on different 

combinations of local and global pruning. A comparison of CD and FDM-LP based on 

candidate set, message size reduction, and execution reduction, shows FDM-LP as 

performing better. 

 The importance of data locality and reduction of false sharing was investigated by 

Parthasarathy, Zaki, and Li (1998). They presented three techniques for improving 

referencing locality and an additional three for reducing false sharing when processing 

the information in the hash tree. These techniques were designed for shared memory 

multiprocessors.  

 The Adaptive Parallel Mining (APM) algorithm for the parallel mining of association 

rules divides the database equally among the processors. APM was developed by 

Cheung, Hu and Xia (1998) and was designed for a shared-memory multiprocessors 

system. The APM Dynamic Itemset Counting (APM-DIC) and the APM Adaptive Intra-

partition Internal Configuration (APM-IC) are variants of APM and were used to 

compare with the performance of CD. APM was found to be faster than CD. 

 Cheung and Xiao (1998) studied the effect of data skewness in parallel mining of 

association rules. They developed the Fast Parallel Mining (FPM) algorithm based on the 
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use of distributed and global pruning techniques. FPM is similar to CD but requires less 

bandwidth and has a simpler communication scheme. Cheung and Xiao (1998) developed 

a data skewness metric based on the use of entropy. For sizeup FPM was closer to the 

ideal than CD. 

 A parallel approach to the task of discovering association rules on a shared-nothing 

system has two major issues to be addressed. The first requires the development of an 

efficient way to exchange information among the processors. There is a reduction in the 

number of scans of the database. Secondly it is also necessary to address the issue of load 

balancing among the processors. These are important factors to be considered in the 

implementation of the DDRM algorithm. 

1.3 Barriers and Issues 

     Mining of association rules is a challenge due to the size of the database used in this 

process.  The availability of technology used to capture and store data has resulted in the 

creation of ultra large databases of business and scientific data (Agrawal & Shafer, 1996). 

Most of the algorithms proposed are based on serial designs. However, the databases 

used by these algorithms to mine association rules are often very large. 

The performance of algorithms for the mining of association rules can be improved 

significantly if they are designed to execute in parallel rather than serially. Mining of 

association rules from databases of transactions is an important problem in data mining 

(Agrawal, et al., 1993). The computation of the frequencies of the occurrence of subsets 

of items is the most time consuming part of the process. Invariably, researchers in the 

area of association rule mining, concentrate mainly on this aspect of the problem. 

Agrawal and Srikant (1994) proposed a fast algorithm for mining of association rules. 
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Park, Chen, and Yu (1995) also proposed a fast algorithm for this task. A major limitation 

of these algorithms is the serial design approach used. Researchers in association rule 

mining are currently conducting research in developing parallel algorithms for the mining 

of association rules. 

 A major challenge for some of these algorithms including Count Distribution (CD), 

Data Distribution (DD), Intelligent Data Distribution (IDD) and Hybrid Distribution 

(HD), is the high overhead costs due to I/O and communications among the processors. 

These algorithms scan the database repeatedly and must exchange information on the 

frequent itemsets regularly (Agrawal & Schafer, 1996; Han, et al., 2000). This study 

proposes an algorithm that will address these issues as well as load balancing among the 

processors. In addition, the algorithm will improve on the execution time and processor 

utilization. 

1.4 Summary 

     This chapter discussed the need for parallel solution to data mining problems. The 

mining of association rules requires the use of a parallel approach to improve on the 

execution time. An outline of the goal of implementing a parallel algorithm based on a 

lattice theoretic approach was presented. A brief review of the relevance and significance 

of data mining and the need for parallel algorithms in this area was also presented 

followed by an indication of some of the limitations and barriers related to the research. 
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Chapter 2 

Review of the Literature 

 

2.1 Historical Overview of the Theory and Research Literature 

 This chapter gives an overview of data mining approaches with emphasis on 

association rule mining. It discusses the theoretical issues associated with the mining of 

association rules. 

2.1.1 Data Mining 

 Data mining is the science of extracting useful information from large data sets or 

databases. It is an interdisciplinary field involving the merging of ideas from statistics, 

machine learning, data management and databases, pattern recognition, artificial 

intelligence and other areas. It is a scientific discipline that is concerned with the analysis 

of observational data sets with the objective of finding unsuspected relationships and 

produces a summary of the data in novel ways that the owner can understand and use 

(Hand, et al., 2001). 

According to Hand, et al. (2001) data mining originated in the artificial intelligence 

research field and is often set in the broader context of knowledge discovery in databases 

(KDD). The categories of KDD algorithms are classification, sequencing, and 

association. The input data are partitioned into disjoint groups such as decision tree or set 

of rules by classification algorithms. A sequencing algorithm is used to generate events 
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that are related in time. An example of events that are related in time is, an occurrence of 

events P and Q is usually followed by the occurrence of event R. Items that appear 

together based on a minimum frequency are extracted from transaction records by 

association algorithms (Carter & Hamilton, 1998).  

Clustering is the process of grouping a set of objects into classes in which similar 

objects share the same cluster while being dissimilar to objects in other cluster. It 

facilitates the identification of dense and sparse regions, which makes it possible to 

discover the overall distribution patterns and interesting correlations among data 

attributes (Han & Kamber, 2001; Agrawal, Gehrke, Gunopulos, & Raghaven, 1998). 

There are five stages associated with KDD which are the selection of the target data, pre-

processing the data, transforming them if necessary, performing data mining to extract 

patterns and relationships, and then interpreting and assessing the discovered structure. 

There are four steps involved in the extraction of patterns and relationships, which are the 

identification of the nature and structure of the representation, the choice of score 

function, the design of the algorithm that will optimize the score function, and the 

efficient implementation of the algorithm. In the Apriori algorithm these steps can be 

identified as the structure, which is association rules; the score function, which is based 

on support and accuracy; the search method, which is breadth-first with pruning; and the 

data management technique, which is linear scans. 

2.1.2 Data Mining Tasks 

Hand, et al. (2001) gave the following categorization of data mining tasks 

corresponding to the different objectives of the analyst. Exploratory data analysis (EDA) 

uses visual and interactive techniques to explore the data without any clear idea of what 
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to look for. In descriptive modeling the goal is to describe all of the data and may include 

the overall probability distribution of the data (density estimation), cluster analysis and 

segmentation, and dependency modeling. Predictive modeling (classification and 

regression) uses the model to predict the value of one variable from the known values of 

other variables. The key distinction between prediction and description is that the 

objective of prediction is a unique variable while there is no single variable central to the 

model of descriptive problems. 

In discovering patterns and rules the concern is the detection of patterns. Finding 

combinations of items that occur in transaction databases has been addressed using 

algorithmic techniques based on association rules. The use of a pattern of interest to find 

similar patterns in the data set is referred to as retrieve by content.  

2.2  The Theory and Research Literature Specific to Data Mining 

2.2.1 Association Rule Mining 

Association rule mining searches for interesting relationships among items in a given 

data set. An association rule is a simple probabilistic statement about the co-occurrence 

of certain events in a database, and is particularly applicable to sparse transaction data 

sets (Han & Kamber, 2001; Hand, et al., 2001). According to Hand, et al. (2001) 

association algorithms find all rules satisfying the frequency and accuracy thresholds. 

Low thresholds result in the generation of many rules with the possibility of some of 

them being trivial to the user. One of the challenges in data mining is to develop methods 

for selecting potentially interesting rules from the large set of rules generated by the 

system.  
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    Agrawal, Imielinski and Swami (1993) first introduced the problem of mining 

association rules, which can be stated as follows: 

Let I = {i1, i2 ,…, in} be a set of items and D be a set of transactions where each 

transaction T has a unique identifier called its TID and consists of a set of items such that 

T ⊆ I. An itemset is a set of items. An itemset with k items is called a k-itemset. An 

itemset is maximal if it is not a subset of any other itemset. An association rule is an 

implication of the form X ⇒ Y, where X ⊆ I, Y ⊆ I, and X ∩ Y = ∅. The support s of the 

rule is the percentage of transactions in D that contains A ∪ B. The confidence c of the 

rule is the percentage of transactions in D containing A that also contains B. These can be 

expressed in probability terms as P (A ∪ B) and P (A|B) respectively (Han & Kamber, 

2001; Shintani & Kitsuregawa, 1998; Megiddo & Srikant, 1998; Srikant, Vu, & Agrawal, 

1997; Bayardo Jr., Agrawal, & Gunopulos, 1999). An itemset is frequent if its support is 

more than a user specified minimum support (min_sup) value. The goal of mining 

association rules is to generate all association rules that have support and confidence 

greater than the user specified support and confidence, respectively. 

The first step in the mining of association rules requires the identification of all 

frequent itemsets with each of these itemsets occurring with a frequency no less than the 

minimum support count. In the second step the frequent itemsets are used to generate a 

set of strong association rules that satisfy both minimum support and minimum 

confidence. The second step is the easier of the two steps and can be accomplished by 

finding all non-empty subsets of every frequent itemset l. For every such subset a, output 

a rule of the form a ⇒ (l – a) if the ratio of support (l) to support (a) is at least the 

minimum required (Han & Kamber, 2001).  
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There are five components that are associated with data mining algorithms for 

association rules, which are task, structure, score function, search method and data 

management technique. The task is to describe the association between variables and the 

structure is probabilistic association rules. The score function based on thresholds on 

accuracy and support and the search method is breath-first with pruning. The data 

management technique is multiple linear scans (Hand, Mannila, & Smyth, 2001). 

2.2.1.1 Classification of Association Rules  

According to Han and Kamber ( 2001) association rules are classified into four 

categories, which are types of values handled in a rule; dimension of the data; levels of 

abstraction involved in the rule; and the extension to association mining. The type of 

values handled in the rule refers to Boolean and quantitative association rules. In Boolean 

association rules the objective is to identify the presence or absence of association 

between items. A quantitative association rule partitions quantitative values for items into 

intervals. In a single-dimension association rule the items reference one dimension only. 

When the items reference two or more dimensions it is said to be multi-dimensional. 

Consider the rule set Age (X, “30...39”) ⇒ buys (X, “Laptop”) and Age (X, “30...39”) ⇒ 

buys (X, “Computer”). Here the two items laptop and computers are at two different 

levels of abstraction. The rule set is said to be a multilevel association rules. If the rule in 

a set does not reference items at different levels of abstraction the set is said to be single-

level association rules. Correlation analysis is one possible extension of association 

mining. In this extension the presence or absence of correlation between items is 

established. Mining of max patterns and frequent closed itemsets are also possible 

extensions. A max pattern is a frequent pattern p, such that any proper super pattern of p 
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is not frequent.  A frequent closed itemset is where an itemset c is closed if there exists 

no proper superset of c, c’, such that every transaction containing c also contains c’. Max 

patterns and frequent closed itemsets can be used to reduce the number of frequent 

itemsets generated in mining (Han & Kamber, 2001).  

2.2.2 Apriori Algorithm 

     This algorithm is influential in mining frequent itemsets for Boolean association rules. 

The name of the algorithm is based on the fact that the algorithm uses prior knowledge of 

frequent itemset properties (Agrawal, Imielinski and Swami, 1993; Han & Kamber, 

2001). Apriori is a serial algorithm that has a smaller computational complexity when 

compared with other serial algorithms (Han, Karypis & Kumar, 2000). The outline of the 

algorithm is shown in Figure 2.2.1. 
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(1) L1 = find_frequent_1_itemsets (D); 

(2) for (k = 2; Lk-1 ≠ ∅; k++){ 

(3)       Ck = apriori_gen(Lk-1, min_sup); 

(4)      for each transaction t ∈ D {// scan D for counts 

(5)         Ct = subset(Ck, t); // get the subset of t that are candidates 

(6)         for each candidate c ∈ Ct 

(7)           c.count++; 

(8) } 

(9) Lk = {c ∈ Ck | c.count ≥  min_sup} 

(10) } 

(11) return L = ∪kLk; 

 

procedure apriori_gen(Lk-1: frequent (k-1)-itemsets; min_sup: minimum support 

threshold) 

(1) for each itemset l1 ∈ Lk-1 

(2)   for each itemset l2 ∈ Lk-1 

(3)     if(l1[1] = l2[1])^(l1[2] = l2[2])^…^(l1[k-2]=l2[k-2])^(l1[k-1]=l2[k-1]) then{ 

(4)         c = l1 � l2; // join step: generate candidates 

(5)         if has_infrequent_subset(c, Lk-1) then 

(6)             delete c; // prune step: remove unfruitful candidate 

(7)        else add c to Ck; 

(8)     } 

(9) return Ck 

 

 

 

procedure has_infrequent_subset(c: candidate k-itemsets; Lk-1: frequent (k-1)-itemsets);  

 // use prior knowledge 

(1) for each (k-1)-subset s of c 

(2)       if s ∉ Lk-1 then 

(3)           return TRUE 

(4)  return FALSE 

 

 

 

 
Figure 2.2.1 Apriori Algorithm  

(Agrawal, Imielinski and Swami, 1993; Han & Kamber, 2001) 
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The following example illustrates the use of the Apriori Algorithm to mine the 

association rules from transaction database shown below. 

 

Database D 

 

 

 

 

 

 

 

STEPS 

1. In the first iteration, each item is a member of the set of candidate 1-itemsets, 

C1. The algorithm scans all the transactions in D in order to count the number 

of occurrences of each item. 

 

C1 

 

 

 

 

 

2. Generate the support count using a minimum transaction support count of 2. 

Therefore the set of frequent 1-itemsets L1 consists of candidate 1-itemsets 

satisfying minimum support. 

Itemset Support Count 

{I1} 2 

{I2} 3 

{I3} 3 

{I4} 1 

{I5} 3 

 

TID Items 

100 I1 I3 I4 

200 I2 I3 I5 

300 I1 I2 I3 I5 

400 I2 I5 
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L1 

 

 

 

 

3. To discover the set of frequent 2-itemsets, L2 the algorithm uses   L1� L1 to 

generate a candidate set of 2-itemsets, C2 consisting of ( 4

2 ) 2-itemsets. 

 

           C2 

 

 

 

 

 

4. The transactions in the database D are scanned and the support count of each 

candidate itemset in C2 is generated 

                                  C2 

 

 

 

 

 

Itemset Support Count 

{I1} 2 

{I2} 3 

{I3} 3 

{I5} 3 

 

Itemset 

{I1, I2} 

{I1, I3} 

{I1, I5} 

{I2, I3} 

{I2, I5} 

{I3, I5} 

 

Itemset Support Count 

{I1, I2} 1 

{I1, I3} 2 

{I1, I5} 1 

{I2, I3} 2 

{I2, I5} 3 

{I3, I5} 2 
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5. The set of frequent 2-itemsets, L2, is then determined and consists of those 

candidate 2-itemsets in C2 having minimum support. 

                 L2 

 

 

 

 

6. The generation of the set of candidate 3-itemsets, C3 which is as follows: 

       Join: C3 = L2 � L2 

       = {{I1, I3}, {I2, I3}, {I2, I5}, {I3, I5}} � {{I1, I3}, {I2, I3}, {I2, I5},  

           {I3, I5}}      

               = {I2, I3, I5}  

              C3 = {I2, I3, I5} 

                  The subsets of C3 are {I2, I3}, {I2, I5} and {I3, I5} and they are all frequent   

                  so there is no pruning. 

                  Therefore C3 = {I2, I3, I5}. 

                  Generate count of each candidate in C3.  

                                                     C3 

 

 

7. Compare candidate support count with maximum support to generate L3. 

Itemset Support Count 

{I1, I3} 2 

{I2, I3} 2 

{I2, I5} 3 

{I3, I5} 2 

 

Itemset Support Count 

{I2, I3, I5} 2 
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           L3 

 

 

 

 

8. The algorithm uses L3 � L3 to generate a candidate set of 4-itemsets, C4. 

C4 = ∅ and the algorithm terminates.  

Generating Association rules 

Once the frequent itemsets from transactions in a database D have been found, it is 

straightforward to generate strong association rules from them (where strong association 

rules satisfy both minimum support and minimum confidence). The confidence is given 

by: 

Confidence (A ⇒  B) = P (A�B) = (support_count (A ∪ B))/(support_count (A)), where  

support_count (A ∪ B) is the number of transactions containing the itemsets  

A ∪ B, and support_count(A) is the number of transactions containing the itemset A. 

Based on this equation, association rules can be generated as follows: 

For each frequent itemset i, generate all non-empty subset of i. 

For every non-empty subset s of i, output the rule “s ⇒ (i - s)” if the confidence of this 

rule is greater than or equal to the maximum confidence threshold (Han & Kamber, 

2001). 

In the example above the frequent itemset i = {I2, I3, I5}. The nonempty subsets of i 

are {I2, I3}, {I2,  I5}, {I3, I5}, {I2}, {I3} and  {I5}.  

 

Itemset Support Count 

{I2, I3, I5} 2 
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The resulting association rules are as follows: 

I2 ∧ I3 ⇒ I5 confidence = 2/2 = 100% 

I2 ∧ I5 ⇒ I3 confidence = 2/3 = 67% 

I3 ∧ I5 ⇒ I2 confidence = 2/2 = 100% 

I2 ⇒ I3 ∧ I5  confidence = 2/3 = 67% 

I3 ⇒ I2 ∧ I5  confidence = 2/3 = 67% 

I5 ⇒ I2 ∧ I3  confidence = 2/3 = 67% 

The confidence threshold will determine the rules for output. 

If minimum confidence were set at 70% we would output the following rules: 

I2 ∧ I3 ⇒ I5 confidence = 2/2 = 100% 

I3 ∧ I5 ⇒ I2 confidence = 2/2 = 100% 

Hash Tree 

 One method used to improve  the counting of the itemsets  by Apriori based 

algorithms is a hash tree. The hash tree identifies the items to be counted efficiently and 

reduces the time taken to count the candidate itemsets. One approach to counting the 

itemsets is to compare the items in each transaction against all the candidate itemsets. 

This is a time consuming activity, which is significantly improved by the use of a hash 

tree (Han, Karypis, & Kumar, 2000). 

 The candidate itemsets to be counted using a hash tree are shown in Table 2.2.1. 

Before we can count these itemsets a hash tree is implemented for these candidate 

itemsets. In Figure 2.2.2 we build a hash tree to count 3-itemsets. The hash function is 

that itemsets starting with 1, 4, or 7 hashes to the left child, itemsets starting with 2, 5, or 

8 hashes to the middle child and itemsets starting with 3 or 6 hashes to the right child.  
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The hash function H(x) is defined as follows: 

 

 

 

 

Where x is the first item in the itemset 

           L, M, and R represent the left, middle and right child respectively. 

The maximum number of itemsets that can be stored in a bucket is 3. Leaf nodes contain 

itemsets that hashed to those nodes. 

 Consider a transaction with the items 1, 5, 6, 7, 8. We first hash at the root with item 1 

which takes us to the left child, at the next node we hash on 5 which takes us to the 

middle child, we then hash on 6 which takes us to the right child. We are now at a leaf 

node. We check the transaction against the items in the leaf node and there is no match. 

We return to the level above where we hash on 7, which takes us to the left node. This is 

also a leaf node so we compare its contents against the transaction and there is no match. 

We return to the level above and hash on 8, which takes us to the middle node. The 

middle node is a leaf and there is also a match with 1, 5, 8 so we increase the count for 

candidate itemset 1, 5, 8. At this point we have checked all itemsets starting with 1, 5, we 

now need to check for itemsets starting 1, 6. We next go back up to level 2 of the hash 

tree where we hash on 6 which takes us to the right node which is a leaf node. We also 

found a match for 1, 6, 8 and increment the count for this candidate itemset. We go back 

up to the next level and hash on 7 which takes us to the left node which is also a leaf node 

and there is also a match for 1, 7, 8. The count for candidate 1, 7, 8 is incremented. At 

 

 

                   L        if (x mod 3) = 1 

H(x) =        M       if (x mod 3) = 2 

                   R        if (x mod 3) = 0 
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this point we have identified all the itemsets starting with 1, 6. This is repeated for the 

remaining items in the transaction. 

 The next step is to identify all those itemsets starting with 5.  We then go back to level 

1, the root node and hash on 5, which takes us to the middle node, and the process is 

repeated as outlined above. It is clear that the hash tree is an efficient approach to identify 

the frequent itemsets in a transaction. The final count of candidate itemsets after 

processing the transaction is shown in Table 2.2.2. 
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Candidate

Itemsets
Count

{1 2 4} 0

{1 2 7} 0

{1 3 7} 0

{1 4 5} 0

{1 4 6} 0

{1 5 8} 0

{1 6 8} 0

{1 7 8} 0

{2 3 4} 0

{2 4 5} 0

{2 4 6} 0

{2 5 6} 0

{3 5 7} 0

{2 5 8} 0

{2 6 7} 0

{2 7 8} 0

{3 5 7} 0

{3 6 8} 0

{4 5 8} 0

{6 7 8} 0

{7 8 9} 0
 

 Table 2.2.1 Candidate Itemsets in Hash Tree 
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368

678

245

246

278

256
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234

267

145

146
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137

168

124

127

158

458

789

3,61,4,7
2,5,8

 

Figure 2.2.2 Hash Tree of Candidate 3-Itemsets  
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Candidate

Itemsets
Count

{1 2 4} 0

{1 2 7} 0

{1 3 7} 0

{1 4 5} 0

{1 4 6} 0

{1 5 8} 1

{1 6 8} 1

{1 7 8} 1

{2 3 4} 0

{2 4 5} 0

{2 4 6} 0

{2 5 6} 0

{3 5 7} 0

{2 5 8} 0

{2 6 7} 0

{2 7 8} 0

{3 5 7} 0

{3 6 8} 0

{4 5 8} 0

{6 7 8} 1

{7 8 9} 0
 

Table 2.2.2  Count of Candidate Itemsets in Hash Tree 
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2.2.3 Database Organization 

     The database of transactions shown in Table 2.2.3 can be considered as a Boolean 

relational table as shown in Table 2.2.4. The database can be physically organized 

horizontally as shown in Table 2.2.3 or vertically as shown in Table 2.2. 5. The 

horizontal organization consists of a set of pairs (transaction ID, itemset), where 

transaction ID is the transaction number and itemset is the set of items bought in that 

transaction. The vertical organization consists of a set of pairs (item, transaction list), 

where item is an item bought and transaction list is the set of transactions in which the 

item was bought.  
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TID List of Items

100 I1 I2 I5

200 I2 I4

300 I2 I3

400 I1 I2 I4

500 I1 I3

600 I2 I3

700 I1 I3

800 I1 I2 I3 I5

900 I1 I2 I3
 

Table 2.2.3 Transaction Database 
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Table 2.2.4 Boolean Representation of Transaction Database 

TID I1 I2 I3 I4 I5

100 1 1 0 0 1

200 0 1 0 1 0

300 0 1 1 0 0

400 1 1 0 1 0

500 1 0 1 0 0

600 0 1 1 0 0

700 1 0 1 0 0

800 1 1 1 0 0
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Table 2.2.5 Vertical View of Transaction Database 

I1 I2 I3 I4 I5

T100 T100 T300 T200 T100

T400 T200 T500 T400 T800

T500 T300 T600

T700 T400 T700

T800 T600 T800

T900 T800 T900

T900
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2.2.4  Parallel Processing  

Parallel processing is the concurrent manipulation of data elements belonging to one 

or more processes solving a single problem. Pipelining and parallelism are normally used 

to achieve concurrency. Pipelining divides the computation of a task into a number of 

steps, while parallelism is the use of multiple resources to increase concurrency. 

Pipelined computation is divided into a number of steps called segments or stages. Each 

segment is assigned a part of the computation to be carried out and the output of one 

segment serves as input to the next segment. 

In an ideal parallel system the following are true: (1) linear speedup: Four times as 

much hardware can perform the task in one quarter the time, and (2) linear scaleup: four 

times as much hardware can perform four times as large a task in the same elapsed time 

(DeWitt & Gray, 1992).  If a job is executed on a small system and a larger system, the 

speedup that is obtained from the larger system is defined as: 

 

 

If an N-times large or more expensive system yields a speedup of N it is said to be 

linear. This metric holds the problem size constant while it grows the system. Scaleup 

refers to the ability of an N-times larger system to perform an N-times larger job in the 

same elapsed time as the original system (DeWitt & Gray, 1992). 

 

 

A linear scaleup has a value of 1 since executing a problem that is twice as large on a 

system that is twice as large as the original system will take the same time to execute as 

                                small_system_elapsed_time 

           Speedup =  

                                larger_syetem_elapsed_time 

 

                  small_system_elapsed_time_on_small_problem 

Scaleup = 

                  larger_system_elapsed_time_on_larger_problem 
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the time taken by the original problem on the original system. Three major challenges to 

speedup and scaleup are startup, interference and skew. The time taken to startup 

thousands of processors can dominate the computations. The accessing of shared 

resources by processes can cause interference when these processes try to access a shared 

resource. The average size of each step decreases as the number of parallel steps 

increases and may result in a variance that is in excess of the mean. Increased parallelism 

will improve the elapsed time only slightly where the variance dominates the mean 

(DeWitt & Gray, 1992). A large grain size will increase speedup since it reduces the 

frequency of synchronization. 

     If a portion of the algorithm must be executed sequentially by one of the p processors, 

then the remaining p-1 processors must wait for the sequential portion to complete before 

they resume, this implies synchronization among the processors. Contention for single 

resource limits the speedup possible. The workload must be balanced among processors. 

Static decomposition assumes that the tasks and their precedence relations are known 

before execution. Dynamic decomposition assumes that tasks are generated during 

program execution. 

In a distributed environment the practical implications of communication overhead, 

the effect of the underlying architecture, and the dynamic behaviour of the system    are 

issues that contribute to the complexity of a distributed environment (Zaki, 2000b). 

Scalable Systems 

Ideally increasing the number of processors should produce a corresponding increase 

in the processing power of the machine, and there should be no upper limit to the number 

of processors used. An ideal system should not have global memory, as you cannot put an 
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unbounded number of processors close to a global memory. It is therefore necessary to 

limit access to global memory due to the fact that  performance suffers as processors are 

put farther and farther from memory. In order to keep the communications cost low it is 

necessary to limit communications to processors that are close together. 

Parallel Data Mining 

Tightly coupled systems are generally associated with parallel data mining (PDM). 

These systems include distributed memory machines (DMM), shared memory machines 

also known as symmetric multiprocessors (SMP), and clusters of SMP workstations  

(Zaki, 2000b). Distributed data mining (DDM) is based on loosely coupled systems 

including sites that are geographically distributed over a wide area network. PDM and 

DDM differs significantly in scale, data distribution and communication costs (Zaki, 

2000b). 

According to Zaki (2000b) the main challenges associated with parallel and distributed 

data mining are minimization of communications, load balancing, synchronization, disk 

I/O minimization and decomposition and layout of the data. The partitioning of the task 

and data together with the type of memory system will affect the design space for parallel 

systems. In distributed and shared memory systems synchronization is implicit in 

message passing with DMMs. It is therefore necessary to optimize communications. In 

shared memory machines (SMP) locks and barriers are used for synchronization. I/O is of 

importance for SMP machines. Data decomposition is important for distributed systems. 

The objective is to have optimal decomposition among the processors and to minimize 

communications. Algorithms based on a distributed shared-nothing memory are designed 

based on the reduction of communication, pruning of candidate sets and partition of the 
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candidate sets across the distributed memory. This is known as a level-wise approach as 

developed in Apriori. In the level-wise approach the computation cost generally peaks in 

the second iteration and decreases in the subsequent iterations due to reduction in the size 

of the candidate itemsets. Two options for reducing the cost of the level-wise approach 

are the reduction in the number of rounds of scanning the database and reduction in the 

number of candidate itemsets especially in iteration 2 (Zaki, 2000b).  

There are two approaches to the implementation of data mining, which are task and 

data parallelism. One approach is to divide the data among several processors with each 

one performing the same set of operations on the data assigned to it. This approach is 

referred to as data parallelism. In the second approach the processors perform different 

operations independently but have access to entire database. This is known as task 

parallelism. A hybrid combines both approaches (Zaki, 2000b). 

2.2.5 Partitioning of Candidate and Data 

There are generally two approaches associated with parallel and distributed data 

mining methods. These can be described in terms of the computation and data 

partitioning methods used. The database can be shared in a shared-memory or shared disk 

architecture. The database can also be partitioned among the available nodes in a 

distributed memory architecture (Zaki, 2000b). 

The candidate set can also be shared, replicated or partitioned among the nodes. In the 

shared approach a single copy of the candidate set is evaluated by all nodes. In the 

partitioned approach each processor is responsible for the computations associated with a 

specific set of candidate itemsets. The candidate itemsets are replicated on all processors 

where they are evaluated locally and then merged to generate the global results. 
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Replicated or Shared Candidates, Partitioned Database 

In the replicated or shared candidates and partitioned database  approach the database 

is partitioned into equal sizes among the processors and the candidate itemsets replicated 

across all processors. Parallel algorithms based on Apriori that use this approach compute 

the frequency of the candidate sets in the database at each processor during each iteration. 

The information at each processor is broadcast to all other processors for the computation 

of global counts. Some of the algorithms based on this approach are Count Distribution 

(CD), Fast Distributed Mining (FDM) (Cheung, et al., 1996), and Non Partition Apriori 

(NPA) (Shintani, & Kitsuregawa, 1996). This approach reduces the communication cost 

since it exchanges frequency counts only at the end of each iteration. However by 

replicating the candidates they fail to use the aggregate system memory that is available. 

Cheung, Hu and Xia (1998) implemented Adaptive Parallel Mining (APM) that is based 

on Dynamic Itemset Counting (DIC). The candidate set is shared among processors and 

updated asynchronously. 

Partitioned Candidate, Partitioned Database 

     Three Apriori based algorithms that use this approach are Data Distribution (DD), 

Simply Partitioned Apriori (SPA) (Shintani, & Kitsuregawa, 1996)  and Intelligent Data 

Distribution (IDD). The main advantage of this approach is the utilization of the 

aggregate memory. The main disadvantage is the need to scan the partitions of other 

processors; this is accomplished by exchanging the partitions at each iteration. 

Partitioned Candidates, Selectively Replicated or Shared Database 

Shintani and Kitsuregawa (1996) implemented the Hashed Partitioned Apriori  
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(HPA) and HPA with Extremely Large Itemset Duplication (HPA-ELD) algorithms that 

used this approach. In this approach the database on each processor is selectively 

replicated on each processor and each processor also evaluates a specific set of candidate 

itemsets. 

2.2.6 Parallel and Distributed Algorithms 

Several parallel association algorithms have been designed based on the Apriori 

algorithm. Park, et al. (1995) implemented the Direct Hashing and Pruning (DHP) 

algorithm, which was later, used in a number of parallel implementations. Zaki, 

Parthasarathy, Ogihara and Li (1997) used an approach based on equivalence class to 

implement four new parallel algorithms. 

Agrawal and Shafer (1996) presented three parallel algorithms for mining association 

rules. These algorithms are the Count Distribution (CD), Data Distribution (DD), and 

Candidate Distribution (CDD) and are based on the Apriori serial algorithm used for the 

mining of association rules. The CD algorithm substitutes redundant computations in 

parallel on otherwise idle processors for communications overhead. Each processor keeps 

a copy of the complete candidate itemsets which it updates using the locally stored 

database. This copy is then broadcast to all other processors to be used for the final count. 

The CD algorithm does not exploit the total available memory and so it counts the same 

number of candidates in one pass as the serial algorithm. 

The DD algorithm is designed to exploit the total memory available as the number of 

processors increase. The candidate itemset is divided among the N processors. On an N-

processor configuration a candidate set that would require N passes in CD can be counted 

in one pass in DD. It is very expensive for every processor to broadcast the locally stored 
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data to every other processors. In the CD and DD algorithms data tuples and candidate 

itemsets are partitioned merely to equally divide the work. They require all processors to 

be connected and all information gathered before they can proceed on to the next pass. 

These constraints are eliminated in the CDD algorithm. 

The CDD algorithm partitions both the data and the candidates in such a way, that 

each processor may proceed to the next pass independent of the other processors. 

Depending on the quality of the itemset partitioning, parts of the database may have to be 

replicated on several processors. Following candidate distribution, the processors work 

independently. Each processor counts only the portion of candidate itemset assigned to it. 

The pruning of the local candidate set is the only step that requires a processor to get 

information from other processors. This information is sent asynchronously making it 

possible for the processors to proceed without complete pruning information. It then uses 

the late arriving pruning information in subsequent stages. The results of tests on the 

performance of CD, DD and CDD show CD to be the best of the three with linear 

speedup and excellent scaleup behaviors.  

Two algorithms proposed by Han, et al. (2000) for the parallel mining of association 

rules are the Intelligent Data Distribution (IDD) algorithm and the Hybrid Distribution 

(HD) algorithm. The main difference between IDD and CD is the use of a ring network to 

connect the processors in IDD. In IDD the portion of the transactions stored at each 

processor is sent to the other processors using a point-to-point communication between 

neighbors resulting in the elimination of any communication contention among 

processors. IDD partitions the candidate itemset among the N processors in such a way 



38 

 

 

   

 

that each processor gets itemsets that begin only with a subset of all possible items. Load 

balancing is achieved by using a special partitioning algorithm based on bin packing. 

The HD algorithm is a combination of CD and IDD and improves on the inefficiency 

problem associated with IDD as the number of processor increases. The N processors are 

divided into G equal size groups, each containing N/G processors. The transactions are 

then divided among the groups treating each group as a single processor. In the HD 

algorithm the CD algorithm is executed as if there were only N/G processors. Within 

each group the candidate itemsets are partitioned among the processors and IDD used to 

compute the counts. IDD implements the process of building the hash tree in parallel and 

is scalable as the size of the candidate set increases and it also utilizes memory more 

effectively. HD combines the good qualities of CD and IDD. It achieves better load 

balancing than IDD since the candidate set is partitioned into fewer buckets (Han, et al., 

2000). 

Cheung, et al. (1996) presented the Fast Distributed Mining of association rules 

(FDM) algorithm. In this algorithm interesting relationships between locally large sets 

and globally large sets are explored to generate a smaller set of candidate sets at each 

iteration. Some candidate sets are also pruned away using local and global pruning 

techniques and only O(n) messages are passed to determine whether or not a candidate 

set is large. 

Three variations of FDM based on different combinations of local and global pruning 

are the FDM with Local Pruning (FDM-LP), FDM with Local and Upper Bound Pruning 

(FDM-LUP) and FDM with Local Pruning and Polling-Site-Pruning (FDM-LPP).  These 

algorithms make use of the properties related to large itemsets in a distributed 
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environment. One such property is that every globally large itemset must be locally large 

at some site(s). Pruning is done both locally at each site and globally using information 

from all the sites. These two techniques can be combined to form different pruning 

strategies. FDM also uses a count polling technique to ensure that only O(n) messages are 

needed for every candidate itemset in all cases, where n is the number of processors.  

The Adaptive Parallel Mining (APM) algorithm for mining association rules divides the 

database into n logical partitions, where n is the number of processors. It is based on the 

shared memory machines (SMP) architecture and uses dynamic candidate generation 

technique to generate the common candidates asynchronously. Processors communicate 

through shared variables.  

       One variant of the APM algorithm uses the Dynamic Itemset Counting (DIC), which 

was developed by Brin, Motwani, Ullman, and Tsur (1997) and is referred to as APM-

DIC.  The APM-AIC is a second variant of APM that uses  an adaptive interval 

configuration (AIC), which was designed to address the exponential growth of the 

candidate sets associated with DIC. APM was found to be faster than CD, when 

compared to CD the gain for APM-DIC was insignificant (Cheung, et al., 1998). 

Cheung & Xiao (1998) investigated the effect of data skewness on parallel mining of 

association rules using the Fast Parallel Mining (FPM) algorithm based on the use of 

distributed and global pruning techniques. This algorithm is similar to the Count 

Distribution (CD) algorithm but requires less bandwidth and has a simpler 

communication scheme. The effectiveness of these pruning techniques depends on the 

itemset distribution that can be captured as data skewness. The speedup of the algorithm 
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was found to be super linear and when compared with CD the response time was found to 

be significantly faster.  

The importance of data locality and reduction of false sharing in modern shared 

memory machines (SMP) due to the increasing gap between processor and memory 

subsystem performance was highlighted by Parthasarathy, et al. (1998). The Common 

Candidate Partitioned Database (CCPD) is a shared-memory algorithm, which is based 

on the Apriori algorithm. In CCPD the candidate itemsets are stored in a hash tree to 

facilitate fast support counting.  The candidate hash tree is common, but the database is 

split logically among the processors. New candidates are generated and inserted in 

parallel. It uses a lock to guarantee mutual exclusion. 

Three techniques for improving reference locality are Simple Placement Policy (SPP), 

Localized Placement Policy (LPP) and Global Placement Policy (GPP) (Parthasarathy, et 

al., 1998). In SPP all the different hash tree building blocks are allocated memory from a 

single region and do not rely on any special placement of the blocks based on traversal 

order. Three possible variants of this technique are common regions, individual regions, 

and grouped regions. The LPP scheme groups related data structures together using local 

access information present in a single routine. GPP utilizes knowledge of order of 

traversal of the entire hash tree to place hash tree building blocks in memory so that 

structures are arranged in the order of access in the same cache line in most cases.  

Shared memory systems suffer from false sharing, which occurs when two different 

shared variables are located in the same cache block. This results in the exchange of the 

block between the two processors even though they are accessing different variables. 

Three techniques for reducing false sharing are Padding and Aligning, Segregate Read-
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Only Data and Privatize (and Reduce) (Parthasarathy, et al., 1998). Padding and Aligning 

places unrelated read-write data on separate cache lines and results in a significant loss of 

locality and high memory space overhead. In Segregate Read-Only Data locks and 

counters (read-write data) are separated from the itemset (read-only data) and eliminates 

the possibility of falsely sharing read-only data. The Privatize (and Reduce) scheme 

makes a private copy of the data that will be used locally so as to avoid false sharing with 

operations on that data and was combined with the global placement policy and was 

given the name Local Counter Array-Global Placement Policy (LCA-GPP). When 

compared with the Common Candidate Partitioned Database (CCPD) shared memory 

algorithm Simple Placement Policy (SPP) did extremely well due to its simplicity.  

The Non Partitioned Apriori (NPA), Simply Partitioned Apriori (SPA), Hashed 

Partitioned Apriori (HPA) and HPA with Extremely Large Itemset Duplication (HPA-

ELD) are parallel algorithms for mining association rules on shared nothing parallel 

machines. In NPA the candidate itemsets are copied among all the processors. If the 

processor is unable to hold all the candidate itemsets in memory, the candidate itemsets 

are partitioned into fragments, each of which fits in the memory of the processor. In this 

case there is repeated scanning of the database to generate support counts. SPA, HPA and 

HPA-ELD partitioned the candidate itemsets over the memory space of all the 

processors.  HPA-ELD replicates candidates with high support on all processors in order 

to reduce communications among the processors (Shintani & Kitsuregawa, 1996). 

The disk I/O cost for NPA is high and no transaction data are exchanged among the 

processors in the second phase. SPA exploits the aggregate memory of the system by 

partitioning the candidate itemsets equally over the memory space of all the processors. 
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The I/O cost of SPA is low but the communication cost is high. HPA partitions the 

candidate itemsets among the processors using a hash function, which eliminates the need 

to broadcast all the transaction data. HPA has low I/O and communication costs. HPA-

ELD utilizes the total system memory by copying some of the itemsets. It selects the 

most frequently occurring itemsets and copies them over the processors so that all the 

memory space is used which helps to reduce communication among the processors. 

These frequently occurring itemsets are counted locally, at all the processors. HPA-ELD 

has low I/O and communication costs and is also capable of skew handling (Shintani & 

Kitsuregawa, 1996). 

Zaki, et al. (1997) highlighted the limitations of current parallel algorithms such as 

Count Distribution, Data Distribution, and Candidate Distribution. These algorithms 

make repeated passes over the disk-resident database partition incurring high I/O 

overheads. In addition there is an exchange of count of candidates at the remote database 

partitions during each iteration. The Equivalence Class Transformation (ECLAT) 

algorithm, proposed by  Zaki, et al. (1997)  is a parallel algorithm that clusters related 

frequent itemsets and transactions.  The interconnection of the processors allows a user-

level application to write the memory of remote nodes, which makes it possible to have 

very fast user-level messages and low synchronization costs. ECLAT clusters related 

groups of itemsets using equivalence class partitioning while clustering transactions using 

the vertical database layout technique. The performance of ECLAT was found to be 

better than that of the Count Distribution algorithm.  

 

 



43 

 

 

   

 

2.2.7 Current State and Existing Methodologies 

Several parallel algorithms have been proposed for the mining of association rules 

including Count Distribution (CD), Data Distribution (DD), Intelligent Data Distribution 

(IDD) and Hybrid Distribution (HD). The transaction database shown in Table 2.2.6 will 

be used to illustrate examples of these algorithms. 
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TID List of Items

100 I1 I2 I5

200 I2 I4

300 I2 I3

400 I1 I2 I4

500 I1 I3

600 I2 I3

700 I1 I3

800 I1 I2 I3 I5

900 I1 I2 I3
 

 Table 2.2.6 Transaction Database 
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2.2.7.1 Count Distribution (CD) Algorithm.  

CD divides the database among the processors and stores all the candidates at each 

processor. The entire hash tree is stored at each processor, in addition each processor 

counts how many times each candidate itemset appears in the transactions stored in local 

memory. The global counts of the candidates are computed by summing all of the local 

counts at each processor. Each processor executes the serial Apriori algorithm on the 

locally stored transactions.  

The main drawback with CD is that the building of the hash tree is not done in a 

parallel manner. The problem with this approach is that with a large number of 

processors this step can be a bottleneck and secondly if the number of candidates is large, 

the hash tree may be too big to fit in memory making it necessary to partition it. In this 

case the local transactions must be read once for each partition. This can be expensive on 

machines with slow I/O systems. The CD algorithm is effective for small number of 

distinct items and a high minimum support. 
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Count Distribution Algorithm (Agrawal & Shafer, 1996). 

The first pass is special. For all other passes k > 1, the algorithm works as follows: 

1. Each processor P
i
 generates the complete Ck, using the complete frequent 

itemset Lk-1 created at the end of pass k-1. Observe that since each processor 

has identical Lk-1, they will be generating identical Ck. 

2. Processor P
i 
makes a pass over its data partition D

i
 and develops local support 

counts for candidates in Ck. 

3. Processor P
i
 exchanges local Ck counts with all other processors to develop 

global Ck counts. Processors are forced to synchronize in this step. 

4. Each processor P
i 
now computes Lk from Ck. 

5. Each processor P
i
 independently makes the decision to terminate or continue 

to the next pass. The decision will be identical as the processors all have 

identical Lk. 
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     An illustration of the algorithm is shown in Figure 2.2.3 (Agrawal & Shafer, 1996). 

Computation Using CD 

The following example is an illustration of how the CD algorithm works using the sample 

database in Table 2.2.6. In this example we use a minimum transaction support count of 

2. 

The database will be divided among the 4 processors as shown in Figure 2.2.4. The 

computations for the 3-itemsets are shown in Figure 2.2.5 and Figure 2.2.6. The frequent 

3-itemsets are shown in Figure 2.2.6. However, only {I1, I2, I3} has met the required 

minimum transaction support of 2 and will be used to  generate the rules. 



48 

 

 

   

 

Data 
 

N/P 
 

   

Count 

Candidate  

     Hash Tree 

{I1,I2} 4 

{I1,I3} 4 

{I1,I4} 1 

{I1,I5} 2 

{I2,I3} 4 

  M 

 

Data 
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Count 

Candidate  

     Hash Tree 

{I1,I2} 4 
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{I1,I4} 1 
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{I2,I3} 4 

  M 

 

Data 
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     Hash Tree 

{I1,I2} 4 

{I1,I3} 4 

{I1,I4} 1 

{I1,I5} 2 

{I2,I3} 4 

  M 

 

Data 
 

N/P 
 
  

 Count 

 Candidate  

     Hash Tree 

{I1, I2} 4 

{I1, I3} 4 

{I1, I4} 1 

{I1, I5} 2 

{I2, I3} 4 

M 

 

N: Number of data items 

M: Size of candidate set 

P: Number of processors 

Figure 2.2.3   Count Distribution (CD) Algorithm (Agrawal & Shafer, 1996). 
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Processor 0 

T100 

T200 

 

Processor 1 

T300 

T400 

T500 

 

Processor 2 

T600 

T700 

 

Processor 3 

T800 

T900 

Itemset Sup. 

Count 

{I1} 6 

{I2) 7 

{I3} 6 

{I4} 2 

{I5} 2 

 

Itemset Sup. 

Count 

{I1} 6 

{I2) 7 

{I3} 6 

{I4} 2 

{I5} 2 

 

Itemset 

{I1, I2} 

{I1, I3} 

{I1, I4} 

{I1, I5} 

{I2, I3} 

{I2, I4} 

{I2, I5} 

{I3, I4} 

{I3, I5} 

{I4, I5} 

 

     C1                  L1               C2 

Compare 

candidate 

support count 

with minimum 

support count 

           C2           C2              C2         C2 

 

     Processor 0          Processor 1       Processor 2     Processor 3 

Itemset Count 

{I1, I2} 1 

{I1, I3} 0 

{I1, I4} 0 

{I1, I5} 1 

{I2, I3} 0 

{I2, I4} 1 

{I2, I5} 1 

{I3, I4} 0 

{I3, I5} 0 

{I4, I5} 0 

 

Itemset Count 

{I1, I2} 1 

{I1, I3} 1 

{I1, I4} 1 

{I1, I5} 0 

{I2, I3} 1 

{I2, I4} 1 

{I2, I5} 0 

{I3, I4} 0 

{I3, I5} 0 

{I4, I5} 0 

 

Itemset Count 

{I1, I2} 0 

{I1, I3} 1 

{I1, I4} 0 

{I1, I5} 0 

{I2, I3} 1 

{I2, I4} 0 

{I2, I5} 0 

{I3, I4} 0 

{I3, I5} 0 

{I4, I5} 0 

 

Itemset Count 

{I1, I2} 2 

{I1, I3} 2 

{I1, I4} 0 

{I1, I5} 1 

{I2, I3} 2 

{I2, I4} 0 

{I2, I5} 1 

{I3, I4} 0 

{I3, I5} 1 

{I4, I5} 0 

 

Figure 2.2.4 Local Count for CD 
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Itemset Count 

{I1,I2} 4 

{I1,I3} 4 

{I1,I4} 1 

{I1,I5} 2 

{I2,I3} 4 

{I2,I4} 2 

{I2,I5} 2 

{I3,I4} 0 

{I3,I5} 1 

{I4,I5} 0 

 

Itemset Count 

{I1,I2} 4 

{I1,I3} 4 

{I1,I4} 1 

{I1,I5} 2 

{I2,I3} 4 

{I2,I4} 2 

{I2,I5} 2 

{I3,I4} 0 

{I3,I5} 1 

{I4,I5} 0 

 

Itemset Count 

{I1,I2} 4 

{I1,I3} 4 

{I1,I4} 1 

{I1,I5} 2 

{I2,I3} 4 

{I2,I4} 2 

{I2,I5} 2 

{I3,I4} 0 

{I3, I5} 1 

{I4, I5} 0 

 

Itemset Count 

{I1, I2} 4 

{I1, I3} 4 

{I1, I4} 1 

{I1, I5} 2 

{I2, I3} 4 

{I2, I4} 2 

{I2, I5} 2 

{I3, I4} 0 

{I3, I5} 1 

{I4, I5} 0 

 

            C2         C2             C2          C2 

 

    Processor 0      Processor 1     Processor 2   Processor 3 

 

Itemset Count 

{I1, 2} 4 

{I1,I3} 4 

{I1,I5} 2 

{I2,I3} 4 

{I2,I4} 2 

{I2,I5} 2 

 

           L2                 C3 

       Processor 0 

Itemset 

{I1, I2, I3} 

{I1, I2, I5} 

 

Figure 2.2.5 Count After Global Reduction for CD 
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Itemset Count 

{I1, I2, I3} 0 

{I1, I3, I5} 0 

 

Itemset Count 

{I1, I2, I3} 0 

{I1, I3, I5} 0 

 

Itemset Count 

{I1, I2, I3} 0 

{I1, I3, I5} 0 

 

Itemset Count 

{I1, I2, I3} 2 

{I1, I3, I5} 1 

 

 

        Processor 0          Processor 1          Processor 2               Processor 3 

Figure 2.2.6 Local Count of 3-Itemset for CD 
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The count for each candidate is shown below: 

 

 

 

 
 

 

The algorithm terminates at this point and the frequent itemsets used to generate the 

rules. 

 

2.2.7.2 Data Distribution (DD) Algorithm 

DD partitions the candidate itemsets among the processors in a round-robin fashion. 

Each processor is now responsible for computing the count of the locally stored subset of 

the candidate itemsets for all the transactions in the database. Since each processor is 

assigned a specific subset of the candidate itemsets it is now necessary to scan the rest of 

the transactions stored in the memory of the other processors in addition to the locally 

assigned transactions. After computing the count of its candidate itemsets, each processor 

finds the frequent itemsets from the local candidate itemsets and sends these to all other 

processors. 

Total available memory is better utilized since the candidate itemsets are partitioned 

among p processors. However this algorithm was found to be slower than the Count 

Distribution (CD) algorithm. The communication pattern of this algorithm causes three 

problems. First, for each pass of the algorithm each processor sends to all the other 

processors the portion of the database that resides locally. Each processor reads the 

locally stored portion of the database one page at a time and sends it to all the other 

processors by issuing p – 1 send operations. Similarly, each processor issues a receive 

operation from each other processor in order to receive these pages. If the interconnection 

network of the underlying parallel computer is fully connected and each processor can 

Itemset Count 

{I1, I2, I3} 2 

{I1, I3, I5} 1 
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receive data on all incoming links simultaneously, then this communication pattern will 

lead to a very good performance. An illustration of the algorithm is shown in Figure 

2.2.7. 
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     Candidate        

     Hash Tree 
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Data Broadcast 

    Processor 0    Processor 1        Processor 2      Processor 3 

All-to-all-Broadcast 

N: Number of data items 

M: Size of candidate set 

P: Number of processors 

Figure 2.2.7   Data Distribution (DD) Algorithm (Agrawal & Shafer, 1996). 
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Data Distribution (Agrawal & Shafer, 1996). 

 

Pass 1: Same as CD. 

Pass k > 1: 

1. Processor P
i
 generates Ck from Lk-1.  It retains only 1/Nth of the itemsets 

forming the candidate subset i

kC that it will count. Which 1/N itemsets are 

retained is determined by the processor id and can be computed without 

communicating with other processors. Itemsets are assigned in a round-robin 

fashion. The i

kC sets are all disjoint and the union of all i

kC sets is the original 

Ck.  

2. Processor P
i
 develops support counts for the itemsets in its local candidate set 

i

kC using both local data pages and data pages received from other processors. 

3. At the end of the pass over the data, each processor P
i
 calculates i

kL using the 

local i

kC .  Again, all i

kL sets are disjoint and the union of all i

kL  sets is Lk. 

4. Processors exchange i

kL  so that every processor has the complete Lk for 

generating Ck+1 for the next pass. This step requires processors to synchronize. 

Having obtained the complete Lk, each processor can independently (but 

identically) decide whether to terminate or continue on to the next pass.   
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Computation Using DD 

The following is an illustration of how the DD algorithm works using the sample 

database in Table 2.2.6. The database and itemsets are divided among the four processors 

as shown in Figure 2.2.8. Figure 2.2.9 shows the count of itemsets at each processor after 

one complete cycle. 

 In Figure 2.2.8 the database is divided among the four processors with transactions 

T100 and T 200 assigned to processor 0, transactions T300, T400 and T500 assigned to 

processor 1, transactions T600 and T700 assigned to processor 2 and transactions T800 

and T900 assigned to processor 3. The candidate 2-itemsets are also divided among the 

processors with processor 0 assigned to {I1, I2}, {I1, I3} and {I1, I4}, processor 1 

assigned to  

{I1, I5}, {I2, I3}, and {I2, I4}, processor 2 assigned to {I2, I5} and {I3, I4} and 

processor 3 assigned to {I3, I5} and {I4, I5}. The count of the 2-itemsets assigned to each 

processor is first calculated using the transactions assigned to each processor as shown in 

Figure 2.2.8. 

 The top row of Figure 2.2.9 shows transactions 800 and 900, which are assigned, to 

processor 3 being used by processor 0 to update the count for each itemset assigned to it. 

Similarly transactions 100 and 200, which are assigned to processor 0, are being used by 

processor 1 to update the count of each itemset assigned to it. This is also the situation 

with the remaining processors in the top row. The results from the processing of these 

transactions can be seen by comparing the counts shown in Figure 2.2.8 with those shown 

in Figure 2.2.9. 
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The second row of Figure 2.2.9 shows transactions T600 and T700, which are 

assigned, to processor 2 being used by processor 0 to update the count for each itemset 

assigned to it while processor 1 is updating its count of itemsets using transactions T800 

and T900. The transactions are shifted until every processor updates its count  using 

transactions from all other processors. 

After identifying the frequent itemsets assigned to it each processor then sends this 

information to all other processors to determine all frequent 2-itemsets. The process then 

repeats itself with the generation of candidate 3-itemsets. It is at this stage that all 

processors will decide independently whether to terminate or to go on to the next pass of 

the algorithm. 



58 

 

 

   

 

 

 

 

 

 

Itemset Count 

{I1,I2} 1 

{I1,I3} 0 

{I1,I4} 0 

 

Itemset Count 

{I1,I5} 0 

{I2,I3} 1 

{I2,I4} 1 

 

Itemset Count 

{I2,I5} 0 

{I3,I4} 0 
 

Itemset Count 

{I3,I5} 1 

{I4,I5} 0 

 

     Processor 0      Processor 1     Processor 2        Processor 3 

   T100,T200   T300, T400, 

  T500 

    T600, T700   T800, T900 

Figure 2.2.8 Count After Assigning Partitions to Processors for DD  
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Figure 2.2.9 Count After Complete Cycle for DD  
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2.2.7.3 Intelligent Data Distribution (IDD) Algorithm  

In the IDD algorithm the candidate itemset is partitioned among the processors. The 

database of transactions is also divided equally among the processors. The locally stored 

portions of the database are sent to all the other processors using a ring-based network. 

The ring network eliminates the contention problem that is associated with the DD 

algorithm. The pseudo code used for the movement of data is shown in Figure 2.2.10 

(Han, et al., 2000). 

In order to reduce the redundant work due to the partitioning of the candidate itemsets, 

it is partitioned in such a way that each processor gets itemsets that begin only with a 

subset of all possible itemsets. The transactions are then checked against this subset to 

determine if the hash tree contains candidates starting with these items. The hash tree is 

then traversed only with items in the transaction that belong to this subset, thereby 

eliminating the redundant work problem of DD. 

      An illustration of the IDD algorithm is shown in Figure 2.2.11 (Han, et al., 2000). 
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while (!done) 

   FillBuffer(fd, Sbuf); 

   for (k = 0; k < P-1; ++k) { 

        /* send/receive data in non-blocking pipeline */ 

       MPI_Irecv(Rbuf, left); 

       MPI_Isend(Dbuf, right); 

 

       /* process transactions in Sbuf and update hash tree */ 

       Subset(Htree, Sbuf); 

        

           MPI_Waitall(); 

 

           /* swap two buffers */ 

     tmp = Sbuf; 

 Sbuf = Rbuf; 

 Rbuf = tmp; 

    } 

    /* process transactions in Sbuf and update hash tree */ 

    Subset(Htree, Sbuf); 

} 

 

Figure 2.2.10 Pseudo Code for Data Movements for IDD (Han et al., 2000). 
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M: Size of candidate set 

P: Number of processors 

Figure 2.2.11   Intelligent Data Distribution (IDD) (Han, Karypis, & Kumar, 2000). 
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The IDD uses a bit-map at each processor to store the first item of the candidates 

assigned to the processor. Each processor filters every item of the transaction by checking 

against the bit-map to see if the processor contains candidates starting with that item of 

the transaction. This reduces the number of transaction data that has to go through the 

hash tree resulting in a reduction of the number of computations. 

A fundamental requirement of this algorithm is good load balancing. In this case one 

of the criteria of a good partitioning algorithm is that there are an equal number of 

candidates in all the processors. This will result in the same size hash tree in all the 

processors. A round-robin partitioning technique is not likely to result in good load 

balancing. 

The IDD algorithm uses bin-packing to partition the candidate itemsets.  For each 

item, the number of candidate itemsets starting with it is computed. The algorithm only 

stores the number of items and not the itemset starting with an item. The system then uses 

bin packing to partition these items into P buckets such that the sum of number of the 

candidate itemsets starting with these items in each bucket are approximately equal. Each 

processor then regenerates and stores the candidate itemsets that are assigned to it.  

It is important to note that equal assignment of candidates to the processors does not 

guarantee the perfect load balance among processors. This is due to the fact that the cost 

of traversal and checking at the leaf node are determined not only by the size and shape 

of the candidate hash tree, but also by the actual items in the transactions. Since it is 

difficult to estimate the effect of transactions on the workload in advance, the scheme is 

designed to target the equal distribution of candidates among the processors. 
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Computation using IDD 

The following example is an illustration of how the IDD algorithm works using the 

sample database in Table 2.2.6. The database and itemsets will be divided among the four 

processors as shown in Figure 2.2.12.  The movement of local data among the processors 

and the count of itemsets after one cycle are shown in Figure 2.2.12 and Figure 2.2.13. 

In Figure 2.2.12 the database is divided among the four processors with transactions 100 

and 200 assigned to processor 0, transactions 300, 400 and 500 assigned to processor 1, 

transactions 600 and 700 assigned to processor 2 and transactions 800 and 900 assigned 

to processor 3. The candidate 2-itemsets are also divided among the processors with 

processor 0 assigned to {I1, I2}, {I1, I3} and {I1, I4}, processor 1 assigned to  

{I1, I5}, {I2, I3}, and {I2, I4}, processor 2 assigned to {I2, I5} and {I3, I4} and 

processor 3 assigned to {I3, I5} and {I4, I5}. The count of the 2-itemsets assigned to each 

processor is first calculated using the transactions assigned to each processor as shown in 

Figure 2.2.12. 

         The bit map used for processor 0 is 1, which means that only transactions with item 

1 in it will be processed by this processor. Similarly the bit map for processor 1 is 1 and 

2, which means that only transactions that contain these items will be processed by 

processor 1. 

 The second row of Figure 2.2.12 shows the count of 2-itemsets following the 

movement of transactions among the processors. The count of 2-itemsets at processor 0 is 

updated after processing transactions 800 and 900, which are assigned to processor 3. 

Similarly the count of itemsets at processor 1 is updated after processing transactions that 

are assigned to processor 0. In the IDD the bit map is used to filter transactions that do 
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not contain items in the bit map for a given processor. Looking at processor 0 it is 

obvious that transactions 200, 300 and 600 will not be passed through the hash tree as 

they do not contain item 1. These eliminate unnecessary traversal of the hash tree. Every 

processor will process the transactions stored at all other processors in order to update the 

count of itemsets assigned to it. 

        After identifying the frequent itemsets assigned to it each processor then sends this 

information to all other processors to determine all frequent 2-itemsets. The process then 

repeats itself with the generation of candidate 3-itemsets. It is at this stage that all 

processors will decide independently whether to terminate or to go on to the next pass of 

the algorithm. 

 Figure 2.2.13 shows the count of 2-itemsets assigned to each processor at the 

completion of processing the transactions assigned to all other processors. This 

information is then exchanged among the processors for the commencement of the next 

cycle to determine the 3-itemsets. 
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Figure 2.2.12 Movement of Local Data Among Processors for IDD  
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Figure 2.2.13 Count of Itemsets After one Cycle for IDD  
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2.2.7.4 Hybrid Distribution (HD) Algorithm  

As more processors are added in IDD, the number of candidates assigned to each 

processor decreases. A reduction in the number of candidates per processor makes it 

more difficult to balance the work. In addition the smaller number of candidates gives a 

smaller hash tree and less computation work per transaction. It is possible for the amount 

of computation to be less than the communication involved. This is more easily seen in 

the latter passes of the algorithm as the hash tree size further decreases.  The overall 

efficiency of the parallel algorithm will be reduced. This can be a serious problem in a 

system that cannot perform asynchronous communication. 

The problems associated with the IDD are addressed by combining the CD and IDD 

algorithms to form the HD algorithm. In this approach a P-processor system is split into 

G equal groups, each containing P/G processors.  The database transactions are 

partitioned into P/G parts each of size N/(P/G). The computation of the candidate set Ck 

for each subset of the transactions is assigned to each one of the P/G processors.  IDD is 

then used to compute the counts within each group. By applying IDD within each group 

the transactions and the candidate set Ck are partitioned among the processors of each 

group, so that each processor gets roughly Ck/G candidate itemsets and N/P 

transactions.  The overall count is computed by performing a reduction operation among 

the P/G groups of processors. 

        Figure 2.2.14 to Figure 2.2.16 show the steps used by HD to compute the frequent 

itemsets (Han, et al., 2000). It can be visualized as consisting of G rows and P/G 

columns. The transactions are partitioned equally among the P processors. The candidate 
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set Ck is partitioned among the processors of each column. All the processors in a row get 

the same subset of Ck. The CD algorithm is executed in Figure 2.2.16 as if there were 

only four processors since there are four columns. The database transactions are 

partitioned in four parts and each one of these hypothetical processors computes the local 

counts of all the candidate itemsets. The global counts are then computed using the global 

reduction operation. The computation of local counts of the candidate itemsets in a 

hypothetical processor requires the computation of the counts of the candidate itemsets 

on the database transactions stored on the three processors. The IDD algorithm is 

executed within each of the four hypothetical processors in order to perform this 

operation. Each processor has complete count of its local candidates for all the 

transactions located in the processors of the same column. A reduction operation is then 

performed along the rows such that all processors in each row have the sum of the counts 

for the candidates in the same row. The count associated with each candidate itemset 

corresponds to the entire database of transactions. Each processor will now find frequent 

itemsets and drops all candidate itemsets with frequency less than the threshold for 

minimum support. These are shown in Step 2 (Figure 2.2.15). In Step 3 (Figure 2.2.16) 

each processor performs an all-to-all broadcast operation along the columns of the 

processor mesh. The processors are now ready to proceed to the next pass. 

The HD algorithm partitions the candidate set into a big enough section and assigns a 

group of processors to each partition.  If m is a user specified threshold and the total 

number of candidates M is less than m, then the HD algorithm makes G equal to 1, which 

means that the CD algorithm is run on all the processors. Otherwise G is set to  

M/n.   
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Computation Using Hybrid 

The HD algorithm inherits all the good features of the IDD algorithm. It also provides 

good load balance and enough computation work by maintaining minimum number of 

candidates per processor. The amount of data movement has been cut down to 1/G of the 

IDD. 

An illustration of the algorithm using the sample database in Table 2.2.7 is shown in 

the set of figures starting from Figure 2.2.17 to Figure 2.2.21. In Figure 2.2.17 there are 

12 processors divided into four equal groups each consisting of three processors. The 

database transactions are partitioned into 3 parts each of size 4. The HD algorithm 

executes CD as if there were only 3 processors. In this case the 3 processors correspond 

to the 3 columns. The database of transactions is therefore divided into 3 parts where 

each part is assigned to each column. We can view a column as a hypothetical processor 

that will use the portion of database assigned to it to compute the counts for the candidate 

itemsets as is done in CD. A global count is then accomplished by a global reduction 

operation. 

Each column consists of 4 processors and HD uses IDD to compute the counts of the 

candidate itemsets at each of these 4 processors. In Figure 2.2.17 the candidate items are 

partitioned among the four groups. From Figure 2.2.17 it can be seen that all the 

candidates in a group (row) are the same for the processors in that row. The transactions 

assigned to a column are then divided among the processors in the column. In our 

example there are 12 transactions, 12 processors and 4 groups. We assign 4 transactions 

to each column. Within each column there are 4 processors and we divide the 4 
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transactions among the 4 processors resulting in 1 transaction for each processor as 

shown in Figure 2.2.17. 

Figure 2.2.17 also shows the count for candidate itemsets assigned to each processor 

using the transaction database that is assigned to each. Figure 2.2.18 to Figure 2.2.20 

show the use of IDD to compute the count for candidate itemsets along each column. 

There is a change in the count of itemset for the processor at row1 and column 1 in 

Figure 2.2.18 as a result of processing transaction 400, which is assigned to the processor 

at row 4 column 1. This is also true for a number of other processors.  

Figure 2.2.21 shows the use of CD to compute the counts for all the itemsets assigned 

to each group. It can be observed in Figure 2.2.21 that the counts at each processor in a 

row are the same for all the processors. The next step in HD, which is not shown, is a 

broadcast of all the frequent itemsets to all processors. 
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Step 1: Partitioning of Candidate Sets and Data Movement Along the Columns 

Figure 2.2.14 Data Movement Along Columns for HD (Han, Karypis & Kumar, 2000). 
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Figure 2.2.15 Reduction Operation Along Rows for HD (Han, Karypis & Kumar, 2000). 
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Step 3: All-to-All Broadcast Along Columns 

 

Figure 2.2.16 Hybrid Distribution (HD) (Han, Karypis & Kumar, 2000). 
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TID List of Items 

T100 I1, I2, I5 

T200 I2, I4 

T300 I2, I3 

T400 I1, I2, I4 

T500 I1, I3 

T600 I2, I3 

T700 I1, I3 

T800 I1, I2, I3, I5 

T900 I1, I2, I3 

T1000 I2, I3 

T1100 I1, I2 

T1200 I2, I4 

 

 

 

Table 2.2.7 Sample Database for HD Algorithm 
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         Column 1          Column 2           Column 3      

 

Itemset Count 

{I1,I2} 1 

{I1,I3} 0 

{I1,I4} 0 

 

           T100 

Itemset Count 

{I1,I2} 0 

{I1,I3} 1 

{I1,I4} 0 

 

           T500 

Itemset Count 

{I1,I2} 1 

{I1,I3} 1 

{I1,I4} 0 

 

           T900 

Itemset Count 

{I1,I5} 0 

{I2,I3} 0 

{I2,I4} 1 

 

            T200 

 

Itemset Count 

{I1,I5} 0 
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{I2,I4} 0 

 

          T600 
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Itemset Count 

{I3,I5} 1 

{I4,I5} 0 

 

 

           T800 

Itemset Count 

{I3,I5} 0 

{I4,I5} 0 

 

 

          T1200 

Figure 2.2.17 Initial Count for HD  
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Figure 2.2.18 Data Movement Along Columns for HD (1)  
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Figure 2.2.19 Data Movement Along Columns for HD (2) 
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Figure 2.2.19 Data Movement Along Columns for HD (2)  
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Figure 2.2.20 Data Movement Along Columns for HD (3)  
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Figure 2.2.21 Use of CD to Broadcast Local Counts (HD)  
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2.2.7.5 Comparison of Algorithms 

The Data Distribution (DD) algorithm scales poorly and has a high communication 

cost.  DD exploits the aggregate memory of the multiprocessor better than Count 

Distribution (CD). In addition it makes fewer passes in the case of datasets with large 

transaction and frequent itemset lengths.  There are also idle processors due to the 

communication scheme. If the communication buffer of any receiving processor is full 

and the outgoing communication buffers are full, then the send operation is blocked. 

During the last several passes of the algorithm, there is only a small number of items in 

the candidate set. However, each processor in the DD still sends the locally stored data to 

all other processors. There is not a corresponding decrease in communication with 

decrease in computation.  

CD reduces the communication overhead of DD significantly since it only broadcasts 

the candidate itemsets. CD does not parallelize the computation of building the candidate 

hash tree and is a bottleneck with large number of processors. CD scales linearly with the 

number of transactions. 

IDD solves the communication problem of DD by using a ring-based all-to-all 

broadcast network that eliminates contention. It also uses a bit map that eliminates the 

redundant work of DD. It uses bin-packing to achieve equal distribution of the candidate 

itemsets. As more processors are added however, it becomes more difficult to balance the 

work due to the fact that there is a decrease in the number of candidates. The hash tree is 

smaller for a smaller number of candidates and requires less computation work per 

transaction. The HD inherits all the good features of the IDD while reducing the amount 

of data movement. However, it uses a hash tree and requires the movement of data 
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among  processors in the same column as a result there is a cost associated with hash tree 

construction and traversal as well as data movement (Han, Karypis, & Kumar, 2000).  

2.2.8 Lattice Theory 

A binary relation ≤ on a set L is a partial order if it is transitive, reflexive and 

antisymmetric. A lattice consists of the pair (L, ≤) in which ≤ is a partial order on L, and 

every subset {a, b} consisting of two elements has a least upper bound (LUB) and a 

greatest lower bound (GLB). A lattice is a mathematical structure with two binary 

operators, which are Join and Meet. 

Join  

An element c is an upper bound of elements a and b of L, if a ≤ c and b ≤ c. The least 

upper bound or join of elements a and b is c if c is an upper bound of a and b and, for any 

y such that a ≤ y and also b ≤ y, c ≤ y.  The join of a and b LUB ({a, b}) is denoted by a ∨ 

b (Ganter & Willie, 1999; Street, & Wallis, 1982; Zaki, 2000). 

Meet  

An element c is a lower bound of elements a and b of L, if c ≤ a and c ≤ b. The greatest 

lower bound or meet of elements a and b is c if c is a lower bound of a and b and, for any 

y such that y ≤ a and also y ≤ b, y ≤ c. The meet of a and b GLB ({a, b}) is denoted by a 

∧ b (Ganter & Willie, 1999; Street & Wallis, 1982; Zaki, 2000). 

Properties of Lattices 

The meet, join, unique maximum and unique minimum element are always defined. 

Given a lattice (L, ≤), a non-empty subset S of the set L is called a sub-lattice if a ∨ b ∈ S 

and a ∧ b ∈ S whenever a ∈ S and b ∈ S. 

1. Idempotent Properties: a ∨ a = a and a ∧ a = a 
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2. Commutative Properties a ∨ b = b ∨ a and a ∧ b = b ∧ a 

3. Associative Properties a ∨  (b ∨ c)  = (a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c 

4. Absorption Properties: a ∧ (b ∨ c) = a and a ∨  (b ∧ c) = a  

5. A lattice L is said to be distributive if for all a, b, c ∈ L,   

a ∧ (b ∨ c)  = (a ∧ b) ∨ ( a ∧c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (Street & Wallis, 

1982; Zaki, 2000). 

Zaki (2000) used a lattice-theoretic approach to identify the frequent itemsets in the 

transaction database. In this approach the power set lattice on the set of database items 

are decomposed into sublattices that can be processed independently to find the frequent 

itemsets. The prefix-based approach to decompose the lattice with a bottom-up search 

strategy for the enumeration of the frequent itemsets will be presented in this section 

(Zaki, 2000; Zaki, 2000c). 

Definition 1 

Let X, Y and Z be elements of an ordered set A.  

Let the sign < denote set inclusion.  If X < Y and there is no Z such that  

X < Z < Y then Y covers X, written as X  � Y (Zaki, 2000). 

Definition 2 

Let X, Y be elements of an ordered set A. If X ∨Y exists for all X, Y ∈ A then A is referred 

to as a join semilattice. If X ∧ Y exists for all X, Y ∈ A then A is referred to as a meet 

semilattice. If A is both a join and a meet semilattice then it is referred to as a lattice i.e., 

if X ∨ Y  and X  ∧ Y exist for all pairs of elements X, Y ∈ A. 
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If ∨B and ∧B exist for all subsets B ⊆ A then A is a complete lattice. If X, Y ∈ A,  

X ∨ Y ∈ R and X  ∧ Y ∈ R and R ⊂ A then R is referred to as a sublattice of A (Zaki, 

2000).  

Lemma 2.2.1 

All subsets of a frequent itemsets are frequent (Zaki, 2000). 

Proof 

In this representation the set of all frequent itemsets forms a meet semilattice since it is 

closed under the meet operation. If A and B are frequent itemsets then A ∩ B is also 

frequent. It is important to note that A ∪ B is not necessarily frequent. 

Corollary 

All supersets of an infrequent itemset are infrequent (Zaki, 2000). 

If an itemset I does not satisfy the minimum support it is not frequent. If an item A is 

added to itemset I, the resulting itemset (I ∪ A) cannot occur more frequently than I, 

therefore I ∪ A is not frequent either. 

Lemma 2.2.2 

All frequent itemsets are subsets of the maximal frequent itemsets. The search for 

frequent itemsets can be implemented using a procedure that quickly identifies the 

maximal frequent itemsets (Zaki, 2000). 

Definition 3 

Let ⊥be the bottom element of the lattice L. If ⊥ � S  and S ∈ L  then S  is called an 

atom. The set of atoms of L are denoted by A(L) (Zaki, 2000). 
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Definition 4 

A lattice L is called a Boolean lattice if 

1. It is Distributive 

2. It has 
(top) and ⊥(bottom)  elements 

3.  Each member S of the lattice has a complement 

Each database item S is an atom with a tid-list L(S). L(S) represents a list of all the 

transaction identifiers in which the atom was found (Zaki, 2000). 

Lemma 2.2.3 

For a finite Boolean lattice L, with X  ∈  L, 

X = ∨{Y ∈ A(L) | Y ≤ X} 

The join of a subset of the set of atoms can be used to generate the elements of a Boolean 

lattice. The join operation corresponds to union in the powerset P(I) which is a Boolean 

lattice (Zaki, 2000). 

Lemma 2.2.4 

For any X ∈ P(I), let F = {Y ∈ A(P(I)) | Y ≤ X} 

Then X = ∪Y∈ FY, and σ(X) = | ∩Y∈ F L(Y)| 

The join of some atoms of a lattice can be used to generate any itemset. The intersection 

of the tid-lists of the atoms can be used to compute the support of an itemset (Zaki, 

2000). 

Lemma 2.2.5 

F = {Y ∈ A(P(I)) | Y ≤ X} 

For any X ∈ P(I), let X = ∪Y∈ FY. Then 
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σ(X) = | ∩Y∈ F L(Y)| 

The intersection of the tid-lists of elements in F will give the support of an itemset that is 

the union of a set of items in F. The intersection of any two (k-1) length subsets can be 

used to generate the support of any k-itemsets (Zaki, 2000). 

Lemma 2.2.6 

Let R and S  be two itemsets, with R ⊆ S. Then 

L(R) ⊇ L(S) 

Proof 

This follows from the definition of support. 

If R is a subset of S, then the cardinality of the tid-list of S must be less than or equal to 

the cardinality of the tid-list of R. The cardinality of the tid-list of the subset is greater 

than the cardinality of the superset. The counting and intersection operations are faster as 

you travel up the lattice due to the decrease in cardinality of the tid-lists (Zaki, 2000). 

Definition 5 

Let A be a set.  

An equivalence relation on A is a binary relation ≡ such that for all X, Y, Z ∈ A, the 

relation is: 

1. Reflexive: X ≡ X 

2. Symmetric: X  ≡ Y implies Y ≡ X. 

3. Transitive: X ≡ Y and Y ≡ Z, implies X ≡ Z. 

The equivalence relation partitions the set A into disjoint subsets called equivalence 

classes. The equivalence class X ∈ A is given as [X] = {Y ∈ A � X ≡ Y} 
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Define a function 

P: P(I) × N � P(I), 

Where p(X, k) = X[1:k], the k length prefix of X. Define an equivalence relation θk on the 

lattice P(I) as follows: 

∀X, Y ∈  P(I), X ≡ θk Y � p(X, k) = p(Y, k). 

Two itemsets are equivalent if they share a common k-length prefix. We refer to θK  as a 

prefix-based equivalence relation and the set of equivalent itemsets as a class (Zaki, 

2000). 

Lemma 2.2.7 

Each equivalence class [T] θk induced by the equivalence relation θk is a sublattice of 

P(I). 

Proof 

Let R and S  be any two elements in the class [T]. This implies that they both share a 

common prefix T. R ∨ S = R ∪ S ⊇ T implies that R ∨ S ∈ [T], and  

R ∧ S = R ∩ S ⊇ T implies that R ∧ S ∈ [T]. Therefore [T] θk is a sublattice of P(I) (Zaki, 

2000). 

The database of transactions shown in Table 2.2.3 is reproduced in Table 2.2.8 

and its vertical organization in Table 2.2.9. The lattice of itemsets is shown in Figure 

2.2.22. 
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TID List of Items 

T100 I1, I2, I5 

T200 I2, I4 

T300 I2, I3 

T400 I1, I2, I4 

T500 I1, I3 

T600 I2, I3 

T700 I1, I3 

T800 I1, I2, I3, I5 

T900 I1, I2, I3 

 

 

 Table 2.2.8 Transaction Database 
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I1 I2 I3 I4 I5 

T100 T100 T300 T200 T100 

T400 T200 T500 T400 T800 

T500 T300 T600   

T700 T400 T700   

T800 T600 T800   

T900 T800 T900   

 T900    

 

 Table 2.2.9 Vertical View of Transaction Database 
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I1  I2   I3        I4   I5  

I1I2      I1I3     I1I4   I1I5    I2I3    I2I4  I2I5   I3I4    I3I5      I4I5 

I1I2I3   I1I2I4  I1I2I5   I1I3I4  I1I3I5   I1I4I5    I2I3I4    I2I3I5   I2I4I5      I3I4I5 

 

             I1I2I3I4           I1I2I3I5           I1I2I4I5            I1I3I4I5     I2I3I4I5  

                                  I1I2I3I4I5 

Figure 2.2.22 Lattice of Itemsets 

 ∅ 
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2.2.8.1 Serial Prefix-Based Method with Bottom-Up Search Algorithm 

The following example is an illustration of how the prefix-based with bottom-up 

search algorithm works using the database in Table 2.2.8. The pseudo code for the 

bottom-up search algorithm is shown in Figure 2.2.23. The decomposition of the lattice 

using a prefix-based approach for classes generated by θ1 is shown below (Zaki, 2000). 

Lattice Decomposition: Prefix-Based Classes 

       The algorithm is based on the assumption that Lk is lexicographically partitioned into 

equivalence classes based on their common k-1 prefix (Zaki, 2000). The equivalence 

class x ∈ Lk-2 is given as : 

Sx = [x] = {b ∈ Lk-1    x[1: k-2] = b[1: k-2]} 

Using this function we partition the itemsets into classes using θ1 as shown below: 

[I1] = {{I1, I2}, {I1, I3}, {I1, I4}, {I1, I5}} 

[I2] = {{I2, I3}, {I2, I4}, {I2, I5}} 

[I3] = {{I3, I4}, {I3, I5}} 

[I4] = {{I4, I5}} 

Each class will be processed independently to identify the frequent itemsets. 

These classes will be processed using the Bottom-Up search method to discover the 

frequent itemsets 

In the pseudo code in Figure 2.2.23 L (R) represents the tid-list of item R. 

Frequent 2-itemsets = {{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}} 
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The lattice generated by class I1 is shown in Figure 2.2.24. The intersection of the tid-

lists for class I1 is shown in Figure 2.2.25. In Figure 2.2.24 the frequent itemsets are 

shown in bold. It can be seen that {I1, I2}, {I1, I3}, {I1, I5}, {I1, I2, I3} and {I1, I2, I5} 

are shown in bold since these are frequent itemsets. 
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Bottom-Up(S) // Set of atoms 

for all atoms Ai ∈ S do 

Ti = ∅ // Frequent itemsets 

for all atoms Aj ∈ S with j > i do 

R =  Ai  ∪  Aj       

L (R) = L (Ai) ∩  L (Aj) //tid-list of item R 

if σ (R) ≥ min_sup then 

  Ti  = Ti  ∪  {R}; F R = F R ∪ {R}; // Frequent k-itemsets 

end 

end 

Delete S; //reclaim memory 

for all Ti ≠ ∅ do Bottom-Up(Ti) 

 

Figure 2.2.23 Pseudo Code for Bottom-Up Search (Zaki, 2000) 
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I1I2I3I4     I1I2I3I5   I1I2I4I5  1I3I4I5 

    I1I2I3    I1I2I4   I1I2I5   I1I3I4  I1I3I5  I1I4I5 

     I1I2      I1I3        I1I4      I1I5 

I1 

Figure 2.2.24 Lattice Generated by Class I1 

Frequent itemsets are shown in bold 
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Figure 2.2.25 Intersection of Itemsets in Class I1 
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Figure 2.2.25 shows the intersection of the tid-lists for class I1. The tid-list for each 

item consists of all the transactions in which the item was found. When we intersect two 

tid-lists the resulting tid-list contains the transactions that are common to the two 

intersecting tid-lists. In Figure 2.2.25 the intersection of I3 and I1 gives a new tid-list for 

{I1, I3} consisting of transactions T500, T700, T800 and T900. The intersection of the 

tid-lists for I1 and I4 gives a new tid-list with only transaction T400 since it is the only 

transaction common to both tid-lists. 

The bottom-up search algorithm shown in Figure 2.2.23 will be used to process class 

I1 as shown below. The algorithm will be called recursively until all the frequent itemsets 

are generated. It is first called with the following values: 

R  is the item 

S is the set of atoms of the class I1 

Support is the minimum support for the frequent itemsets 

T stores the frequent itemsets 

F k is the frequent k-itemsets 

L (R)  stores the tid-list of item R 

Ai is atom i 

σ is the support count 

S = {{I1, I2}, {I1, I3}, {I1, I4}, {I1, I5}} 

support = 2 

The bottom-up search algorithm is called with S 

Bottom-Up(S) 

i = 1, A1 = {I1, I2} 
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T1 = ∅ 

j = 2, A2 = {I1, I3} 

R = A1 ∪ A2  

    = {I1, I2} ∪ {I1, I3} 

    = {I1, I2, I3} 

We form the union of the first two atoms of the class to get {I1, I2, I3}. We them 

determine the count of {I1, I2, I3} by intersecting the tid-lists of the first two atoms of the 

class as shown in the following operations. 

L ({I1, I2, I3}) = L ({I1, I2}) ∩ L ({I1, I3})  

                 = {T100, T400, T800, T900} ∩ {T500, T700, T800, T900}  

                 = {T800, T900} 

There are two transactions that contain these three items ({I1, I2, I3}) together and the 

support count is 2. This is represented as: 

σ({I1, I2, I3}) = 2 

The support for {I1, I2, I3} is 2 which makes it frequent. We add it to the set of frequent 

itemsets 

T1 = ∅ ∪ {I1, I2, I3}  

     = {I1, I2, I3} 

We also add I1I2I3 to the set of frequent 3-itemsets 

F 3 = F 3 ∪ {R}  

        = ∅ ∪ {I1, I2, I3} 

        = {I1, I2, I3} 

We repeat the process for the next atom 
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j = j + 1 = 2 + 1 = 3;  

A3 = {I1, I4} 

R = A1 ∪  A3  

   = {I1, I2} ∪ {I1, I4 } 

   = {I1, I2, I4} 

L ({I1, I2, I4}) = L ({I1, I2}) ∩ L ({I1, I2})  

                 = {T100, T400, T800, T900} ∩ {T200, T400}  

                 = {T400} 

There is one transaction that contains these three items ({I1, I2, I4}) together and the 

support count is 1. This is represented as: 

σ({I1, I2, I4}) = 1 

We drop {I1, I2, I4} since it is not frequent 

We go on to the next atom of class I1 

j = j + 1 =3 + 1 = 4;  

A4 = {I1, I5} 

R = A1 ∪  A4 

   = {I1, I2} ∪ {I1, I5} 

  = {I1, I2, I5} 

L ({I1, I2, I5}) = L ({I1, I2}) ∩ L ({I1, I5})  

                 = {T100, T400, T800, T900} ∩ {T100, T800}  

                 = {T100, T800} 

There are two transactions that contain these three items ({I1, I2, I5}) together and the 

support count is 2. This is represented as: 
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σ({I1, I2, I5}) = 2 

The support for {I1, I2, I5} is 2 which makes it frequent. We add it to the set of frequent 

itemsets 

T1 = T1 ∪ {I1, I2, I5}  

    = {{I1, I2, I3}, {I1, I2, I5}} 

We also add I1I2I5 to the set of frequent 3-itemsets 

F 3 = F 3 ∪ {R}  

       = {I1, I2, I3} ∪ {I1, I2, I5} 

       = {{I1, I2, I3}, {I1, I2, I5}} 

We proceed to process the next atom 

i = 2, A2 = {I1,  I3} 

T2 = ∅ 

j = 3, A3 = {I1, I4} 

R  = A2 ∪ A3  

   = {I1, I3} ∪ {I1, I4} 

   = {I1, I3, I4} 

L ({I1, I3, I4}) = L ({I1, I3}) ∩ L ({I1, I4})  

                 = {T500, T700, T800, T900} ∩ {T400} = ∅ 

The support count for {I1, I3, I4} is 0 . This is represented as: 

σ({I1, I3, I4}) = 0 

{I1, I3, I4} is not frequent so it is not added to the set of frequent itemsets. 

T2 = ∅ 

j = j + 1 =3 + 1 = 4; A4 = {I1, I5} 
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R  = A2 ∪ A4  

   = {I1, I3} ∪  {I1, I5} = {I1, I3, I5} 

L ({I1, I3, I5}) = L ({I1, I3}) ∩ L ({I1, I5})  

                 = {T500, T700, T800, T900} ∩ {T800}  

                 = {T800} 

There is one transaction that contains these three items ({I1, I3, I5}) together and the 

support count is 1. This is represented as: 

σ({I1, I3, I5}) = 1 

{I1, I3, I5} is not frequent so it is not added to the set of frequent itemsets. 

i = 3, A3 = {I1, I4} 

j = 4, A4 = {I1, I5} 

R = A3 ∪ A4  

    = {I1, I4} ∪ {I1, I5} = {I1, I4, I5} 

L ({I1, I4, I5}) = L ({I1, I4}) ∩ L ({I1, I5})  

                 = {T400} ∩ {T100, T800} = ∅ 

The support count for {I1, I4, I5} is 0 . This is represented as: 

σ({I1, I4, I5}) = 0 

T3 = ∅ 

We call the bottom-up algorithm again with T1 

T1 = {{I1, I2, I3}, {I1, I2, I5}} 

Bottom-up (T1) 

i = 1, A1 = {I1, I2, I3} 
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T1 = ∅ 

j = 2, A2 = {I1, I2, I5} 

R = A1 ∪  A2  

    = {I1, I2, I3} ∪ {I1, I2, I5} = {I1, I2, I3, I5} 

L ({I1, I2, I3, I5}) = L ({I1, I2, I3}) ∩ L ({I1, I2, I5})  

                    = {T800, T900} ∩ {T100, T800}  

                    = {T800} 

There is one transaction that contains these four items ({I1, I2, I3, I5}) together and the 

support count is 1. This is represented as: 

σ({I1, I2, I3, I5}) = 1 

{I1, I2, I3, I5} is not frequent so it is not added to the set of frequent itemsets. Since there 

are no more elements in the set the algorithm terminates. The output is the set of frequent 

3-itemsets. 

F 3 = {{I1, I2, I3}, {I1, I2, I5}} 

The frequent 3-itemsets generated by Class I1 are {{I1, I2, I3}, {I1, I2, I5}}. 

 The lattice generated by class I2 is shown in Figure 2.2.26. The intersection of the tid-

lists is shown in Figure 2.2.27. 

The computation of the itemsets generated by class I2 is as follows. 

S = {{I2, I3}, {I2, I4}, {I2, I5}}  

support = 2 

The bottom-up search algorithm is called with S 

Bottom-Up(S) 

i = 1, A1 = {I2, I3} 
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T1 = ∅ 

j = 2, A2 = {I2, I4} 

R = A1 ∪ A2  

   = {I2, I3} ∪ {I2, I4} = {I2, I3, I4} 

L ({I2, I3, I4}) = L ({I2, I3}) ∩ L ({I2, I4})  

                = {T300, T800, T900} ∩ {T200, T400} = ∅ 

The support count for {I2, I3, I4} is 0 . This is represented as: 

σ({I2, I3, I4}) = 0 

{I2, I3, I4} is not frequent so it is not added to the set of frequent itemsets. We proceed to 

the next atom. 

j = j + 1 = 2 + 1 =3 

A3 = {I2, I5} 

R = A1 ∪  A3  

    = {I2, I3} ∪ {I2, I5}  

     = {I2, I3, I5} 

L ({I2, I3, I5}) = L ({I2, I3}) ∩ L ({I2, I5})  

                = {T300, T800, T900} ∩ {T100, T800}  

                = {T800} 

There is one transaction that contains these three items ({I2, I3, I5}) together and the 

support count is 1. This is represented as: 

σ({I2, I3, I5}) = 1 
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{I2, I3, I5} is not frequent so it is not added to the set of frequent itemsets. We proceed to 

the next atom. 

i = 2, A2 = {I2, I4} 

T2 = ∅ 

j = 3, A3 = {I2, I5} 

R = A2 ∪  A3 = {I2, I4} ∪ {I2, I5} = {I2, I4, I5} 

L ({I2, I4, I5}) = L ({I2, I4}) ∩ L ({I2, I5})  

                = {T200, T400} ∩ {T100, T800} = ∅ 

The support count for {I2, I4, I5} is 0 . This is represented as: 

σ({I2, I4, I5}) = 0 

T2 = ∅ 

There are no frequent itemsets generated by class I2 

Since there are no more elements in the set the algorithm terminates. The output is the 

empty set. 
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I1I2I3I4I5 

I2I3I4       I2I3I5        I2I4I5 

I2I3       I2I4         I2I5 

I2 

Figure 2.2.26 Lattice Generated by Class I2 

Frequent itemsets are shown in bold 
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I2I5
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T800

I3

T300

T500

T600

T700

T800

T900

I4

T200

T400

I5

T100

T800

I2

T100

T200

T300

T400

T600

T800

T900

I2I3

T300

T800

T900

I2I3I4I5

 

Figure 2.2.27 Intersection of Itemsets in Class I2 
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     The lattice for class I3 is shown in Figure 2.2.28. The intersection of the tid-lists for 

class I3 is shown in Figure 2.2.29. The computation of the frequent itemsets using a 

bottom-up approach is as follows: 

S = {{I3, I4}, {I3, I5}}  

Support = 2 

The bottom-up search algorithm is called with S 

Bottom-Up(S) 

i = 1, A1 = {I3, I4} 

T1 = ∅ 

j = 2, A2 = {I3, I5} 

 

R = A1 ∪ A2  

    = {I3, I4} ∪ {I3, I5} = {I3, I4, I5} 

L ({I3, I4, I5}) = L ({I3, I4}) ∩ L ({I3, I5})  

                = {∅} ∩  {T800} = ∅ 

The support count for {I3, I4, I5} is 0 . This is represented as: 

σ({I3, I4, I5}) = 0 

There are no frequent itemsets in class I3 

The lattice generated by class I4 is shown in Figure 2.2.30. There is no intersection 

diagram since there is only one atom. In general a class with only one atom can be 

eliminated since it cannot generate candidates. 

σ(I4I5) = 0 

 

There are no frequent itemsets in class I4. 
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It should be noted that in the serial approach all classes are processed independently by a 

single processor. 
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I3I4I5   

I3I4            I3I5 

I3 

Figure 2.2.28 Lattice Generated by Class I3 

 

Frequent itemsets are shown in bold 
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Figure 2.2.29 Intersection of Itemsets in Class I3 
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Figure 2.2.30 Lattice Generated by Class I4 

 

I4I5 

I4 

Frequent itemsets are shown in bold 
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2.2.8.2 Parallel Prefix-Based Method with Bottom-Up Search Algorithm. 

 In the parallel implementation we assume that there are two processors. The following 

is an illustration of the parallel prefix-based with bottom-up search algorithm. In the 

example the diagrams for the intersection of the itemsets are omitted as they are identical 

to those used in the serial algorithm in Figure 2.2.24 to Figure 2.2.30. The pseudo code 

for the algorithm is shown in Figure 2.2.31. 

The sorted tid-lists are shown in Table 2.2.10. Table 2.2.11 shows the assignment of 

the tid-lists to the processors. The goal is to assign an equal number of items to each 

processor. The length of each tid-list is shown in brackets in Table 2.2.11. 
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Table 2.2.10 Tid-Lists Sorted on Number of Transactions 

Tid List No of Transactions 

I2 7 

I1 6 

I3 6 

I4 2 

I5 2 
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Table 2.2.11 Assignment of Tid-Lists to Processors 

 
Processor (P0) Processor (P1) 

I2(7) I1(6) 

I4(2) I3(6) 

I5(2)  
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Begin 

    /* Initialize Phase */ 

    F2 = (Set of Frequent 2-itemsets} 

    Generate Independent Classes from F2 using 

      Prefix-based Partitioning 

    Schedule Classes among the processors P 

    Scan local database partition 

    Transmit relevant tid-lists to other processors 

     Receive tid-lists from other processors 

 

   /* Asynchronous Phase */ 

    for each assigned Class, C2 

       Compute Frequent Itemsets: Bottom-Up(C2) 

 

    /* Final Reduction Phase */ 

    Aggregate Results and Output Association 

End 

 

Figure 2.2.31 Pseudo Code for Parallel Prefix-Based Algorithm (Zaki, 2000c). 
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Class Schedule 

The classes are assigned to the processors based on the size of each class. The goal is 

to assign the classes equally among the processors using the class size. The size of a class 

is computed using 









2

s , where s is the number of atoms in the class. 

Table 2.2.12 shows the classes sorted on size. The allocation of the classes to 

processors is shown in Table 2.2.13. Table 2.2.14 shows the assignment of tid-lists to 

processors after receival of additional tid-lists needed to compute the frequent itemsets. 

Figure 2.2.32 shows the allocation of tid-lists and frequent 2-itemsets to the processors. 

Figure 2.2.33 shows the assignment of classes to processors. Figure 2.2.34 shows the 

assignment of tid-lists to processors after exchange of additional tid-lists. 
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Table 2.2.12 Classes Sorted on Size 

Class Size 

I1 6 

I2 3 

I3 2 

I4 1 
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Table 2.2.13 Assignment of Classes to Processors 

Processor (P0) Processor (P1) 

C
1
 (6) C2 (3) 

 C3 (2) 

 C4 (1) 
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Table 2.2.14 Assignment of Tid-Lists to Processors After Exchange of Tid-Lists 

 
Processor (P0) Processor (P1) 

I2(7) I1(6) 

I4(2) I3(6) 

I5(2) I2 

I3 I4 

 I5 
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      F2 

Tid-List Size 

I2 7 

I4 3 

I5 2 

 

      F2 

Tid-List Size 

I2 7 

I4 3 

I5 2 

 

               Processor P0                   Processor P1 

 

Figure 2.2.32 Assignment of Tid-Lists to Processors  
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      F2 

Tid-List Size 

I1 6 

I3 6 

 

               Processor P0                   Processor P1 

 

Class Size 

C2 3 

C3 2 

C4 1 
 

      F2 

Tid-List Size 

I2 7 

I4 3 

I5 2 

 

Class Size 

C1 6 
 

Figure 2.2.33 Assignment of Classes to Processors  
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        F2 

Tid-List Size 

I1 6 

I3 2 

I2  

I4  

I5  

 

Class Size 

C2 3 

C3 2 

C4 1 
 

        F2 

Tid-List Size 

I2 7 

I4 3 

I5 2 

I3  

 

Class Size 

C1 6 
 

    Processor P0                 Processor P1 

 
Figure 2.2.34 Assignment of Tid-Lists to Processors After Exchange of Tid-Lists  
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In Figure 2.2.34 processor P0 will use class C1 to compute the frequent itemsets. It 

uses the bottom-up search to identify the frequent itemsets. Classes C2, C3 and C4 will be 

processed by processor P1. They will be used to compute the frequent itemsets associated 

with each. As indicated above class C4 has a single atom and will be eliminated since it 

cannot generate additional candidates. The actual processing is not shown as it is 

identical to the results shown for the serial approach except that the computations will 

now be carried out in parallel. 

2.3 Dynamic Distributed Rule Mining (DDRM) 

The DDRM system is designed to run in a network of PCs environment. This implies 

that there may be differences in the capabilities of these PCs such as the clock speed of 

the CPU, capacity and transfer rate of disk drives, and the size of main memory.  The 

efficiency of the algorithm can be improved on if for example the larger classes are 

assigned to the faster PCs on the network. In a heterogeneous environment the high 

performance nodes will be identified and the larger classes assigned to them based on 

their ability to process these classes faster than the other nodes. 

According to Tamara and Kitsuregawa (1999) in a PC network it is possible that the 

PCs found in the environment may vary in their capabilities. It is possible that when the 

network was implemented initially all the machines may have shared the same 

specifications. However, over time the homogeneous environment may change into a 

heterogeneous one with a wide range of PCs with different processing capabilities. The 

performance of parallel algorithms that were implemented in a PC cluster environment 

can be improved upon if the larger tasks are assigned to the high performance PCs in the 
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cluster.  This will improve on both the computation and communication time in the 

overall solution to the problem. 

In DDRM the high performance PCs will be identified. These PCs will be assigned the 

larger classes. In addition the controller will be located on one of the high performance 

PCs. The system will also include a class migration approach that is activated after all the 

classes have been assigned. At this point a class may be subdivided and redistributed 

among the idle processors. This approach is similar to the candidate migration and 

transaction migration strategies developed for a heterogeneous PC cluster environment by 

Tamara and Kitsuregawa (1999). 

DDRM uses a dynamic load balancing approach. It partitions the lattice into several 

sublattices. These sublattices are then collected by each processor for processing. If there 

is more lattice to be processed it will be selected by the next available processor. This is 

in contrast to the previous approaches where the data is partitioned and assigned statically 

to all processors participating in the processing. It uses a distributed memory system and 

is similar to Apriori based algorithm in this respect such as CD and IDD. It will result in 

better utilization of the available processors. DDRM sends only the class atoms to 

processors for processing. The processors then use the atoms to generate the frequent 

itemsets associated with the lattice. This reduces the communications overhead 

significantly when compared to other algorithms such as CD. 

2.4 The Contribution This Study Makes to Data Mining 

Itemsets form a large lattice with the set of all items at the top and the empty set at the 

bottom (Brin, Motwani, Ullman, & Tsur, 1997). The main limitation of previous parallel 

algorithms such as Count Distribution (CD), Data Distribution (DD), Intelligent Data 
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Distribution (IDD) and Hybrid Distribution (HD) is that they make repeated passes over 

the database partitions. In addition there is an exchange of counts of candidates or data 

partitions assigned to processors. The communications overhead is also high due to the 

need to exchange information on a regular basis. It is also necessary to synchronize the 

operations taking place on the processors. These activities are completely or significantly 

reduced in the case of communications overhead in the DDRM algorithm. In this new 

algorithm the sublattices are assigned to processors dynamically by the controller and 

frequent itemsets returned to the controller.  

Zaki, et al. (1997) used a static scheduling approach to assign the partitions to the 

processors. Static scheduling was also used in CD, HD, IDD, and DD for the assignment 

of itemsets to the processors for processing. DDRM uses a dynamic scheduling approach 

to assign work to the processors participating in the computations for the generation of 

the frequent itemsets. The communications overhead associated with IDD is high. This 

has been significantly reduced by eliminating the need to exchange data among the 

processors on a regular basis.  

        The system uses a controller process to distribute the classes among the processors.  

The controller is also responsible for the receival and processing of all results generated 

by the processors. The algorithm is implemented in six steps as follows: 

1. The database is partitioned among n processors for the computation of the tid-

lists. The database is partitioned among the processors using the number of items 

in each transaction to determine the next processor to be assigned a transaction. 

The next transaction is always assigned the processor with the lowest count of 

items for all transactions assigned to it so far. 
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2. The processors use the assigned transactions to generate the local tid-list, which is 

then transmitted to the controller. 

3. The controller uses all the tid-lists received from all the processors to create a 

single tid-list for the database. 

4. The tid-list is partitioned among the n processors using the length of the tid-list 

for each item to determine the processor to be assigned the next tid-list. A count 

of the total length of all tid-lists assigned to each processor is used to determine 

which processor will be assigned the next tid-list. The next-tid-list is always 

assigned to the processor with the lowest count. 

5. The itemsets are partitioned into classes that the first n classes allocated to the n 

processors. The controller uses the partition algorithm described in Figure 3.2.4 

below to partition the itemsets into classes and assigns the first n classes to the n 

processors. The remaining classes are assigned dynamically to the next available 

processors. The controller sends only the atoms for the lattice associated with 

each class to the processor. The processors use all the classes to compute the 

frequent itemsets. The processors use the intersection of the tid-lists for the 

itemsets to determine the frequent itemsets. Each processor sends the frequent 

itemsets for the class to the controller. The dynamic exchange of classes and 

itemsets between the controller and the processors takes place. The controller 

receives the frequent itemsets from each processor and sends a class to the next 

available processor for processing.  

6. The controller generates the rules from the frequent itemsets. The controller 

computes the set of rules using the frequent itemsets generated above. 
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     The improvements made by the proposed algorithms are as follows: 

1. Reduction in communications among processors: Dynamic Distributed Rule   

Mining (DDRM) will significantly reduce the communications bottleneck among 

the processors. There is no need for processors to exchange data since each 

sublattice can be processed independently. The exchange is between the controller 

and each processor and involves the exchange of atoms of the sublattice and the 

frequent itemsets found in each class. 

2. Improved load balancing: The classes generated by the DDRM algorithm are all 

stored at the controller and assigned to each processor as soon as each processor 

becomes idle. This is a significant improvement over the static assignment of the 

classes. In a static approach if it is discovered early that some classes assigned to 

a given processor have no frequent itemsets then these classes will not be 

processed any further. This may result in the processor becoming idle while the 

other processors may have excess work that could be assigned to this idle 

processor. However, due to the static assignment of classes it will not be possible 

to take some of the classes from the busy processors for assignment to the idle 

processor. The use of dynamic load balancing will significantly improve on the 

efficiency of the computations and use of the processors. 

3. No synchronization: DDRM uses a lattice theoretic approach which partitions the 

itemsets into sublattices that can be assigned to each processor and processed 

independently. Processors only communicate with the controller to collect classes 

for processing and to return any frequent itemsets found in the assigned class.  
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2.5 Summary 

     This chapter discussed data mining with emphasis on the mining of association rules. 

We presented several approaches to the mining of association rules that are based on the 

use of parallel architectures. A discussion on lattice theory and its application to the 

mining of association rules was also presented. The chapter also discussed the proposed 

DDRM algorithm. 
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Chapter 3 

Methodology 

 

3.1 Lattice Theoretic Approach 

     According to Brin, et al. (1997) itemsets form a large lattice with the set of all items at 

the top and the empty itemset at the bottom.  Zaki (2000) proposed a lattice theoretic 

approach to decompose the original search space into smaller pieces, which can be 

processed independently. The most efficient known way to parallelize finding large 

itemsets involved dividing the database among the processors and to have each processor 

count all the itemsets for its own local data. In this approach the issues related to load 

balancing and synchronization are critical (Brin, et al., 1997).  

3.1.1 Lattice Theory 

     Let A be the set of distinct attributes I1, I2, …, I5. We can represent any subset of A as 

a sequence that is sorted according to lexicographic order of attribute names. A subset of 

the sequence {I1, I2, I3} is {I1, I2} and is identified as {I1, I2}. It is also the same as {I2, 

I1}. A one-to-one mapping exists between the set of all sequences and the power set (2
A
). 

The set of all sequences can be identified with 2
A
. The power set (2

A
) is a Boolean lattice 

where ∅ and A are the bottom and top respectively. We denote the order in 2
A
 with ≤ 

which coincides with set inclusion, b ≤ c reads b is a subset of c. A [I] is the i-rank 

attribute in A. Ranks are counted starting from 1. The cardinal of a subset s is denoted by 
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|s|. A subset with cardinal k is referred to as a k-itemset. For example, if A = {I1, I2, I3}, 

then |{I1, I2} | ≤ |{I1, I2, I3}| (Adamo, 2001). 

     The power set lattice (2
A
) of the set of items {I1, I2, I3, I4, I5} is shown in Figure 

2.2.22. In this representation the set of all frequent itemsets forms a meet semilattice 

since it is closed under the meet operation. If A and B are frequent itemsets then A ∩ B is 

also frequent. It is important to note that A ∪ B is not necessarily frequent. 

     If there were enough memory all the frequent itemsets could be enumerated by 

traversing the power set lattice and using intersections to obtain itemset supports.  Zaki 

(2000) has shown that the power set lattice can be subdivided into a number of sublattices 

that can be processed independently. He used an equivalence relation to partition the 

lattice into disjoint subsets called equivalence classes. The lattice theoretic approach will 

be used to partition the itemsets into independent sublattices to be assigned to processors. 

Dynamic Distributed Rule Mining  (DDRM) Algorithm  

     The system was implemented using C/C++ language and generated all the rules 

satisfying the required minimum support and confidence indicated by the user. It was 

implemented using an Ethernet LAN consisting of 7 workstations and one server. The 

configuration of each workstation on the network was an AMD Athlon XP 2800+ with 

512 Mbytes of memory. The processors were interconnected via a 10/100 Mbps switch. 

The switch used 100BASE-T (Fast Ethernet) technology, which provides greater 

bandwidth. The message passing interface (MPI) was used for communications. The 

implementation of MPI was the windows message passing interface (WMPI) for 8 

workstations from Critical Software Ltd. 
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3.2.1 Message Passing Interface (MPI) 

 The MPI model consists of P processors each with local memory, connected over a 

communication network. The cost for a processor to access its own memory is cheaper 

than for it to communicate with another processor. MPI facilitates communications 

among a set of processors that have only local memory through the mode of sending and 

receiving of messages.  MPI is a standardized, portable, and widely available message-

passing system that is robust and efficient. To use MPI, the program is written in C/C++ 

and the MPI library included in the program. The processes communicate with each other 

by calling the appropriate routine in the MPI library which implements the 

communications between processors. The following table shows some of the MPI 

functions used by DDRM system. 

MPI Command Description 

MPI_Init() Initialize MPI (no MPI function calls before that) 

MPI_Comm_size() Get total number of processors 

MPI_Comm_rank()  Get process ID 

MPI_Finalize()  Terminate MPI (no MPI function calls after) 

MPI_Send()  Send a message 

MPI_Recv() Receive a message 

 

     The pseudo code for the Dynamic Distributed Rule Mining (DDRM) algorithm is 

shown in Figure 3.2.1.  The preprocessing stage used to determine the capabilities of the 

processors is not shown in the pseudo code. The system uses a controller process to 

distribute the classes among the processors.  The controller is also responsible for the 

receival and processing of all results generated by the processors. The algorithm is 

implemented in six steps as follows: 

     In step 1 the database is partitioned among n processors using the number of items   in 

each transaction to determine the next processor to be assigned a transaction. The next 
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transaction is always assigned to the processor with the lowest count of items for all 

transactions assigned to it so far. The processors use the assigned transactions to generate 

the local tid-list, which is then transmitted to the controller. The controller uses all the 

tid-lists received from all the processors to create a single tid-list for the database. 

In step 2 the tid-list is partitioned among the processors and used to compute F2. 

    The tid-list is partitioned among the n processors using the length of the tid-list for 

each item to determine the processor to be assigned the next tid-list. A count of the total 

length of all tid-lists assigned to each processor is used to determine which processor will 

be assigned the next tid-list. The next tid-list is always assigned to the processor with the 

lowest count. 

     In step 3 the itemsets are partitioned into classes and the first n classes allocated to the 

n processors. The controller uses the partition algorithm described in Figure 3.2.4 to 

partition the itemsets into classes and assigns the first n classes to the n processors. The 

remaining classes are assigned dynamically to the next available processor. The 

controller sends only the atoms for the lattice associated with each class to the processor. 

In step 4 the processors use all the classes to compute the frequent itemsets 

     The processors use the intersection of the tid-lists for the itemsets to determine the 

frequent itemsets. Each processor sends the frequent itemsets for the class to the 

controller. 

    In step 5 the dynamic exchange of classes and itemsets between the controller and the 

processors takes place. The controller receives the frequent itemsets from each processor 

and sends a class to the next available processor for processing.  After all classes have 
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been assigned the processors may subdivide a class and its subclass migrated to an idle 

processor. 

     In step 6 the controller generates the rules from the frequent itemsets. The controller 

computes the set of rules using the frequent itemsets generated above. 

The DDRM system was implemented using C/C++ language. It generated all the rules 

satisfying the required minimum support and confidence indicated by the user. The 

performance of the algorithm was compared with the prefix-based with bottom-up search 

algorithm as proposed by Zaki (2000).  The specific steps followed were: 

1 The DDRM algorithm was implemented using C/C++ 

2 The algorithm was executed with a varying number of processors. 

3 The system captured the execution time for the algorithm for a set of     transactions 

4 The speedup of the system was measured by keeping the number of classes constant 

while increasing the number of processors. 

5 The Scaleup of the system was measured by increasing the number of classes and    

processors. 

The five steps above were repeated for the prefix based algorithm and a comparison 

made with the DDRM. 
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Input: Database of transactions and minimum support 

Output: Frequent itemsets 

 

Step 1 

i) The algorithm partitions the database among the N processors 

ii) Each processor uses the partition assigned to it to generate the 

tid-list 

iii) Each processor sends the tid-list to the controller 

iv) Controller creates a database of all tid-lists 

 

Step2   

                  //F2 = (Set of Frequent 2-itemsets) 

i) Partition tid-list among processors 

ii) Each processor converts tid-list to generate F2 

iii) Each processor sends F2 to controller 

iv) Controller creates a database of F2 

v) Each processor gets a copy of F2 

 

Step 3 

i) Controller uses partition algorithm to generate classes 

ii) Controller sends first N classes to processors  

 

Step 4 

i) Each processor Pi computes the frequent itemsets in the class 

assigned to it 

ii) Each processor Pi sends frequent itemsets for class to 

controller 

 

Step 5 

i) Controller receives frequent itemsets from each processor 

ii) Controller sends next class to available processor 

This step is repeated until all classes have been processed 

j = N + 1 

Repeat 

  Receive result from processor Pk 

  Send class j to processor Pk 

  j = j + 1 

  Update frequent itemset list 

Until j > no of classes 

    Balance() 

Step 6 

    Generate rules 

End 

 

Figure 3.2.1  Dynamic Distributed Rule Mining Algorithm 
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Balancing Algorithm 

In order to make use of the processors more efficiently and to minimize the need for 

communication during the last phase where there is a need to redistribute the load the 

system will need to keep statistics on the performance of each processor to assist in the 

decision making process.  The system will have an initial phase before the start of the 

computation of frequent itemsets. This phase will be used to identify the relative speed of 

each processor.  This will be accomplished by creating a special class that will be 

assigned to all the processors in the computations. Each processor will measure the time 

taken to identify all frequent itemsets in the class and to send this information back to the 

controller. The controller will then store this information in a table sorted in ascending 

order based on the time taken by each processor. 

The system will also capture the time taken to send and receive the data for each 

processor. This time will be the difference between the returned time and the sum of the 

send time and duration. This piece of information can be used to assist in determining 

whether or not there will be any gain in subdividing a class that was previously assigned 

to another processor.  

When a processor becomes idle we will seek to redistribute the load initially assigned 

to the busy processors by subdividing the class with the longest remaining time to process 

and assign one of the sublattices to the idle processor. The remaining time to complete 

will not be precise as there is no way to accurately determine the time to process a class. 

However, we can do an estimation of the total time required to process a class based on 

statistics captured previously on a class of known size and the associated time required to 

send the class to the processor and to receive the results.  
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Assume the following information was collected on the test class 

Size = S 

Time to process = T 

Transmission time = TX (This is the time to send and receive a class and its frequent 

itemsets to and from the controller) 

The information on the test class will be collected in the preprocessing stage that will be 

used to determine the capabilities of all the processors participating in the data mining 

system. 

Let us say that the size of the class currently assigned to a processor is X, elapsed time 

since assignment is TE. 

Based on the statistics collected previously the time required (TR) to process this class is 

approximately given by 

TR= X/S*T 

Remaining time to complete TL = TR – TE 

Approximate time required for transmission TT = X/S*TX 

Let ∆T = TL - TT 

We will split the class and redistribute the load if ∆T  > 0 

This is repeated for all processors. The processor with the largest ∆T will be selected for 

partitioning of the class assigned to it and a part sent to the idle processor.
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     The following example illustrates the steps of the DDRM algorithm using the sample 

data shown in Table 2.2.8. In step 1 shown in Figure 3.2.2 the transaction is partitioned 

among the two processors and the tid-lists generated. The tid-list from each processor is 

then aggregated by the controller to form a single tid-list. 
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Transaction Size 

T100 3 

T400 3 

T600 2 

T800 4 

Total 12 

 

Transaction Size 

T200 2 

T300 2 

T500 2 

T700 2 

T900 3 

Total 11 

 

I1 I2 I3 I4 I5 

T100 T100 T600 T400 T100 

T400 T400 T800  T800 

T800 T600    

 T800    

 

I1 I2 I3 I4 I5 

T500 T200 T300 T200  

T700 T300 T500   

T900 T900 T700   

  T900   

 

I1 I2 I3 I4 I5 

T100 T100 T300 T200 T100 

T400 T200 T500 T400 T800 

T500 T300 T600   

T700 T400 T700   

T800 T600 T800   

T900 T800 T900   

 T900    

 

P0                    P1 

 

Figure 3.2.2 Step 1 of DDRM: Generation of Tid-Lists 
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Itemset Size 

I2 7 

I4 2 

I5 2 

 

Itemset Size 

I1 6 

I3 6 

 

 P0            P1 

 

Transaction    

1 I2  I5 

2 I2 I4  

3 I2   

4 I2 I4  

5    

6 I2   

7    

8 I2  I5 

9 I2   

 

Transaction   

1 I1  

2   

3  I3 

4 I1  

5 I1 I3 

6  I3 

7 I1 I3 

8 I1 I3 

9 I1 I3 

 

Items 1 2 3 4 5 

1 0 4 4 1 2 

2 0 0 4 2 2 

3 0 0 0 0 1 

4 0 0 0 0 0 

5 0 0 0 0 0 

 

Figure 3.2.3 Step 2 of DDRM: Generation of F2 

 

F2 = {{I1, I2}, {I1, I3}, (I1, I5},{I2, I3}, {I2, I4},{I2, I5}} 
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     Step 2 in Figure 3.2.3 shows the generation of the frequent 2-itemsets. The itemsets 

are partitioned among the processors, inverted into a horizontal format and passed back to 

the controller where they are then used to generate the set of all frequent 2-itemsets. It 

should be noted that in this approach candidate itemsets that are not included in at least 1 

transaction will not be generated. 

3.2.2 Lattice Partition 

The pseudo code for the partition algorithm is shown in Figure 3.2.4. The algorithm 

uses the equivalence relation to partition the lattice for distribution among the processors 

(Adamo, 2001). In the algorithm the term cas refers to an itemset and a k-cas is the same 

as a k-itemset. 

C(s) = the class in θ(k|s) with k ≠ s. 

A is the set of itemsets. A = {I1, I2, I3, I4, I5} 

A[k] is the item in A with rank k, the leftmost element in A has a rank of 1. For example,  

A[1] = I1, A[3] = I3. 

θ(k|s)  is the set of k-cass in 2
A
 that have prefix s. 

| θ(k|s) |  is the count of k-cass in 2
A
 that have prefix s. It is a filter for the set of classes. 

The finer filter is obtained when k = |s|. 
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void split (int k) 

  for (h = k – 1; h >= 0; h--) { 

SetofCass cas (A, k, h) = set of all h-cass that can be 

formed with attributes in 

Pre (k-1, A) sorted according to 

Lexicographic order; 

         

 for all s in cas (A, k, h) { 

   Generate the two sets: 

      ∪k + 1 ≤ j ≤ A {s.A[k].A[j]} and ∪k + 1 ≤ j ≤ A {s.A[j]} 

 } 

      } 

} 

 

Figure 3.2.4 Procedure to Partition Lattice (Adamo, 2001) 
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Theorem 3.2.1 

Let θ(k|s) = {C | C is in θ(k) and |s| ≤ k and for all cass u in C, u has prefix s} and let r 

denote the rank in A of the last attribute in s (r is 0 when s = ∅). The size of θ(k|s) is 

|θ(k|s)| = C(|A| - r, k - |s|). 

Proof 

|θ(k|s)| is the count of k-cass in 2
A 

that have prefix s. In those cass, s is a fixed cas whose 

tail can be any (k - |s|)-length combination that can be formed with the last |A| - r 

attributes in A. θ(k|s) works as a filter for the set of classes θ(k) (Adamo, 2001). 

Cas (A, 2, 0) = {∅} 

To split the itemsets into 4 classes we proceed as follows: 

M = 4 = 2
k 
 

K = 2 

And the four classes are as shown 

 Generate the two sets: 

      ∪k + 1 ≤  j ≤ A {s.A[k].A[j]} and ∪k + 1 ≤  j ≤ A {s.A[j]} 

The set of 1-itemset that can be formed with attributes in pre(k-1, A) is represented as  

Cas (A, 2, 1) = {I1}  

s = {I1} 

The two sets generated from I1 are {{I1, I2, I3}, {I1, I2, I4}, {I1, I2, I5}} and  

{{I1, I3}, {I1, I4}, {I1, I5}} 

The set of 0-itemset that can be formed with attributes in pre(k-1, A) is represented as  

Cas (A, 2, 1) = {∅}  

 



142 

 

 

   

 

s = {∅} 

The two sets generated from ∅ are {{I2, I3}, {I2, I4}, {I2, I5}} and {I1, I4, I5} 

Therefore the four classes are: 

{{I1, I2, I3}, {I1, I2, I4}, {I1, I2, I5}}, {{I1, I3}, {I1, I4}, {I1, I5}}, {{I2, I3}, {I2, I4}, 

{I2, I5}}, {{I1, I4, I5}} 

We can partition the itemsets into four sublattices as shown in the Table 3.2.5. 
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Lattice/ 

Class # 

Atoms 

        1 

  

 

2 

 

 

3 

 

 

4 

 

 

 

 

 

I1I2I3 I1I2I4 I1I2I5 

I1I3 I1I4 I1I5 

I2I3 I2I4 I2I5 

I3 I4 I5 

Figure 3.2.5 Sublattices of Itemsets 
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I1I2I3I4I5 

I1I2I3I4       I1I2I3I5     I1I2I4I5 

I1I2I3   I1I2I4    I1I2I5 

∅ 

  Figure 3.2.6 Lattice for Class 1                          
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I1I3I4I5 

    I1I3I4       I1I3I5     I1I4I5 

 I1I3   I1I4         I1I5 

∅ 

Figure 3.2.7 Lattice for Class 2 
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I2I3I4I5 

    I2I3I4       I2I3I5     I2I4I5 

 I2I3   I2I4         I2I5 

∅ 

Figure 3.2.8 Lattice for Class 3                        
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  I3I4I5 

    I3I4            I3I5         I4I5 

 I3              I4           I5 

∅ 

Figure 3.2.9 Lattice for Class 4 
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In DDRM we use an estimate of the time to process a class based on the number of 

intersections to determine all frequent itemsets in the class. An estimate of this cost is 

shown in the Table 3.2.3. This estimate can be seen from the intersection diagram for 

each class. 

Step 3 in Figure 3.2.10 shows the allocation of two of  the four classes generated by 

the partition algorithm. 
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Table 3.2.1  Typical Information for Controller 

Controller 

 

Name 

Support 

Confidence 

Tid List 

Frequent 2-items 

Classes 

Frequent Itemsets 
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Table 3.2.2 Number of Class Intersections 

 
Class Number of Intersections 

1 10 

2 6 

3 6 

4 3 
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              Processor P0           Processor P1 

 

Classes 

1 

2 

3 

4 

 

Controller 

Tid-list  Frequent 2-itemsets 

Class 1 

Tid         F2 

Figure 3.2.10 Step 3 of DDRM: Allocation of Classes 

Class 2 

   

Tid         F2 
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           Processor P0             Processor P1 

 

Classes 

1 

2 

3 

4 

 

Controller 

Tid-list  Frequent 2-itemsets 

Frequent Itemsets 

for Class 2 

Figure 3.2.11 Step 4 of DDRM: Processing of Classes 

   

Tid         F2 

Class 2 Lattice 
   

Tid         F2 

Class 1 Lattice 
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Figure 3.2.11 and Figure 3.2.12 represent steps 4 and 5 respectively of the DDRM 

algorithm. These two figures show the dynamic allocation of the remaining classes to the 

processors. We omit the diagram that shows the assignment of class 4. The intersection 

diagrams for the four classes together with the lattice generated by each class are shown 

in Figure 3.2.13 to Figure 3.2.20. 
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           Processor P0             Processor P1 

 

Classes 

1 

2 

3 

4 

 

Controller 

Tid-list  Frequent 2-itemsets 

Frequent Itemsets 

for Class 1 

Figure 3.2.12 Step 5 of DDRM: Processing of Classes 

   

Tid         F2 

Class 2 Lattice 
   

Tid         F2 

Class 1 Lattice 

Class 3 
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I1I2I3I4I5

I1I2I3

T800

T900

I1I2I4

T400

I1I2I5

T100

T800

I2I3

T300

T600

T800

T900

I2I4

T200

T400

I2I5

T100

T800

I1

T100

T400

T500

T700

T800

T900

I3

T300

T500

T600

T700

T800

T900

I4

T200

T400

I5

T100

T800

I2

T100

T200

T300

T400

T600

T800

T900

I1I2

T500

T700

T800

T900

III2I3I4 I1I2I3I5

T800

I1I2I4I5

 

Figure 3.2.13 Intersection of Itemsets in Class 1 
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I1I2I3I4I5 

I1I2I3I4         I1I2I3I5        I1I2I4I5 

   I1I2I3         I1I2I4       I1I2I5 

∅ 

Figure 3.2.14 Lattice Generated by Class 1 

Frequent itemsets are shown in bold 
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I1I3I4I5

I1I3I4 I1I3I5

T800

I1I4I5

I1I3

T500

T700

T800

T900

I1I4

T400

I1I5

T100

T800

I1

T100

T400

T500

T700

T800

T900

I3

T300

T500

T600

T700

T800

T900

I4

T200

T400

I5

T100

T800

 

Figure 3.2.15 Intersection of Itemsets in Class 2 
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I1I3I4I5 

I1I3I4             I1I3I5           I1I4I5 

    I1I3         I1I4             I1I5 

∅ 

Figure 3.2.16 Lattice Generated by Class 2 

Frequent itemsets are shown in bold 
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I2I3I4 I2I3I5

T800

I2I4I5

T800

I2I4

T200

T400

I2I5

T100

T800

I3

T300

T500

T600

T700

T800

T900

I4

T200

T400

I5

T100

T800

I2

T100

T200

T300

T400

T600

T800

T900

I2I3

T300

T800

T900

I2I3I4I5

 

Figure 3.2.17 Intersection of Itemsets in Class 3 
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I2I3I4I5 

I2I3I4             I2I3I5           I2I4I5 

    I2I3         I2I4            I2I5 

∅ 

Figure 3.2.18 Lattice Generated by Class 3 

Frequent itemsets are shown in bold 



161 

 

 

   

 

 

I3I4I5

I3I4 I3I5

T800

I3

T300

T500

T600

T700

T800

T900

I4

T200

T400

I5

T100

T800

 

Figure 3.2.19 Intersection of Itemsets in Class 4 
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   I3I4I5 

  I3I4             I3I5                I4I5 

     I3               I4             I5 

∅ 

Figure 3.2.20 Lattice Generated by Class 4 

Frequent itemsets are shown in bold 
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It can be seen from Figure 3.2.14 that the frequent 3-itemsets are {I1, I2, I3} and  

{I1, I2, I5}.  There are no frequent 3-itemsets for the remaining classes C2, C3 and C4. 

     The following data was collected, analyzed and compared with similar data for the 

parallel prefix-based and partition algorithms: 

1. Total execution time for different number of classes and different number of 

processors 

2. Speedup 

3. Scaleup 

4. Number of Transactions 

5. Wait Time 

6. Turnaround Time 

7. CPU Utilization 

8. Communication Time 

Description of C/C++ Functions Used in DDRM Implementation 

 We show the data structures in DDRM in Appendix A. These are used to store the 

itemset, tidlist, and other important information needed by the system. Appendix B 

through to Appendix K show some of the main functions used in the implementation. 

Appendix B shows the function used to identify the set of all n-itemset that can be formed 

from pre(k –1) of an itemset. This function is used to generate the set of classes. The 

partition function used to create and store the set of all n-itemset in pre(k-1) of  an itemset 

is shown in Appendix C. The n-itemsets are stored in a vector that is then used to 

generate the classes. It uses the setOfNCas function to generate all the n-itemsets. 

Appendix D shows the function used to generate all the classes used as sublattices of the 
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search space for the generation of the rules. It uses the vector generated by the DDRM 

partition function. In Appendix E the function used to generate two classes for each n-

itemset in pre(k-1) is shown. This function is used by Generate All Classes function. The 

functions used to broadcast and receive the vector of tidlists are shown in Appendix F 

and Appendix G respectively. These functions are used by the system to broadcast and 

receive the tidlist vector to stations in the cluster. Appendix H shows the function used to 

send a class to a processor while Appendix I shows the function used to receive a class 

from a processor. The functions used to send and receive the frequent itemsets are shown 

in Appendix J and Appendix K respectively. 

3.3 Comparison of Prefix-Based and DDRM Algorithms 

The prefix-based approach uses an equivalence relation to partition the itemsets into 

classes, which can be processed independently to identify the frequent itemsets (Zaki, et 

al., 1997; Zaki, 2000). 

 The major strengths of the prefix-based approach are: 

1. The utilization of the aggregate memory of all the parallel system by partitioning 

the candidate itemset among the processors. 

2. The repartitioning of the database so that each processor can compute the frequent 

itemsets independently. This eliminates the need to communicate the frequent 

itemsets at the end of each iteration. 

3. The use of a vertical database layout that clusters the transactions containing an 

itemset into tid-lists. This layout reduces the number of scans of the database. 

Computes frequent itemsets by intersection of the tid-lists. Eliminates the 
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overheads associated with the building and searching of complex hash tree data 

structures. 

4. The avoidance of the overhead of generating all the subsets of a transaction and 

checking them against the candidate hash tree during support counting. 

5. The use of the equivalence class recursively to cluster related itemsets during each 

iteration. 

The above characteristics are also shared by DDRM since it seeks to improve on the 

prefix-based approach. The prefix-based algorithm uses a static approach to load 

balancing, which requires prior knowledge of the execution times for each class. The 

unavailability of information on the computation requirements makes it difficult to utilize 

the processors efficiently. A major goal of load balancing is utilization of all processors 

in order to improve the throughput. Performance measures such as throughput and 

completion time are directly affected by processor utilization. 

A simple heuristic strategy to achieve higher utilization of a system is to avoid having 

idle processors as much as possible. In DDRM classes are assigned to the next available 

processor by the controller. Assignment of classes, computation of frequent itemsets and 

return of the results to the controller are carried out asynchronously. 

The prefix-based approach uses the class to partition the load among the processors. 

This partitioning is final as there is no subsequent operation to address imbalances that 

may result during the computations. As a result one processor may be heavily loaded 

while there are idle processors available to assist in the computations. In DDRM, which 

uses a dynamic load balancing approach, the work is assigned to a processor as soon as it 

becomes idle. Dynamic load balancing will incur additional cost due to the movement of 
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work but is beneficial especially when there is a large work imbalance and the load 

changes with time. 

DDRM uses a control monitor to assign classes to processors dynamically as a 

processor becomes idle. This is an improvement over the prefix-based approach, which 

assigns all the classes to the available processors statically. The communications cost 

associated with DDRM is low since most of the data required to process a class are 

already stored at the processor. In this approach a processor can only be idle if there are 

no more available classes at the controller to be processed. High processor utilization is 

an indication of high throughput. The controller can be viewed as a queue where all 

classes exit to be assigned to the next available processor. A comparison of Count 

Distribution, Prefix-Based and DDRM is shown in Table 3.2.3. 
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Characteristics CD Prefix-Based DDRM 

Equivalence No Yes Yes 

Intersection No Yes Yes 

Communications Itemset count Class, Count Class, Count 

Static Scheduling Yes Yes No 

Dynamic Scheduling No No Yes 

Dynamic Load Balancing No No Yes 

Counts Itemsets Independently No Yes Yes 

Synchronization Yes No No 

Assign Work to Idle Processors No No Yes 

Hash Table Yes No No 

 

Table 3.2.3 Comparison of DDRM and Prefix-Based 
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3.3.1 Static Approach 

It is difficult for a static approach to accurately reflect the behavior of the classes 

assigned to each processor based on computation time required by each class. In a 

dynamic approach it is possible to partition the class assigned to a processor and migrate 

some of these partitions to idle processors. This will improve the throughput of the 

system. The partitioning of a task and subsequent migration of some of the resulting 

subtasks will result in increased communications overhead. The system must balance the 

overhead communication cost against the resulting improvement in the throughput. 

According to Jacob and Lee (1999) in cases where the communication or computation 

characteristics change with time the shrinking of the task may improve on the throughput 

of the system. For example, the computation of count of k-itemsets is computationally 

more demanding for small k than for larger k. This means that for small k the 

computation phase would dominate the communication phase while for large k the 

communication phase would dominate and therefore a smaller number of processors 

would be used. 

A static approach which uses a simple strategy of partitioning the problem initially as 

finely as possible may be an indication that support for further partitioning of the task is 

unnecessary. Using the finest partition may result in a high overhead associated with the 

assignment of tasks to the processors. The algorithm complexity and time to assign tasks 

to processors could be reduced with coarse grained partitioning of the problem (Jacob & 

Lee, 1999). 

A disadvantage of the static approach is that if there are no frequent itemsets in the 

classes assigned to a processor while there are many frequent itemsets in the classes 
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assigned to the other processor then the turnaround time will be very high. This is due to 

the fact that one processor will be kept busy processing the classes assigned to it while 

the other processor will be idle most of the time. To illustrate this condition we use the 

database of transactions shown in Table 3.3.1 with vertical layout shown in Figure 3.3.2.  

There are 5 items in the database. We will partition the itemsets into four classes. Class 1 

which is the largest class is assigned to processor 0 and the remaining classes assigned to 

processor 1.  

After the first set of intersections it is clear that there are no frequent itemsets in class 

1 as shown in Figure 3.3.1. The processing of class 1 will end at this point and since there 

is no additional class assigned to processor 0 it will remain idle. On the other hand the 

remaining classes assigned to processor 1 all contain several frequent itemsets, which 

means that processor 1 will spend a significant amount of time processing each class, 

while processor 0 remains idle. The intersection diagrams for the classes assigned to 

processor 0 are shown in Figure 3.3.2 and Figure 3.3.3. In a dynamic approach the classes 

are assigned to processors as soon as they are available. In addition whenever there is an 

idle processor a large class can be subdivided and a subclass migrated to the idle 

processor. 
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 Table 3.3.1 Transaction Database 

 

TID List of Items 

100 I1, I2 

200 I1, I5 

300 I2, I3,I5 

400 I2, I3, I4, I5 

500 I1, I3 

600 I1, I4 

700 I1, I2 

800 I4, I5 

900 I2, I3, I4 

1000 I2, I3, I4, I5 

1100 I2, I4, I5 
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Table 3.3.2 Vertical View of Transaction Database 

I1 I2 I3 I4 I5 

100 100 300 400 200 

200 300 400 600 300 

500 400 500 800 400 

600 700 900 900 800 

700 900 1000 1000 1000 

800 1000  1100 1100 

 1100    
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Figure 3.3.1 Intersection of Itemsets in Class I1 
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Figure 3.3.2 Intersection of Itemsets in Class I2 
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In Figure 3.3.2 the intersection of the tid-lists all give rise to new tid-lists that are also 

frequent. This class will require significantly more computation time than class 1. 

Similarly class 3, which is shown in Figure 3.3.3, will also give rise to tid-lists that are 

frequent from the intersection of the intermediate tid-lists. 

This example illustrates the potential benefit that can be obtained in a dynamic 

approach. In a dynamic approach the work associated with classes 2 and 3 would be 

partitioned between the two processors instead of being assigned to one processor while 

there is another available idle processor. 
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Figure 3.3.3 Intersection of Itemsets in Class I3 
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Lattice Partition and Data Independence 

 A binary relation ≤ on a set L is a partial order if it is transitive, reflexive and 

antisymmetric. A lattice consists of the pair (L, ≤) in which ≤ is a partial order on L, and 

every subset {a, b} consisting of two elements has a least upper bound (LUB) and a 

greatest lower bound (GLB). A lattice is a mathematical structure with two binary 

operators, which are Join and Meet. 

Properties of Lattices 

The meet, join, unique maximum and unique minimum element are always defined. 

Given a lattice (L, ≤), a non-empty subset S of the set L is called a sub-lattice if a ∨ b ∈ S 

and a ∧ b ∈ S whenever a ∈ S and b ∈ S. 

The lattice formed from the atoms {a, b, c, d) is the powerset shown below: 

L = {a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, bcd, abcd}  

This set is a lattice since the meet and join of all elements are defined. 

We use θk to partition the lattice as shown in the table below: 

θθθθk Set1 Set2 Set3 Set4 

1 {a, ab, ac, ad, abc, abd, abcd} {b, bc, bd, bcd} {c, cd} {d} 

2 {ab, abc, abd, abcd} {bc, bcd} {cd}  

3 {abc, abcd} {bcd}   

4 {abcd}    

 

The elements of each set are equivalent since they share a common prefix. 

We have highlighted the prefix in each set that is common to all elements of the set for k 

= 1 to 4.  

For example, for a prefix length of k = 2 we see that the equivalent elements of Set1 are 

ab, abc, abd, and abcd. It can also be seen that the join and meet are defined for these 
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elements that make up the sublattice corresponding to Set1. Set1 is therefore a lattice 

since the join and the meet are defined. In addition Set1 is a subset of L. 

For example, Join : ab ∨ abc = abc and Meet: ab ∧ abc = ab. 

We can therefore use the equivalence function to partition the lattice into sublattices that 

can be processed independently of each other. 

    We can use the property of a lattice to partition our data set into sublattices, which we 

can then process independently. We represent the set of itemsets as a lattice that we then 

partition into sublattices using the equivalence operation shown above. These sublattices 

are then assigned independently to processors for processing and identification of the 

frequent itemsets. 

3.4 Summary 

 In this chapter we discussed the specific procedures employed, the use of lattice 

theory, parallel data mining systems, and their applications to the mining of association 

rules. This chapter also presented a detailed description of the DDRM algorithm and an 

illustration of how it works. We also presented a comparison of the DDRM and prefix-

based algorithms. 
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Chapter 4 

Results 

 

     In this chapter, we will discuss parallel processing and two key parameters used to 

measure the efficiency of parallel algorithms. We also present the results obtained from 

the implementation of the Dynamic Distributed Rule Mining (DDRM) algorithm. It is a 

lattice-based algorithm that partitions the lattice into sublattices to be assigned to 

processors for processing and identification of frequent itemsets. It generates the frequent 

itemsets by partitioning the itemsets into sublattices that are assigned to the processors 

based on their availability.  

4.1 Parallel Algorithms 

 In parallel systems the scheduling of work is an attempt to distribute the work 

equally among the processors. In static scheduling the load is balanced before run time 

and requires an estimation of the run time for each task. Knowledge of the characteristics 

of the problem is generally used to inform the estimation process.  A good dynamic 

scheduling algorithm can schedule the load at run time and seeks to balance and overlap 

computation and communication. The goal of this algorithm is to reduce communication 

while at the same time increasing the extent of concurrency. 

Ideally, there should be no limit to the number of processors and increasing the 

number of processors should produce a corresponding increase in the power of the 

system. Placing an unbounded number of processors close to global memory will retard 
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the processing speed. The performance will also be negatively affected the farther the 

processors are from memory (DeWitt, & Gray, 1992). These limitations that are 

associated with the use of global memory are eliminated by DDRM since it uses a 

shared-nothing architecture. In parallel processing we add more processors to a system in 

order to execute a job faster or to execute a larger job in approximately the same amount 

of time. 

Speedup is defined as holding the job size constant while reducing the execution time. 

We refer to holding the execution time constant while increasing the size of the job as 

scaleup. In general the type of problem and the characteristics of the physical platform on 

which the job is executing determine the shape of the curve associated with speedup and 

scaleup. 

Systems that are bus-based such as symmetric multiprocessors (SMP) are not scalable 

to larger configurations. The bandwidth bottleneck associated with memory and bus 

prevents the number of central processing units (CPUs) from increasing beyond a fairly 

small number. The design of DDRM is different from the SMP since DDRM uses a 

shared-nothing architecture. Therefore, DDRM does not suffer from the bandwidth 

bottleneck associated with the memory  and the bus in the SMP architecture. Linear 

speedup can be accomplished on shared-nothing architectures. Shared-nothing 

architecture facilitates the addition of CPUs in order to reduce the time taken for a set of 

operations. This architecture also supports linear scaleup. The rapid improvement in 

performance of single CPU systems makes it possible to build more powerful systems 

using single CPU systems. 
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4.2 Performance Parameters and Benchmark 
 

Benchmarking has played an important role in the development and research of data 

mining. The design of the benchmarking is to facilitate an analytical comparison of 

DDRM with other methods of parallel mining of association rules. The benchmarking for 

DDRM consists of the following: 

1. A set of algorithms for the parallel mining of association rules. These 

algorithms are DDRM, Partition and the Prefix-based.  

2. A set of performance curves. These curves will be generated from the 

algorithms included in the tests. We will measure the execution time, scaleup, 

and speedup. 

3. The datasets consist of the census data and data obtained from Knowledge 

Discovery and Data Mining (KDD) Cup Competition in Association for 

Computing Machinery (ACM) Special Interest Group on Knowledge 

Discovery and data Mining (SIGKDD)  conference. 

An important area of parallel systems performance measure is scalability. The 

hardware and software must be able to grow in response to the changing demands on the 

system. This change in demand can occur in areas such as number of transactions, 

number of users, complexity of applications and the need for improved execution time. 

The goal in designing a parallel system is to facilitate its development along any of these 

dimensions in a flexible and productive manner.  

Ideally there should be no inherent upper limit that would prevent the satisfaction of 

future requirements. In constructing a good parallel benchmark that takes scalability into 

account there are a number of metrics to be investigated. It should be executed over a 
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range of problem size and machine size. We add more processors to a system to execute a 

given job faster or a larger job in the same amount of time. 

The shape of the speedup curve depends on the problem size since larger problems 

will be better able to utilize larger number of CPUs more efficiently than will small 

problems. In scaleup the gap between the achieved output versus the ideal decreases as a 

percentage of total runtime. The values obtained for speedup and scaleup will depend on 

the type of problem as well as the physical platform on which the job is executing. In a 

distributed memory architecture messages are used to move data around over the 

interconnection network.  

Benchmarking can be used for comparing systems. It can assist in determining which 

of a set of competing products can do the job faster for a given problem size. The 

construction of a good parallel benchmarking must include a number of techniques for 

scalability including speedup and scaleup. The speedup curve obtained is subject to 

Amdahl’s law. This law states that if the problem size is held constant, eventually the 

sequential component of the problem dominates and a point is reached at which adding 

more nodes no longer improves performance.  

In scaleup we increase both the problem size and the machine size together, a larger 

problem executing on a larger machine. In this case tripling both the problem and the 

machine size should result in no change in executing time. In the complexity measure the 

machine size is held constant while measuring the performance on a set of problems of 

varying sizes.  
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4.3 Dynamic Distributed Rule Mining (DDRM) Algorithm 

     The DDRM algorithm was developed and implemented using C/C++ as the 

programming language. We implemented the DDRM algorithm on an Ethernet LAN 

consisting of 7 workstations and one server. Each workstation on the network is an AMD 

Athlon XP 2800+ with 512 Mbytes of memory. The processors are interconnected via a 

10/100 Mbps switch. The switch used 100BASE-T (Fast Ethernet) technology, which 

provided greater bandwidth and improved the client/server response time. For 

communications we used the message passing interface (MPI). We used the windows 

message passing interface (WMPI) for 8 workstations from Critical Software Ltd to 

implement our algorithm. The support count used was 8% with a confidence of 50%. The 

experiment was conducted by partitioning the database among the processors. 

Datasets 

     We used the 1987 census data from the Statistical Institute of Jamaica to generate the 

data used in this experiment. The size of the database was 26 Mbytes with 1.1 million 

records.  We selected parish, race, religion, type of school/university attended, and 

examination passed as categories to be investigated. Each of these categories was further 

subdivided into specific items, with each item being assigned an integer value used to 

represent it in the data file. Each record has 63 attributes.  Jamaica is divided into 

fourteen parishes and each parish is assigned an integer code. The codes assigned to the 

parishes of St. Catherine and St Ann are 14 and 6 respectively. The sample input file with 

the codes assigned to these fields  is shown in Appendix L 

     We also used data from the KDD Cup 2000 dataset. This data set was based on e-

commerce data obtained from a small dot-com company called Gazelle.com.  The size of 
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the data was approximately 4.5 Mbytes with 3072 transactions. It included customer 

information  such as  gender, occupation, age, marital status, estimated income and home 

market value. 

4.4 Experimental Results 

In the speedup experiment the data was partitioned equally among the processors for 

each run. For example, for two processors the data was partitioned into two parts and 

each part assigned to a processor. In Table 4.1.1 we show an integer at the end of each 

file name to indicate the assignment of files to the processors. The file 

c:\\data3_26\\Mypopdata3 would be assigned to processor 2 while the file 

c:\\data3_26\\Mypopdata1 would be assigned to processor 0. An example of the output 

file obtained is shown in Appendix M. 

In the scaleup experiment, the data was partitioned into eight parts and a processor 

added for each part processed. In this approach, we keep adding a processor to do the 

additional work required for each partition added. 

  In the experiment on the number of transactions processed, the number of processors 

was fixed at 7 while growing the size of the database. The database size was varied from 

9.8 MB to 26.3 MB as shown in Table 4.1.2.   
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Table 4.1.1 Description of Data Files  

FILE NAME DESCRIPTION 

c:\\data2_26\\Mypopdata2 Data partitioned into two files 

c:\\data3_26\\Mypopdata3 Data partitioned into three files 

c:\\data4_26\\Mypopdata4 Data partitioned into four files 

c:\\data5_26\\Mypopdata5 Data partitioned into five files 

c:\\data6_26\\Mypopdata6 Data partitioned into six files 

c:\\data7_26\\Mypopdata7 Data partitioned into seven files 
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Table 4.1.2 Size of Transactions Data Files  

FILE NAME SIZE (MB) 

Db_1 9.8 

Db_2 
13.1 

Db_3 
16.4 

Db_4 
19.7 

Db_5 
23.0 

Db_6 
26.3 
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Response Time 

In Figure 4.2.1 we show a plot of the response time on the vertical axis and the 

number of processors on the horizontal axis for the DDRM algorithm. The results 

obtained for this experiment is shown in Table 4.1.3. The database was partitioned based 

on the number of processors. The search space was partitioned into 32 classes, which 

were assigned dynamically to the processors participating in the cluster. It can be seen 

that as we increase the number of processors the response time decreases as well. The 

results obtained for the Prefix-based and Partition algorithms are shown in Figure 4.2.2 

and Figure 4.2.3 respectively. In Figure 4.2.4 we plot the response times for all three 

algorithms. It can be seen that the performance of DDRM is better than both Partition and 

the Prefix-based. Figure 4.2.4 shows that for the same number of processors DDRM is 

able to process the classes in a shorter time than both the Prefix-based and Partition 

algorithms. This improvement in the response time is due to the fact that the dynamic 

assignment of the classes to idle processors results in a more efficient use of the 

processors than the static assignment of classes to processors used by the other two 

algorithms. This improvement in the efficiency of the usage of the processors is also 

demonstrated in Figure 4.2.7 where the Prefix-based  and Partition algorithms take a 

longer time than DDRM to process each of the databases shown. 

Speedup 

      Table 4.1.4 shows the results obtained for the speedup experiment. The speedup 

experiment was conducted to determine how DDRM performs as the number of 

processors is increased with the number of transactions remaining constant. The speedup 
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obtained on a fixed size database and varying number of processors and partitions is 

shown in Figure 4.2.5. The speedup obtained for DDRM is better than that obtained for 

the Prefix-based and Partition algorithms.  

Scaleup 

  In the scaleup experiment, the number of partitions to be processed was incremented 

with a corresponding increase in the number of CPUs. Table 4.1.5 and Figure 4.2.6 show 

the results obtained for the scaleup experiment. Ideally, the time to generate the rules 

should remain constant, since an additional CPU is assigned to each additional partition 

to be processed. However, the time to process each class will vary due to the fact that not 

all classes will necessarily generate rules. In general, classes with rules require more time 

to process than classes without rules. In addition, classes with a high concentration of 

frequent itemsets will take longer to process than classes with a low concentration of 

frequent itemsets. For example, a class may be discarded after the first set of intersection 

of attributes if the resulting itemset is not frequent. However, if it is frequent then 

processing will continue until the resulting itemset is not frequent or all rules have been 

identified and generated. 

Number Of Transactions 

      In this experiment, the number of processors was fixed at 7 CPUs while growing the 

size of the database. The database size was varied from 4.8 MB to 26.3 MB. Table 4.1.6 

and Figure 4.2.7 show the results obtained for the number of transactions processed. It 

can be seen from Figure 4.2.7 that as the size of the database increases, there is an 

increase in the time to process the classes for all three algorithms. However, DDRM takes 

less time to process these transactions as it uses the CPUs more efficiently. 
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Support 

We conducted experiments on three sets of data where we vary the support from 4% to 

10% for all three algorithms. The tables for the results obtained for the three sets of data 

are shown in Table 4.1.7, Table 4.1.8, and Table 4.1.9. The results of these experiments 

are shown in Figure 4.2.9, Figure 4.2.10 and Figure 4.2.11. It can be seen from these 

figures that as we decrease the minimum support from 10% to 4%, there is a 

corresponding increase in the execution time of all three algorithms. This is in keeping 

with our expectations, since a decrease in minimum support will lead to an increase in the 

number of frequent itemsets that would satisfy this requirement. In addition an increase in 

the number of frequent itemsets will lead to an increase in the processing time required to 

identify the relevant rules. It can also be observed that DDRM is able to process these 

itemsets in a shorter time than Partition and Prefix-based algorithms. 

Transaction Width 

Table 4.1.10 and Figure 4.2.12 show the results of our experiment to determine the 

impact of varying the transaction width, on the processing time. The number of attributes 

was varied from 10 to 50 for the five databases that were used in this experiment. It can 

be seen from Figure 4.2.12 that as the transaction size is increased that there is a 

corresponding increase in the processing time. DDRM is able to process these 

transactions in a shorter time than the Partition and Prefix-based algorithms. 
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CPUs 2 3 4 5 6 7 

 Seconds Seconds Seconds Seconds Seconds Seconds 

Partition 4910 3321 3064 3925 3780 2782 

Prefix 4814 3018 3502 3128 3182 2910 

DDRM 3871 2478 2435 2506 2415 2179 

 

Table 4.1.3 Execution Time  
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Figure 4.2.1 Execution Time For DDRM 
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Figure 4.2.2 Execution Time for Prefix 
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Figure 4.2.3 Execution Time for Partition  
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Figure 4.2.4 Execution Time for DDRM, Partition, and Prefix  
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CPUs 2 3 4 5 6 

Partition 1.5 1.6 1.3 1.3 1.8 

Prefix 1.6 1.4 1.6 1.5 1.7 

DDRM 2.0 2.0 2.0 2.0 2.3 

 

Table 4.1.4 Speedup  
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Figure 4.2.5 Speedup for DDRM, Partition, and  Prefix-based  
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CPUs 7 6 5 4 3 2 

 Seconds Seconds Seconds Seconds Seconds Seconds 

Partition 5542 5236 4571 4182 4028 5114 

Prefix 4736 3903 3544 2921 2867 4315 

DDRM 3077 2896 2100 1454 1906 2966 

 

Table 4.1.5 Scaleup  
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Figure 4.2.6 Scaleup for DDRM, Partition, and  Prefix-based  
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Database DDRM Prefix Partition 

 Seconds Seconds Seconds 
DB_1 2525 2697 3092 

DB_2 2472 3747 2882 

DB_3 3020 3566 4269 

DB_4 4242 4683 4645 

DB_5 5097 5621 5076 

DB_6 5249 5709 5722 

 

Table 4.1.6 Databases  
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Figure 4.2.7 Number of Transactions  
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Figure 4.2.8 Number of Transactions  
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Table 4.1.7 Supports (Census) 

Support 10% 8% 6% 4% 

 Seconds Seconds Seconds Seconds 

Partition 2033 3136 5108 6488 

Prefix 1468 2551 4337 6361 

DDRM 742 2372 3142 5600 
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Support 10% 8% 6% 4% 

 Seconds Seconds Seconds Seconds 

Partition 735 2082 3671 5223 

Prefix 731 2116 3470 5385 

DDRM 565 2100 2813 5173 

 

Table 4.1.8 Supports  (KDD) 
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Support 10% 8% 6% 4% 

 Seconds Seconds Seconds Seconds 

Partition 4400 7275 8817 13218 

Prefix 4303 6800 8995 13536 

DDRM 2065 3577 4643 6828 

 

Table 4.1.9 Supports  (KDDWIDE) 
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Figure 4.2.9 Support for Census  
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Figure 4.2.10 Support for KDD  
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Figure 4.2.11 Support  for KDDWIDE  
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Transactions KDD10 KDD20 KDD30 KDD40 KDD50 

 Seconds Seconds Seconds Seconds Seconds 

Partition 33 1006 2916 7112 7109 

Prefix 59 744 2944 7133 7133 

DDRM 14 509 1685 3512 3477 

 

Table 4.1.10 Transaction Width   
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Figure 4.2.12 Transaction Width  
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Wait Time 

    We plot the wait time for all three algorithms in Figure 4.2.13 and Figure 4.2.14 for 

KDD20 and KDD50 respectively. The wait time associated with DDRM is shown to be 

less than the wait times for both the Prefix and Partition algorithms for the two datasets. 

Table 4.1.11 and Table 4.1.12 show the data obtained from the wait time experiments. 

Communication Time 

    The communication time associated with the three algorithms is shown in Figure 

4.2.15. The corresponding data for the result is shown in Table 4.1.13. The 

communication time was measured for the KDD10, KDD20, KDD30, KDD40 and 

KDD50 datasets. DDRM communication cost is less than that associated with Partition 

and Prefix algorithms. 

Turnaround Time 

    In Figure 4.2.16 we plot the turnaround time for the three algorithms. It can be seen 

that the turnaround times for Prefix and Partition algorithms are greater than that for the 

DDRM algorithm. The turnaround time data is shown in Table 4.1.14. 

CPU Cycles 

    Due to the dynamic assignment of classes the DDRM is better able to utilize the idle 

processors than the Prefix and partition algorithms. This can be seen form Figure 4.1.18 

as the CPU cycles utilized by DDRM are greater than the cycles for Partition and Prefix 

algorithms. The corresponding data for the CPU cycles is shown in Table 4.1.16. 

CPU Utilization 

    The utilization of the CPU for the three algorithms is shown in Figure 4.2.17. The data 

obtained from the experiment and used to plot the graph is shown in Table 4.1.15. This 
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experiment was conducted using six processors. An analysis of the graph shown in Figure 

4.2.17 will show that the CPU utilization for DDRM is better than that shown for the 

Prefix and Partition algorithms. 

CPU Usage 

    We used Task Manager to capture the CPU usage of each station for DDRM, Partition 

and the Prefix-based algorithms. We label the stations used as Station 1, Station 2 and 

Station 4. For the Prefix and Partition algorithms we captured two screens for each 

algorithm during execution. The screens were captured on each station in the cluster. In 

order to distinguish each screen we label each figure with the extension S1 for screen 1 

and S2 for screen 2. The screens for the Prefix algorithm are shown in Figure 4.2.19, 

Figure 4.2.20, Figure 4.2.24, Figure 4.2.25 and Figure 4.2.29. In this experiment Station 2 

was the first to finish the classes assigned to it and became idle after 13 of the 32 classes 

were processed. This situation is captured in the screen shown in Figure 4.2.24. Station 1 

later completed all the tasks assigned to it and the screen capture is shown in Figure 

4.2.20. At this time a total of 24 of the 32 classes have been processed with the remaining 

classes currently being processed by Station 4, where they were assigned at the start of 

the processing. At this time there are two idle processors available, however, Station 4 

cannot share the classes currently assigned to it with any of these processors.  

    The screens for the Partition algorithm are shown in Figure 4.2.21, Figure 4.2.22, 

Figure 4.2.26, Figure 4.2.27, and Figure 4.2.30. Figure 4.2.26 shows that Station 2 was 

the first station to complete the classes assigned to it. This was followed by Station 1 as 

shown in Figure 4.2.22. At this point Station 4 is occupied with the classes assigned to it 

and is not able to share these with any of the idle stations.  
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Figure 4.2.23, Figure 4.2.28 and Figure 4.2.31 show the efficient utilization of the CPUs 

by DDRM. It can be seen from these three screen shots that Station 1, Station 2, and 

Station 3 are all kept busy for the duration of the computations and is able to avoid 

having idle processors that cannot be assigned available tasks, as is the case with the 

Prefix and Partition algorithms. 
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Figure 4.2.13  Wait Time for KDD20 
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Figure 4.2.14  Wait Time for KDD50 
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Figure 4.2.15  Communication Time 
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Figure 4.2.16  Turnaround Time 
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Figure 4.2.17  CPU Utilization 
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Figure 4.2.18  CPU Cycles 
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Table 4.1.11 Wait Time KDD20   

Station Prefix Partition DDRM 

 Seconds Seconds Seconds 
1 10.98 11.11 0 

2 8.37 8.45 0 

3 3.23 3.25 0 

4 3.29 3.31 0 

5 3.23 3.28 0 

6 11.39 11.42 0 
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  Table 4.1.12 Wait Time KDD50   

Station Prefix Partition DDRM 

 Seconds Seconds Seconds 
1 4048 4094 0 

2 1619 1623 0 

3 50. 50 0 

4 597 631 0 

5 48 50 0 

6 4549 4569 0 
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Table 4.1.13 Communication Time   

Databases Partition Prefix DDRM 
 Seconds Seconds Seconds 

KDD10 5.3 5.9 3.5 

KDD20 17.7 9.8 7.4 

KDD30 1.6 2.8 7.1 

KDD40 102.1 93.8 6.0 

KDD50 100.3 182.3 11.1 
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Table 4.1.14 Turnaround Time   

Databases Partition Prefix DDRM 
 Seconds Seconds Seconds 

KDD10 251 251 1 

KDD20 65 64 1 

KDD30 338 338 4 

KDD40 13771 13789 105 

KDD50 13903 13954 106 
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 DDRM Partition Prefix 

Number of Idle 
CPUS 

Number of 
Classes 
Returned 

Number of 
Classes 
Returned 

Number of 
Classes 
Returned 

1 27 18 19 

2 28 19 21 

3 29 20 22 

4 30 22 23 

5 31 28 29 

6 32 32 32 

7 0 0 0 

 

Table 4.1.15 CPU Utilization (KDD10)   
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Table 4.1.16 CPU Cycles   

Databases DDRM Prefix Partition 

KDD10 26 0 0 

KDD20 26 0 0 

KDD30 26 0 0 

KDD40 26 0 0 

KDD50 26 0 0 
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Figure 4.2.19  CPU Utilization by Prefix _S1 (Station 1) 
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Figure 4.2.20  CPU Utilization by Prefix_S2 (Station 1) 
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Figure 4.2.21  CPU Utilization by Partition_S1 (Station 1) 
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Figure 4.2.22  CPU Utilization by Partition_S2 (Station 1) 
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Figure 4.2.23  CPU Utilization by DDRM (Station 1) 
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Figure 4.2.24  CPU Utilization by Prefix_S1 (Station 2) 
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Figure 4.2.25  CPU Utilization by Prefix_S2 (Station 2) 
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Figure 4.2.26  CPU Utilization by Partition_S1 (Station 2) 
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Figure 4.2.27  CPU Utilization by Partition_S2 (Station 2) 
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Figure 4.2.28  CPU Utilization by DDRM (Station 2) 
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Figure 4.2.29  CPU Utilization by Prefix (Station 4) 
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Figure 4.2.30  CPU Utilization by Partition (Station 4) 



236 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.31  CPU Utilization by DDRM (Station 4) 
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4.5 Comparison of DDRM and Prefix-Based Algorithms 

     The DDRM algorithm executes faster than the prefix-based algorithm. This is due to 

the fact that DDRM is able to optimise the use of the available CPUs. The ability to keep 

all CPUs busy as long as there is work to be done is an improvement of DDRM over the 

Prefix-based algorithm. The throughput associated with DDRM is high since it is able to 

keep track of all idle processors in the cluster so that the available classes to be processed 

can be assigned to these idle processors. 

 The use of memory by DDRM is based on the principle of sharing the available work 

among the processors using the finest granularity possible. The finest granularity is based 

on the class. By storing and assigning one class at a time the memory utilization of all the 

available memory on the processors is an improvement over the Prefix-based approach. 

 In DDRM available tasks are assigned to processors as soon as they are available.  

Once a processor has completed its assigned task a new task is taken from the task heap 

and assigned to this processor. This approach guarantees that no processor will be idle 

while there are additional classes available for processing. In this approach classes are 

only assigned one at a time and a class is only assigned to an idle processor. 

 A major challenge in parallel processing is to balance the distribution of work across 

processors. It is challenging for a static scheduling algorithm to produce good load 

balancing, especially in an environment where there is no prior knowledge of the 

execution characteristics of the data. The best approach to load balancing is to use a 

dynamic scheduling algorithm. This is an efficient approach when the time needed to 

send and receive each class is low relative to the processing time. DDRM is able to 

balance the load using a dynamic scheduling algorithm that assigns the next task to the 
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first available processor. In this approach there will never be an idle processor while there 

is additional work that is not being processed. 

   The wait time associated with the Prefix is large when compared to the wait time for 

DDRM. This is due to the efficient utilization of the processors by DDRM. Classes are 

assigned dynamically to stations as they become idle. 

     In the DDRM algorithm the turnaround time is small when compared to the Prefix and 

Partition algorithms. Since classes assigned to processors in these algorithms must wait to 

be processed by the station assigned to it there is an increase in the turnaround time due 

to the long wait at each station. 

    CPU utilization by DDRM is better than that obtained for the Prefix and Partition 

algorithms. Since idle CPUs cannot be utilized by the Prefix and Partition algorithms, 

they are likely to suffer from processors not being fully utilized. 

     DDRM algorithm is able to use CPU cycles as they become available in the cluster. 

The Prefix and Partition algorithms cannot use these CPU cycles associated with the 

available idle processors. 

Load and Task Balancing  

      DDRM balances the load across the stations in the cluster better than the Prefix and 

Partition algorithms. The DDRM algorithm is able to assign classes to processors as soon 

as they become idle. In this approach the classes are equally distributed across all the 

stations in the cluster. The Prefix and Partition algorithms suffer from poor load 

balancing, since they are incapable of reassigning classes from busy stations to stations 

that are idle. 
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     All stations performed the same tasks on independent data sets, therefore no task 

balancing was conducted in this research.      

4.6 Summary 

In this chapter we presented and discussed the results of our experiments. We 

implemented the DDRM algorithm that used a lattice theoretic approach to partition the 

frequent itemset search space into independent search spaces. We found that the DDRM 

algorithm showed good speedup and the response time was significantly improved with 

the addition of each processor while keeping the work to be done fixed. The algorithm 

also shows improvement in the response time, wait time, turnaround time, CPU 

utilization and cycle time, when compared to the Prefix-based and Partition, which are 

static scheduling algorithms.  
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

5.1  Conclusions 

     The primary goal of this research and dissertation was to develop and implement a 

parallel algorithm for the mining of association rules. The Dynamic Distributed Rule 

Mining (DDRM) algorithm used a lattice to represent the search space for the generation 

of the frequent itemsets.  The algorithm was implemented using C/C++ as the 

programming language. The DDRM algorithm was implemented on an Ethernet LAN 

consisting of 7 workstations and one server. For communications the message passing 

interface (MPI) was used. The windows message passing interface (WMPI) for 8 

workstations from Critical Software Ltd was used as the MPI interface. 

The improvements made by the algorithm are as follows: 

1. Improved load balancing: The classes generated by the DDRM algorithm are 

assigned dynamically to the processors as they become available. This approach 

was found to be more efficient than the static approach.  

2. No synchronization: DDRM used a lattice theoretic approach, which partitioned 

the itemsets into sublattices that were assigned to each processor to be 

processedindependently. Processors only communicate with the controller to 

collect classes for processing and to return any frequent itemsets found in the 

assigned classes.  
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3. Reduction in communications among processors: There was a significant 

reduction in the communication cost associated with the processing of each class. 

This is due to the fact that the only communications cost incurred for each class is 

the assignment of the class and the subsequent return of the results for the class.  

4. Better CPU utilization: There was a significant improvement in the CPU 

utilization by  DDRM when compared to the Prefix and Partition algorithms. 

5. Improved wait time and turnaround time: The wait time and turnaround time 

obtained for the DDRM algorithm showed improvement over the Partition and 

Prefix algorithms. 

5.2  Implications 
 

Business organizations have recognized the importance of information-driven 

marketing processes and the competitive advantages that they offer. These processes 

allow marketers to develop and implement customized marketing programs and 

strategies. These organizations are turning to data mining technology to facilitate the 

process of extracting valuable information from large databases. The extraction of 

previously unknown information from large databases can be used to generate new 

marketing strategies. Because of the very large size of the databases used to store the 

transactions used in the mining of association rules, parallel algorithms are required to 

process these transactions. The DDRM algorithm used a lattice to represent the search 

space for the generation of frequent itemsets. The DDRM algorithm is important for the 

following reasons: 

1. It provides improved communications among the processors 

2. It reduces the execution time for the classes 
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3. It reduces the cost associated with mining association rules  

4. It is scalable. 

     5. It provides increased processor efficiency    

6. It utilizes memory well  

7. Better CPU utilization 

8. Improved turnaround time and wait time. 

5.3 Recommendations 

    In this dissertation, we presented the theory, description, inference and implementation 

of the Dynamic Distributed Rule Mining (DDRM) algorithm that is based on a lattice 

theoretic approach. 

     The approach used in this research can be used in organizations with multiple sites 

where the databases are stored.  This is an attractive approach to these organizations since 

it eliminates the need to have all these databases in one location. The cost savings 

associated with this approach will make it attractive to these organizations. In addition 

processors at different sites can participate in the computations.  

The DDRM algorithm does not require any special architecture for its implementation. 

It is designed to operate on an existing LAN as a cluster where the PCs can be added to 

the cluster and used to participate in the computations of the classes. The database of 

transactions can also be distributed over the network. This flexibility of the algorithm will 

result in significant savings to the organization as it uses the resources that are already 

available within the organization. This reduction in cost is due to the fact that there is no 

need for specialized architecture and makes the algorithm attractive to an organization 

that currently operates a network with databases distributed over it. 
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     DDRM uses a dynamic load balancing approach to assign classes to the processors. 

Since classes are assigned to processors only after they become available, the algorithm 

avoids and completely eliminates the possibility of assigning more than one class to a 

processor while there are idle processors.  This approach contributes to the improvement 

of DDRM as compared to the Prefix-based approach in the generation of the rules. In all 

cases DDRM is able to improve on the computation time associated with the Prefix-based 

and Partition algorithms. 

      The high processor utilization of DDRM impacts positively on throughput and 

response time. DDRM improved on the throughput and response time due to the dynamic 

assignment of classes to the processors. The processor efficiency of DDRM is an 

improvement over the Prefix-based and Partition algorithms due to the reduction in the 

number of idle processors. 

     In the lattice theoretic approach the rules will be generated faster since the processors 

can do the computations independently of each other. In the DDRM all idle processors 

will be fully utilized during the computation of rules resulting in a faster time to generate 

the rules. In a static approach if it is discovered early that there are no frequent itemsets in 

the classes assigned to a processor these classes will not be processed any further. The 

processor will now be idle, but there is no mechanism in place to move some of the 

classes from the busy processors to the idle processor. The ability of DDRM to 

dynamically assign classes to idle processors makes it more efficient than the static 

algorithms. 

Areas or topics for further research include: 

1. Mechanism for interfacing with a database management system 
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2. Automation of the assignment of codes to attributes used 

3. Impact of the interconnection network topology  

5.4 Summary 

 In this paper, we highlighted the need for parallel solutions to data mining problems. 

Parallel algorithms are required for the mining of association rules to improve on the 

execution time. We also presented our goal to develop and implement a parallel 

algorithm for the mining of association rules using a lattice theoretic approach and 

utilizing dynamic scheduling for the assignment of tasks. In Chapter 2 we reviewed data 

mining, with emphasis on mining of association rules. We also presented several 

approaches to the mining of association rules based on parallel architectures. We also 

presented a discussion on lattice theory. In Chapter 3 we presented a detailed 

investigation of the principles of data mining, parallel data mining, and lattice theory. We 

also presented some examples to demonstrate these principles. 

 In addition we also proposed the Dynamic Distributed Rule Mining (DDRM) 

algorithm, which is a parallel algorithm for data mining that is based on lattice theory and 

uses dynamic scheduling to assign tasks to the processors. A detailed description of 

DDRM and how it works was also presented. 

  In Chapter 4, we presented and discussed the results of our experiments. We found 

that the DDRM algorithm showed good speedup and the execution time was significantly 

improved with the addition of each processor while keeping the work to be done fixed. 

The algorithm also showed improvement in the execution time when compared to the 

Prefix-based, static scheduling algorithm. In Chapter 5, we presented our conclusions and 

further research directions. 
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Appendixes 

 The following appendixes contain listings of the source code for the functions used in  

the DDRM and Prefix based algorithms.  
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Appendix A 

Data Structures Used in Implementation 

//Definition of Structures 

 

typedef std::set< int > item_set; 

typedef std::vector<item_set>setItemsetVect; 

typedef std::vector<setItemsetVect>classVect;//stores the cset of classes for all h-casses 

 

#include <algorithm> 

struct itint 

{ 

 bool operator()(const int n1, const int n2)const 

 {return(n1 < n2);} 

}; 

typedef std::vector< int > trans_attribs; //stores list of attributse satisfying min support; 

std::ostream_iterator< int > output( cout, " " ); 

 

//Defines structure to store interestingness measure as percentage of transactions 

typedef struct 

{ 

 int support; 

 int confidence; 

} intrstMeas; 

 

typedef struct 

{ 

 setItemsetVect vectF1;     // tid lists 

 trans_attribs  F1_items;   // frequent itemsets 

} info_for_F1; 

 

//This vector stores the information on the set of frequent items used to generate rules 

typedef struct 

{ 

 setItemsetVect vectItemSets; //frequent itemsets 

 setItemsetVect vectTIDs;       //tid lists for each frequent itemset 

} freq_items; 
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setItemsetVect setOfNCas(item_set theSet, int k_count) 

{ 

       std::ostream_iterator< int > output( cout, " " ); 

       item_set subKCas; 

       setItemsetVect setOfKItemSets; 

       item_set::iterator i, j, start, k; 

       int sizeOfSet; 

       int count = 0; 

       int numSubMemb = k_count; 

       int subItemSize ; 

 

       sizeOfSet = theSet.size(); 

    

       for(i = theSet.begin(); i != theSet.end();  i++) 

          { 

               item_set stemSet; 

    for(j = i, count = 1; count < k_count; count++,j++) 

               stemSet.insert(*j); 

    for(start = i, count = 1; count < k_count; start++) 

  count++; 

               for(k = start; k != theSet.end();  k++) 

        { 

           item_set iSet = CreateStem(stemSet); 

           iSet.insert(*k); 

           setOfKItemSets.push_back(iSet); 

        }  

          } 

       return setOfKItemSets; 

} 

 

Appendix B 

Function to Create Set of N-Itemsets 



248 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

// Function to compute the set of prefix classes for the given thetaval 

classVect ddrmPartition(item_set freqAttrib,   int numPartitions) 

    { 

          classVect allHVectors; //Stores a vector of vectors with all ha cass 

          setItemsetVect setOfNcas;  //stores the set of itemsets that can be formed from   

                                                      //prefix  K-itemset 

          item_set::iterator start,  k; 

         item_set theSet; 

         int hValue; 

         int count = 0, 

              k_count; 

         int pause; 

        allHVectors.clear(); 

        k_count = Get_KPower_Of2(numPartitions);  

        if(k_count > freqAttrib.size()) 

           { 

               printf("\nThe size of the frequent attributes = %d\n",freqAttrib.size()); 

               printf("\Hit any key to continue .....\n"); 

               scanf("%d", &pause); 

               return allHVectors; 

          } 

 

      for(hValue = k_count-1; hValue >= 0; hValue--) 

        { 

            setOfNcas = setOfNCas(freqAttrib, hValue, k_count);            

            allHVectors.push_back(setOfNcas); 

       } 

 

      return allHVectors; 

  } 

 

Appendix C 

DDRM Partition Function 
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//Function to generate all classes and save these in a class vector 

classVect Generate_All_Classes(classVect allHVectors, classVect allClassVecs, 

item_set freqAttrib, int kcount) 

   { 

     int hVectSize; 

     int index = 0,nextS; 

     item_set tempSet; 

     classVect twoClasses; 

     setItemsetVect vecSet; 

     setItemsetVect tempVec1,tempVec2; 

     hVectSize = (int)allHVectors.size(); 

     for(index = 0; index < hVectSize; index++) 

       { 

         vecSet = allHVectors[index]; 

          nextS = (int)vecSet.size(); 

         if((int)vecSet.size() > 0) 

           for(nextS = 0; nextS < (int)vecSet.size(); nextS++) 

              { 

                tempSet = vecSet[nextS]; 

                twoClasses = Gen_Two_Classes(tempSet, freqAttrib , kcount); 

                tempVec1 = twoClasses[0]; 

                tempVec2 = twoClasses[1]; 

                allClassVecs.push_back(tempVec1); 

                allClassVecs.push_back(tempVec2); 

                tempSet.clear(); 

             } 

        else 

          { 

            twoClasses = Gen_Two_Classes(tempSet, freqAttrib , kcount); 

            tempVec1 = twoClasses[0]; 

            tempVec2 = twoClasses[1]; 

            allClassVecs.push_back(tempVec1); 

            allClassVecs.push_back(tempVec2); 

            tempSet.clear(); 

         } 

     } 

    return allClassVecs; 

  } 
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//Function to generate atoms for each class 

//This function generates the two atoms from pre(k-1) which are the singleton 

(shorter) 

//and union (longer 1). These are stored in the vector tempVec1 which is returned to 

calling 

//program 

 

classVect Gen_Two_Classes(item_set set, item_set attribs, int kVal) 

   { 

      item_set iSet,tempSet,stem1,stem2; 

      item_set::iterator iter,iter2; 

      setItemsetVect tempVec1,tempVec2; 

      classVect resultVec; 

      int index; 

      if(set.size() > 0) 

        { 

           stem2 =  CopySet(set); 

           stem1  =  CopySet(set); 

        } 

      for(iter = attribs.begin(), index = 0; index < kVal-1; iter++) 

        index++; 

     stem1.insert(*iter); 

     iter++; 

    for(iter2 = iter; iter2 != attribs.end(); iter2++) 

      { 

 item_set  tempSet =  CopySet(stem1); 

        item_set iSet  =  CopySet(stem2); 

 tempSet.insert(*iter2); 

 iSet.insert(*iter2); 

        tempVec2.push_back(iSet); 

        tempVec1.push_back(tempSet); 

    } 

   resultVec.push_back(tempVec1); 

   resultVec.push_back(tempVec2); 

   return resultVec; // return the two atoms for the class 

 } 
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// Function to broadcast a setTidsetVect to all processes 

//Variable length lists 

void Bcast_TidsetVect2(setItemsetVect theTidVect, int procNum,int sArray[]) 

{ 

    int index = 0, 

    index1 = 0, 

    size = 0, 

    count, 

    nElem, 

    arrSize; 

    int totAtribs = 0, 

    setSize, 

    numTidSets; 

    int pause; 

    item_set::iterator i, enditer; 

    sendSizeAtrb[2]; 

    item_set tempSet; 

    numTidSets = (int)theTidVect.size(); //Number of itemsets in vector 

    sendSizeAtrb[0] = 0; 

    sendSizeAtrb[1] = 0; 

    if(numTidSets == 0) 

     { 

      printf("\n** The tid vector is empty......\n"); 

      return; 

     } 

   sendSizeAtrb[1] = numTidSets;  //Number of itemsets in the vector 

   MPI_Bcast(sendSizeAtrb,  

                    2,  

                    MPI_INT,  

                    procNum,  

                    MPI_COMM_WORLD); 
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  for( index1 = 0; index1 < numTidSets; index1++) 

    {  

      tempSet = theTidVect[index1]; 

      totAtribs = 0; 

      setSize = (int)tempSet.size(); 

      nElem = setSize; 

      count = nElem/100000; 

      arrSize = 100000; 

      sendSizeAtrb[0] = setSize;  

      sendSizeAtrb[1] = numTidSets;  //Number of itemsets in the vector 

      MPI_Bcast(sendSizeAtrb,  

                    2,  

                    MPI_INT,  

                    procNum,  

                    MPI_COMM_WORLD); 

     arrSize = 100000; 

     for(index = 0; index < count; index++) 

       { 

         Convert_Itemset_To_Arr2(tempSet, sArray, index);       

         MPI_Bcast(sArray,  

           arrSize,  

           MPI_INT,  

           procNum,  

           MPI_COMM_WORLD); 

       } 

     count = nElem % 100000; 

     if(count > 0) 

       { 

         Convert_Itemset_To_Arr2(tempSet, sArray, -1); 

         MPI_Bcast(sArray,  

           count,  

           MPI_INT,  

           procNum,  

           MPI_COMM_WORLD); 

       } 

   }   

} 
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// Function to Receive broadcast of a  setTidsetVect by  processe 0 

//Variable length lists 

setItemsetVect Rcv_Bcast_TidsetVect2(int procNum,int rArray[]) 

{ 

    #define TAG            100 

    #define TRACE 0 

    #define TRIANGARRASIZE 1953 

    int index = 0, 

    index1 = 0, 

    count, 

    nElem, 

    size = 0; 

    int j; 

    int totTids = 0, 

    arrSize = 0, 

    setSize, 

    numSets; 

    int val; 

    int   pause; 

    setItemsetVect theSetVect;  

    item_set::iterator i, enditer; 

    int recvSizeAtrb[2],  //0 size (Value of -1 indicates end of list from proc , 1 atribute 

number 

 sendSizeAtrb[2]; 

    recvSizeAtrb[0] = 0; 

    recvSizeAtrb[1] = 0; 

    theSetVect.clear(); 

    MPI_Bcast(recvSizeAtrb,  

                    2,  

                    MPI_INT,  

                    procNum,  

                    MPI_COMM_WORLD); 

 

    numSets = recvSizeAtrb[1]; 

    totTids = recvSizeAtrb[0]; 
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    for(index1 = 0; index1 < numSets; index1++) 

     { 

       MPI_Bcast(recvSizeAtrb, 2, MPI_INT, procNum,  

                    MPI_COMM_WORLD); 

      setSize = recvSizeAtrb[0];  

      nElem = setSize; 

      count = nElem/100000; 

      arrSize = 100000; 

      item_set tempSet; 

      for(index = 0; index < count; index++) 

        {    

           MPI_Bcast(rArray,  

                     arrSize,  

                     MPI_INT,  

                     procNum,  

                     MPI_COMM_WORLD); 

          for(j = 0; j < arrSize; j++) 

            { 

              val = rArray[j]; 

              tempSet.insert(val); 

            } 

        }  

      count = nElem % 100000; 

      if(count > 0) 

       { 

         arrSize = count;  

         MPI_Bcast(rArray,  

                   arrSize,  

                   MPI_INT,  

                   procNum,  

                   MPI_COMM_WORLD); 

        for(j = 0; j < arrSize; j++) 

         { 

           val = rArray[j]; 

           tempSet.insert(val); 

         } 

       } 

     theSetVect.push_back(tempSet); 

   } 

  return theSetVect; 

} 
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// Function to send a class to a process 

void Send_class(setItemsetVect theClass, int procInfo[],int sArray[]) 

{ 

 

   int index = 0, 

       size = 0; 

   int procNum; 

   int totAtoms = 0, 

       atomSize; 

   item_set::iterator i, enditer; 

   int sendSizeAtrb[3];  //0 size (Value of -1 indicates end of list from proc , 

                      // 1 atribute number, 2 class Number 

   item_set tempSet; 

   size = (int)theClass.size(); //Number of atoms in class 

   procNum = procInfo[0]; 

   sendSizeAtrb[0] = 0; 

   sendSizeAtrb[1] = 0; 

   sendSizeAtrb[2] = 0; 

 

/********************************************************** 

 *** check to see if this is to signal end of class ******* 

 *** transmission                                   ******* 

 ********************************************************** 

 */ 

   if(size == 0) 

     { 

       sendSizeAtrb[0] = -1; //Number of elements in each atom 

       sendSizeAtrb[1] = -1;  //Number of atoms in the class 

       sendSizeAtrb[2] = -1; // the class number 

       MPI_Send(sendSizeAtrb,  

                    3,  

                    MPI_INT,  

                    procNum,  

                    TAG,  

                    MPI_COMM_WORLD); 

      return; 

    } 
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  for( index = 0; index < size; index++) 

    {  

      tempSet = theClass[index]; 

      atomSize = (int)tempSet.size(); 

      for(i = tempSet.begin(); i != tempSet.end(); i++) 

       { 

         sArray[totAtoms] = *i; 

         totAtoms++; 

       } 

    } 

   sendSizeAtrb[0] = atomSize; //Number of elements in each atom 

   sendSizeAtrb[1] = size;  //Number of atoms in the class 

   sendSizeAtrb[2] = procInfo[1]; // the class number 

   MPI_Send(sendSizeAtrb,  

                    3,  

                    MPI_INT,  

                    procNum,  

                    TAG,  

                    MPI_COMM_WORLD); 

 

  MPI_Send(sArray,  

           totAtoms,  

           MPI_INT,  

           procNum,  

           TAG,  

           MPI_COMM_WORLD); 

} 

 

Appendix H 

Send Class Function (2 of 2) 



257 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

// Function to receive a class to a process 

//setItemsetVect Recv_class(int procInfo[]) 

setItemsetVect Recv_class(int procInfo[],int rArray[]) 

{ 

   int atomSize; //Number of attributes in each atom 

   int totalAtoms; //Total atoms in class 

   MPI_Status status; 

   #define TAG            100 

   #define TRIANGARRASIZE 1953 

   int index = 0, 

       index2 = 0, 

       atrib= 0, 

       size = 0; 

   int rnElem = 0; 

   int procNum; 

   setItemsetVect theClass; 

   int recvSizeAtrb[3],  //0 size (Value of -1 indicates end of list from proc, 

                      // 1 atribute number, 3 class Number 

       sendSizeAtrb[2]; 

   recvSizeAtrb[0] = 0; 

   recvSizeAtrb[1] = 0; 

   theClass.clear(); 

 /* Receive a message from a process:                */ 

   procNum = procInfo[0]; // proc num 

   MPI_Recv(recvSizeAtrb,  

   3,  

   MPI_INT,  

   procNum,  

   TAG,  

   MPI_COMM_WORLD,  

    &status);  

 

 

Appendix I 

Receive Class Function (1 of 2) 



258 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/********************************************************** 

 *** check to see if this is to signal end of class ******* 

 *** transmission                                   ******* 

 ********************************************************** 

 */ 

   if(recvSizeAtrb[0] == -1) 

     return theClass; // return the empty class 

   atomSize = recvSizeAtrb[0]; 

   totalAtoms = recvSizeAtrb[1]; 

   procInfo[1] = recvSizeAtrb[2]; 

   rnElem = atomSize * totalAtoms; 
   

 MPI_Recv(rArray,  

           rnElem,  

           MPI_INT,  

           0,  

           TAG,  

           MPI_COMM_WORLD, 

           &status); 

   for(index = 0; index < totalAtoms; index++) 

    { 

      item_set iSet; 

      for(index2 = 0; index2< atomSize; index2++) 

       { 

         iSet.insert(rArray[atrib]); 

         atrib++; 

       } 

     theClass.push_back(iSet); 

   } 

 return theClass; 

} 
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// Function to send frequent items of class to a process 

void Send_FreqItems(setItemsetVect freqItems, int procNum,int classNum, int 

sArray[]) 

{ 

     

    int index = 0, 

         size = 0; 

    int j; 

    int totItems = 0, 

        itemSize; 

    item_set::iterator i, enditer; 

    int sendSizeAtrb[3];  //0 size (Value of -1 indicates end of list from proc ,  

                                                    1 attribute number 

   

    item_set tempSet; 

    size = (int)freqItems.size(); //Number of atoms in class 

    sendSizeAtrb[0] = 0; 

    sendSizeAtrb[1] = 0; 

    sendSizeAtrb[2] = classNum; // class number 

    if(sArray[0] == -1) 

      { 

        sendSizeAtrb[0] = -1; //Number of elements in each itemset 

        sendSizeAtrb[1] = size;  //Number of itemsets that are in vector 

        MPI_Send(sendSizeAtrb,  

                    3,  

                    MPI_INT,  

                    procNum,  

                    TAG,  

                    MPI_COMM_WORLD); 

        return; 

      } // size is 0 no freuent items in class 
 

 

Appendix J 

Send Frequent Itemsets Function (1 of 2) 



260 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    for( index = 0; index < size; index++) 

      {  

        tempSet = freqItems[index]; 

        itemSize = (int)tempSet.size(); 

        for(i = tempSet.begin(); i != tempSet.end(); i++) 

          { 

            sArray[totItems] = *i; 

            totItems++; 

          } 

      } 

    sendSizeAtrb[0] = itemSize; //Number of elements in each atom 

    sendSizeAtrb[1] = size;  //Number of atoms in the class 

    MPI_Send(sendSizeAtrb,  

                    3,  

                    MPI_INT,  

                    procNum,  

                    TAG,  

                    MPI_COMM_WORLD); 

    MPI_Send(sArray,  

           totItems,  

           MPI_INT,  

           procNum,  

           TAG,  

           MPI_COMM_WORLD); 

   sendSizeAtrb[0] = -1; 

} 
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// Function to receive frequent itemsets of a class from a process 

setItemsetVect Recv_Freqitems(int procInfo[],int rArray[]) 

{ 

   int source; 

   int itemSize; //Number of attributes in each atom 

   int totalItems; //Total atoms in class 

   MPI_Status status; 

   #define TAG            100 

   #define TRIANGARRASIZE 1953 

   int index = 0, 

       index2 = 0, 

       atrib= 0, 

       size = 0; 

   int rnElem = 0; 

   int pause; 

   setItemsetVect freqItemsVec; 

   int recvSizeAtrb[3];  //0 size (Value of -1 indicates end of list from proc ,  

                                       1 attribute number 

   recvSizeAtrb[0] = 0; 

   recvSizeAtrb[1] = 0; 

   recvSizeAtrb[2] = 0; 

    

   freqItemsVec.clear(); 

 

 /* Receive a message from a process:                    */ 

   MPI_Recv(recvSizeAtrb,  

   3,  

   MPI_INT,  

   MPI_ANY_SOURCE,  

   TAG,  

   MPI_COMM_WORLD,  

    &status); //MPI_STATUS_IGNORE); 

  source = status.MPI_SOURCE; 

  procInfo[0] = source; 

  procInfo[1] = recvSizeAtrb[2];// class number 

  procInfo[2] = recvSizeAtrb[2];  

  itemSize = recvSizeAtrb[0]; 

  totalItems = recvSizeAtrb[1]; 
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/* Changed to send 0 in procInfo[2] to indicate no rules */ 

  if(itemSize < 0) 

    { 

      procInfo[2] = 0; 

      return freqItemsVec; //there are no frequent items in the class    

    } 

  rnElem = itemSize * totalItems; 

  printf("\n** rnElem to receive = %d\n", rnElem); 

  MPI_Recv(rArray,  

           rnElem,  

           MPI_INT,  

           source, 

           TAG,  

           MPI_COMM_WORLD, 

           &status); 

   

  for(index = 0; index < totalItems; index++) 

   { 

          item_set iSet; 

     for(index2 = 0; index2 < itemSize; index2++) 

      { 

        iSet.insert(rArray[atrib]); 

        atrib++; 

      } 

    freqItemsVec.push_back(iSet); 

  } 

 return freqItemsVec; 

} 
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TID,Parish,Race,Religion,SchUnivAtd,SchUniv,ExamPassed 

1,13,15,26,47,49,63 

9,13,,,,, 

17,13,15,26,44,50,57 

25,13,15,26,43,49,56 

33,13,15,26,47,50,63 

41,13,,,,, 

49,13,15,26,47,49,63 

57,13,15,24,47,49,63 

65,13,15,26,47,54,63 

73,13,15,24,47,54,63 

81,13,15,24,42,48,55 

89,13,15,26,47,49,63 

97,13,15,41,42,48,55 

105,13,15,24,47,54,63 

113,13,15,23,42,48,55 

121,13,15,32,42,48,55 

129,13,15,24,43,49,56 

137,13,15,26,43,49,56 

145,13,15,31,43,49,56 

153,13,15,26,44,50,57 

161,13,15,26,47,49,63 

169,13,15,26,47,49,63 

177,13,,,,, 

185,13,15,29,47,49,63 

193,13,15,23,43,49,56 

201,13,15,26,47,54,63 

209,13,15,41,,49, 

217,13,15,24,47,49,63 

225,13,15,41,47,54,63 

233,13,15,23,44,50,57 

241,13,15,23,43,49,56 

249,13,,,,, 

481,13,15,23,42,48,55 

489,13,15,23,47,50,63 

497,13,15,24,43,49,56 
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STATISTICAL DATA FOR DDRM 

Total number of transactions = 1116759 

Support for this run is = 8 

Support Count for this run is = 89340 

Confidence for this run is = 50 

Number of Classes = 8 

Number of CPUs = 4 

Number of Processes = 4 

 

**** List of frequent attributes : 

2 13 14 15 20 24 26 41 43 47 49 50 54 56 63  

 

Itemset for F2 **** contains:  

2 15  

2 47  

2 49  

2 63  

14 15  

14 47  

14 63  

15 24  

15 26  

15 41  

15 43  

15 47  

15 49  

15 50  

15 54  

15 56  

15 63  

20 47  

20 63  

26 47  

26 49  

26 63  

41 47  

41 49  

41 63  

43 49 
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43 49  

43 56  

47 49  

47 50  

47 54  

47 63  

49 56  

49 63  

50 63  

54 63  

 

 

The following is the List of Classes:  

Class 0 containsthe following atoms:  

2 13 14 15  

2 13 14 20  

2 13 14 24  

2 13 14 26  

2 13 14 41  

2 13 14 43  

2 13 14 47  

2 13 14 49  

2 13 14 50  

2 13 14 54  

2 13 14 56  

2 13 14 63  

Class 1 contains the following atoms:  

2 13 15  

2 13 20  

2 13 24  

2 13 26  

2 13 41  

2 13 43  

2 13 47  
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2 13 49  

2 13 50  

2 13 54  

2 13 56  

2 13 63  

Class 2 contains the following atoms:  

2 14 15  

2 14 20  

2 14 24  

2 14 26  

2 14 41  

2 14 43  

2 14 47  

2 14 49  

2 14 50  

2 14 54  

2 14 56  

2 14 63  

Class 3 contains the following atoms:  

2 15  

2 20  

2 24  

2 26  

2 41  

2 43  

2 47  

2 49  

2 50  

2 54  

2 56  

2 63  

Class 4 contains the following atoms:  

13 14 15  

13 14 20  

13 14 24  

13 14 26  

13 14 41  

13 14 43  
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13 14 47  

13 14 49  

13 14 50  

13 14 54  

13 14 56  

13 14 63  

Class 5 contains the following atoms:  

13 15  

13 20  

13 24  

13 26  

13 41  

13 43  

13 47  

13 49  

13 50  

13 54  

13 56  

13 63  

Class 6 contains the following atoms:  

14 15  

14 20  

14 24  

14 26  

14 41  

14 43  

14 47  

14 49  

14 50  

14 54  

14 56  

14 63  

Class 7 contains the following atoms:  

15  

20  

24  

26  

41  

43  

47  
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49  

50  

54  

56  

63 

Rule number 1 

47    ===========>     2 63   

 63    ===========>     2 47   

 2 47    ===========>     63   

 2 63    ===========>     47   

  

 

 Rule number 2 

47    ===========>     63   

 63    ===========>     47   

 Start time for computation is = 1114196968 

End time for computation is = 1114199081 

Total time for computation is = 2113 

Total time to process database is = 614 

Total time to Compute F2 is = 557 

Total time to send all classes is = 826 

Total time to receive all classes is = 723 

Total time to process all classes is = 826 

Total time to generate all rules is = 903 

 

 

 Arrival Time of First set of Classes: 

 

Class Number 1 arrived at 103 from Processor 2 

Class Number 0 arrived at 103 from Processor 1 

Class Number 2 arrived at 104 from Processor 3 

Class Number 4 arrived at 173 from Processor 1 

Class Number 5 arrived at 173 from Processor 3 

Class Number 6 arrived at 368 from Processor 1 

Class Number 3 arrived at 371 from Processor 2 

Class Number 7 arrived at 826 from Processor 3  
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