
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2009

Parallel Mining of Association Rules Using a Lattice
Based Approach
Wessel Morant Thomas
Nova Southeastern University, wesselth@gmail.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Wessel Morant Thomas. 2009. Parallel Mining of Association Rules Using a Lattice Based Approach. Doctoral dissertation. Nova
Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (361)
http://nsuworks.nova.edu/gscis_etd/361.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NSU Works

https://core.ac.uk/display/51091222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Parallel Mining of Association Rules Using a Lattice Based Approach

By

Wessel Thomas

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computer Science

Graduate School of Computer and Information Sciences

Nova Southeastern University

2009

We hereby certify that this dissertation, submitted by Wessel M. Thomas, conforms to

acceptable standards and is fully adequate in scope and quality to fulfill the dissertation

requirements for the degree of Doctor of Philosophy.

Junping Sun, Ph.D. Date

Chairperson of Dissertation Committee

Mike Laszlo, Ph.D. Date

Dissertation Committee Member

James Cannady, Ph.D. Date

Dissertation Committee Member

Approved:

Edward Lieblein, Ph.D. Date

Dean

Graduate School of Computer and Information Sciences

Nova Southeastern University

2009

An Abstract of a Dissertation Submitted to Nova Southeastern University

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Parallel Mining of Association Rules Using a Lattice Based Approach

By

Wessel M. Thomas

2009

The discovery of interesting patterns from database transactions is one of the major

problems in knowledge discovery in database. One such interesting pattern is the

association rules extracted from these transactions. The goal of this research was to

develop and implement a parallel algorithm for mining association rules. We

implemented a parallel algorithm that used a lattice approach for mining association

rules. The Dynamic Distributed Rule Mining (DDRM) is a lattice-based algorithm that

partitions the lattice into sublattices to be assigned to processors for processing and

identification of frequent itemsets. We implemented the DDRM using a dynamic load

balancing approach to assign classes to processors for analysis of these classes in order to

determine if there are any rules present in them.

Parallel algorithms are required for the mining of association rules due to the very large

databases used to store the transactions. Some of the previous parallel algorithms are

Count Distribution (CD), Data Distribution (DD), Candidate Distribution (CDD),

Intelligent Data Distribution (IDD), and Hybrid Distribution (HD). However the costs

associated with these algorithms are hash tree construction, hash tree traversal,

communication overhead, input/output (I/O) cost and data movement respectively. These

algorithms assign tasks to the processors using a static scheduling scheme. The main

challenge for a static scheduling scheme is to determine the amount of time that will be

needed to process each task. This information can then be used to compute the total time

needed to process all the tasks and to divide these tasks among the processors so that an

equal amount of tasks are assigned to each processor using processing time as the unit of

measurement.

Experimental results show that DDRM utilizes the processors efficiently and performed

better than the prefix-based and Partition algorithms that use a static approach to assign

classes to the processors. The DDRM algorithm scales well and shows good speedup.

Acknowledgements

I thank my advisor, Professor Junping Sun for his extraordinary patience while modifying

and editing the earlier drafts of this dissertation.

I would also like to thank all the members of my dissertation advisory committee for their

comments and careful reading of the dissertation drafts, which resulted in the

improvement of this research. In particular I thank Professor Michael J. Laszlo and

Professor Jim Cannady. I thank Professor Barrington Chevannes for his comments and careful

reading of this dissertation.

My graduate study at Nova Southeastern was beneficial and enjoyable. I thank all the

professors and members of staff in the graduate School of Computing and Information

Sciences for their contribution to my study.

Many thanks to Mr. Mark Powell and Mr. Joshua Morrison, Nova Southeastern

University for the assistance given during the use of the Secure and Robust Distributed

Information Systems (SARDIS) laboratory. I am also thankful to Mr. Colin Francis,

University of Technology, Jamaica for the use of the multimedia laboratory.

I thank my wife Nadine, son Alex and daughter Leanne for their love, understanding,

support and sacrifice. During the tough times they were always there to support and

encourage me.

V

Table of Contents

Abstract iii

List of Tables vii

List of Figures ix

Chapters

1. Introduction 1
1.1 Problem Statement and Goal 1

1.2 Relevance and Significance 5

1.3 Barriers and Issues 8

1.4 Summary 9

2. Review of the Literature 10
2.1 Historical Overview of the Theory and Research Literature 10

2.1.1 Data Mining 10

2.1.2 Data Mining Tasks 11

2.2 The Theory and Research Literature Specific to Data Mining 12

2.2.1 Association Rule Mining 12

2.2.1.1 Classification of Association Rules 14

2.2.2 Apriori Algorithm 15

2.2.3 Database Organization 27

2.2.4 Parallel Processing 31

2.2.5 Partitioning of Candidate and Data 34

2.2.6 Parallel and Distributed Algorithms 36

2.2.7 Current State and Existing Methodologies 43

2.2.7.1 Count Distribution (CD) Algorithm 45

2.2.7.2 Data Distribution (DD) Algorithm 52

2.2.7.3 Intelligent Data Distribution (IDD) Algorithm 60

2.2.7.4 Hybrid Distribution (HD) Algorithm 68

2.2.7.5 Comparison of Algorithms 81

2.2.8 Lattice Theory 82

2.2.8.1 Serial Prefix-Based Method with Bottom-Up Search Algorithm 91

2.2.8.2 Parallel Prefix-Based Method with Bottom-Up Search Algorithm 111

2.3 Dynamic Distributed Rule Mining (DDRM) 122

2.4 The Contribution This Study Makes to Data Mining 123

2.5 Summary 127

3. Methodology 128
3.1 Lattice Theoretic Approach 128

 3.1.1 Lattice Theory 128

3.2 Dynamic Distributed Rule Mining 129

 3.2.1 Message Passing Interface (MPI) 130

VI

 3.2.2 Lattice Partition 139

3.3 Comparison of Prefix-Based and DDRM Algorithms 164

 3.3.1 Static Approach 168

3.4 Summary 177

4. Results 178
 4.1 Parallel Algorithms 178

 4.2 Performance Parameters and Benchmark 180

 4.3 Dynamic Distributed Rule Mining (DDRM) Algorithm 182

 4.4 Experimental Results 183

 4.5 Comparison of DDRM and Prefix-Based Algorithms 237

 4.6 Summary 239

5. Conclusions, Implications, Recommendations, and Summary 240
 5.1 Conclusions 240

 5.2 Implications 241

 5.3 Recommendations 242

 5.4 Summary 244

Appendixes
A. Data Structures Used in Implementation 246

B. Function to Create Set of N-Itemsets 247

C. DDRM Partition Function 248

D. Generate All Classes Function 249

E. Generate Two Classes Function 250

F. Broadcast TID Vector Function 251

G. Receive Broadcast of TID Vector Function 253

H. Send Class Function 255

I. Receive Class Function 257

J. Send Frequent Itemsets Function 259

K. Receive Frequent Itemsets Function 261

L. Sample Data 263

M. Sample Output For DDRM 264

Reference List 269

VII

List of Tables

Tables

2.2.1. Candidate Itemsets in Hash Tree 24

2.2.2. Count of Candidate Itemsets in Hash Tree 26

2.2.3. Transaction Database 28

2.2.4. Boolean Representation of Transaction Database 29

2.2.5. Vertical View of Transaction Database 30

2.2.6. Transaction Database 44

2.2.7. Sample Database for HD Algorithm 75

2.2.8. Transaction Database 88

2.2.9. Vertical View of Transaction Database 89

2.2.10. Tid-Lists Sorted on Number of Transactions 112

2.2.11. Assignment of Tid-Lists to Processors 113

2.2.12. Classes Sorted on Size 116

2.2.13. Assignment of Classes to Processors 117

2.2.14. Assignment of Tid-Lists to Processors After Exchange of Tid-Lists 118

3.2.1 Typical Information for Controller 149

3.2.2 Number of Intersections 150

3.2.3 Comparison of DDRM and Prefix-based Algorithms 167

3.3.1 Transaction Database 170

3.3.2 Vertical View of Transaction Database 171

4.1.1 Description of Census Data Fields 184

4.1.2 Description of Data Files 185

VIII

4.1.3 Execution Time 189

4.1.4 Speedup 194

4.1.5 Scaleup 196

4.1.6 Databases 198

4.1.7 Supports (Census) 201

4.1.8 Supports (KDD) 202

4.1.9 Supports (KDDWIDE) 203

4.1.10 Transaction Width 207

4.1.11 Wait Time KDD20 218

4.1.12 Wait Time KDD50 219

4.1.13 Communication Time 220

4.1.14 Turnaround Time 221

4.1.15 CPU Utilization 222

4.1.16 CPU Cycles 223

IX

List of Figures

Figures

2.2.1. Apriori Algorithm 16

2.2.2. Hash Tree of Candidate 3-Itemsets 25

2.2.3 Count Distribution (CD) Algorithm 48

2.2.4 Local Count for CD 49

2.2.5 Count After Global Reduction for CD 50

2.2.6 Local Count of 3-Itemset for CD 51

2.2.7 Data Distribution (DD) Algorithm 54

2.2.8 Count After Assigning Partitions to Processors for DD 58

2.2.9 Count After Complete Cycle for DD 59

2.2.10 Pseudo Code for Data Movements for IDD 61

2.2.11 Intelligent Data Distribution (IDD) 62

2.2.12 Movement of Local Data Among Processors for IDD 66

2.2.13 Count of Itemsets After One Cycle for IDD 67

2.2.14 Data Movement Along Columns for HD 72

2.2.15 Reduction Operation Along Rows for HD 73

2.2.16 Hybrid Distribution (HD) 74

2.2.17 Initial Count for HD 76

2.2.18 Data Movement Along Columns for HD (1) 77

2.2.19 Data Movement Along Columns for HD (2) 78

2.2.20 Data Movement Along Columns for HD (3) 79

2.2.21 Use of CD to Broadcast Local Counts (HD) 80

X

2.2.22 Lattice of Itemsets 90

2.2.23 Pseudo Code for Bottom-Up Search 93

2.2.24 Lattice Generation by Class I1 94

2.2.25 Intersection of Itemsets in Class I1 95

2.2.26 Lattice Generation by Class I2 104

2.2.27 Intersection of Itemsets in Class I2 105

2.2.28 Lattice Generation by Class I3 108

2.2.29 Intersection of Itemsets in Class I3 109

2.2.30 Lattice Generation by Class I4 110

2.2.31 Pseudo Code for Parallel Prefix-Based Algorithm 114

2.2.32 Assignment of Tid-Lists to Processors 119

2.2.33 Assignment of Classes to Processors 120

2.2.34 Assignment of Tid-Lists to Processors After Exchange of Tid-Lists 121

3.2.1 Dynamic Distributed Rule Mining Algorithm 133

3.2.2 Step 1 of DDRM: Generation of Tid-Lists 137

3.2.3 Step 2 of DDRM: Generation of F2 138

3.2.4 Procedure to Partition Lattice 140

3.2.5 Sublattices of Itemsets 143

3.2.6 Lattice for Class 1 144

3.2.7 Lattice for Class 2 145

3.2.8 Lattice for Class 3 146

3.2.9 Lattice for Class 4 147

3.2.10 Step 3 of DDRM: Allocation of Classes 151

XI

3.2.11 Step 4 of DDRM: Processing of Classes 152

3.2.12 Step 5 of DDRM: Processing of Classes 154

3.2.13 Intersection of Itemsets in Class I1 155

3.2.14 Lattice Generated by Class I1 156

3.2.15 Intersection of Itemsets in Class I2 157

3.2.16 Lattice Generated by Class I2 158

3.2.17 Intersection of Itemsets in Class I3 159

3.2.18 Lattice Generated by Class I3 160

3.2.19 Intersection of Itemsets in Class I4 161

3.2.20 Lattice Generated by Class I4 162

3.3.1 Intersection of Itemsets in Class I1 172

3.3.2 Intersection of Itemsets in Class I2 173

3.3.3 Intersection of Itemsets in Class I3 175

4.2.1 Execution Time for DDRM 190

4.2.2 Execution Time for Prefix-Based 191

4.2.3 Execution Time for Partition 192

4.2.4 Execution Time for DDRM, Partition, and Prefix-Based 193

4.2.5 Speedup for DDRM, Partition, and Prefix-Based 195

4.2.6 Scaleup for DDRM, Partition, and Prefix-Based 197

4.2.7 Number of Transactions 199

4.2.8 Number of Transactions 200

4.2.9 Support for Census 204

4.2.10 Support for KDD 205

XII

4.2.11 Support for KDDWIDE 206

4.2.12 Transactions Width 208

4.2.13 Wait Time for KDD20 212

4.2.14 Wait Time for KDD50 213

4.2.15 Communication Time 214

4.2.16 Turnaround Time 215

4.2.17 CPU Utilization 216

4.2.18 CPU Cycles 217

4.2.19 CPU Utilization by Prefix_S1 (Station 1) 224

4.2.20 CPU Utilization by Prefix_S2 (Station 1) 225

4.2.21 CPU Utilization by Partition_S1 (Station 1) 226

4.2.22 CPU Utilization by Partition_S2 (Station 1) 227

4.2.23 CPU Utilization by DDRM (Station 1) 228

4.2.24 CPU Utilization by Prefix_S1 (Station 2) 229

4.2.25 CPU Utilization by Prefix_S2 (Station 2) 230

4.2.26 CPU Utilization by Partition_S1 (Station 2) 231

4.2.27 CPU Utilization by Partition_S2 (Station 2) 232

4.2.28 CPU Utilization by DDRM (Station 2) 233

4.2.29 CPU Utilization by Prefix (Station 4) 234

4.2.30 CPU Utilization by Partition (Station 4) 235

4.2.31 CPU Utilization by DDRM (Station 4) 236

1

Chapter 1

Introduction

1.1 Problem Statement and Goal

 Many organizations are now finding it feasible economically to create ultra large

databases of business and scientific data. This is made possible by the availability of

inexpensive storage devices and developments in data capture technology (Agrawal &

Shafer, 1996). Bar-code technology has made it possible to collect and store large

amounts of sales data in retail organizations. The records associated with retail data are

typically made up of transaction data and items bought in the transaction. These

databases are viewed by organizations as important pieces of marketing infrastructure.

 It is the desire of these organizations to institute information-driven marketing

processes, managed by database technology, which will enable marketers to develop and

implement customized marketing programs and strategies (Agrawal & Srikant, 1994). In

order to accomplish the above these organizations are turning to the application of data

mining technology to assist in the process of extracting valuable information from these

large databases. It is recognized that new marketing strategies can be generated based on

the extraction of previously unknown information from these large databases.

Organizations are now using this data for the mining of association rules. A probabilistic

statement such as 98% of customers that purchase tires and auto accessories also get

automotive services done is an example of an association rule. It is a statement about the

2

co-occurrence of certain events in a database (Hand, Mannila, & Smyth, 2001).

According to Agrawal and Srikant (1994) finding all such rules is valuable for cross

marketing and attached mailing applications. In addition, applications such as catalogue

design, add-on sales, store layout, and customer segmentation based on buying patterns,

are important areas of application of mining of association rules.

 The goal of data mining is the discovery of unknown patterns in large databases using

efficient techniques to find these rules. Due to the large volume of data stored in these

databases, considerable work has been done using serial algorithms. As the volume of

data stored in these databases increases, the performances of the serial algorithms

decrease due to the large volume of data that is being processed serially. However,

according to Agrawal and Shafer (1996) it is clear that even with the development of fast

serial algorithms, they are still limited due to the volume of data to be processed. It is

therefore, necessary to use parallel algorithms for the task of mining of association rules.

Parallel architectures are now affordable due to the significant progress made in

networking, memory, and processor technologies. These technologies have made it

possible to access and manipulate massive databases in a reasonable amount of time

(Agrawal & Shafer, 1996).

 In association rule mining, the database is scanned for interesting relationships in a

given data set. Interestingness is measured by rule support and confidence. For example,

milk ⇒ bread [support = 5%, confidence = 70%]. Support of 5% means that 5% of all the

transactions show that milk and bread are purchased together, and confidence of 70%

shows that 70% of the customers purchasing milk also purchased bread. The goal of

3

mining association rules is to generate all association rules that have support and

confidence greater than the user specified support and confidence, respectively.

 In the original paper on the topic, mining of association rules can be divided into two

steps (Agrawal, et al., 1993). In the first step the objective is to find all itemsets whose

support is greater than the user specified minimum support (frequent itemsets). The

second step uses the frequent itemsets to generate the desired rules. The first step requires

more time and computation power than the second one. According to Zaki (2000) the

search space for the discovery of all frequent associations in very large databases is

exponential in the number of database attributes. In addition this is further complicated

by I/O requirements for the millions of database objects.

 The goal of this research was to develop and implement a parallel algorithm for the

mining of association rules. The Dynamic Distributed Rule Mining (DDRM) algorithm

uses a lattice to represent the search space for the generation of the frequent itemsets.

DDRM partitions the search space and assigns each partition dynamically to the next

available processor. An evaluation of the algorithm was carried out and its performance

relative to the prefix-based algorithm proposed by Zaki (2000) with bottom-up search,

which is a parallel algorithm for mining of association rules, was also determined.

 According to Agrawal and Schafer (1996) because of the very large size of the

databases needed to store the transactions used in the mining of association rules, parallel

algorithms are required. Several parallel algorithms have been developed for the mining

of association rules including Count Distribution (CD), Data Distribution (DD),

Candidate Distribution (CDD), Intelligent Data Distribution (IDD), and Hybrid

Distribution (HD). Agrawal and Shafer (1996) developed the CD, DD, and CDD

4

algorithms. The IDD and HD algorithms were both developed by Han, Karypis, and

Kumar (2000). The IDD and HD algorithms have performed better than CD and DD.

However, the cost associated with these algorithms includes hash tree construction, hash

tree traversal, communication overhead, I/O operations, and the movement of data.

 In DDRM there is no hash tree and the cost associated with I/O and communications

are significantly reduced. It computes the frequent itemsets using an intersection

operation in memory that requires no scanning of the database. This is different from the

approach used by HD and IDD in which the database is scanned during the computation

of the frequent itemsets.

 The DDRM algorithm uses an equivalence operation to partition the search space

lattice into sublattices to be assigned dynamically to processors for processing and

identification of frequent itemsets. The Prefix-based algorithm uses a static approach to

assign sublattices to the processors participating in the cluster. The system assigns a

sublattice to each processor as it becomes available. Since the sublattices are assigned

dynamically there will be a better utilization of the available processors. The partitioning

of the lattice into sublattices can be controlled and used to determine the maximum size

of a sublattice. If a sublattice is above the maximum size it will be partitioned into

sublattices recursively until the size of each meets the required threshold. An outline of

the approach is as follows:

1. Divide the database among the processors

2. All processors will contribute to the building of the tid-list

3. Generate the sublattices

4. Assign each sublattice to the next available processor

5

5. Update control processor with result

6. Generate rules

1.2 Relevance and Significance

 Agrawal, et al. (1993) highlighted the issues associated with the generation of large

itemsets during rule mining. They presented a template algorithm in which they

addressed trade off between the number of passes and time wasted on processing itemsets

that turned out to be small. They used an estimation procedure to determine what itemsets

to measure in addition to two pruning procedures that prune detected itemsets that will

not turn out to be large.

 The Count Distribution (CD), Data Distribution (DD) and Candidate Distribution

(CDD) algorithms were presented by Agrawal and Shafer (1996). These algorithms are

parallel versions of the popular Apriori algorithm. CD, DD and CDD were designed for

shared nothing systems. CDD incorporates detailed problem knowledge and removes

processor dependence and synchronous communication from the process. However, this

algorithm suffers from high communication overhead and the cost associated with the

redistribution of the dataset. The performance of CDD is better than DD but not as good

as CD. DD algorithm scales poorly and has a high communication cost; however DD

exploits the aggregate memory of the multiprocessor better than CD. There is not a

corresponding decrease in communication with decrease in computation.

 CD reduces the communication overhead of DD significantly since it only broadcasts

the candidate itemsets. Due to the fact that CD does not parallelize the computation of

building the candidate hash tree, there is a bottleneck with a large number of processors.

6

CD scales linearly with the number of transactions. It was found to be the best of the

three algorithms showing linear speedup and excellent scaleup and sizeup behavior.

 The Intelligent Data Distribution (IDD) and the Hybrid Distribution (HD) algorithms

were proposed by Han, et al. (2000) and seek to overcome some of the challenges of CD

and DD. The IDD algorithm is similar to DD except that it uses a ring network. The HD

algorithm combines CD and IDD to improve on the efficiency problem associated with

IDD as the number of processors increases. IDD solves the communication problem of

DD by using a ring-based all-to-all broadcast network. It eliminates the redundant work

of DD by the use of a bit map and uses bin-packing to achieve equal distribution of the

candidate itemsets. As more processors are added it becomes more difficult to balance the

work with a smaller number of candidates. The hash tree is smaller for a smaller number

of candidates and less computation work per transaction. HD inherits all the good

features of IDD and reduces the amount of data movement.

 Four hash-based algorithms for the parallel mining of association rules were presented

by Shintani and Kitsuregawa (1996). These are the Non Partitioned Apriori (NPA),

Simply Partitioned Apriori (SPA), Hashed Partitioned Apriori (HPA) and HPA with

Extremely Large Itemset Duplication (HPA-ELD) algorithms. HPA-ELD was found to

be faster than HPA in execution time and all four algorithms attained linearity for sizeup.

 The Equivalence Class Transformation (ECLAT) algorithm is a localized algorithm

for parallel mining of association rules and was presented by Zaki, Parthasarathy and Li

(1997). ECLAT clusters related frequent itemsets and transactions. The work is

distributed among the processors to facilitate the computations of frequent itemsets

independently by each processor and uses a vertical data layout. The interconnection of

7

the processors allows a user-level application to write to the memory of remote nodes,

resulting in fast user-level messages and low synchronization costs. ECLAT performed

better than CD and reduces the high communication and I/O overhead.

 Cheung, Han, Ng, Fu and Fu (1996) developed the Fast Distributed Mining (FDM) of

association rules algorithm. In addition they also developed FDM with Local Pruning

(FDM-LP), FDM with Local Upper Bound Pruning (FDM-LUP) and FDM with Local

Pruning and Polling-Site-Pruning (FDM-LPP), which are based on different

combinations of local and global pruning. A comparison of CD and FDM-LP based on

candidate set, message size reduction, and execution reduction, shows FDM-LP as

performing better.

 The importance of data locality and reduction of false sharing was investigated by

Parthasarathy, Zaki, and Li (1998). They presented three techniques for improving

referencing locality and an additional three for reducing false sharing when processing

the information in the hash tree. These techniques were designed for shared memory

multiprocessors.

 The Adaptive Parallel Mining (APM) algorithm for the parallel mining of association

rules divides the database equally among the processors. APM was developed by

Cheung, Hu and Xia (1998) and was designed for a shared-memory multiprocessors

system. The APM Dynamic Itemset Counting (APM-DIC) and the APM Adaptive Intra-

partition Internal Configuration (APM-IC) are variants of APM and were used to

compare with the performance of CD. APM was found to be faster than CD.

 Cheung and Xiao (1998) studied the effect of data skewness in parallel mining of

association rules. They developed the Fast Parallel Mining (FPM) algorithm based on the

8

use of distributed and global pruning techniques. FPM is similar to CD but requires less

bandwidth and has a simpler communication scheme. Cheung and Xiao (1998) developed

a data skewness metric based on the use of entropy. For sizeup FPM was closer to the

ideal than CD.

 A parallel approach to the task of discovering association rules on a shared-nothing

system has two major issues to be addressed. The first requires the development of an

efficient way to exchange information among the processors. There is a reduction in the

number of scans of the database. Secondly it is also necessary to address the issue of load

balancing among the processors. These are important factors to be considered in the

implementation of the DDRM algorithm.

1.3 Barriers and Issues

 Mining of association rules is a challenge due to the size of the database used in this

process. The availability of technology used to capture and store data has resulted in the

creation of ultra large databases of business and scientific data (Agrawal & Shafer, 1996).

Most of the algorithms proposed are based on serial designs. However, the databases

used by these algorithms to mine association rules are often very large.

The performance of algorithms for the mining of association rules can be improved

significantly if they are designed to execute in parallel rather than serially. Mining of

association rules from databases of transactions is an important problem in data mining

(Agrawal, et al., 1993). The computation of the frequencies of the occurrence of subsets

of items is the most time consuming part of the process. Invariably, researchers in the

area of association rule mining, concentrate mainly on this aspect of the problem.

Agrawal and Srikant (1994) proposed a fast algorithm for mining of association rules.

9

Park, Chen, and Yu (1995) also proposed a fast algorithm for this task. A major limitation

of these algorithms is the serial design approach used. Researchers in association rule

mining are currently conducting research in developing parallel algorithms for the mining

of association rules.

 A major challenge for some of these algorithms including Count Distribution (CD),

Data Distribution (DD), Intelligent Data Distribution (IDD) and Hybrid Distribution

(HD), is the high overhead costs due to I/O and communications among the processors.

These algorithms scan the database repeatedly and must exchange information on the

frequent itemsets regularly (Agrawal & Schafer, 1996; Han, et al., 2000). This study

proposes an algorithm that will address these issues as well as load balancing among the

processors. In addition, the algorithm will improve on the execution time and processor

utilization.

1.4 Summary

 This chapter discussed the need for parallel solution to data mining problems. The

mining of association rules requires the use of a parallel approach to improve on the

execution time. An outline of the goal of implementing a parallel algorithm based on a

lattice theoretic approach was presented. A brief review of the relevance and significance

of data mining and the need for parallel algorithms in this area was also presented

followed by an indication of some of the limitations and barriers related to the research.

10

Chapter 2

Review of the Literature

2.1 Historical Overview of the Theory and Research Literature

 This chapter gives an overview of data mining approaches with emphasis on

association rule mining. It discusses the theoretical issues associated with the mining of

association rules.

2.1.1 Data Mining

 Data mining is the science of extracting useful information from large data sets or

databases. It is an interdisciplinary field involving the merging of ideas from statistics,

machine learning, data management and databases, pattern recognition, artificial

intelligence and other areas. It is a scientific discipline that is concerned with the analysis

of observational data sets with the objective of finding unsuspected relationships and

produces a summary of the data in novel ways that the owner can understand and use

(Hand, et al., 2001).

According to Hand, et al. (2001) data mining originated in the artificial intelligence

research field and is often set in the broader context of knowledge discovery in databases

(KDD). The categories of KDD algorithms are classification, sequencing, and

association. The input data are partitioned into disjoint groups such as decision tree or set

of rules by classification algorithms. A sequencing algorithm is used to generate events

11

that are related in time. An example of events that are related in time is, an occurrence of

events P and Q is usually followed by the occurrence of event R. Items that appear

together based on a minimum frequency are extracted from transaction records by

association algorithms (Carter & Hamilton, 1998).

Clustering is the process of grouping a set of objects into classes in which similar

objects share the same cluster while being dissimilar to objects in other cluster. It

facilitates the identification of dense and sparse regions, which makes it possible to

discover the overall distribution patterns and interesting correlations among data

attributes (Han & Kamber, 2001; Agrawal, Gehrke, Gunopulos, & Raghaven, 1998).

There are five stages associated with KDD which are the selection of the target data, pre-

processing the data, transforming them if necessary, performing data mining to extract

patterns and relationships, and then interpreting and assessing the discovered structure.

There are four steps involved in the extraction of patterns and relationships, which are the

identification of the nature and structure of the representation, the choice of score

function, the design of the algorithm that will optimize the score function, and the

efficient implementation of the algorithm. In the Apriori algorithm these steps can be

identified as the structure, which is association rules; the score function, which is based

on support and accuracy; the search method, which is breadth-first with pruning; and the

data management technique, which is linear scans.

2.1.2 Data Mining Tasks

Hand, et al. (2001) gave the following categorization of data mining tasks

corresponding to the different objectives of the analyst. Exploratory data analysis (EDA)

uses visual and interactive techniques to explore the data without any clear idea of what

12

to look for. In descriptive modeling the goal is to describe all of the data and may include

the overall probability distribution of the data (density estimation), cluster analysis and

segmentation, and dependency modeling. Predictive modeling (classification and

regression) uses the model to predict the value of one variable from the known values of

other variables. The key distinction between prediction and description is that the

objective of prediction is a unique variable while there is no single variable central to the

model of descriptive problems.

In discovering patterns and rules the concern is the detection of patterns. Finding

combinations of items that occur in transaction databases has been addressed using

algorithmic techniques based on association rules. The use of a pattern of interest to find

similar patterns in the data set is referred to as retrieve by content.

2.2 The Theory and Research Literature Specific to Data Mining

2.2.1 Association Rule Mining

Association rule mining searches for interesting relationships among items in a given

data set. An association rule is a simple probabilistic statement about the co-occurrence

of certain events in a database, and is particularly applicable to sparse transaction data

sets (Han & Kamber, 2001; Hand, et al., 2001). According to Hand, et al. (2001)

association algorithms find all rules satisfying the frequency and accuracy thresholds.

Low thresholds result in the generation of many rules with the possibility of some of

them being trivial to the user. One of the challenges in data mining is to develop methods

for selecting potentially interesting rules from the large set of rules generated by the

system.

13

 Agrawal, Imielinski and Swami (1993) first introduced the problem of mining

association rules, which can be stated as follows:

Let I = {i1, i2 ,…, in} be a set of items and D be a set of transactions where each

transaction T has a unique identifier called its TID and consists of a set of items such that

T ⊆ I. An itemset is a set of items. An itemset with k items is called a k-itemset. An

itemset is maximal if it is not a subset of any other itemset. An association rule is an

implication of the form X ⇒ Y, where X ⊆ I, Y ⊆ I, and X ∩ Y = ∅. The support s of the

rule is the percentage of transactions in D that contains A ∪ B. The confidence c of the

rule is the percentage of transactions in D containing A that also contains B. These can be

expressed in probability terms as P (A ∪ B) and P (A|B) respectively (Han & Kamber,

2001; Shintani & Kitsuregawa, 1998; Megiddo & Srikant, 1998; Srikant, Vu, & Agrawal,

1997; Bayardo Jr., Agrawal, & Gunopulos, 1999). An itemset is frequent if its support is

more than a user specified minimum support (min_sup) value. The goal of mining

association rules is to generate all association rules that have support and confidence

greater than the user specified support and confidence, respectively.

The first step in the mining of association rules requires the identification of all

frequent itemsets with each of these itemsets occurring with a frequency no less than the

minimum support count. In the second step the frequent itemsets are used to generate a

set of strong association rules that satisfy both minimum support and minimum

confidence. The second step is the easier of the two steps and can be accomplished by

finding all non-empty subsets of every frequent itemset l. For every such subset a, output

a rule of the form a ⇒ (l – a) if the ratio of support (l) to support (a) is at least the

minimum required (Han & Kamber, 2001).

14

There are five components that are associated with data mining algorithms for

association rules, which are task, structure, score function, search method and data

management technique. The task is to describe the association between variables and the

structure is probabilistic association rules. The score function based on thresholds on

accuracy and support and the search method is breath-first with pruning. The data

management technique is multiple linear scans (Hand, Mannila, & Smyth, 2001).

2.2.1.1 Classification of Association Rules

According to Han and Kamber (2001) association rules are classified into four

categories, which are types of values handled in a rule; dimension of the data; levels of

abstraction involved in the rule; and the extension to association mining. The type of

values handled in the rule refers to Boolean and quantitative association rules. In Boolean

association rules the objective is to identify the presence or absence of association

between items. A quantitative association rule partitions quantitative values for items into

intervals. In a single-dimension association rule the items reference one dimension only.

When the items reference two or more dimensions it is said to be multi-dimensional.

Consider the rule set Age (X, “30...39”) ⇒ buys (X, “Laptop”) and Age (X, “30...39”) ⇒

buys (X, “Computer”). Here the two items laptop and computers are at two different

levels of abstraction. The rule set is said to be a multilevel association rules. If the rule in

a set does not reference items at different levels of abstraction the set is said to be single-

level association rules. Correlation analysis is one possible extension of association

mining. In this extension the presence or absence of correlation between items is

established. Mining of max patterns and frequent closed itemsets are also possible

extensions. A max pattern is a frequent pattern p, such that any proper super pattern of p

15

is not frequent. A frequent closed itemset is where an itemset c is closed if there exists

no proper superset of c, c’, such that every transaction containing c also contains c’. Max

patterns and frequent closed itemsets can be used to reduce the number of frequent

itemsets generated in mining (Han & Kamber, 2001).

2.2.2 Apriori Algorithm

 This algorithm is influential in mining frequent itemsets for Boolean association rules.

The name of the algorithm is based on the fact that the algorithm uses prior knowledge of

frequent itemset properties (Agrawal, Imielinski and Swami, 1993; Han & Kamber,

2001). Apriori is a serial algorithm that has a smaller computational complexity when

compared with other serial algorithms (Han, Karypis & Kumar, 2000). The outline of the

algorithm is shown in Figure 2.2.1.

16

(1) L1 = find_frequent_1_itemsets (D);

(2) for (k = 2; Lk-1 ≠ ∅; k++){

(3) Ck = apriori_gen(Lk-1, min_sup);

(4) for each transaction t ∈ D {// scan D for counts

(5) Ct = subset(Ck, t); // get the subset of t that are candidates

(6) for each candidate c ∈ Ct

(7) c.count++;

(8) }

(9) Lk = {c ∈ Ck | c.count ≥ min_sup}

(10) }

(11) return L = ∪kLk;

procedure apriori_gen(Lk-1: frequent (k-1)-itemsets; min_sup: minimum support

threshold)

(1) for each itemset l1 ∈ Lk-1

(2) for each itemset l2 ∈ Lk-1

(3) if(l1[1] = l2[1])^(l1[2] = l2[2])^…^(l1[k-2]=l2[k-2])^(l1[k-1]=l2[k-1]) then{

(4) c = l1 � l2; // join step: generate candidates

(5) if has_infrequent_subset(c, Lk-1) then

(6) delete c; // prune step: remove unfruitful candidate

(7) else add c to Ck;

(8) }

(9) return Ck

procedure has_infrequent_subset(c: candidate k-itemsets; Lk-1: frequent (k-1)-itemsets);

 // use prior knowledge

(1) for each (k-1)-subset s of c

(2) if s ∉ Lk-1 then

(3) return TRUE

(4) return FALSE

Figure 2.2.1 Apriori Algorithm

(Agrawal, Imielinski and Swami, 1993; Han & Kamber, 2001)

17

The following example illustrates the use of the Apriori Algorithm to mine the

association rules from transaction database shown below.

Database D

STEPS

1. In the first iteration, each item is a member of the set of candidate 1-itemsets,

C1. The algorithm scans all the transactions in D in order to count the number

of occurrences of each item.

C1

2. Generate the support count using a minimum transaction support count of 2.

Therefore the set of frequent 1-itemsets L1 consists of candidate 1-itemsets

satisfying minimum support.

Itemset Support Count

{I1} 2

{I2} 3

{I3} 3

{I4} 1

{I5} 3

TID Items

100 I1 I3 I4

200 I2 I3 I5

300 I1 I2 I3 I5

400 I2 I5

18

L1

3. To discover the set of frequent 2-itemsets, L2 the algorithm uses L1� L1 to

generate a candidate set of 2-itemsets, C2 consisting of (4

2) 2-itemsets.

 C2

4. The transactions in the database D are scanned and the support count of each

candidate itemset in C2 is generated

 C2

Itemset Support Count

{I1} 2

{I2} 3

{I3} 3

{I5} 3

Itemset

{I1, I2}

{I1, I3}

{I1, I5}

{I2, I3}

{I2, I5}

{I3, I5}

Itemset Support Count

{I1, I2} 1

{I1, I3} 2

{I1, I5} 1

{I2, I3} 2

{I2, I5} 3

{I3, I5} 2

19

5. The set of frequent 2-itemsets, L2, is then determined and consists of those

candidate 2-itemsets in C2 having minimum support.

 L2

6. The generation of the set of candidate 3-itemsets, C3 which is as follows:

 Join: C3 = L2 � L2

 = {{I1, I3}, {I2, I3}, {I2, I5}, {I3, I5}} � {{I1, I3}, {I2, I3}, {I2, I5},

 {I3, I5}}

 = {I2, I3, I5}

 C3 = {I2, I3, I5}

 The subsets of C3 are {I2, I3}, {I2, I5} and {I3, I5} and they are all frequent

 so there is no pruning.

 Therefore C3 = {I2, I3, I5}.

 Generate count of each candidate in C3.

 C3

7. Compare candidate support count with maximum support to generate L3.

Itemset Support Count

{I1, I3} 2

{I2, I3} 2

{I2, I5} 3

{I3, I5} 2

Itemset Support Count

{I2, I3, I5} 2

20

 L3

8. The algorithm uses L3 � L3 to generate a candidate set of 4-itemsets, C4.

C4 = ∅ and the algorithm terminates.

Generating Association rules

Once the frequent itemsets from transactions in a database D have been found, it is

straightforward to generate strong association rules from them (where strong association

rules satisfy both minimum support and minimum confidence). The confidence is given

by:

Confidence (A ⇒ B) = P (A�B) = (support_count (A ∪ B))/(support_count (A)), where

support_count (A ∪ B) is the number of transactions containing the itemsets

A ∪ B, and support_count(A) is the number of transactions containing the itemset A.

Based on this equation, association rules can be generated as follows:

For each frequent itemset i, generate all non-empty subset of i.

For every non-empty subset s of i, output the rule “s ⇒ (i - s)” if the confidence of this

rule is greater than or equal to the maximum confidence threshold (Han & Kamber,

2001).

In the example above the frequent itemset i = {I2, I3, I5}. The nonempty subsets of i

are {I2, I3}, {I2, I5}, {I3, I5}, {I2}, {I3} and {I5}.

Itemset Support Count

{I2, I3, I5} 2

21

The resulting association rules are as follows:

I2 ∧ I3 ⇒ I5 confidence = 2/2 = 100%

I2 ∧ I5 ⇒ I3 confidence = 2/3 = 67%

I3 ∧ I5 ⇒ I2 confidence = 2/2 = 100%

I2 ⇒ I3 ∧ I5 confidence = 2/3 = 67%

I3 ⇒ I2 ∧ I5 confidence = 2/3 = 67%

I5 ⇒ I2 ∧ I3 confidence = 2/3 = 67%

The confidence threshold will determine the rules for output.

If minimum confidence were set at 70% we would output the following rules:

I2 ∧ I3 ⇒ I5 confidence = 2/2 = 100%

I3 ∧ I5 ⇒ I2 confidence = 2/2 = 100%

Hash Tree

 One method used to improve the counting of the itemsets by Apriori based

algorithms is a hash tree. The hash tree identifies the items to be counted efficiently and

reduces the time taken to count the candidate itemsets. One approach to counting the

itemsets is to compare the items in each transaction against all the candidate itemsets.

This is a time consuming activity, which is significantly improved by the use of a hash

tree (Han, Karypis, & Kumar, 2000).

 The candidate itemsets to be counted using a hash tree are shown in Table 2.2.1.

Before we can count these itemsets a hash tree is implemented for these candidate

itemsets. In Figure 2.2.2 we build a hash tree to count 3-itemsets. The hash function is

that itemsets starting with 1, 4, or 7 hashes to the left child, itemsets starting with 2, 5, or

8 hashes to the middle child and itemsets starting with 3 or 6 hashes to the right child.

22

The hash function H(x) is defined as follows:

Where x is the first item in the itemset

 L, M, and R represent the left, middle and right child respectively.

The maximum number of itemsets that can be stored in a bucket is 3. Leaf nodes contain

itemsets that hashed to those nodes.

 Consider a transaction with the items 1, 5, 6, 7, 8. We first hash at the root with item 1

which takes us to the left child, at the next node we hash on 5 which takes us to the

middle child, we then hash on 6 which takes us to the right child. We are now at a leaf

node. We check the transaction against the items in the leaf node and there is no match.

We return to the level above where we hash on 7, which takes us to the left node. This is

also a leaf node so we compare its contents against the transaction and there is no match.

We return to the level above and hash on 8, which takes us to the middle node. The

middle node is a leaf and there is also a match with 1, 5, 8 so we increase the count for

candidate itemset 1, 5, 8. At this point we have checked all itemsets starting with 1, 5, we

now need to check for itemsets starting 1, 6. We next go back up to level 2 of the hash

tree where we hash on 6 which takes us to the right node which is a leaf node. We also

found a match for 1, 6, 8 and increment the count for this candidate itemset. We go back

up to the next level and hash on 7 which takes us to the left node which is also a leaf node

and there is also a match for 1, 7, 8. The count for candidate 1, 7, 8 is incremented. At

 L if (x mod 3) = 1

H(x) = M if (x mod 3) = 2

 R if (x mod 3) = 0

23

this point we have identified all the itemsets starting with 1, 6. This is repeated for the

remaining items in the transaction.

 The next step is to identify all those itemsets starting with 5. We then go back to level

1, the root node and hash on 5, which takes us to the middle node, and the process is

repeated as outlined above. It is clear that the hash tree is an efficient approach to identify

the frequent itemsets in a transaction. The final count of candidate itemsets after

processing the transaction is shown in Table 2.2.2.

24

Candidate

Itemsets
Count

{1 2 4} 0

{1 2 7} 0

{1 3 7} 0

{1 4 5} 0

{1 4 6} 0

{1 5 8} 0

{1 6 8} 0

{1 7 8} 0

{2 3 4} 0

{2 4 5} 0

{2 4 6} 0

{2 5 6} 0

{3 5 7} 0

{2 5 8} 0

{2 6 7} 0

{2 7 8} 0

{3 5 7} 0

{3 6 8} 0

{4 5 8} 0

{6 7 8} 0

{7 8 9} 0

 Table 2.2.1 Candidate Itemsets in Hash Tree

25

357

368

678

245

246

278

256

257

258

234

267

145

146

178

137

168

124

127

158

458

789

3,61,4,7
2,5,8

Figure 2.2.2 Hash Tree of Candidate 3-Itemsets

26

Candidate

Itemsets
Count

{1 2 4} 0

{1 2 7} 0

{1 3 7} 0

{1 4 5} 0

{1 4 6} 0

{1 5 8} 1

{1 6 8} 1

{1 7 8} 1

{2 3 4} 0

{2 4 5} 0

{2 4 6} 0

{2 5 6} 0

{3 5 7} 0

{2 5 8} 0

{2 6 7} 0

{2 7 8} 0

{3 5 7} 0

{3 6 8} 0

{4 5 8} 0

{6 7 8} 1

{7 8 9} 0

Table 2.2.2 Count of Candidate Itemsets in Hash Tree

27

2.2.3 Database Organization

 The database of transactions shown in Table 2.2.3 can be considered as a Boolean

relational table as shown in Table 2.2.4. The database can be physically organized

horizontally as shown in Table 2.2.3 or vertically as shown in Table 2.2. 5. The

horizontal organization consists of a set of pairs (transaction ID, itemset), where

transaction ID is the transaction number and itemset is the set of items bought in that

transaction. The vertical organization consists of a set of pairs (item, transaction list),

where item is an item bought and transaction list is the set of transactions in which the

item was bought.

28

TID List of Items

100 I1 I2 I5

200 I2 I4

300 I2 I3

400 I1 I2 I4

500 I1 I3

600 I2 I3

700 I1 I3

800 I1 I2 I3 I5

900 I1 I2 I3

Table 2.2.3 Transaction Database

29

Table 2.2.4 Boolean Representation of Transaction Database

TID I1 I2 I3 I4 I5

100 1 1 0 0 1

200 0 1 0 1 0

300 0 1 1 0 0

400 1 1 0 1 0

500 1 0 1 0 0

600 0 1 1 0 0

700 1 0 1 0 0

800 1 1 1 0 0

30

Table 2.2.5 Vertical View of Transaction Database

I1 I2 I3 I4 I5

T100 T100 T300 T200 T100

T400 T200 T500 T400 T800

T500 T300 T600

T700 T400 T700

T800 T600 T800

T900 T800 T900

T900

31

2.2.4 Parallel Processing

Parallel processing is the concurrent manipulation of data elements belonging to one

or more processes solving a single problem. Pipelining and parallelism are normally used

to achieve concurrency. Pipelining divides the computation of a task into a number of

steps, while parallelism is the use of multiple resources to increase concurrency.

Pipelined computation is divided into a number of steps called segments or stages. Each

segment is assigned a part of the computation to be carried out and the output of one

segment serves as input to the next segment.

In an ideal parallel system the following are true: (1) linear speedup: Four times as

much hardware can perform the task in one quarter the time, and (2) linear scaleup: four

times as much hardware can perform four times as large a task in the same elapsed time

(DeWitt & Gray, 1992). If a job is executed on a small system and a larger system, the

speedup that is obtained from the larger system is defined as:

If an N-times large or more expensive system yields a speedup of N it is said to be

linear. This metric holds the problem size constant while it grows the system. Scaleup

refers to the ability of an N-times larger system to perform an N-times larger job in the

same elapsed time as the original system (DeWitt & Gray, 1992).

A linear scaleup has a value of 1 since executing a problem that is twice as large on a

system that is twice as large as the original system will take the same time to execute as

 small_system_elapsed_time

 Speedup =

 larger_syetem_elapsed_time

 small_system_elapsed_time_on_small_problem

Scaleup =

 larger_system_elapsed_time_on_larger_problem

32

the time taken by the original problem on the original system. Three major challenges to

speedup and scaleup are startup, interference and skew. The time taken to startup

thousands of processors can dominate the computations. The accessing of shared

resources by processes can cause interference when these processes try to access a shared

resource. The average size of each step decreases as the number of parallel steps

increases and may result in a variance that is in excess of the mean. Increased parallelism

will improve the elapsed time only slightly where the variance dominates the mean

(DeWitt & Gray, 1992). A large grain size will increase speedup since it reduces the

frequency of synchronization.

 If a portion of the algorithm must be executed sequentially by one of the p processors,

then the remaining p-1 processors must wait for the sequential portion to complete before

they resume, this implies synchronization among the processors. Contention for single

resource limits the speedup possible. The workload must be balanced among processors.

Static decomposition assumes that the tasks and their precedence relations are known

before execution. Dynamic decomposition assumes that tasks are generated during

program execution.

In a distributed environment the practical implications of communication overhead,

the effect of the underlying architecture, and the dynamic behaviour of the system are

issues that contribute to the complexity of a distributed environment (Zaki, 2000b).

Scalable Systems

Ideally increasing the number of processors should produce a corresponding increase

in the processing power of the machine, and there should be no upper limit to the number

of processors used. An ideal system should not have global memory, as you cannot put an

33

unbounded number of processors close to a global memory. It is therefore necessary to

limit access to global memory due to the fact that performance suffers as processors are

put farther and farther from memory. In order to keep the communications cost low it is

necessary to limit communications to processors that are close together.

Parallel Data Mining

Tightly coupled systems are generally associated with parallel data mining (PDM).

These systems include distributed memory machines (DMM), shared memory machines

also known as symmetric multiprocessors (SMP), and clusters of SMP workstations

(Zaki, 2000b). Distributed data mining (DDM) is based on loosely coupled systems

including sites that are geographically distributed over a wide area network. PDM and

DDM differs significantly in scale, data distribution and communication costs (Zaki,

2000b).

According to Zaki (2000b) the main challenges associated with parallel and distributed

data mining are minimization of communications, load balancing, synchronization, disk

I/O minimization and decomposition and layout of the data. The partitioning of the task

and data together with the type of memory system will affect the design space for parallel

systems. In distributed and shared memory systems synchronization is implicit in

message passing with DMMs. It is therefore necessary to optimize communications. In

shared memory machines (SMP) locks and barriers are used for synchronization. I/O is of

importance for SMP machines. Data decomposition is important for distributed systems.

The objective is to have optimal decomposition among the processors and to minimize

communications. Algorithms based on a distributed shared-nothing memory are designed

based on the reduction of communication, pruning of candidate sets and partition of the

34

candidate sets across the distributed memory. This is known as a level-wise approach as

developed in Apriori. In the level-wise approach the computation cost generally peaks in

the second iteration and decreases in the subsequent iterations due to reduction in the size

of the candidate itemsets. Two options for reducing the cost of the level-wise approach

are the reduction in the number of rounds of scanning the database and reduction in the

number of candidate itemsets especially in iteration 2 (Zaki, 2000b).

There are two approaches to the implementation of data mining, which are task and

data parallelism. One approach is to divide the data among several processors with each

one performing the same set of operations on the data assigned to it. This approach is

referred to as data parallelism. In the second approach the processors perform different

operations independently but have access to entire database. This is known as task

parallelism. A hybrid combines both approaches (Zaki, 2000b).

2.2.5 Partitioning of Candidate and Data

There are generally two approaches associated with parallel and distributed data

mining methods. These can be described in terms of the computation and data

partitioning methods used. The database can be shared in a shared-memory or shared disk

architecture. The database can also be partitioned among the available nodes in a

distributed memory architecture (Zaki, 2000b).

The candidate set can also be shared, replicated or partitioned among the nodes. In the

shared approach a single copy of the candidate set is evaluated by all nodes. In the

partitioned approach each processor is responsible for the computations associated with a

specific set of candidate itemsets. The candidate itemsets are replicated on all processors

where they are evaluated locally and then merged to generate the global results.

35

Replicated or Shared Candidates, Partitioned Database

In the replicated or shared candidates and partitioned database approach the database

is partitioned into equal sizes among the processors and the candidate itemsets replicated

across all processors. Parallel algorithms based on Apriori that use this approach compute

the frequency of the candidate sets in the database at each processor during each iteration.

The information at each processor is broadcast to all other processors for the computation

of global counts. Some of the algorithms based on this approach are Count Distribution

(CD), Fast Distributed Mining (FDM) (Cheung, et al., 1996), and Non Partition Apriori

(NPA) (Shintani, & Kitsuregawa, 1996). This approach reduces the communication cost

since it exchanges frequency counts only at the end of each iteration. However by

replicating the candidates they fail to use the aggregate system memory that is available.

Cheung, Hu and Xia (1998) implemented Adaptive Parallel Mining (APM) that is based

on Dynamic Itemset Counting (DIC). The candidate set is shared among processors and

updated asynchronously.

Partitioned Candidate, Partitioned Database

 Three Apriori based algorithms that use this approach are Data Distribution (DD),

Simply Partitioned Apriori (SPA) (Shintani, & Kitsuregawa, 1996) and Intelligent Data

Distribution (IDD). The main advantage of this approach is the utilization of the

aggregate memory. The main disadvantage is the need to scan the partitions of other

processors; this is accomplished by exchanging the partitions at each iteration.

Partitioned Candidates, Selectively Replicated or Shared Database

Shintani and Kitsuregawa (1996) implemented the Hashed Partitioned Apriori

36

(HPA) and HPA with Extremely Large Itemset Duplication (HPA-ELD) algorithms that

used this approach. In this approach the database on each processor is selectively

replicated on each processor and each processor also evaluates a specific set of candidate

itemsets.

2.2.6 Parallel and Distributed Algorithms

Several parallel association algorithms have been designed based on the Apriori

algorithm. Park, et al. (1995) implemented the Direct Hashing and Pruning (DHP)

algorithm, which was later, used in a number of parallel implementations. Zaki,

Parthasarathy, Ogihara and Li (1997) used an approach based on equivalence class to

implement four new parallel algorithms.

Agrawal and Shafer (1996) presented three parallel algorithms for mining association

rules. These algorithms are the Count Distribution (CD), Data Distribution (DD), and

Candidate Distribution (CDD) and are based on the Apriori serial algorithm used for the

mining of association rules. The CD algorithm substitutes redundant computations in

parallel on otherwise idle processors for communications overhead. Each processor keeps

a copy of the complete candidate itemsets which it updates using the locally stored

database. This copy is then broadcast to all other processors to be used for the final count.

The CD algorithm does not exploit the total available memory and so it counts the same

number of candidates in one pass as the serial algorithm.

The DD algorithm is designed to exploit the total memory available as the number of

processors increase. The candidate itemset is divided among the N processors. On an N-

processor configuration a candidate set that would require N passes in CD can be counted

in one pass in DD. It is very expensive for every processor to broadcast the locally stored

37

data to every other processors. In the CD and DD algorithms data tuples and candidate

itemsets are partitioned merely to equally divide the work. They require all processors to

be connected and all information gathered before they can proceed on to the next pass.

These constraints are eliminated in the CDD algorithm.

The CDD algorithm partitions both the data and the candidates in such a way, that

each processor may proceed to the next pass independent of the other processors.

Depending on the quality of the itemset partitioning, parts of the database may have to be

replicated on several processors. Following candidate distribution, the processors work

independently. Each processor counts only the portion of candidate itemset assigned to it.

The pruning of the local candidate set is the only step that requires a processor to get

information from other processors. This information is sent asynchronously making it

possible for the processors to proceed without complete pruning information. It then uses

the late arriving pruning information in subsequent stages. The results of tests on the

performance of CD, DD and CDD show CD to be the best of the three with linear

speedup and excellent scaleup behaviors.

Two algorithms proposed by Han, et al. (2000) for the parallel mining of association

rules are the Intelligent Data Distribution (IDD) algorithm and the Hybrid Distribution

(HD) algorithm. The main difference between IDD and CD is the use of a ring network to

connect the processors in IDD. In IDD the portion of the transactions stored at each

processor is sent to the other processors using a point-to-point communication between

neighbors resulting in the elimination of any communication contention among

processors. IDD partitions the candidate itemset among the N processors in such a way

38

that each processor gets itemsets that begin only with a subset of all possible items. Load

balancing is achieved by using a special partitioning algorithm based on bin packing.

The HD algorithm is a combination of CD and IDD and improves on the inefficiency

problem associated with IDD as the number of processor increases. The N processors are

divided into G equal size groups, each containing N/G processors. The transactions are

then divided among the groups treating each group as a single processor. In the HD

algorithm the CD algorithm is executed as if there were only N/G processors. Within

each group the candidate itemsets are partitioned among the processors and IDD used to

compute the counts. IDD implements the process of building the hash tree in parallel and

is scalable as the size of the candidate set increases and it also utilizes memory more

effectively. HD combines the good qualities of CD and IDD. It achieves better load

balancing than IDD since the candidate set is partitioned into fewer buckets (Han, et al.,

2000).

Cheung, et al. (1996) presented the Fast Distributed Mining of association rules

(FDM) algorithm. In this algorithm interesting relationships between locally large sets

and globally large sets are explored to generate a smaller set of candidate sets at each

iteration. Some candidate sets are also pruned away using local and global pruning

techniques and only O(n) messages are passed to determine whether or not a candidate

set is large.

Three variations of FDM based on different combinations of local and global pruning

are the FDM with Local Pruning (FDM-LP), FDM with Local and Upper Bound Pruning

(FDM-LUP) and FDM with Local Pruning and Polling-Site-Pruning (FDM-LPP). These

algorithms make use of the properties related to large itemsets in a distributed

39

environment. One such property is that every globally large itemset must be locally large

at some site(s). Pruning is done both locally at each site and globally using information

from all the sites. These two techniques can be combined to form different pruning

strategies. FDM also uses a count polling technique to ensure that only O(n) messages are

needed for every candidate itemset in all cases, where n is the number of processors.

The Adaptive Parallel Mining (APM) algorithm for mining association rules divides the

database into n logical partitions, where n is the number of processors. It is based on the

shared memory machines (SMP) architecture and uses dynamic candidate generation

technique to generate the common candidates asynchronously. Processors communicate

through shared variables.

 One variant of the APM algorithm uses the Dynamic Itemset Counting (DIC), which

was developed by Brin, Motwani, Ullman, and Tsur (1997) and is referred to as APM-

DIC. The APM-AIC is a second variant of APM that uses an adaptive interval

configuration (AIC), which was designed to address the exponential growth of the

candidate sets associated with DIC. APM was found to be faster than CD, when

compared to CD the gain for APM-DIC was insignificant (Cheung, et al., 1998).

Cheung & Xiao (1998) investigated the effect of data skewness on parallel mining of

association rules using the Fast Parallel Mining (FPM) algorithm based on the use of

distributed and global pruning techniques. This algorithm is similar to the Count

Distribution (CD) algorithm but requires less bandwidth and has a simpler

communication scheme. The effectiveness of these pruning techniques depends on the

itemset distribution that can be captured as data skewness. The speedup of the algorithm

40

was found to be super linear and when compared with CD the response time was found to

be significantly faster.

The importance of data locality and reduction of false sharing in modern shared

memory machines (SMP) due to the increasing gap between processor and memory

subsystem performance was highlighted by Parthasarathy, et al. (1998). The Common

Candidate Partitioned Database (CCPD) is a shared-memory algorithm, which is based

on the Apriori algorithm. In CCPD the candidate itemsets are stored in a hash tree to

facilitate fast support counting. The candidate hash tree is common, but the database is

split logically among the processors. New candidates are generated and inserted in

parallel. It uses a lock to guarantee mutual exclusion.

Three techniques for improving reference locality are Simple Placement Policy (SPP),

Localized Placement Policy (LPP) and Global Placement Policy (GPP) (Parthasarathy, et

al., 1998). In SPP all the different hash tree building blocks are allocated memory from a

single region and do not rely on any special placement of the blocks based on traversal

order. Three possible variants of this technique are common regions, individual regions,

and grouped regions. The LPP scheme groups related data structures together using local

access information present in a single routine. GPP utilizes knowledge of order of

traversal of the entire hash tree to place hash tree building blocks in memory so that

structures are arranged in the order of access in the same cache line in most cases.

Shared memory systems suffer from false sharing, which occurs when two different

shared variables are located in the same cache block. This results in the exchange of the

block between the two processors even though they are accessing different variables.

Three techniques for reducing false sharing are Padding and Aligning, Segregate Read-

41

Only Data and Privatize (and Reduce) (Parthasarathy, et al., 1998). Padding and Aligning

places unrelated read-write data on separate cache lines and results in a significant loss of

locality and high memory space overhead. In Segregate Read-Only Data locks and

counters (read-write data) are separated from the itemset (read-only data) and eliminates

the possibility of falsely sharing read-only data. The Privatize (and Reduce) scheme

makes a private copy of the data that will be used locally so as to avoid false sharing with

operations on that data and was combined with the global placement policy and was

given the name Local Counter Array-Global Placement Policy (LCA-GPP). When

compared with the Common Candidate Partitioned Database (CCPD) shared memory

algorithm Simple Placement Policy (SPP) did extremely well due to its simplicity.

The Non Partitioned Apriori (NPA), Simply Partitioned Apriori (SPA), Hashed

Partitioned Apriori (HPA) and HPA with Extremely Large Itemset Duplication (HPA-

ELD) are parallel algorithms for mining association rules on shared nothing parallel

machines. In NPA the candidate itemsets are copied among all the processors. If the

processor is unable to hold all the candidate itemsets in memory, the candidate itemsets

are partitioned into fragments, each of which fits in the memory of the processor. In this

case there is repeated scanning of the database to generate support counts. SPA, HPA and

HPA-ELD partitioned the candidate itemsets over the memory space of all the

processors. HPA-ELD replicates candidates with high support on all processors in order

to reduce communications among the processors (Shintani & Kitsuregawa, 1996).

The disk I/O cost for NPA is high and no transaction data are exchanged among the

processors in the second phase. SPA exploits the aggregate memory of the system by

partitioning the candidate itemsets equally over the memory space of all the processors.

42

The I/O cost of SPA is low but the communication cost is high. HPA partitions the

candidate itemsets among the processors using a hash function, which eliminates the need

to broadcast all the transaction data. HPA has low I/O and communication costs. HPA-

ELD utilizes the total system memory by copying some of the itemsets. It selects the

most frequently occurring itemsets and copies them over the processors so that all the

memory space is used which helps to reduce communication among the processors.

These frequently occurring itemsets are counted locally, at all the processors. HPA-ELD

has low I/O and communication costs and is also capable of skew handling (Shintani &

Kitsuregawa, 1996).

Zaki, et al. (1997) highlighted the limitations of current parallel algorithms such as

Count Distribution, Data Distribution, and Candidate Distribution. These algorithms

make repeated passes over the disk-resident database partition incurring high I/O

overheads. In addition there is an exchange of count of candidates at the remote database

partitions during each iteration. The Equivalence Class Transformation (ECLAT)

algorithm, proposed by Zaki, et al. (1997) is a parallel algorithm that clusters related

frequent itemsets and transactions. The interconnection of the processors allows a user-

level application to write the memory of remote nodes, which makes it possible to have

very fast user-level messages and low synchronization costs. ECLAT clusters related

groups of itemsets using equivalence class partitioning while clustering transactions using

the vertical database layout technique. The performance of ECLAT was found to be

better than that of the Count Distribution algorithm.

43

2.2.7 Current State and Existing Methodologies

Several parallel algorithms have been proposed for the mining of association rules

including Count Distribution (CD), Data Distribution (DD), Intelligent Data Distribution

(IDD) and Hybrid Distribution (HD). The transaction database shown in Table 2.2.6 will

be used to illustrate examples of these algorithms.

44

TID List of Items

100 I1 I2 I5

200 I2 I4

300 I2 I3

400 I1 I2 I4

500 I1 I3

600 I2 I3

700 I1 I3

800 I1 I2 I3 I5

900 I1 I2 I3

 Table 2.2.6 Transaction Database

45

2.2.7.1 Count Distribution (CD) Algorithm.

CD divides the database among the processors and stores all the candidates at each

processor. The entire hash tree is stored at each processor, in addition each processor

counts how many times each candidate itemset appears in the transactions stored in local

memory. The global counts of the candidates are computed by summing all of the local

counts at each processor. Each processor executes the serial Apriori algorithm on the

locally stored transactions.

The main drawback with CD is that the building of the hash tree is not done in a

parallel manner. The problem with this approach is that with a large number of

processors this step can be a bottleneck and secondly if the number of candidates is large,

the hash tree may be too big to fit in memory making it necessary to partition it. In this

case the local transactions must be read once for each partition. This can be expensive on

machines with slow I/O systems. The CD algorithm is effective for small number of

distinct items and a high minimum support.

46

Count Distribution Algorithm (Agrawal & Shafer, 1996).

The first pass is special. For all other passes k > 1, the algorithm works as follows:

1. Each processor P
i
 generates the complete Ck, using the complete frequent

itemset Lk-1 created at the end of pass k-1. Observe that since each processor

has identical Lk-1, they will be generating identical Ck.

2. Processor P
i
makes a pass over its data partition D

i
 and develops local support

counts for candidates in Ck.

3. Processor P
i
 exchanges local Ck counts with all other processors to develop

global Ck counts. Processors are forced to synchronize in this step.

4. Each processor P
i
now computes Lk from Ck.

5. Each processor P
i
 independently makes the decision to terminate or continue

to the next pass. The decision will be identical as the processors all have

identical Lk.

47

 An illustration of the algorithm is shown in Figure 2.2.3 (Agrawal & Shafer, 1996).

Computation Using CD

The following example is an illustration of how the CD algorithm works using the sample

database in Table 2.2.6. In this example we use a minimum transaction support count of

2.

The database will be divided among the 4 processors as shown in Figure 2.2.4. The

computations for the 3-itemsets are shown in Figure 2.2.5 and Figure 2.2.6. The frequent

3-itemsets are shown in Figure 2.2.6. However, only {I1, I2, I3} has met the required

minimum transaction support of 2 and will be used to generate the rules.

48

Data

N/P

Count

Candidate

 Hash Tree

{I1,I2} 4

{I1,I3} 4

{I1,I4} 1

{I1,I5} 2

{I2,I3} 4

 M

Data

N/P

Count

Candidate

 Hash Tree

{I1,I2} 4

{I1,I3} 4

{I1,I4} 1

{I1,I5} 2

{I2,I3} 4

 M

Data

N/P

Count

Candidate

 Hash Tree

{I1,I2} 4

{I1,I3} 4

{I1,I4} 1

{I1,I5} 2

{I2,I3} 4

 M

Data

N/P

 Count

 Candidate

 Hash Tree

{I1, I2} 4

{I1, I3} 4

{I1, I4} 1

{I1, I5} 2

{I2, I3} 4

M

N: Number of data items

M: Size of candidate set

P: Number of processors

Figure 2.2.3 Count Distribution (CD) Algorithm (Agrawal & Shafer, 1996).

49

Processor 0

T100

T200

Processor 1

T300

T400

T500

Processor 2

T600

T700

Processor 3

T800

T900

Itemset Sup.

Count

{I1} 6

{I2) 7

{I3} 6

{I4} 2

{I5} 2

Itemset Sup.

Count

{I1} 6

{I2) 7

{I3} 6

{I4} 2

{I5} 2

Itemset

{I1, I2}

{I1, I3}

{I1, I4}

{I1, I5}

{I2, I3}

{I2, I4}

{I2, I5}

{I3, I4}

{I3, I5}

{I4, I5}

 C1 L1 C2

Compare

candidate

support count

with minimum

support count

 C2 C2 C2 C2

 Processor 0 Processor 1 Processor 2 Processor 3

Itemset Count

{I1, I2} 1

{I1, I3} 0

{I1, I4} 0

{I1, I5} 1

{I2, I3} 0

{I2, I4} 1

{I2, I5} 1

{I3, I4} 0

{I3, I5} 0

{I4, I5} 0

Itemset Count

{I1, I2} 1

{I1, I3} 1

{I1, I4} 1

{I1, I5} 0

{I2, I3} 1

{I2, I4} 1

{I2, I5} 0

{I3, I4} 0

{I3, I5} 0

{I4, I5} 0

Itemset Count

{I1, I2} 0

{I1, I3} 1

{I1, I4} 0

{I1, I5} 0

{I2, I3} 1

{I2, I4} 0

{I2, I5} 0

{I3, I4} 0

{I3, I5} 0

{I4, I5} 0

Itemset Count

{I1, I2} 2

{I1, I3} 2

{I1, I4} 0

{I1, I5} 1

{I2, I3} 2

{I2, I4} 0

{I2, I5} 1

{I3, I4} 0

{I3, I5} 1

{I4, I5} 0

Figure 2.2.4 Local Count for CD

50

Itemset Count

{I1,I2} 4

{I1,I3} 4

{I1,I4} 1

{I1,I5} 2

{I2,I3} 4

{I2,I4} 2

{I2,I5} 2

{I3,I4} 0

{I3,I5} 1

{I4,I5} 0

Itemset Count

{I1,I2} 4

{I1,I3} 4

{I1,I4} 1

{I1,I5} 2

{I2,I3} 4

{I2,I4} 2

{I2,I5} 2

{I3,I4} 0

{I3,I5} 1

{I4,I5} 0

Itemset Count

{I1,I2} 4

{I1,I3} 4

{I1,I4} 1

{I1,I5} 2

{I2,I3} 4

{I2,I4} 2

{I2,I5} 2

{I3,I4} 0

{I3, I5} 1

{I4, I5} 0

Itemset Count

{I1, I2} 4

{I1, I3} 4

{I1, I4} 1

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

{I3, I4} 0

{I3, I5} 1

{I4, I5} 0

 C2 C2 C2 C2

 Processor 0 Processor 1 Processor 2 Processor 3

Itemset Count

{I1, 2} 4

{I1,I3} 4

{I1,I5} 2

{I2,I3} 4

{I2,I4} 2

{I2,I5} 2

 L2 C3

 Processor 0

Itemset

{I1, I2, I3}

{I1, I2, I5}

Figure 2.2.5 Count After Global Reduction for CD

51

Itemset Count

{I1, I2, I3} 0

{I1, I3, I5} 0

Itemset Count

{I1, I2, I3} 0

{I1, I3, I5} 0

Itemset Count

{I1, I2, I3} 0

{I1, I3, I5} 0

Itemset Count

{I1, I2, I3} 2

{I1, I3, I5} 1

 Processor 0 Processor 1 Processor 2 Processor 3

Figure 2.2.6 Local Count of 3-Itemset for CD

52

The count for each candidate is shown below:

The algorithm terminates at this point and the frequent itemsets used to generate the

rules.

2.2.7.2 Data Distribution (DD) Algorithm

DD partitions the candidate itemsets among the processors in a round-robin fashion.

Each processor is now responsible for computing the count of the locally stored subset of

the candidate itemsets for all the transactions in the database. Since each processor is

assigned a specific subset of the candidate itemsets it is now necessary to scan the rest of

the transactions stored in the memory of the other processors in addition to the locally

assigned transactions. After computing the count of its candidate itemsets, each processor

finds the frequent itemsets from the local candidate itemsets and sends these to all other

processors.

Total available memory is better utilized since the candidate itemsets are partitioned

among p processors. However this algorithm was found to be slower than the Count

Distribution (CD) algorithm. The communication pattern of this algorithm causes three

problems. First, for each pass of the algorithm each processor sends to all the other

processors the portion of the database that resides locally. Each processor reads the

locally stored portion of the database one page at a time and sends it to all the other

processors by issuing p – 1 send operations. Similarly, each processor issues a receive

operation from each other processor in order to receive these pages. If the interconnection

network of the underlying parallel computer is fully connected and each processor can

Itemset Count

{I1, I2, I3} 2

{I1, I3, I5} 1

53

receive data on all incoming links simultaneously, then this communication pattern will

lead to a very good performance. An illustration of the algorithm is shown in Figure

2.2.7.

54

 Data

N/P Remote

 Count

 Candidate

 Hash Tree

{I1,I2} 1

{I1,I3} 0

{I1,I4} 0

M/P

 Data

N/P Remote

 Count

 Candidate

 Hash Tree

{I1,I5} 0

{I2,I3} 1

{I2,I4} 1

M/P

 Data

N/P Remote

 Count

 Candidate

 Hash Tree

{I2,I5} 0

{I3,I4} 0

M/P

 Data

N/P Remote

 Count

 Candidate

 Hash Tree

{I3,I5} 1

{I4,I5} 0

M/P

Data Broadcast

 Processor 0 Processor 1 Processor 2 Processor 3

All-to-all-Broadcast

N: Number of data items

M: Size of candidate set

P: Number of processors

Figure 2.2.7 Data Distribution (DD) Algorithm (Agrawal & Shafer, 1996).

55

Data Distribution (Agrawal & Shafer, 1996).

Pass 1: Same as CD.

Pass k > 1:

1. Processor P
i
 generates Ck from Lk-1. It retains only 1/Nth of the itemsets

forming the candidate subset i

kC that it will count. Which 1/N itemsets are

retained is determined by the processor id and can be computed without

communicating with other processors. Itemsets are assigned in a round-robin

fashion. The i

kC sets are all disjoint and the union of all i

kC sets is the original

Ck.

2. Processor P
i
 develops support counts for the itemsets in its local candidate set

i

kC using both local data pages and data pages received from other processors.

3. At the end of the pass over the data, each processor P
i
 calculates i

kL using the

local i

kC . Again, all i

kL sets are disjoint and the union of all i

kL sets is Lk.

4. Processors exchange i

kL so that every processor has the complete Lk for

generating Ck+1 for the next pass. This step requires processors to synchronize.

Having obtained the complete Lk, each processor can independently (but

identically) decide whether to terminate or continue on to the next pass.

56

Computation Using DD

The following is an illustration of how the DD algorithm works using the sample

database in Table 2.2.6. The database and itemsets are divided among the four processors

as shown in Figure 2.2.8. Figure 2.2.9 shows the count of itemsets at each processor after

one complete cycle.

 In Figure 2.2.8 the database is divided among the four processors with transactions

T100 and T 200 assigned to processor 0, transactions T300, T400 and T500 assigned to

processor 1, transactions T600 and T700 assigned to processor 2 and transactions T800

and T900 assigned to processor 3. The candidate 2-itemsets are also divided among the

processors with processor 0 assigned to {I1, I2}, {I1, I3} and {I1, I4}, processor 1

assigned to

{I1, I5}, {I2, I3}, and {I2, I4}, processor 2 assigned to {I2, I5} and {I3, I4} and

processor 3 assigned to {I3, I5} and {I4, I5}. The count of the 2-itemsets assigned to each

processor is first calculated using the transactions assigned to each processor as shown in

Figure 2.2.8.

 The top row of Figure 2.2.9 shows transactions 800 and 900, which are assigned, to

processor 3 being used by processor 0 to update the count for each itemset assigned to it.

Similarly transactions 100 and 200, which are assigned to processor 0, are being used by

processor 1 to update the count of each itemset assigned to it. This is also the situation

with the remaining processors in the top row. The results from the processing of these

transactions can be seen by comparing the counts shown in Figure 2.2.8 with those shown

in Figure 2.2.9.

57

The second row of Figure 2.2.9 shows transactions T600 and T700, which are

assigned, to processor 2 being used by processor 0 to update the count for each itemset

assigned to it while processor 1 is updating its count of itemsets using transactions T800

and T900. The transactions are shifted until every processor updates its count using

transactions from all other processors.

After identifying the frequent itemsets assigned to it each processor then sends this

information to all other processors to determine all frequent 2-itemsets. The process then

repeats itself with the generation of candidate 3-itemsets. It is at this stage that all

processors will decide independently whether to terminate or to go on to the next pass of

the algorithm.

58

Itemset Count

{I1,I2} 1

{I1,I3} 0

{I1,I4} 0

Itemset Count

{I1,I5} 0

{I2,I3} 1

{I2,I4} 1

Itemset Count

{I2,I5} 0

{I3,I4} 0

Itemset Count

{I3,I5} 1

{I4,I5} 0

 Processor 0 Processor 1 Processor 2 Processor 3

 T100,T200 T300, T400,

 T500

 T600, T700 T800, T900

Figure 2.2.8 Count After Assigning Partitions to Processors for DD

59

Itemset Count

{I1,I2} 3

{I1,I3} 2

{I1,I4} 0

Itemset Count

{I1,I5} 1

{I2,I3} 1

{I2,I4} 2

Itemset Count

{I2,I5} 0

{I3,I4} 0

Itemset Count

{I3,I5} 1

{I4,I5} 0

 Processor 0 Processor 1 Processor 2 Processor 3

 T100,T200 T300, T400,

 T500

 T600, T700 T800, T900

 T800, T900 T100,T200 T300, T400,

 T500

 T600, T700

 Processor 0 Processor 1 Processor 2 Processor 3

Itemset Count

{I1,I2} 3

{I1,I3} 3

{I1,I4} 0

Itemset Count

{I1,I5} 2

{I2,I3} 3

{I2,I4} 2

Itemset Count

{I2,I5} 1

{I3,I4} 0

Itemset Count

{I3,I5} 1

{I4,I5} 0

 T100,T200 T300, T400,

 T500

 T600, T700 T600, T700

 T600, T700 T800, T900 T100,T200

 T300, T400,

 T500

 Processor 0 Processor 1 Processor 2 Processor 3

Itemset Count

{I1,I2} 4

{I1,I3} 4

{I1,I4} 1

Itemset Count

{I1,I5} 2

{I2,I3} 4

{I2,I4} 2

Itemset Count

{I2,I5} 2

{I3,I4} 0

Itemset Count

{I3,I5} 1

{I4,I5} 0

 T100,T200 T300, T400,

 T500

 T600, T700 T600, T700

 T300, T400,

 T500

 T600, T700 T800, T900 T100,T200

Figure 2.2.9 Count After Complete Cycle for DD

60

2.2.7.3 Intelligent Data Distribution (IDD) Algorithm

In the IDD algorithm the candidate itemset is partitioned among the processors. The

database of transactions is also divided equally among the processors. The locally stored

portions of the database are sent to all the other processors using a ring-based network.

The ring network eliminates the contention problem that is associated with the DD

algorithm. The pseudo code used for the movement of data is shown in Figure 2.2.10

(Han, et al., 2000).

In order to reduce the redundant work due to the partitioning of the candidate itemsets,

it is partitioned in such a way that each processor gets itemsets that begin only with a

subset of all possible itemsets. The transactions are then checked against this subset to

determine if the hash tree contains candidates starting with these items. The hash tree is

then traversed only with items in the transaction that belong to this subset, thereby

eliminating the redundant work problem of DD.

 An illustration of the IDD algorithm is shown in Figure 2.2.11 (Han, et al., 2000).

61

while (!done)

 FillBuffer(fd, Sbuf);

 for (k = 0; k < P-1; ++k) {

 /* send/receive data in non-blocking pipeline */

 MPI_Irecv(Rbuf, left);

 MPI_Isend(Dbuf, right);

 /* process transactions in Sbuf and update hash tree */

 Subset(Htree, Sbuf);

 MPI_Waitall();

 /* swap two buffers */

 tmp = Sbuf;

 Sbuf = Rbuf;

 Rbuf = tmp;

 }

 /* process transactions in Sbuf and update hash tree */

 Subset(Htree, Sbuf);

}

Figure 2.2.10 Pseudo Code for Data Movements for IDD (Han et al., 2000).

62

 Data

N/P Remote

 Candidate

 Hash Tree

{I1,I2} 3

{I1,I3} 3

{I1,I4} 0

M/P

 Data

N/P Remote

 Candidate

 Hash Tree

{I1,I5} 2

{I2,I3} 3

{I2,I4} 2

M/P

 Data

N/P Remote

 Candidate

 Hash Tree

{I2,I5} 1

{I3,I4} 0

M/P

 Data

N/P Remote

 Candidate

 Hash Tree

{I3,I5} 1

{I4,I5} 0

M/P

N: Number of data items

M: Size of candidate set

P: Number of processors

Figure 2.2.11 Intelligent Data Distribution (IDD) (Han, Karypis, & Kumar, 2000).

Bit Map

1

Count

Count

Count

Count

1, 2

Bit Map

Count

Count

2, 3

Bit Map

Count

Count

3, 4

Data Shift

Bit Map

63

The IDD uses a bit-map at each processor to store the first item of the candidates

assigned to the processor. Each processor filters every item of the transaction by checking

against the bit-map to see if the processor contains candidates starting with that item of

the transaction. This reduces the number of transaction data that has to go through the

hash tree resulting in a reduction of the number of computations.

A fundamental requirement of this algorithm is good load balancing. In this case one

of the criteria of a good partitioning algorithm is that there are an equal number of

candidates in all the processors. This will result in the same size hash tree in all the

processors. A round-robin partitioning technique is not likely to result in good load

balancing.

The IDD algorithm uses bin-packing to partition the candidate itemsets. For each

item, the number of candidate itemsets starting with it is computed. The algorithm only

stores the number of items and not the itemset starting with an item. The system then uses

bin packing to partition these items into P buckets such that the sum of number of the

candidate itemsets starting with these items in each bucket are approximately equal. Each

processor then regenerates and stores the candidate itemsets that are assigned to it.

It is important to note that equal assignment of candidates to the processors does not

guarantee the perfect load balance among processors. This is due to the fact that the cost

of traversal and checking at the leaf node are determined not only by the size and shape

of the candidate hash tree, but also by the actual items in the transactions. Since it is

difficult to estimate the effect of transactions on the workload in advance, the scheme is

designed to target the equal distribution of candidates among the processors.

64

Computation using IDD

The following example is an illustration of how the IDD algorithm works using the

sample database in Table 2.2.6. The database and itemsets will be divided among the four

processors as shown in Figure 2.2.12. The movement of local data among the processors

and the count of itemsets after one cycle are shown in Figure 2.2.12 and Figure 2.2.13.

In Figure 2.2.12 the database is divided among the four processors with transactions 100

and 200 assigned to processor 0, transactions 300, 400 and 500 assigned to processor 1,

transactions 600 and 700 assigned to processor 2 and transactions 800 and 900 assigned

to processor 3. The candidate 2-itemsets are also divided among the processors with

processor 0 assigned to {I1, I2}, {I1, I3} and {I1, I4}, processor 1 assigned to

{I1, I5}, {I2, I3}, and {I2, I4}, processor 2 assigned to {I2, I5} and {I3, I4} and

processor 3 assigned to {I3, I5} and {I4, I5}. The count of the 2-itemsets assigned to each

processor is first calculated using the transactions assigned to each processor as shown in

Figure 2.2.12.

 The bit map used for processor 0 is 1, which means that only transactions with item

1 in it will be processed by this processor. Similarly the bit map for processor 1 is 1 and

2, which means that only transactions that contain these items will be processed by

processor 1.

 The second row of Figure 2.2.12 shows the count of 2-itemsets following the

movement of transactions among the processors. The count of 2-itemsets at processor 0 is

updated after processing transactions 800 and 900, which are assigned to processor 3.

Similarly the count of itemsets at processor 1 is updated after processing transactions that

are assigned to processor 0. In the IDD the bit map is used to filter transactions that do

65

not contain items in the bit map for a given processor. Looking at processor 0 it is

obvious that transactions 200, 300 and 600 will not be passed through the hash tree as

they do not contain item 1. These eliminate unnecessary traversal of the hash tree. Every

processor will process the transactions stored at all other processors in order to update the

count of itemsets assigned to it.

 After identifying the frequent itemsets assigned to it each processor then sends this

information to all other processors to determine all frequent 2-itemsets. The process then

repeats itself with the generation of candidate 3-itemsets. It is at this stage that all

processors will decide independently whether to terminate or to go on to the next pass of

the algorithm.

 Figure 2.2.13 shows the count of 2-itemsets assigned to each processor at the

completion of processing the transactions assigned to all other processors. This

information is then exchanged among the processors for the commencement of the next

cycle to determine the 3-itemsets.

66

Itemset Count

{I1,I2} 1

{I1,I3} 0

{I1,I4} 0

Itemset Count

{I1,I5} 0

{I2,I3} 1

{I2,I4} 1

Itemset Count

{I2,I5} 0

{I3,I4} 0

Itemset Count

{I3,I5} 1

{I4,I5} 0

 Processor 0 Processor 1 Processor 2 Processor 3

 T100,T200 T300, T400,

T500
T600, T700 T800, T900

Itemset Count

{I1,I2} 3

{I1,I3} 2

{I1,I4} 0

Itemset Count

{I1,I5} 1

{I2,I3} 1

{I2,I4} 2

Itemset Count

{I2,I5} 0

{I3,I4} 0

Itemset Count

{I3,I5} 1

{I4,I5} 0

 T100,T200 T300, T400,

T500

T600, T700 T600, T700

 T800, T900 T100, T200 T300, T400,

 T500

 T600, T700

Itemset Count

{I1,I2} 3

{I1,I3} 3

{I1,I4} 0

Itemset Count

{I1,I5} 2

{I2,I3} 3

{I2,I4} 2

Itemset Count

{I2,I5} 1

{I3,I4} 0

Itemset Count

{I3,I5} 1

{I4,I5} 0

T100,T200 T300, T400,

T500
T600, T700 T600, T700

 T600, T700 T800, T900 T100, T200 T300,T400,

 T500

Figure 2.2.12 Movement of Local Data Among Processors for IDD

Bit map = 1 Bit map =1, 2 Bit map = 2, 3 Bit map = 3,

4

Bit map = 1 Bit map = 1, 2 Bit map = 2, 3 Bit map = 3, 4

Bit map = 1 Bit map = 1, 2 Bit map = 2, 3 Bit map = 3, 4

 Processor 0 Processor 1 Processor 2 Processor 3

 Processor 0 Processor 1 Processor 2 Processor 3

67

Itemset Count

{I1,I2} 4

{I1,I3} 4

{I1,I4} 1

Itemset Count

{I1,I5} 2

{I2,I3} 4

{I2,I4} 2

Itemset Count

{I2,I5} 2

{I3,I4} 0

Itemset Count

{I3,I5} 1

{I4,I5} 0

T100,T200 T300, T400,

T500
T600, T700 T800, T900

 T300, T400,

 T500
 T600, T700 T800, T900 T100, T200

Figure 2.2.13 Count of Itemsets After one Cycle for IDD

Bit map = 1 Bit map = 1, 2 Bit map = 2, 3 Bit map = 3,

4

 Processor 0 Processor 1 Processor 2 Processor 3

68

2.2.7.4 Hybrid Distribution (HD) Algorithm

As more processors are added in IDD, the number of candidates assigned to each

processor decreases. A reduction in the number of candidates per processor makes it

more difficult to balance the work. In addition the smaller number of candidates gives a

smaller hash tree and less computation work per transaction. It is possible for the amount

of computation to be less than the communication involved. This is more easily seen in

the latter passes of the algorithm as the hash tree size further decreases. The overall

efficiency of the parallel algorithm will be reduced. This can be a serious problem in a

system that cannot perform asynchronous communication.

The problems associated with the IDD are addressed by combining the CD and IDD

algorithms to form the HD algorithm. In this approach a P-processor system is split into

G equal groups, each containing P/G processors. The database transactions are

partitioned into P/G parts each of size N/(P/G). The computation of the candidate set Ck

for each subset of the transactions is assigned to each one of the P/G processors. IDD is

then used to compute the counts within each group. By applying IDD within each group

the transactions and the candidate set Ck are partitioned among the processors of each

group, so that each processor gets roughly Ck/G candidate itemsets and N/P

transactions. The overall count is computed by performing a reduction operation among

the P/G groups of processors.

 Figure 2.2.14 to Figure 2.2.16 show the steps used by HD to compute the frequent

itemsets (Han, et al., 2000). It can be visualized as consisting of G rows and P/G

columns. The transactions are partitioned equally among the P processors. The candidate

69

set Ck is partitioned among the processors of each column. All the processors in a row get

the same subset of Ck. The CD algorithm is executed in Figure 2.2.16 as if there were

only four processors since there are four columns. The database transactions are

partitioned in four parts and each one of these hypothetical processors computes the local

counts of all the candidate itemsets. The global counts are then computed using the global

reduction operation. The computation of local counts of the candidate itemsets in a

hypothetical processor requires the computation of the counts of the candidate itemsets

on the database transactions stored on the three processors. The IDD algorithm is

executed within each of the four hypothetical processors in order to perform this

operation. Each processor has complete count of its local candidates for all the

transactions located in the processors of the same column. A reduction operation is then

performed along the rows such that all processors in each row have the sum of the counts

for the candidates in the same row. The count associated with each candidate itemset

corresponds to the entire database of transactions. Each processor will now find frequent

itemsets and drops all candidate itemsets with frequency less than the threshold for

minimum support. These are shown in Step 2 (Figure 2.2.15). In Step 3 (Figure 2.2.16)

each processor performs an all-to-all broadcast operation along the columns of the

processor mesh. The processors are now ready to proceed to the next pass.

The HD algorithm partitions the candidate set into a big enough section and assigns a

group of processors to each partition. If m is a user specified threshold and the total

number of candidates M is less than m, then the HD algorithm makes G equal to 1, which

means that the CD algorithm is run on all the processors. Otherwise G is set to

M/n.

70

Computation Using Hybrid

The HD algorithm inherits all the good features of the IDD algorithm. It also provides

good load balance and enough computation work by maintaining minimum number of

candidates per processor. The amount of data movement has been cut down to 1/G of the

IDD.

An illustration of the algorithm using the sample database in Table 2.2.7 is shown in

the set of figures starting from Figure 2.2.17 to Figure 2.2.21. In Figure 2.2.17 there are

12 processors divided into four equal groups each consisting of three processors. The

database transactions are partitioned into 3 parts each of size 4. The HD algorithm

executes CD as if there were only 3 processors. In this case the 3 processors correspond

to the 3 columns. The database of transactions is therefore divided into 3 parts where

each part is assigned to each column. We can view a column as a hypothetical processor

that will use the portion of database assigned to it to compute the counts for the candidate

itemsets as is done in CD. A global count is then accomplished by a global reduction

operation.

Each column consists of 4 processors and HD uses IDD to compute the counts of the

candidate itemsets at each of these 4 processors. In Figure 2.2.17 the candidate items are

partitioned among the four groups. From Figure 2.2.17 it can be seen that all the

candidates in a group (row) are the same for the processors in that row. The transactions

assigned to a column are then divided among the processors in the column. In our

example there are 12 transactions, 12 processors and 4 groups. We assign 4 transactions

to each column. Within each column there are 4 processors and we divide the 4

71

transactions among the 4 processors resulting in 1 transaction for each processor as

shown in Figure 2.2.17.

Figure 2.2.17 also shows the count for candidate itemsets assigned to each processor

using the transaction database that is assigned to each. Figure 2.2.18 to Figure 2.2.20

show the use of IDD to compute the count for candidate itemsets along each column.

There is a change in the count of itemset for the processor at row1 and column 1 in

Figure 2.2.18 as a result of processing transaction 400, which is assigned to the processor

at row 4 column 1. This is also true for a number of other processors.

Figure 2.2.21 shows the use of CD to compute the counts for all the itemsets assigned

to each group. It can be observed in Figure 2.2.21 that the counts at each processor in a

row are the same for all the processors. The next step in HD, which is not shown, is a

broadcast of all the frequent itemsets to all processors.

72

{I1,I2} 1

{I1,I3} 0

{I1,I4} 0

{I1,I2} 1

{I1,I3} 0

{I1,I4} 0

{I1,I2} 1

{I1,I3} 0

{I1,I4} 0

{I1,I2} 1

{I1,I3} 0

{I1,I4} 0

Candidate

hash tree

Candidate

hash tree
Candidate

hash tree

Candidate

hash tree

{I1,I5} 1

{I2,I3} 0

{I2,I4} 1

Candidate

hash tree

{I1,I5} 1

{I2,I3} 0

{I2,I4} 1

Candidate

hash tree

{I1,I5} 1

{I2,I3} 0

{I2,I4} 1

Candidate

hash tree

{I1,I5} 1

{I2,I3} 0

{I2,I4} 1

Candidate

hash tree

{I2,I5} 0

{I3,I4} 0

Candidate

hash tree

{I2,I5} 0

{I3,I4} 0

{I2,I5} 0

{I3,I4} 0

{I2,I5} 0

{I3,I4} 0

Candidate

hash tree

Candidate

hash tree
Candidate

hash tree

Step 1: Partitioning of Candidate Sets and Data Movement Along the Columns

Figure 2.2.14 Data Movement Along Columns for HD (Han, Karypis & Kumar, 2000).

Data Shift Data Shift

Data Shift

Data Shift

Data Shift Data Shift

Data Shift

Data Shift

73

{I1,I2} 1

{I1,I3} 0

{I1,I4} 0

{I1,I2} 1

{I1,I3} 0

{I1,I4} 0

{I1,I2} 1

{I1,I3} 0

{I1,I4} 0

{I1,I2} 1

{I1,I3} 0

{I1,I4} 0

Candidate

hash tree

Candidate

hash tree
Candidate

hash tree

Candidate

hash tree

{I1,I5} 1

{I2,I3} 0

{I2,I4} 1

Candidate

hash tree

{I1,I5} 1

{I2,I3} 0

{I2,I4} 1

Candidate

hash tree

{I1,I5} 1

{I2,I3} 0

{I2,I4} 1

Candidate

hash tree

{I1,I5} 1

{I2,I3} 0

{I2,I4} 1

Candidate

hash tree

{I2,I5} 0

{I3,I4} 0

Candidate

hash tree

{I2,I5} 0

{I3,I4} 0

{I2,I5} 0

{I3,I4} 0

{I2,I5} 0

{I3,I4} 0

Candidate

hash tree

Candidate

hash tree

Candidate

hash tree

Step 2: Reduction Operation Along the Rows

Figure 2.2.15 Reduction Operation Along Rows for HD (Han, Karypis & Kumar, 2000).

74

{I1,I2} 5

{I1,I3} 4

{I2,I3} 4

{I1,I2} 5

{I1,I3} 4

{I2,I3} 4

{I1,I2} 5

{I1,I3} 4

{I2,I3} 4

{I1,I2} 5

{I1,I3} 4

{I2,I3} 4

Candidate

 hash tree

Candidate

hash tree
Candidate

hash tree

Candidate

hash tree

{I1,I2} 5

{I1,I3} 4

{I2,I3} 4

Candidate

hash tree

{I1,I2} 5

{I1,I3} 4

{I2,I3} 4

Candidate

hash tree

{I1,I2} 5

{I1,I3} 4

{I2,I3} 4

Candidate

hash tree

{I1,I2} 5

{I1,I3} 4

{I2,I3} 4

Candidate

hash tree

{I1,I2} 5

{I1,I3} 4

{I2,I3} 4

Candidate

hash tree

{I1,I2} 5

{I1,I3} 4

{I2,I3} 4

{I1,I2} 5

{I1,I3} 4

{I2,I3} 4

{I1,I2} 5

{I1,I3} 4

{I2,I3} 4

Candidate

hash tree

Candidate

hash tree

Candidate

hash tree

Step 3: All-to-All Broadcast Along Columns

Figure 2.2.16 Hybrid Distribution (HD) (Han, Karypis & Kumar, 2000).

75

TID List of Items

T100 I1, I2, I5

T200 I2, I4

T300 I2, I3

T400 I1, I2, I4

T500 I1, I3

T600 I2, I3

T700 I1, I3

T800 I1, I2, I3, I5

T900 I1, I2, I3

T1000 I2, I3

T1100 I1, I2

T1200 I2, I4

Table 2.2.7 Sample Database for HD Algorithm

76

 Column 1 Column 2 Column 3

Itemset Count

{I1,I2} 1

{I1,I3} 0

{I1,I4} 0

 T100

Itemset Count

{I1,I2} 0

{I1,I3} 1

{I1,I4} 0

 T500

Itemset Count

{I1,I2} 1

{I1,I3} 1

{I1,I4} 0

 T900

Itemset Count

{I1,I5} 0

{I2,I3} 0

{I2,I4} 1

 T200

Itemset Count

{I1,I5} 0

{I2,I3} 1

{I2,I4} 0

 T600

Itemset Count

{I1,I5} 0

{I2,I3} 1

{I2,I4} 0

 T1000

Itemset Count

{I2,I5} 0

{I3,I4} 0

 T300

Itemset Count

{I2,I5} 0

{I3,I4} 0

 T700

Itemset Count

{I2,I5} 0

{I3,I4} 0

 T1100

Itemset Count

{I3,I5} 0

{I4,I5} 0

 T400

Itemset Count

{I3,I5} 1

{I4,I5} 0

 T800

Itemset Count

{I3,I5} 0

{I4,I5} 0

 T1200

Figure 2.2.17 Initial Count for HD

77

 Column 1 Column 2 Column 3

Itemset Count

{I1,I2} 2

{I1,I3} 0

{I1,I4} 0

 T100

Itemset Count

{I1,I2} 0

{I1,I3} 1

{I1,I4} 0

 T500

Itemset Count

{I1,I2} 1

{I1,I3} 1

{I1,I4} 0

 T900

Itemset Count

{I1,I5} 1

{I2,I3} 0

{I2,I4} 1

 T200

Itemset Count

{I1,I5} 0

{I2,I3} 1

{I2,I4} 0

 T600

Itemset Count

{I1,I5} 0

{I2,I3} 2

{I2,I4} 0

 T1000

Itemset Count

{I2,I5} 0

{I3,I4} 0

 T300

Itemset Count

{I2,I5} 0

{I3,I4} 0

 T700

Itemset Count

{I2,I5} 0

{I3,I4} 0

 T1100

Itemset Count

{I3,I5} 0

{I4,I5} 0

 T400

Itemset Count

{I3,I5} 1

{I4,I5} 0

 T800

Itemset Count

{I3,I5} 0

{I4,I5} 0

 T1200

Figure 2.2.18 Data Movement Along Columns for HD (1)

 T400

 T800

 T1200

 T100

 T500

 T900

 T200

 T600

 T1000

 T300

 T700

 T1100

78

 Column 1 Column 2 Column 3

Itemset Count

{I1,I2} 2

{I1,I3} 0

{I1,I4} 1

 T100

Itemset Count

{I1,I2} 1

{I1,I3} 3

{I1,I4} 0

 T500

Itemset Count

{I1,I2} 2

{I1,I3} 1

{I1,I4} 0

 T900

Itemset Count

{I1,I5} 1

{I2,I3} 0

{I2,I4} 2

 T200

Itemset Count

{I1,I5} 1

{I2,I3} 2

{I2,I4} 0

 T600

Itemset Count

{I1,I5} 0

{I2,I3} 2

{I2,I4} 1

 T1000

Itemset Count

{I2,I5} 1

{I3,I4} 0

 T300

Itemset Count

{I2,I5} 0

{I3,I4} 0

 T700

Itemset Count

{I2,I5} 0

{I3,I4} 0

 T1100

Itemset Count

{I3,I5} 0

{I4,I5} 0

 T400

Itemset Count

{I3,I5} 1

{I4,I5} 0

 T800

Itemset Count

{I3,I5} 0

{I4,I5} 0

 T1200

Figure 2.2.19 Data Movement Along Columns for HD (2)

 T300

 T700

 T1100

 T400

 T800

 T1200

 T400

 T500

 T900

 T200

 T600

 T1000

79

Processor 0 Processor 1 Processor 2

Itemset Count

{I1,I2} 2

{I1,I3} 0

{I1,I4} 1

T100

Itemset Count

{I1,I2} 1

{I1,I3} 3

{I1,I4} 0

T500

Itemset Count

{I1,I2} 2

{I1,I3} 1

{I1,I4} 0

T900

Itemset Count

{I1,I5} 1

{I2,I3} 0

{I2,I4} 2

T200

Itemset Count

{I1,I5} 1

{I2,I3} 2

{I2,I4} 0

T600

Itemset Count

{I1,I5} 0

{I2,I3} 2

{I2,I4} 1

T1000

Itemset Count

{I2,I5} 1

{I3,I4} 0

T300

Itemset Count

{I2,I5} 0

{I3,I4} 0

T700

Itemset Count

{I2,I5} 0

{I3,I4} 0

T1100

Itemset Count

{I3,I5} 0

{I4,I5} 0

T400

Itemset Count

{I3,I5} 1

{I4,I5} 0

T800

Itemset Count

{I3,I5} 0

{I4,I5} 0

T1200

Figure 2.2.19 Data Movement Along Columns for HD (2)

T300

T700

T1100

T400

T800

T1200

T400

T500

T900

T200 T600 T1000

 Column 1 Column 2 Column 3

Itemset Count

{I1,I2} 2

{I1,I3} 0

{I1,I4} 1

 T100

Itemset Count

{I1,I2} 1

{I1,I3} 3

{I1,I4} 0

 T500

Itemset Count

{I1,I2} 2

{I1,I3} 1

{I1,I4} 0

 T900

Itemset Count

{I1,I5} 1

{I2,I3} 1

{I2,I4} 2

 T200

Itemset Count

{I1,I5} 1

{I2,I3} 2

{I2,I4} 0

 T600

Itemset Count

{I1,I5} 0

{I2,I3} 2

{I2,I4} 1

 T1000

Itemset Count

{I2,I5} 1

{I3,I4} 0

 T300

Itemset Count

{I2,I5} 1

{I3,I4} 0

 T700

Itemset Count

{I2,I5} 0

{I3,I4} 0

 T1100

Itemset Count

{I3,I5} 0

{I4,I5} 0

 T400

Itemset Count

{I3,I5} 1

{I4,I5} 0

 T800

Itemset Count

{I3,I5} 0

{I4,I5} 0

 T1200

Figure 2.2.20 Data Movement Along Columns for HD (3)

 T200

 T600

 T1000

 T300

 T700

 T1100

 T400

 T800

 T1200

 T100

 T500

 T900

80

 Column 1 Column 2 Column 3

Itemset Count

{I1,I2} 5

{I1,I3} 4

{I1,I4} 1

 T100

Itemset Count

{I1,I2} 5

{I1,I3} 4

{I1,I4} 1

 T500

Itemset Count

{I1,I2} 5

{I1,I3} 4

{I1,I4} 1

 T900

Itemset Count

{I1,I5} 2

{I2,I3} 5

{I2,I4} 3

 T200

Itemset Count

{I1,I5} 2

{I2,I3} 5

{I2,I4} 3

 T600

Itemset Count

{I1,I5} 2

{I2,I3} 5

{I2,I4} 3

 T1000

Itemset Count

{I2,I5} 2

{I3,I4} 0

 T300

Itemset Count

{I2,I5} 2

{I3,I4} 0

 T700

Itemset Count

{I2,I5} 2

{I3,I4} 0

 T1100

Itemset Count

{I3,I5} 1

{I4,I5} 0

 T400

Itemset Count

{I3,I5} 1

{I4,I5} 0

 T800

Itemset Count

{I3,I5} 1

{I4,I5} 0

 T1200

Figure 2.2.21 Use of CD to Broadcast Local Counts (HD)

81

2.2.7.5 Comparison of Algorithms

The Data Distribution (DD) algorithm scales poorly and has a high communication

cost. DD exploits the aggregate memory of the multiprocessor better than Count

Distribution (CD). In addition it makes fewer passes in the case of datasets with large

transaction and frequent itemset lengths. There are also idle processors due to the

communication scheme. If the communication buffer of any receiving processor is full

and the outgoing communication buffers are full, then the send operation is blocked.

During the last several passes of the algorithm, there is only a small number of items in

the candidate set. However, each processor in the DD still sends the locally stored data to

all other processors. There is not a corresponding decrease in communication with

decrease in computation.

CD reduces the communication overhead of DD significantly since it only broadcasts

the candidate itemsets. CD does not parallelize the computation of building the candidate

hash tree and is a bottleneck with large number of processors. CD scales linearly with the

number of transactions.

IDD solves the communication problem of DD by using a ring-based all-to-all

broadcast network that eliminates contention. It also uses a bit map that eliminates the

redundant work of DD. It uses bin-packing to achieve equal distribution of the candidate

itemsets. As more processors are added however, it becomes more difficult to balance the

work due to the fact that there is a decrease in the number of candidates. The hash tree is

smaller for a smaller number of candidates and requires less computation work per

transaction. The HD inherits all the good features of the IDD while reducing the amount

of data movement. However, it uses a hash tree and requires the movement of data

82

among processors in the same column as a result there is a cost associated with hash tree

construction and traversal as well as data movement (Han, Karypis, & Kumar, 2000).

2.2.8 Lattice Theory

A binary relation ≤ on a set L is a partial order if it is transitive, reflexive and

antisymmetric. A lattice consists of the pair (L, ≤) in which ≤ is a partial order on L, and

every subset {a, b} consisting of two elements has a least upper bound (LUB) and a

greatest lower bound (GLB). A lattice is a mathematical structure with two binary

operators, which are Join and Meet.

Join

An element c is an upper bound of elements a and b of L, if a ≤ c and b ≤ c. The least

upper bound or join of elements a and b is c if c is an upper bound of a and b and, for any

y such that a ≤ y and also b ≤ y, c ≤ y. The join of a and b LUB ({a, b}) is denoted by a ∨

b (Ganter & Willie, 1999; Street, & Wallis, 1982; Zaki, 2000).

Meet

An element c is a lower bound of elements a and b of L, if c ≤ a and c ≤ b. The greatest

lower bound or meet of elements a and b is c if c is a lower bound of a and b and, for any

y such that y ≤ a and also y ≤ b, y ≤ c. The meet of a and b GLB ({a, b}) is denoted by a

∧ b (Ganter & Willie, 1999; Street & Wallis, 1982; Zaki, 2000).

Properties of Lattices

The meet, join, unique maximum and unique minimum element are always defined.

Given a lattice (L, ≤), a non-empty subset S of the set L is called a sub-lattice if a ∨ b ∈ S

and a ∧ b ∈ S whenever a ∈ S and b ∈ S.

1. Idempotent Properties: a ∨ a = a and a ∧ a = a

83

2. Commutative Properties a ∨ b = b ∨ a and a ∧ b = b ∧ a

3. Associative Properties a ∨ (b ∨ c) = (a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c

4. Absorption Properties: a ∧ (b ∨ c) = a and a ∨ (b ∧ c) = a

5. A lattice L is said to be distributive if for all a, b, c ∈ L,

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (Street & Wallis,

1982; Zaki, 2000).

Zaki (2000) used a lattice-theoretic approach to identify the frequent itemsets in the

transaction database. In this approach the power set lattice on the set of database items

are decomposed into sublattices that can be processed independently to find the frequent

itemsets. The prefix-based approach to decompose the lattice with a bottom-up search

strategy for the enumeration of the frequent itemsets will be presented in this section

(Zaki, 2000; Zaki, 2000c).

Definition 1

Let X, Y and Z be elements of an ordered set A.

Let the sign < denote set inclusion. If X < Y and there is no Z such that

X < Z < Y then Y covers X, written as X � Y (Zaki, 2000).

Definition 2

Let X, Y be elements of an ordered set A. If X ∨Y exists for all X, Y ∈ A then A is referred

to as a join semilattice. If X ∧ Y exists for all X, Y ∈ A then A is referred to as a meet

semilattice. If A is both a join and a meet semilattice then it is referred to as a lattice i.e.,

if X ∨ Y and X ∧ Y exist for all pairs of elements X, Y ∈ A.

84

If ∨B and ∧B exist for all subsets B ⊆ A then A is a complete lattice. If X, Y ∈ A,

X ∨ Y ∈ R and X ∧ Y ∈ R and R ⊂ A then R is referred to as a sublattice of A (Zaki,

2000).

Lemma 2.2.1

All subsets of a frequent itemsets are frequent (Zaki, 2000).

Proof

In this representation the set of all frequent itemsets forms a meet semilattice since it is

closed under the meet operation. If A and B are frequent itemsets then A ∩ B is also

frequent. It is important to note that A ∪ B is not necessarily frequent.

Corollary

All supersets of an infrequent itemset are infrequent (Zaki, 2000).

If an itemset I does not satisfy the minimum support it is not frequent. If an item A is

added to itemset I, the resulting itemset (I ∪ A) cannot occur more frequently than I,

therefore I ∪ A is not frequent either.

Lemma 2.2.2

All frequent itemsets are subsets of the maximal frequent itemsets. The search for

frequent itemsets can be implemented using a procedure that quickly identifies the

maximal frequent itemsets (Zaki, 2000).

Definition 3

Let ⊥be the bottom element of the lattice L. If ⊥ � S and S ∈ L then S is called an

atom. The set of atoms of L are denoted by A(L) (Zaki, 2000).

85

Definition 4

A lattice L is called a Boolean lattice if

1. It is Distributive

2. It has
(top) and ⊥(bottom) elements

3. Each member S of the lattice has a complement

Each database item S is an atom with a tid-list L(S). L(S) represents a list of all the

transaction identifiers in which the atom was found (Zaki, 2000).

Lemma 2.2.3

For a finite Boolean lattice L, with X ∈ L,

X = ∨{Y ∈ A(L) | Y ≤ X}

The join of a subset of the set of atoms can be used to generate the elements of a Boolean

lattice. The join operation corresponds to union in the powerset P(I) which is a Boolean

lattice (Zaki, 2000).

Lemma 2.2.4

For any X ∈ P(I), let F = {Y ∈ A(P(I)) | Y ≤ X}

Then X = ∪Y∈ FY, and σ(X) = | ∩Y∈ F L(Y)|

The join of some atoms of a lattice can be used to generate any itemset. The intersection

of the tid-lists of the atoms can be used to compute the support of an itemset (Zaki,

2000).

Lemma 2.2.5

F = {Y ∈ A(P(I)) | Y ≤ X}

For any X ∈ P(I), let X = ∪Y∈ FY. Then

86

σ(X) = | ∩Y∈ F L(Y)|

The intersection of the tid-lists of elements in F will give the support of an itemset that is

the union of a set of items in F. The intersection of any two (k-1) length subsets can be

used to generate the support of any k-itemsets (Zaki, 2000).

Lemma 2.2.6

Let R and S be two itemsets, with R ⊆ S. Then

L(R) ⊇ L(S)

Proof

This follows from the definition of support.

If R is a subset of S, then the cardinality of the tid-list of S must be less than or equal to

the cardinality of the tid-list of R. The cardinality of the tid-list of the subset is greater

than the cardinality of the superset. The counting and intersection operations are faster as

you travel up the lattice due to the decrease in cardinality of the tid-lists (Zaki, 2000).

Definition 5

Let A be a set.

An equivalence relation on A is a binary relation ≡ such that for all X, Y, Z ∈ A, the

relation is:

1. Reflexive: X ≡ X

2. Symmetric: X ≡ Y implies Y ≡ X.

3. Transitive: X ≡ Y and Y ≡ Z, implies X ≡ Z.

The equivalence relation partitions the set A into disjoint subsets called equivalence

classes. The equivalence class X ∈ A is given as [X] = {Y ∈ A � X ≡ Y}

87

Define a function

P: P(I) × N � P(I),

Where p(X, k) = X[1:k], the k length prefix of X. Define an equivalence relation θk on the

lattice P(I) as follows:

∀X, Y ∈ P(I), X ≡ θk Y � p(X, k) = p(Y, k).

Two itemsets are equivalent if they share a common k-length prefix. We refer to θK as a

prefix-based equivalence relation and the set of equivalent itemsets as a class (Zaki,

2000).

Lemma 2.2.7

Each equivalence class [T] θk induced by the equivalence relation θk is a sublattice of

P(I).

Proof

Let R and S be any two elements in the class [T]. This implies that they both share a

common prefix T. R ∨ S = R ∪ S ⊇ T implies that R ∨ S ∈ [T], and

R ∧ S = R ∩ S ⊇ T implies that R ∧ S ∈ [T]. Therefore [T] θk is a sublattice of P(I) (Zaki,

2000).

The database of transactions shown in Table 2.2.3 is reproduced in Table 2.2.8

and its vertical organization in Table 2.2.9. The lattice of itemsets is shown in Figure

2.2.22.

88

TID List of Items

T100 I1, I2, I5

T200 I2, I4

T300 I2, I3

T400 I1, I2, I4

T500 I1, I3

T600 I2, I3

T700 I1, I3

T800 I1, I2, I3, I5

T900 I1, I2, I3

 Table 2.2.8 Transaction Database

89

I1 I2 I3 I4 I5

T100 T100 T300 T200 T100

T400 T200 T500 T400 T800

T500 T300 T600

T700 T400 T700

T800 T600 T800

T900 T800 T900

 T900

 Table 2.2.9 Vertical View of Transaction Database

90

I1 I2 I3 I4 I5

I1I2 I1I3 I1I4 I1I5 I2I3 I2I4 I2I5 I3I4 I3I5 I4I5

I1I2I3 I1I2I4 I1I2I5 I1I3I4 I1I3I5 I1I4I5 I2I3I4 I2I3I5 I2I4I5 I3I4I5

 I1I2I3I4 I1I2I3I5 I1I2I4I5 I1I3I4I5 I2I3I4I5

 I1I2I3I4I5

Figure 2.2.22 Lattice of Itemsets

 ∅

91

2.2.8.1 Serial Prefix-Based Method with Bottom-Up Search Algorithm

The following example is an illustration of how the prefix-based with bottom-up

search algorithm works using the database in Table 2.2.8. The pseudo code for the

bottom-up search algorithm is shown in Figure 2.2.23. The decomposition of the lattice

using a prefix-based approach for classes generated by θ1 is shown below (Zaki, 2000).

Lattice Decomposition: Prefix-Based Classes

 The algorithm is based on the assumption that Lk is lexicographically partitioned into

equivalence classes based on their common k-1 prefix (Zaki, 2000). The equivalence

class x ∈ Lk-2 is given as :

Sx = [x] = {b ∈ Lk-1 x[1: k-2] = b[1: k-2]}

Using this function we partition the itemsets into classes using θ1 as shown below:

[I1] = {{I1, I2}, {I1, I3}, {I1, I4}, {I1, I5}}

[I2] = {{I2, I3}, {I2, I4}, {I2, I5}}

[I3] = {{I3, I4}, {I3, I5}}

[I4] = {{I4, I5}}

Each class will be processed independently to identify the frequent itemsets.

These classes will be processed using the Bottom-Up search method to discover the

frequent itemsets

In the pseudo code in Figure 2.2.23 L (R) represents the tid-list of item R.

Frequent 2-itemsets = {{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}}

92

The lattice generated by class I1 is shown in Figure 2.2.24. The intersection of the tid-

lists for class I1 is shown in Figure 2.2.25. In Figure 2.2.24 the frequent itemsets are

shown in bold. It can be seen that {I1, I2}, {I1, I3}, {I1, I5}, {I1, I2, I3} and {I1, I2, I5}

are shown in bold since these are frequent itemsets.

93

Bottom-Up(S) // Set of atoms

for all atoms Ai ∈ S do

Ti = ∅ // Frequent itemsets

for all atoms Aj ∈ S with j > i do

R = Ai ∪ Aj

L (R) = L (Ai) ∩ L (Aj) //tid-list of item R

if σ (R) ≥ min_sup then

 Ti = Ti ∪ {R}; F R = F R ∪ {R}; // Frequent k-itemsets

end

end

Delete S; //reclaim memory

for all Ti ≠ ∅ do Bottom-Up(Ti)

Figure 2.2.23 Pseudo Code for Bottom-Up Search (Zaki, 2000)

94

 I1I2I3I4I5

I1I2I3I4 I1I2I3I5 I1I2I4I5 1I3I4I5

 I1I2I3 I1I2I4 I1I2I5 I1I3I4 I1I3I5 I1I4I5

 I1I2 I1I3 I1I4 I1I5

I1

Figure 2.2.24 Lattice Generated by Class I1

Frequent itemsets are shown in bold

95

I1I2I3I4I5

I1I2I3

T800

T900

I1I2I4

T400

I1I2I5

T100

T800

I1I2

T100

T400

T800

T900

I1I4

T400

I1I5

T100

T800

I1

T100

T400

T500

T700

T800

T900

I3

T300

T500

T600

T700

T800

T900

I4

T200

T400

I5

T100

T800

I2

T100

T200

T300

T400

T600

T800

T900

I1I3

T500

T700

T800

T900

III2I3I4 I1I2I3I5

T800

I1I2I4I5

Figure 2.2.25 Intersection of Itemsets in Class I1

96

Figure 2.2.25 shows the intersection of the tid-lists for class I1. The tid-list for each

item consists of all the transactions in which the item was found. When we intersect two

tid-lists the resulting tid-list contains the transactions that are common to the two

intersecting tid-lists. In Figure 2.2.25 the intersection of I3 and I1 gives a new tid-list for

{I1, I3} consisting of transactions T500, T700, T800 and T900. The intersection of the

tid-lists for I1 and I4 gives a new tid-list with only transaction T400 since it is the only

transaction common to both tid-lists.

The bottom-up search algorithm shown in Figure 2.2.23 will be used to process class

I1 as shown below. The algorithm will be called recursively until all the frequent itemsets

are generated. It is first called with the following values:

R is the item

S is the set of atoms of the class I1

Support is the minimum support for the frequent itemsets

T stores the frequent itemsets

F k is the frequent k-itemsets

L (R) stores the tid-list of item R

Ai is atom i

σ is the support count

S = {{I1, I2}, {I1, I3}, {I1, I4}, {I1, I5}}

support = 2

The bottom-up search algorithm is called with S

Bottom-Up(S)

i = 1, A1 = {I1, I2}

97

T1 = ∅

j = 2, A2 = {I1, I3}

R = A1 ∪ A2

 = {I1, I2} ∪ {I1, I3}

 = {I1, I2, I3}

We form the union of the first two atoms of the class to get {I1, I2, I3}. We them

determine the count of {I1, I2, I3} by intersecting the tid-lists of the first two atoms of the

class as shown in the following operations.

L ({I1, I2, I3}) = L ({I1, I2}) ∩ L ({I1, I3})

 = {T100, T400, T800, T900} ∩ {T500, T700, T800, T900}

 = {T800, T900}

There are two transactions that contain these three items ({I1, I2, I3}) together and the

support count is 2. This is represented as:

σ({I1, I2, I3}) = 2

The support for {I1, I2, I3} is 2 which makes it frequent. We add it to the set of frequent

itemsets

T1 = ∅ ∪ {I1, I2, I3}

 = {I1, I2, I3}

We also add I1I2I3 to the set of frequent 3-itemsets

F 3 = F 3 ∪ {R}

 = ∅ ∪ {I1, I2, I3}

 = {I1, I2, I3}

We repeat the process for the next atom

98

j = j + 1 = 2 + 1 = 3;

A3 = {I1, I4}

R = A1 ∪ A3

 = {I1, I2} ∪ {I1, I4 }

 = {I1, I2, I4}

L ({I1, I2, I4}) = L ({I1, I2}) ∩ L ({I1, I2})

 = {T100, T400, T800, T900} ∩ {T200, T400}

 = {T400}

There is one transaction that contains these three items ({I1, I2, I4}) together and the

support count is 1. This is represented as:

σ({I1, I2, I4}) = 1

We drop {I1, I2, I4} since it is not frequent

We go on to the next atom of class I1

j = j + 1 =3 + 1 = 4;

A4 = {I1, I5}

R = A1 ∪ A4

 = {I1, I2} ∪ {I1, I5}

 = {I1, I2, I5}

L ({I1, I2, I5}) = L ({I1, I2}) ∩ L ({I1, I5})

 = {T100, T400, T800, T900} ∩ {T100, T800}

 = {T100, T800}

There are two transactions that contain these three items ({I1, I2, I5}) together and the

support count is 2. This is represented as:

99

σ({I1, I2, I5}) = 2

The support for {I1, I2, I5} is 2 which makes it frequent. We add it to the set of frequent

itemsets

T1 = T1 ∪ {I1, I2, I5}

 = {{I1, I2, I3}, {I1, I2, I5}}

We also add I1I2I5 to the set of frequent 3-itemsets

F 3 = F 3 ∪ {R}

 = {I1, I2, I3} ∪ {I1, I2, I5}

 = {{I1, I2, I3}, {I1, I2, I5}}

We proceed to process the next atom

i = 2, A2 = {I1, I3}

T2 = ∅

j = 3, A3 = {I1, I4}

R = A2 ∪ A3

 = {I1, I3} ∪ {I1, I4}

 = {I1, I3, I4}

L ({I1, I3, I4}) = L ({I1, I3}) ∩ L ({I1, I4})

 = {T500, T700, T800, T900} ∩ {T400} = ∅

The support count for {I1, I3, I4} is 0 . This is represented as:

σ({I1, I3, I4}) = 0

{I1, I3, I4} is not frequent so it is not added to the set of frequent itemsets.

T2 = ∅

j = j + 1 =3 + 1 = 4; A4 = {I1, I5}

100

R = A2 ∪ A4

 = {I1, I3} ∪ {I1, I5} = {I1, I3, I5}

L ({I1, I3, I5}) = L ({I1, I3}) ∩ L ({I1, I5})

 = {T500, T700, T800, T900} ∩ {T800}

 = {T800}

There is one transaction that contains these three items ({I1, I3, I5}) together and the

support count is 1. This is represented as:

σ({I1, I3, I5}) = 1

{I1, I3, I5} is not frequent so it is not added to the set of frequent itemsets.

i = 3, A3 = {I1, I4}

j = 4, A4 = {I1, I5}

R = A3 ∪ A4

 = {I1, I4} ∪ {I1, I5} = {I1, I4, I5}

L ({I1, I4, I5}) = L ({I1, I4}) ∩ L ({I1, I5})

 = {T400} ∩ {T100, T800} = ∅

The support count for {I1, I4, I5} is 0 . This is represented as:

σ({I1, I4, I5}) = 0

T3 = ∅

We call the bottom-up algorithm again with T1

T1 = {{I1, I2, I3}, {I1, I2, I5}}

Bottom-up (T1)

i = 1, A1 = {I1, I2, I3}

101

T1 = ∅

j = 2, A2 = {I1, I2, I5}

R = A1 ∪ A2

 = {I1, I2, I3} ∪ {I1, I2, I5} = {I1, I2, I3, I5}

L ({I1, I2, I3, I5}) = L ({I1, I2, I3}) ∩ L ({I1, I2, I5})

 = {T800, T900} ∩ {T100, T800}

 = {T800}

There is one transaction that contains these four items ({I1, I2, I3, I5}) together and the

support count is 1. This is represented as:

σ({I1, I2, I3, I5}) = 1

{I1, I2, I3, I5} is not frequent so it is not added to the set of frequent itemsets. Since there

are no more elements in the set the algorithm terminates. The output is the set of frequent

3-itemsets.

F 3 = {{I1, I2, I3}, {I1, I2, I5}}

The frequent 3-itemsets generated by Class I1 are {{I1, I2, I3}, {I1, I2, I5}}.

 The lattice generated by class I2 is shown in Figure 2.2.26. The intersection of the tid-

lists is shown in Figure 2.2.27.

The computation of the itemsets generated by class I2 is as follows.

S = {{I2, I3}, {I2, I4}, {I2, I5}}

support = 2

The bottom-up search algorithm is called with S

Bottom-Up(S)

i = 1, A1 = {I2, I3}

102

T1 = ∅

j = 2, A2 = {I2, I4}

R = A1 ∪ A2

 = {I2, I3} ∪ {I2, I4} = {I2, I3, I4}

L ({I2, I3, I4}) = L ({I2, I3}) ∩ L ({I2, I4})

 = {T300, T800, T900} ∩ {T200, T400} = ∅

The support count for {I2, I3, I4} is 0 . This is represented as:

σ({I2, I3, I4}) = 0

{I2, I3, I4} is not frequent so it is not added to the set of frequent itemsets. We proceed to

the next atom.

j = j + 1 = 2 + 1 =3

A3 = {I2, I5}

R = A1 ∪ A3

 = {I2, I3} ∪ {I2, I5}

 = {I2, I3, I5}

L ({I2, I3, I5}) = L ({I2, I3}) ∩ L ({I2, I5})

 = {T300, T800, T900} ∩ {T100, T800}

 = {T800}

There is one transaction that contains these three items ({I2, I3, I5}) together and the

support count is 1. This is represented as:

σ({I2, I3, I5}) = 1

103

{I2, I3, I5} is not frequent so it is not added to the set of frequent itemsets. We proceed to

the next atom.

i = 2, A2 = {I2, I4}

T2 = ∅

j = 3, A3 = {I2, I5}

R = A2 ∪ A3 = {I2, I4} ∪ {I2, I5} = {I2, I4, I5}

L ({I2, I4, I5}) = L ({I2, I4}) ∩ L ({I2, I5})

 = {T200, T400} ∩ {T100, T800} = ∅

The support count for {I2, I4, I5} is 0 . This is represented as:

σ({I2, I4, I5}) = 0

T2 = ∅

There are no frequent itemsets generated by class I2

Since there are no more elements in the set the algorithm terminates. The output is the

empty set.

104

I1I2I3I4I5

I2I3I4 I2I3I5 I2I4I5

I2I3 I2I4 I2I5

I2

Figure 2.2.26 Lattice Generated by Class I2

Frequent itemsets are shown in bold

105

I2I3I4 I2I3I5

T800

I2I4I5

T800

I2I4

T200

T400

I2I5

T100

T800

I3

T300

T500

T600

T700

T800

T900

I4

T200

T400

I5

T100

T800

I2

T100

T200

T300

T400

T600

T800

T900

I2I3

T300

T800

T900

I2I3I4I5

Figure 2.2.27 Intersection of Itemsets in Class I2

106

 The lattice for class I3 is shown in Figure 2.2.28. The intersection of the tid-lists for

class I3 is shown in Figure 2.2.29. The computation of the frequent itemsets using a

bottom-up approach is as follows:

S = {{I3, I4}, {I3, I5}}

Support = 2

The bottom-up search algorithm is called with S

Bottom-Up(S)

i = 1, A1 = {I3, I4}

T1 = ∅

j = 2, A2 = {I3, I5}

R = A1 ∪ A2

 = {I3, I4} ∪ {I3, I5} = {I3, I4, I5}

L ({I3, I4, I5}) = L ({I3, I4}) ∩ L ({I3, I5})

 = {∅} ∩ {T800} = ∅

The support count for {I3, I4, I5} is 0 . This is represented as:

σ({I3, I4, I5}) = 0

There are no frequent itemsets in class I3

The lattice generated by class I4 is shown in Figure 2.2.30. There is no intersection

diagram since there is only one atom. In general a class with only one atom can be

eliminated since it cannot generate candidates.

σ(I4I5) = 0

There are no frequent itemsets in class I4.

107

It should be noted that in the serial approach all classes are processed independently by a

single processor.

108

I3I4I5

I3I4 I3I5

I3

Figure 2.2.28 Lattice Generated by Class I3

Frequent itemsets are shown in bold

109

I3I4I5

I3I4 I3I5

T800

I3

T300

T500

T600

T700

T800

T900

I4

T200

T400

I5

T100

T800

Figure 2.2.29 Intersection of Itemsets in Class I3

110

Figure 2.2.30 Lattice Generated by Class I4

I4I5

I4

Frequent itemsets are shown in bold

111

2.2.8.2 Parallel Prefix-Based Method with Bottom-Up Search Algorithm.

 In the parallel implementation we assume that there are two processors. The following

is an illustration of the parallel prefix-based with bottom-up search algorithm. In the

example the diagrams for the intersection of the itemsets are omitted as they are identical

to those used in the serial algorithm in Figure 2.2.24 to Figure 2.2.30. The pseudo code

for the algorithm is shown in Figure 2.2.31.

The sorted tid-lists are shown in Table 2.2.10. Table 2.2.11 shows the assignment of

the tid-lists to the processors. The goal is to assign an equal number of items to each

processor. The length of each tid-list is shown in brackets in Table 2.2.11.

112

Table 2.2.10 Tid-Lists Sorted on Number of Transactions

Tid List No of Transactions

I2 7

I1 6

I3 6

I4 2

I5 2

113

Table 2.2.11 Assignment of Tid-Lists to Processors

Processor (P0) Processor (P1)

I2(7) I1(6)

I4(2) I3(6)

I5(2)

114

Begin

 /* Initialize Phase */

 F2 = (Set of Frequent 2-itemsets}

 Generate Independent Classes from F2 using

 Prefix-based Partitioning

 Schedule Classes among the processors P

 Scan local database partition

 Transmit relevant tid-lists to other processors

 Receive tid-lists from other processors

 /* Asynchronous Phase */

 for each assigned Class, C2

 Compute Frequent Itemsets: Bottom-Up(C2)

 /* Final Reduction Phase */

 Aggregate Results and Output Association

End

Figure 2.2.31 Pseudo Code for Parallel Prefix-Based Algorithm (Zaki, 2000c).

115

Class Schedule

The classes are assigned to the processors based on the size of each class. The goal is

to assign the classes equally among the processors using the class size. The size of a class

is computed using

2

s , where s is the number of atoms in the class.

Table 2.2.12 shows the classes sorted on size. The allocation of the classes to

processors is shown in Table 2.2.13. Table 2.2.14 shows the assignment of tid-lists to

processors after receival of additional tid-lists needed to compute the frequent itemsets.

Figure 2.2.32 shows the allocation of tid-lists and frequent 2-itemsets to the processors.

Figure 2.2.33 shows the assignment of classes to processors. Figure 2.2.34 shows the

assignment of tid-lists to processors after exchange of additional tid-lists.

116

Table 2.2.12 Classes Sorted on Size

Class Size

I1 6

I2 3

I3 2

I4 1

117

Table 2.2.13 Assignment of Classes to Processors

Processor (P0) Processor (P1)

C
1
 (6) C2 (3)

 C3 (2)

 C4 (1)

118

Table 2.2.14 Assignment of Tid-Lists to Processors After Exchange of Tid-Lists

Processor (P0) Processor (P1)

I2(7) I1(6)

I4(2) I3(6)

I5(2) I2

I3 I4

 I5

119

 F2

Tid-List Size

I2 7

I4 3

I5 2

 F2

Tid-List Size

I2 7

I4 3

I5 2

 Processor P0 Processor P1

Figure 2.2.32 Assignment of Tid-Lists to Processors

120

 F2

Tid-List Size

I1 6

I3 6

 Processor P0 Processor P1

Class Size

C2 3

C3 2

C4 1

 F2

Tid-List Size

I2 7

I4 3

I5 2

Class Size

C1 6

Figure 2.2.33 Assignment of Classes to Processors

121

 F2

Tid-List Size

I1 6

I3 2

I2

I4

I5

Class Size

C2 3

C3 2

C4 1

 F2

Tid-List Size

I2 7

I4 3

I5 2

I3

Class Size

C1 6

 Processor P0 Processor P1

Figure 2.2.34 Assignment of Tid-Lists to Processors After Exchange of Tid-Lists

122

In Figure 2.2.34 processor P0 will use class C1 to compute the frequent itemsets. It

uses the bottom-up search to identify the frequent itemsets. Classes C2, C3 and C4 will be

processed by processor P1. They will be used to compute the frequent itemsets associated

with each. As indicated above class C4 has a single atom and will be eliminated since it

cannot generate additional candidates. The actual processing is not shown as it is

identical to the results shown for the serial approach except that the computations will

now be carried out in parallel.

2.3 Dynamic Distributed Rule Mining (DDRM)

The DDRM system is designed to run in a network of PCs environment. This implies

that there may be differences in the capabilities of these PCs such as the clock speed of

the CPU, capacity and transfer rate of disk drives, and the size of main memory. The

efficiency of the algorithm can be improved on if for example the larger classes are

assigned to the faster PCs on the network. In a heterogeneous environment the high

performance nodes will be identified and the larger classes assigned to them based on

their ability to process these classes faster than the other nodes.

According to Tamara and Kitsuregawa (1999) in a PC network it is possible that the

PCs found in the environment may vary in their capabilities. It is possible that when the

network was implemented initially all the machines may have shared the same

specifications. However, over time the homogeneous environment may change into a

heterogeneous one with a wide range of PCs with different processing capabilities. The

performance of parallel algorithms that were implemented in a PC cluster environment

can be improved upon if the larger tasks are assigned to the high performance PCs in the

123

cluster. This will improve on both the computation and communication time in the

overall solution to the problem.

In DDRM the high performance PCs will be identified. These PCs will be assigned the

larger classes. In addition the controller will be located on one of the high performance

PCs. The system will also include a class migration approach that is activated after all the

classes have been assigned. At this point a class may be subdivided and redistributed

among the idle processors. This approach is similar to the candidate migration and

transaction migration strategies developed for a heterogeneous PC cluster environment by

Tamara and Kitsuregawa (1999).

DDRM uses a dynamic load balancing approach. It partitions the lattice into several

sublattices. These sublattices are then collected by each processor for processing. If there

is more lattice to be processed it will be selected by the next available processor. This is

in contrast to the previous approaches where the data is partitioned and assigned statically

to all processors participating in the processing. It uses a distributed memory system and

is similar to Apriori based algorithm in this respect such as CD and IDD. It will result in

better utilization of the available processors. DDRM sends only the class atoms to

processors for processing. The processors then use the atoms to generate the frequent

itemsets associated with the lattice. This reduces the communications overhead

significantly when compared to other algorithms such as CD.

2.4 The Contribution This Study Makes to Data Mining

Itemsets form a large lattice with the set of all items at the top and the empty set at the

bottom (Brin, Motwani, Ullman, & Tsur, 1997). The main limitation of previous parallel

algorithms such as Count Distribution (CD), Data Distribution (DD), Intelligent Data

124

Distribution (IDD) and Hybrid Distribution (HD) is that they make repeated passes over

the database partitions. In addition there is an exchange of counts of candidates or data

partitions assigned to processors. The communications overhead is also high due to the

need to exchange information on a regular basis. It is also necessary to synchronize the

operations taking place on the processors. These activities are completely or significantly

reduced in the case of communications overhead in the DDRM algorithm. In this new

algorithm the sublattices are assigned to processors dynamically by the controller and

frequent itemsets returned to the controller.

Zaki, et al. (1997) used a static scheduling approach to assign the partitions to the

processors. Static scheduling was also used in CD, HD, IDD, and DD for the assignment

of itemsets to the processors for processing. DDRM uses a dynamic scheduling approach

to assign work to the processors participating in the computations for the generation of

the frequent itemsets. The communications overhead associated with IDD is high. This

has been significantly reduced by eliminating the need to exchange data among the

processors on a regular basis.

 The system uses a controller process to distribute the classes among the processors.

The controller is also responsible for the receival and processing of all results generated

by the processors. The algorithm is implemented in six steps as follows:

1. The database is partitioned among n processors for the computation of the tid-

lists. The database is partitioned among the processors using the number of items

in each transaction to determine the next processor to be assigned a transaction.

The next transaction is always assigned the processor with the lowest count of

items for all transactions assigned to it so far.

125

2. The processors use the assigned transactions to generate the local tid-list, which is

then transmitted to the controller.

3. The controller uses all the tid-lists received from all the processors to create a

single tid-list for the database.

4. The tid-list is partitioned among the n processors using the length of the tid-list

for each item to determine the processor to be assigned the next tid-list. A count

of the total length of all tid-lists assigned to each processor is used to determine

which processor will be assigned the next tid-list. The next-tid-list is always

assigned to the processor with the lowest count.

5. The itemsets are partitioned into classes that the first n classes allocated to the n

processors. The controller uses the partition algorithm described in Figure 3.2.4

below to partition the itemsets into classes and assigns the first n classes to the n

processors. The remaining classes are assigned dynamically to the next available

processors. The controller sends only the atoms for the lattice associated with

each class to the processor. The processors use all the classes to compute the

frequent itemsets. The processors use the intersection of the tid-lists for the

itemsets to determine the frequent itemsets. Each processor sends the frequent

itemsets for the class to the controller. The dynamic exchange of classes and

itemsets between the controller and the processors takes place. The controller

receives the frequent itemsets from each processor and sends a class to the next

available processor for processing.

6. The controller generates the rules from the frequent itemsets. The controller

computes the set of rules using the frequent itemsets generated above.

126

 The improvements made by the proposed algorithms are as follows:

1. Reduction in communications among processors: Dynamic Distributed Rule

Mining (DDRM) will significantly reduce the communications bottleneck among

the processors. There is no need for processors to exchange data since each

sublattice can be processed independently. The exchange is between the controller

and each processor and involves the exchange of atoms of the sublattice and the

frequent itemsets found in each class.

2. Improved load balancing: The classes generated by the DDRM algorithm are all

stored at the controller and assigned to each processor as soon as each processor

becomes idle. This is a significant improvement over the static assignment of the

classes. In a static approach if it is discovered early that some classes assigned to

a given processor have no frequent itemsets then these classes will not be

processed any further. This may result in the processor becoming idle while the

other processors may have excess work that could be assigned to this idle

processor. However, due to the static assignment of classes it will not be possible

to take some of the classes from the busy processors for assignment to the idle

processor. The use of dynamic load balancing will significantly improve on the

efficiency of the computations and use of the processors.

3. No synchronization: DDRM uses a lattice theoretic approach which partitions the

itemsets into sublattices that can be assigned to each processor and processed

independently. Processors only communicate with the controller to collect classes

for processing and to return any frequent itemsets found in the assigned class.

127

2.5 Summary

 This chapter discussed data mining with emphasis on the mining of association rules.

We presented several approaches to the mining of association rules that are based on the

use of parallel architectures. A discussion on lattice theory and its application to the

mining of association rules was also presented. The chapter also discussed the proposed

DDRM algorithm.

128

Chapter 3

Methodology

3.1 Lattice Theoretic Approach

 According to Brin, et al. (1997) itemsets form a large lattice with the set of all items at

the top and the empty itemset at the bottom. Zaki (2000) proposed a lattice theoretic

approach to decompose the original search space into smaller pieces, which can be

processed independently. The most efficient known way to parallelize finding large

itemsets involved dividing the database among the processors and to have each processor

count all the itemsets for its own local data. In this approach the issues related to load

balancing and synchronization are critical (Brin, et al., 1997).

3.1.1 Lattice Theory

 Let A be the set of distinct attributes I1, I2, …, I5. We can represent any subset of A as

a sequence that is sorted according to lexicographic order of attribute names. A subset of

the sequence {I1, I2, I3} is {I1, I2} and is identified as {I1, I2}. It is also the same as {I2,

I1}. A one-to-one mapping exists between the set of all sequences and the power set (2
A
).

The set of all sequences can be identified with 2
A
. The power set (2

A
) is a Boolean lattice

where ∅ and A are the bottom and top respectively. We denote the order in 2
A
 with ≤

which coincides with set inclusion, b ≤ c reads b is a subset of c. A [I] is the i-rank

attribute in A. Ranks are counted starting from 1. The cardinal of a subset s is denoted by

129

|s|. A subset with cardinal k is referred to as a k-itemset. For example, if A = {I1, I2, I3},

then |{I1, I2} | ≤ |{I1, I2, I3}| (Adamo, 2001).

 The power set lattice (2
A
) of the set of items {I1, I2, I3, I4, I5} is shown in Figure

2.2.22. In this representation the set of all frequent itemsets forms a meet semilattice

since it is closed under the meet operation. If A and B are frequent itemsets then A ∩ B is

also frequent. It is important to note that A ∪ B is not necessarily frequent.

 If there were enough memory all the frequent itemsets could be enumerated by

traversing the power set lattice and using intersections to obtain itemset supports. Zaki

(2000) has shown that the power set lattice can be subdivided into a number of sublattices

that can be processed independently. He used an equivalence relation to partition the

lattice into disjoint subsets called equivalence classes. The lattice theoretic approach will

be used to partition the itemsets into independent sublattices to be assigned to processors.

Dynamic Distributed Rule Mining (DDRM) Algorithm

 The system was implemented using C/C++ language and generated all the rules

satisfying the required minimum support and confidence indicated by the user. It was

implemented using an Ethernet LAN consisting of 7 workstations and one server. The

configuration of each workstation on the network was an AMD Athlon XP 2800+ with

512 Mbytes of memory. The processors were interconnected via a 10/100 Mbps switch.

The switch used 100BASE-T (Fast Ethernet) technology, which provides greater

bandwidth. The message passing interface (MPI) was used for communications. The

implementation of MPI was the windows message passing interface (WMPI) for 8

workstations from Critical Software Ltd.

130

3.2.1 Message Passing Interface (MPI)

 The MPI model consists of P processors each with local memory, connected over a

communication network. The cost for a processor to access its own memory is cheaper

than for it to communicate with another processor. MPI facilitates communications

among a set of processors that have only local memory through the mode of sending and

receiving of messages. MPI is a standardized, portable, and widely available message-

passing system that is robust and efficient. To use MPI, the program is written in C/C++

and the MPI library included in the program. The processes communicate with each other

by calling the appropriate routine in the MPI library which implements the

communications between processors. The following table shows some of the MPI

functions used by DDRM system.

MPI Command Description

MPI_Init() Initialize MPI (no MPI function calls before that)

MPI_Comm_size() Get total number of processors

MPI_Comm_rank() Get process ID

MPI_Finalize() Terminate MPI (no MPI function calls after)

MPI_Send() Send a message

MPI_Recv() Receive a message

 The pseudo code for the Dynamic Distributed Rule Mining (DDRM) algorithm is

shown in Figure 3.2.1. The preprocessing stage used to determine the capabilities of the

processors is not shown in the pseudo code. The system uses a controller process to

distribute the classes among the processors. The controller is also responsible for the

receival and processing of all results generated by the processors. The algorithm is

implemented in six steps as follows:

 In step 1 the database is partitioned among n processors using the number of items in

each transaction to determine the next processor to be assigned a transaction. The next

131

transaction is always assigned to the processor with the lowest count of items for all

transactions assigned to it so far. The processors use the assigned transactions to generate

the local tid-list, which is then transmitted to the controller. The controller uses all the

tid-lists received from all the processors to create a single tid-list for the database.

In step 2 the tid-list is partitioned among the processors and used to compute F2.

 The tid-list is partitioned among the n processors using the length of the tid-list for

each item to determine the processor to be assigned the next tid-list. A count of the total

length of all tid-lists assigned to each processor is used to determine which processor will

be assigned the next tid-list. The next tid-list is always assigned to the processor with the

lowest count.

 In step 3 the itemsets are partitioned into classes and the first n classes allocated to the

n processors. The controller uses the partition algorithm described in Figure 3.2.4 to

partition the itemsets into classes and assigns the first n classes to the n processors. The

remaining classes are assigned dynamically to the next available processor. The

controller sends only the atoms for the lattice associated with each class to the processor.

In step 4 the processors use all the classes to compute the frequent itemsets

 The processors use the intersection of the tid-lists for the itemsets to determine the

frequent itemsets. Each processor sends the frequent itemsets for the class to the

controller.

 In step 5 the dynamic exchange of classes and itemsets between the controller and the

processors takes place. The controller receives the frequent itemsets from each processor

and sends a class to the next available processor for processing. After all classes have

132

been assigned the processors may subdivide a class and its subclass migrated to an idle

processor.

 In step 6 the controller generates the rules from the frequent itemsets. The controller

computes the set of rules using the frequent itemsets generated above.

The DDRM system was implemented using C/C++ language. It generated all the rules

satisfying the required minimum support and confidence indicated by the user. The

performance of the algorithm was compared with the prefix-based with bottom-up search

algorithm as proposed by Zaki (2000). The specific steps followed were:

1 The DDRM algorithm was implemented using C/C++

2 The algorithm was executed with a varying number of processors.

3 The system captured the execution time for the algorithm for a set of transactions

4 The speedup of the system was measured by keeping the number of classes constant

while increasing the number of processors.

5 The Scaleup of the system was measured by increasing the number of classes and

processors.

The five steps above were repeated for the prefix based algorithm and a comparison

made with the DDRM.

133

Input: Database of transactions and minimum support

Output: Frequent itemsets

Step 1

i) The algorithm partitions the database among the N processors

ii) Each processor uses the partition assigned to it to generate the

tid-list

iii) Each processor sends the tid-list to the controller

iv) Controller creates a database of all tid-lists

Step2

 //F2 = (Set of Frequent 2-itemsets)

i) Partition tid-list among processors

ii) Each processor converts tid-list to generate F2

iii) Each processor sends F2 to controller

iv) Controller creates a database of F2

v) Each processor gets a copy of F2

Step 3

i) Controller uses partition algorithm to generate classes

ii) Controller sends first N classes to processors

Step 4

i) Each processor Pi computes the frequent itemsets in the class

assigned to it

ii) Each processor Pi sends frequent itemsets for class to

controller

Step 5

i) Controller receives frequent itemsets from each processor

ii) Controller sends next class to available processor

This step is repeated until all classes have been processed

j = N + 1

Repeat

 Receive result from processor Pk

 Send class j to processor Pk

 j = j + 1

 Update frequent itemset list

Until j > no of classes

 Balance()

Step 6

 Generate rules

End

Figure 3.2.1 Dynamic Distributed Rule Mining Algorithm

134

Balancing Algorithm

In order to make use of the processors more efficiently and to minimize the need for

communication during the last phase where there is a need to redistribute the load the

system will need to keep statistics on the performance of each processor to assist in the

decision making process. The system will have an initial phase before the start of the

computation of frequent itemsets. This phase will be used to identify the relative speed of

each processor. This will be accomplished by creating a special class that will be

assigned to all the processors in the computations. Each processor will measure the time

taken to identify all frequent itemsets in the class and to send this information back to the

controller. The controller will then store this information in a table sorted in ascending

order based on the time taken by each processor.

The system will also capture the time taken to send and receive the data for each

processor. This time will be the difference between the returned time and the sum of the

send time and duration. This piece of information can be used to assist in determining

whether or not there will be any gain in subdividing a class that was previously assigned

to another processor.

When a processor becomes idle we will seek to redistribute the load initially assigned

to the busy processors by subdividing the class with the longest remaining time to process

and assign one of the sublattices to the idle processor. The remaining time to complete

will not be precise as there is no way to accurately determine the time to process a class.

However, we can do an estimation of the total time required to process a class based on

statistics captured previously on a class of known size and the associated time required to

send the class to the processor and to receive the results.

135

Assume the following information was collected on the test class

Size = S

Time to process = T

Transmission time = TX (This is the time to send and receive a class and its frequent

itemsets to and from the controller)

The information on the test class will be collected in the preprocessing stage that will be

used to determine the capabilities of all the processors participating in the data mining

system.

Let us say that the size of the class currently assigned to a processor is X, elapsed time

since assignment is TE.

Based on the statistics collected previously the time required (TR) to process this class is

approximately given by

TR= X/S*T

Remaining time to complete TL = TR – TE

Approximate time required for transmission TT = X/S*TX

Let ∆T = TL - TT

We will split the class and redistribute the load if ∆T > 0

This is repeated for all processors. The processor with the largest ∆T will be selected for

partitioning of the class assigned to it and a part sent to the idle processor.

136

 The following example illustrates the steps of the DDRM algorithm using the sample

data shown in Table 2.2.8. In step 1 shown in Figure 3.2.2 the transaction is partitioned

among the two processors and the tid-lists generated. The tid-list from each processor is

then aggregated by the controller to form a single tid-list.

137

Transaction Size

T100 3

T400 3

T600 2

T800 4

Total 12

Transaction Size

T200 2

T300 2

T500 2

T700 2

T900 3

Total 11

I1 I2 I3 I4 I5

T100 T100 T600 T400 T100

T400 T400 T800 T800

T800 T600

 T800

I1 I2 I3 I4 I5

T500 T200 T300 T200

T700 T300 T500

T900 T900 T700

 T900

I1 I2 I3 I4 I5

T100 T100 T300 T200 T100

T400 T200 T500 T400 T800

T500 T300 T600

T700 T400 T700

T800 T600 T800

T900 T800 T900

 T900

P0 P1

Figure 3.2.2 Step 1 of DDRM: Generation of Tid-Lists

138

Itemset Size

I2 7

I4 2

I5 2

Itemset Size

I1 6

I3 6

 P0 P1

Transaction

1 I2 I5

2 I2 I4

3 I2

4 I2 I4

5

6 I2

7

8 I2 I5

9 I2

Transaction

1 I1

2

3 I3

4 I1

5 I1 I3

6 I3

7 I1 I3

8 I1 I3

9 I1 I3

Items 1 2 3 4 5

1 0 4 4 1 2

2 0 0 4 2 2

3 0 0 0 0 1

4 0 0 0 0 0

5 0 0 0 0 0

Figure 3.2.3 Step 2 of DDRM: Generation of F2

F2 = {{I1, I2}, {I1, I3}, (I1, I5},{I2, I3}, {I2, I4},{I2, I5}}

139

 Step 2 in Figure 3.2.3 shows the generation of the frequent 2-itemsets. The itemsets

are partitioned among the processors, inverted into a horizontal format and passed back to

the controller where they are then used to generate the set of all frequent 2-itemsets. It

should be noted that in this approach candidate itemsets that are not included in at least 1

transaction will not be generated.

3.2.2 Lattice Partition

The pseudo code for the partition algorithm is shown in Figure 3.2.4. The algorithm

uses the equivalence relation to partition the lattice for distribution among the processors

(Adamo, 2001). In the algorithm the term cas refers to an itemset and a k-cas is the same

as a k-itemset.

C(s) = the class in θ(k|s) with k ≠ s.

A is the set of itemsets. A = {I1, I2, I3, I4, I5}

A[k] is the item in A with rank k, the leftmost element in A has a rank of 1. For example,

A[1] = I1, A[3] = I3.

θ(k|s) is the set of k-cass in 2
A
 that have prefix s.

| θ(k|s) | is the count of k-cass in 2
A
 that have prefix s. It is a filter for the set of classes.

The finer filter is obtained when k = |s|.

140

void split (int k)

 for (h = k – 1; h >= 0; h--) {

SetofCass cas (A, k, h) = set of all h-cass that can be

formed with attributes in

Pre (k-1, A) sorted according to

Lexicographic order;

 for all s in cas (A, k, h) {

 Generate the two sets:

 ∪k + 1 ≤ j ≤ A {s.A[k].A[j]} and ∪k + 1 ≤ j ≤ A {s.A[j]}

 }

 }

}

Figure 3.2.4 Procedure to Partition Lattice (Adamo, 2001)

141

Theorem 3.2.1

Let θ(k|s) = {C | C is in θ(k) and |s| ≤ k and for all cass u in C, u has prefix s} and let r

denote the rank in A of the last attribute in s (r is 0 when s = ∅). The size of θ(k|s) is

|θ(k|s)| = C(|A| - r, k - |s|).

Proof

|θ(k|s)| is the count of k-cass in 2
A

that have prefix s. In those cass, s is a fixed cas whose

tail can be any (k - |s|)-length combination that can be formed with the last |A| - r

attributes in A. θ(k|s) works as a filter for the set of classes θ(k) (Adamo, 2001).

Cas (A, 2, 0) = {∅}

To split the itemsets into 4 classes we proceed as follows:

M = 4 = 2
k

K = 2

And the four classes are as shown

 Generate the two sets:

 ∪k + 1 ≤ j ≤ A {s.A[k].A[j]} and ∪k + 1 ≤ j ≤ A {s.A[j]}

The set of 1-itemset that can be formed with attributes in pre(k-1, A) is represented as

Cas (A, 2, 1) = {I1}

s = {I1}

The two sets generated from I1 are {{I1, I2, I3}, {I1, I2, I4}, {I1, I2, I5}} and

{{I1, I3}, {I1, I4}, {I1, I5}}

The set of 0-itemset that can be formed with attributes in pre(k-1, A) is represented as

Cas (A, 2, 1) = {∅}

142

s = {∅}

The two sets generated from ∅ are {{I2, I3}, {I2, I4}, {I2, I5}} and {I1, I4, I5}

Therefore the four classes are:

{{I1, I2, I3}, {I1, I2, I4}, {I1, I2, I5}}, {{I1, I3}, {I1, I4}, {I1, I5}}, {{I2, I3}, {I2, I4},

{I2, I5}}, {{I1, I4, I5}}

We can partition the itemsets into four sublattices as shown in the Table 3.2.5.

143

Lattice/

Class #

Atoms

 1

2

3

4

I1I2I3 I1I2I4 I1I2I5

I1I3 I1I4 I1I5

I2I3 I2I4 I2I5

I3 I4 I5

Figure 3.2.5 Sublattices of Itemsets

144

I1I2I3I4I5

I1I2I3I4 I1I2I3I5 I1I2I4I5

I1I2I3 I1I2I4 I1I2I5

∅

 Figure 3.2.6 Lattice for Class 1

145

I1I3I4I5

 I1I3I4 I1I3I5 I1I4I5

 I1I3 I1I4 I1I5

∅

Figure 3.2.7 Lattice for Class 2

146

I2I3I4I5

 I2I3I4 I2I3I5 I2I4I5

 I2I3 I2I4 I2I5

∅

Figure 3.2.8 Lattice for Class 3

147

 I3I4I5

 I3I4 I3I5 I4I5

 I3 I4 I5

∅

Figure 3.2.9 Lattice for Class 4

148

In DDRM we use an estimate of the time to process a class based on the number of

intersections to determine all frequent itemsets in the class. An estimate of this cost is

shown in the Table 3.2.3. This estimate can be seen from the intersection diagram for

each class.

Step 3 in Figure 3.2.10 shows the allocation of two of the four classes generated by

the partition algorithm.

149

Table 3.2.1 Typical Information for Controller

Controller

Name

Support

Confidence

Tid List

Frequent 2-items

Classes

Frequent Itemsets

150

Table 3.2.2 Number of Class Intersections

Class Number of Intersections

1 10

2 6

3 6

4 3

151

 Processor P0 Processor P1

Classes

1

2

3

4

Controller

Tid-list Frequent 2-itemsets

Class 1

Tid F2

Figure 3.2.10 Step 3 of DDRM: Allocation of Classes

Class 2

Tid F2

152

 Processor P0 Processor P1

Classes

1

2

3

4

Controller

Tid-list Frequent 2-itemsets

Frequent Itemsets

for Class 2

Figure 3.2.11 Step 4 of DDRM: Processing of Classes

Tid F2

Class 2 Lattice

Tid F2

Class 1 Lattice

153

Figure 3.2.11 and Figure 3.2.12 represent steps 4 and 5 respectively of the DDRM

algorithm. These two figures show the dynamic allocation of the remaining classes to the

processors. We omit the diagram that shows the assignment of class 4. The intersection

diagrams for the four classes together with the lattice generated by each class are shown

in Figure 3.2.13 to Figure 3.2.20.

154

 Processor P0 Processor P1

Classes

1

2

3

4

Controller

Tid-list Frequent 2-itemsets

Frequent Itemsets

for Class 1

Figure 3.2.12 Step 5 of DDRM: Processing of Classes

Tid F2

Class 2 Lattice

Tid F2

Class 1 Lattice

Class 3

155

I1I2I3I4I5

I1I2I3

T800

T900

I1I2I4

T400

I1I2I5

T100

T800

I2I3

T300

T600

T800

T900

I2I4

T200

T400

I2I5

T100

T800

I1

T100

T400

T500

T700

T800

T900

I3

T300

T500

T600

T700

T800

T900

I4

T200

T400

I5

T100

T800

I2

T100

T200

T300

T400

T600

T800

T900

I1I2

T500

T700

T800

T900

III2I3I4 I1I2I3I5

T800

I1I2I4I5

Figure 3.2.13 Intersection of Itemsets in Class 1

156

I1I2I3I4I5

I1I2I3I4 I1I2I3I5 I1I2I4I5

 I1I2I3 I1I2I4 I1I2I5

∅

Figure 3.2.14 Lattice Generated by Class 1

Frequent itemsets are shown in bold

157

I1I3I4I5

I1I3I4 I1I3I5

T800

I1I4I5

I1I3

T500

T700

T800

T900

I1I4

T400

I1I5

T100

T800

I1

T100

T400

T500

T700

T800

T900

I3

T300

T500

T600

T700

T800

T900

I4

T200

T400

I5

T100

T800

Figure 3.2.15 Intersection of Itemsets in Class 2

158

I1I3I4I5

I1I3I4 I1I3I5 I1I4I5

 I1I3 I1I4 I1I5

∅

Figure 3.2.16 Lattice Generated by Class 2

Frequent itemsets are shown in bold

159

I2I3I4 I2I3I5

T800

I2I4I5

T800

I2I4

T200

T400

I2I5

T100

T800

I3

T300

T500

T600

T700

T800

T900

I4

T200

T400

I5

T100

T800

I2

T100

T200

T300

T400

T600

T800

T900

I2I3

T300

T800

T900

I2I3I4I5

Figure 3.2.17 Intersection of Itemsets in Class 3

160

I2I3I4I5

I2I3I4 I2I3I5 I2I4I5

 I2I3 I2I4 I2I5

∅

Figure 3.2.18 Lattice Generated by Class 3

Frequent itemsets are shown in bold

161

I3I4I5

I3I4 I3I5

T800

I3

T300

T500

T600

T700

T800

T900

I4

T200

T400

I5

T100

T800

Figure 3.2.19 Intersection of Itemsets in Class 4

162

 I3I4I5

 I3I4 I3I5 I4I5

 I3 I4 I5

∅

Figure 3.2.20 Lattice Generated by Class 4

Frequent itemsets are shown in bold

163

It can be seen from Figure 3.2.14 that the frequent 3-itemsets are {I1, I2, I3} and

{I1, I2, I5}. There are no frequent 3-itemsets for the remaining classes C2, C3 and C4.

 The following data was collected, analyzed and compared with similar data for the

parallel prefix-based and partition algorithms:

1. Total execution time for different number of classes and different number of

processors

2. Speedup

3. Scaleup

4. Number of Transactions

5. Wait Time

6. Turnaround Time

7. CPU Utilization

8. Communication Time

Description of C/C++ Functions Used in DDRM Implementation

 We show the data structures in DDRM in Appendix A. These are used to store the

itemset, tidlist, and other important information needed by the system. Appendix B

through to Appendix K show some of the main functions used in the implementation.

Appendix B shows the function used to identify the set of all n-itemset that can be formed

from pre(k –1) of an itemset. This function is used to generate the set of classes. The

partition function used to create and store the set of all n-itemset in pre(k-1) of an itemset

is shown in Appendix C. The n-itemsets are stored in a vector that is then used to

generate the classes. It uses the setOfNCas function to generate all the n-itemsets.

Appendix D shows the function used to generate all the classes used as sublattices of the

164

search space for the generation of the rules. It uses the vector generated by the DDRM

partition function. In Appendix E the function used to generate two classes for each n-

itemset in pre(k-1) is shown. This function is used by Generate All Classes function. The

functions used to broadcast and receive the vector of tidlists are shown in Appendix F

and Appendix G respectively. These functions are used by the system to broadcast and

receive the tidlist vector to stations in the cluster. Appendix H shows the function used to

send a class to a processor while Appendix I shows the function used to receive a class

from a processor. The functions used to send and receive the frequent itemsets are shown

in Appendix J and Appendix K respectively.

3.3 Comparison of Prefix-Based and DDRM Algorithms

The prefix-based approach uses an equivalence relation to partition the itemsets into

classes, which can be processed independently to identify the frequent itemsets (Zaki, et

al., 1997; Zaki, 2000).

 The major strengths of the prefix-based approach are:

1. The utilization of the aggregate memory of all the parallel system by partitioning

the candidate itemset among the processors.

2. The repartitioning of the database so that each processor can compute the frequent

itemsets independently. This eliminates the need to communicate the frequent

itemsets at the end of each iteration.

3. The use of a vertical database layout that clusters the transactions containing an

itemset into tid-lists. This layout reduces the number of scans of the database.

Computes frequent itemsets by intersection of the tid-lists. Eliminates the

165

overheads associated with the building and searching of complex hash tree data

structures.

4. The avoidance of the overhead of generating all the subsets of a transaction and

checking them against the candidate hash tree during support counting.

5. The use of the equivalence class recursively to cluster related itemsets during each

iteration.

The above characteristics are also shared by DDRM since it seeks to improve on the

prefix-based approach. The prefix-based algorithm uses a static approach to load

balancing, which requires prior knowledge of the execution times for each class. The

unavailability of information on the computation requirements makes it difficult to utilize

the processors efficiently. A major goal of load balancing is utilization of all processors

in order to improve the throughput. Performance measures such as throughput and

completion time are directly affected by processor utilization.

A simple heuristic strategy to achieve higher utilization of a system is to avoid having

idle processors as much as possible. In DDRM classes are assigned to the next available

processor by the controller. Assignment of classes, computation of frequent itemsets and

return of the results to the controller are carried out asynchronously.

The prefix-based approach uses the class to partition the load among the processors.

This partitioning is final as there is no subsequent operation to address imbalances that

may result during the computations. As a result one processor may be heavily loaded

while there are idle processors available to assist in the computations. In DDRM, which

uses a dynamic load balancing approach, the work is assigned to a processor as soon as it

becomes idle. Dynamic load balancing will incur additional cost due to the movement of

166

work but is beneficial especially when there is a large work imbalance and the load

changes with time.

DDRM uses a control monitor to assign classes to processors dynamically as a

processor becomes idle. This is an improvement over the prefix-based approach, which

assigns all the classes to the available processors statically. The communications cost

associated with DDRM is low since most of the data required to process a class are

already stored at the processor. In this approach a processor can only be idle if there are

no more available classes at the controller to be processed. High processor utilization is

an indication of high throughput. The controller can be viewed as a queue where all

classes exit to be assigned to the next available processor. A comparison of Count

Distribution, Prefix-Based and DDRM is shown in Table 3.2.3.

167

Characteristics CD Prefix-Based DDRM

Equivalence No Yes Yes

Intersection No Yes Yes

Communications Itemset count Class, Count Class, Count

Static Scheduling Yes Yes No

Dynamic Scheduling No No Yes

Dynamic Load Balancing No No Yes

Counts Itemsets Independently No Yes Yes

Synchronization Yes No No

Assign Work to Idle Processors No No Yes

Hash Table Yes No No

Table 3.2.3 Comparison of DDRM and Prefix-Based

168

3.3.1 Static Approach

It is difficult for a static approach to accurately reflect the behavior of the classes

assigned to each processor based on computation time required by each class. In a

dynamic approach it is possible to partition the class assigned to a processor and migrate

some of these partitions to idle processors. This will improve the throughput of the

system. The partitioning of a task and subsequent migration of some of the resulting

subtasks will result in increased communications overhead. The system must balance the

overhead communication cost against the resulting improvement in the throughput.

According to Jacob and Lee (1999) in cases where the communication or computation

characteristics change with time the shrinking of the task may improve on the throughput

of the system. For example, the computation of count of k-itemsets is computationally

more demanding for small k than for larger k. This means that for small k the

computation phase would dominate the communication phase while for large k the

communication phase would dominate and therefore a smaller number of processors

would be used.

A static approach which uses a simple strategy of partitioning the problem initially as

finely as possible may be an indication that support for further partitioning of the task is

unnecessary. Using the finest partition may result in a high overhead associated with the

assignment of tasks to the processors. The algorithm complexity and time to assign tasks

to processors could be reduced with coarse grained partitioning of the problem (Jacob &

Lee, 1999).

A disadvantage of the static approach is that if there are no frequent itemsets in the

classes assigned to a processor while there are many frequent itemsets in the classes

169

assigned to the other processor then the turnaround time will be very high. This is due to

the fact that one processor will be kept busy processing the classes assigned to it while

the other processor will be idle most of the time. To illustrate this condition we use the

database of transactions shown in Table 3.3.1 with vertical layout shown in Figure 3.3.2.

There are 5 items in the database. We will partition the itemsets into four classes. Class 1

which is the largest class is assigned to processor 0 and the remaining classes assigned to

processor 1.

After the first set of intersections it is clear that there are no frequent itemsets in class

1 as shown in Figure 3.3.1. The processing of class 1 will end at this point and since there

is no additional class assigned to processor 0 it will remain idle. On the other hand the

remaining classes assigned to processor 1 all contain several frequent itemsets, which

means that processor 1 will spend a significant amount of time processing each class,

while processor 0 remains idle. The intersection diagrams for the classes assigned to

processor 0 are shown in Figure 3.3.2 and Figure 3.3.3. In a dynamic approach the classes

are assigned to processors as soon as they are available. In addition whenever there is an

idle processor a large class can be subdivided and a subclass migrated to the idle

processor.

170

 Table 3.3.1 Transaction Database

TID List of Items

100 I1, I2

200 I1, I5

300 I2, I3,I5

400 I2, I3, I4, I5

500 I1, I3

600 I1, I4

700 I1, I2

800 I4, I5

900 I2, I3, I4

1000 I2, I3, I4, I5

1100 I2, I4, I5

171

Table 3.3.2 Vertical View of Transaction Database

I1 I2 I3 I4 I5

100 100 300 400 200

200 300 400 600 300

500 400 500 800 400

600 700 900 900 800

700 900 1000 1000 1000

800 1000 1100 1100

 1100

172

I1I2I3I4I5

I1I2I3 I1I2I4 I1I2I5

I1I2

T100

T700

I1I4

T600

I1I5

T200

I1

T100

T200

T500

T600

T700

I3

T300

T400

T500

T900

T1000

I4

T400

T600

T800

T900

T1000

T1100

I5

T200

T300

T400

T800

T1000

T1100

I2

T100

T300

T400

T700

T900

T1000

T1100

I1I3

T500

III2I3I4 I1I2I3I5 I1I2I4I5

Figure 3.3.1 Intersection of Itemsets in Class I1

173

I2I3I4I5

T1000

T1200

I2I3

T300

T400

T900

T1000

I2I4

T400

T900

T1000

T1100

I2I5

T300

T400

T1000

T1100

T1200

I3

T300

T400

T500

T900

T1000

I4

T400

T600

T800

T900

T1000

T1100

I5

T200

T300

T400

T800

T1000

T1100

I2

T100

T300

T400

T700

T900

T1000

T1100

I2I3I4

T400

T900

T1000

I2I3I5

1000

1200

I2I4I5

T1000

T1100

T1200

Figure 3.3.2 Intersection of Itemsets in Class I2

174

In Figure 3.3.2 the intersection of the tid-lists all give rise to new tid-lists that are also

frequent. This class will require significantly more computation time than class 1.

Similarly class 3, which is shown in Figure 3.3.3, will also give rise to tid-lists that are

frequent from the intersection of the intermediate tid-lists.

This example illustrates the potential benefit that can be obtained in a dynamic

approach. In a dynamic approach the work associated with classes 2 and 3 would be

partitioned between the two processors instead of being assigned to one processor while

there is another available idle processor.

175

I3I4

T400

T900

T1000

I3I5

T300

T400

T1000

I3

T300

T400

T500

T900

T1000

I4

T400

T600

T800

T900

T1000

T1100

I5

T200

T300

T400

T800

T1000

T1100

I2I4I5

T400

T1000

Figure 3.3.3 Intersection of Itemsets in Class I3

176

Lattice Partition and Data Independence

 A binary relation ≤ on a set L is a partial order if it is transitive, reflexive and

antisymmetric. A lattice consists of the pair (L, ≤) in which ≤ is a partial order on L, and

every subset {a, b} consisting of two elements has a least upper bound (LUB) and a

greatest lower bound (GLB). A lattice is a mathematical structure with two binary

operators, which are Join and Meet.

Properties of Lattices

The meet, join, unique maximum and unique minimum element are always defined.

Given a lattice (L, ≤), a non-empty subset S of the set L is called a sub-lattice if a ∨ b ∈ S

and a ∧ b ∈ S whenever a ∈ S and b ∈ S.

The lattice formed from the atoms {a, b, c, d) is the powerset shown below:

L = {a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, bcd, abcd}

This set is a lattice since the meet and join of all elements are defined.

We use θk to partition the lattice as shown in the table below:

θθθθk Set1 Set2 Set3 Set4

1 {a, ab, ac, ad, abc, abd, abcd} {b, bc, bd, bcd} {c, cd} {d}

2 {ab, abc, abd, abcd} {bc, bcd} {cd}

3 {abc, abcd} {bcd}

4 {abcd}

The elements of each set are equivalent since they share a common prefix.

We have highlighted the prefix in each set that is common to all elements of the set for k

= 1 to 4.

For example, for a prefix length of k = 2 we see that the equivalent elements of Set1 are

ab, abc, abd, and abcd. It can also be seen that the join and meet are defined for these

177

elements that make up the sublattice corresponding to Set1. Set1 is therefore a lattice

since the join and the meet are defined. In addition Set1 is a subset of L.

For example, Join : ab ∨ abc = abc and Meet: ab ∧ abc = ab.

We can therefore use the equivalence function to partition the lattice into sublattices that

can be processed independently of each other.

 We can use the property of a lattice to partition our data set into sublattices, which we

can then process independently. We represent the set of itemsets as a lattice that we then

partition into sublattices using the equivalence operation shown above. These sublattices

are then assigned independently to processors for processing and identification of the

frequent itemsets.

3.4 Summary

 In this chapter we discussed the specific procedures employed, the use of lattice

theory, parallel data mining systems, and their applications to the mining of association

rules. This chapter also presented a detailed description of the DDRM algorithm and an

illustration of how it works. We also presented a comparison of the DDRM and prefix-

based algorithms.

178

Chapter 4

Results

 In this chapter, we will discuss parallel processing and two key parameters used to

measure the efficiency of parallel algorithms. We also present the results obtained from

the implementation of the Dynamic Distributed Rule Mining (DDRM) algorithm. It is a

lattice-based algorithm that partitions the lattice into sublattices to be assigned to

processors for processing and identification of frequent itemsets. It generates the frequent

itemsets by partitioning the itemsets into sublattices that are assigned to the processors

based on their availability.

4.1 Parallel Algorithms

 In parallel systems the scheduling of work is an attempt to distribute the work

equally among the processors. In static scheduling the load is balanced before run time

and requires an estimation of the run time for each task. Knowledge of the characteristics

of the problem is generally used to inform the estimation process. A good dynamic

scheduling algorithm can schedule the load at run time and seeks to balance and overlap

computation and communication. The goal of this algorithm is to reduce communication

while at the same time increasing the extent of concurrency.

Ideally, there should be no limit to the number of processors and increasing the

number of processors should produce a corresponding increase in the power of the

system. Placing an unbounded number of processors close to global memory will retard

179

the processing speed. The performance will also be negatively affected the farther the

processors are from memory (DeWitt, & Gray, 1992). These limitations that are

associated with the use of global memory are eliminated by DDRM since it uses a

shared-nothing architecture. In parallel processing we add more processors to a system in

order to execute a job faster or to execute a larger job in approximately the same amount

of time.

Speedup is defined as holding the job size constant while reducing the execution time.

We refer to holding the execution time constant while increasing the size of the job as

scaleup. In general the type of problem and the characteristics of the physical platform on

which the job is executing determine the shape of the curve associated with speedup and

scaleup.

Systems that are bus-based such as symmetric multiprocessors (SMP) are not scalable

to larger configurations. The bandwidth bottleneck associated with memory and bus

prevents the number of central processing units (CPUs) from increasing beyond a fairly

small number. The design of DDRM is different from the SMP since DDRM uses a

shared-nothing architecture. Therefore, DDRM does not suffer from the bandwidth

bottleneck associated with the memory and the bus in the SMP architecture. Linear

speedup can be accomplished on shared-nothing architectures. Shared-nothing

architecture facilitates the addition of CPUs in order to reduce the time taken for a set of

operations. This architecture also supports linear scaleup. The rapid improvement in

performance of single CPU systems makes it possible to build more powerful systems

using single CPU systems.

180

4.2 Performance Parameters and Benchmark

Benchmarking has played an important role in the development and research of data

mining. The design of the benchmarking is to facilitate an analytical comparison of

DDRM with other methods of parallel mining of association rules. The benchmarking for

DDRM consists of the following:

1. A set of algorithms for the parallel mining of association rules. These

algorithms are DDRM, Partition and the Prefix-based.

2. A set of performance curves. These curves will be generated from the

algorithms included in the tests. We will measure the execution time, scaleup,

and speedup.

3. The datasets consist of the census data and data obtained from Knowledge

Discovery and Data Mining (KDD) Cup Competition in Association for

Computing Machinery (ACM) Special Interest Group on Knowledge

Discovery and data Mining (SIGKDD) conference.

An important area of parallel systems performance measure is scalability. The

hardware and software must be able to grow in response to the changing demands on the

system. This change in demand can occur in areas such as number of transactions,

number of users, complexity of applications and the need for improved execution time.

The goal in designing a parallel system is to facilitate its development along any of these

dimensions in a flexible and productive manner.

Ideally there should be no inherent upper limit that would prevent the satisfaction of

future requirements. In constructing a good parallel benchmark that takes scalability into

account there are a number of metrics to be investigated. It should be executed over a

181

range of problem size and machine size. We add more processors to a system to execute a

given job faster or a larger job in the same amount of time.

The shape of the speedup curve depends on the problem size since larger problems

will be better able to utilize larger number of CPUs more efficiently than will small

problems. In scaleup the gap between the achieved output versus the ideal decreases as a

percentage of total runtime. The values obtained for speedup and scaleup will depend on

the type of problem as well as the physical platform on which the job is executing. In a

distributed memory architecture messages are used to move data around over the

interconnection network.

Benchmarking can be used for comparing systems. It can assist in determining which

of a set of competing products can do the job faster for a given problem size. The

construction of a good parallel benchmarking must include a number of techniques for

scalability including speedup and scaleup. The speedup curve obtained is subject to

Amdahl’s law. This law states that if the problem size is held constant, eventually the

sequential component of the problem dominates and a point is reached at which adding

more nodes no longer improves performance.

In scaleup we increase both the problem size and the machine size together, a larger

problem executing on a larger machine. In this case tripling both the problem and the

machine size should result in no change in executing time. In the complexity measure the

machine size is held constant while measuring the performance on a set of problems of

varying sizes.

182

4.3 Dynamic Distributed Rule Mining (DDRM) Algorithm

 The DDRM algorithm was developed and implemented using C/C++ as the

programming language. We implemented the DDRM algorithm on an Ethernet LAN

consisting of 7 workstations and one server. Each workstation on the network is an AMD

Athlon XP 2800+ with 512 Mbytes of memory. The processors are interconnected via a

10/100 Mbps switch. The switch used 100BASE-T (Fast Ethernet) technology, which

provided greater bandwidth and improved the client/server response time. For

communications we used the message passing interface (MPI). We used the windows

message passing interface (WMPI) for 8 workstations from Critical Software Ltd to

implement our algorithm. The support count used was 8% with a confidence of 50%. The

experiment was conducted by partitioning the database among the processors.

Datasets

 We used the 1987 census data from the Statistical Institute of Jamaica to generate the

data used in this experiment. The size of the database was 26 Mbytes with 1.1 million

records. We selected parish, race, religion, type of school/university attended, and

examination passed as categories to be investigated. Each of these categories was further

subdivided into specific items, with each item being assigned an integer value used to

represent it in the data file. Each record has 63 attributes. Jamaica is divided into

fourteen parishes and each parish is assigned an integer code. The codes assigned to the

parishes of St. Catherine and St Ann are 14 and 6 respectively. The sample input file with

the codes assigned to these fields is shown in Appendix L

 We also used data from the KDD Cup 2000 dataset. This data set was based on e-

commerce data obtained from a small dot-com company called Gazelle.com. The size of

183

the data was approximately 4.5 Mbytes with 3072 transactions. It included customer

information such as gender, occupation, age, marital status, estimated income and home

market value.

4.4 Experimental Results

In the speedup experiment the data was partitioned equally among the processors for

each run. For example, for two processors the data was partitioned into two parts and

each part assigned to a processor. In Table 4.1.1 we show an integer at the end of each

file name to indicate the assignment of files to the processors. The file

c:\\data3_26\\Mypopdata3 would be assigned to processor 2 while the file

c:\\data3_26\\Mypopdata1 would be assigned to processor 0. An example of the output

file obtained is shown in Appendix M.

In the scaleup experiment, the data was partitioned into eight parts and a processor

added for each part processed. In this approach, we keep adding a processor to do the

additional work required for each partition added.

 In the experiment on the number of transactions processed, the number of processors

was fixed at 7 while growing the size of the database. The database size was varied from

9.8 MB to 26.3 MB as shown in Table 4.1.2.

184

Table 4.1.1 Description of Data Files

FILE NAME DESCRIPTION

c:\\data2_26\\Mypopdata2 Data partitioned into two files

c:\\data3_26\\Mypopdata3 Data partitioned into three files

c:\\data4_26\\Mypopdata4 Data partitioned into four files

c:\\data5_26\\Mypopdata5 Data partitioned into five files

c:\\data6_26\\Mypopdata6 Data partitioned into six files

c:\\data7_26\\Mypopdata7 Data partitioned into seven files

185

Table 4.1.2 Size of Transactions Data Files

FILE NAME SIZE (MB)

Db_1 9.8

Db_2
13.1

Db_3
16.4

Db_4
19.7

Db_5
23.0

Db_6
26.3

186

Response Time

In Figure 4.2.1 we show a plot of the response time on the vertical axis and the

number of processors on the horizontal axis for the DDRM algorithm. The results

obtained for this experiment is shown in Table 4.1.3. The database was partitioned based

on the number of processors. The search space was partitioned into 32 classes, which

were assigned dynamically to the processors participating in the cluster. It can be seen

that as we increase the number of processors the response time decreases as well. The

results obtained for the Prefix-based and Partition algorithms are shown in Figure 4.2.2

and Figure 4.2.3 respectively. In Figure 4.2.4 we plot the response times for all three

algorithms. It can be seen that the performance of DDRM is better than both Partition and

the Prefix-based. Figure 4.2.4 shows that for the same number of processors DDRM is

able to process the classes in a shorter time than both the Prefix-based and Partition

algorithms. This improvement in the response time is due to the fact that the dynamic

assignment of the classes to idle processors results in a more efficient use of the

processors than the static assignment of classes to processors used by the other two

algorithms. This improvement in the efficiency of the usage of the processors is also

demonstrated in Figure 4.2.7 where the Prefix-based and Partition algorithms take a

longer time than DDRM to process each of the databases shown.

Speedup

 Table 4.1.4 shows the results obtained for the speedup experiment. The speedup

experiment was conducted to determine how DDRM performs as the number of

processors is increased with the number of transactions remaining constant. The speedup

187

obtained on a fixed size database and varying number of processors and partitions is

shown in Figure 4.2.5. The speedup obtained for DDRM is better than that obtained for

the Prefix-based and Partition algorithms.

Scaleup

 In the scaleup experiment, the number of partitions to be processed was incremented

with a corresponding increase in the number of CPUs. Table 4.1.5 and Figure 4.2.6 show

the results obtained for the scaleup experiment. Ideally, the time to generate the rules

should remain constant, since an additional CPU is assigned to each additional partition

to be processed. However, the time to process each class will vary due to the fact that not

all classes will necessarily generate rules. In general, classes with rules require more time

to process than classes without rules. In addition, classes with a high concentration of

frequent itemsets will take longer to process than classes with a low concentration of

frequent itemsets. For example, a class may be discarded after the first set of intersection

of attributes if the resulting itemset is not frequent. However, if it is frequent then

processing will continue until the resulting itemset is not frequent or all rules have been

identified and generated.

Number Of Transactions

 In this experiment, the number of processors was fixed at 7 CPUs while growing the

size of the database. The database size was varied from 4.8 MB to 26.3 MB. Table 4.1.6

and Figure 4.2.7 show the results obtained for the number of transactions processed. It

can be seen from Figure 4.2.7 that as the size of the database increases, there is an

increase in the time to process the classes for all three algorithms. However, DDRM takes

less time to process these transactions as it uses the CPUs more efficiently.

188

Support

We conducted experiments on three sets of data where we vary the support from 4% to

10% for all three algorithms. The tables for the results obtained for the three sets of data

are shown in Table 4.1.7, Table 4.1.8, and Table 4.1.9. The results of these experiments

are shown in Figure 4.2.9, Figure 4.2.10 and Figure 4.2.11. It can be seen from these

figures that as we decrease the minimum support from 10% to 4%, there is a

corresponding increase in the execution time of all three algorithms. This is in keeping

with our expectations, since a decrease in minimum support will lead to an increase in the

number of frequent itemsets that would satisfy this requirement. In addition an increase in

the number of frequent itemsets will lead to an increase in the processing time required to

identify the relevant rules. It can also be observed that DDRM is able to process these

itemsets in a shorter time than Partition and Prefix-based algorithms.

Transaction Width

Table 4.1.10 and Figure 4.2.12 show the results of our experiment to determine the

impact of varying the transaction width, on the processing time. The number of attributes

was varied from 10 to 50 for the five databases that were used in this experiment. It can

be seen from Figure 4.2.12 that as the transaction size is increased that there is a

corresponding increase in the processing time. DDRM is able to process these

transactions in a shorter time than the Partition and Prefix-based algorithms.

189

CPUs 2 3 4 5 6 7

 Seconds Seconds Seconds Seconds Seconds Seconds

Partition 4910 3321 3064 3925 3780 2782

Prefix 4814 3018 3502 3128 3182 2910

DDRM 3871 2478 2435 2506 2415 2179

Table 4.1.3 Execution Time

190

Figure 4.2.1 Execution Time For DDRM

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 3 4 5 6 7

Number Of CPUs

T
im

e
 (

S
e

c
)

DDRM

191

0

1000

2000

3000

4000

5000

6000

2 3 4 5 6 7

Number Of CPUs

T
im

e
 (

S
e

c
)

Prefix

Figure 4.2.2 Execution Time for Prefix

192

0

1000

2000

3000

4000

5000

6000

2 3 4 5 6 7

Number Of CPUs

T
im

e
 (

S
e
c
)

Partition

Figure 4.2.3 Execution Time for Partition

193

Figure 4.2.4 Execution Time for DDRM, Partition, and Prefix

0

1000

2000

3000

4000

5000

6000

2 3 4 5 6 7

Number Of CPUs

T
im

e
 (

S
e
c
)

Partition

Prefix

DDRM

194

CPUs 2 3 4 5 6

Partition 1.5 1.6 1.3 1.3 1.8

Prefix 1.6 1.4 1.6 1.5 1.7

DDRM 2.0 2.0 2.0 2.0 2.3

Table 4.1.4 Speedup

195

0

0.5

1

1.5

2

2.5

3 4 5 6 7

Number Of CPUs

S
p

e
e

d
u

p Partition

Prefix

DDRM

Figure 4.2.5 Speedup for DDRM, Partition, and Prefix-based

196

CPUs 7 6 5 4 3 2

 Seconds Seconds Seconds Seconds Seconds Seconds

Partition 5542 5236 4571 4182 4028 5114

Prefix 4736 3903 3544 2921 2867 4315

DDRM 3077 2896 2100 1454 1906 2966

Table 4.1.5 Scaleup

197

0

1000

2000

3000

4000

5000

6000

7 6 5 4 3 2

Number Of CPUs

T
im

e
 (

S
e
c
)

Partition

Prefix

DDRM

Figure 4.2.6 Scaleup for DDRM, Partition, and Prefix-based

198

Database DDRM Prefix Partition

 Seconds Seconds Seconds
DB_1 2525 2697 3092

DB_2 2472 3747 2882

DB_3 3020 3566 4269

DB_4 4242 4683 4645

DB_5 5097 5621 5076

DB_6 5249 5709 5722

Table 4.1.6 Databases

199

Figure 4.2.7 Number of Transactions

0

1000

2000

3000

4000

5000

6000

7000

DB_1 DB_2 DB_3 DB_4 DB_5 DB_6

Databases

T
im

e
 (

S
e

c
)

DDRM

Prefix

Partition

200

Figure 4.2.8 Number of Transactions

0

1000

2000

3000

4000

5000

6000

7000

DB_1 DB_2 DB_3 DB_4 DB_5 DB_6

Databases

T
im

e
 (

S
e
c
)

DDRM

Prefix

Partition

201

Table 4.1.7 Supports (Census)

Support 10% 8% 6% 4%

 Seconds Seconds Seconds Seconds

Partition 2033 3136 5108 6488

Prefix 1468 2551 4337 6361

DDRM 742 2372 3142 5600

202

Support 10% 8% 6% 4%

 Seconds Seconds Seconds Seconds

Partition 735 2082 3671 5223

Prefix 731 2116 3470 5385

DDRM 565 2100 2813 5173

Table 4.1.8 Supports (KDD)

203

Support 10% 8% 6% 4%

 Seconds Seconds Seconds Seconds

Partition 4400 7275 8817 13218

Prefix 4303 6800 8995 13536

DDRM 2065 3577 4643 6828

Table 4.1.9 Supports (KDDWIDE)

204

0

1000

2000

3000

4000

5000

6000

7000

10% 8% 6% 4%

Support (%)

T
im

e
 (

S
e

c
)

Partition

Prefix

DDRM

Figure 4.2.9 Support for Census

205

0

1000

2000

3000

4000

5000

6000

10% 8% 6% 4%

Support (%)

T
im

e
 (

S
e

c
)

Partition

Prefix

DDRM

Figure 4.2.10 Support for KDD

206

0

2000

4000

6000

8000

10000

12000

14000

16000

10% 8% 6% 4%

Support (%)

T
im

e
 (

S
e

c
)

Partition

Prefix

DDRM

Figure 4.2.11 Support for KDDWIDE

207

Transactions KDD10 KDD20 KDD30 KDD40 KDD50

 Seconds Seconds Seconds Seconds Seconds

Partition 33 1006 2916 7112 7109

Prefix 59 744 2944 7133 7133

DDRM 14 509 1685 3512 3477

Table 4.1.10 Transaction Width

208

0

1000

2000

3000

4000

5000

6000

7000

8000

KD
D
10

KD
D
20

KD
D
30

KD
D
40

KD
D
50

Databases

T
im

e
 (

S
e
c
)

DDRM

Prefix

Partition

Figure 4.2.12 Transaction Width

209

Wait Time

 We plot the wait time for all three algorithms in Figure 4.2.13 and Figure 4.2.14 for

KDD20 and KDD50 respectively. The wait time associated with DDRM is shown to be

less than the wait times for both the Prefix and Partition algorithms for the two datasets.

Table 4.1.11 and Table 4.1.12 show the data obtained from the wait time experiments.

Communication Time

 The communication time associated with the three algorithms is shown in Figure

4.2.15. The corresponding data for the result is shown in Table 4.1.13. The

communication time was measured for the KDD10, KDD20, KDD30, KDD40 and

KDD50 datasets. DDRM communication cost is less than that associated with Partition

and Prefix algorithms.

Turnaround Time

 In Figure 4.2.16 we plot the turnaround time for the three algorithms. It can be seen

that the turnaround times for Prefix and Partition algorithms are greater than that for the

DDRM algorithm. The turnaround time data is shown in Table 4.1.14.

CPU Cycles

 Due to the dynamic assignment of classes the DDRM is better able to utilize the idle

processors than the Prefix and partition algorithms. This can be seen form Figure 4.1.18

as the CPU cycles utilized by DDRM are greater than the cycles for Partition and Prefix

algorithms. The corresponding data for the CPU cycles is shown in Table 4.1.16.

CPU Utilization

 The utilization of the CPU for the three algorithms is shown in Figure 4.2.17. The data

obtained from the experiment and used to plot the graph is shown in Table 4.1.15. This

210

experiment was conducted using six processors. An analysis of the graph shown in Figure

4.2.17 will show that the CPU utilization for DDRM is better than that shown for the

Prefix and Partition algorithms.

CPU Usage

 We used Task Manager to capture the CPU usage of each station for DDRM, Partition

and the Prefix-based algorithms. We label the stations used as Station 1, Station 2 and

Station 4. For the Prefix and Partition algorithms we captured two screens for each

algorithm during execution. The screens were captured on each station in the cluster. In

order to distinguish each screen we label each figure with the extension S1 for screen 1

and S2 for screen 2. The screens for the Prefix algorithm are shown in Figure 4.2.19,

Figure 4.2.20, Figure 4.2.24, Figure 4.2.25 and Figure 4.2.29. In this experiment Station 2

was the first to finish the classes assigned to it and became idle after 13 of the 32 classes

were processed. This situation is captured in the screen shown in Figure 4.2.24. Station 1

later completed all the tasks assigned to it and the screen capture is shown in Figure

4.2.20. At this time a total of 24 of the 32 classes have been processed with the remaining

classes currently being processed by Station 4, where they were assigned at the start of

the processing. At this time there are two idle processors available, however, Station 4

cannot share the classes currently assigned to it with any of these processors.

 The screens for the Partition algorithm are shown in Figure 4.2.21, Figure 4.2.22,

Figure 4.2.26, Figure 4.2.27, and Figure 4.2.30. Figure 4.2.26 shows that Station 2 was

the first station to complete the classes assigned to it. This was followed by Station 1 as

shown in Figure 4.2.22. At this point Station 4 is occupied with the classes assigned to it

and is not able to share these with any of the idle stations.

211

Figure 4.2.23, Figure 4.2.28 and Figure 4.2.31 show the efficient utilization of the CPUs

by DDRM. It can be seen from these three screen shots that Station 1, Station 2, and

Station 3 are all kept busy for the duration of the computations and is able to avoid

having idle processors that cannot be assigned available tasks, as is the case with the

Prefix and Partition algorithms.

212

Figure 4.2.13 Wait Time for KDD20

0

2

4

6

8

10

12

1 2 3 4 5 6

Station Number

W
a
it

 T
im

e
 (

S
e
c
)

Prefix

Partition

DDRM

213

Figure 4.2.14 Wait Time for KDD50

0

1000

2000

3000

4000

5000

1 2 3 4 5 6

Station Number

W
a

it
 T

im
e

 (
S

e
c

)

Prefix

Partition

DDRM

214

Figure 4.2.15 Communication Time

0

20

40

60

80

100

120

140

160

180

200

KDD10 KDD20 KDD30 KDD40 KDD50

Databases

C
o

m
m

u
n

ic
a

ti
o

n
 T

im
e

 (
S

e
c

)

Partition

Prefix

DDRM

215

Figure 4.2.16 Turnaround Time

0

2000

4000

6000

8000

10000

12000

14000

16000

KDD10 KDD20 KDD30 KDD40 KDD50

Databases

T
u

rn
a

ro
u

n
d

 T
im

e
 (

S
e

c
)

Partition

Prefix

DDRM

216

Figure 4.2.17 CPU Utilization

0

5

10

15

20

25

30

35

1 2 3 4 5 6

Number of Idle CPUs

N
u

m
b

e
r

O
f

C
la

s
s

e
s

R
e

tu
rn

e
d

DDRM

Partition

Prefix

217

Figure 4.2.18 CPU Cycles

0

5

10

15

20

25

30

KD
D
10

KD
D
20

KD
D
30

KD
D
40

KD
D
50

Databases

N
u

m
b

e
r

O
f

C
y

c
le

s

DDRM

Partition

Prefix

218

Table 4.1.11 Wait Time KDD20

Station Prefix Partition DDRM

 Seconds Seconds Seconds
1 10.98 11.11 0

2 8.37 8.45 0

3 3.23 3.25 0

4 3.29 3.31 0

5 3.23 3.28 0

6 11.39 11.42 0

219

 Table 4.1.12 Wait Time KDD50

Station Prefix Partition DDRM

 Seconds Seconds Seconds
1 4048 4094 0

2 1619 1623 0

3 50. 50 0

4 597 631 0

5 48 50 0

6 4549 4569 0

220

Table 4.1.13 Communication Time

Databases Partition Prefix DDRM
 Seconds Seconds Seconds

KDD10 5.3 5.9 3.5

KDD20 17.7 9.8 7.4

KDD30 1.6 2.8 7.1

KDD40 102.1 93.8 6.0

KDD50 100.3 182.3 11.1

221

Table 4.1.14 Turnaround Time

Databases Partition Prefix DDRM
 Seconds Seconds Seconds

KDD10 251 251 1

KDD20 65 64 1

KDD30 338 338 4

KDD40 13771 13789 105

KDD50 13903 13954 106

222

 DDRM Partition Prefix

Number of Idle
CPUS

Number of
Classes
Returned

Number of
Classes
Returned

Number of
Classes
Returned

1 27 18 19

2 28 19 21

3 29 20 22

4 30 22 23

5 31 28 29

6 32 32 32

7 0 0 0

Table 4.1.15 CPU Utilization (KDD10)

223

Table 4.1.16 CPU Cycles

Databases DDRM Prefix Partition

KDD10 26 0 0

KDD20 26 0 0

KDD30 26 0 0

KDD40 26 0 0

KDD50 26 0 0

224

Figure 4.2.19 CPU Utilization by Prefix _S1 (Station 1)

225

Figure 4.2.20 CPU Utilization by Prefix_S2 (Station 1)

226

Figure 4.2.21 CPU Utilization by Partition_S1 (Station 1)

227

Figure 4.2.22 CPU Utilization by Partition_S2 (Station 1)

228

Figure 4.2.23 CPU Utilization by DDRM (Station 1)

229

Figure 4.2.24 CPU Utilization by Prefix_S1 (Station 2)

230

Figure 4.2.25 CPU Utilization by Prefix_S2 (Station 2)

231

Figure 4.2.26 CPU Utilization by Partition_S1 (Station 2)

232

Figure 4.2.27 CPU Utilization by Partition_S2 (Station 2)

233

Figure 4.2.28 CPU Utilization by DDRM (Station 2)

234

Figure 4.2.29 CPU Utilization by Prefix (Station 4)

235

Figure 4.2.30 CPU Utilization by Partition (Station 4)

236

Figure 4.2.31 CPU Utilization by DDRM (Station 4)

237

4.5 Comparison of DDRM and Prefix-Based Algorithms

 The DDRM algorithm executes faster than the prefix-based algorithm. This is due to

the fact that DDRM is able to optimise the use of the available CPUs. The ability to keep

all CPUs busy as long as there is work to be done is an improvement of DDRM over the

Prefix-based algorithm. The throughput associated with DDRM is high since it is able to

keep track of all idle processors in the cluster so that the available classes to be processed

can be assigned to these idle processors.

 The use of memory by DDRM is based on the principle of sharing the available work

among the processors using the finest granularity possible. The finest granularity is based

on the class. By storing and assigning one class at a time the memory utilization of all the

available memory on the processors is an improvement over the Prefix-based approach.

 In DDRM available tasks are assigned to processors as soon as they are available.

Once a processor has completed its assigned task a new task is taken from the task heap

and assigned to this processor. This approach guarantees that no processor will be idle

while there are additional classes available for processing. In this approach classes are

only assigned one at a time and a class is only assigned to an idle processor.

 A major challenge in parallel processing is to balance the distribution of work across

processors. It is challenging for a static scheduling algorithm to produce good load

balancing, especially in an environment where there is no prior knowledge of the

execution characteristics of the data. The best approach to load balancing is to use a

dynamic scheduling algorithm. This is an efficient approach when the time needed to

send and receive each class is low relative to the processing time. DDRM is able to

balance the load using a dynamic scheduling algorithm that assigns the next task to the

238

first available processor. In this approach there will never be an idle processor while there

is additional work that is not being processed.

 The wait time associated with the Prefix is large when compared to the wait time for

DDRM. This is due to the efficient utilization of the processors by DDRM. Classes are

assigned dynamically to stations as they become idle.

 In the DDRM algorithm the turnaround time is small when compared to the Prefix and

Partition algorithms. Since classes assigned to processors in these algorithms must wait to

be processed by the station assigned to it there is an increase in the turnaround time due

to the long wait at each station.

 CPU utilization by DDRM is better than that obtained for the Prefix and Partition

algorithms. Since idle CPUs cannot be utilized by the Prefix and Partition algorithms,

they are likely to suffer from processors not being fully utilized.

 DDRM algorithm is able to use CPU cycles as they become available in the cluster.

The Prefix and Partition algorithms cannot use these CPU cycles associated with the

available idle processors.

Load and Task Balancing

 DDRM balances the load across the stations in the cluster better than the Prefix and

Partition algorithms. The DDRM algorithm is able to assign classes to processors as soon

as they become idle. In this approach the classes are equally distributed across all the

stations in the cluster. The Prefix and Partition algorithms suffer from poor load

balancing, since they are incapable of reassigning classes from busy stations to stations

that are idle.

239

 All stations performed the same tasks on independent data sets, therefore no task

balancing was conducted in this research.

4.6 Summary

In this chapter we presented and discussed the results of our experiments. We

implemented the DDRM algorithm that used a lattice theoretic approach to partition the

frequent itemset search space into independent search spaces. We found that the DDRM

algorithm showed good speedup and the response time was significantly improved with

the addition of each processor while keeping the work to be done fixed. The algorithm

also shows improvement in the response time, wait time, turnaround time, CPU

utilization and cycle time, when compared to the Prefix-based and Partition, which are

static scheduling algorithms.

240

Chapter 5

Conclusions, Implications, Recommendations, and Summary

5.1 Conclusions

 The primary goal of this research and dissertation was to develop and implement a

parallel algorithm for the mining of association rules. The Dynamic Distributed Rule

Mining (DDRM) algorithm used a lattice to represent the search space for the generation

of the frequent itemsets. The algorithm was implemented using C/C++ as the

programming language. The DDRM algorithm was implemented on an Ethernet LAN

consisting of 7 workstations and one server. For communications the message passing

interface (MPI) was used. The windows message passing interface (WMPI) for 8

workstations from Critical Software Ltd was used as the MPI interface.

The improvements made by the algorithm are as follows:

1. Improved load balancing: The classes generated by the DDRM algorithm are

assigned dynamically to the processors as they become available. This approach

was found to be more efficient than the static approach.

2. No synchronization: DDRM used a lattice theoretic approach, which partitioned

the itemsets into sublattices that were assigned to each processor to be

processedindependently. Processors only communicate with the controller to

collect classes for processing and to return any frequent itemsets found in the

assigned classes.

241

3. Reduction in communications among processors: There was a significant

reduction in the communication cost associated with the processing of each class.

This is due to the fact that the only communications cost incurred for each class is

the assignment of the class and the subsequent return of the results for the class.

4. Better CPU utilization: There was a significant improvement in the CPU

utilization by DDRM when compared to the Prefix and Partition algorithms.

5. Improved wait time and turnaround time: The wait time and turnaround time

obtained for the DDRM algorithm showed improvement over the Partition and

Prefix algorithms.

5.2 Implications

Business organizations have recognized the importance of information-driven

marketing processes and the competitive advantages that they offer. These processes

allow marketers to develop and implement customized marketing programs and

strategies. These organizations are turning to data mining technology to facilitate the

process of extracting valuable information from large databases. The extraction of

previously unknown information from large databases can be used to generate new

marketing strategies. Because of the very large size of the databases used to store the

transactions used in the mining of association rules, parallel algorithms are required to

process these transactions. The DDRM algorithm used a lattice to represent the search

space for the generation of frequent itemsets. The DDRM algorithm is important for the

following reasons:

1. It provides improved communications among the processors

2. It reduces the execution time for the classes

242

3. It reduces the cost associated with mining association rules

4. It is scalable.

 5. It provides increased processor efficiency

6. It utilizes memory well

7. Better CPU utilization

8. Improved turnaround time and wait time.

5.3 Recommendations

 In this dissertation, we presented the theory, description, inference and implementation

of the Dynamic Distributed Rule Mining (DDRM) algorithm that is based on a lattice

theoretic approach.

 The approach used in this research can be used in organizations with multiple sites

where the databases are stored. This is an attractive approach to these organizations since

it eliminates the need to have all these databases in one location. The cost savings

associated with this approach will make it attractive to these organizations. In addition

processors at different sites can participate in the computations.

The DDRM algorithm does not require any special architecture for its implementation.

It is designed to operate on an existing LAN as a cluster where the PCs can be added to

the cluster and used to participate in the computations of the classes. The database of

transactions can also be distributed over the network. This flexibility of the algorithm will

result in significant savings to the organization as it uses the resources that are already

available within the organization. This reduction in cost is due to the fact that there is no

need for specialized architecture and makes the algorithm attractive to an organization

that currently operates a network with databases distributed over it.

243

 DDRM uses a dynamic load balancing approach to assign classes to the processors.

Since classes are assigned to processors only after they become available, the algorithm

avoids and completely eliminates the possibility of assigning more than one class to a

processor while there are idle processors. This approach contributes to the improvement

of DDRM as compared to the Prefix-based approach in the generation of the rules. In all

cases DDRM is able to improve on the computation time associated with the Prefix-based

and Partition algorithms.

 The high processor utilization of DDRM impacts positively on throughput and

response time. DDRM improved on the throughput and response time due to the dynamic

assignment of classes to the processors. The processor efficiency of DDRM is an

improvement over the Prefix-based and Partition algorithms due to the reduction in the

number of idle processors.

 In the lattice theoretic approach the rules will be generated faster since the processors

can do the computations independently of each other. In the DDRM all idle processors

will be fully utilized during the computation of rules resulting in a faster time to generate

the rules. In a static approach if it is discovered early that there are no frequent itemsets in

the classes assigned to a processor these classes will not be processed any further. The

processor will now be idle, but there is no mechanism in place to move some of the

classes from the busy processors to the idle processor. The ability of DDRM to

dynamically assign classes to idle processors makes it more efficient than the static

algorithms.

Areas or topics for further research include:

1. Mechanism for interfacing with a database management system

244

2. Automation of the assignment of codes to attributes used

3. Impact of the interconnection network topology

5.4 Summary

 In this paper, we highlighted the need for parallel solutions to data mining problems.

Parallel algorithms are required for the mining of association rules to improve on the

execution time. We also presented our goal to develop and implement a parallel

algorithm for the mining of association rules using a lattice theoretic approach and

utilizing dynamic scheduling for the assignment of tasks. In Chapter 2 we reviewed data

mining, with emphasis on mining of association rules. We also presented several

approaches to the mining of association rules based on parallel architectures. We also

presented a discussion on lattice theory. In Chapter 3 we presented a detailed

investigation of the principles of data mining, parallel data mining, and lattice theory. We

also presented some examples to demonstrate these principles.

 In addition we also proposed the Dynamic Distributed Rule Mining (DDRM)

algorithm, which is a parallel algorithm for data mining that is based on lattice theory and

uses dynamic scheduling to assign tasks to the processors. A detailed description of

DDRM and how it works was also presented.

 In Chapter 4, we presented and discussed the results of our experiments. We found

that the DDRM algorithm showed good speedup and the execution time was significantly

improved with the addition of each processor while keeping the work to be done fixed.

The algorithm also showed improvement in the execution time when compared to the

Prefix-based, static scheduling algorithm. In Chapter 5, we presented our conclusions and

further research directions.

245

Appendixes

 The following appendixes contain listings of the source code for the functions used in

the DDRM and Prefix based algorithms.

246

Appendix A

Data Structures Used in Implementation

//Definition of Structures

typedef std::set< int > item_set;

typedef std::vector<item_set>setItemsetVect;

typedef std::vector<setItemsetVect>classVect;//stores the cset of classes for all h-casses

#include <algorithm>

struct itint

{

 bool operator()(const int n1, const int n2)const

 {return(n1 < n2);}

};

typedef std::vector< int > trans_attribs; //stores list of attributse satisfying min support;

std::ostream_iterator< int > output(cout, " ");

//Defines structure to store interestingness measure as percentage of transactions

typedef struct

{

 int support;

 int confidence;

} intrstMeas;

typedef struct

{

 setItemsetVect vectF1; // tid lists

 trans_attribs F1_items; // frequent itemsets

} info_for_F1;

//This vector stores the information on the set of frequent items used to generate rules

typedef struct

{

 setItemsetVect vectItemSets; //frequent itemsets

 setItemsetVect vectTIDs; //tid lists for each frequent itemset

} freq_items;

247

h

setItemsetVect setOfNCas(item_set theSet, int k_count)

{

 std::ostream_iterator< int > output(cout, " ");

 item_set subKCas;

 setItemsetVect setOfKItemSets;

 item_set::iterator i, j, start, k;

 int sizeOfSet;

 int count = 0;

 int numSubMemb = k_count;

 int subItemSize ;

 sizeOfSet = theSet.size();

 for(i = theSet.begin(); i != theSet.end(); i++)

 {

 item_set stemSet;

 for(j = i, count = 1; count < k_count; count++,j++)

 stemSet.insert(*j);

 for(start = i, count = 1; count < k_count; start++)

 count++;

 for(k = start; k != theSet.end(); k++)

 {

 item_set iSet = CreateStem(stemSet);

 iSet.insert(*k);

 setOfKItemSets.push_back(iSet);

 }

 }

 return setOfKItemSets;

}

Appendix B

Function to Create Set of N-Itemsets

248

// Function to compute the set of prefix classes for the given thetaval

classVect ddrmPartition(item_set freqAttrib, int numPartitions)

 {

 classVect allHVectors; //Stores a vector of vectors with all ha cass

 setItemsetVect setOfNcas; //stores the set of itemsets that can be formed from

 //prefix K-itemset

 item_set::iterator start, k;

 item_set theSet;

 int hValue;

 int count = 0,

 k_count;

 int pause;

 allHVectors.clear();

 k_count = Get_KPower_Of2(numPartitions);

 if(k_count > freqAttrib.size())

 {

 printf("\nThe size of the frequent attributes = %d\n",freqAttrib.size());

 printf("\Hit any key to continue\n");

 scanf("%d", &pause);

 return allHVectors;

 }

 for(hValue = k_count-1; hValue >= 0; hValue--)

 {

 setOfNcas = setOfNCas(freqAttrib, hValue, k_count);

 allHVectors.push_back(setOfNcas);

 }

 return allHVectors;

 }

Appendix C

DDRM Partition Function

249

//Function to generate all classes and save these in a class vector

classVect Generate_All_Classes(classVect allHVectors, classVect allClassVecs,

item_set freqAttrib, int kcount)

 {

 int hVectSize;

 int index = 0,nextS;

 item_set tempSet;

 classVect twoClasses;

 setItemsetVect vecSet;

 setItemsetVect tempVec1,tempVec2;

 hVectSize = (int)allHVectors.size();

 for(index = 0; index < hVectSize; index++)

 {

 vecSet = allHVectors[index];

 nextS = (int)vecSet.size();

 if((int)vecSet.size() > 0)

 for(nextS = 0; nextS < (int)vecSet.size(); nextS++)

 {

 tempSet = vecSet[nextS];

 twoClasses = Gen_Two_Classes(tempSet, freqAttrib , kcount);

 tempVec1 = twoClasses[0];

 tempVec2 = twoClasses[1];

 allClassVecs.push_back(tempVec1);

 allClassVecs.push_back(tempVec2);

 tempSet.clear();

 }

 else

 {

 twoClasses = Gen_Two_Classes(tempSet, freqAttrib , kcount);

 tempVec1 = twoClasses[0];

 tempVec2 = twoClasses[1];

 allClassVecs.push_back(tempVec1);

 allClassVecs.push_back(tempVec2);

 tempSet.clear();

 }

 }

 return allClassVecs;

 }

Appendix D

Generate All Classes Function

250

//Function to generate atoms for each class

//This function generates the two atoms from pre(k-1) which are the singleton

(shorter)

//and union (longer 1). These are stored in the vector tempVec1 which is returned to

calling

//program

classVect Gen_Two_Classes(item_set set, item_set attribs, int kVal)

 {

 item_set iSet,tempSet,stem1,stem2;

 item_set::iterator iter,iter2;

 setItemsetVect tempVec1,tempVec2;

 classVect resultVec;

 int index;

 if(set.size() > 0)

 {

 stem2 = CopySet(set);

 stem1 = CopySet(set);

 }

 for(iter = attribs.begin(), index = 0; index < kVal-1; iter++)

 index++;

 stem1.insert(*iter);

 iter++;

 for(iter2 = iter; iter2 != attribs.end(); iter2++)

 {

 item_set tempSet = CopySet(stem1);

 item_set iSet = CopySet(stem2);

 tempSet.insert(*iter2);

 iSet.insert(*iter2);

 tempVec2.push_back(iSet);

 tempVec1.push_back(tempSet);

 }

 resultVec.push_back(tempVec1);

 resultVec.push_back(tempVec2);

 return resultVec; // return the two atoms for the class

 }

Appendix E

Generate Two Classes Function

251

// Function to broadcast a setTidsetVect to all processes

//Variable length lists

void Bcast_TidsetVect2(setItemsetVect theTidVect, int procNum,int sArray[])

{

 int index = 0,

 index1 = 0,

 size = 0,

 count,

 nElem,

 arrSize;

 int totAtribs = 0,

 setSize,

 numTidSets;

 int pause;

 item_set::iterator i, enditer;

 sendSizeAtrb[2];

 item_set tempSet;

 numTidSets = (int)theTidVect.size(); //Number of itemsets in vector

 sendSizeAtrb[0] = 0;

 sendSizeAtrb[1] = 0;

 if(numTidSets == 0)

 {

 printf("\n** The tid vector is empty......\n");

 return;

 }

 sendSizeAtrb[1] = numTidSets; //Number of itemsets in the vector

 MPI_Bcast(sendSizeAtrb,

 2,

 MPI_INT,

 procNum,

 MPI_COMM_WORLD);

Appendix F

Broadcast TID Vector Function (1 of 2)

252

 for(index1 = 0; index1 < numTidSets; index1++)

 {

 tempSet = theTidVect[index1];

 totAtribs = 0;

 setSize = (int)tempSet.size();

 nElem = setSize;

 count = nElem/100000;

 arrSize = 100000;

 sendSizeAtrb[0] = setSize;

 sendSizeAtrb[1] = numTidSets; //Number of itemsets in the vector

 MPI_Bcast(sendSizeAtrb,

 2,

 MPI_INT,

 procNum,

 MPI_COMM_WORLD);

 arrSize = 100000;

 for(index = 0; index < count; index++)

 {

 Convert_Itemset_To_Arr2(tempSet, sArray, index);

 MPI_Bcast(sArray,

 arrSize,

 MPI_INT,

 procNum,

 MPI_COMM_WORLD);

 }

 count = nElem % 100000;

 if(count > 0)

 {

 Convert_Itemset_To_Arr2(tempSet, sArray, -1);

 MPI_Bcast(sArray,

 count,

 MPI_INT,

 procNum,

 MPI_COMM_WORLD);

 }

 }

}

Appendix F

Broadcast TID Vector Function (2 of 2)

253

// Function to Receive broadcast of a setTidsetVect by processe 0

//Variable length lists

setItemsetVect Rcv_Bcast_TidsetVect2(int procNum,int rArray[])

{

 #define TAG 100

 #define TRACE 0

 #define TRIANGARRASIZE 1953

 int index = 0,

 index1 = 0,

 count,

 nElem,

 size = 0;

 int j;

 int totTids = 0,

 arrSize = 0,

 setSize,

 numSets;

 int val;

 int pause;

 setItemsetVect theSetVect;

 item_set::iterator i, enditer;

 int recvSizeAtrb[2], //0 size (Value of -1 indicates end of list from proc , 1 atribute

number

 sendSizeAtrb[2];

 recvSizeAtrb[0] = 0;

 recvSizeAtrb[1] = 0;

 theSetVect.clear();

 MPI_Bcast(recvSizeAtrb,

 2,

 MPI_INT,

 procNum,

 MPI_COMM_WORLD);

 numSets = recvSizeAtrb[1];

 totTids = recvSizeAtrb[0];

Appendix G

Receive Broadcast of TID Vector Function (1 of 2)

254

 for(index1 = 0; index1 < numSets; index1++)

 {

 MPI_Bcast(recvSizeAtrb, 2, MPI_INT, procNum,

 MPI_COMM_WORLD);

 setSize = recvSizeAtrb[0];

 nElem = setSize;

 count = nElem/100000;

 arrSize = 100000;

 item_set tempSet;

 for(index = 0; index < count; index++)

 {

 MPI_Bcast(rArray,

 arrSize,

 MPI_INT,

 procNum,

 MPI_COMM_WORLD);

 for(j = 0; j < arrSize; j++)

 {

 val = rArray[j];

 tempSet.insert(val);

 }

 }

 count = nElem % 100000;

 if(count > 0)

 {

 arrSize = count;

 MPI_Bcast(rArray,

 arrSize,

 MPI_INT,

 procNum,

 MPI_COMM_WORLD);

 for(j = 0; j < arrSize; j++)

 {

 val = rArray[j];

 tempSet.insert(val);

 }

 }

 theSetVect.push_back(tempSet);

 }

 return theSetVect;

}

Appendix G

Receive Broadcast of TID Vector Function (2 of 2)

255

// Function to send a class to a process

void Send_class(setItemsetVect theClass, int procInfo[],int sArray[])

{

 int index = 0,

 size = 0;

 int procNum;

 int totAtoms = 0,

 atomSize;

 item_set::iterator i, enditer;

 int sendSizeAtrb[3]; //0 size (Value of -1 indicates end of list from proc ,

 // 1 atribute number, 2 class Number

 item_set tempSet;

 size = (int)theClass.size(); //Number of atoms in class

 procNum = procInfo[0];

 sendSizeAtrb[0] = 0;

 sendSizeAtrb[1] = 0;

 sendSizeAtrb[2] = 0;

/**

 *** check to see if this is to signal end of class *******

 *** transmission *******

 **

 */

 if(size == 0)

 {

 sendSizeAtrb[0] = -1; //Number of elements in each atom

 sendSizeAtrb[1] = -1; //Number of atoms in the class

 sendSizeAtrb[2] = -1; // the class number

 MPI_Send(sendSizeAtrb,

 3,

 MPI_INT,

 procNum,

 TAG,

 MPI_COMM_WORLD);

 return;

 }

Appendix H

Send Class Function (1 of 2)

256

 for(index = 0; index < size; index++)

 {

 tempSet = theClass[index];

 atomSize = (int)tempSet.size();

 for(i = tempSet.begin(); i != tempSet.end(); i++)

 {

 sArray[totAtoms] = *i;

 totAtoms++;

 }

 }

 sendSizeAtrb[0] = atomSize; //Number of elements in each atom

 sendSizeAtrb[1] = size; //Number of atoms in the class

 sendSizeAtrb[2] = procInfo[1]; // the class number

 MPI_Send(sendSizeAtrb,

 3,

 MPI_INT,

 procNum,

 TAG,

 MPI_COMM_WORLD);

 MPI_Send(sArray,

 totAtoms,

 MPI_INT,

 procNum,

 TAG,

 MPI_COMM_WORLD);

}

Appendix H

Send Class Function (2 of 2)

257

// Function to receive a class to a process

//setItemsetVect Recv_class(int procInfo[])

setItemsetVect Recv_class(int procInfo[],int rArray[])

{

 int atomSize; //Number of attributes in each atom

 int totalAtoms; //Total atoms in class

 MPI_Status status;

 #define TAG 100

 #define TRIANGARRASIZE 1953

 int index = 0,

 index2 = 0,

 atrib= 0,

 size = 0;

 int rnElem = 0;

 int procNum;

 setItemsetVect theClass;

 int recvSizeAtrb[3], //0 size (Value of -1 indicates end of list from proc,

 // 1 atribute number, 3 class Number

 sendSizeAtrb[2];

 recvSizeAtrb[0] = 0;

 recvSizeAtrb[1] = 0;

 theClass.clear();

 /* Receive a message from a process: */

 procNum = procInfo[0]; // proc num

 MPI_Recv(recvSizeAtrb,

 3,

 MPI_INT,

 procNum,

 TAG,

 MPI_COMM_WORLD,

 &status);

Appendix I

Receive Class Function (1 of 2)

258

/**

 *** check to see if this is to signal end of class *******

 *** transmission *******

 **

 */

 if(recvSizeAtrb[0] == -1)

 return theClass; // return the empty class

 atomSize = recvSizeAtrb[0];

 totalAtoms = recvSizeAtrb[1];

 procInfo[1] = recvSizeAtrb[2];

 rnElem = atomSize * totalAtoms;

 MPI_Recv(rArray,

 rnElem,

 MPI_INT,

 0,

 TAG,

 MPI_COMM_WORLD,

 &status);

 for(index = 0; index < totalAtoms; index++)

 {

 item_set iSet;

 for(index2 = 0; index2< atomSize; index2++)

 {

 iSet.insert(rArray[atrib]);

 atrib++;

 }

 theClass.push_back(iSet);

 }

 return theClass;

}

Appendix I

Receive Class Function (2 of 2)

259

// Function to send frequent items of class to a process

void Send_FreqItems(setItemsetVect freqItems, int procNum,int classNum, int

sArray[])

{

 int index = 0,

 size = 0;

 int j;

 int totItems = 0,

 itemSize;

 item_set::iterator i, enditer;

 int sendSizeAtrb[3]; //0 size (Value of -1 indicates end of list from proc ,

 1 attribute number

 item_set tempSet;

 size = (int)freqItems.size(); //Number of atoms in class

 sendSizeAtrb[0] = 0;

 sendSizeAtrb[1] = 0;

 sendSizeAtrb[2] = classNum; // class number

 if(sArray[0] == -1)

 {

 sendSizeAtrb[0] = -1; //Number of elements in each itemset

 sendSizeAtrb[1] = size; //Number of itemsets that are in vector

 MPI_Send(sendSizeAtrb,

 3,

 MPI_INT,

 procNum,

 TAG,

 MPI_COMM_WORLD);

 return;

 } // size is 0 no freuent items in class

Appendix J

Send Frequent Itemsets Function (1 of 2)

260

 for(index = 0; index < size; index++)

 {

 tempSet = freqItems[index];

 itemSize = (int)tempSet.size();

 for(i = tempSet.begin(); i != tempSet.end(); i++)

 {

 sArray[totItems] = *i;

 totItems++;

 }

 }

 sendSizeAtrb[0] = itemSize; //Number of elements in each atom

 sendSizeAtrb[1] = size; //Number of atoms in the class

 MPI_Send(sendSizeAtrb,

 3,

 MPI_INT,

 procNum,

 TAG,

 MPI_COMM_WORLD);

 MPI_Send(sArray,

 totItems,

 MPI_INT,

 procNum,

 TAG,

 MPI_COMM_WORLD);

 sendSizeAtrb[0] = -1;

}

Appendix J

Send Frequent Itemsets Function (2 of 2)

261

// Function to receive frequent itemsets of a class from a process

setItemsetVect Recv_Freqitems(int procInfo[],int rArray[])

{

 int source;

 int itemSize; //Number of attributes in each atom

 int totalItems; //Total atoms in class

 MPI_Status status;

 #define TAG 100

 #define TRIANGARRASIZE 1953

 int index = 0,

 index2 = 0,

 atrib= 0,

 size = 0;

 int rnElem = 0;

 int pause;

 setItemsetVect freqItemsVec;

 int recvSizeAtrb[3]; //0 size (Value of -1 indicates end of list from proc ,

 1 attribute number

 recvSizeAtrb[0] = 0;

 recvSizeAtrb[1] = 0;

 recvSizeAtrb[2] = 0;

 freqItemsVec.clear();

 /* Receive a message from a process: */

 MPI_Recv(recvSizeAtrb,

 3,

 MPI_INT,

 MPI_ANY_SOURCE,

 TAG,

 MPI_COMM_WORLD,

 &status); //MPI_STATUS_IGNORE);

 source = status.MPI_SOURCE;

 procInfo[0] = source;

 procInfo[1] = recvSizeAtrb[2];// class number

 procInfo[2] = recvSizeAtrb[2];

 itemSize = recvSizeAtrb[0];

 totalItems = recvSizeAtrb[1];

Appendix K

Receive Frequent Itemsets Function (1 of 2)

262

/* Changed to send 0 in procInfo[2] to indicate no rules */

 if(itemSize < 0)

 {

 procInfo[2] = 0;

 return freqItemsVec; //there are no frequent items in the class

 }

 rnElem = itemSize * totalItems;

 printf("\n** rnElem to receive = %d\n", rnElem);

 MPI_Recv(rArray,

 rnElem,

 MPI_INT,

 source,

 TAG,

 MPI_COMM_WORLD,

 &status);

 for(index = 0; index < totalItems; index++)

 {

 item_set iSet;

 for(index2 = 0; index2 < itemSize; index2++)

 {

 iSet.insert(rArray[atrib]);

 atrib++;

 }

 freqItemsVec.push_back(iSet);

 }

 return freqItemsVec;

}

Appendix K

Receive Frequent Itemsets Function (2 of 2)

263

TID,Parish,Race,Religion,SchUnivAtd,SchUniv,ExamPassed

1,13,15,26,47,49,63

9,13,,,,,

17,13,15,26,44,50,57

25,13,15,26,43,49,56

33,13,15,26,47,50,63

41,13,,,,,

49,13,15,26,47,49,63

57,13,15,24,47,49,63

65,13,15,26,47,54,63

73,13,15,24,47,54,63

81,13,15,24,42,48,55

89,13,15,26,47,49,63

97,13,15,41,42,48,55

105,13,15,24,47,54,63

113,13,15,23,42,48,55

121,13,15,32,42,48,55

129,13,15,24,43,49,56

137,13,15,26,43,49,56

145,13,15,31,43,49,56

153,13,15,26,44,50,57

161,13,15,26,47,49,63

169,13,15,26,47,49,63

177,13,,,,,

185,13,15,29,47,49,63

193,13,15,23,43,49,56

201,13,15,26,47,54,63

209,13,15,41,,49,

217,13,15,24,47,49,63

225,13,15,41,47,54,63

233,13,15,23,44,50,57

241,13,15,23,43,49,56

249,13,,,,,

481,13,15,23,42,48,55

489,13,15,23,47,50,63

497,13,15,24,43,49,56

Appendix L

Sample Data File

264

STATISTICAL DATA FOR DDRM

Total number of transactions = 1116759

Support for this run is = 8

Support Count for this run is = 89340

Confidence for this run is = 50

Number of Classes = 8

Number of CPUs = 4

Number of Processes = 4

**** List of frequent attributes :

2 13 14 15 20 24 26 41 43 47 49 50 54 56 63

Itemset for F2 **** contains:

2 15

2 47

2 49

2 63

14 15

14 47

14 63

15 24

15 26

15 41

15 43

15 47

15 49

15 50

15 54

15 56

15 63

20 47

20 63

26 47

26 49

26 63

41 47

41 49

41 63

43 49

Appendix M

Sample Output for DDRM (1 of 5)

265

43 49

43 56

47 49

47 50

47 54

47 63

49 56

49 63

50 63

54 63

The following is the List of Classes:

Class 0 containsthe following atoms:

2 13 14 15

2 13 14 20

2 13 14 24

2 13 14 26

2 13 14 41

2 13 14 43

2 13 14 47

2 13 14 49

2 13 14 50

2 13 14 54

2 13 14 56

2 13 14 63

Class 1 contains the following atoms:

2 13 15

2 13 20

2 13 24

2 13 26

2 13 41

2 13 43

2 13 47

Appendix M

Sample Output for DDRM (2 of 5)

266

2 13 49

2 13 50

2 13 54

2 13 56

2 13 63

Class 2 contains the following atoms:

2 14 15

2 14 20

2 14 24

2 14 26

2 14 41

2 14 43

2 14 47

2 14 49

2 14 50

2 14 54

2 14 56

2 14 63

Class 3 contains the following atoms:

2 15

2 20

2 24

2 26

2 41

2 43

2 47

2 49

2 50

2 54

2 56

2 63

Class 4 contains the following atoms:

13 14 15

13 14 20

13 14 24

13 14 26

13 14 41

13 14 43

Appendix M

Sample Output for DDRM (3 of 5)

267

13 14 47

13 14 49

13 14 50

13 14 54

13 14 56

13 14 63

Class 5 contains the following atoms:

13 15

13 20

13 24

13 26

13 41

13 43

13 47

13 49

13 50

13 54

13 56

13 63

Class 6 contains the following atoms:

14 15

14 20

14 24

14 26

14 41

14 43

14 47

14 49

14 50

14 54

14 56

14 63

Class 7 contains the following atoms:

15

20

24

26

41

43

47

Appendix M

Sample Output for DDRM (4 of 5)

268

49

50

54

56

63

Rule number 1

47 ===========> 2 63

 63 ===========> 2 47

 2 47 ===========> 63

 2 63 ===========> 47

 Rule number 2

47 ===========> 63

 63 ===========> 47

 Start time for computation is = 1114196968

End time for computation is = 1114199081

Total time for computation is = 2113

Total time to process database is = 614

Total time to Compute F2 is = 557

Total time to send all classes is = 826

Total time to receive all classes is = 723

Total time to process all classes is = 826

Total time to generate all rules is = 903

 Arrival Time of First set of Classes:

Class Number 1 arrived at 103 from Processor 2

Class Number 0 arrived at 103 from Processor 1

Class Number 2 arrived at 104 from Processor 3

Class Number 4 arrived at 173 from Processor 1

Class Number 5 arrived at 173 from Processor 3

Class Number 6 arrived at 368 from Processor 1

Class Number 3 arrived at 371 from Processor 2

Class Number 7 arrived at 826 from Processor 3

Appendix M

Sample Output for DDRM (5 of 5)

269

Reference List

Adamo, J. (2001). Data Mining for Association Rules and Sequential Patterns Sequential

and Parallel Algorithms. New York, NY: Springer-Verlag New York, Inc.

Agrawal, R., Gehrke, J., Gunopulos, D., & Raghaven, P. (1998). Automatic subspace

clustering of high dimensional data for data mining applications. Proceedings of ACM

SIGMOD International Conference on Management of Data, 94-105.

Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets

of items in large databases. Proceedings of ACM SIGMOD International Conference

on Management of Data, 207-216.

Agrawal, R., & Shafer, J. C. (1996). Parallel mining of association rules. IEEE

Transaction on Knowledge and Data Engineering, 8 (6), 962-969.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules.

Proceedings of the 20
th

 International Conference on Very Large Databases, 487-499.

San Francisco, CA: Morgan Kaufman Publishers.

Bayardo Jr., R. J., Agrawal, R., & Gunopulos, D. (1999). Constraint-based rule mining in

large, dense databases. Proceedings of the 15
th

 International Conference on Data

Engineering, 188-197.

Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and

implication rules for market basket data. Proceedings of ACM SIGMOD International

Conference on Management of Data, 255-264.

Carter, C. L., & Hamilton, H. J. (1998). Efficient attribute-oriented generalization for

knowledge discovery from large databases. IEEE Transaction on Knowledge and Data

Engineering, 10 (2), 193-208.

Cheung, D. W., Han, J., Ng, V. T., Fu, A. W., & Fu, Y. (1996). A fast distributed

algorithm for mining association rules. Proceedings of the 4
th

 International

Conference on Parallel and Distributed Information Systems, 31-43, Los Altamos,

CA: IEEE Computer Society Press.

Cheung, D. W., Hu, K., & Xia, S. (1998). Asynchronous parallel algorithms for mining

association rules on shared-memory multi-processors. Proceedings of 10
th

 ACM

Symposium on Parallel Algorithms and Architectures, 279-288, New York, NY: ACM

Press.

Cheung, D., & Xiao, Y. (1998). Effect of data skewness in parallel mining of association

rules. Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data

270

Mining, Lecture Notes in Computer Science, vol. 1394, 48-60, New York, NY:

Springer-Verlag.

Chow, R. & Johnson, T. (1998). Distributed Operating Systems and Distributed

Algorithms. Berkeley, CA: Addison-Wesley.

DeWitt, D. & Gray, J. (1992). Parallel database systems: The future of high performance

database systems. Communications of ACM, 35 (6), 85-98.

Ganter, B., & Willie, R. (1999). Formal Concept Analysis Mathematical Foundations.

New York, NY: Springer.

Han, J., & Kamber, M. (2001). Data Mining Concepts and Techniques. San Francisco,

CA: Morgan Kaufman.

Han, E., Karypis, G., & Kumar, V. (2000). Scalable parallel data mining for association

rules. IEEE Transaction on Knowledge and Data Engineering, 12(3), 337-352.

Hand, D., Mannila, H., & Smyth, P. (2001). Principles of Data Mining. Cambridge,

MA: MIT Press.

Jacob, M., & Lee, S. (1999). Task spreading and shrinking on multiprocessor systems

and networks of workstations. IEEE Transaction on Parallel and Distributed Systems,

10 (10), 1082-1101.

Jian, L., Yingjun, L., Xiaoxing, M., Min, C., Xianping, T., Guanqun, Z., & JianzHong, L.

(2000). A hierarchical framework for parallel seismic applications. Communications of

ACM, 43 (10), 55-59.

Megiddo, N., & Srikant, R. (1998). Discovering predictive association rules. Proceedings

of the 4
th

 International Conference on Knowledge Discovery and Data Mining (KDD-

98), 274-278.

Park, J. S., Chen, M., & Yu, P. S. (1995). An effective hash-based algorithm for mining

association rules. Proceedings of ACM SIGMOD International Conference on

Management of Data, 175-186.

Parthasarathy, S., Zaki, M. J., & Li, W. (1998). Memory placement techniques for

parallel association mining. Proceedings of the 4
th

 International Conference on

Knowledge Discovery and Data Mining (KDD-98), 304-308.

Shintani, T., & Kitsuregawa, M. (1998). Parallel mining algorithms for generalized

association rules with classification hierarchy. Proceedings of ACM SIGMOD

International Conference on Management of Data, 25-36.

271

Shintani, T., & Kitsuregawa, M. (1996). Hash based parallel algorithms for mining

association rules. Proceedings of 4
th

 International Conference on Parallel and

Distributed Information Systems, 19-30, Los Altamos, CA: IEEE Computer Society

Press.

Srikant, R., Vu, Q., & Agrawal, R. (1997). Mining association rules with item

constraints. Proceedings of the 3
rd

 International Conference on Knowledge Discovery

and Data Mining, 67-73.

Street, A. P., & Wallis, W. D. (1982). Combinatorics: A First Course. Manitoba, Canada:

The Charles Babbage Research Centre.

Tamura, M., & Kitsuregawa, M. (1999). Dynamic load balancing for parallel association

rule mining on heterogeneous PC cluster system. Proceedings of the 25
th

 International

Conference on Very large Databases, 162-179.

Wu, M. (1997). On runtime parallel scheduling for processor load balancing. IEEE

Transaction on Parallel and Distributed Systems, l 6 (2), 640-656.

Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE Transactions on

Knowledge and Data Engineering, 12(3), 372-390.

Zaki, M. J. (2000b). Parallel and distributed data mining: An introduction. In Zaki, M. J.

& Ho, C. (Eds.), Large-Scale Parallel Data Mining (pp. 1-23). New York, NY:

Springer-Verlag.

Zaki, M. J. (2000c). Hierarchical parallel algorithms for association mining. In Kargupta,

H & Chan P. (Eds.), Advances in Distributed and Parallel Knowledge Discovery (pp.

339-336). Cambridge, MA: MIT Press.

Zaki, M. J., Parthasarathy, S., & Li, W. (1997). A localized algorithm for parallel

association mining. Proceedings of 9
th

 Annual ACM Symposium on Parallel

Algorithms and Architectures (SPAA), 321-330.

Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li, W. (1997). New algorithms for fast

discovery of association rules. Proceedings of 3
rd

 International Conference on

Knowledge Discovery and Data Mining, 283-286.

	Nova Southeastern University
	NSUWorks
	2009

	Parallel Mining of Association Rules Using a Lattice Based Approach
	Wessel Morant Thomas
	Share Feedback About This Item
	NSUWorks Citation

	Microsoft Word - Final Dissertation-02-2009_Camera_ready_3_Fonts_EmbdRT

